dev.c revision 52c793f24054f5dc30d228e37e0e19cc8313f086
1/*
2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the version 2 of the GNU General Public License
8 * as published by the Free Software Foundation
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18 */
19
20#include <linux/module.h>
21#include <linux/kernel.h>
22#include <linux/netdevice.h>
23#include <linux/if_arp.h>
24#include <linux/can.h>
25#include <linux/can/dev.h>
26#include <linux/can/netlink.h>
27#include <net/rtnetlink.h>
28
29#define MOD_DESC "CAN device driver interface"
30
31MODULE_DESCRIPTION(MOD_DESC);
32MODULE_LICENSE("GPL v2");
33MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
34
35#ifdef CONFIG_CAN_CALC_BITTIMING
36#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
37
38/*
39 * Bit-timing calculation derived from:
40 *
41 * Code based on LinCAN sources and H8S2638 project
42 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
43 * Copyright 2005      Stanislav Marek
44 * email: pisa@cmp.felk.cvut.cz
45 *
46 * Calculates proper bit-timing parameters for a specified bit-rate
47 * and sample-point, which can then be used to set the bit-timing
48 * registers of the CAN controller. You can find more information
49 * in the header file linux/can/netlink.h.
50 */
51static int can_update_spt(const struct can_bittiming_const *btc,
52			  int sampl_pt, int tseg, int *tseg1, int *tseg2)
53{
54	*tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
55	if (*tseg2 < btc->tseg2_min)
56		*tseg2 = btc->tseg2_min;
57	if (*tseg2 > btc->tseg2_max)
58		*tseg2 = btc->tseg2_max;
59	*tseg1 = tseg - *tseg2;
60	if (*tseg1 > btc->tseg1_max) {
61		*tseg1 = btc->tseg1_max;
62		*tseg2 = tseg - *tseg1;
63	}
64	return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
65}
66
67static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
68{
69	struct can_priv *priv = netdev_priv(dev);
70	const struct can_bittiming_const *btc = priv->bittiming_const;
71	long rate, best_rate = 0;
72	long best_error = 1000000000, error = 0;
73	int best_tseg = 0, best_brp = 0, brp = 0;
74	int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
75	int spt_error = 1000, spt = 0, sampl_pt;
76	u64 v64;
77
78	if (!priv->bittiming_const)
79		return -ENOTSUPP;
80
81	/* Use CIA recommended sample points */
82	if (bt->sample_point) {
83		sampl_pt = bt->sample_point;
84	} else {
85		if (bt->bitrate > 800000)
86			sampl_pt = 750;
87		else if (bt->bitrate > 500000)
88			sampl_pt = 800;
89		else
90			sampl_pt = 875;
91	}
92
93	/* tseg even = round down, odd = round up */
94	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
95	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
96		tsegall = 1 + tseg / 2;
97		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
98		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
99		/* chose brp step which is possible in system */
100		brp = (brp / btc->brp_inc) * btc->brp_inc;
101		if ((brp < btc->brp_min) || (brp > btc->brp_max))
102			continue;
103		rate = priv->clock.freq / (brp * tsegall);
104		error = bt->bitrate - rate;
105		/* tseg brp biterror */
106		if (error < 0)
107			error = -error;
108		if (error > best_error)
109			continue;
110		best_error = error;
111		if (error == 0) {
112			spt = can_update_spt(btc, sampl_pt, tseg / 2,
113					     &tseg1, &tseg2);
114			error = sampl_pt - spt;
115			if (error < 0)
116				error = -error;
117			if (error > spt_error)
118				continue;
119			spt_error = error;
120		}
121		best_tseg = tseg / 2;
122		best_brp = brp;
123		best_rate = rate;
124		if (error == 0)
125			break;
126	}
127
128	if (best_error) {
129		/* Error in one-tenth of a percent */
130		error = (best_error * 1000) / bt->bitrate;
131		if (error > CAN_CALC_MAX_ERROR) {
132			dev_err(dev->dev.parent,
133				"bitrate error %ld.%ld%% too high\n",
134				error / 10, error % 10);
135			return -EDOM;
136		} else {
137			dev_warn(dev->dev.parent, "bitrate error %ld.%ld%%\n",
138				 error / 10, error % 10);
139		}
140	}
141
142	/* real sample point */
143	bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
144					  &tseg1, &tseg2);
145
146	v64 = (u64)best_brp * 1000000000UL;
147	do_div(v64, priv->clock.freq);
148	bt->tq = (u32)v64;
149	bt->prop_seg = tseg1 / 2;
150	bt->phase_seg1 = tseg1 - bt->prop_seg;
151	bt->phase_seg2 = tseg2;
152	bt->sjw = 1;
153	bt->brp = best_brp;
154	/* real bit-rate */
155	bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
156
157	return 0;
158}
159#else /* !CONFIG_CAN_CALC_BITTIMING */
160static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
161{
162	dev_err(dev->dev.parent, "bit-timing calculation not available\n");
163	return -EINVAL;
164}
165#endif /* CONFIG_CAN_CALC_BITTIMING */
166
167/*
168 * Checks the validity of the specified bit-timing parameters prop_seg,
169 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
170 * prescaler value brp. You can find more information in the header
171 * file linux/can/netlink.h.
172 */
173static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt)
174{
175	struct can_priv *priv = netdev_priv(dev);
176	const struct can_bittiming_const *btc = priv->bittiming_const;
177	int tseg1, alltseg;
178	u64 brp64;
179
180	if (!priv->bittiming_const)
181		return -ENOTSUPP;
182
183	tseg1 = bt->prop_seg + bt->phase_seg1;
184	if (!bt->sjw)
185		bt->sjw = 1;
186	if (bt->sjw > btc->sjw_max ||
187	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
188	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
189		return -ERANGE;
190
191	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
192	if (btc->brp_inc > 1)
193		do_div(brp64, btc->brp_inc);
194	brp64 += 500000000UL - 1;
195	do_div(brp64, 1000000000UL); /* the practicable BRP */
196	if (btc->brp_inc > 1)
197		brp64 *= btc->brp_inc;
198	bt->brp = (u32)brp64;
199
200	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
201		return -EINVAL;
202
203	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
204	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
205	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
206
207	return 0;
208}
209
210int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt)
211{
212	struct can_priv *priv = netdev_priv(dev);
213	int err;
214
215	/* Check if the CAN device has bit-timing parameters */
216	if (priv->bittiming_const) {
217
218		/* Non-expert mode? Check if the bitrate has been pre-defined */
219		if (!bt->tq)
220			/* Determine bit-timing parameters */
221			err = can_calc_bittiming(dev, bt);
222		else
223			/* Check bit-timing params and calculate proper brp */
224			err = can_fixup_bittiming(dev, bt);
225		if (err)
226			return err;
227	}
228
229	return 0;
230}
231
232/*
233 * Local echo of CAN messages
234 *
235 * CAN network devices *should* support a local echo functionality
236 * (see Documentation/networking/can.txt). To test the handling of CAN
237 * interfaces that do not support the local echo both driver types are
238 * implemented. In the case that the driver does not support the echo
239 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
240 * to perform the echo as a fallback solution.
241 */
242static void can_flush_echo_skb(struct net_device *dev)
243{
244	struct can_priv *priv = netdev_priv(dev);
245	struct net_device_stats *stats = &dev->stats;
246	int i;
247
248	for (i = 0; i < priv->echo_skb_max; i++) {
249		if (priv->echo_skb[i]) {
250			kfree_skb(priv->echo_skb[i]);
251			priv->echo_skb[i] = NULL;
252			stats->tx_dropped++;
253			stats->tx_aborted_errors++;
254		}
255	}
256}
257
258/*
259 * Put the skb on the stack to be looped backed locally lateron
260 *
261 * The function is typically called in the start_xmit function
262 * of the device driver. The driver must protect access to
263 * priv->echo_skb, if necessary.
264 */
265void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
266		      unsigned int idx)
267{
268	struct can_priv *priv = netdev_priv(dev);
269
270	BUG_ON(idx >= priv->echo_skb_max);
271
272	/* check flag whether this packet has to be looped back */
273	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK) {
274		kfree_skb(skb);
275		return;
276	}
277
278	if (!priv->echo_skb[idx]) {
279		struct sock *srcsk = skb->sk;
280
281		if (atomic_read(&skb->users) != 1) {
282			struct sk_buff *old_skb = skb;
283
284			skb = skb_clone(old_skb, GFP_ATOMIC);
285			kfree_skb(old_skb);
286			if (!skb)
287				return;
288		} else
289			skb_orphan(skb);
290
291		skb->sk = srcsk;
292
293		/* make settings for echo to reduce code in irq context */
294		skb->protocol = htons(ETH_P_CAN);
295		skb->pkt_type = PACKET_BROADCAST;
296		skb->ip_summed = CHECKSUM_UNNECESSARY;
297		skb->dev = dev;
298
299		/* save this skb for tx interrupt echo handling */
300		priv->echo_skb[idx] = skb;
301	} else {
302		/* locking problem with netif_stop_queue() ?? */
303		dev_err(dev->dev.parent, "%s: BUG! echo_skb is occupied!\n",
304			__func__);
305		kfree_skb(skb);
306	}
307}
308EXPORT_SYMBOL_GPL(can_put_echo_skb);
309
310/*
311 * Get the skb from the stack and loop it back locally
312 *
313 * The function is typically called when the TX done interrupt
314 * is handled in the device driver. The driver must protect
315 * access to priv->echo_skb, if necessary.
316 */
317void can_get_echo_skb(struct net_device *dev, unsigned int idx)
318{
319	struct can_priv *priv = netdev_priv(dev);
320
321	BUG_ON(idx >= priv->echo_skb_max);
322
323	if (priv->echo_skb[idx]) {
324		netif_rx(priv->echo_skb[idx]);
325		priv->echo_skb[idx] = NULL;
326	}
327}
328EXPORT_SYMBOL_GPL(can_get_echo_skb);
329
330/*
331  * Remove the skb from the stack and free it.
332  *
333  * The function is typically called when TX failed.
334  */
335void can_free_echo_skb(struct net_device *dev, unsigned int idx)
336{
337	struct can_priv *priv = netdev_priv(dev);
338
339	BUG_ON(idx >= priv->echo_skb_max);
340
341	if (priv->echo_skb[idx]) {
342		kfree_skb(priv->echo_skb[idx]);
343		priv->echo_skb[idx] = NULL;
344	}
345}
346EXPORT_SYMBOL_GPL(can_free_echo_skb);
347
348/*
349 * CAN device restart for bus-off recovery
350 */
351void can_restart(unsigned long data)
352{
353	struct net_device *dev = (struct net_device *)data;
354	struct can_priv *priv = netdev_priv(dev);
355	struct net_device_stats *stats = &dev->stats;
356	struct sk_buff *skb;
357	struct can_frame *cf;
358	int err;
359
360	BUG_ON(netif_carrier_ok(dev));
361
362	/*
363	 * No synchronization needed because the device is bus-off and
364	 * no messages can come in or go out.
365	 */
366	can_flush_echo_skb(dev);
367
368	/* send restart message upstream */
369	skb = alloc_can_err_skb(dev, &cf);
370	if (skb == NULL) {
371		err = -ENOMEM;
372		goto restart;
373	}
374	cf->can_id |= CAN_ERR_RESTARTED;
375
376	netif_rx(skb);
377
378	stats->rx_packets++;
379	stats->rx_bytes += cf->can_dlc;
380
381restart:
382	dev_dbg(dev->dev.parent, "restarted\n");
383	priv->can_stats.restarts++;
384
385	/* Now restart the device */
386	err = priv->do_set_mode(dev, CAN_MODE_START);
387
388	netif_carrier_on(dev);
389	if (err)
390		dev_err(dev->dev.parent, "Error %d during restart", err);
391}
392
393int can_restart_now(struct net_device *dev)
394{
395	struct can_priv *priv = netdev_priv(dev);
396
397	/*
398	 * A manual restart is only permitted if automatic restart is
399	 * disabled and the device is in the bus-off state
400	 */
401	if (priv->restart_ms)
402		return -EINVAL;
403	if (priv->state != CAN_STATE_BUS_OFF)
404		return -EBUSY;
405
406	/* Runs as soon as possible in the timer context */
407	mod_timer(&priv->restart_timer, jiffies);
408
409	return 0;
410}
411
412/*
413 * CAN bus-off
414 *
415 * This functions should be called when the device goes bus-off to
416 * tell the netif layer that no more packets can be sent or received.
417 * If enabled, a timer is started to trigger bus-off recovery.
418 */
419void can_bus_off(struct net_device *dev)
420{
421	struct can_priv *priv = netdev_priv(dev);
422
423	dev_dbg(dev->dev.parent, "bus-off\n");
424
425	netif_carrier_off(dev);
426	priv->can_stats.bus_off++;
427
428	if (priv->restart_ms)
429		mod_timer(&priv->restart_timer,
430			  jiffies + (priv->restart_ms * HZ) / 1000);
431}
432EXPORT_SYMBOL_GPL(can_bus_off);
433
434static void can_setup(struct net_device *dev)
435{
436	dev->type = ARPHRD_CAN;
437	dev->mtu = sizeof(struct can_frame);
438	dev->hard_header_len = 0;
439	dev->addr_len = 0;
440	dev->tx_queue_len = 10;
441
442	/* New-style flags. */
443	dev->flags = IFF_NOARP;
444	dev->features = NETIF_F_NO_CSUM;
445}
446
447struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
448{
449	struct sk_buff *skb;
450
451	skb = netdev_alloc_skb(dev, sizeof(struct can_frame));
452	if (unlikely(!skb))
453		return NULL;
454
455	skb->protocol = htons(ETH_P_CAN);
456	skb->pkt_type = PACKET_BROADCAST;
457	skb->ip_summed = CHECKSUM_UNNECESSARY;
458	*cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
459	memset(*cf, 0, sizeof(struct can_frame));
460
461	return skb;
462}
463EXPORT_SYMBOL_GPL(alloc_can_skb);
464
465struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
466{
467	struct sk_buff *skb;
468
469	skb = alloc_can_skb(dev, cf);
470	if (unlikely(!skb))
471		return NULL;
472
473	(*cf)->can_id = CAN_ERR_FLAG;
474	(*cf)->can_dlc = CAN_ERR_DLC;
475
476	return skb;
477}
478EXPORT_SYMBOL_GPL(alloc_can_err_skb);
479
480/*
481 * Allocate and setup space for the CAN network device
482 */
483struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
484{
485	struct net_device *dev;
486	struct can_priv *priv;
487	int size;
488
489	if (echo_skb_max)
490		size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
491			echo_skb_max * sizeof(struct sk_buff *);
492	else
493		size = sizeof_priv;
494
495	dev = alloc_netdev(size, "can%d", can_setup);
496	if (!dev)
497		return NULL;
498
499	priv = netdev_priv(dev);
500
501	if (echo_skb_max) {
502		priv->echo_skb_max = echo_skb_max;
503		priv->echo_skb = (void *)priv +
504			ALIGN(sizeof_priv, sizeof(struct sk_buff *));
505	}
506
507	priv->state = CAN_STATE_STOPPED;
508
509	init_timer(&priv->restart_timer);
510
511	return dev;
512}
513EXPORT_SYMBOL_GPL(alloc_candev);
514
515/*
516 * Free space of the CAN network device
517 */
518void free_candev(struct net_device *dev)
519{
520	free_netdev(dev);
521}
522EXPORT_SYMBOL_GPL(free_candev);
523
524/*
525 * Common open function when the device gets opened.
526 *
527 * This function should be called in the open function of the device
528 * driver.
529 */
530int open_candev(struct net_device *dev)
531{
532	struct can_priv *priv = netdev_priv(dev);
533
534	if (!priv->bittiming.tq && !priv->bittiming.bitrate) {
535		dev_err(dev->dev.parent, "bit-timing not yet defined\n");
536		return -EINVAL;
537	}
538
539	/* Switch carrier on if device was stopped while in bus-off state */
540	if (!netif_carrier_ok(dev))
541		netif_carrier_on(dev);
542
543	setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
544
545	return 0;
546}
547EXPORT_SYMBOL_GPL(open_candev);
548
549/*
550 * Common close function for cleanup before the device gets closed.
551 *
552 * This function should be called in the close function of the device
553 * driver.
554 */
555void close_candev(struct net_device *dev)
556{
557	struct can_priv *priv = netdev_priv(dev);
558
559	if (del_timer_sync(&priv->restart_timer))
560		dev_put(dev);
561	can_flush_echo_skb(dev);
562}
563EXPORT_SYMBOL_GPL(close_candev);
564
565/*
566 * CAN netlink interface
567 */
568static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
569	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
570	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
571	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
572	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
573	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
574	[IFLA_CAN_BITTIMING_CONST]
575				= { .len = sizeof(struct can_bittiming_const) },
576	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
577	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
578};
579
580static int can_changelink(struct net_device *dev,
581			  struct nlattr *tb[], struct nlattr *data[])
582{
583	struct can_priv *priv = netdev_priv(dev);
584	int err;
585
586	/* We need synchronization with dev->stop() */
587	ASSERT_RTNL();
588
589	if (data[IFLA_CAN_CTRLMODE]) {
590		struct can_ctrlmode *cm;
591
592		/* Do not allow changing controller mode while running */
593		if (dev->flags & IFF_UP)
594			return -EBUSY;
595		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
596		if (cm->flags & ~priv->ctrlmode_supported)
597			return -EOPNOTSUPP;
598		priv->ctrlmode &= ~cm->mask;
599		priv->ctrlmode |= cm->flags;
600	}
601
602	if (data[IFLA_CAN_BITTIMING]) {
603		struct can_bittiming bt;
604
605		/* Do not allow changing bittiming while running */
606		if (dev->flags & IFF_UP)
607			return -EBUSY;
608		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
609		if ((!bt.bitrate && !bt.tq) || (bt.bitrate && bt.tq))
610			return -EINVAL;
611		err = can_get_bittiming(dev, &bt);
612		if (err)
613			return err;
614		memcpy(&priv->bittiming, &bt, sizeof(bt));
615
616		if (priv->do_set_bittiming) {
617			/* Finally, set the bit-timing registers */
618			err = priv->do_set_bittiming(dev);
619			if (err)
620				return err;
621		}
622	}
623
624	if (data[IFLA_CAN_RESTART_MS]) {
625		/* Do not allow changing restart delay while running */
626		if (dev->flags & IFF_UP)
627			return -EBUSY;
628		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
629	}
630
631	if (data[IFLA_CAN_RESTART]) {
632		/* Do not allow a restart while not running */
633		if (!(dev->flags & IFF_UP))
634			return -EINVAL;
635		err = can_restart_now(dev);
636		if (err)
637			return err;
638	}
639
640	return 0;
641}
642
643static size_t can_get_size(const struct net_device *dev)
644{
645	struct can_priv *priv = netdev_priv(dev);
646	size_t size;
647
648	size = nla_total_size(sizeof(u32));   /* IFLA_CAN_STATE */
649	size += sizeof(struct can_ctrlmode);  /* IFLA_CAN_CTRLMODE */
650	size += nla_total_size(sizeof(u32));  /* IFLA_CAN_RESTART_MS */
651	size += sizeof(struct can_bittiming); /* IFLA_CAN_BITTIMING */
652	size += sizeof(struct can_clock);     /* IFLA_CAN_CLOCK */
653	if (priv->do_get_berr_counter)        /* IFLA_CAN_BERR_COUNTER */
654		size += sizeof(struct can_berr_counter);
655	if (priv->bittiming_const)	      /* IFLA_CAN_BITTIMING_CONST */
656		size += sizeof(struct can_bittiming_const);
657
658	return size;
659}
660
661static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
662{
663	struct can_priv *priv = netdev_priv(dev);
664	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
665	struct can_berr_counter bec;
666	enum can_state state = priv->state;
667
668	if (priv->do_get_state)
669		priv->do_get_state(dev, &state);
670	NLA_PUT_U32(skb, IFLA_CAN_STATE, state);
671	NLA_PUT(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm);
672	NLA_PUT_U32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms);
673	NLA_PUT(skb, IFLA_CAN_BITTIMING,
674		sizeof(priv->bittiming), &priv->bittiming);
675	NLA_PUT(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock);
676	if (priv->do_get_berr_counter && !priv->do_get_berr_counter(dev, &bec))
677		NLA_PUT(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec);
678	if (priv->bittiming_const)
679		NLA_PUT(skb, IFLA_CAN_BITTIMING_CONST,
680			sizeof(*priv->bittiming_const), priv->bittiming_const);
681
682	return 0;
683
684nla_put_failure:
685	return -EMSGSIZE;
686}
687
688static size_t can_get_xstats_size(const struct net_device *dev)
689{
690	return sizeof(struct can_device_stats);
691}
692
693static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
694{
695	struct can_priv *priv = netdev_priv(dev);
696
697	NLA_PUT(skb, IFLA_INFO_XSTATS,
698		sizeof(priv->can_stats), &priv->can_stats);
699
700	return 0;
701
702nla_put_failure:
703	return -EMSGSIZE;
704}
705
706static int can_newlink(struct net *src_net, struct net_device *dev,
707		       struct nlattr *tb[], struct nlattr *data[])
708{
709	return -EOPNOTSUPP;
710}
711
712static struct rtnl_link_ops can_link_ops __read_mostly = {
713	.kind		= "can",
714	.maxtype	= IFLA_CAN_MAX,
715	.policy		= can_policy,
716	.setup		= can_setup,
717	.newlink	= can_newlink,
718	.changelink	= can_changelink,
719	.get_size	= can_get_size,
720	.fill_info	= can_fill_info,
721	.get_xstats_size = can_get_xstats_size,
722	.fill_xstats	= can_fill_xstats,
723};
724
725/*
726 * Register the CAN network device
727 */
728int register_candev(struct net_device *dev)
729{
730	dev->rtnl_link_ops = &can_link_ops;
731	return register_netdev(dev);
732}
733EXPORT_SYMBOL_GPL(register_candev);
734
735/*
736 * Unregister the CAN network device
737 */
738void unregister_candev(struct net_device *dev)
739{
740	unregister_netdev(dev);
741}
742EXPORT_SYMBOL_GPL(unregister_candev);
743
744static __init int can_dev_init(void)
745{
746	int err;
747
748	err = rtnl_link_register(&can_link_ops);
749	if (!err)
750		printk(KERN_INFO MOD_DESC "\n");
751
752	return err;
753}
754module_init(can_dev_init);
755
756static __exit void can_dev_exit(void)
757{
758	rtnl_link_unregister(&can_link_ops);
759}
760module_exit(can_dev_exit);
761
762MODULE_ALIAS_RTNL_LINK("can");
763