dev.c revision 9859ccd2c8be63ce939522e63e265f2b0caa1109
1/*
2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the version 2 of the GNU General Public License
8 * as published by the Free Software Foundation
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19#include <linux/module.h>
20#include <linux/kernel.h>
21#include <linux/slab.h>
22#include <linux/netdevice.h>
23#include <linux/if_arp.h>
24#include <linux/can.h>
25#include <linux/can/dev.h>
26#include <linux/can/skb.h>
27#include <linux/can/netlink.h>
28#include <linux/can/led.h>
29#include <net/rtnetlink.h>
30
31#define MOD_DESC "CAN device driver interface"
32
33MODULE_DESCRIPTION(MOD_DESC);
34MODULE_LICENSE("GPL v2");
35MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
36
37/* CAN DLC to real data length conversion helpers */
38
39static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
40			     8, 12, 16, 20, 24, 32, 48, 64};
41
42/* get data length from can_dlc with sanitized can_dlc */
43u8 can_dlc2len(u8 can_dlc)
44{
45	return dlc2len[can_dlc & 0x0F];
46}
47EXPORT_SYMBOL_GPL(can_dlc2len);
48
49static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,		/* 0 - 8 */
50			     9, 9, 9, 9,			/* 9 - 12 */
51			     10, 10, 10, 10,			/* 13 - 16 */
52			     11, 11, 11, 11,			/* 17 - 20 */
53			     12, 12, 12, 12,			/* 21 - 24 */
54			     13, 13, 13, 13, 13, 13, 13, 13,	/* 25 - 32 */
55			     14, 14, 14, 14, 14, 14, 14, 14,	/* 33 - 40 */
56			     14, 14, 14, 14, 14, 14, 14, 14,	/* 41 - 48 */
57			     15, 15, 15, 15, 15, 15, 15, 15,	/* 49 - 56 */
58			     15, 15, 15, 15, 15, 15, 15, 15};	/* 57 - 64 */
59
60/* map the sanitized data length to an appropriate data length code */
61u8 can_len2dlc(u8 len)
62{
63	if (unlikely(len > 64))
64		return 0xF;
65
66	return len2dlc[len];
67}
68EXPORT_SYMBOL_GPL(can_len2dlc);
69
70#ifdef CONFIG_CAN_CALC_BITTIMING
71#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
72
73/*
74 * Bit-timing calculation derived from:
75 *
76 * Code based on LinCAN sources and H8S2638 project
77 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
78 * Copyright 2005      Stanislav Marek
79 * email: pisa@cmp.felk.cvut.cz
80 *
81 * Calculates proper bit-timing parameters for a specified bit-rate
82 * and sample-point, which can then be used to set the bit-timing
83 * registers of the CAN controller. You can find more information
84 * in the header file linux/can/netlink.h.
85 */
86static int can_update_spt(const struct can_bittiming_const *btc,
87			  int sampl_pt, int tseg, int *tseg1, int *tseg2)
88{
89	*tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
90	if (*tseg2 < btc->tseg2_min)
91		*tseg2 = btc->tseg2_min;
92	if (*tseg2 > btc->tseg2_max)
93		*tseg2 = btc->tseg2_max;
94	*tseg1 = tseg - *tseg2;
95	if (*tseg1 > btc->tseg1_max) {
96		*tseg1 = btc->tseg1_max;
97		*tseg2 = tseg - *tseg1;
98	}
99	return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
100}
101
102static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
103			      const struct can_bittiming_const *btc)
104{
105	struct can_priv *priv = netdev_priv(dev);
106	long rate, best_rate = 0;
107	long best_error = 1000000000, error = 0;
108	int best_tseg = 0, best_brp = 0, brp = 0;
109	int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
110	int spt_error = 1000, spt = 0, sampl_pt;
111	u64 v64;
112
113	/* Use CIA recommended sample points */
114	if (bt->sample_point) {
115		sampl_pt = bt->sample_point;
116	} else {
117		if (bt->bitrate > 800000)
118			sampl_pt = 750;
119		else if (bt->bitrate > 500000)
120			sampl_pt = 800;
121		else
122			sampl_pt = 875;
123	}
124
125	/* tseg even = round down, odd = round up */
126	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
127	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
128		tsegall = 1 + tseg / 2;
129		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
130		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
131		/* chose brp step which is possible in system */
132		brp = (brp / btc->brp_inc) * btc->brp_inc;
133		if ((brp < btc->brp_min) || (brp > btc->brp_max))
134			continue;
135		rate = priv->clock.freq / (brp * tsegall);
136		error = bt->bitrate - rate;
137		/* tseg brp biterror */
138		if (error < 0)
139			error = -error;
140		if (error > best_error)
141			continue;
142		best_error = error;
143		if (error == 0) {
144			spt = can_update_spt(btc, sampl_pt, tseg / 2,
145					     &tseg1, &tseg2);
146			error = sampl_pt - spt;
147			if (error < 0)
148				error = -error;
149			if (error > spt_error)
150				continue;
151			spt_error = error;
152		}
153		best_tseg = tseg / 2;
154		best_brp = brp;
155		best_rate = rate;
156		if (error == 0)
157			break;
158	}
159
160	if (best_error) {
161		/* Error in one-tenth of a percent */
162		error = (best_error * 1000) / bt->bitrate;
163		if (error > CAN_CALC_MAX_ERROR) {
164			netdev_err(dev,
165				   "bitrate error %ld.%ld%% too high\n",
166				   error / 10, error % 10);
167			return -EDOM;
168		} else {
169			netdev_warn(dev, "bitrate error %ld.%ld%%\n",
170				    error / 10, error % 10);
171		}
172	}
173
174	/* real sample point */
175	bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
176					  &tseg1, &tseg2);
177
178	v64 = (u64)best_brp * 1000000000UL;
179	do_div(v64, priv->clock.freq);
180	bt->tq = (u32)v64;
181	bt->prop_seg = tseg1 / 2;
182	bt->phase_seg1 = tseg1 - bt->prop_seg;
183	bt->phase_seg2 = tseg2;
184
185	/* check for sjw user settings */
186	if (!bt->sjw || !btc->sjw_max)
187		bt->sjw = 1;
188	else {
189		/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
190		if (bt->sjw > btc->sjw_max)
191			bt->sjw = btc->sjw_max;
192		/* bt->sjw must not be higher than tseg2 */
193		if (tseg2 < bt->sjw)
194			bt->sjw = tseg2;
195	}
196
197	bt->brp = best_brp;
198	/* real bit-rate */
199	bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
200
201	return 0;
202}
203#else /* !CONFIG_CAN_CALC_BITTIMING */
204static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
205			      const struct can_bittiming_const *btc)
206{
207	netdev_err(dev, "bit-timing calculation not available\n");
208	return -EINVAL;
209}
210#endif /* CONFIG_CAN_CALC_BITTIMING */
211
212/*
213 * Checks the validity of the specified bit-timing parameters prop_seg,
214 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
215 * prescaler value brp. You can find more information in the header
216 * file linux/can/netlink.h.
217 */
218static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
219			       const struct can_bittiming_const *btc)
220{
221	struct can_priv *priv = netdev_priv(dev);
222	int tseg1, alltseg;
223	u64 brp64;
224
225	tseg1 = bt->prop_seg + bt->phase_seg1;
226	if (!bt->sjw)
227		bt->sjw = 1;
228	if (bt->sjw > btc->sjw_max ||
229	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
230	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
231		return -ERANGE;
232
233	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
234	if (btc->brp_inc > 1)
235		do_div(brp64, btc->brp_inc);
236	brp64 += 500000000UL - 1;
237	do_div(brp64, 1000000000UL); /* the practicable BRP */
238	if (btc->brp_inc > 1)
239		brp64 *= btc->brp_inc;
240	bt->brp = (u32)brp64;
241
242	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
243		return -EINVAL;
244
245	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
246	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
247	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
248
249	return 0;
250}
251
252static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
253			     const struct can_bittiming_const *btc)
254{
255	int err;
256
257	/* Check if the CAN device has bit-timing parameters */
258	if (!btc)
259		return -ENOTSUPP;
260
261	/*
262	 * Depending on the given can_bittiming parameter structure the CAN
263	 * timing parameters are calculated based on the provided bitrate OR
264	 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
265	 * provided directly which are then checked and fixed up.
266	 */
267	if (!bt->tq && bt->bitrate)
268		err = can_calc_bittiming(dev, bt, btc);
269	else if (bt->tq && !bt->bitrate)
270		err = can_fixup_bittiming(dev, bt, btc);
271	else
272		err = -EINVAL;
273
274	return err;
275}
276
277/*
278 * Local echo of CAN messages
279 *
280 * CAN network devices *should* support a local echo functionality
281 * (see Documentation/networking/can.txt). To test the handling of CAN
282 * interfaces that do not support the local echo both driver types are
283 * implemented. In the case that the driver does not support the echo
284 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
285 * to perform the echo as a fallback solution.
286 */
287static void can_flush_echo_skb(struct net_device *dev)
288{
289	struct can_priv *priv = netdev_priv(dev);
290	struct net_device_stats *stats = &dev->stats;
291	int i;
292
293	for (i = 0; i < priv->echo_skb_max; i++) {
294		if (priv->echo_skb[i]) {
295			kfree_skb(priv->echo_skb[i]);
296			priv->echo_skb[i] = NULL;
297			stats->tx_dropped++;
298			stats->tx_aborted_errors++;
299		}
300	}
301}
302
303/*
304 * Put the skb on the stack to be looped backed locally lateron
305 *
306 * The function is typically called in the start_xmit function
307 * of the device driver. The driver must protect access to
308 * priv->echo_skb, if necessary.
309 */
310void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
311		      unsigned int idx)
312{
313	struct can_priv *priv = netdev_priv(dev);
314
315	BUG_ON(idx >= priv->echo_skb_max);
316
317	/* check flag whether this packet has to be looped back */
318	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
319	    (skb->protocol != htons(ETH_P_CAN) &&
320	     skb->protocol != htons(ETH_P_CANFD))) {
321		kfree_skb(skb);
322		return;
323	}
324
325	if (!priv->echo_skb[idx]) {
326
327		skb = can_create_echo_skb(skb);
328		if (!skb)
329			return;
330
331		/* make settings for echo to reduce code in irq context */
332		skb->pkt_type = PACKET_BROADCAST;
333		skb->ip_summed = CHECKSUM_UNNECESSARY;
334		skb->dev = dev;
335
336		/* save this skb for tx interrupt echo handling */
337		priv->echo_skb[idx] = skb;
338	} else {
339		/* locking problem with netif_stop_queue() ?? */
340		netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
341		kfree_skb(skb);
342	}
343}
344EXPORT_SYMBOL_GPL(can_put_echo_skb);
345
346/*
347 * Get the skb from the stack and loop it back locally
348 *
349 * The function is typically called when the TX done interrupt
350 * is handled in the device driver. The driver must protect
351 * access to priv->echo_skb, if necessary.
352 */
353unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
354{
355	struct can_priv *priv = netdev_priv(dev);
356
357	BUG_ON(idx >= priv->echo_skb_max);
358
359	if (priv->echo_skb[idx]) {
360		struct sk_buff *skb = priv->echo_skb[idx];
361		struct can_frame *cf = (struct can_frame *)skb->data;
362		u8 dlc = cf->can_dlc;
363
364		netif_rx(priv->echo_skb[idx]);
365		priv->echo_skb[idx] = NULL;
366
367		return dlc;
368	}
369
370	return 0;
371}
372EXPORT_SYMBOL_GPL(can_get_echo_skb);
373
374/*
375  * Remove the skb from the stack and free it.
376  *
377  * The function is typically called when TX failed.
378  */
379void can_free_echo_skb(struct net_device *dev, unsigned int idx)
380{
381	struct can_priv *priv = netdev_priv(dev);
382
383	BUG_ON(idx >= priv->echo_skb_max);
384
385	if (priv->echo_skb[idx]) {
386		kfree_skb(priv->echo_skb[idx]);
387		priv->echo_skb[idx] = NULL;
388	}
389}
390EXPORT_SYMBOL_GPL(can_free_echo_skb);
391
392/*
393 * CAN device restart for bus-off recovery
394 */
395static void can_restart(unsigned long data)
396{
397	struct net_device *dev = (struct net_device *)data;
398	struct can_priv *priv = netdev_priv(dev);
399	struct net_device_stats *stats = &dev->stats;
400	struct sk_buff *skb;
401	struct can_frame *cf;
402	int err;
403
404	BUG_ON(netif_carrier_ok(dev));
405
406	/*
407	 * No synchronization needed because the device is bus-off and
408	 * no messages can come in or go out.
409	 */
410	can_flush_echo_skb(dev);
411
412	/* send restart message upstream */
413	skb = alloc_can_err_skb(dev, &cf);
414	if (skb == NULL) {
415		err = -ENOMEM;
416		goto restart;
417	}
418	cf->can_id |= CAN_ERR_RESTARTED;
419
420	netif_rx(skb);
421
422	stats->rx_packets++;
423	stats->rx_bytes += cf->can_dlc;
424
425restart:
426	netdev_dbg(dev, "restarted\n");
427	priv->can_stats.restarts++;
428
429	/* Now restart the device */
430	err = priv->do_set_mode(dev, CAN_MODE_START);
431
432	netif_carrier_on(dev);
433	if (err)
434		netdev_err(dev, "Error %d during restart", err);
435}
436
437int can_restart_now(struct net_device *dev)
438{
439	struct can_priv *priv = netdev_priv(dev);
440
441	/*
442	 * A manual restart is only permitted if automatic restart is
443	 * disabled and the device is in the bus-off state
444	 */
445	if (priv->restart_ms)
446		return -EINVAL;
447	if (priv->state != CAN_STATE_BUS_OFF)
448		return -EBUSY;
449
450	/* Runs as soon as possible in the timer context */
451	mod_timer(&priv->restart_timer, jiffies);
452
453	return 0;
454}
455
456/*
457 * CAN bus-off
458 *
459 * This functions should be called when the device goes bus-off to
460 * tell the netif layer that no more packets can be sent or received.
461 * If enabled, a timer is started to trigger bus-off recovery.
462 */
463void can_bus_off(struct net_device *dev)
464{
465	struct can_priv *priv = netdev_priv(dev);
466
467	netdev_dbg(dev, "bus-off\n");
468
469	netif_carrier_off(dev);
470	priv->can_stats.bus_off++;
471
472	if (priv->restart_ms)
473		mod_timer(&priv->restart_timer,
474			  jiffies + (priv->restart_ms * HZ) / 1000);
475}
476EXPORT_SYMBOL_GPL(can_bus_off);
477
478static void can_setup(struct net_device *dev)
479{
480	dev->type = ARPHRD_CAN;
481	dev->mtu = CAN_MTU;
482	dev->hard_header_len = 0;
483	dev->addr_len = 0;
484	dev->tx_queue_len = 10;
485
486	/* New-style flags. */
487	dev->flags = IFF_NOARP;
488	dev->features = NETIF_F_HW_CSUM;
489}
490
491struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
492{
493	struct sk_buff *skb;
494
495	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
496			       sizeof(struct can_frame));
497	if (unlikely(!skb))
498		return NULL;
499
500	skb->protocol = htons(ETH_P_CAN);
501	skb->pkt_type = PACKET_BROADCAST;
502	skb->ip_summed = CHECKSUM_UNNECESSARY;
503
504	can_skb_reserve(skb);
505	can_skb_prv(skb)->ifindex = dev->ifindex;
506
507	*cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
508	memset(*cf, 0, sizeof(struct can_frame));
509
510	return skb;
511}
512EXPORT_SYMBOL_GPL(alloc_can_skb);
513
514struct sk_buff *alloc_canfd_skb(struct net_device *dev,
515				struct canfd_frame **cfd)
516{
517	struct sk_buff *skb;
518
519	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
520			       sizeof(struct canfd_frame));
521	if (unlikely(!skb))
522		return NULL;
523
524	skb->protocol = htons(ETH_P_CANFD);
525	skb->pkt_type = PACKET_BROADCAST;
526	skb->ip_summed = CHECKSUM_UNNECESSARY;
527
528	can_skb_reserve(skb);
529	can_skb_prv(skb)->ifindex = dev->ifindex;
530
531	*cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame));
532	memset(*cfd, 0, sizeof(struct canfd_frame));
533
534	return skb;
535}
536EXPORT_SYMBOL_GPL(alloc_canfd_skb);
537
538struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
539{
540	struct sk_buff *skb;
541
542	skb = alloc_can_skb(dev, cf);
543	if (unlikely(!skb))
544		return NULL;
545
546	(*cf)->can_id = CAN_ERR_FLAG;
547	(*cf)->can_dlc = CAN_ERR_DLC;
548
549	return skb;
550}
551EXPORT_SYMBOL_GPL(alloc_can_err_skb);
552
553/*
554 * Allocate and setup space for the CAN network device
555 */
556struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
557{
558	struct net_device *dev;
559	struct can_priv *priv;
560	int size;
561
562	if (echo_skb_max)
563		size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
564			echo_skb_max * sizeof(struct sk_buff *);
565	else
566		size = sizeof_priv;
567
568	dev = alloc_netdev(size, "can%d", can_setup);
569	if (!dev)
570		return NULL;
571
572	priv = netdev_priv(dev);
573
574	if (echo_skb_max) {
575		priv->echo_skb_max = echo_skb_max;
576		priv->echo_skb = (void *)priv +
577			ALIGN(sizeof_priv, sizeof(struct sk_buff *));
578	}
579
580	priv->state = CAN_STATE_STOPPED;
581
582	init_timer(&priv->restart_timer);
583
584	return dev;
585}
586EXPORT_SYMBOL_GPL(alloc_candev);
587
588/*
589 * Free space of the CAN network device
590 */
591void free_candev(struct net_device *dev)
592{
593	free_netdev(dev);
594}
595EXPORT_SYMBOL_GPL(free_candev);
596
597/*
598 * Common open function when the device gets opened.
599 *
600 * This function should be called in the open function of the device
601 * driver.
602 */
603int open_candev(struct net_device *dev)
604{
605	struct can_priv *priv = netdev_priv(dev);
606
607	if (!priv->bittiming.bitrate) {
608		netdev_err(dev, "bit-timing not yet defined\n");
609		return -EINVAL;
610	}
611
612	/* Switch carrier on if device was stopped while in bus-off state */
613	if (!netif_carrier_ok(dev))
614		netif_carrier_on(dev);
615
616	setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
617
618	return 0;
619}
620EXPORT_SYMBOL_GPL(open_candev);
621
622/*
623 * Common close function for cleanup before the device gets closed.
624 *
625 * This function should be called in the close function of the device
626 * driver.
627 */
628void close_candev(struct net_device *dev)
629{
630	struct can_priv *priv = netdev_priv(dev);
631
632	del_timer_sync(&priv->restart_timer);
633	can_flush_echo_skb(dev);
634}
635EXPORT_SYMBOL_GPL(close_candev);
636
637/*
638 * CAN netlink interface
639 */
640static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
641	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
642	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
643	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
644	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
645	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
646	[IFLA_CAN_BITTIMING_CONST]
647				= { .len = sizeof(struct can_bittiming_const) },
648	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
649	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
650	[IFLA_CAN_DATA_BITTIMING]
651				= { .len = sizeof(struct can_bittiming) },
652	[IFLA_CAN_DATA_BITTIMING_CONST]
653				= { .len = sizeof(struct can_bittiming_const) },
654};
655
656static int can_changelink(struct net_device *dev,
657			  struct nlattr *tb[], struct nlattr *data[])
658{
659	struct can_priv *priv = netdev_priv(dev);
660	int err;
661
662	/* We need synchronization with dev->stop() */
663	ASSERT_RTNL();
664
665	if (data[IFLA_CAN_BITTIMING]) {
666		struct can_bittiming bt;
667
668		/* Do not allow changing bittiming while running */
669		if (dev->flags & IFF_UP)
670			return -EBUSY;
671		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
672		err = can_get_bittiming(dev, &bt, priv->bittiming_const);
673		if (err)
674			return err;
675		memcpy(&priv->bittiming, &bt, sizeof(bt));
676
677		if (priv->do_set_bittiming) {
678			/* Finally, set the bit-timing registers */
679			err = priv->do_set_bittiming(dev);
680			if (err)
681				return err;
682		}
683	}
684
685	if (data[IFLA_CAN_CTRLMODE]) {
686		struct can_ctrlmode *cm;
687
688		/* Do not allow changing controller mode while running */
689		if (dev->flags & IFF_UP)
690			return -EBUSY;
691		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
692		if (cm->flags & ~priv->ctrlmode_supported)
693			return -EOPNOTSUPP;
694		priv->ctrlmode &= ~cm->mask;
695		priv->ctrlmode |= cm->flags;
696	}
697
698	if (data[IFLA_CAN_RESTART_MS]) {
699		/* Do not allow changing restart delay while running */
700		if (dev->flags & IFF_UP)
701			return -EBUSY;
702		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
703	}
704
705	if (data[IFLA_CAN_RESTART]) {
706		/* Do not allow a restart while not running */
707		if (!(dev->flags & IFF_UP))
708			return -EINVAL;
709		err = can_restart_now(dev);
710		if (err)
711			return err;
712	}
713
714	if (data[IFLA_CAN_DATA_BITTIMING]) {
715		struct can_bittiming dbt;
716
717		/* Do not allow changing bittiming while running */
718		if (dev->flags & IFF_UP)
719			return -EBUSY;
720		memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
721		       sizeof(dbt));
722		err = can_get_bittiming(dev, &dbt, priv->data_bittiming_const);
723		if (err)
724			return err;
725		memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
726
727		if (priv->do_set_data_bittiming) {
728			/* Finally, set the bit-timing registers */
729			err = priv->do_set_data_bittiming(dev);
730			if (err)
731				return err;
732		}
733	}
734
735	return 0;
736}
737
738static size_t can_get_size(const struct net_device *dev)
739{
740	struct can_priv *priv = netdev_priv(dev);
741	size_t size = 0;
742
743	if (priv->bittiming.bitrate)				/* IFLA_CAN_BITTIMING */
744		size += nla_total_size(sizeof(struct can_bittiming));
745	if (priv->bittiming_const)				/* IFLA_CAN_BITTIMING_CONST */
746		size += nla_total_size(sizeof(struct can_bittiming_const));
747	size += nla_total_size(sizeof(struct can_clock));	/* IFLA_CAN_CLOCK */
748	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_STATE */
749	size += nla_total_size(sizeof(struct can_ctrlmode));	/* IFLA_CAN_CTRLMODE */
750	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_RESTART_MS */
751	if (priv->do_get_berr_counter)				/* IFLA_CAN_BERR_COUNTER */
752		size += nla_total_size(sizeof(struct can_berr_counter));
753	if (priv->data_bittiming.bitrate)			/* IFLA_CAN_DATA_BITTIMING */
754		size += nla_total_size(sizeof(struct can_bittiming));
755	if (priv->data_bittiming_const)				/* IFLA_CAN_DATA_BITTIMING_CONST */
756		size += nla_total_size(sizeof(struct can_bittiming_const));
757
758	return size;
759}
760
761static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
762{
763	struct can_priv *priv = netdev_priv(dev);
764	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
765	struct can_berr_counter bec;
766	enum can_state state = priv->state;
767
768	if (priv->do_get_state)
769		priv->do_get_state(dev, &state);
770
771	if ((priv->bittiming.bitrate &&
772	     nla_put(skb, IFLA_CAN_BITTIMING,
773		     sizeof(priv->bittiming), &priv->bittiming)) ||
774
775	    (priv->bittiming_const &&
776	     nla_put(skb, IFLA_CAN_BITTIMING_CONST,
777		     sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
778
779	    nla_put(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock) ||
780	    nla_put_u32(skb, IFLA_CAN_STATE, state) ||
781	    nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
782	    nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
783
784	    (priv->do_get_berr_counter &&
785	     !priv->do_get_berr_counter(dev, &bec) &&
786	     nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
787
788	    (priv->data_bittiming.bitrate &&
789	     nla_put(skb, IFLA_CAN_DATA_BITTIMING,
790		     sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
791
792	    (priv->data_bittiming_const &&
793	     nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
794		     sizeof(*priv->data_bittiming_const),
795		     priv->data_bittiming_const)))
796		return -EMSGSIZE;
797
798	return 0;
799}
800
801static size_t can_get_xstats_size(const struct net_device *dev)
802{
803	return sizeof(struct can_device_stats);
804}
805
806static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
807{
808	struct can_priv *priv = netdev_priv(dev);
809
810	if (nla_put(skb, IFLA_INFO_XSTATS,
811		    sizeof(priv->can_stats), &priv->can_stats))
812		goto nla_put_failure;
813	return 0;
814
815nla_put_failure:
816	return -EMSGSIZE;
817}
818
819static int can_newlink(struct net *src_net, struct net_device *dev,
820		       struct nlattr *tb[], struct nlattr *data[])
821{
822	return -EOPNOTSUPP;
823}
824
825static struct rtnl_link_ops can_link_ops __read_mostly = {
826	.kind		= "can",
827	.maxtype	= IFLA_CAN_MAX,
828	.policy		= can_policy,
829	.setup		= can_setup,
830	.newlink	= can_newlink,
831	.changelink	= can_changelink,
832	.get_size	= can_get_size,
833	.fill_info	= can_fill_info,
834	.get_xstats_size = can_get_xstats_size,
835	.fill_xstats	= can_fill_xstats,
836};
837
838/*
839 * Register the CAN network device
840 */
841int register_candev(struct net_device *dev)
842{
843	dev->rtnl_link_ops = &can_link_ops;
844	return register_netdev(dev);
845}
846EXPORT_SYMBOL_GPL(register_candev);
847
848/*
849 * Unregister the CAN network device
850 */
851void unregister_candev(struct net_device *dev)
852{
853	unregister_netdev(dev);
854}
855EXPORT_SYMBOL_GPL(unregister_candev);
856
857/*
858 * Test if a network device is a candev based device
859 * and return the can_priv* if so.
860 */
861struct can_priv *safe_candev_priv(struct net_device *dev)
862{
863	if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
864		return NULL;
865
866	return netdev_priv(dev);
867}
868EXPORT_SYMBOL_GPL(safe_candev_priv);
869
870static __init int can_dev_init(void)
871{
872	int err;
873
874	can_led_notifier_init();
875
876	err = rtnl_link_register(&can_link_ops);
877	if (!err)
878		printk(KERN_INFO MOD_DESC "\n");
879
880	return err;
881}
882module_init(can_dev_init);
883
884static __exit void can_dev_exit(void)
885{
886	rtnl_link_unregister(&can_link_ops);
887
888	can_led_notifier_exit();
889}
890module_exit(can_dev_exit);
891
892MODULE_ALIAS_RTNL_LINK("can");
893