dev.c revision d5298dffebae76810a6a942bc6467f893bc11eee
1/*
2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the version 2 of the GNU General Public License
8 * as published by the Free Software Foundation
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19#include <linux/module.h>
20#include <linux/kernel.h>
21#include <linux/slab.h>
22#include <linux/netdevice.h>
23#include <linux/if_arp.h>
24#include <linux/can.h>
25#include <linux/can/dev.h>
26#include <linux/can/skb.h>
27#include <linux/can/netlink.h>
28#include <linux/can/led.h>
29#include <net/rtnetlink.h>
30
31#define MOD_DESC "CAN device driver interface"
32
33MODULE_DESCRIPTION(MOD_DESC);
34MODULE_LICENSE("GPL v2");
35MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
36
37/* CAN DLC to real data length conversion helpers */
38
39static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
40			     8, 12, 16, 20, 24, 32, 48, 64};
41
42/* get data length from can_dlc with sanitized can_dlc */
43u8 can_dlc2len(u8 can_dlc)
44{
45	return dlc2len[can_dlc & 0x0F];
46}
47EXPORT_SYMBOL_GPL(can_dlc2len);
48
49static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,		/* 0 - 8 */
50			     9, 9, 9, 9,			/* 9 - 12 */
51			     10, 10, 10, 10,			/* 13 - 16 */
52			     11, 11, 11, 11,			/* 17 - 20 */
53			     12, 12, 12, 12,			/* 21 - 24 */
54			     13, 13, 13, 13, 13, 13, 13, 13,	/* 25 - 32 */
55			     14, 14, 14, 14, 14, 14, 14, 14,	/* 33 - 40 */
56			     14, 14, 14, 14, 14, 14, 14, 14,	/* 41 - 48 */
57			     15, 15, 15, 15, 15, 15, 15, 15,	/* 49 - 56 */
58			     15, 15, 15, 15, 15, 15, 15, 15};	/* 57 - 64 */
59
60/* map the sanitized data length to an appropriate data length code */
61u8 can_len2dlc(u8 len)
62{
63	if (unlikely(len > 64))
64		return 0xF;
65
66	return len2dlc[len];
67}
68EXPORT_SYMBOL_GPL(can_len2dlc);
69
70#ifdef CONFIG_CAN_CALC_BITTIMING
71#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
72
73/*
74 * Bit-timing calculation derived from:
75 *
76 * Code based on LinCAN sources and H8S2638 project
77 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
78 * Copyright 2005      Stanislav Marek
79 * email: pisa@cmp.felk.cvut.cz
80 *
81 * Calculates proper bit-timing parameters for a specified bit-rate
82 * and sample-point, which can then be used to set the bit-timing
83 * registers of the CAN controller. You can find more information
84 * in the header file linux/can/netlink.h.
85 */
86static int can_update_spt(const struct can_bittiming_const *btc,
87			  int sampl_pt, int tseg, int *tseg1, int *tseg2)
88{
89	*tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
90	if (*tseg2 < btc->tseg2_min)
91		*tseg2 = btc->tseg2_min;
92	if (*tseg2 > btc->tseg2_max)
93		*tseg2 = btc->tseg2_max;
94	*tseg1 = tseg - *tseg2;
95	if (*tseg1 > btc->tseg1_max) {
96		*tseg1 = btc->tseg1_max;
97		*tseg2 = tseg - *tseg1;
98	}
99	return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
100}
101
102static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
103{
104	struct can_priv *priv = netdev_priv(dev);
105	const struct can_bittiming_const *btc = priv->bittiming_const;
106	long rate, best_rate = 0;
107	long best_error = 1000000000, error = 0;
108	int best_tseg = 0, best_brp = 0, brp = 0;
109	int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
110	int spt_error = 1000, spt = 0, sampl_pt;
111	u64 v64;
112
113	if (!priv->bittiming_const)
114		return -ENOTSUPP;
115
116	/* Use CIA recommended sample points */
117	if (bt->sample_point) {
118		sampl_pt = bt->sample_point;
119	} else {
120		if (bt->bitrate > 800000)
121			sampl_pt = 750;
122		else if (bt->bitrate > 500000)
123			sampl_pt = 800;
124		else
125			sampl_pt = 875;
126	}
127
128	/* tseg even = round down, odd = round up */
129	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
130	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
131		tsegall = 1 + tseg / 2;
132		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
133		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
134		/* chose brp step which is possible in system */
135		brp = (brp / btc->brp_inc) * btc->brp_inc;
136		if ((brp < btc->brp_min) || (brp > btc->brp_max))
137			continue;
138		rate = priv->clock.freq / (brp * tsegall);
139		error = bt->bitrate - rate;
140		/* tseg brp biterror */
141		if (error < 0)
142			error = -error;
143		if (error > best_error)
144			continue;
145		best_error = error;
146		if (error == 0) {
147			spt = can_update_spt(btc, sampl_pt, tseg / 2,
148					     &tseg1, &tseg2);
149			error = sampl_pt - spt;
150			if (error < 0)
151				error = -error;
152			if (error > spt_error)
153				continue;
154			spt_error = error;
155		}
156		best_tseg = tseg / 2;
157		best_brp = brp;
158		best_rate = rate;
159		if (error == 0)
160			break;
161	}
162
163	if (best_error) {
164		/* Error in one-tenth of a percent */
165		error = (best_error * 1000) / bt->bitrate;
166		if (error > CAN_CALC_MAX_ERROR) {
167			netdev_err(dev,
168				   "bitrate error %ld.%ld%% too high\n",
169				   error / 10, error % 10);
170			return -EDOM;
171		} else {
172			netdev_warn(dev, "bitrate error %ld.%ld%%\n",
173				    error / 10, error % 10);
174		}
175	}
176
177	/* real sample point */
178	bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
179					  &tseg1, &tseg2);
180
181	v64 = (u64)best_brp * 1000000000UL;
182	do_div(v64, priv->clock.freq);
183	bt->tq = (u32)v64;
184	bt->prop_seg = tseg1 / 2;
185	bt->phase_seg1 = tseg1 - bt->prop_seg;
186	bt->phase_seg2 = tseg2;
187
188	/* check for sjw user settings */
189	if (!bt->sjw || !btc->sjw_max)
190		bt->sjw = 1;
191	else {
192		/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
193		if (bt->sjw > btc->sjw_max)
194			bt->sjw = btc->sjw_max;
195		/* bt->sjw must not be higher than tseg2 */
196		if (tseg2 < bt->sjw)
197			bt->sjw = tseg2;
198	}
199
200	bt->brp = best_brp;
201	/* real bit-rate */
202	bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
203
204	return 0;
205}
206#else /* !CONFIG_CAN_CALC_BITTIMING */
207static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
208{
209	netdev_err(dev, "bit-timing calculation not available\n");
210	return -EINVAL;
211}
212#endif /* CONFIG_CAN_CALC_BITTIMING */
213
214/*
215 * Checks the validity of the specified bit-timing parameters prop_seg,
216 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
217 * prescaler value brp. You can find more information in the header
218 * file linux/can/netlink.h.
219 */
220static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt)
221{
222	struct can_priv *priv = netdev_priv(dev);
223	const struct can_bittiming_const *btc = priv->bittiming_const;
224	int tseg1, alltseg;
225	u64 brp64;
226
227	if (!priv->bittiming_const)
228		return -ENOTSUPP;
229
230	tseg1 = bt->prop_seg + bt->phase_seg1;
231	if (!bt->sjw)
232		bt->sjw = 1;
233	if (bt->sjw > btc->sjw_max ||
234	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
235	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
236		return -ERANGE;
237
238	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
239	if (btc->brp_inc > 1)
240		do_div(brp64, btc->brp_inc);
241	brp64 += 500000000UL - 1;
242	do_div(brp64, 1000000000UL); /* the practicable BRP */
243	if (btc->brp_inc > 1)
244		brp64 *= btc->brp_inc;
245	bt->brp = (u32)brp64;
246
247	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
248		return -EINVAL;
249
250	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
251	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
252	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
253
254	return 0;
255}
256
257static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt)
258{
259	struct can_priv *priv = netdev_priv(dev);
260	int err;
261
262	/* Check if the CAN device has bit-timing parameters */
263	if (!priv->bittiming_const)
264		return 0;
265
266	/*
267	 * Depending on the given can_bittiming parameter structure the CAN
268	 * timing parameters are calculated based on the provided bitrate OR
269	 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
270	 * provided directly which are then checked and fixed up.
271	 */
272	if (!bt->tq && bt->bitrate)
273		err = can_calc_bittiming(dev, bt);
274	else if (bt->tq && !bt->bitrate)
275		err = can_fixup_bittiming(dev, bt);
276	else
277		err = -EINVAL;
278
279	return err;
280}
281
282/*
283 * Local echo of CAN messages
284 *
285 * CAN network devices *should* support a local echo functionality
286 * (see Documentation/networking/can.txt). To test the handling of CAN
287 * interfaces that do not support the local echo both driver types are
288 * implemented. In the case that the driver does not support the echo
289 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
290 * to perform the echo as a fallback solution.
291 */
292static void can_flush_echo_skb(struct net_device *dev)
293{
294	struct can_priv *priv = netdev_priv(dev);
295	struct net_device_stats *stats = &dev->stats;
296	int i;
297
298	for (i = 0; i < priv->echo_skb_max; i++) {
299		if (priv->echo_skb[i]) {
300			kfree_skb(priv->echo_skb[i]);
301			priv->echo_skb[i] = NULL;
302			stats->tx_dropped++;
303			stats->tx_aborted_errors++;
304		}
305	}
306}
307
308/*
309 * Put the skb on the stack to be looped backed locally lateron
310 *
311 * The function is typically called in the start_xmit function
312 * of the device driver. The driver must protect access to
313 * priv->echo_skb, if necessary.
314 */
315void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
316		      unsigned int idx)
317{
318	struct can_priv *priv = netdev_priv(dev);
319
320	BUG_ON(idx >= priv->echo_skb_max);
321
322	/* check flag whether this packet has to be looped back */
323	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
324	    (skb->protocol != htons(ETH_P_CAN) &&
325	     skb->protocol != htons(ETH_P_CANFD))) {
326		kfree_skb(skb);
327		return;
328	}
329
330	if (!priv->echo_skb[idx]) {
331
332		skb = can_create_echo_skb(skb);
333		if (!skb)
334			return;
335
336		/* make settings for echo to reduce code in irq context */
337		skb->pkt_type = PACKET_BROADCAST;
338		skb->ip_summed = CHECKSUM_UNNECESSARY;
339		skb->dev = dev;
340
341		/* save this skb for tx interrupt echo handling */
342		priv->echo_skb[idx] = skb;
343	} else {
344		/* locking problem with netif_stop_queue() ?? */
345		netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
346		kfree_skb(skb);
347	}
348}
349EXPORT_SYMBOL_GPL(can_put_echo_skb);
350
351/*
352 * Get the skb from the stack and loop it back locally
353 *
354 * The function is typically called when the TX done interrupt
355 * is handled in the device driver. The driver must protect
356 * access to priv->echo_skb, if necessary.
357 */
358unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
359{
360	struct can_priv *priv = netdev_priv(dev);
361
362	BUG_ON(idx >= priv->echo_skb_max);
363
364	if (priv->echo_skb[idx]) {
365		struct sk_buff *skb = priv->echo_skb[idx];
366		struct can_frame *cf = (struct can_frame *)skb->data;
367		u8 dlc = cf->can_dlc;
368
369		netif_rx(priv->echo_skb[idx]);
370		priv->echo_skb[idx] = NULL;
371
372		return dlc;
373	}
374
375	return 0;
376}
377EXPORT_SYMBOL_GPL(can_get_echo_skb);
378
379/*
380  * Remove the skb from the stack and free it.
381  *
382  * The function is typically called when TX failed.
383  */
384void can_free_echo_skb(struct net_device *dev, unsigned int idx)
385{
386	struct can_priv *priv = netdev_priv(dev);
387
388	BUG_ON(idx >= priv->echo_skb_max);
389
390	if (priv->echo_skb[idx]) {
391		kfree_skb(priv->echo_skb[idx]);
392		priv->echo_skb[idx] = NULL;
393	}
394}
395EXPORT_SYMBOL_GPL(can_free_echo_skb);
396
397/*
398 * CAN device restart for bus-off recovery
399 */
400static void can_restart(unsigned long data)
401{
402	struct net_device *dev = (struct net_device *)data;
403	struct can_priv *priv = netdev_priv(dev);
404	struct net_device_stats *stats = &dev->stats;
405	struct sk_buff *skb;
406	struct can_frame *cf;
407	int err;
408
409	BUG_ON(netif_carrier_ok(dev));
410
411	/*
412	 * No synchronization needed because the device is bus-off and
413	 * no messages can come in or go out.
414	 */
415	can_flush_echo_skb(dev);
416
417	/* send restart message upstream */
418	skb = alloc_can_err_skb(dev, &cf);
419	if (skb == NULL) {
420		err = -ENOMEM;
421		goto restart;
422	}
423	cf->can_id |= CAN_ERR_RESTARTED;
424
425	netif_rx(skb);
426
427	stats->rx_packets++;
428	stats->rx_bytes += cf->can_dlc;
429
430restart:
431	netdev_dbg(dev, "restarted\n");
432	priv->can_stats.restarts++;
433
434	/* Now restart the device */
435	err = priv->do_set_mode(dev, CAN_MODE_START);
436
437	netif_carrier_on(dev);
438	if (err)
439		netdev_err(dev, "Error %d during restart", err);
440}
441
442int can_restart_now(struct net_device *dev)
443{
444	struct can_priv *priv = netdev_priv(dev);
445
446	/*
447	 * A manual restart is only permitted if automatic restart is
448	 * disabled and the device is in the bus-off state
449	 */
450	if (priv->restart_ms)
451		return -EINVAL;
452	if (priv->state != CAN_STATE_BUS_OFF)
453		return -EBUSY;
454
455	/* Runs as soon as possible in the timer context */
456	mod_timer(&priv->restart_timer, jiffies);
457
458	return 0;
459}
460
461/*
462 * CAN bus-off
463 *
464 * This functions should be called when the device goes bus-off to
465 * tell the netif layer that no more packets can be sent or received.
466 * If enabled, a timer is started to trigger bus-off recovery.
467 */
468void can_bus_off(struct net_device *dev)
469{
470	struct can_priv *priv = netdev_priv(dev);
471
472	netdev_dbg(dev, "bus-off\n");
473
474	netif_carrier_off(dev);
475	priv->can_stats.bus_off++;
476
477	if (priv->restart_ms)
478		mod_timer(&priv->restart_timer,
479			  jiffies + (priv->restart_ms * HZ) / 1000);
480}
481EXPORT_SYMBOL_GPL(can_bus_off);
482
483static void can_setup(struct net_device *dev)
484{
485	dev->type = ARPHRD_CAN;
486	dev->mtu = CAN_MTU;
487	dev->hard_header_len = 0;
488	dev->addr_len = 0;
489	dev->tx_queue_len = 10;
490
491	/* New-style flags. */
492	dev->flags = IFF_NOARP;
493	dev->features = NETIF_F_HW_CSUM;
494}
495
496struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
497{
498	struct sk_buff *skb;
499
500	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
501			       sizeof(struct can_frame));
502	if (unlikely(!skb))
503		return NULL;
504
505	skb->protocol = htons(ETH_P_CAN);
506	skb->pkt_type = PACKET_BROADCAST;
507	skb->ip_summed = CHECKSUM_UNNECESSARY;
508
509	can_skb_reserve(skb);
510	can_skb_prv(skb)->ifindex = dev->ifindex;
511
512	*cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
513	memset(*cf, 0, sizeof(struct can_frame));
514
515	return skb;
516}
517EXPORT_SYMBOL_GPL(alloc_can_skb);
518
519struct sk_buff *alloc_canfd_skb(struct net_device *dev,
520				struct canfd_frame **cfd)
521{
522	struct sk_buff *skb;
523
524	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
525			       sizeof(struct canfd_frame));
526	if (unlikely(!skb))
527		return NULL;
528
529	skb->protocol = htons(ETH_P_CANFD);
530	skb->pkt_type = PACKET_BROADCAST;
531	skb->ip_summed = CHECKSUM_UNNECESSARY;
532
533	can_skb_reserve(skb);
534	can_skb_prv(skb)->ifindex = dev->ifindex;
535
536	*cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame));
537	memset(*cfd, 0, sizeof(struct canfd_frame));
538
539	return skb;
540}
541EXPORT_SYMBOL_GPL(alloc_canfd_skb);
542
543struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
544{
545	struct sk_buff *skb;
546
547	skb = alloc_can_skb(dev, cf);
548	if (unlikely(!skb))
549		return NULL;
550
551	(*cf)->can_id = CAN_ERR_FLAG;
552	(*cf)->can_dlc = CAN_ERR_DLC;
553
554	return skb;
555}
556EXPORT_SYMBOL_GPL(alloc_can_err_skb);
557
558/*
559 * Allocate and setup space for the CAN network device
560 */
561struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
562{
563	struct net_device *dev;
564	struct can_priv *priv;
565	int size;
566
567	if (echo_skb_max)
568		size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
569			echo_skb_max * sizeof(struct sk_buff *);
570	else
571		size = sizeof_priv;
572
573	dev = alloc_netdev(size, "can%d", can_setup);
574	if (!dev)
575		return NULL;
576
577	priv = netdev_priv(dev);
578
579	if (echo_skb_max) {
580		priv->echo_skb_max = echo_skb_max;
581		priv->echo_skb = (void *)priv +
582			ALIGN(sizeof_priv, sizeof(struct sk_buff *));
583	}
584
585	priv->state = CAN_STATE_STOPPED;
586
587	init_timer(&priv->restart_timer);
588
589	return dev;
590}
591EXPORT_SYMBOL_GPL(alloc_candev);
592
593/*
594 * Free space of the CAN network device
595 */
596void free_candev(struct net_device *dev)
597{
598	free_netdev(dev);
599}
600EXPORT_SYMBOL_GPL(free_candev);
601
602/*
603 * Common open function when the device gets opened.
604 *
605 * This function should be called in the open function of the device
606 * driver.
607 */
608int open_candev(struct net_device *dev)
609{
610	struct can_priv *priv = netdev_priv(dev);
611
612	if (!priv->bittiming.bitrate) {
613		netdev_err(dev, "bit-timing not yet defined\n");
614		return -EINVAL;
615	}
616
617	/* Switch carrier on if device was stopped while in bus-off state */
618	if (!netif_carrier_ok(dev))
619		netif_carrier_on(dev);
620
621	setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
622
623	return 0;
624}
625EXPORT_SYMBOL_GPL(open_candev);
626
627/*
628 * Common close function for cleanup before the device gets closed.
629 *
630 * This function should be called in the close function of the device
631 * driver.
632 */
633void close_candev(struct net_device *dev)
634{
635	struct can_priv *priv = netdev_priv(dev);
636
637	del_timer_sync(&priv->restart_timer);
638	can_flush_echo_skb(dev);
639}
640EXPORT_SYMBOL_GPL(close_candev);
641
642/*
643 * CAN netlink interface
644 */
645static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
646	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
647	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
648	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
649	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
650	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
651	[IFLA_CAN_BITTIMING_CONST]
652				= { .len = sizeof(struct can_bittiming_const) },
653	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
654	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
655};
656
657static int can_changelink(struct net_device *dev,
658			  struct nlattr *tb[], struct nlattr *data[])
659{
660	struct can_priv *priv = netdev_priv(dev);
661	int err;
662
663	/* We need synchronization with dev->stop() */
664	ASSERT_RTNL();
665
666	if (data[IFLA_CAN_BITTIMING]) {
667		struct can_bittiming bt;
668
669		/* Do not allow changing bittiming while running */
670		if (dev->flags & IFF_UP)
671			return -EBUSY;
672		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
673		err = can_get_bittiming(dev, &bt);
674		if (err)
675			return err;
676		memcpy(&priv->bittiming, &bt, sizeof(bt));
677
678		if (priv->do_set_bittiming) {
679			/* Finally, set the bit-timing registers */
680			err = priv->do_set_bittiming(dev);
681			if (err)
682				return err;
683		}
684	}
685
686	if (data[IFLA_CAN_CTRLMODE]) {
687		struct can_ctrlmode *cm;
688
689		/* Do not allow changing controller mode while running */
690		if (dev->flags & IFF_UP)
691			return -EBUSY;
692		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
693		if (cm->flags & ~priv->ctrlmode_supported)
694			return -EOPNOTSUPP;
695		priv->ctrlmode &= ~cm->mask;
696		priv->ctrlmode |= cm->flags;
697	}
698
699	if (data[IFLA_CAN_RESTART_MS]) {
700		/* Do not allow changing restart delay while running */
701		if (dev->flags & IFF_UP)
702			return -EBUSY;
703		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
704	}
705
706	if (data[IFLA_CAN_RESTART]) {
707		/* Do not allow a restart while not running */
708		if (!(dev->flags & IFF_UP))
709			return -EINVAL;
710		err = can_restart_now(dev);
711		if (err)
712			return err;
713	}
714
715	return 0;
716}
717
718static size_t can_get_size(const struct net_device *dev)
719{
720	struct can_priv *priv = netdev_priv(dev);
721	size_t size = 0;
722
723	if (priv->bittiming.bitrate)				/* IFLA_CAN_BITTIMING */
724		size += nla_total_size(sizeof(struct can_bittiming));
725	if (priv->bittiming_const)				/* IFLA_CAN_BITTIMING_CONST */
726		size += nla_total_size(sizeof(struct can_bittiming_const));
727	size += nla_total_size(sizeof(struct can_clock));	/* IFLA_CAN_CLOCK */
728	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_STATE */
729	size += nla_total_size(sizeof(struct can_ctrlmode));	/* IFLA_CAN_CTRLMODE */
730	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_RESTART_MS */
731	if (priv->do_get_berr_counter)				/* IFLA_CAN_BERR_COUNTER */
732		size += nla_total_size(sizeof(struct can_berr_counter));
733
734	return size;
735}
736
737static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
738{
739	struct can_priv *priv = netdev_priv(dev);
740	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
741	struct can_berr_counter bec;
742	enum can_state state = priv->state;
743
744	if (priv->do_get_state)
745		priv->do_get_state(dev, &state);
746	if ((priv->bittiming.bitrate &&
747	     nla_put(skb, IFLA_CAN_BITTIMING,
748		     sizeof(priv->bittiming), &priv->bittiming)) ||
749	    (priv->bittiming_const &&
750	     nla_put(skb, IFLA_CAN_BITTIMING_CONST,
751		     sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
752	    nla_put(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock) ||
753	    nla_put_u32(skb, IFLA_CAN_STATE, state) ||
754	    nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
755	    nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
756	    (priv->do_get_berr_counter &&
757	     !priv->do_get_berr_counter(dev, &bec) &&
758	     nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)))
759		return -EMSGSIZE;
760	return 0;
761}
762
763static size_t can_get_xstats_size(const struct net_device *dev)
764{
765	return sizeof(struct can_device_stats);
766}
767
768static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
769{
770	struct can_priv *priv = netdev_priv(dev);
771
772	if (nla_put(skb, IFLA_INFO_XSTATS,
773		    sizeof(priv->can_stats), &priv->can_stats))
774		goto nla_put_failure;
775	return 0;
776
777nla_put_failure:
778	return -EMSGSIZE;
779}
780
781static int can_newlink(struct net *src_net, struct net_device *dev,
782		       struct nlattr *tb[], struct nlattr *data[])
783{
784	return -EOPNOTSUPP;
785}
786
787static struct rtnl_link_ops can_link_ops __read_mostly = {
788	.kind		= "can",
789	.maxtype	= IFLA_CAN_MAX,
790	.policy		= can_policy,
791	.setup		= can_setup,
792	.newlink	= can_newlink,
793	.changelink	= can_changelink,
794	.get_size	= can_get_size,
795	.fill_info	= can_fill_info,
796	.get_xstats_size = can_get_xstats_size,
797	.fill_xstats	= can_fill_xstats,
798};
799
800/*
801 * Register the CAN network device
802 */
803int register_candev(struct net_device *dev)
804{
805	dev->rtnl_link_ops = &can_link_ops;
806	return register_netdev(dev);
807}
808EXPORT_SYMBOL_GPL(register_candev);
809
810/*
811 * Unregister the CAN network device
812 */
813void unregister_candev(struct net_device *dev)
814{
815	unregister_netdev(dev);
816}
817EXPORT_SYMBOL_GPL(unregister_candev);
818
819/*
820 * Test if a network device is a candev based device
821 * and return the can_priv* if so.
822 */
823struct can_priv *safe_candev_priv(struct net_device *dev)
824{
825	if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
826		return NULL;
827
828	return netdev_priv(dev);
829}
830EXPORT_SYMBOL_GPL(safe_candev_priv);
831
832static __init int can_dev_init(void)
833{
834	int err;
835
836	can_led_notifier_init();
837
838	err = rtnl_link_register(&can_link_ops);
839	if (!err)
840		printk(KERN_INFO MOD_DESC "\n");
841
842	return err;
843}
844module_init(can_dev_init);
845
846static __exit void can_dev_exit(void)
847{
848	rtnl_link_unregister(&can_link_ops);
849
850	can_led_notifier_exit();
851}
852module_exit(can_dev_exit);
853
854MODULE_ALIAS_RTNL_LINK("can");
855