dev.c revision 61463a30f65225e19e68f59dbd7b888bb308ec99
1/*
2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the version 2 of the GNU General Public License
8 * as published by the Free Software Foundation
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18 */
19
20#include <linux/module.h>
21#include <linux/kernel.h>
22#include <linux/slab.h>
23#include <linux/netdevice.h>
24#include <linux/if_arp.h>
25#include <linux/can.h>
26#include <linux/can/dev.h>
27#include <linux/can/netlink.h>
28#include <net/rtnetlink.h>
29
30#define MOD_DESC "CAN device driver interface"
31
32MODULE_DESCRIPTION(MOD_DESC);
33MODULE_LICENSE("GPL v2");
34MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
35
36#ifdef CONFIG_CAN_CALC_BITTIMING
37#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
38
39/*
40 * Bit-timing calculation derived from:
41 *
42 * Code based on LinCAN sources and H8S2638 project
43 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
44 * Copyright 2005      Stanislav Marek
45 * email: pisa@cmp.felk.cvut.cz
46 *
47 * Calculates proper bit-timing parameters for a specified bit-rate
48 * and sample-point, which can then be used to set the bit-timing
49 * registers of the CAN controller. You can find more information
50 * in the header file linux/can/netlink.h.
51 */
52static int can_update_spt(const struct can_bittiming_const *btc,
53			  int sampl_pt, int tseg, int *tseg1, int *tseg2)
54{
55	*tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
56	if (*tseg2 < btc->tseg2_min)
57		*tseg2 = btc->tseg2_min;
58	if (*tseg2 > btc->tseg2_max)
59		*tseg2 = btc->tseg2_max;
60	*tseg1 = tseg - *tseg2;
61	if (*tseg1 > btc->tseg1_max) {
62		*tseg1 = btc->tseg1_max;
63		*tseg2 = tseg - *tseg1;
64	}
65	return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
66}
67
68static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
69{
70	struct can_priv *priv = netdev_priv(dev);
71	const struct can_bittiming_const *btc = priv->bittiming_const;
72	long rate, best_rate = 0;
73	long best_error = 1000000000, error = 0;
74	int best_tseg = 0, best_brp = 0, brp = 0;
75	int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
76	int spt_error = 1000, spt = 0, sampl_pt;
77	u64 v64;
78
79	if (!priv->bittiming_const)
80		return -ENOTSUPP;
81
82	/* Use CIA recommended sample points */
83	if (bt->sample_point) {
84		sampl_pt = bt->sample_point;
85	} else {
86		if (bt->bitrate > 800000)
87			sampl_pt = 750;
88		else if (bt->bitrate > 500000)
89			sampl_pt = 800;
90		else
91			sampl_pt = 875;
92	}
93
94	/* tseg even = round down, odd = round up */
95	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
96	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
97		tsegall = 1 + tseg / 2;
98		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
99		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
100		/* chose brp step which is possible in system */
101		brp = (brp / btc->brp_inc) * btc->brp_inc;
102		if ((brp < btc->brp_min) || (brp > btc->brp_max))
103			continue;
104		rate = priv->clock.freq / (brp * tsegall);
105		error = bt->bitrate - rate;
106		/* tseg brp biterror */
107		if (error < 0)
108			error = -error;
109		if (error > best_error)
110			continue;
111		best_error = error;
112		if (error == 0) {
113			spt = can_update_spt(btc, sampl_pt, tseg / 2,
114					     &tseg1, &tseg2);
115			error = sampl_pt - spt;
116			if (error < 0)
117				error = -error;
118			if (error > spt_error)
119				continue;
120			spt_error = error;
121		}
122		best_tseg = tseg / 2;
123		best_brp = brp;
124		best_rate = rate;
125		if (error == 0)
126			break;
127	}
128
129	if (best_error) {
130		/* Error in one-tenth of a percent */
131		error = (best_error * 1000) / bt->bitrate;
132		if (error > CAN_CALC_MAX_ERROR) {
133			dev_err(dev->dev.parent,
134				"bitrate error %ld.%ld%% too high\n",
135				error / 10, error % 10);
136			return -EDOM;
137		} else {
138			dev_warn(dev->dev.parent, "bitrate error %ld.%ld%%\n",
139				 error / 10, error % 10);
140		}
141	}
142
143	/* real sample point */
144	bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
145					  &tseg1, &tseg2);
146
147	v64 = (u64)best_brp * 1000000000UL;
148	do_div(v64, priv->clock.freq);
149	bt->tq = (u32)v64;
150	bt->prop_seg = tseg1 / 2;
151	bt->phase_seg1 = tseg1 - bt->prop_seg;
152	bt->phase_seg2 = tseg2;
153	bt->sjw = 1;
154	bt->brp = best_brp;
155	/* real bit-rate */
156	bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
157
158	return 0;
159}
160#else /* !CONFIG_CAN_CALC_BITTIMING */
161static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
162{
163	dev_err(dev->dev.parent, "bit-timing calculation not available\n");
164	return -EINVAL;
165}
166#endif /* CONFIG_CAN_CALC_BITTIMING */
167
168/*
169 * Checks the validity of the specified bit-timing parameters prop_seg,
170 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
171 * prescaler value brp. You can find more information in the header
172 * file linux/can/netlink.h.
173 */
174static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt)
175{
176	struct can_priv *priv = netdev_priv(dev);
177	const struct can_bittiming_const *btc = priv->bittiming_const;
178	int tseg1, alltseg;
179	u64 brp64;
180
181	if (!priv->bittiming_const)
182		return -ENOTSUPP;
183
184	tseg1 = bt->prop_seg + bt->phase_seg1;
185	if (!bt->sjw)
186		bt->sjw = 1;
187	if (bt->sjw > btc->sjw_max ||
188	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
189	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
190		return -ERANGE;
191
192	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
193	if (btc->brp_inc > 1)
194		do_div(brp64, btc->brp_inc);
195	brp64 += 500000000UL - 1;
196	do_div(brp64, 1000000000UL); /* the practicable BRP */
197	if (btc->brp_inc > 1)
198		brp64 *= btc->brp_inc;
199	bt->brp = (u32)brp64;
200
201	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
202		return -EINVAL;
203
204	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
205	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
206	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
207
208	return 0;
209}
210
211static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt)
212{
213	struct can_priv *priv = netdev_priv(dev);
214	int err;
215
216	/* Check if the CAN device has bit-timing parameters */
217	if (priv->bittiming_const) {
218
219		/* Non-expert mode? Check if the bitrate has been pre-defined */
220		if (!bt->tq)
221			/* Determine bit-timing parameters */
222			err = can_calc_bittiming(dev, bt);
223		else
224			/* Check bit-timing params and calculate proper brp */
225			err = can_fixup_bittiming(dev, bt);
226		if (err)
227			return err;
228	}
229
230	return 0;
231}
232
233/*
234 * Local echo of CAN messages
235 *
236 * CAN network devices *should* support a local echo functionality
237 * (see Documentation/networking/can.txt). To test the handling of CAN
238 * interfaces that do not support the local echo both driver types are
239 * implemented. In the case that the driver does not support the echo
240 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
241 * to perform the echo as a fallback solution.
242 */
243static void can_flush_echo_skb(struct net_device *dev)
244{
245	struct can_priv *priv = netdev_priv(dev);
246	struct net_device_stats *stats = &dev->stats;
247	int i;
248
249	for (i = 0; i < priv->echo_skb_max; i++) {
250		if (priv->echo_skb[i]) {
251			kfree_skb(priv->echo_skb[i]);
252			priv->echo_skb[i] = NULL;
253			stats->tx_dropped++;
254			stats->tx_aborted_errors++;
255		}
256	}
257}
258
259/*
260 * Put the skb on the stack to be looped backed locally lateron
261 *
262 * The function is typically called in the start_xmit function
263 * of the device driver. The driver must protect access to
264 * priv->echo_skb, if necessary.
265 */
266void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
267		      unsigned int idx)
268{
269	struct can_priv *priv = netdev_priv(dev);
270
271	BUG_ON(idx >= priv->echo_skb_max);
272
273	/* check flag whether this packet has to be looped back */
274	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK) {
275		kfree_skb(skb);
276		return;
277	}
278
279	if (!priv->echo_skb[idx]) {
280		struct sock *srcsk = skb->sk;
281
282		if (atomic_read(&skb->users) != 1) {
283			struct sk_buff *old_skb = skb;
284
285			skb = skb_clone(old_skb, GFP_ATOMIC);
286			kfree_skb(old_skb);
287			if (!skb)
288				return;
289		} else
290			skb_orphan(skb);
291
292		skb->sk = srcsk;
293
294		/* make settings for echo to reduce code in irq context */
295		skb->protocol = htons(ETH_P_CAN);
296		skb->pkt_type = PACKET_BROADCAST;
297		skb->ip_summed = CHECKSUM_UNNECESSARY;
298		skb->dev = dev;
299
300		/* save this skb for tx interrupt echo handling */
301		priv->echo_skb[idx] = skb;
302	} else {
303		/* locking problem with netif_stop_queue() ?? */
304		dev_err(dev->dev.parent, "%s: BUG! echo_skb is occupied!\n",
305			__func__);
306		kfree_skb(skb);
307	}
308}
309EXPORT_SYMBOL_GPL(can_put_echo_skb);
310
311/*
312 * Get the skb from the stack and loop it back locally
313 *
314 * The function is typically called when the TX done interrupt
315 * is handled in the device driver. The driver must protect
316 * access to priv->echo_skb, if necessary.
317 */
318void can_get_echo_skb(struct net_device *dev, unsigned int idx)
319{
320	struct can_priv *priv = netdev_priv(dev);
321
322	BUG_ON(idx >= priv->echo_skb_max);
323
324	if (priv->echo_skb[idx]) {
325		netif_rx(priv->echo_skb[idx]);
326		priv->echo_skb[idx] = NULL;
327	}
328}
329EXPORT_SYMBOL_GPL(can_get_echo_skb);
330
331/*
332  * Remove the skb from the stack and free it.
333  *
334  * The function is typically called when TX failed.
335  */
336void can_free_echo_skb(struct net_device *dev, unsigned int idx)
337{
338	struct can_priv *priv = netdev_priv(dev);
339
340	BUG_ON(idx >= priv->echo_skb_max);
341
342	if (priv->echo_skb[idx]) {
343		kfree_skb(priv->echo_skb[idx]);
344		priv->echo_skb[idx] = NULL;
345	}
346}
347EXPORT_SYMBOL_GPL(can_free_echo_skb);
348
349/*
350 * CAN device restart for bus-off recovery
351 */
352void can_restart(unsigned long data)
353{
354	struct net_device *dev = (struct net_device *)data;
355	struct can_priv *priv = netdev_priv(dev);
356	struct net_device_stats *stats = &dev->stats;
357	struct sk_buff *skb;
358	struct can_frame *cf;
359	int err;
360
361	BUG_ON(netif_carrier_ok(dev));
362
363	/*
364	 * No synchronization needed because the device is bus-off and
365	 * no messages can come in or go out.
366	 */
367	can_flush_echo_skb(dev);
368
369	/* send restart message upstream */
370	skb = alloc_can_err_skb(dev, &cf);
371	if (skb == NULL) {
372		err = -ENOMEM;
373		goto restart;
374	}
375	cf->can_id |= CAN_ERR_RESTARTED;
376
377	netif_rx(skb);
378
379	stats->rx_packets++;
380	stats->rx_bytes += cf->can_dlc;
381
382restart:
383	dev_dbg(dev->dev.parent, "restarted\n");
384	priv->can_stats.restarts++;
385
386	/* Now restart the device */
387	err = priv->do_set_mode(dev, CAN_MODE_START);
388
389	netif_carrier_on(dev);
390	if (err)
391		dev_err(dev->dev.parent, "Error %d during restart", err);
392}
393
394int can_restart_now(struct net_device *dev)
395{
396	struct can_priv *priv = netdev_priv(dev);
397
398	/*
399	 * A manual restart is only permitted if automatic restart is
400	 * disabled and the device is in the bus-off state
401	 */
402	if (priv->restart_ms)
403		return -EINVAL;
404	if (priv->state != CAN_STATE_BUS_OFF)
405		return -EBUSY;
406
407	/* Runs as soon as possible in the timer context */
408	mod_timer(&priv->restart_timer, jiffies);
409
410	return 0;
411}
412
413/*
414 * CAN bus-off
415 *
416 * This functions should be called when the device goes bus-off to
417 * tell the netif layer that no more packets can be sent or received.
418 * If enabled, a timer is started to trigger bus-off recovery.
419 */
420void can_bus_off(struct net_device *dev)
421{
422	struct can_priv *priv = netdev_priv(dev);
423
424	dev_dbg(dev->dev.parent, "bus-off\n");
425
426	netif_carrier_off(dev);
427	priv->can_stats.bus_off++;
428
429	if (priv->restart_ms)
430		mod_timer(&priv->restart_timer,
431			  jiffies + (priv->restart_ms * HZ) / 1000);
432}
433EXPORT_SYMBOL_GPL(can_bus_off);
434
435static void can_setup(struct net_device *dev)
436{
437	dev->type = ARPHRD_CAN;
438	dev->mtu = sizeof(struct can_frame);
439	dev->hard_header_len = 0;
440	dev->addr_len = 0;
441	dev->tx_queue_len = 10;
442
443	/* New-style flags. */
444	dev->flags = IFF_NOARP;
445	dev->features = NETIF_F_NO_CSUM;
446}
447
448struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
449{
450	struct sk_buff *skb;
451
452	skb = netdev_alloc_skb(dev, sizeof(struct can_frame));
453	if (unlikely(!skb))
454		return NULL;
455
456	skb->protocol = htons(ETH_P_CAN);
457	skb->pkt_type = PACKET_BROADCAST;
458	skb->ip_summed = CHECKSUM_UNNECESSARY;
459	*cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
460	memset(*cf, 0, sizeof(struct can_frame));
461
462	return skb;
463}
464EXPORT_SYMBOL_GPL(alloc_can_skb);
465
466struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
467{
468	struct sk_buff *skb;
469
470	skb = alloc_can_skb(dev, cf);
471	if (unlikely(!skb))
472		return NULL;
473
474	(*cf)->can_id = CAN_ERR_FLAG;
475	(*cf)->can_dlc = CAN_ERR_DLC;
476
477	return skb;
478}
479EXPORT_SYMBOL_GPL(alloc_can_err_skb);
480
481/*
482 * Allocate and setup space for the CAN network device
483 */
484struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
485{
486	struct net_device *dev;
487	struct can_priv *priv;
488	int size;
489
490	if (echo_skb_max)
491		size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
492			echo_skb_max * sizeof(struct sk_buff *);
493	else
494		size = sizeof_priv;
495
496	dev = alloc_netdev(size, "can%d", can_setup);
497	if (!dev)
498		return NULL;
499
500	priv = netdev_priv(dev);
501
502	if (echo_skb_max) {
503		priv->echo_skb_max = echo_skb_max;
504		priv->echo_skb = (void *)priv +
505			ALIGN(sizeof_priv, sizeof(struct sk_buff *));
506	}
507
508	priv->state = CAN_STATE_STOPPED;
509
510	init_timer(&priv->restart_timer);
511
512	return dev;
513}
514EXPORT_SYMBOL_GPL(alloc_candev);
515
516/*
517 * Free space of the CAN network device
518 */
519void free_candev(struct net_device *dev)
520{
521	free_netdev(dev);
522}
523EXPORT_SYMBOL_GPL(free_candev);
524
525/*
526 * Common open function when the device gets opened.
527 *
528 * This function should be called in the open function of the device
529 * driver.
530 */
531int open_candev(struct net_device *dev)
532{
533	struct can_priv *priv = netdev_priv(dev);
534
535	if (!priv->bittiming.tq && !priv->bittiming.bitrate) {
536		dev_err(dev->dev.parent, "bit-timing not yet defined\n");
537		return -EINVAL;
538	}
539
540	/* Switch carrier on if device was stopped while in bus-off state */
541	if (!netif_carrier_ok(dev))
542		netif_carrier_on(dev);
543
544	setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
545
546	return 0;
547}
548EXPORT_SYMBOL_GPL(open_candev);
549
550/*
551 * Common close function for cleanup before the device gets closed.
552 *
553 * This function should be called in the close function of the device
554 * driver.
555 */
556void close_candev(struct net_device *dev)
557{
558	struct can_priv *priv = netdev_priv(dev);
559
560	if (del_timer_sync(&priv->restart_timer))
561		dev_put(dev);
562	can_flush_echo_skb(dev);
563}
564EXPORT_SYMBOL_GPL(close_candev);
565
566/*
567 * CAN netlink interface
568 */
569static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
570	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
571	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
572	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
573	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
574	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
575	[IFLA_CAN_BITTIMING_CONST]
576				= { .len = sizeof(struct can_bittiming_const) },
577	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
578	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
579};
580
581static int can_changelink(struct net_device *dev,
582			  struct nlattr *tb[], struct nlattr *data[])
583{
584	struct can_priv *priv = netdev_priv(dev);
585	int err;
586
587	/* We need synchronization with dev->stop() */
588	ASSERT_RTNL();
589
590	if (data[IFLA_CAN_CTRLMODE]) {
591		struct can_ctrlmode *cm;
592
593		/* Do not allow changing controller mode while running */
594		if (dev->flags & IFF_UP)
595			return -EBUSY;
596		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
597		if (cm->flags & ~priv->ctrlmode_supported)
598			return -EOPNOTSUPP;
599		priv->ctrlmode &= ~cm->mask;
600		priv->ctrlmode |= cm->flags;
601	}
602
603	if (data[IFLA_CAN_BITTIMING]) {
604		struct can_bittiming bt;
605
606		/* Do not allow changing bittiming while running */
607		if (dev->flags & IFF_UP)
608			return -EBUSY;
609		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
610		if ((!bt.bitrate && !bt.tq) || (bt.bitrate && bt.tq))
611			return -EINVAL;
612		err = can_get_bittiming(dev, &bt);
613		if (err)
614			return err;
615		memcpy(&priv->bittiming, &bt, sizeof(bt));
616
617		if (priv->do_set_bittiming) {
618			/* Finally, set the bit-timing registers */
619			err = priv->do_set_bittiming(dev);
620			if (err)
621				return err;
622		}
623	}
624
625	if (data[IFLA_CAN_RESTART_MS]) {
626		/* Do not allow changing restart delay while running */
627		if (dev->flags & IFF_UP)
628			return -EBUSY;
629		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
630	}
631
632	if (data[IFLA_CAN_RESTART]) {
633		/* Do not allow a restart while not running */
634		if (!(dev->flags & IFF_UP))
635			return -EINVAL;
636		err = can_restart_now(dev);
637		if (err)
638			return err;
639	}
640
641	return 0;
642}
643
644static size_t can_get_size(const struct net_device *dev)
645{
646	struct can_priv *priv = netdev_priv(dev);
647	size_t size;
648
649	size = nla_total_size(sizeof(u32));   /* IFLA_CAN_STATE */
650	size += sizeof(struct can_ctrlmode);  /* IFLA_CAN_CTRLMODE */
651	size += nla_total_size(sizeof(u32));  /* IFLA_CAN_RESTART_MS */
652	size += sizeof(struct can_bittiming); /* IFLA_CAN_BITTIMING */
653	size += sizeof(struct can_clock);     /* IFLA_CAN_CLOCK */
654	if (priv->do_get_berr_counter)        /* IFLA_CAN_BERR_COUNTER */
655		size += sizeof(struct can_berr_counter);
656	if (priv->bittiming_const)	      /* IFLA_CAN_BITTIMING_CONST */
657		size += sizeof(struct can_bittiming_const);
658
659	return size;
660}
661
662static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
663{
664	struct can_priv *priv = netdev_priv(dev);
665	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
666	struct can_berr_counter bec;
667	enum can_state state = priv->state;
668
669	if (priv->do_get_state)
670		priv->do_get_state(dev, &state);
671	NLA_PUT_U32(skb, IFLA_CAN_STATE, state);
672	NLA_PUT(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm);
673	NLA_PUT_U32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms);
674	NLA_PUT(skb, IFLA_CAN_BITTIMING,
675		sizeof(priv->bittiming), &priv->bittiming);
676	NLA_PUT(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock);
677	if (priv->do_get_berr_counter && !priv->do_get_berr_counter(dev, &bec))
678		NLA_PUT(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec);
679	if (priv->bittiming_const)
680		NLA_PUT(skb, IFLA_CAN_BITTIMING_CONST,
681			sizeof(*priv->bittiming_const), priv->bittiming_const);
682
683	return 0;
684
685nla_put_failure:
686	return -EMSGSIZE;
687}
688
689static size_t can_get_xstats_size(const struct net_device *dev)
690{
691	return sizeof(struct can_device_stats);
692}
693
694static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
695{
696	struct can_priv *priv = netdev_priv(dev);
697
698	NLA_PUT(skb, IFLA_INFO_XSTATS,
699		sizeof(priv->can_stats), &priv->can_stats);
700
701	return 0;
702
703nla_put_failure:
704	return -EMSGSIZE;
705}
706
707static int can_newlink(struct net *src_net, struct net_device *dev,
708		       struct nlattr *tb[], struct nlattr *data[])
709{
710	return -EOPNOTSUPP;
711}
712
713static struct rtnl_link_ops can_link_ops __read_mostly = {
714	.kind		= "can",
715	.maxtype	= IFLA_CAN_MAX,
716	.policy		= can_policy,
717	.setup		= can_setup,
718	.newlink	= can_newlink,
719	.changelink	= can_changelink,
720	.get_size	= can_get_size,
721	.fill_info	= can_fill_info,
722	.get_xstats_size = can_get_xstats_size,
723	.fill_xstats	= can_fill_xstats,
724};
725
726/*
727 * Register the CAN network device
728 */
729int register_candev(struct net_device *dev)
730{
731	dev->rtnl_link_ops = &can_link_ops;
732	return register_netdev(dev);
733}
734EXPORT_SYMBOL_GPL(register_candev);
735
736/*
737 * Unregister the CAN network device
738 */
739void unregister_candev(struct net_device *dev)
740{
741	unregister_netdev(dev);
742}
743EXPORT_SYMBOL_GPL(unregister_candev);
744
745static __init int can_dev_init(void)
746{
747	int err;
748
749	err = rtnl_link_register(&can_link_ops);
750	if (!err)
751		printk(KERN_INFO MOD_DESC "\n");
752
753	return err;
754}
755module_init(can_dev_init);
756
757static __exit void can_dev_exit(void)
758{
759	rtnl_link_unregister(&can_link_ops);
760}
761module_exit(can_dev_exit);
762
763MODULE_ALIAS_RTNL_LINK("can");
764