dev.c revision 5247a589c24022ab34e780039cc8000c48f2035e
1/*
2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the version 2 of the GNU General Public License
8 * as published by the Free Software Foundation
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19#include <linux/module.h>
20#include <linux/kernel.h>
21#include <linux/slab.h>
22#include <linux/netdevice.h>
23#include <linux/if_arp.h>
24#include <linux/can.h>
25#include <linux/can/dev.h>
26#include <linux/can/skb.h>
27#include <linux/can/netlink.h>
28#include <linux/can/led.h>
29#include <net/rtnetlink.h>
30
31#define MOD_DESC "CAN device driver interface"
32
33MODULE_DESCRIPTION(MOD_DESC);
34MODULE_LICENSE("GPL v2");
35MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
36
37/* CAN DLC to real data length conversion helpers */
38
39static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
40			     8, 12, 16, 20, 24, 32, 48, 64};
41
42/* get data length from can_dlc with sanitized can_dlc */
43u8 can_dlc2len(u8 can_dlc)
44{
45	return dlc2len[can_dlc & 0x0F];
46}
47EXPORT_SYMBOL_GPL(can_dlc2len);
48
49static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,		/* 0 - 8 */
50			     9, 9, 9, 9,			/* 9 - 12 */
51			     10, 10, 10, 10,			/* 13 - 16 */
52			     11, 11, 11, 11,			/* 17 - 20 */
53			     12, 12, 12, 12,			/* 21 - 24 */
54			     13, 13, 13, 13, 13, 13, 13, 13,	/* 25 - 32 */
55			     14, 14, 14, 14, 14, 14, 14, 14,	/* 33 - 40 */
56			     14, 14, 14, 14, 14, 14, 14, 14,	/* 41 - 48 */
57			     15, 15, 15, 15, 15, 15, 15, 15,	/* 49 - 56 */
58			     15, 15, 15, 15, 15, 15, 15, 15};	/* 57 - 64 */
59
60/* map the sanitized data length to an appropriate data length code */
61u8 can_len2dlc(u8 len)
62{
63	if (unlikely(len > 64))
64		return 0xF;
65
66	return len2dlc[len];
67}
68EXPORT_SYMBOL_GPL(can_len2dlc);
69
70#ifdef CONFIG_CAN_CALC_BITTIMING
71#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
72
73/*
74 * Bit-timing calculation derived from:
75 *
76 * Code based on LinCAN sources and H8S2638 project
77 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
78 * Copyright 2005      Stanislav Marek
79 * email: pisa@cmp.felk.cvut.cz
80 *
81 * Calculates proper bit-timing parameters for a specified bit-rate
82 * and sample-point, which can then be used to set the bit-timing
83 * registers of the CAN controller. You can find more information
84 * in the header file linux/can/netlink.h.
85 */
86static int can_update_spt(const struct can_bittiming_const *btc,
87			  int sampl_pt, int tseg, int *tseg1, int *tseg2)
88{
89	*tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
90	if (*tseg2 < btc->tseg2_min)
91		*tseg2 = btc->tseg2_min;
92	if (*tseg2 > btc->tseg2_max)
93		*tseg2 = btc->tseg2_max;
94	*tseg1 = tseg - *tseg2;
95	if (*tseg1 > btc->tseg1_max) {
96		*tseg1 = btc->tseg1_max;
97		*tseg2 = tseg - *tseg1;
98	}
99	return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
100}
101
102static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
103			      const struct can_bittiming_const *btc)
104{
105	struct can_priv *priv = netdev_priv(dev);
106	long best_error = 1000000000, error = 0;
107	int best_tseg = 0, best_brp = 0, brp = 0;
108	int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
109	int spt_error = 1000, spt = 0, sampl_pt;
110	long rate;
111	u64 v64;
112
113	/* Use CIA recommended sample points */
114	if (bt->sample_point) {
115		sampl_pt = bt->sample_point;
116	} else {
117		if (bt->bitrate > 800000)
118			sampl_pt = 750;
119		else if (bt->bitrate > 500000)
120			sampl_pt = 800;
121		else
122			sampl_pt = 875;
123	}
124
125	/* tseg even = round down, odd = round up */
126	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
127	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
128		tsegall = 1 + tseg / 2;
129		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
130		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
131		/* chose brp step which is possible in system */
132		brp = (brp / btc->brp_inc) * btc->brp_inc;
133		if ((brp < btc->brp_min) || (brp > btc->brp_max))
134			continue;
135		rate = priv->clock.freq / (brp * tsegall);
136		error = bt->bitrate - rate;
137		/* tseg brp biterror */
138		if (error < 0)
139			error = -error;
140		if (error > best_error)
141			continue;
142		best_error = error;
143		if (error == 0) {
144			spt = can_update_spt(btc, sampl_pt, tseg / 2,
145					     &tseg1, &tseg2);
146			error = sampl_pt - spt;
147			if (error < 0)
148				error = -error;
149			if (error > spt_error)
150				continue;
151			spt_error = error;
152		}
153		best_tseg = tseg / 2;
154		best_brp = brp;
155		if (error == 0)
156			break;
157	}
158
159	if (best_error) {
160		/* Error in one-tenth of a percent */
161		error = (best_error * 1000) / bt->bitrate;
162		if (error > CAN_CALC_MAX_ERROR) {
163			netdev_err(dev,
164				   "bitrate error %ld.%ld%% too high\n",
165				   error / 10, error % 10);
166			return -EDOM;
167		} else {
168			netdev_warn(dev, "bitrate error %ld.%ld%%\n",
169				    error / 10, error % 10);
170		}
171	}
172
173	/* real sample point */
174	bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
175					  &tseg1, &tseg2);
176
177	v64 = (u64)best_brp * 1000000000UL;
178	do_div(v64, priv->clock.freq);
179	bt->tq = (u32)v64;
180	bt->prop_seg = tseg1 / 2;
181	bt->phase_seg1 = tseg1 - bt->prop_seg;
182	bt->phase_seg2 = tseg2;
183
184	/* check for sjw user settings */
185	if (!bt->sjw || !btc->sjw_max)
186		bt->sjw = 1;
187	else {
188		/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
189		if (bt->sjw > btc->sjw_max)
190			bt->sjw = btc->sjw_max;
191		/* bt->sjw must not be higher than tseg2 */
192		if (tseg2 < bt->sjw)
193			bt->sjw = tseg2;
194	}
195
196	bt->brp = best_brp;
197	/* real bit-rate */
198	bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
199
200	return 0;
201}
202#else /* !CONFIG_CAN_CALC_BITTIMING */
203static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
204			      const struct can_bittiming_const *btc)
205{
206	netdev_err(dev, "bit-timing calculation not available\n");
207	return -EINVAL;
208}
209#endif /* CONFIG_CAN_CALC_BITTIMING */
210
211/*
212 * Checks the validity of the specified bit-timing parameters prop_seg,
213 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
214 * prescaler value brp. You can find more information in the header
215 * file linux/can/netlink.h.
216 */
217static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
218			       const struct can_bittiming_const *btc)
219{
220	struct can_priv *priv = netdev_priv(dev);
221	int tseg1, alltseg;
222	u64 brp64;
223
224	tseg1 = bt->prop_seg + bt->phase_seg1;
225	if (!bt->sjw)
226		bt->sjw = 1;
227	if (bt->sjw > btc->sjw_max ||
228	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
229	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
230		return -ERANGE;
231
232	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
233	if (btc->brp_inc > 1)
234		do_div(brp64, btc->brp_inc);
235	brp64 += 500000000UL - 1;
236	do_div(brp64, 1000000000UL); /* the practicable BRP */
237	if (btc->brp_inc > 1)
238		brp64 *= btc->brp_inc;
239	bt->brp = (u32)brp64;
240
241	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
242		return -EINVAL;
243
244	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
245	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
246	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
247
248	return 0;
249}
250
251static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
252			     const struct can_bittiming_const *btc)
253{
254	int err;
255
256	/* Check if the CAN device has bit-timing parameters */
257	if (!btc)
258		return -EOPNOTSUPP;
259
260	/*
261	 * Depending on the given can_bittiming parameter structure the CAN
262	 * timing parameters are calculated based on the provided bitrate OR
263	 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
264	 * provided directly which are then checked and fixed up.
265	 */
266	if (!bt->tq && bt->bitrate)
267		err = can_calc_bittiming(dev, bt, btc);
268	else if (bt->tq && !bt->bitrate)
269		err = can_fixup_bittiming(dev, bt, btc);
270	else
271		err = -EINVAL;
272
273	return err;
274}
275
276/*
277 * Local echo of CAN messages
278 *
279 * CAN network devices *should* support a local echo functionality
280 * (see Documentation/networking/can.txt). To test the handling of CAN
281 * interfaces that do not support the local echo both driver types are
282 * implemented. In the case that the driver does not support the echo
283 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
284 * to perform the echo as a fallback solution.
285 */
286static void can_flush_echo_skb(struct net_device *dev)
287{
288	struct can_priv *priv = netdev_priv(dev);
289	struct net_device_stats *stats = &dev->stats;
290	int i;
291
292	for (i = 0; i < priv->echo_skb_max; i++) {
293		if (priv->echo_skb[i]) {
294			kfree_skb(priv->echo_skb[i]);
295			priv->echo_skb[i] = NULL;
296			stats->tx_dropped++;
297			stats->tx_aborted_errors++;
298		}
299	}
300}
301
302/*
303 * Put the skb on the stack to be looped backed locally lateron
304 *
305 * The function is typically called in the start_xmit function
306 * of the device driver. The driver must protect access to
307 * priv->echo_skb, if necessary.
308 */
309void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
310		      unsigned int idx)
311{
312	struct can_priv *priv = netdev_priv(dev);
313
314	BUG_ON(idx >= priv->echo_skb_max);
315
316	/* check flag whether this packet has to be looped back */
317	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
318	    (skb->protocol != htons(ETH_P_CAN) &&
319	     skb->protocol != htons(ETH_P_CANFD))) {
320		kfree_skb(skb);
321		return;
322	}
323
324	if (!priv->echo_skb[idx]) {
325
326		skb = can_create_echo_skb(skb);
327		if (!skb)
328			return;
329
330		/* make settings for echo to reduce code in irq context */
331		skb->pkt_type = PACKET_BROADCAST;
332		skb->ip_summed = CHECKSUM_UNNECESSARY;
333		skb->dev = dev;
334
335		/* save this skb for tx interrupt echo handling */
336		priv->echo_skb[idx] = skb;
337	} else {
338		/* locking problem with netif_stop_queue() ?? */
339		netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
340		kfree_skb(skb);
341	}
342}
343EXPORT_SYMBOL_GPL(can_put_echo_skb);
344
345/*
346 * Get the skb from the stack and loop it back locally
347 *
348 * The function is typically called when the TX done interrupt
349 * is handled in the device driver. The driver must protect
350 * access to priv->echo_skb, if necessary.
351 */
352unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
353{
354	struct can_priv *priv = netdev_priv(dev);
355
356	BUG_ON(idx >= priv->echo_skb_max);
357
358	if (priv->echo_skb[idx]) {
359		struct sk_buff *skb = priv->echo_skb[idx];
360		struct can_frame *cf = (struct can_frame *)skb->data;
361		u8 dlc = cf->can_dlc;
362
363		netif_rx(priv->echo_skb[idx]);
364		priv->echo_skb[idx] = NULL;
365
366		return dlc;
367	}
368
369	return 0;
370}
371EXPORT_SYMBOL_GPL(can_get_echo_skb);
372
373/*
374  * Remove the skb from the stack and free it.
375  *
376  * The function is typically called when TX failed.
377  */
378void can_free_echo_skb(struct net_device *dev, unsigned int idx)
379{
380	struct can_priv *priv = netdev_priv(dev);
381
382	BUG_ON(idx >= priv->echo_skb_max);
383
384	if (priv->echo_skb[idx]) {
385		dev_kfree_skb_any(priv->echo_skb[idx]);
386		priv->echo_skb[idx] = NULL;
387	}
388}
389EXPORT_SYMBOL_GPL(can_free_echo_skb);
390
391/*
392 * CAN device restart for bus-off recovery
393 */
394static void can_restart(unsigned long data)
395{
396	struct net_device *dev = (struct net_device *)data;
397	struct can_priv *priv = netdev_priv(dev);
398	struct net_device_stats *stats = &dev->stats;
399	struct sk_buff *skb;
400	struct can_frame *cf;
401	int err;
402
403	BUG_ON(netif_carrier_ok(dev));
404
405	/*
406	 * No synchronization needed because the device is bus-off and
407	 * no messages can come in or go out.
408	 */
409	can_flush_echo_skb(dev);
410
411	/* send restart message upstream */
412	skb = alloc_can_err_skb(dev, &cf);
413	if (skb == NULL) {
414		err = -ENOMEM;
415		goto restart;
416	}
417	cf->can_id |= CAN_ERR_RESTARTED;
418
419	netif_rx(skb);
420
421	stats->rx_packets++;
422	stats->rx_bytes += cf->can_dlc;
423
424restart:
425	netdev_dbg(dev, "restarted\n");
426	priv->can_stats.restarts++;
427
428	/* Now restart the device */
429	err = priv->do_set_mode(dev, CAN_MODE_START);
430
431	netif_carrier_on(dev);
432	if (err)
433		netdev_err(dev, "Error %d during restart", err);
434}
435
436int can_restart_now(struct net_device *dev)
437{
438	struct can_priv *priv = netdev_priv(dev);
439
440	/*
441	 * A manual restart is only permitted if automatic restart is
442	 * disabled and the device is in the bus-off state
443	 */
444	if (priv->restart_ms)
445		return -EINVAL;
446	if (priv->state != CAN_STATE_BUS_OFF)
447		return -EBUSY;
448
449	/* Runs as soon as possible in the timer context */
450	mod_timer(&priv->restart_timer, jiffies);
451
452	return 0;
453}
454
455/*
456 * CAN bus-off
457 *
458 * This functions should be called when the device goes bus-off to
459 * tell the netif layer that no more packets can be sent or received.
460 * If enabled, a timer is started to trigger bus-off recovery.
461 */
462void can_bus_off(struct net_device *dev)
463{
464	struct can_priv *priv = netdev_priv(dev);
465
466	netdev_dbg(dev, "bus-off\n");
467
468	netif_carrier_off(dev);
469	priv->can_stats.bus_off++;
470
471	if (priv->restart_ms)
472		mod_timer(&priv->restart_timer,
473			  jiffies + (priv->restart_ms * HZ) / 1000);
474}
475EXPORT_SYMBOL_GPL(can_bus_off);
476
477static void can_setup(struct net_device *dev)
478{
479	dev->type = ARPHRD_CAN;
480	dev->mtu = CAN_MTU;
481	dev->hard_header_len = 0;
482	dev->addr_len = 0;
483	dev->tx_queue_len = 10;
484
485	/* New-style flags. */
486	dev->flags = IFF_NOARP;
487	dev->features = NETIF_F_HW_CSUM;
488}
489
490struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
491{
492	struct sk_buff *skb;
493
494	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
495			       sizeof(struct can_frame));
496	if (unlikely(!skb))
497		return NULL;
498
499	skb->protocol = htons(ETH_P_CAN);
500	skb->pkt_type = PACKET_BROADCAST;
501	skb->ip_summed = CHECKSUM_UNNECESSARY;
502
503	can_skb_reserve(skb);
504	can_skb_prv(skb)->ifindex = dev->ifindex;
505
506	*cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
507	memset(*cf, 0, sizeof(struct can_frame));
508
509	return skb;
510}
511EXPORT_SYMBOL_GPL(alloc_can_skb);
512
513struct sk_buff *alloc_canfd_skb(struct net_device *dev,
514				struct canfd_frame **cfd)
515{
516	struct sk_buff *skb;
517
518	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
519			       sizeof(struct canfd_frame));
520	if (unlikely(!skb))
521		return NULL;
522
523	skb->protocol = htons(ETH_P_CANFD);
524	skb->pkt_type = PACKET_BROADCAST;
525	skb->ip_summed = CHECKSUM_UNNECESSARY;
526
527	can_skb_reserve(skb);
528	can_skb_prv(skb)->ifindex = dev->ifindex;
529
530	*cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame));
531	memset(*cfd, 0, sizeof(struct canfd_frame));
532
533	return skb;
534}
535EXPORT_SYMBOL_GPL(alloc_canfd_skb);
536
537struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
538{
539	struct sk_buff *skb;
540
541	skb = alloc_can_skb(dev, cf);
542	if (unlikely(!skb))
543		return NULL;
544
545	(*cf)->can_id = CAN_ERR_FLAG;
546	(*cf)->can_dlc = CAN_ERR_DLC;
547
548	return skb;
549}
550EXPORT_SYMBOL_GPL(alloc_can_err_skb);
551
552/*
553 * Allocate and setup space for the CAN network device
554 */
555struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
556{
557	struct net_device *dev;
558	struct can_priv *priv;
559	int size;
560
561	if (echo_skb_max)
562		size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
563			echo_skb_max * sizeof(struct sk_buff *);
564	else
565		size = sizeof_priv;
566
567	dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup);
568	if (!dev)
569		return NULL;
570
571	priv = netdev_priv(dev);
572
573	if (echo_skb_max) {
574		priv->echo_skb_max = echo_skb_max;
575		priv->echo_skb = (void *)priv +
576			ALIGN(sizeof_priv, sizeof(struct sk_buff *));
577	}
578
579	priv->state = CAN_STATE_STOPPED;
580
581	init_timer(&priv->restart_timer);
582
583	return dev;
584}
585EXPORT_SYMBOL_GPL(alloc_candev);
586
587/*
588 * Free space of the CAN network device
589 */
590void free_candev(struct net_device *dev)
591{
592	free_netdev(dev);
593}
594EXPORT_SYMBOL_GPL(free_candev);
595
596/*
597 * changing MTU and control mode for CAN/CANFD devices
598 */
599int can_change_mtu(struct net_device *dev, int new_mtu)
600{
601	struct can_priv *priv = netdev_priv(dev);
602
603	/* Do not allow changing the MTU while running */
604	if (dev->flags & IFF_UP)
605		return -EBUSY;
606
607	/* allow change of MTU according to the CANFD ability of the device */
608	switch (new_mtu) {
609	case CAN_MTU:
610		priv->ctrlmode &= ~CAN_CTRLMODE_FD;
611		break;
612
613	case CANFD_MTU:
614		if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD))
615			return -EINVAL;
616
617		priv->ctrlmode |= CAN_CTRLMODE_FD;
618		break;
619
620	default:
621		return -EINVAL;
622	}
623
624	dev->mtu = new_mtu;
625	return 0;
626}
627EXPORT_SYMBOL_GPL(can_change_mtu);
628
629/*
630 * Common open function when the device gets opened.
631 *
632 * This function should be called in the open function of the device
633 * driver.
634 */
635int open_candev(struct net_device *dev)
636{
637	struct can_priv *priv = netdev_priv(dev);
638
639	if (!priv->bittiming.bitrate) {
640		netdev_err(dev, "bit-timing not yet defined\n");
641		return -EINVAL;
642	}
643
644	/* For CAN FD the data bitrate has to be >= the arbitration bitrate */
645	if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
646	    (!priv->data_bittiming.bitrate ||
647	     (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
648		netdev_err(dev, "incorrect/missing data bit-timing\n");
649		return -EINVAL;
650	}
651
652	/* Switch carrier on if device was stopped while in bus-off state */
653	if (!netif_carrier_ok(dev))
654		netif_carrier_on(dev);
655
656	setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
657
658	return 0;
659}
660EXPORT_SYMBOL_GPL(open_candev);
661
662/*
663 * Common close function for cleanup before the device gets closed.
664 *
665 * This function should be called in the close function of the device
666 * driver.
667 */
668void close_candev(struct net_device *dev)
669{
670	struct can_priv *priv = netdev_priv(dev);
671
672	del_timer_sync(&priv->restart_timer);
673	can_flush_echo_skb(dev);
674}
675EXPORT_SYMBOL_GPL(close_candev);
676
677/*
678 * CAN netlink interface
679 */
680static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
681	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
682	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
683	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
684	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
685	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
686	[IFLA_CAN_BITTIMING_CONST]
687				= { .len = sizeof(struct can_bittiming_const) },
688	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
689	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
690	[IFLA_CAN_DATA_BITTIMING]
691				= { .len = sizeof(struct can_bittiming) },
692	[IFLA_CAN_DATA_BITTIMING_CONST]
693				= { .len = sizeof(struct can_bittiming_const) },
694};
695
696static int can_changelink(struct net_device *dev,
697			  struct nlattr *tb[], struct nlattr *data[])
698{
699	struct can_priv *priv = netdev_priv(dev);
700	int err;
701
702	/* We need synchronization with dev->stop() */
703	ASSERT_RTNL();
704
705	if (data[IFLA_CAN_BITTIMING]) {
706		struct can_bittiming bt;
707
708		/* Do not allow changing bittiming while running */
709		if (dev->flags & IFF_UP)
710			return -EBUSY;
711		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
712		err = can_get_bittiming(dev, &bt, priv->bittiming_const);
713		if (err)
714			return err;
715		memcpy(&priv->bittiming, &bt, sizeof(bt));
716
717		if (priv->do_set_bittiming) {
718			/* Finally, set the bit-timing registers */
719			err = priv->do_set_bittiming(dev);
720			if (err)
721				return err;
722		}
723	}
724
725	if (data[IFLA_CAN_CTRLMODE]) {
726		struct can_ctrlmode *cm;
727
728		/* Do not allow changing controller mode while running */
729		if (dev->flags & IFF_UP)
730			return -EBUSY;
731		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
732		if (cm->flags & ~priv->ctrlmode_supported)
733			return -EOPNOTSUPP;
734		priv->ctrlmode &= ~cm->mask;
735		priv->ctrlmode |= cm->flags;
736
737		/* CAN_CTRLMODE_FD can only be set when driver supports FD */
738		if (priv->ctrlmode & CAN_CTRLMODE_FD)
739			dev->mtu = CANFD_MTU;
740		else
741			dev->mtu = CAN_MTU;
742	}
743
744	if (data[IFLA_CAN_RESTART_MS]) {
745		/* Do not allow changing restart delay while running */
746		if (dev->flags & IFF_UP)
747			return -EBUSY;
748		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
749	}
750
751	if (data[IFLA_CAN_RESTART]) {
752		/* Do not allow a restart while not running */
753		if (!(dev->flags & IFF_UP))
754			return -EINVAL;
755		err = can_restart_now(dev);
756		if (err)
757			return err;
758	}
759
760	if (data[IFLA_CAN_DATA_BITTIMING]) {
761		struct can_bittiming dbt;
762
763		/* Do not allow changing bittiming while running */
764		if (dev->flags & IFF_UP)
765			return -EBUSY;
766		memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
767		       sizeof(dbt));
768		err = can_get_bittiming(dev, &dbt, priv->data_bittiming_const);
769		if (err)
770			return err;
771		memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
772
773		if (priv->do_set_data_bittiming) {
774			/* Finally, set the bit-timing registers */
775			err = priv->do_set_data_bittiming(dev);
776			if (err)
777				return err;
778		}
779	}
780
781	return 0;
782}
783
784static size_t can_get_size(const struct net_device *dev)
785{
786	struct can_priv *priv = netdev_priv(dev);
787	size_t size = 0;
788
789	if (priv->bittiming.bitrate)				/* IFLA_CAN_BITTIMING */
790		size += nla_total_size(sizeof(struct can_bittiming));
791	if (priv->bittiming_const)				/* IFLA_CAN_BITTIMING_CONST */
792		size += nla_total_size(sizeof(struct can_bittiming_const));
793	size += nla_total_size(sizeof(struct can_clock));	/* IFLA_CAN_CLOCK */
794	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_STATE */
795	size += nla_total_size(sizeof(struct can_ctrlmode));	/* IFLA_CAN_CTRLMODE */
796	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_RESTART_MS */
797	if (priv->do_get_berr_counter)				/* IFLA_CAN_BERR_COUNTER */
798		size += nla_total_size(sizeof(struct can_berr_counter));
799	if (priv->data_bittiming.bitrate)			/* IFLA_CAN_DATA_BITTIMING */
800		size += nla_total_size(sizeof(struct can_bittiming));
801	if (priv->data_bittiming_const)				/* IFLA_CAN_DATA_BITTIMING_CONST */
802		size += nla_total_size(sizeof(struct can_bittiming_const));
803
804	return size;
805}
806
807static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
808{
809	struct can_priv *priv = netdev_priv(dev);
810	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
811	struct can_berr_counter bec;
812	enum can_state state = priv->state;
813
814	if (priv->do_get_state)
815		priv->do_get_state(dev, &state);
816
817	if ((priv->bittiming.bitrate &&
818	     nla_put(skb, IFLA_CAN_BITTIMING,
819		     sizeof(priv->bittiming), &priv->bittiming)) ||
820
821	    (priv->bittiming_const &&
822	     nla_put(skb, IFLA_CAN_BITTIMING_CONST,
823		     sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
824
825	    nla_put(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock) ||
826	    nla_put_u32(skb, IFLA_CAN_STATE, state) ||
827	    nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
828	    nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
829
830	    (priv->do_get_berr_counter &&
831	     !priv->do_get_berr_counter(dev, &bec) &&
832	     nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
833
834	    (priv->data_bittiming.bitrate &&
835	     nla_put(skb, IFLA_CAN_DATA_BITTIMING,
836		     sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
837
838	    (priv->data_bittiming_const &&
839	     nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
840		     sizeof(*priv->data_bittiming_const),
841		     priv->data_bittiming_const)))
842		return -EMSGSIZE;
843
844	return 0;
845}
846
847static size_t can_get_xstats_size(const struct net_device *dev)
848{
849	return sizeof(struct can_device_stats);
850}
851
852static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
853{
854	struct can_priv *priv = netdev_priv(dev);
855
856	if (nla_put(skb, IFLA_INFO_XSTATS,
857		    sizeof(priv->can_stats), &priv->can_stats))
858		goto nla_put_failure;
859	return 0;
860
861nla_put_failure:
862	return -EMSGSIZE;
863}
864
865static int can_newlink(struct net *src_net, struct net_device *dev,
866		       struct nlattr *tb[], struct nlattr *data[])
867{
868	return -EOPNOTSUPP;
869}
870
871static struct rtnl_link_ops can_link_ops __read_mostly = {
872	.kind		= "can",
873	.maxtype	= IFLA_CAN_MAX,
874	.policy		= can_policy,
875	.setup		= can_setup,
876	.newlink	= can_newlink,
877	.changelink	= can_changelink,
878	.get_size	= can_get_size,
879	.fill_info	= can_fill_info,
880	.get_xstats_size = can_get_xstats_size,
881	.fill_xstats	= can_fill_xstats,
882};
883
884/*
885 * Register the CAN network device
886 */
887int register_candev(struct net_device *dev)
888{
889	dev->rtnl_link_ops = &can_link_ops;
890	return register_netdev(dev);
891}
892EXPORT_SYMBOL_GPL(register_candev);
893
894/*
895 * Unregister the CAN network device
896 */
897void unregister_candev(struct net_device *dev)
898{
899	unregister_netdev(dev);
900}
901EXPORT_SYMBOL_GPL(unregister_candev);
902
903/*
904 * Test if a network device is a candev based device
905 * and return the can_priv* if so.
906 */
907struct can_priv *safe_candev_priv(struct net_device *dev)
908{
909	if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
910		return NULL;
911
912	return netdev_priv(dev);
913}
914EXPORT_SYMBOL_GPL(safe_candev_priv);
915
916static __init int can_dev_init(void)
917{
918	int err;
919
920	can_led_notifier_init();
921
922	err = rtnl_link_register(&can_link_ops);
923	if (!err)
924		printk(KERN_INFO MOD_DESC "\n");
925
926	return err;
927}
928module_init(can_dev_init);
929
930static __exit void can_dev_exit(void)
931{
932	rtnl_link_unregister(&can_link_ops);
933
934	can_led_notifier_exit();
935}
936module_exit(can_dev_exit);
937
938MODULE_ALIAS_RTNL_LINK("can");
939