dev.c revision 49cb5c0e0cb26e9f39445d8b5aa5c50ba9451cdd
1/*
2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the version 2 of the GNU General Public License
8 * as published by the Free Software Foundation
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18 */
19
20#include <linux/module.h>
21#include <linux/kernel.h>
22#include <linux/slab.h>
23#include <linux/netdevice.h>
24#include <linux/if_arp.h>
25#include <linux/can.h>
26#include <linux/can/dev.h>
27#include <linux/can/skb.h>
28#include <linux/can/netlink.h>
29#include <linux/can/led.h>
30#include <net/rtnetlink.h>
31
32#define MOD_DESC "CAN device driver interface"
33
34MODULE_DESCRIPTION(MOD_DESC);
35MODULE_LICENSE("GPL v2");
36MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
37
38/* CAN DLC to real data length conversion helpers */
39
40static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
41			     8, 12, 16, 20, 24, 32, 48, 64};
42
43/* get data length from can_dlc with sanitized can_dlc */
44u8 can_dlc2len(u8 can_dlc)
45{
46	return dlc2len[can_dlc & 0x0F];
47}
48EXPORT_SYMBOL_GPL(can_dlc2len);
49
50static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,		/* 0 - 8 */
51			     9, 9, 9, 9,			/* 9 - 12 */
52			     10, 10, 10, 10,			/* 13 - 16 */
53			     11, 11, 11, 11,			/* 17 - 20 */
54			     12, 12, 12, 12,			/* 21 - 24 */
55			     13, 13, 13, 13, 13, 13, 13, 13,	/* 25 - 32 */
56			     14, 14, 14, 14, 14, 14, 14, 14,	/* 33 - 40 */
57			     14, 14, 14, 14, 14, 14, 14, 14,	/* 41 - 48 */
58			     15, 15, 15, 15, 15, 15, 15, 15,	/* 49 - 56 */
59			     15, 15, 15, 15, 15, 15, 15, 15};	/* 57 - 64 */
60
61/* map the sanitized data length to an appropriate data length code */
62u8 can_len2dlc(u8 len)
63{
64	if (unlikely(len > 64))
65		return 0xF;
66
67	return len2dlc[len];
68}
69EXPORT_SYMBOL_GPL(can_len2dlc);
70
71#ifdef CONFIG_CAN_CALC_BITTIMING
72#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
73
74/*
75 * Bit-timing calculation derived from:
76 *
77 * Code based on LinCAN sources and H8S2638 project
78 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
79 * Copyright 2005      Stanislav Marek
80 * email: pisa@cmp.felk.cvut.cz
81 *
82 * Calculates proper bit-timing parameters for a specified bit-rate
83 * and sample-point, which can then be used to set the bit-timing
84 * registers of the CAN controller. You can find more information
85 * in the header file linux/can/netlink.h.
86 */
87static int can_update_spt(const struct can_bittiming_const *btc,
88			  int sampl_pt, int tseg, int *tseg1, int *tseg2)
89{
90	*tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
91	if (*tseg2 < btc->tseg2_min)
92		*tseg2 = btc->tseg2_min;
93	if (*tseg2 > btc->tseg2_max)
94		*tseg2 = btc->tseg2_max;
95	*tseg1 = tseg - *tseg2;
96	if (*tseg1 > btc->tseg1_max) {
97		*tseg1 = btc->tseg1_max;
98		*tseg2 = tseg - *tseg1;
99	}
100	return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
101}
102
103static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
104{
105	struct can_priv *priv = netdev_priv(dev);
106	const struct can_bittiming_const *btc = priv->bittiming_const;
107	long rate, best_rate = 0;
108	long best_error = 1000000000, error = 0;
109	int best_tseg = 0, best_brp = 0, brp = 0;
110	int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
111	int spt_error = 1000, spt = 0, sampl_pt;
112	u64 v64;
113
114	if (!priv->bittiming_const)
115		return -ENOTSUPP;
116
117	/* Use CIA recommended sample points */
118	if (bt->sample_point) {
119		sampl_pt = bt->sample_point;
120	} else {
121		if (bt->bitrate > 800000)
122			sampl_pt = 750;
123		else if (bt->bitrate > 500000)
124			sampl_pt = 800;
125		else
126			sampl_pt = 875;
127	}
128
129	/* tseg even = round down, odd = round up */
130	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
131	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
132		tsegall = 1 + tseg / 2;
133		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
134		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
135		/* chose brp step which is possible in system */
136		brp = (brp / btc->brp_inc) * btc->brp_inc;
137		if ((brp < btc->brp_min) || (brp > btc->brp_max))
138			continue;
139		rate = priv->clock.freq / (brp * tsegall);
140		error = bt->bitrate - rate;
141		/* tseg brp biterror */
142		if (error < 0)
143			error = -error;
144		if (error > best_error)
145			continue;
146		best_error = error;
147		if (error == 0) {
148			spt = can_update_spt(btc, sampl_pt, tseg / 2,
149					     &tseg1, &tseg2);
150			error = sampl_pt - spt;
151			if (error < 0)
152				error = -error;
153			if (error > spt_error)
154				continue;
155			spt_error = error;
156		}
157		best_tseg = tseg / 2;
158		best_brp = brp;
159		best_rate = rate;
160		if (error == 0)
161			break;
162	}
163
164	if (best_error) {
165		/* Error in one-tenth of a percent */
166		error = (best_error * 1000) / bt->bitrate;
167		if (error > CAN_CALC_MAX_ERROR) {
168			netdev_err(dev,
169				   "bitrate error %ld.%ld%% too high\n",
170				   error / 10, error % 10);
171			return -EDOM;
172		} else {
173			netdev_warn(dev, "bitrate error %ld.%ld%%\n",
174				    error / 10, error % 10);
175		}
176	}
177
178	/* real sample point */
179	bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
180					  &tseg1, &tseg2);
181
182	v64 = (u64)best_brp * 1000000000UL;
183	do_div(v64, priv->clock.freq);
184	bt->tq = (u32)v64;
185	bt->prop_seg = tseg1 / 2;
186	bt->phase_seg1 = tseg1 - bt->prop_seg;
187	bt->phase_seg2 = tseg2;
188
189	/* check for sjw user settings */
190	if (!bt->sjw || !btc->sjw_max)
191		bt->sjw = 1;
192	else {
193		/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
194		if (bt->sjw > btc->sjw_max)
195			bt->sjw = btc->sjw_max;
196		/* bt->sjw must not be higher than tseg2 */
197		if (tseg2 < bt->sjw)
198			bt->sjw = tseg2;
199	}
200
201	bt->brp = best_brp;
202	/* real bit-rate */
203	bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
204
205	return 0;
206}
207#else /* !CONFIG_CAN_CALC_BITTIMING */
208static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
209{
210	netdev_err(dev, "bit-timing calculation not available\n");
211	return -EINVAL;
212}
213#endif /* CONFIG_CAN_CALC_BITTIMING */
214
215/*
216 * Checks the validity of the specified bit-timing parameters prop_seg,
217 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
218 * prescaler value brp. You can find more information in the header
219 * file linux/can/netlink.h.
220 */
221static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt)
222{
223	struct can_priv *priv = netdev_priv(dev);
224	const struct can_bittiming_const *btc = priv->bittiming_const;
225	int tseg1, alltseg;
226	u64 brp64;
227
228	if (!priv->bittiming_const)
229		return -ENOTSUPP;
230
231	tseg1 = bt->prop_seg + bt->phase_seg1;
232	if (!bt->sjw)
233		bt->sjw = 1;
234	if (bt->sjw > btc->sjw_max ||
235	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
236	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
237		return -ERANGE;
238
239	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
240	if (btc->brp_inc > 1)
241		do_div(brp64, btc->brp_inc);
242	brp64 += 500000000UL - 1;
243	do_div(brp64, 1000000000UL); /* the practicable BRP */
244	if (btc->brp_inc > 1)
245		brp64 *= btc->brp_inc;
246	bt->brp = (u32)brp64;
247
248	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
249		return -EINVAL;
250
251	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
252	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
253	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
254
255	return 0;
256}
257
258static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt)
259{
260	struct can_priv *priv = netdev_priv(dev);
261	int err;
262
263	/* Check if the CAN device has bit-timing parameters */
264	if (priv->bittiming_const) {
265
266		/* Non-expert mode? Check if the bitrate has been pre-defined */
267		if (!bt->tq)
268			/* Determine bit-timing parameters */
269			err = can_calc_bittiming(dev, bt);
270		else
271			/* Check bit-timing params and calculate proper brp */
272			err = can_fixup_bittiming(dev, bt);
273		if (err)
274			return err;
275	}
276
277	return 0;
278}
279
280/*
281 * Local echo of CAN messages
282 *
283 * CAN network devices *should* support a local echo functionality
284 * (see Documentation/networking/can.txt). To test the handling of CAN
285 * interfaces that do not support the local echo both driver types are
286 * implemented. In the case that the driver does not support the echo
287 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
288 * to perform the echo as a fallback solution.
289 */
290static void can_flush_echo_skb(struct net_device *dev)
291{
292	struct can_priv *priv = netdev_priv(dev);
293	struct net_device_stats *stats = &dev->stats;
294	int i;
295
296	for (i = 0; i < priv->echo_skb_max; i++) {
297		if (priv->echo_skb[i]) {
298			kfree_skb(priv->echo_skb[i]);
299			priv->echo_skb[i] = NULL;
300			stats->tx_dropped++;
301			stats->tx_aborted_errors++;
302		}
303	}
304}
305
306/*
307 * Put the skb on the stack to be looped backed locally lateron
308 *
309 * The function is typically called in the start_xmit function
310 * of the device driver. The driver must protect access to
311 * priv->echo_skb, if necessary.
312 */
313void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
314		      unsigned int idx)
315{
316	struct can_priv *priv = netdev_priv(dev);
317
318	BUG_ON(idx >= priv->echo_skb_max);
319
320	/* check flag whether this packet has to be looped back */
321	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK) {
322		kfree_skb(skb);
323		return;
324	}
325
326	if (!priv->echo_skb[idx]) {
327		struct sock *srcsk = skb->sk;
328
329		if (atomic_read(&skb->users) != 1) {
330			struct sk_buff *old_skb = skb;
331
332			skb = skb_clone(old_skb, GFP_ATOMIC);
333			kfree_skb(old_skb);
334			if (!skb)
335				return;
336		} else
337			skb_orphan(skb);
338
339		skb->sk = srcsk;
340
341		/* make settings for echo to reduce code in irq context */
342		skb->protocol = htons(ETH_P_CAN);
343		skb->pkt_type = PACKET_BROADCAST;
344		skb->ip_summed = CHECKSUM_UNNECESSARY;
345		skb->dev = dev;
346
347		/* save this skb for tx interrupt echo handling */
348		priv->echo_skb[idx] = skb;
349	} else {
350		/* locking problem with netif_stop_queue() ?? */
351		netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
352		kfree_skb(skb);
353	}
354}
355EXPORT_SYMBOL_GPL(can_put_echo_skb);
356
357/*
358 * Get the skb from the stack and loop it back locally
359 *
360 * The function is typically called when the TX done interrupt
361 * is handled in the device driver. The driver must protect
362 * access to priv->echo_skb, if necessary.
363 */
364unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
365{
366	struct can_priv *priv = netdev_priv(dev);
367
368	BUG_ON(idx >= priv->echo_skb_max);
369
370	if (priv->echo_skb[idx]) {
371		struct sk_buff *skb = priv->echo_skb[idx];
372		struct can_frame *cf = (struct can_frame *)skb->data;
373		u8 dlc = cf->can_dlc;
374
375		netif_rx(priv->echo_skb[idx]);
376		priv->echo_skb[idx] = NULL;
377
378		return dlc;
379	}
380
381	return 0;
382}
383EXPORT_SYMBOL_GPL(can_get_echo_skb);
384
385/*
386  * Remove the skb from the stack and free it.
387  *
388  * The function is typically called when TX failed.
389  */
390void can_free_echo_skb(struct net_device *dev, unsigned int idx)
391{
392	struct can_priv *priv = netdev_priv(dev);
393
394	BUG_ON(idx >= priv->echo_skb_max);
395
396	if (priv->echo_skb[idx]) {
397		kfree_skb(priv->echo_skb[idx]);
398		priv->echo_skb[idx] = NULL;
399	}
400}
401EXPORT_SYMBOL_GPL(can_free_echo_skb);
402
403/*
404 * CAN device restart for bus-off recovery
405 */
406static void can_restart(unsigned long data)
407{
408	struct net_device *dev = (struct net_device *)data;
409	struct can_priv *priv = netdev_priv(dev);
410	struct net_device_stats *stats = &dev->stats;
411	struct sk_buff *skb;
412	struct can_frame *cf;
413	int err;
414
415	BUG_ON(netif_carrier_ok(dev));
416
417	/*
418	 * No synchronization needed because the device is bus-off and
419	 * no messages can come in or go out.
420	 */
421	can_flush_echo_skb(dev);
422
423	/* send restart message upstream */
424	skb = alloc_can_err_skb(dev, &cf);
425	if (skb == NULL) {
426		err = -ENOMEM;
427		goto restart;
428	}
429	cf->can_id |= CAN_ERR_RESTARTED;
430
431	netif_rx(skb);
432
433	stats->rx_packets++;
434	stats->rx_bytes += cf->can_dlc;
435
436restart:
437	netdev_dbg(dev, "restarted\n");
438	priv->can_stats.restarts++;
439
440	/* Now restart the device */
441	err = priv->do_set_mode(dev, CAN_MODE_START);
442
443	netif_carrier_on(dev);
444	if (err)
445		netdev_err(dev, "Error %d during restart", err);
446}
447
448int can_restart_now(struct net_device *dev)
449{
450	struct can_priv *priv = netdev_priv(dev);
451
452	/*
453	 * A manual restart is only permitted if automatic restart is
454	 * disabled and the device is in the bus-off state
455	 */
456	if (priv->restart_ms)
457		return -EINVAL;
458	if (priv->state != CAN_STATE_BUS_OFF)
459		return -EBUSY;
460
461	/* Runs as soon as possible in the timer context */
462	mod_timer(&priv->restart_timer, jiffies);
463
464	return 0;
465}
466
467/*
468 * CAN bus-off
469 *
470 * This functions should be called when the device goes bus-off to
471 * tell the netif layer that no more packets can be sent or received.
472 * If enabled, a timer is started to trigger bus-off recovery.
473 */
474void can_bus_off(struct net_device *dev)
475{
476	struct can_priv *priv = netdev_priv(dev);
477
478	netdev_dbg(dev, "bus-off\n");
479
480	netif_carrier_off(dev);
481	priv->can_stats.bus_off++;
482
483	if (priv->restart_ms)
484		mod_timer(&priv->restart_timer,
485			  jiffies + (priv->restart_ms * HZ) / 1000);
486}
487EXPORT_SYMBOL_GPL(can_bus_off);
488
489static void can_setup(struct net_device *dev)
490{
491	dev->type = ARPHRD_CAN;
492	dev->mtu = CAN_MTU;
493	dev->hard_header_len = 0;
494	dev->addr_len = 0;
495	dev->tx_queue_len = 10;
496
497	/* New-style flags. */
498	dev->flags = IFF_NOARP;
499	dev->features = NETIF_F_HW_CSUM;
500}
501
502struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
503{
504	struct sk_buff *skb;
505
506	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
507			       sizeof(struct can_frame));
508	if (unlikely(!skb))
509		return NULL;
510
511	skb->protocol = htons(ETH_P_CAN);
512	skb->pkt_type = PACKET_BROADCAST;
513	skb->ip_summed = CHECKSUM_UNNECESSARY;
514
515	can_skb_reserve(skb);
516	can_skb_prv(skb)->ifindex = dev->ifindex;
517
518	*cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
519	memset(*cf, 0, sizeof(struct can_frame));
520
521	return skb;
522}
523EXPORT_SYMBOL_GPL(alloc_can_skb);
524
525struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
526{
527	struct sk_buff *skb;
528
529	skb = alloc_can_skb(dev, cf);
530	if (unlikely(!skb))
531		return NULL;
532
533	(*cf)->can_id = CAN_ERR_FLAG;
534	(*cf)->can_dlc = CAN_ERR_DLC;
535
536	return skb;
537}
538EXPORT_SYMBOL_GPL(alloc_can_err_skb);
539
540/*
541 * Allocate and setup space for the CAN network device
542 */
543struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
544{
545	struct net_device *dev;
546	struct can_priv *priv;
547	int size;
548
549	if (echo_skb_max)
550		size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
551			echo_skb_max * sizeof(struct sk_buff *);
552	else
553		size = sizeof_priv;
554
555	dev = alloc_netdev(size, "can%d", can_setup);
556	if (!dev)
557		return NULL;
558
559	priv = netdev_priv(dev);
560
561	if (echo_skb_max) {
562		priv->echo_skb_max = echo_skb_max;
563		priv->echo_skb = (void *)priv +
564			ALIGN(sizeof_priv, sizeof(struct sk_buff *));
565	}
566
567	priv->state = CAN_STATE_STOPPED;
568
569	init_timer(&priv->restart_timer);
570
571	return dev;
572}
573EXPORT_SYMBOL_GPL(alloc_candev);
574
575/*
576 * Free space of the CAN network device
577 */
578void free_candev(struct net_device *dev)
579{
580	free_netdev(dev);
581}
582EXPORT_SYMBOL_GPL(free_candev);
583
584/*
585 * Common open function when the device gets opened.
586 *
587 * This function should be called in the open function of the device
588 * driver.
589 */
590int open_candev(struct net_device *dev)
591{
592	struct can_priv *priv = netdev_priv(dev);
593
594	if (!priv->bittiming.tq && !priv->bittiming.bitrate) {
595		netdev_err(dev, "bit-timing not yet defined\n");
596		return -EINVAL;
597	}
598
599	/* Switch carrier on if device was stopped while in bus-off state */
600	if (!netif_carrier_ok(dev))
601		netif_carrier_on(dev);
602
603	setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
604
605	return 0;
606}
607EXPORT_SYMBOL_GPL(open_candev);
608
609/*
610 * Common close function for cleanup before the device gets closed.
611 *
612 * This function should be called in the close function of the device
613 * driver.
614 */
615void close_candev(struct net_device *dev)
616{
617	struct can_priv *priv = netdev_priv(dev);
618
619	del_timer_sync(&priv->restart_timer);
620	can_flush_echo_skb(dev);
621}
622EXPORT_SYMBOL_GPL(close_candev);
623
624/*
625 * CAN netlink interface
626 */
627static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
628	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
629	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
630	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
631	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
632	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
633	[IFLA_CAN_BITTIMING_CONST]
634				= { .len = sizeof(struct can_bittiming_const) },
635	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
636	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
637};
638
639static int can_changelink(struct net_device *dev,
640			  struct nlattr *tb[], struct nlattr *data[])
641{
642	struct can_priv *priv = netdev_priv(dev);
643	int err;
644
645	/* We need synchronization with dev->stop() */
646	ASSERT_RTNL();
647
648	if (data[IFLA_CAN_BITTIMING]) {
649		struct can_bittiming bt;
650
651		/* Do not allow changing bittiming while running */
652		if (dev->flags & IFF_UP)
653			return -EBUSY;
654		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
655		if ((!bt.bitrate && !bt.tq) || (bt.bitrate && bt.tq))
656			return -EINVAL;
657		err = can_get_bittiming(dev, &bt);
658		if (err)
659			return err;
660		memcpy(&priv->bittiming, &bt, sizeof(bt));
661
662		if (priv->do_set_bittiming) {
663			/* Finally, set the bit-timing registers */
664			err = priv->do_set_bittiming(dev);
665			if (err)
666				return err;
667		}
668	}
669
670	if (data[IFLA_CAN_CTRLMODE]) {
671		struct can_ctrlmode *cm;
672
673		/* Do not allow changing controller mode while running */
674		if (dev->flags & IFF_UP)
675			return -EBUSY;
676		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
677		if (cm->flags & ~priv->ctrlmode_supported)
678			return -EOPNOTSUPP;
679		priv->ctrlmode &= ~cm->mask;
680		priv->ctrlmode |= cm->flags;
681	}
682
683	if (data[IFLA_CAN_RESTART_MS]) {
684		/* Do not allow changing restart delay while running */
685		if (dev->flags & IFF_UP)
686			return -EBUSY;
687		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
688	}
689
690	if (data[IFLA_CAN_RESTART]) {
691		/* Do not allow a restart while not running */
692		if (!(dev->flags & IFF_UP))
693			return -EINVAL;
694		err = can_restart_now(dev);
695		if (err)
696			return err;
697	}
698
699	return 0;
700}
701
702static size_t can_get_size(const struct net_device *dev)
703{
704	struct can_priv *priv = netdev_priv(dev);
705	size_t size = 0;
706
707	size += nla_total_size(sizeof(struct can_bittiming));	/* IFLA_CAN_BITTIMING */
708	if (priv->bittiming_const)				/* IFLA_CAN_BITTIMING_CONST */
709		size += nla_total_size(sizeof(struct can_bittiming_const));
710	size += nla_total_size(sizeof(struct can_clock));	/* IFLA_CAN_CLOCK */
711	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_STATE */
712	size += nla_total_size(sizeof(struct can_ctrlmode));	/* IFLA_CAN_CTRLMODE */
713	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_RESTART_MS */
714	if (priv->do_get_berr_counter)				/* IFLA_CAN_BERR_COUNTER */
715		size += nla_total_size(sizeof(struct can_berr_counter));
716
717	return size;
718}
719
720static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
721{
722	struct can_priv *priv = netdev_priv(dev);
723	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
724	struct can_berr_counter bec;
725	enum can_state state = priv->state;
726
727	if (priv->do_get_state)
728		priv->do_get_state(dev, &state);
729	if (nla_put(skb, IFLA_CAN_BITTIMING,
730		    sizeof(priv->bittiming), &priv->bittiming) ||
731	    (priv->bittiming_const &&
732	     nla_put(skb, IFLA_CAN_BITTIMING_CONST,
733		     sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
734	    nla_put(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock) ||
735	    nla_put_u32(skb, IFLA_CAN_STATE, state) ||
736	    nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
737	    nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
738	    (priv->do_get_berr_counter &&
739	     !priv->do_get_berr_counter(dev, &bec) &&
740	     nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)))
741		return -EMSGSIZE;
742	return 0;
743}
744
745static size_t can_get_xstats_size(const struct net_device *dev)
746{
747	return sizeof(struct can_device_stats);
748}
749
750static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
751{
752	struct can_priv *priv = netdev_priv(dev);
753
754	if (nla_put(skb, IFLA_INFO_XSTATS,
755		    sizeof(priv->can_stats), &priv->can_stats))
756		goto nla_put_failure;
757	return 0;
758
759nla_put_failure:
760	return -EMSGSIZE;
761}
762
763static int can_newlink(struct net *src_net, struct net_device *dev,
764		       struct nlattr *tb[], struct nlattr *data[])
765{
766	return -EOPNOTSUPP;
767}
768
769static struct rtnl_link_ops can_link_ops __read_mostly = {
770	.kind		= "can",
771	.maxtype	= IFLA_CAN_MAX,
772	.policy		= can_policy,
773	.setup		= can_setup,
774	.newlink	= can_newlink,
775	.changelink	= can_changelink,
776	.get_size	= can_get_size,
777	.fill_info	= can_fill_info,
778	.get_xstats_size = can_get_xstats_size,
779	.fill_xstats	= can_fill_xstats,
780};
781
782/*
783 * Register the CAN network device
784 */
785int register_candev(struct net_device *dev)
786{
787	dev->rtnl_link_ops = &can_link_ops;
788	return register_netdev(dev);
789}
790EXPORT_SYMBOL_GPL(register_candev);
791
792/*
793 * Unregister the CAN network device
794 */
795void unregister_candev(struct net_device *dev)
796{
797	unregister_netdev(dev);
798}
799EXPORT_SYMBOL_GPL(unregister_candev);
800
801/*
802 * Test if a network device is a candev based device
803 * and return the can_priv* if so.
804 */
805struct can_priv *safe_candev_priv(struct net_device *dev)
806{
807	if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
808		return NULL;
809
810	return netdev_priv(dev);
811}
812EXPORT_SYMBOL_GPL(safe_candev_priv);
813
814static __init int can_dev_init(void)
815{
816	int err;
817
818	can_led_notifier_init();
819
820	err = rtnl_link_register(&can_link_ops);
821	if (!err)
822		printk(KERN_INFO MOD_DESC "\n");
823
824	return err;
825}
826module_init(can_dev_init);
827
828static __exit void can_dev_exit(void)
829{
830	rtnl_link_unregister(&can_link_ops);
831
832	can_led_notifier_exit();
833}
834module_exit(can_dev_exit);
835
836MODULE_ALIAS_RTNL_LINK("can");
837