dev.c revision a1ef7bd9fce8aba8e4701e60208148fb3bc9bdd4
1/*
2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the version 2 of the GNU General Public License
8 * as published by the Free Software Foundation
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18 */
19
20#include <linux/module.h>
21#include <linux/kernel.h>
22#include <linux/slab.h>
23#include <linux/netdevice.h>
24#include <linux/if_arp.h>
25#include <linux/can.h>
26#include <linux/can/dev.h>
27#include <linux/can/netlink.h>
28#include <linux/can/led.h>
29#include <net/rtnetlink.h>
30
31#define MOD_DESC "CAN device driver interface"
32
33MODULE_DESCRIPTION(MOD_DESC);
34MODULE_LICENSE("GPL v2");
35MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
36
37/* CAN DLC to real data length conversion helpers */
38
39static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
40			     8, 12, 16, 20, 24, 32, 48, 64};
41
42/* get data length from can_dlc with sanitized can_dlc */
43u8 can_dlc2len(u8 can_dlc)
44{
45	return dlc2len[can_dlc & 0x0F];
46}
47EXPORT_SYMBOL_GPL(can_dlc2len);
48
49static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,		/* 0 - 8 */
50			     9, 9, 9, 9,			/* 9 - 12 */
51			     10, 10, 10, 10,			/* 13 - 16 */
52			     11, 11, 11, 11,			/* 17 - 20 */
53			     12, 12, 12, 12,			/* 21 - 24 */
54			     13, 13, 13, 13, 13, 13, 13, 13,	/* 25 - 32 */
55			     14, 14, 14, 14, 14, 14, 14, 14,	/* 33 - 40 */
56			     14, 14, 14, 14, 14, 14, 14, 14,	/* 41 - 48 */
57			     15, 15, 15, 15, 15, 15, 15, 15,	/* 49 - 56 */
58			     15, 15, 15, 15, 15, 15, 15, 15};	/* 57 - 64 */
59
60/* map the sanitized data length to an appropriate data length code */
61u8 can_len2dlc(u8 len)
62{
63	if (unlikely(len > 64))
64		return 0xF;
65
66	return len2dlc[len];
67}
68EXPORT_SYMBOL_GPL(can_len2dlc);
69
70#ifdef CONFIG_CAN_CALC_BITTIMING
71#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
72
73/*
74 * Bit-timing calculation derived from:
75 *
76 * Code based on LinCAN sources and H8S2638 project
77 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
78 * Copyright 2005      Stanislav Marek
79 * email: pisa@cmp.felk.cvut.cz
80 *
81 * Calculates proper bit-timing parameters for a specified bit-rate
82 * and sample-point, which can then be used to set the bit-timing
83 * registers of the CAN controller. You can find more information
84 * in the header file linux/can/netlink.h.
85 */
86static int can_update_spt(const struct can_bittiming_const *btc,
87			  int sampl_pt, int tseg, int *tseg1, int *tseg2)
88{
89	*tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
90	if (*tseg2 < btc->tseg2_min)
91		*tseg2 = btc->tseg2_min;
92	if (*tseg2 > btc->tseg2_max)
93		*tseg2 = btc->tseg2_max;
94	*tseg1 = tseg - *tseg2;
95	if (*tseg1 > btc->tseg1_max) {
96		*tseg1 = btc->tseg1_max;
97		*tseg2 = tseg - *tseg1;
98	}
99	return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
100}
101
102static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
103{
104	struct can_priv *priv = netdev_priv(dev);
105	const struct can_bittiming_const *btc = priv->bittiming_const;
106	long rate, best_rate = 0;
107	long best_error = 1000000000, error = 0;
108	int best_tseg = 0, best_brp = 0, brp = 0;
109	int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
110	int spt_error = 1000, spt = 0, sampl_pt;
111	u64 v64;
112
113	if (!priv->bittiming_const)
114		return -ENOTSUPP;
115
116	/* Use CIA recommended sample points */
117	if (bt->sample_point) {
118		sampl_pt = bt->sample_point;
119	} else {
120		if (bt->bitrate > 800000)
121			sampl_pt = 750;
122		else if (bt->bitrate > 500000)
123			sampl_pt = 800;
124		else
125			sampl_pt = 875;
126	}
127
128	/* tseg even = round down, odd = round up */
129	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
130	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
131		tsegall = 1 + tseg / 2;
132		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
133		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
134		/* chose brp step which is possible in system */
135		brp = (brp / btc->brp_inc) * btc->brp_inc;
136		if ((brp < btc->brp_min) || (brp > btc->brp_max))
137			continue;
138		rate = priv->clock.freq / (brp * tsegall);
139		error = bt->bitrate - rate;
140		/* tseg brp biterror */
141		if (error < 0)
142			error = -error;
143		if (error > best_error)
144			continue;
145		best_error = error;
146		if (error == 0) {
147			spt = can_update_spt(btc, sampl_pt, tseg / 2,
148					     &tseg1, &tseg2);
149			error = sampl_pt - spt;
150			if (error < 0)
151				error = -error;
152			if (error > spt_error)
153				continue;
154			spt_error = error;
155		}
156		best_tseg = tseg / 2;
157		best_brp = brp;
158		best_rate = rate;
159		if (error == 0)
160			break;
161	}
162
163	if (best_error) {
164		/* Error in one-tenth of a percent */
165		error = (best_error * 1000) / bt->bitrate;
166		if (error > CAN_CALC_MAX_ERROR) {
167			netdev_err(dev,
168				   "bitrate error %ld.%ld%% too high\n",
169				   error / 10, error % 10);
170			return -EDOM;
171		} else {
172			netdev_warn(dev, "bitrate error %ld.%ld%%\n",
173				    error / 10, error % 10);
174		}
175	}
176
177	/* real sample point */
178	bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
179					  &tseg1, &tseg2);
180
181	v64 = (u64)best_brp * 1000000000UL;
182	do_div(v64, priv->clock.freq);
183	bt->tq = (u32)v64;
184	bt->prop_seg = tseg1 / 2;
185	bt->phase_seg1 = tseg1 - bt->prop_seg;
186	bt->phase_seg2 = tseg2;
187
188	/* check for sjw user settings */
189	if (!bt->sjw || !btc->sjw_max)
190		bt->sjw = 1;
191	else {
192		/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
193		if (bt->sjw > btc->sjw_max)
194			bt->sjw = btc->sjw_max;
195		/* bt->sjw must not be higher than tseg2 */
196		if (tseg2 < bt->sjw)
197			bt->sjw = tseg2;
198	}
199
200	bt->brp = best_brp;
201	/* real bit-rate */
202	bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
203
204	return 0;
205}
206#else /* !CONFIG_CAN_CALC_BITTIMING */
207static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
208{
209	netdev_err(dev, "bit-timing calculation not available\n");
210	return -EINVAL;
211}
212#endif /* CONFIG_CAN_CALC_BITTIMING */
213
214/*
215 * Checks the validity of the specified bit-timing parameters prop_seg,
216 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
217 * prescaler value brp. You can find more information in the header
218 * file linux/can/netlink.h.
219 */
220static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt)
221{
222	struct can_priv *priv = netdev_priv(dev);
223	const struct can_bittiming_const *btc = priv->bittiming_const;
224	int tseg1, alltseg;
225	u64 brp64;
226
227	if (!priv->bittiming_const)
228		return -ENOTSUPP;
229
230	tseg1 = bt->prop_seg + bt->phase_seg1;
231	if (!bt->sjw)
232		bt->sjw = 1;
233	if (bt->sjw > btc->sjw_max ||
234	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
235	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
236		return -ERANGE;
237
238	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
239	if (btc->brp_inc > 1)
240		do_div(brp64, btc->brp_inc);
241	brp64 += 500000000UL - 1;
242	do_div(brp64, 1000000000UL); /* the practicable BRP */
243	if (btc->brp_inc > 1)
244		brp64 *= btc->brp_inc;
245	bt->brp = (u32)brp64;
246
247	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
248		return -EINVAL;
249
250	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
251	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
252	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
253
254	return 0;
255}
256
257static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt)
258{
259	struct can_priv *priv = netdev_priv(dev);
260	int err;
261
262	/* Check if the CAN device has bit-timing parameters */
263	if (priv->bittiming_const) {
264
265		/* Non-expert mode? Check if the bitrate has been pre-defined */
266		if (!bt->tq)
267			/* Determine bit-timing parameters */
268			err = can_calc_bittiming(dev, bt);
269		else
270			/* Check bit-timing params and calculate proper brp */
271			err = can_fixup_bittiming(dev, bt);
272		if (err)
273			return err;
274	}
275
276	return 0;
277}
278
279/*
280 * Local echo of CAN messages
281 *
282 * CAN network devices *should* support a local echo functionality
283 * (see Documentation/networking/can.txt). To test the handling of CAN
284 * interfaces that do not support the local echo both driver types are
285 * implemented. In the case that the driver does not support the echo
286 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
287 * to perform the echo as a fallback solution.
288 */
289static void can_flush_echo_skb(struct net_device *dev)
290{
291	struct can_priv *priv = netdev_priv(dev);
292	struct net_device_stats *stats = &dev->stats;
293	int i;
294
295	for (i = 0; i < priv->echo_skb_max; i++) {
296		if (priv->echo_skb[i]) {
297			kfree_skb(priv->echo_skb[i]);
298			priv->echo_skb[i] = NULL;
299			stats->tx_dropped++;
300			stats->tx_aborted_errors++;
301		}
302	}
303}
304
305/*
306 * Put the skb on the stack to be looped backed locally lateron
307 *
308 * The function is typically called in the start_xmit function
309 * of the device driver. The driver must protect access to
310 * priv->echo_skb, if necessary.
311 */
312void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
313		      unsigned int idx)
314{
315	struct can_priv *priv = netdev_priv(dev);
316
317	BUG_ON(idx >= priv->echo_skb_max);
318
319	/* check flag whether this packet has to be looped back */
320	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK) {
321		kfree_skb(skb);
322		return;
323	}
324
325	if (!priv->echo_skb[idx]) {
326		struct sock *srcsk = skb->sk;
327
328		if (atomic_read(&skb->users) != 1) {
329			struct sk_buff *old_skb = skb;
330
331			skb = skb_clone(old_skb, GFP_ATOMIC);
332			kfree_skb(old_skb);
333			if (!skb)
334				return;
335		} else
336			skb_orphan(skb);
337
338		skb->sk = srcsk;
339
340		/* make settings for echo to reduce code in irq context */
341		skb->protocol = htons(ETH_P_CAN);
342		skb->pkt_type = PACKET_BROADCAST;
343		skb->ip_summed = CHECKSUM_UNNECESSARY;
344		skb->dev = dev;
345
346		/* save this skb for tx interrupt echo handling */
347		priv->echo_skb[idx] = skb;
348	} else {
349		/* locking problem with netif_stop_queue() ?? */
350		netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
351		kfree_skb(skb);
352	}
353}
354EXPORT_SYMBOL_GPL(can_put_echo_skb);
355
356/*
357 * Get the skb from the stack and loop it back locally
358 *
359 * The function is typically called when the TX done interrupt
360 * is handled in the device driver. The driver must protect
361 * access to priv->echo_skb, if necessary.
362 */
363unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
364{
365	struct can_priv *priv = netdev_priv(dev);
366
367	BUG_ON(idx >= priv->echo_skb_max);
368
369	if (priv->echo_skb[idx]) {
370		struct sk_buff *skb = priv->echo_skb[idx];
371		struct can_frame *cf = (struct can_frame *)skb->data;
372		u8 dlc = cf->can_dlc;
373
374		netif_rx(priv->echo_skb[idx]);
375		priv->echo_skb[idx] = NULL;
376
377		return dlc;
378	}
379
380	return 0;
381}
382EXPORT_SYMBOL_GPL(can_get_echo_skb);
383
384/*
385  * Remove the skb from the stack and free it.
386  *
387  * The function is typically called when TX failed.
388  */
389void can_free_echo_skb(struct net_device *dev, unsigned int idx)
390{
391	struct can_priv *priv = netdev_priv(dev);
392
393	BUG_ON(idx >= priv->echo_skb_max);
394
395	if (priv->echo_skb[idx]) {
396		kfree_skb(priv->echo_skb[idx]);
397		priv->echo_skb[idx] = NULL;
398	}
399}
400EXPORT_SYMBOL_GPL(can_free_echo_skb);
401
402/*
403 * CAN device restart for bus-off recovery
404 */
405static void can_restart(unsigned long data)
406{
407	struct net_device *dev = (struct net_device *)data;
408	struct can_priv *priv = netdev_priv(dev);
409	struct net_device_stats *stats = &dev->stats;
410	struct sk_buff *skb;
411	struct can_frame *cf;
412	int err;
413
414	BUG_ON(netif_carrier_ok(dev));
415
416	/*
417	 * No synchronization needed because the device is bus-off and
418	 * no messages can come in or go out.
419	 */
420	can_flush_echo_skb(dev);
421
422	/* send restart message upstream */
423	skb = alloc_can_err_skb(dev, &cf);
424	if (skb == NULL) {
425		err = -ENOMEM;
426		goto restart;
427	}
428	cf->can_id |= CAN_ERR_RESTARTED;
429
430	netif_rx(skb);
431
432	stats->rx_packets++;
433	stats->rx_bytes += cf->can_dlc;
434
435restart:
436	netdev_dbg(dev, "restarted\n");
437	priv->can_stats.restarts++;
438
439	/* Now restart the device */
440	err = priv->do_set_mode(dev, CAN_MODE_START);
441
442	netif_carrier_on(dev);
443	if (err)
444		netdev_err(dev, "Error %d during restart", err);
445}
446
447int can_restart_now(struct net_device *dev)
448{
449	struct can_priv *priv = netdev_priv(dev);
450
451	/*
452	 * A manual restart is only permitted if automatic restart is
453	 * disabled and the device is in the bus-off state
454	 */
455	if (priv->restart_ms)
456		return -EINVAL;
457	if (priv->state != CAN_STATE_BUS_OFF)
458		return -EBUSY;
459
460	/* Runs as soon as possible in the timer context */
461	mod_timer(&priv->restart_timer, jiffies);
462
463	return 0;
464}
465
466/*
467 * CAN bus-off
468 *
469 * This functions should be called when the device goes bus-off to
470 * tell the netif layer that no more packets can be sent or received.
471 * If enabled, a timer is started to trigger bus-off recovery.
472 */
473void can_bus_off(struct net_device *dev)
474{
475	struct can_priv *priv = netdev_priv(dev);
476
477	netdev_dbg(dev, "bus-off\n");
478
479	netif_carrier_off(dev);
480	priv->can_stats.bus_off++;
481
482	if (priv->restart_ms)
483		mod_timer(&priv->restart_timer,
484			  jiffies + (priv->restart_ms * HZ) / 1000);
485}
486EXPORT_SYMBOL_GPL(can_bus_off);
487
488static void can_setup(struct net_device *dev)
489{
490	dev->type = ARPHRD_CAN;
491	dev->mtu = CAN_MTU;
492	dev->hard_header_len = 0;
493	dev->addr_len = 0;
494	dev->tx_queue_len = 10;
495
496	/* New-style flags. */
497	dev->flags = IFF_NOARP;
498	dev->features = NETIF_F_HW_CSUM;
499}
500
501struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
502{
503	struct sk_buff *skb;
504
505	skb = netdev_alloc_skb(dev, sizeof(struct can_frame));
506	if (unlikely(!skb))
507		return NULL;
508
509	skb->protocol = htons(ETH_P_CAN);
510	skb->pkt_type = PACKET_BROADCAST;
511	skb->ip_summed = CHECKSUM_UNNECESSARY;
512	*cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
513	memset(*cf, 0, sizeof(struct can_frame));
514
515	return skb;
516}
517EXPORT_SYMBOL_GPL(alloc_can_skb);
518
519struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
520{
521	struct sk_buff *skb;
522
523	skb = alloc_can_skb(dev, cf);
524	if (unlikely(!skb))
525		return NULL;
526
527	(*cf)->can_id = CAN_ERR_FLAG;
528	(*cf)->can_dlc = CAN_ERR_DLC;
529
530	return skb;
531}
532EXPORT_SYMBOL_GPL(alloc_can_err_skb);
533
534/*
535 * Allocate and setup space for the CAN network device
536 */
537struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
538{
539	struct net_device *dev;
540	struct can_priv *priv;
541	int size;
542
543	if (echo_skb_max)
544		size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
545			echo_skb_max * sizeof(struct sk_buff *);
546	else
547		size = sizeof_priv;
548
549	dev = alloc_netdev(size, "can%d", can_setup);
550	if (!dev)
551		return NULL;
552
553	priv = netdev_priv(dev);
554
555	if (echo_skb_max) {
556		priv->echo_skb_max = echo_skb_max;
557		priv->echo_skb = (void *)priv +
558			ALIGN(sizeof_priv, sizeof(struct sk_buff *));
559	}
560
561	priv->state = CAN_STATE_STOPPED;
562
563	init_timer(&priv->restart_timer);
564
565	return dev;
566}
567EXPORT_SYMBOL_GPL(alloc_candev);
568
569/*
570 * Free space of the CAN network device
571 */
572void free_candev(struct net_device *dev)
573{
574	free_netdev(dev);
575}
576EXPORT_SYMBOL_GPL(free_candev);
577
578/*
579 * Common open function when the device gets opened.
580 *
581 * This function should be called in the open function of the device
582 * driver.
583 */
584int open_candev(struct net_device *dev)
585{
586	struct can_priv *priv = netdev_priv(dev);
587
588	if (!priv->bittiming.tq && !priv->bittiming.bitrate) {
589		netdev_err(dev, "bit-timing not yet defined\n");
590		return -EINVAL;
591	}
592
593	/* Switch carrier on if device was stopped while in bus-off state */
594	if (!netif_carrier_ok(dev))
595		netif_carrier_on(dev);
596
597	setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
598
599	return 0;
600}
601EXPORT_SYMBOL_GPL(open_candev);
602
603/*
604 * Common close function for cleanup before the device gets closed.
605 *
606 * This function should be called in the close function of the device
607 * driver.
608 */
609void close_candev(struct net_device *dev)
610{
611	struct can_priv *priv = netdev_priv(dev);
612
613	del_timer_sync(&priv->restart_timer);
614	can_flush_echo_skb(dev);
615}
616EXPORT_SYMBOL_GPL(close_candev);
617
618/*
619 * CAN netlink interface
620 */
621static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
622	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
623	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
624	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
625	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
626	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
627	[IFLA_CAN_BITTIMING_CONST]
628				= { .len = sizeof(struct can_bittiming_const) },
629	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
630	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
631};
632
633static int can_changelink(struct net_device *dev,
634			  struct nlattr *tb[], struct nlattr *data[])
635{
636	struct can_priv *priv = netdev_priv(dev);
637	int err;
638
639	/* We need synchronization with dev->stop() */
640	ASSERT_RTNL();
641
642	if (data[IFLA_CAN_CTRLMODE]) {
643		struct can_ctrlmode *cm;
644
645		/* Do not allow changing controller mode while running */
646		if (dev->flags & IFF_UP)
647			return -EBUSY;
648		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
649		if (cm->flags & ~priv->ctrlmode_supported)
650			return -EOPNOTSUPP;
651		priv->ctrlmode &= ~cm->mask;
652		priv->ctrlmode |= cm->flags;
653	}
654
655	if (data[IFLA_CAN_BITTIMING]) {
656		struct can_bittiming bt;
657
658		/* Do not allow changing bittiming while running */
659		if (dev->flags & IFF_UP)
660			return -EBUSY;
661		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
662		if ((!bt.bitrate && !bt.tq) || (bt.bitrate && bt.tq))
663			return -EINVAL;
664		err = can_get_bittiming(dev, &bt);
665		if (err)
666			return err;
667		memcpy(&priv->bittiming, &bt, sizeof(bt));
668
669		if (priv->do_set_bittiming) {
670			/* Finally, set the bit-timing registers */
671			err = priv->do_set_bittiming(dev);
672			if (err)
673				return err;
674		}
675	}
676
677	if (data[IFLA_CAN_RESTART_MS]) {
678		/* Do not allow changing restart delay while running */
679		if (dev->flags & IFF_UP)
680			return -EBUSY;
681		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
682	}
683
684	if (data[IFLA_CAN_RESTART]) {
685		/* Do not allow a restart while not running */
686		if (!(dev->flags & IFF_UP))
687			return -EINVAL;
688		err = can_restart_now(dev);
689		if (err)
690			return err;
691	}
692
693	return 0;
694}
695
696static size_t can_get_size(const struct net_device *dev)
697{
698	struct can_priv *priv = netdev_priv(dev);
699	size_t size;
700
701	size = nla_total_size(sizeof(u32));   /* IFLA_CAN_STATE */
702	size += sizeof(struct can_ctrlmode);  /* IFLA_CAN_CTRLMODE */
703	size += nla_total_size(sizeof(u32));  /* IFLA_CAN_RESTART_MS */
704	size += sizeof(struct can_bittiming); /* IFLA_CAN_BITTIMING */
705	size += sizeof(struct can_clock);     /* IFLA_CAN_CLOCK */
706	if (priv->do_get_berr_counter)        /* IFLA_CAN_BERR_COUNTER */
707		size += sizeof(struct can_berr_counter);
708	if (priv->bittiming_const)	      /* IFLA_CAN_BITTIMING_CONST */
709		size += sizeof(struct can_bittiming_const);
710
711	return size;
712}
713
714static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
715{
716	struct can_priv *priv = netdev_priv(dev);
717	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
718	struct can_berr_counter bec;
719	enum can_state state = priv->state;
720
721	if (priv->do_get_state)
722		priv->do_get_state(dev, &state);
723	if (nla_put_u32(skb, IFLA_CAN_STATE, state) ||
724	    nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
725	    nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
726	    nla_put(skb, IFLA_CAN_BITTIMING,
727		    sizeof(priv->bittiming), &priv->bittiming) ||
728	    nla_put(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock) ||
729	    (priv->do_get_berr_counter &&
730	     !priv->do_get_berr_counter(dev, &bec) &&
731	     nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
732	    (priv->bittiming_const &&
733	     nla_put(skb, IFLA_CAN_BITTIMING_CONST,
734		     sizeof(*priv->bittiming_const), priv->bittiming_const)))
735		goto nla_put_failure;
736	return 0;
737
738nla_put_failure:
739	return -EMSGSIZE;
740}
741
742static size_t can_get_xstats_size(const struct net_device *dev)
743{
744	return sizeof(struct can_device_stats);
745}
746
747static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
748{
749	struct can_priv *priv = netdev_priv(dev);
750
751	if (nla_put(skb, IFLA_INFO_XSTATS,
752		    sizeof(priv->can_stats), &priv->can_stats))
753		goto nla_put_failure;
754	return 0;
755
756nla_put_failure:
757	return -EMSGSIZE;
758}
759
760static int can_newlink(struct net *src_net, struct net_device *dev,
761		       struct nlattr *tb[], struct nlattr *data[])
762{
763	return -EOPNOTSUPP;
764}
765
766static struct rtnl_link_ops can_link_ops __read_mostly = {
767	.kind		= "can",
768	.maxtype	= IFLA_CAN_MAX,
769	.policy		= can_policy,
770	.setup		= can_setup,
771	.newlink	= can_newlink,
772	.changelink	= can_changelink,
773	.get_size	= can_get_size,
774	.fill_info	= can_fill_info,
775	.get_xstats_size = can_get_xstats_size,
776	.fill_xstats	= can_fill_xstats,
777};
778
779/*
780 * Register the CAN network device
781 */
782int register_candev(struct net_device *dev)
783{
784	dev->rtnl_link_ops = &can_link_ops;
785	return register_netdev(dev);
786}
787EXPORT_SYMBOL_GPL(register_candev);
788
789/*
790 * Unregister the CAN network device
791 */
792void unregister_candev(struct net_device *dev)
793{
794	unregister_netdev(dev);
795}
796EXPORT_SYMBOL_GPL(unregister_candev);
797
798/*
799 * Test if a network device is a candev based device
800 * and return the can_priv* if so.
801 */
802struct can_priv *safe_candev_priv(struct net_device *dev)
803{
804	if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
805		return NULL;
806
807	return netdev_priv(dev);
808}
809EXPORT_SYMBOL_GPL(safe_candev_priv);
810
811static __init int can_dev_init(void)
812{
813	int err;
814
815	can_led_notifier_init();
816
817	err = rtnl_link_register(&can_link_ops);
818	if (!err)
819		printk(KERN_INFO MOD_DESC "\n");
820
821	return err;
822}
823module_init(can_dev_init);
824
825static __exit void can_dev_exit(void)
826{
827	rtnl_link_unregister(&can_link_ops);
828
829	can_led_notifier_exit();
830}
831module_exit(can_dev_exit);
832
833MODULE_ALIAS_RTNL_LINK("can");
834