c_can.c revision ccbc5357db3098c57176945f677b0af37f5e87e6
1/*
2 * CAN bus driver for Bosch C_CAN controller
3 *
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
6 *
7 * Borrowed heavily from the C_CAN driver originally written by:
8 * Copyright (C) 2007
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11 *
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13 * written by:
14 * Copyright
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17 *
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
22 *
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/netdevice.h>
33#include <linux/if_arp.h>
34#include <linux/if_ether.h>
35#include <linux/list.h>
36#include <linux/io.h>
37#include <linux/pm_runtime.h>
38
39#include <linux/can.h>
40#include <linux/can/dev.h>
41#include <linux/can/error.h>
42#include <linux/can/led.h>
43
44#include "c_can.h"
45
46/* Number of interface registers */
47#define IF_ENUM_REG_LEN		11
48#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
49
50/* control extension register D_CAN specific */
51#define CONTROL_EX_PDR		BIT(8)
52
53/* control register */
54#define CONTROL_TEST		BIT(7)
55#define CONTROL_CCE		BIT(6)
56#define CONTROL_DISABLE_AR	BIT(5)
57#define CONTROL_ENABLE_AR	(0 << 5)
58#define CONTROL_EIE		BIT(3)
59#define CONTROL_SIE		BIT(2)
60#define CONTROL_IE		BIT(1)
61#define CONTROL_INIT		BIT(0)
62
63#define CONTROL_IRQMSK		(CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
64
65/* test register */
66#define TEST_RX			BIT(7)
67#define TEST_TX1		BIT(6)
68#define TEST_TX2		BIT(5)
69#define TEST_LBACK		BIT(4)
70#define TEST_SILENT		BIT(3)
71#define TEST_BASIC		BIT(2)
72
73/* status register */
74#define STATUS_PDA		BIT(10)
75#define STATUS_BOFF		BIT(7)
76#define STATUS_EWARN		BIT(6)
77#define STATUS_EPASS		BIT(5)
78#define STATUS_RXOK		BIT(4)
79#define STATUS_TXOK		BIT(3)
80
81/* error counter register */
82#define ERR_CNT_TEC_MASK	0xff
83#define ERR_CNT_TEC_SHIFT	0
84#define ERR_CNT_REC_SHIFT	8
85#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
86#define ERR_CNT_RP_SHIFT	15
87#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
88
89/* bit-timing register */
90#define BTR_BRP_MASK		0x3f
91#define BTR_BRP_SHIFT		0
92#define BTR_SJW_SHIFT		6
93#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
94#define BTR_TSEG1_SHIFT		8
95#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
96#define BTR_TSEG2_SHIFT		12
97#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
98
99/* brp extension register */
100#define BRP_EXT_BRPE_MASK	0x0f
101#define BRP_EXT_BRPE_SHIFT	0
102
103/* IFx command request */
104#define IF_COMR_BUSY		BIT(15)
105
106/* IFx command mask */
107#define IF_COMM_WR		BIT(7)
108#define IF_COMM_MASK		BIT(6)
109#define IF_COMM_ARB		BIT(5)
110#define IF_COMM_CONTROL		BIT(4)
111#define IF_COMM_CLR_INT_PND	BIT(3)
112#define IF_COMM_TXRQST		BIT(2)
113#define IF_COMM_CLR_NEWDAT	IF_COMM_TXRQST
114#define IF_COMM_DATAA		BIT(1)
115#define IF_COMM_DATAB		BIT(0)
116
117/* TX buffer setup */
118#define IF_COMM_TX		(IF_COMM_ARB | IF_COMM_CONTROL | \
119				 IF_COMM_TXRQST |		 \
120				 IF_COMM_DATAA | IF_COMM_DATAB)
121
122/* For the low buffers we clear the interrupt bit, but keep newdat */
123#define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
124				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
125				 IF_COMM_DATAA | IF_COMM_DATAB)
126
127/* For the high buffers we clear the interrupt bit and newdat */
128#define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
129
130
131/* Receive setup of message objects */
132#define IF_COMM_RCV_SETUP	(IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
133
134/* Invalidation of message objects */
135#define IF_COMM_INVAL		(IF_COMM_ARB | IF_COMM_CONTROL)
136
137/* IFx arbitration */
138#define IF_ARB_MSGVAL		BIT(31)
139#define IF_ARB_MSGXTD		BIT(30)
140#define IF_ARB_TRANSMIT		BIT(29)
141
142/* IFx message control */
143#define IF_MCONT_NEWDAT		BIT(15)
144#define IF_MCONT_MSGLST		BIT(14)
145#define IF_MCONT_INTPND		BIT(13)
146#define IF_MCONT_UMASK		BIT(12)
147#define IF_MCONT_TXIE		BIT(11)
148#define IF_MCONT_RXIE		BIT(10)
149#define IF_MCONT_RMTEN		BIT(9)
150#define IF_MCONT_TXRQST		BIT(8)
151#define IF_MCONT_EOB		BIT(7)
152#define IF_MCONT_DLC_MASK	0xf
153
154#define IF_MCONT_RCV		(IF_MCONT_RXIE | IF_MCONT_UMASK)
155#define IF_MCONT_RCV_EOB	(IF_MCONT_RCV | IF_MCONT_EOB)
156
157#define IF_MCONT_TX		(IF_MCONT_TXIE | IF_MCONT_EOB)
158
159/*
160 * Use IF1 for RX and IF2 for TX
161 */
162#define IF_RX			0
163#define IF_TX			1
164
165/* minimum timeout for checking BUSY status */
166#define MIN_TIMEOUT_VALUE	6
167
168/* Wait for ~1 sec for INIT bit */
169#define INIT_WAIT_MS		1000
170
171/* napi related */
172#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
173
174/* c_can lec values */
175enum c_can_lec_type {
176	LEC_NO_ERROR = 0,
177	LEC_STUFF_ERROR,
178	LEC_FORM_ERROR,
179	LEC_ACK_ERROR,
180	LEC_BIT1_ERROR,
181	LEC_BIT0_ERROR,
182	LEC_CRC_ERROR,
183	LEC_UNUSED,
184	LEC_MASK = LEC_UNUSED,
185};
186
187/*
188 * c_can error types:
189 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
190 */
191enum c_can_bus_error_types {
192	C_CAN_NO_ERROR = 0,
193	C_CAN_BUS_OFF,
194	C_CAN_ERROR_WARNING,
195	C_CAN_ERROR_PASSIVE,
196};
197
198static const struct can_bittiming_const c_can_bittiming_const = {
199	.name = KBUILD_MODNAME,
200	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
201	.tseg1_max = 16,
202	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
203	.tseg2_max = 8,
204	.sjw_max = 4,
205	.brp_min = 1,
206	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
207	.brp_inc = 1,
208};
209
210static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
211{
212	if (priv->device)
213		pm_runtime_enable(priv->device);
214}
215
216static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
217{
218	if (priv->device)
219		pm_runtime_disable(priv->device);
220}
221
222static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
223{
224	if (priv->device)
225		pm_runtime_get_sync(priv->device);
226}
227
228static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
229{
230	if (priv->device)
231		pm_runtime_put_sync(priv->device);
232}
233
234static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
235{
236	if (priv->raminit)
237		priv->raminit(priv, enable);
238}
239
240static void c_can_irq_control(struct c_can_priv *priv, bool enable)
241{
242	u32 ctrl = priv->read_reg(priv,	C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
243
244	if (enable)
245		ctrl |= CONTROL_IRQMSK;
246
247	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
248}
249
250static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
251{
252	struct c_can_priv *priv = netdev_priv(dev);
253	int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
254
255	priv->write_reg32(priv, reg, (cmd << 16) | obj);
256
257	for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
258		if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
259			return;
260		udelay(1);
261	}
262	netdev_err(dev, "Updating object timed out\n");
263
264}
265
266static inline void c_can_object_get(struct net_device *dev, int iface,
267				    u32 obj, u32 cmd)
268{
269	c_can_obj_update(dev, iface, cmd, obj);
270}
271
272static inline void c_can_object_put(struct net_device *dev, int iface,
273				    u32 obj, u32 cmd)
274{
275	c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
276}
277
278/*
279 * Note: According to documentation clearing TXIE while MSGVAL is set
280 * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
281 * load significantly.
282 */
283static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
284{
285	struct c_can_priv *priv = netdev_priv(dev);
286
287	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
288	c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
289}
290
291static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
292{
293	struct c_can_priv *priv = netdev_priv(dev);
294
295	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
296	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
297	c_can_inval_tx_object(dev, iface, obj);
298}
299
300static void c_can_setup_tx_object(struct net_device *dev, int iface,
301				  struct can_frame *frame, int idx)
302{
303	struct c_can_priv *priv = netdev_priv(dev);
304	u16 ctrl = IF_MCONT_TX | frame->can_dlc;
305	bool rtr = frame->can_id & CAN_RTR_FLAG;
306	u32 arb = IF_ARB_MSGVAL;
307	int i;
308
309	if (frame->can_id & CAN_EFF_FLAG) {
310		arb |= frame->can_id & CAN_EFF_MASK;
311		arb |= IF_ARB_MSGXTD;
312	} else {
313		arb |= (frame->can_id & CAN_SFF_MASK) << 18;
314	}
315
316	if (!rtr)
317		arb |= IF_ARB_TRANSMIT;
318
319	/*
320	 * If we change the DIR bit, we need to invalidate the buffer
321	 * first, i.e. clear the MSGVAL flag in the arbiter.
322	 */
323	if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
324		u32 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
325
326		c_can_inval_msg_object(dev, iface, obj);
327		change_bit(idx, &priv->tx_dir);
328	}
329
330	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
331
332	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
333
334	for (i = 0; i < frame->can_dlc; i += 2) {
335		priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
336				frame->data[i] | (frame->data[i + 1] << 8));
337	}
338}
339
340static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
341						       int iface)
342{
343	int i;
344
345	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++)
346		c_can_object_get(dev, iface, i, IF_COMM_CLR_NEWDAT);
347}
348
349static int c_can_handle_lost_msg_obj(struct net_device *dev,
350				     int iface, int objno, u32 ctrl)
351{
352	struct net_device_stats *stats = &dev->stats;
353	struct c_can_priv *priv = netdev_priv(dev);
354	struct can_frame *frame;
355	struct sk_buff *skb;
356
357	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
358	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
359	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
360
361	stats->rx_errors++;
362	stats->rx_over_errors++;
363
364	/* create an error msg */
365	skb = alloc_can_err_skb(dev, &frame);
366	if (unlikely(!skb))
367		return 0;
368
369	frame->can_id |= CAN_ERR_CRTL;
370	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
371
372	netif_receive_skb(skb);
373	return 1;
374}
375
376static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
377{
378	struct net_device_stats *stats = &dev->stats;
379	struct c_can_priv *priv = netdev_priv(dev);
380	struct can_frame *frame;
381	struct sk_buff *skb;
382	u32 arb, data;
383
384	skb = alloc_can_skb(dev, &frame);
385	if (!skb) {
386		stats->rx_dropped++;
387		return -ENOMEM;
388	}
389
390	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
391
392	arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface));
393
394	if (arb & IF_ARB_MSGXTD)
395		frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
396	else
397		frame->can_id = (arb >> 18) & CAN_SFF_MASK;
398
399	if (arb & IF_ARB_TRANSMIT) {
400		frame->can_id |= CAN_RTR_FLAG;
401	} else {
402		int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
403
404		for (i = 0; i < frame->can_dlc; i += 2, dreg ++) {
405			data = priv->read_reg(priv, dreg);
406			frame->data[i] = data;
407			frame->data[i + 1] = data >> 8;
408		}
409	}
410
411	stats->rx_packets++;
412	stats->rx_bytes += frame->can_dlc;
413
414	netif_receive_skb(skb);
415	return 0;
416}
417
418static void c_can_setup_receive_object(struct net_device *dev, int iface,
419				       u32 obj, u32 mask, u32 id, u32 mcont)
420{
421	struct c_can_priv *priv = netdev_priv(dev);
422
423	mask |= BIT(29);
424	priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
425
426	id |= IF_ARB_MSGVAL;
427	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id);
428
429	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
430	c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
431}
432
433static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
434				    struct net_device *dev)
435{
436	struct can_frame *frame = (struct can_frame *)skb->data;
437	struct c_can_priv *priv = netdev_priv(dev);
438	u32 idx, obj;
439
440	if (can_dropped_invalid_skb(dev, skb))
441		return NETDEV_TX_OK;
442	/*
443	 * This is not a FIFO. C/D_CAN sends out the buffers
444	 * prioritized. The lowest buffer number wins.
445	 */
446	idx = fls(atomic_read(&priv->tx_active));
447	obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
448
449	/* If this is the last buffer, stop the xmit queue */
450	if (idx == C_CAN_MSG_OBJ_TX_NUM - 1)
451		netif_stop_queue(dev);
452	/*
453	 * Store the message in the interface so we can call
454	 * can_put_echo_skb(). We must do this before we enable
455	 * transmit as we might race against do_tx().
456	 */
457	c_can_setup_tx_object(dev, IF_TX, frame, idx);
458	priv->dlc[idx] = frame->can_dlc;
459	can_put_echo_skb(skb, dev, idx);
460
461	/* Update the active bits */
462	atomic_add((1 << idx), &priv->tx_active);
463	/* Start transmission */
464	c_can_object_put(dev, IF_TX, obj, IF_COMM_TX);
465
466	return NETDEV_TX_OK;
467}
468
469static int c_can_wait_for_ctrl_init(struct net_device *dev,
470				    struct c_can_priv *priv, u32 init)
471{
472	int retry = 0;
473
474	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
475		udelay(10);
476		if (retry++ > 1000) {
477			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
478			return -EIO;
479		}
480	}
481	return 0;
482}
483
484static int c_can_set_bittiming(struct net_device *dev)
485{
486	unsigned int reg_btr, reg_brpe, ctrl_save;
487	u8 brp, brpe, sjw, tseg1, tseg2;
488	u32 ten_bit_brp;
489	struct c_can_priv *priv = netdev_priv(dev);
490	const struct can_bittiming *bt = &priv->can.bittiming;
491	int res;
492
493	/* c_can provides a 6-bit brp and 4-bit brpe fields */
494	ten_bit_brp = bt->brp - 1;
495	brp = ten_bit_brp & BTR_BRP_MASK;
496	brpe = ten_bit_brp >> 6;
497
498	sjw = bt->sjw - 1;
499	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
500	tseg2 = bt->phase_seg2 - 1;
501	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
502			(tseg2 << BTR_TSEG2_SHIFT);
503	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
504
505	netdev_info(dev,
506		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
507
508	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
509	ctrl_save &= ~CONTROL_INIT;
510	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
511	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
512	if (res)
513		return res;
514
515	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
516	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
517	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
518
519	return c_can_wait_for_ctrl_init(dev, priv, 0);
520}
521
522/*
523 * Configure C_CAN message objects for Tx and Rx purposes:
524 * C_CAN provides a total of 32 message objects that can be configured
525 * either for Tx or Rx purposes. Here the first 16 message objects are used as
526 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
527 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
528 * See user guide document for further details on configuring message
529 * objects.
530 */
531static void c_can_configure_msg_objects(struct net_device *dev)
532{
533	int i;
534
535	/* first invalidate all message objects */
536	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
537		c_can_inval_msg_object(dev, IF_RX, i);
538
539	/* setup receive message objects */
540	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
541		c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
542
543	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
544				   IF_MCONT_RCV_EOB);
545}
546
547/*
548 * Configure C_CAN chip:
549 * - enable/disable auto-retransmission
550 * - set operating mode
551 * - configure message objects
552 */
553static int c_can_chip_config(struct net_device *dev)
554{
555	struct c_can_priv *priv = netdev_priv(dev);
556
557	/* enable automatic retransmission */
558	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
559
560	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
561	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
562		/* loopback + silent mode : useful for hot self-test */
563		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
564		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
565	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
566		/* loopback mode : useful for self-test function */
567		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
568		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
569	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
570		/* silent mode : bus-monitoring mode */
571		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
572		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
573	}
574
575	/* configure message objects */
576	c_can_configure_msg_objects(dev);
577
578	/* set a `lec` value so that we can check for updates later */
579	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
580
581	/* Clear all internal status */
582	atomic_set(&priv->tx_active, 0);
583	priv->rxmasked = 0;
584	priv->tx_dir = 0;
585
586	/* set bittiming params */
587	return c_can_set_bittiming(dev);
588}
589
590static int c_can_start(struct net_device *dev)
591{
592	struct c_can_priv *priv = netdev_priv(dev);
593	int err;
594
595	/* basic c_can configuration */
596	err = c_can_chip_config(dev);
597	if (err)
598		return err;
599
600	/* Setup the command for new messages */
601	priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
602		IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
603
604	priv->can.state = CAN_STATE_ERROR_ACTIVE;
605
606	return 0;
607}
608
609static void c_can_stop(struct net_device *dev)
610{
611	struct c_can_priv *priv = netdev_priv(dev);
612
613	c_can_irq_control(priv, false);
614	priv->can.state = CAN_STATE_STOPPED;
615}
616
617static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
618{
619	struct c_can_priv *priv = netdev_priv(dev);
620	int err;
621
622	switch (mode) {
623	case CAN_MODE_START:
624		err = c_can_start(dev);
625		if (err)
626			return err;
627		netif_wake_queue(dev);
628		c_can_irq_control(priv, true);
629		break;
630	default:
631		return -EOPNOTSUPP;
632	}
633
634	return 0;
635}
636
637static int __c_can_get_berr_counter(const struct net_device *dev,
638				    struct can_berr_counter *bec)
639{
640	unsigned int reg_err_counter;
641	struct c_can_priv *priv = netdev_priv(dev);
642
643	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
644	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
645				ERR_CNT_REC_SHIFT;
646	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
647
648	return 0;
649}
650
651static int c_can_get_berr_counter(const struct net_device *dev,
652				  struct can_berr_counter *bec)
653{
654	struct c_can_priv *priv = netdev_priv(dev);
655	int err;
656
657	c_can_pm_runtime_get_sync(priv);
658	err = __c_can_get_berr_counter(dev, bec);
659	c_can_pm_runtime_put_sync(priv);
660
661	return err;
662}
663
664static void c_can_do_tx(struct net_device *dev)
665{
666	struct c_can_priv *priv = netdev_priv(dev);
667	struct net_device_stats *stats = &dev->stats;
668	u32 idx, obj, pkts = 0, bytes = 0, pend, clr;
669
670	clr = pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
671
672	while ((idx = ffs(pend))) {
673		idx--;
674		pend &= ~(1 << idx);
675		obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
676		c_can_inval_tx_object(dev, IF_RX, obj);
677		can_get_echo_skb(dev, idx);
678		bytes += priv->dlc[idx];
679		pkts++;
680	}
681
682	/* Clear the bits in the tx_active mask */
683	atomic_sub(clr, &priv->tx_active);
684
685	if (clr & (1 << (C_CAN_MSG_OBJ_TX_NUM - 1)))
686		netif_wake_queue(dev);
687
688	if (pkts) {
689		stats->tx_bytes += bytes;
690		stats->tx_packets += pkts;
691		can_led_event(dev, CAN_LED_EVENT_TX);
692	}
693}
694
695/*
696 * If we have a gap in the pending bits, that means we either
697 * raced with the hardware or failed to readout all upper
698 * objects in the last run due to quota limit.
699 */
700static u32 c_can_adjust_pending(u32 pend)
701{
702	u32 weight, lasts;
703
704	if (pend == RECEIVE_OBJECT_BITS)
705		return pend;
706
707	/*
708	 * If the last set bit is larger than the number of pending
709	 * bits we have a gap.
710	 */
711	weight = hweight32(pend);
712	lasts = fls(pend);
713
714	/* If the bits are linear, nothing to do */
715	if (lasts == weight)
716		return pend;
717
718	/*
719	 * Find the first set bit after the gap. We walk backwards
720	 * from the last set bit.
721	 */
722	for (lasts--; pend & (1 << (lasts - 1)); lasts--);
723
724	return pend & ~((1 << lasts) - 1);
725}
726
727static inline void c_can_rx_object_get(struct net_device *dev,
728				       struct c_can_priv *priv, u32 obj)
729{
730#ifdef CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING
731	if (obj < C_CAN_MSG_RX_LOW_LAST)
732		c_can_object_get(dev, IF_RX, obj, IF_COMM_RCV_LOW);
733	else
734#endif
735		c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
736}
737
738static inline void c_can_rx_finalize(struct net_device *dev,
739				     struct c_can_priv *priv, u32 obj)
740{
741#ifdef CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING
742	if (obj < C_CAN_MSG_RX_LOW_LAST)
743		priv->rxmasked |= BIT(obj - 1);
744	else if (obj == C_CAN_MSG_RX_LOW_LAST) {
745		priv->rxmasked = 0;
746		/* activate all lower message objects */
747		c_can_activate_all_lower_rx_msg_obj(dev, IF_RX);
748	}
749#endif
750	if (priv->type != BOSCH_D_CAN)
751		c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
752}
753
754static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
755			      u32 pend, int quota)
756{
757	u32 pkts = 0, ctrl, obj;
758
759	while ((obj = ffs(pend)) && quota > 0) {
760		pend &= ~BIT(obj - 1);
761
762		c_can_rx_object_get(dev, priv, obj);
763		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
764
765		if (ctrl & IF_MCONT_MSGLST) {
766			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
767
768			pkts += n;
769			quota -= n;
770			continue;
771		}
772
773		/*
774		 * This really should not happen, but this covers some
775		 * odd HW behaviour. Do not remove that unless you
776		 * want to brick your machine.
777		 */
778		if (!(ctrl & IF_MCONT_NEWDAT))
779			continue;
780
781		/* read the data from the message object */
782		c_can_read_msg_object(dev, IF_RX, ctrl);
783
784		c_can_rx_finalize(dev, priv, obj);
785
786		pkts++;
787		quota--;
788	}
789
790	return pkts;
791}
792
793static inline u32 c_can_get_pending(struct c_can_priv *priv)
794{
795	u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
796
797#ifdef CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING
798	pend &= ~priv->rxmasked;
799#endif
800	return pend;
801}
802
803/*
804 * theory of operation:
805 *
806 * c_can core saves a received CAN message into the first free message
807 * object it finds free (starting with the lowest). Bits NEWDAT and
808 * INTPND are set for this message object indicating that a new message
809 * has arrived. To work-around this issue, we keep two groups of message
810 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
811 *
812 * If CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING = y
813 *
814 * To ensure in-order frame reception we use the following
815 * approach while re-activating a message object to receive further
816 * frames:
817 * - if the current message object number is lower than
818 *   C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
819 *   the INTPND bit.
820 * - if the current message object number is equal to
821 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
822 *   receive message objects.
823 * - if the current message object number is greater than
824 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
825 *   only this message object.
826 *
827 * This can cause packet loss!
828 *
829 * If CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING = n
830 *
831 * We clear the newdat bit right away.
832 *
833 * This can result in packet reordering when the readout is slow.
834 */
835static int c_can_do_rx_poll(struct net_device *dev, int quota)
836{
837	struct c_can_priv *priv = netdev_priv(dev);
838	u32 pkts = 0, pend = 0, toread, n;
839
840	/*
841	 * It is faster to read only one 16bit register. This is only possible
842	 * for a maximum number of 16 objects.
843	 */
844	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
845			"Implementation does not support more message objects than 16");
846
847	while (quota > 0) {
848		if (!pend) {
849			pend = c_can_get_pending(priv);
850			if (!pend)
851				break;
852			/*
853			 * If the pending field has a gap, handle the
854			 * bits above the gap first.
855			 */
856			toread = c_can_adjust_pending(pend);
857		} else {
858			toread = pend;
859		}
860		/* Remove the bits from pend */
861		pend &= ~toread;
862		/* Read the objects */
863		n = c_can_read_objects(dev, priv, toread, quota);
864		pkts += n;
865		quota -= n;
866	}
867
868	if (pkts)
869		can_led_event(dev, CAN_LED_EVENT_RX);
870
871	return pkts;
872}
873
874static int c_can_handle_state_change(struct net_device *dev,
875				enum c_can_bus_error_types error_type)
876{
877	unsigned int reg_err_counter;
878	unsigned int rx_err_passive;
879	struct c_can_priv *priv = netdev_priv(dev);
880	struct net_device_stats *stats = &dev->stats;
881	struct can_frame *cf;
882	struct sk_buff *skb;
883	struct can_berr_counter bec;
884
885	switch (error_type) {
886	case C_CAN_ERROR_WARNING:
887		/* error warning state */
888		priv->can.can_stats.error_warning++;
889		priv->can.state = CAN_STATE_ERROR_WARNING;
890		break;
891	case C_CAN_ERROR_PASSIVE:
892		/* error passive state */
893		priv->can.can_stats.error_passive++;
894		priv->can.state = CAN_STATE_ERROR_PASSIVE;
895		break;
896	case C_CAN_BUS_OFF:
897		/* bus-off state */
898		priv->can.state = CAN_STATE_BUS_OFF;
899		can_bus_off(dev);
900		break;
901	default:
902		break;
903	}
904
905	/* propagate the error condition to the CAN stack */
906	skb = alloc_can_err_skb(dev, &cf);
907	if (unlikely(!skb))
908		return 0;
909
910	__c_can_get_berr_counter(dev, &bec);
911	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
912	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
913				ERR_CNT_RP_SHIFT;
914
915	switch (error_type) {
916	case C_CAN_ERROR_WARNING:
917		/* error warning state */
918		cf->can_id |= CAN_ERR_CRTL;
919		cf->data[1] = (bec.txerr > bec.rxerr) ?
920			CAN_ERR_CRTL_TX_WARNING :
921			CAN_ERR_CRTL_RX_WARNING;
922		cf->data[6] = bec.txerr;
923		cf->data[7] = bec.rxerr;
924
925		break;
926	case C_CAN_ERROR_PASSIVE:
927		/* error passive state */
928		cf->can_id |= CAN_ERR_CRTL;
929		if (rx_err_passive)
930			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
931		if (bec.txerr > 127)
932			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
933
934		cf->data[6] = bec.txerr;
935		cf->data[7] = bec.rxerr;
936		break;
937	case C_CAN_BUS_OFF:
938		/* bus-off state */
939		cf->can_id |= CAN_ERR_BUSOFF;
940		can_bus_off(dev);
941		break;
942	default:
943		break;
944	}
945
946	stats->rx_packets++;
947	stats->rx_bytes += cf->can_dlc;
948	netif_receive_skb(skb);
949
950	return 1;
951}
952
953static int c_can_handle_bus_err(struct net_device *dev,
954				enum c_can_lec_type lec_type)
955{
956	struct c_can_priv *priv = netdev_priv(dev);
957	struct net_device_stats *stats = &dev->stats;
958	struct can_frame *cf;
959	struct sk_buff *skb;
960
961	/*
962	 * early exit if no lec update or no error.
963	 * no lec update means that no CAN bus event has been detected
964	 * since CPU wrote 0x7 value to status reg.
965	 */
966	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
967		return 0;
968
969	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
970		return 0;
971
972	/* common for all type of bus errors */
973	priv->can.can_stats.bus_error++;
974	stats->rx_errors++;
975
976	/* propagate the error condition to the CAN stack */
977	skb = alloc_can_err_skb(dev, &cf);
978	if (unlikely(!skb))
979		return 0;
980
981	/*
982	 * check for 'last error code' which tells us the
983	 * type of the last error to occur on the CAN bus
984	 */
985	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
986	cf->data[2] |= CAN_ERR_PROT_UNSPEC;
987
988	switch (lec_type) {
989	case LEC_STUFF_ERROR:
990		netdev_dbg(dev, "stuff error\n");
991		cf->data[2] |= CAN_ERR_PROT_STUFF;
992		break;
993	case LEC_FORM_ERROR:
994		netdev_dbg(dev, "form error\n");
995		cf->data[2] |= CAN_ERR_PROT_FORM;
996		break;
997	case LEC_ACK_ERROR:
998		netdev_dbg(dev, "ack error\n");
999		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
1000				CAN_ERR_PROT_LOC_ACK_DEL);
1001		break;
1002	case LEC_BIT1_ERROR:
1003		netdev_dbg(dev, "bit1 error\n");
1004		cf->data[2] |= CAN_ERR_PROT_BIT1;
1005		break;
1006	case LEC_BIT0_ERROR:
1007		netdev_dbg(dev, "bit0 error\n");
1008		cf->data[2] |= CAN_ERR_PROT_BIT0;
1009		break;
1010	case LEC_CRC_ERROR:
1011		netdev_dbg(dev, "CRC error\n");
1012		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
1013				CAN_ERR_PROT_LOC_CRC_DEL);
1014		break;
1015	default:
1016		break;
1017	}
1018
1019	stats->rx_packets++;
1020	stats->rx_bytes += cf->can_dlc;
1021	netif_receive_skb(skb);
1022	return 1;
1023}
1024
1025static int c_can_poll(struct napi_struct *napi, int quota)
1026{
1027	struct net_device *dev = napi->dev;
1028	struct c_can_priv *priv = netdev_priv(dev);
1029	u16 curr, last = priv->last_status;
1030	int work_done = 0;
1031
1032	priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
1033	/* Ack status on C_CAN. D_CAN is self clearing */
1034	if (priv->type != BOSCH_D_CAN)
1035		priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1036
1037	/* handle state changes */
1038	if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1039		netdev_dbg(dev, "entered error warning state\n");
1040		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1041	}
1042
1043	if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1044		netdev_dbg(dev, "entered error passive state\n");
1045		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1046	}
1047
1048	if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1049		netdev_dbg(dev, "entered bus off state\n");
1050		work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1051		goto end;
1052	}
1053
1054	/* handle bus recovery events */
1055	if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1056		netdev_dbg(dev, "left bus off state\n");
1057		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1058	}
1059	if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1060		netdev_dbg(dev, "left error passive state\n");
1061		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1062	}
1063
1064	/* handle lec errors on the bus */
1065	work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1066
1067	/* Handle Tx/Rx events. We do this unconditionally */
1068	work_done += c_can_do_rx_poll(dev, (quota - work_done));
1069	c_can_do_tx(dev);
1070
1071end:
1072	if (work_done < quota) {
1073		napi_complete(napi);
1074		/* enable all IRQs if we are not in bus off state */
1075		if (priv->can.state != CAN_STATE_BUS_OFF)
1076			c_can_irq_control(priv, true);
1077	}
1078
1079	return work_done;
1080}
1081
1082static irqreturn_t c_can_isr(int irq, void *dev_id)
1083{
1084	struct net_device *dev = (struct net_device *)dev_id;
1085	struct c_can_priv *priv = netdev_priv(dev);
1086
1087	if (!priv->read_reg(priv, C_CAN_INT_REG))
1088		return IRQ_NONE;
1089
1090	/* disable all interrupts and schedule the NAPI */
1091	c_can_irq_control(priv, false);
1092	napi_schedule(&priv->napi);
1093
1094	return IRQ_HANDLED;
1095}
1096
1097static int c_can_open(struct net_device *dev)
1098{
1099	int err;
1100	struct c_can_priv *priv = netdev_priv(dev);
1101
1102	c_can_pm_runtime_get_sync(priv);
1103	c_can_reset_ram(priv, true);
1104
1105	/* open the can device */
1106	err = open_candev(dev);
1107	if (err) {
1108		netdev_err(dev, "failed to open can device\n");
1109		goto exit_open_fail;
1110	}
1111
1112	/* register interrupt handler */
1113	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1114				dev);
1115	if (err < 0) {
1116		netdev_err(dev, "failed to request interrupt\n");
1117		goto exit_irq_fail;
1118	}
1119
1120	/* start the c_can controller */
1121	err = c_can_start(dev);
1122	if (err)
1123		goto exit_start_fail;
1124
1125	can_led_event(dev, CAN_LED_EVENT_OPEN);
1126
1127	napi_enable(&priv->napi);
1128	/* enable status change, error and module interrupts */
1129	c_can_irq_control(priv, true);
1130	netif_start_queue(dev);
1131
1132	return 0;
1133
1134exit_start_fail:
1135	free_irq(dev->irq, dev);
1136exit_irq_fail:
1137	close_candev(dev);
1138exit_open_fail:
1139	c_can_reset_ram(priv, false);
1140	c_can_pm_runtime_put_sync(priv);
1141	return err;
1142}
1143
1144static int c_can_close(struct net_device *dev)
1145{
1146	struct c_can_priv *priv = netdev_priv(dev);
1147
1148	netif_stop_queue(dev);
1149	napi_disable(&priv->napi);
1150	c_can_stop(dev);
1151	free_irq(dev->irq, dev);
1152	close_candev(dev);
1153
1154	c_can_reset_ram(priv, false);
1155	c_can_pm_runtime_put_sync(priv);
1156
1157	can_led_event(dev, CAN_LED_EVENT_STOP);
1158
1159	return 0;
1160}
1161
1162struct net_device *alloc_c_can_dev(void)
1163{
1164	struct net_device *dev;
1165	struct c_can_priv *priv;
1166
1167	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1168	if (!dev)
1169		return NULL;
1170
1171	priv = netdev_priv(dev);
1172	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1173
1174	priv->dev = dev;
1175	priv->can.bittiming_const = &c_can_bittiming_const;
1176	priv->can.do_set_mode = c_can_set_mode;
1177	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1178	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1179					CAN_CTRLMODE_LISTENONLY |
1180					CAN_CTRLMODE_BERR_REPORTING;
1181
1182	return dev;
1183}
1184EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1185
1186#ifdef CONFIG_PM
1187int c_can_power_down(struct net_device *dev)
1188{
1189	u32 val;
1190	unsigned long time_out;
1191	struct c_can_priv *priv = netdev_priv(dev);
1192
1193	if (!(dev->flags & IFF_UP))
1194		return 0;
1195
1196	WARN_ON(priv->type != BOSCH_D_CAN);
1197
1198	/* set PDR value so the device goes to power down mode */
1199	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1200	val |= CONTROL_EX_PDR;
1201	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1202
1203	/* Wait for the PDA bit to get set */
1204	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1205	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1206				time_after(time_out, jiffies))
1207		cpu_relax();
1208
1209	if (time_after(jiffies, time_out))
1210		return -ETIMEDOUT;
1211
1212	c_can_stop(dev);
1213
1214	c_can_reset_ram(priv, false);
1215	c_can_pm_runtime_put_sync(priv);
1216
1217	return 0;
1218}
1219EXPORT_SYMBOL_GPL(c_can_power_down);
1220
1221int c_can_power_up(struct net_device *dev)
1222{
1223	u32 val;
1224	unsigned long time_out;
1225	struct c_can_priv *priv = netdev_priv(dev);
1226	int ret;
1227
1228	if (!(dev->flags & IFF_UP))
1229		return 0;
1230
1231	WARN_ON(priv->type != BOSCH_D_CAN);
1232
1233	c_can_pm_runtime_get_sync(priv);
1234	c_can_reset_ram(priv, true);
1235
1236	/* Clear PDR and INIT bits */
1237	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1238	val &= ~CONTROL_EX_PDR;
1239	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1240	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1241	val &= ~CONTROL_INIT;
1242	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1243
1244	/* Wait for the PDA bit to get clear */
1245	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1246	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1247				time_after(time_out, jiffies))
1248		cpu_relax();
1249
1250	if (time_after(jiffies, time_out))
1251		return -ETIMEDOUT;
1252
1253	ret = c_can_start(dev);
1254	if (!ret)
1255		c_can_irq_control(priv, true);
1256
1257	return ret;
1258}
1259EXPORT_SYMBOL_GPL(c_can_power_up);
1260#endif
1261
1262void free_c_can_dev(struct net_device *dev)
1263{
1264	struct c_can_priv *priv = netdev_priv(dev);
1265
1266	netif_napi_del(&priv->napi);
1267	free_candev(dev);
1268}
1269EXPORT_SYMBOL_GPL(free_c_can_dev);
1270
1271static const struct net_device_ops c_can_netdev_ops = {
1272	.ndo_open = c_can_open,
1273	.ndo_stop = c_can_close,
1274	.ndo_start_xmit = c_can_start_xmit,
1275	.ndo_change_mtu = can_change_mtu,
1276};
1277
1278int register_c_can_dev(struct net_device *dev)
1279{
1280	struct c_can_priv *priv = netdev_priv(dev);
1281	int err;
1282
1283	c_can_pm_runtime_enable(priv);
1284
1285	dev->flags |= IFF_ECHO;	/* we support local echo */
1286	dev->netdev_ops = &c_can_netdev_ops;
1287
1288	err = register_candev(dev);
1289	if (err)
1290		c_can_pm_runtime_disable(priv);
1291	else
1292		devm_can_led_init(dev);
1293
1294	return err;
1295}
1296EXPORT_SYMBOL_GPL(register_c_can_dev);
1297
1298void unregister_c_can_dev(struct net_device *dev)
1299{
1300	struct c_can_priv *priv = netdev_priv(dev);
1301
1302	unregister_candev(dev);
1303
1304	c_can_pm_runtime_disable(priv);
1305}
1306EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1307
1308MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1309MODULE_LICENSE("GPL v2");
1310MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1311