c_can.c revision d61d09de023320b95a536eb4d31941e67002a93c
1/*
2 * CAN bus driver for Bosch C_CAN controller
3 *
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
6 *
7 * Borrowed heavily from the C_CAN driver originally written by:
8 * Copyright (C) 2007
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11 *
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13 * written by:
14 * Copyright
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17 *
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
22 *
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/netdevice.h>
33#include <linux/if_arp.h>
34#include <linux/if_ether.h>
35#include <linux/list.h>
36#include <linux/io.h>
37#include <linux/pm_runtime.h>
38
39#include <linux/can.h>
40#include <linux/can/dev.h>
41#include <linux/can/error.h>
42#include <linux/can/led.h>
43
44#include "c_can.h"
45
46/* Number of interface registers */
47#define IF_ENUM_REG_LEN		11
48#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
49
50/* control extension register D_CAN specific */
51#define CONTROL_EX_PDR		BIT(8)
52
53/* control register */
54#define CONTROL_TEST		BIT(7)
55#define CONTROL_CCE		BIT(6)
56#define CONTROL_DISABLE_AR	BIT(5)
57#define CONTROL_ENABLE_AR	(0 << 5)
58#define CONTROL_EIE		BIT(3)
59#define CONTROL_SIE		BIT(2)
60#define CONTROL_IE		BIT(1)
61#define CONTROL_INIT		BIT(0)
62
63/* test register */
64#define TEST_RX			BIT(7)
65#define TEST_TX1		BIT(6)
66#define TEST_TX2		BIT(5)
67#define TEST_LBACK		BIT(4)
68#define TEST_SILENT		BIT(3)
69#define TEST_BASIC		BIT(2)
70
71/* status register */
72#define STATUS_PDA		BIT(10)
73#define STATUS_BOFF		BIT(7)
74#define STATUS_EWARN		BIT(6)
75#define STATUS_EPASS		BIT(5)
76#define STATUS_RXOK		BIT(4)
77#define STATUS_TXOK		BIT(3)
78
79/* error counter register */
80#define ERR_CNT_TEC_MASK	0xff
81#define ERR_CNT_TEC_SHIFT	0
82#define ERR_CNT_REC_SHIFT	8
83#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
84#define ERR_CNT_RP_SHIFT	15
85#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
86
87/* bit-timing register */
88#define BTR_BRP_MASK		0x3f
89#define BTR_BRP_SHIFT		0
90#define BTR_SJW_SHIFT		6
91#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
92#define BTR_TSEG1_SHIFT		8
93#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
94#define BTR_TSEG2_SHIFT		12
95#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
96
97/* brp extension register */
98#define BRP_EXT_BRPE_MASK	0x0f
99#define BRP_EXT_BRPE_SHIFT	0
100
101/* IFx command request */
102#define IF_COMR_BUSY		BIT(15)
103
104/* IFx command mask */
105#define IF_COMM_WR		BIT(7)
106#define IF_COMM_MASK		BIT(6)
107#define IF_COMM_ARB		BIT(5)
108#define IF_COMM_CONTROL		BIT(4)
109#define IF_COMM_CLR_INT_PND	BIT(3)
110#define IF_COMM_TXRQST		BIT(2)
111#define IF_COMM_CLR_NEWDAT	IF_COMM_TXRQST
112#define IF_COMM_DATAA		BIT(1)
113#define IF_COMM_DATAB		BIT(0)
114#define IF_COMM_ALL		(IF_COMM_MASK | IF_COMM_ARB | \
115				IF_COMM_CONTROL | IF_COMM_TXRQST | \
116				IF_COMM_DATAA | IF_COMM_DATAB)
117
118/* For the low buffers we clear the interrupt bit, but keep newdat */
119#define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
120				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
121				 IF_COMM_DATAA | IF_COMM_DATAB)
122
123/* For the high buffers we clear the interrupt bit and newdat */
124#define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
125
126/* IFx arbitration */
127#define IF_ARB_MSGVAL		BIT(15)
128#define IF_ARB_MSGXTD		BIT(14)
129#define IF_ARB_TRANSMIT		BIT(13)
130
131/* IFx message control */
132#define IF_MCONT_NEWDAT		BIT(15)
133#define IF_MCONT_MSGLST		BIT(14)
134#define IF_MCONT_INTPND		BIT(13)
135#define IF_MCONT_UMASK		BIT(12)
136#define IF_MCONT_TXIE		BIT(11)
137#define IF_MCONT_RXIE		BIT(10)
138#define IF_MCONT_RMTEN		BIT(9)
139#define IF_MCONT_TXRQST		BIT(8)
140#define IF_MCONT_EOB		BIT(7)
141#define IF_MCONT_DLC_MASK	0xf
142
143/*
144 * Use IF1 for RX and IF2 for TX
145 */
146#define IF_RX			0
147#define IF_TX			1
148
149/* status interrupt */
150#define STATUS_INTERRUPT	0x8000
151
152/* global interrupt masks */
153#define ENABLE_ALL_INTERRUPTS	1
154#define DISABLE_ALL_INTERRUPTS	0
155
156/* minimum timeout for checking BUSY status */
157#define MIN_TIMEOUT_VALUE	6
158
159/* Wait for ~1 sec for INIT bit */
160#define INIT_WAIT_MS		1000
161
162/* napi related */
163#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
164
165/* c_can lec values */
166enum c_can_lec_type {
167	LEC_NO_ERROR = 0,
168	LEC_STUFF_ERROR,
169	LEC_FORM_ERROR,
170	LEC_ACK_ERROR,
171	LEC_BIT1_ERROR,
172	LEC_BIT0_ERROR,
173	LEC_CRC_ERROR,
174	LEC_UNUSED,
175	LEC_MASK = LEC_UNUSED,
176};
177
178/*
179 * c_can error types:
180 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
181 */
182enum c_can_bus_error_types {
183	C_CAN_NO_ERROR = 0,
184	C_CAN_BUS_OFF,
185	C_CAN_ERROR_WARNING,
186	C_CAN_ERROR_PASSIVE,
187};
188
189static const struct can_bittiming_const c_can_bittiming_const = {
190	.name = KBUILD_MODNAME,
191	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
192	.tseg1_max = 16,
193	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
194	.tseg2_max = 8,
195	.sjw_max = 4,
196	.brp_min = 1,
197	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
198	.brp_inc = 1,
199};
200
201static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
202{
203	if (priv->device)
204		pm_runtime_enable(priv->device);
205}
206
207static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
208{
209	if (priv->device)
210		pm_runtime_disable(priv->device);
211}
212
213static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
214{
215	if (priv->device)
216		pm_runtime_get_sync(priv->device);
217}
218
219static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
220{
221	if (priv->device)
222		pm_runtime_put_sync(priv->device);
223}
224
225static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
226{
227	if (priv->raminit)
228		priv->raminit(priv, enable);
229}
230
231static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
232{
233	return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
234			C_CAN_MSG_OBJ_TX_FIRST;
235}
236
237static inline int get_tx_echo_msg_obj(int txecho)
238{
239	return (txecho & C_CAN_NEXT_MSG_OBJ_MASK) + C_CAN_MSG_OBJ_TX_FIRST;
240}
241
242static u32 c_can_read_reg32(struct c_can_priv *priv, enum reg index)
243{
244	u32 val = priv->read_reg(priv, index);
245	val |= ((u32) priv->read_reg(priv, index + 1)) << 16;
246	return val;
247}
248
249static void c_can_enable_all_interrupts(struct c_can_priv *priv,
250						int enable)
251{
252	unsigned int cntrl_save = priv->read_reg(priv,
253						C_CAN_CTRL_REG);
254
255	if (enable)
256		cntrl_save |= (CONTROL_SIE | CONTROL_EIE | CONTROL_IE);
257	else
258		cntrl_save &= ~(CONTROL_EIE | CONTROL_IE | CONTROL_SIE);
259
260	priv->write_reg(priv, C_CAN_CTRL_REG, cntrl_save);
261}
262
263static inline int c_can_msg_obj_is_busy(struct c_can_priv *priv, int iface)
264{
265	int count = MIN_TIMEOUT_VALUE;
266
267	while (count && priv->read_reg(priv,
268				C_CAN_IFACE(COMREQ_REG, iface)) &
269				IF_COMR_BUSY) {
270		count--;
271		udelay(1);
272	}
273
274	if (!count)
275		return 1;
276
277	return 0;
278}
279
280static inline void c_can_object_get(struct net_device *dev,
281					int iface, int objno, int mask)
282{
283	struct c_can_priv *priv = netdev_priv(dev);
284
285	/*
286	 * As per specs, after writting the message object number in the
287	 * IF command request register the transfer b/w interface
288	 * register and message RAM must be complete in 6 CAN-CLK
289	 * period.
290	 */
291	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
292			IFX_WRITE_LOW_16BIT(mask));
293	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
294			IFX_WRITE_LOW_16BIT(objno));
295
296	if (c_can_msg_obj_is_busy(priv, iface))
297		netdev_err(dev, "timed out in object get\n");
298}
299
300static inline void c_can_object_put(struct net_device *dev,
301					int iface, int objno, int mask)
302{
303	struct c_can_priv *priv = netdev_priv(dev);
304
305	/*
306	 * As per specs, after writting the message object number in the
307	 * IF command request register the transfer b/w interface
308	 * register and message RAM must be complete in 6 CAN-CLK
309	 * period.
310	 */
311	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
312			(IF_COMM_WR | IFX_WRITE_LOW_16BIT(mask)));
313	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
314			IFX_WRITE_LOW_16BIT(objno));
315
316	if (c_can_msg_obj_is_busy(priv, iface))
317		netdev_err(dev, "timed out in object put\n");
318}
319
320static void c_can_write_msg_object(struct net_device *dev,
321			int iface, struct can_frame *frame, int objno)
322{
323	int i;
324	u16 flags = 0;
325	unsigned int id;
326	struct c_can_priv *priv = netdev_priv(dev);
327
328	if (!(frame->can_id & CAN_RTR_FLAG))
329		flags |= IF_ARB_TRANSMIT;
330
331	if (frame->can_id & CAN_EFF_FLAG) {
332		id = frame->can_id & CAN_EFF_MASK;
333		flags |= IF_ARB_MSGXTD;
334	} else
335		id = ((frame->can_id & CAN_SFF_MASK) << 18);
336
337	flags |= IF_ARB_MSGVAL;
338
339	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
340				IFX_WRITE_LOW_16BIT(id));
341	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), flags |
342				IFX_WRITE_HIGH_16BIT(id));
343
344	for (i = 0; i < frame->can_dlc; i += 2) {
345		priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
346				frame->data[i] | (frame->data[i + 1] << 8));
347	}
348
349	/* enable interrupt for this message object */
350	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
351			IF_MCONT_TXIE | IF_MCONT_TXRQST | IF_MCONT_EOB |
352			frame->can_dlc);
353	c_can_object_put(dev, iface, objno, IF_COMM_ALL);
354}
355
356static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
357						       int iface)
358{
359	int i;
360
361	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++)
362		c_can_object_get(dev, iface, i, IF_COMM_CLR_NEWDAT);
363}
364
365static int c_can_handle_lost_msg_obj(struct net_device *dev,
366				     int iface, int objno, u32 ctrl)
367{
368	struct net_device_stats *stats = &dev->stats;
369	struct c_can_priv *priv = netdev_priv(dev);
370	struct can_frame *frame;
371	struct sk_buff *skb;
372
373	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
374	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
375	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
376
377	stats->rx_errors++;
378	stats->rx_over_errors++;
379
380	/* create an error msg */
381	skb = alloc_can_err_skb(dev, &frame);
382	if (unlikely(!skb))
383		return 0;
384
385	frame->can_id |= CAN_ERR_CRTL;
386	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
387
388	netif_receive_skb(skb);
389	return 1;
390}
391
392static int c_can_read_msg_object(struct net_device *dev, int iface, int ctrl)
393{
394	u16 flags, data;
395	int i;
396	unsigned int val;
397	struct c_can_priv *priv = netdev_priv(dev);
398	struct net_device_stats *stats = &dev->stats;
399	struct sk_buff *skb;
400	struct can_frame *frame;
401
402	skb = alloc_can_skb(dev, &frame);
403	if (!skb) {
404		stats->rx_dropped++;
405		return -ENOMEM;
406	}
407
408	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
409
410	flags =	priv->read_reg(priv, C_CAN_IFACE(ARB2_REG, iface));
411	val = priv->read_reg(priv, C_CAN_IFACE(ARB1_REG, iface)) |
412		(flags << 16);
413
414	if (flags & IF_ARB_MSGXTD)
415		frame->can_id = (val & CAN_EFF_MASK) | CAN_EFF_FLAG;
416	else
417		frame->can_id = (val >> 18) & CAN_SFF_MASK;
418
419	if (flags & IF_ARB_TRANSMIT)
420		frame->can_id |= CAN_RTR_FLAG;
421	else {
422		for (i = 0; i < frame->can_dlc; i += 2) {
423			data = priv->read_reg(priv,
424				C_CAN_IFACE(DATA1_REG, iface) + i / 2);
425			frame->data[i] = data;
426			frame->data[i + 1] = data >> 8;
427		}
428	}
429
430	stats->rx_packets++;
431	stats->rx_bytes += frame->can_dlc;
432
433	netif_receive_skb(skb);
434	return 0;
435}
436
437static void c_can_setup_receive_object(struct net_device *dev, int iface,
438					int objno, unsigned int mask,
439					unsigned int id, unsigned int mcont)
440{
441	struct c_can_priv *priv = netdev_priv(dev);
442
443	priv->write_reg(priv, C_CAN_IFACE(MASK1_REG, iface),
444			IFX_WRITE_LOW_16BIT(mask));
445
446	/* According to C_CAN documentation, the reserved bit
447	 * in IFx_MASK2 register is fixed 1
448	 */
449	priv->write_reg(priv, C_CAN_IFACE(MASK2_REG, iface),
450			IFX_WRITE_HIGH_16BIT(mask) | BIT(13));
451
452	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
453			IFX_WRITE_LOW_16BIT(id));
454	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface),
455			(IF_ARB_MSGVAL | IFX_WRITE_HIGH_16BIT(id)));
456
457	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
458	c_can_object_put(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
459
460	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
461			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
462}
463
464static void c_can_inval_msg_object(struct net_device *dev, int iface, int objno)
465{
466	struct c_can_priv *priv = netdev_priv(dev);
467
468	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
469	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
470	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
471
472	c_can_object_put(dev, iface, objno, IF_COMM_ARB | IF_COMM_CONTROL);
473
474	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
475			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
476}
477
478static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
479{
480	int val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
481
482	/*
483	 * as transmission request register's bit n-1 corresponds to
484	 * message object n, we need to handle the same properly.
485	 */
486	if (val & (1 << (objno - 1)))
487		return 1;
488
489	return 0;
490}
491
492static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
493					struct net_device *dev)
494{
495	u32 msg_obj_no;
496	struct c_can_priv *priv = netdev_priv(dev);
497	struct can_frame *frame = (struct can_frame *)skb->data;
498
499	if (can_dropped_invalid_skb(dev, skb))
500		return NETDEV_TX_OK;
501
502	spin_lock_bh(&priv->xmit_lock);
503	msg_obj_no = get_tx_next_msg_obj(priv);
504
505	/* prepare message object for transmission */
506	c_can_write_msg_object(dev, IF_TX, frame, msg_obj_no);
507	priv->dlc[msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST] = frame->can_dlc;
508	can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
509
510	/*
511	 * we have to stop the queue in case of a wrap around or
512	 * if the next TX message object is still in use
513	 */
514	priv->tx_next++;
515	if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
516			(priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
517		netif_stop_queue(dev);
518	spin_unlock_bh(&priv->xmit_lock);
519
520	return NETDEV_TX_OK;
521}
522
523static int c_can_wait_for_ctrl_init(struct net_device *dev,
524				    struct c_can_priv *priv, u32 init)
525{
526	int retry = 0;
527
528	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
529		udelay(10);
530		if (retry++ > 1000) {
531			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
532			return -EIO;
533		}
534	}
535	return 0;
536}
537
538static int c_can_set_bittiming(struct net_device *dev)
539{
540	unsigned int reg_btr, reg_brpe, ctrl_save;
541	u8 brp, brpe, sjw, tseg1, tseg2;
542	u32 ten_bit_brp;
543	struct c_can_priv *priv = netdev_priv(dev);
544	const struct can_bittiming *bt = &priv->can.bittiming;
545	int res;
546
547	/* c_can provides a 6-bit brp and 4-bit brpe fields */
548	ten_bit_brp = bt->brp - 1;
549	brp = ten_bit_brp & BTR_BRP_MASK;
550	brpe = ten_bit_brp >> 6;
551
552	sjw = bt->sjw - 1;
553	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
554	tseg2 = bt->phase_seg2 - 1;
555	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
556			(tseg2 << BTR_TSEG2_SHIFT);
557	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
558
559	netdev_info(dev,
560		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
561
562	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
563	ctrl_save &= ~CONTROL_INIT;
564	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
565	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
566	if (res)
567		return res;
568
569	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
570	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
571	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
572
573	return c_can_wait_for_ctrl_init(dev, priv, 0);
574}
575
576/*
577 * Configure C_CAN message objects for Tx and Rx purposes:
578 * C_CAN provides a total of 32 message objects that can be configured
579 * either for Tx or Rx purposes. Here the first 16 message objects are used as
580 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
581 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
582 * See user guide document for further details on configuring message
583 * objects.
584 */
585static void c_can_configure_msg_objects(struct net_device *dev)
586{
587	int i;
588
589	/* first invalidate all message objects */
590	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
591		c_can_inval_msg_object(dev, IF_RX, i);
592
593	/* setup receive message objects */
594	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
595		c_can_setup_receive_object(dev, IF_RX, i, 0, 0,
596					   IF_MCONT_RXIE | IF_MCONT_UMASK);
597
598	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
599			IF_MCONT_EOB | IF_MCONT_RXIE | IF_MCONT_UMASK);
600}
601
602/*
603 * Configure C_CAN chip:
604 * - enable/disable auto-retransmission
605 * - set operating mode
606 * - configure message objects
607 */
608static int c_can_chip_config(struct net_device *dev)
609{
610	struct c_can_priv *priv = netdev_priv(dev);
611
612	/* enable automatic retransmission */
613	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
614
615	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
616	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
617		/* loopback + silent mode : useful for hot self-test */
618		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
619		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
620	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
621		/* loopback mode : useful for self-test function */
622		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
623		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
624	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
625		/* silent mode : bus-monitoring mode */
626		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
627		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
628	}
629
630	/* configure message objects */
631	c_can_configure_msg_objects(dev);
632
633	/* set a `lec` value so that we can check for updates later */
634	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
635
636	/* set bittiming params */
637	return c_can_set_bittiming(dev);
638}
639
640static int c_can_start(struct net_device *dev)
641{
642	struct c_can_priv *priv = netdev_priv(dev);
643	int err;
644
645	/* basic c_can configuration */
646	err = c_can_chip_config(dev);
647	if (err)
648		return err;
649
650	/* Setup the command for new messages */
651	priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
652		IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
653
654	priv->can.state = CAN_STATE_ERROR_ACTIVE;
655
656	/* reset tx helper pointers and the rx mask */
657	priv->tx_next = priv->tx_echo = 0;
658	priv->rxmasked = 0;
659
660	return 0;
661}
662
663static void c_can_stop(struct net_device *dev)
664{
665	struct c_can_priv *priv = netdev_priv(dev);
666
667	/* disable all interrupts */
668	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
669
670	/* set the state as STOPPED */
671	priv->can.state = CAN_STATE_STOPPED;
672}
673
674static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
675{
676	struct c_can_priv *priv = netdev_priv(dev);
677	int err;
678
679	switch (mode) {
680	case CAN_MODE_START:
681		err = c_can_start(dev);
682		if (err)
683			return err;
684		netif_wake_queue(dev);
685		/* enable status change, error and module interrupts */
686		c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
687		break;
688	default:
689		return -EOPNOTSUPP;
690	}
691
692	return 0;
693}
694
695static int __c_can_get_berr_counter(const struct net_device *dev,
696				    struct can_berr_counter *bec)
697{
698	unsigned int reg_err_counter;
699	struct c_can_priv *priv = netdev_priv(dev);
700
701	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
702	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
703				ERR_CNT_REC_SHIFT;
704	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
705
706	return 0;
707}
708
709static int c_can_get_berr_counter(const struct net_device *dev,
710				  struct can_berr_counter *bec)
711{
712	struct c_can_priv *priv = netdev_priv(dev);
713	int err;
714
715	c_can_pm_runtime_get_sync(priv);
716	err = __c_can_get_berr_counter(dev, bec);
717	c_can_pm_runtime_put_sync(priv);
718
719	return err;
720}
721
722/*
723 * priv->tx_echo holds the number of the oldest can_frame put for
724 * transmission into the hardware, but not yet ACKed by the CAN tx
725 * complete IRQ.
726 *
727 * We iterate from priv->tx_echo to priv->tx_next and check if the
728 * packet has been transmitted, echo it back to the CAN framework.
729 * If we discover a not yet transmitted packet, stop looking for more.
730 */
731static void c_can_do_tx(struct net_device *dev)
732{
733	struct c_can_priv *priv = netdev_priv(dev);
734	struct net_device_stats *stats = &dev->stats;
735	u32 val, obj, pkts = 0, bytes = 0;
736
737	spin_lock_bh(&priv->xmit_lock);
738
739	for (; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
740		obj = get_tx_echo_msg_obj(priv->tx_echo);
741		val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
742
743		if (val & (1 << (obj - 1)))
744			break;
745
746		can_get_echo_skb(dev, obj - C_CAN_MSG_OBJ_TX_FIRST);
747		bytes += priv->dlc[obj - C_CAN_MSG_OBJ_TX_FIRST];
748		pkts++;
749		c_can_inval_msg_object(dev, IF_TX, obj);
750	}
751
752	/* restart queue if wrap-up or if queue stalled on last pkt */
753	if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
754			((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
755		netif_wake_queue(dev);
756
757	spin_unlock_bh(&priv->xmit_lock);
758
759	if (pkts) {
760		stats->tx_bytes += bytes;
761		stats->tx_packets += pkts;
762		can_led_event(dev, CAN_LED_EVENT_TX);
763	}
764}
765
766/*
767 * If we have a gap in the pending bits, that means we either
768 * raced with the hardware or failed to readout all upper
769 * objects in the last run due to quota limit.
770 */
771static u32 c_can_adjust_pending(u32 pend)
772{
773	u32 weight, lasts;
774
775	if (pend == RECEIVE_OBJECT_BITS)
776		return pend;
777
778	/*
779	 * If the last set bit is larger than the number of pending
780	 * bits we have a gap.
781	 */
782	weight = hweight32(pend);
783	lasts = fls(pend);
784
785	/* If the bits are linear, nothing to do */
786	if (lasts == weight)
787		return pend;
788
789	/*
790	 * Find the first set bit after the gap. We walk backwards
791	 * from the last set bit.
792	 */
793	for (lasts--; pend & (1 << (lasts - 1)); lasts--);
794
795	return pend & ~((1 << lasts) - 1);
796}
797
798static inline void c_can_rx_object_get(struct net_device *dev,
799				       struct c_can_priv *priv, u32 obj)
800{
801#ifdef CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING
802	if (obj < C_CAN_MSG_RX_LOW_LAST)
803		c_can_object_get(dev, IF_RX, obj, IF_COMM_RCV_LOW);
804	else
805#endif
806		c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
807}
808
809static inline void c_can_rx_finalize(struct net_device *dev,
810				     struct c_can_priv *priv, u32 obj)
811{
812#ifdef CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING
813	if (obj < C_CAN_MSG_RX_LOW_LAST)
814		priv->rxmasked |= BIT(obj - 1);
815	else if (obj == C_CAN_MSG_RX_LOW_LAST) {
816		priv->rxmasked = 0;
817		/* activate all lower message objects */
818		c_can_activate_all_lower_rx_msg_obj(dev, IF_RX);
819	}
820#endif
821	if (priv->type != BOSCH_D_CAN)
822		c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
823}
824
825static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
826			      u32 pend, int quota)
827{
828	u32 pkts = 0, ctrl, obj;
829
830	while ((obj = ffs(pend)) && quota > 0) {
831		pend &= ~BIT(obj - 1);
832
833		c_can_rx_object_get(dev, priv, obj);
834		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
835
836		if (ctrl & IF_MCONT_MSGLST) {
837			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
838
839			pkts += n;
840			quota -= n;
841			continue;
842		}
843
844		/*
845		 * This really should not happen, but this covers some
846		 * odd HW behaviour. Do not remove that unless you
847		 * want to brick your machine.
848		 */
849		if (!(ctrl & IF_MCONT_NEWDAT))
850			continue;
851
852		/* read the data from the message object */
853		c_can_read_msg_object(dev, IF_RX, ctrl);
854
855		c_can_rx_finalize(dev, priv, obj);
856
857		pkts++;
858		quota--;
859	}
860
861	return pkts;
862}
863
864static inline u32 c_can_get_pending(struct c_can_priv *priv)
865{
866	u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
867
868#ifdef CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING
869	pend &= ~priv->rxmasked;
870#endif
871	return pend;
872}
873
874/*
875 * theory of operation:
876 *
877 * c_can core saves a received CAN message into the first free message
878 * object it finds free (starting with the lowest). Bits NEWDAT and
879 * INTPND are set for this message object indicating that a new message
880 * has arrived. To work-around this issue, we keep two groups of message
881 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
882 *
883 * If CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING = y
884 *
885 * To ensure in-order frame reception we use the following
886 * approach while re-activating a message object to receive further
887 * frames:
888 * - if the current message object number is lower than
889 *   C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
890 *   the INTPND bit.
891 * - if the current message object number is equal to
892 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
893 *   receive message objects.
894 * - if the current message object number is greater than
895 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
896 *   only this message object.
897 *
898 * This can cause packet loss!
899 *
900 * If CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING = n
901 *
902 * We clear the newdat bit right away.
903 *
904 * This can result in packet reordering when the readout is slow.
905 */
906static int c_can_do_rx_poll(struct net_device *dev, int quota)
907{
908	struct c_can_priv *priv = netdev_priv(dev);
909	u32 pkts = 0, pend = 0, toread, n;
910
911	/*
912	 * It is faster to read only one 16bit register. This is only possible
913	 * for a maximum number of 16 objects.
914	 */
915	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
916			"Implementation does not support more message objects than 16");
917
918	while (quota > 0) {
919		if (!pend) {
920			pend = c_can_get_pending(priv);
921			if (!pend)
922				break;
923			/*
924			 * If the pending field has a gap, handle the
925			 * bits above the gap first.
926			 */
927			toread = c_can_adjust_pending(pend);
928		} else {
929			toread = pend;
930		}
931		/* Remove the bits from pend */
932		pend &= ~toread;
933		/* Read the objects */
934		n = c_can_read_objects(dev, priv, toread, quota);
935		pkts += n;
936		quota -= n;
937	}
938
939	if (pkts)
940		can_led_event(dev, CAN_LED_EVENT_RX);
941
942	return pkts;
943}
944
945static int c_can_handle_state_change(struct net_device *dev,
946				enum c_can_bus_error_types error_type)
947{
948	unsigned int reg_err_counter;
949	unsigned int rx_err_passive;
950	struct c_can_priv *priv = netdev_priv(dev);
951	struct net_device_stats *stats = &dev->stats;
952	struct can_frame *cf;
953	struct sk_buff *skb;
954	struct can_berr_counter bec;
955
956	switch (error_type) {
957	case C_CAN_ERROR_WARNING:
958		/* error warning state */
959		priv->can.can_stats.error_warning++;
960		priv->can.state = CAN_STATE_ERROR_WARNING;
961		break;
962	case C_CAN_ERROR_PASSIVE:
963		/* error passive state */
964		priv->can.can_stats.error_passive++;
965		priv->can.state = CAN_STATE_ERROR_PASSIVE;
966		break;
967	case C_CAN_BUS_OFF:
968		/* bus-off state */
969		priv->can.state = CAN_STATE_BUS_OFF;
970		can_bus_off(dev);
971		break;
972	default:
973		break;
974	}
975
976	/* propagate the error condition to the CAN stack */
977	skb = alloc_can_err_skb(dev, &cf);
978	if (unlikely(!skb))
979		return 0;
980
981	__c_can_get_berr_counter(dev, &bec);
982	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
983	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
984				ERR_CNT_RP_SHIFT;
985
986	switch (error_type) {
987	case C_CAN_ERROR_WARNING:
988		/* error warning state */
989		cf->can_id |= CAN_ERR_CRTL;
990		cf->data[1] = (bec.txerr > bec.rxerr) ?
991			CAN_ERR_CRTL_TX_WARNING :
992			CAN_ERR_CRTL_RX_WARNING;
993		cf->data[6] = bec.txerr;
994		cf->data[7] = bec.rxerr;
995
996		break;
997	case C_CAN_ERROR_PASSIVE:
998		/* error passive state */
999		cf->can_id |= CAN_ERR_CRTL;
1000		if (rx_err_passive)
1001			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
1002		if (bec.txerr > 127)
1003			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
1004
1005		cf->data[6] = bec.txerr;
1006		cf->data[7] = bec.rxerr;
1007		break;
1008	case C_CAN_BUS_OFF:
1009		/* bus-off state */
1010		cf->can_id |= CAN_ERR_BUSOFF;
1011		can_bus_off(dev);
1012		break;
1013	default:
1014		break;
1015	}
1016
1017	stats->rx_packets++;
1018	stats->rx_bytes += cf->can_dlc;
1019	netif_receive_skb(skb);
1020
1021	return 1;
1022}
1023
1024static int c_can_handle_bus_err(struct net_device *dev,
1025				enum c_can_lec_type lec_type)
1026{
1027	struct c_can_priv *priv = netdev_priv(dev);
1028	struct net_device_stats *stats = &dev->stats;
1029	struct can_frame *cf;
1030	struct sk_buff *skb;
1031
1032	/*
1033	 * early exit if no lec update or no error.
1034	 * no lec update means that no CAN bus event has been detected
1035	 * since CPU wrote 0x7 value to status reg.
1036	 */
1037	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
1038		return 0;
1039
1040	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1041		return 0;
1042
1043	/* common for all type of bus errors */
1044	priv->can.can_stats.bus_error++;
1045	stats->rx_errors++;
1046
1047	/* propagate the error condition to the CAN stack */
1048	skb = alloc_can_err_skb(dev, &cf);
1049	if (unlikely(!skb))
1050		return 0;
1051
1052	/*
1053	 * check for 'last error code' which tells us the
1054	 * type of the last error to occur on the CAN bus
1055	 */
1056	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1057	cf->data[2] |= CAN_ERR_PROT_UNSPEC;
1058
1059	switch (lec_type) {
1060	case LEC_STUFF_ERROR:
1061		netdev_dbg(dev, "stuff error\n");
1062		cf->data[2] |= CAN_ERR_PROT_STUFF;
1063		break;
1064	case LEC_FORM_ERROR:
1065		netdev_dbg(dev, "form error\n");
1066		cf->data[2] |= CAN_ERR_PROT_FORM;
1067		break;
1068	case LEC_ACK_ERROR:
1069		netdev_dbg(dev, "ack error\n");
1070		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
1071				CAN_ERR_PROT_LOC_ACK_DEL);
1072		break;
1073	case LEC_BIT1_ERROR:
1074		netdev_dbg(dev, "bit1 error\n");
1075		cf->data[2] |= CAN_ERR_PROT_BIT1;
1076		break;
1077	case LEC_BIT0_ERROR:
1078		netdev_dbg(dev, "bit0 error\n");
1079		cf->data[2] |= CAN_ERR_PROT_BIT0;
1080		break;
1081	case LEC_CRC_ERROR:
1082		netdev_dbg(dev, "CRC error\n");
1083		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
1084				CAN_ERR_PROT_LOC_CRC_DEL);
1085		break;
1086	default:
1087		break;
1088	}
1089
1090	stats->rx_packets++;
1091	stats->rx_bytes += cf->can_dlc;
1092	netif_receive_skb(skb);
1093	return 1;
1094}
1095
1096static int c_can_poll(struct napi_struct *napi, int quota)
1097{
1098	struct net_device *dev = napi->dev;
1099	struct c_can_priv *priv = netdev_priv(dev);
1100	u16 curr, last = priv->last_status;
1101	int work_done = 0;
1102
1103	priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
1104	/* Ack status on C_CAN. D_CAN is self clearing */
1105	if (priv->type != BOSCH_D_CAN)
1106		priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1107
1108	/* handle state changes */
1109	if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1110		netdev_dbg(dev, "entered error warning state\n");
1111		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1112	}
1113
1114	if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1115		netdev_dbg(dev, "entered error passive state\n");
1116		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1117	}
1118
1119	if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1120		netdev_dbg(dev, "entered bus off state\n");
1121		work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1122		goto end;
1123	}
1124
1125	/* handle bus recovery events */
1126	if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1127		netdev_dbg(dev, "left bus off state\n");
1128		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1129	}
1130	if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1131		netdev_dbg(dev, "left error passive state\n");
1132		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1133	}
1134
1135	/* handle lec errors on the bus */
1136	work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1137
1138	/* Handle Tx/Rx events. We do this unconditionally */
1139	work_done += c_can_do_rx_poll(dev, (quota - work_done));
1140	c_can_do_tx(dev);
1141
1142end:
1143	if (work_done < quota) {
1144		napi_complete(napi);
1145		/* enable all IRQs if we are not in bus off state */
1146		if (priv->can.state != CAN_STATE_BUS_OFF)
1147			c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
1148	}
1149
1150	return work_done;
1151}
1152
1153static irqreturn_t c_can_isr(int irq, void *dev_id)
1154{
1155	struct net_device *dev = (struct net_device *)dev_id;
1156	struct c_can_priv *priv = netdev_priv(dev);
1157
1158	if (!priv->read_reg(priv, C_CAN_INT_REG))
1159		return IRQ_NONE;
1160
1161	/* disable all interrupts and schedule the NAPI */
1162	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
1163	napi_schedule(&priv->napi);
1164
1165	return IRQ_HANDLED;
1166}
1167
1168static int c_can_open(struct net_device *dev)
1169{
1170	int err;
1171	struct c_can_priv *priv = netdev_priv(dev);
1172
1173	c_can_pm_runtime_get_sync(priv);
1174	c_can_reset_ram(priv, true);
1175
1176	/* open the can device */
1177	err = open_candev(dev);
1178	if (err) {
1179		netdev_err(dev, "failed to open can device\n");
1180		goto exit_open_fail;
1181	}
1182
1183	/* register interrupt handler */
1184	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1185				dev);
1186	if (err < 0) {
1187		netdev_err(dev, "failed to request interrupt\n");
1188		goto exit_irq_fail;
1189	}
1190
1191	/* start the c_can controller */
1192	err = c_can_start(dev);
1193	if (err)
1194		goto exit_start_fail;
1195
1196	can_led_event(dev, CAN_LED_EVENT_OPEN);
1197
1198	napi_enable(&priv->napi);
1199	/* enable status change, error and module interrupts */
1200	c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
1201	netif_start_queue(dev);
1202
1203	return 0;
1204
1205exit_start_fail:
1206	free_irq(dev->irq, dev);
1207exit_irq_fail:
1208	close_candev(dev);
1209exit_open_fail:
1210	c_can_reset_ram(priv, false);
1211	c_can_pm_runtime_put_sync(priv);
1212	return err;
1213}
1214
1215static int c_can_close(struct net_device *dev)
1216{
1217	struct c_can_priv *priv = netdev_priv(dev);
1218
1219	netif_stop_queue(dev);
1220	napi_disable(&priv->napi);
1221	c_can_stop(dev);
1222	free_irq(dev->irq, dev);
1223	close_candev(dev);
1224
1225	c_can_reset_ram(priv, false);
1226	c_can_pm_runtime_put_sync(priv);
1227
1228	can_led_event(dev, CAN_LED_EVENT_STOP);
1229
1230	return 0;
1231}
1232
1233struct net_device *alloc_c_can_dev(void)
1234{
1235	struct net_device *dev;
1236	struct c_can_priv *priv;
1237
1238	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1239	if (!dev)
1240		return NULL;
1241
1242	priv = netdev_priv(dev);
1243	spin_lock_init(&priv->xmit_lock);
1244	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1245
1246	priv->dev = dev;
1247	priv->can.bittiming_const = &c_can_bittiming_const;
1248	priv->can.do_set_mode = c_can_set_mode;
1249	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1250	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1251					CAN_CTRLMODE_LISTENONLY |
1252					CAN_CTRLMODE_BERR_REPORTING;
1253
1254	return dev;
1255}
1256EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1257
1258#ifdef CONFIG_PM
1259int c_can_power_down(struct net_device *dev)
1260{
1261	u32 val;
1262	unsigned long time_out;
1263	struct c_can_priv *priv = netdev_priv(dev);
1264
1265	if (!(dev->flags & IFF_UP))
1266		return 0;
1267
1268	WARN_ON(priv->type != BOSCH_D_CAN);
1269
1270	/* set PDR value so the device goes to power down mode */
1271	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1272	val |= CONTROL_EX_PDR;
1273	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1274
1275	/* Wait for the PDA bit to get set */
1276	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1277	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1278				time_after(time_out, jiffies))
1279		cpu_relax();
1280
1281	if (time_after(jiffies, time_out))
1282		return -ETIMEDOUT;
1283
1284	c_can_stop(dev);
1285
1286	c_can_reset_ram(priv, false);
1287	c_can_pm_runtime_put_sync(priv);
1288
1289	return 0;
1290}
1291EXPORT_SYMBOL_GPL(c_can_power_down);
1292
1293int c_can_power_up(struct net_device *dev)
1294{
1295	u32 val;
1296	unsigned long time_out;
1297	struct c_can_priv *priv = netdev_priv(dev);
1298	int ret;
1299
1300	if (!(dev->flags & IFF_UP))
1301		return 0;
1302
1303	WARN_ON(priv->type != BOSCH_D_CAN);
1304
1305	c_can_pm_runtime_get_sync(priv);
1306	c_can_reset_ram(priv, true);
1307
1308	/* Clear PDR and INIT bits */
1309	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1310	val &= ~CONTROL_EX_PDR;
1311	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1312	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1313	val &= ~CONTROL_INIT;
1314	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1315
1316	/* Wait for the PDA bit to get clear */
1317	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1318	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1319				time_after(time_out, jiffies))
1320		cpu_relax();
1321
1322	if (time_after(jiffies, time_out))
1323		return -ETIMEDOUT;
1324
1325	ret = c_can_start(dev);
1326	if (!ret)
1327		c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
1328
1329	return ret;
1330}
1331EXPORT_SYMBOL_GPL(c_can_power_up);
1332#endif
1333
1334void free_c_can_dev(struct net_device *dev)
1335{
1336	struct c_can_priv *priv = netdev_priv(dev);
1337
1338	netif_napi_del(&priv->napi);
1339	free_candev(dev);
1340}
1341EXPORT_SYMBOL_GPL(free_c_can_dev);
1342
1343static const struct net_device_ops c_can_netdev_ops = {
1344	.ndo_open = c_can_open,
1345	.ndo_stop = c_can_close,
1346	.ndo_start_xmit = c_can_start_xmit,
1347	.ndo_change_mtu = can_change_mtu,
1348};
1349
1350int register_c_can_dev(struct net_device *dev)
1351{
1352	struct c_can_priv *priv = netdev_priv(dev);
1353	int err;
1354
1355	c_can_pm_runtime_enable(priv);
1356
1357	dev->flags |= IFF_ECHO;	/* we support local echo */
1358	dev->netdev_ops = &c_can_netdev_ops;
1359
1360	err = register_candev(dev);
1361	if (err)
1362		c_can_pm_runtime_disable(priv);
1363	else
1364		devm_can_led_init(dev);
1365
1366	return err;
1367}
1368EXPORT_SYMBOL_GPL(register_c_can_dev);
1369
1370void unregister_c_can_dev(struct net_device *dev)
1371{
1372	struct c_can_priv *priv = netdev_priv(dev);
1373
1374	unregister_candev(dev);
1375
1376	c_can_pm_runtime_disable(priv);
1377}
1378EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1379
1380MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1381MODULE_LICENSE("GPL v2");
1382MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1383