m_can.c revision a93f5cae67b366e4ce7e9eb336e2885309fd6612
1/*
2 * CAN bus driver for Bosch M_CAN controller
3 *
4 * Copyright (C) 2014 Freescale Semiconductor, Inc.
5 *	Dong Aisheng <b29396@freescale.com>
6 *
7 * Bosch M_CAN user manual can be obtained from:
8 * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
9 * mcan_users_manual_v302.pdf
10 *
11 * This file is licensed under the terms of the GNU General Public
12 * License version 2. This program is licensed "as is" without any
13 * warranty of any kind, whether express or implied.
14 */
15
16#include <linux/clk.h>
17#include <linux/delay.h>
18#include <linux/interrupt.h>
19#include <linux/io.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/netdevice.h>
23#include <linux/of.h>
24#include <linux/of_device.h>
25#include <linux/platform_device.h>
26
27#include <linux/can/dev.h>
28
29/* napi related */
30#define M_CAN_NAPI_WEIGHT	64
31
32/* message ram configuration data length */
33#define MRAM_CFG_LEN	8
34
35/* registers definition */
36enum m_can_reg {
37	M_CAN_CREL	= 0x0,
38	M_CAN_ENDN	= 0x4,
39	M_CAN_CUST	= 0x8,
40	M_CAN_FBTP	= 0xc,
41	M_CAN_TEST	= 0x10,
42	M_CAN_RWD	= 0x14,
43	M_CAN_CCCR	= 0x18,
44	M_CAN_BTP	= 0x1c,
45	M_CAN_TSCC	= 0x20,
46	M_CAN_TSCV	= 0x24,
47	M_CAN_TOCC	= 0x28,
48	M_CAN_TOCV	= 0x2c,
49	M_CAN_ECR	= 0x40,
50	M_CAN_PSR	= 0x44,
51	M_CAN_IR	= 0x50,
52	M_CAN_IE	= 0x54,
53	M_CAN_ILS	= 0x58,
54	M_CAN_ILE	= 0x5c,
55	M_CAN_GFC	= 0x80,
56	M_CAN_SIDFC	= 0x84,
57	M_CAN_XIDFC	= 0x88,
58	M_CAN_XIDAM	= 0x90,
59	M_CAN_HPMS	= 0x94,
60	M_CAN_NDAT1	= 0x98,
61	M_CAN_NDAT2	= 0x9c,
62	M_CAN_RXF0C	= 0xa0,
63	M_CAN_RXF0S	= 0xa4,
64	M_CAN_RXF0A	= 0xa8,
65	M_CAN_RXBC	= 0xac,
66	M_CAN_RXF1C	= 0xb0,
67	M_CAN_RXF1S	= 0xb4,
68	M_CAN_RXF1A	= 0xb8,
69	M_CAN_RXESC	= 0xbc,
70	M_CAN_TXBC	= 0xc0,
71	M_CAN_TXFQS	= 0xc4,
72	M_CAN_TXESC	= 0xc8,
73	M_CAN_TXBRP	= 0xcc,
74	M_CAN_TXBAR	= 0xd0,
75	M_CAN_TXBCR	= 0xd4,
76	M_CAN_TXBTO	= 0xd8,
77	M_CAN_TXBCF	= 0xdc,
78	M_CAN_TXBTIE	= 0xe0,
79	M_CAN_TXBCIE	= 0xe4,
80	M_CAN_TXEFC	= 0xf0,
81	M_CAN_TXEFS	= 0xf4,
82	M_CAN_TXEFA	= 0xf8,
83};
84
85/* m_can lec values */
86enum m_can_lec_type {
87	LEC_NO_ERROR = 0,
88	LEC_STUFF_ERROR,
89	LEC_FORM_ERROR,
90	LEC_ACK_ERROR,
91	LEC_BIT1_ERROR,
92	LEC_BIT0_ERROR,
93	LEC_CRC_ERROR,
94	LEC_UNUSED,
95};
96
97enum m_can_mram_cfg {
98	MRAM_SIDF = 0,
99	MRAM_XIDF,
100	MRAM_RXF0,
101	MRAM_RXF1,
102	MRAM_RXB,
103	MRAM_TXE,
104	MRAM_TXB,
105	MRAM_CFG_NUM,
106};
107
108/* Test Register (TEST) */
109#define TEST_LBCK	BIT(4)
110
111/* CC Control Register(CCCR) */
112#define CCCR_TEST	BIT(7)
113#define CCCR_MON	BIT(5)
114#define CCCR_CCE	BIT(1)
115#define CCCR_INIT	BIT(0)
116
117/* Bit Timing & Prescaler Register (BTP) */
118#define BTR_BRP_MASK		0x3ff
119#define BTR_BRP_SHIFT		16
120#define BTR_TSEG1_SHIFT		8
121#define BTR_TSEG1_MASK		(0x3f << BTR_TSEG1_SHIFT)
122#define BTR_TSEG2_SHIFT		4
123#define BTR_TSEG2_MASK		(0xf << BTR_TSEG2_SHIFT)
124#define BTR_SJW_SHIFT		0
125#define BTR_SJW_MASK		0xf
126
127/* Error Counter Register(ECR) */
128#define ECR_RP			BIT(15)
129#define ECR_REC_SHIFT		8
130#define ECR_REC_MASK		(0x7f << ECR_REC_SHIFT)
131#define ECR_TEC_SHIFT		0
132#define ECR_TEC_MASK		0xff
133
134/* Protocol Status Register(PSR) */
135#define PSR_BO		BIT(7)
136#define PSR_EW		BIT(6)
137#define PSR_EP		BIT(5)
138#define PSR_LEC_MASK	0x7
139
140/* Interrupt Register(IR) */
141#define IR_ALL_INT	0xffffffff
142#define IR_STE		BIT(31)
143#define IR_FOE		BIT(30)
144#define IR_ACKE		BIT(29)
145#define IR_BE		BIT(28)
146#define IR_CRCE		BIT(27)
147#define IR_WDI		BIT(26)
148#define IR_BO		BIT(25)
149#define IR_EW		BIT(24)
150#define IR_EP		BIT(23)
151#define IR_ELO		BIT(22)
152#define IR_BEU		BIT(21)
153#define IR_BEC		BIT(20)
154#define IR_DRX		BIT(19)
155#define IR_TOO		BIT(18)
156#define IR_MRAF		BIT(17)
157#define IR_TSW		BIT(16)
158#define IR_TEFL		BIT(15)
159#define IR_TEFF		BIT(14)
160#define IR_TEFW		BIT(13)
161#define IR_TEFN		BIT(12)
162#define IR_TFE		BIT(11)
163#define IR_TCF		BIT(10)
164#define IR_TC		BIT(9)
165#define IR_HPM		BIT(8)
166#define IR_RF1L		BIT(7)
167#define IR_RF1F		BIT(6)
168#define IR_RF1W		BIT(5)
169#define IR_RF1N		BIT(4)
170#define IR_RF0L		BIT(3)
171#define IR_RF0F		BIT(2)
172#define IR_RF0W		BIT(1)
173#define IR_RF0N		BIT(0)
174#define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
175#define IR_ERR_LEC	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
176#define IR_ERR_BUS	(IR_ERR_LEC | IR_WDI | IR_ELO | IR_BEU | \
177			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
178			 IR_RF1L | IR_RF0L)
179#define IR_ERR_ALL	(IR_ERR_STATE | IR_ERR_BUS)
180
181/* Interrupt Line Select (ILS) */
182#define ILS_ALL_INT0	0x0
183#define ILS_ALL_INT1	0xFFFFFFFF
184
185/* Interrupt Line Enable (ILE) */
186#define ILE_EINT0	BIT(0)
187#define ILE_EINT1	BIT(1)
188
189/* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
190#define RXFC_FWM_OFF	24
191#define RXFC_FWM_MASK	0x7f
192#define RXFC_FWM_1	(1 << RXFC_FWM_OFF)
193#define RXFC_FS_OFF	16
194#define RXFC_FS_MASK	0x7f
195
196/* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
197#define RXFS_RFL	BIT(25)
198#define RXFS_FF		BIT(24)
199#define RXFS_FPI_OFF	16
200#define RXFS_FPI_MASK	0x3f0000
201#define RXFS_FGI_OFF	8
202#define RXFS_FGI_MASK	0x3f00
203#define RXFS_FFL_MASK	0x7f
204
205/* Rx Buffer / FIFO Element Size Configuration (RXESC) */
206#define M_CAN_RXESC_8BYTES	0x0
207
208/* Tx Buffer Configuration(TXBC) */
209#define TXBC_NDTB_OFF		16
210#define TXBC_NDTB_MASK		0x3f
211
212/* Tx Buffer Element Size Configuration(TXESC) */
213#define TXESC_TBDS_8BYTES	0x0
214
215/* Tx Event FIFO Con.guration (TXEFC) */
216#define TXEFC_EFS_OFF		16
217#define TXEFC_EFS_MASK		0x3f
218
219/* Message RAM Configuration (in bytes) */
220#define SIDF_ELEMENT_SIZE	4
221#define XIDF_ELEMENT_SIZE	8
222#define RXF0_ELEMENT_SIZE	16
223#define RXF1_ELEMENT_SIZE	16
224#define RXB_ELEMENT_SIZE	16
225#define TXE_ELEMENT_SIZE	8
226#define TXB_ELEMENT_SIZE	16
227
228/* Message RAM Elements */
229#define M_CAN_FIFO_ID		0x0
230#define M_CAN_FIFO_DLC		0x4
231#define M_CAN_FIFO_DATA(n)	(0x8 + ((n) << 2))
232
233/* Rx Buffer Element */
234#define RX_BUF_ESI		BIT(31)
235#define RX_BUF_XTD		BIT(30)
236#define RX_BUF_RTR		BIT(29)
237
238/* Tx Buffer Element */
239#define TX_BUF_XTD		BIT(30)
240#define TX_BUF_RTR		BIT(29)
241
242/* address offset and element number for each FIFO/Buffer in the Message RAM */
243struct mram_cfg {
244	u16 off;
245	u8  num;
246};
247
248/* m_can private data structure */
249struct m_can_priv {
250	struct can_priv can;	/* must be the first member */
251	struct napi_struct napi;
252	struct net_device *dev;
253	struct device *device;
254	struct clk *hclk;
255	struct clk *cclk;
256	void __iomem *base;
257	u32 irqstatus;
258
259	/* message ram configuration */
260	void __iomem *mram_base;
261	struct mram_cfg mcfg[MRAM_CFG_NUM];
262};
263
264static inline u32 m_can_read(const struct m_can_priv *priv, enum m_can_reg reg)
265{
266	return readl(priv->base + reg);
267}
268
269static inline void m_can_write(const struct m_can_priv *priv,
270			       enum m_can_reg reg, u32 val)
271{
272	writel(val, priv->base + reg);
273}
274
275static inline u32 m_can_fifo_read(const struct m_can_priv *priv,
276				  u32 fgi, unsigned int offset)
277{
278	return readl(priv->mram_base + priv->mcfg[MRAM_RXF0].off +
279		     fgi * RXF0_ELEMENT_SIZE + offset);
280}
281
282static inline void m_can_fifo_write(const struct m_can_priv *priv,
283				    u32 fpi, unsigned int offset, u32 val)
284{
285	return writel(val, priv->mram_base + priv->mcfg[MRAM_TXB].off +
286		      fpi * TXB_ELEMENT_SIZE + offset);
287}
288
289static inline void m_can_config_endisable(const struct m_can_priv *priv,
290					  bool enable)
291{
292	u32 cccr = m_can_read(priv, M_CAN_CCCR);
293	u32 timeout = 10;
294	u32 val = 0;
295
296	if (enable) {
297		/* enable m_can configuration */
298		m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT);
299		udelay(5);
300		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
301		m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
302	} else {
303		m_can_write(priv, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
304	}
305
306	/* there's a delay for module initialization */
307	if (enable)
308		val = CCCR_INIT | CCCR_CCE;
309
310	while ((m_can_read(priv, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
311		if (timeout == 0) {
312			netdev_warn(priv->dev, "Failed to init module\n");
313			return;
314		}
315		timeout--;
316		udelay(1);
317	}
318}
319
320static inline void m_can_enable_all_interrupts(const struct m_can_priv *priv)
321{
322	m_can_write(priv, M_CAN_ILE, ILE_EINT0 | ILE_EINT1);
323}
324
325static inline void m_can_disable_all_interrupts(const struct m_can_priv *priv)
326{
327	m_can_write(priv, M_CAN_ILE, 0x0);
328}
329
330static void m_can_read_fifo(const struct net_device *dev, struct can_frame *cf,
331			    u32 rxfs)
332{
333	struct m_can_priv *priv = netdev_priv(dev);
334	u32 id, fgi, dlc;
335
336	/* calculate the fifo get index for where to read data */
337	fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_OFF;
338	id = m_can_fifo_read(priv, fgi, M_CAN_FIFO_ID);
339	if (id & RX_BUF_XTD)
340		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
341	else
342		cf->can_id = (id >> 18) & CAN_SFF_MASK;
343
344	dlc = m_can_fifo_read(priv, fgi, M_CAN_FIFO_DLC);
345	cf->can_dlc = get_can_dlc((dlc >> 16) & 0x0F);
346
347	if (id & RX_BUF_RTR) {
348		cf->can_id |= CAN_RTR_FLAG;
349	} else {
350		*(u32 *)(cf->data + 0) = m_can_fifo_read(priv, fgi,
351							 M_CAN_FIFO_DATA(0));
352		*(u32 *)(cf->data + 4) = m_can_fifo_read(priv, fgi,
353							 M_CAN_FIFO_DATA(1));
354	}
355
356	/* acknowledge rx fifo 0 */
357	m_can_write(priv, M_CAN_RXF0A, fgi);
358}
359
360static int m_can_do_rx_poll(struct net_device *dev, int quota)
361{
362	struct m_can_priv *priv = netdev_priv(dev);
363	struct net_device_stats *stats = &dev->stats;
364	struct sk_buff *skb;
365	struct can_frame *frame;
366	u32 pkts = 0;
367	u32 rxfs;
368
369	rxfs = m_can_read(priv, M_CAN_RXF0S);
370	if (!(rxfs & RXFS_FFL_MASK)) {
371		netdev_dbg(dev, "no messages in fifo0\n");
372		return 0;
373	}
374
375	while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
376		if (rxfs & RXFS_RFL)
377			netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
378
379		skb = alloc_can_skb(dev, &frame);
380		if (!skb) {
381			stats->rx_dropped++;
382			return pkts;
383		}
384
385		m_can_read_fifo(dev, frame, rxfs);
386
387		stats->rx_packets++;
388		stats->rx_bytes += frame->can_dlc;
389
390		netif_receive_skb(skb);
391
392		quota--;
393		pkts++;
394		rxfs = m_can_read(priv, M_CAN_RXF0S);
395	}
396
397	if (pkts)
398		can_led_event(dev, CAN_LED_EVENT_RX);
399
400	return pkts;
401}
402
403static int m_can_handle_lost_msg(struct net_device *dev)
404{
405	struct net_device_stats *stats = &dev->stats;
406	struct sk_buff *skb;
407	struct can_frame *frame;
408
409	netdev_err(dev, "msg lost in rxf0\n");
410
411	stats->rx_errors++;
412	stats->rx_over_errors++;
413
414	skb = alloc_can_err_skb(dev, &frame);
415	if (unlikely(!skb))
416		return 0;
417
418	frame->can_id |= CAN_ERR_CRTL;
419	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
420
421	netif_receive_skb(skb);
422
423	return 1;
424}
425
426static int m_can_handle_lec_err(struct net_device *dev,
427				enum m_can_lec_type lec_type)
428{
429	struct m_can_priv *priv = netdev_priv(dev);
430	struct net_device_stats *stats = &dev->stats;
431	struct can_frame *cf;
432	struct sk_buff *skb;
433
434	priv->can.can_stats.bus_error++;
435	stats->rx_errors++;
436
437	/* propagate the error condition to the CAN stack */
438	skb = alloc_can_err_skb(dev, &cf);
439	if (unlikely(!skb))
440		return 0;
441
442	/* check for 'last error code' which tells us the
443	 * type of the last error to occur on the CAN bus
444	 */
445	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
446	cf->data[2] |= CAN_ERR_PROT_UNSPEC;
447
448	switch (lec_type) {
449	case LEC_STUFF_ERROR:
450		netdev_dbg(dev, "stuff error\n");
451		cf->data[2] |= CAN_ERR_PROT_STUFF;
452		break;
453	case LEC_FORM_ERROR:
454		netdev_dbg(dev, "form error\n");
455		cf->data[2] |= CAN_ERR_PROT_FORM;
456		break;
457	case LEC_ACK_ERROR:
458		netdev_dbg(dev, "ack error\n");
459		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
460				CAN_ERR_PROT_LOC_ACK_DEL);
461		break;
462	case LEC_BIT1_ERROR:
463		netdev_dbg(dev, "bit1 error\n");
464		cf->data[2] |= CAN_ERR_PROT_BIT1;
465		break;
466	case LEC_BIT0_ERROR:
467		netdev_dbg(dev, "bit0 error\n");
468		cf->data[2] |= CAN_ERR_PROT_BIT0;
469		break;
470	case LEC_CRC_ERROR:
471		netdev_dbg(dev, "CRC error\n");
472		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
473				CAN_ERR_PROT_LOC_CRC_DEL);
474		break;
475	default:
476		break;
477	}
478
479	stats->rx_packets++;
480	stats->rx_bytes += cf->can_dlc;
481	netif_receive_skb(skb);
482
483	return 1;
484}
485
486static int __m_can_get_berr_counter(const struct net_device *dev,
487				    struct can_berr_counter *bec)
488{
489	struct m_can_priv *priv = netdev_priv(dev);
490	unsigned int ecr;
491
492	ecr = m_can_read(priv, M_CAN_ECR);
493	bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
494	bec->txerr = ecr & ECR_TEC_MASK;
495
496	return 0;
497}
498
499static int m_can_get_berr_counter(const struct net_device *dev,
500				  struct can_berr_counter *bec)
501{
502	struct m_can_priv *priv = netdev_priv(dev);
503	int err;
504
505	err = clk_prepare_enable(priv->hclk);
506	if (err)
507		return err;
508
509	err = clk_prepare_enable(priv->cclk);
510	if (err) {
511		clk_disable_unprepare(priv->hclk);
512		return err;
513	}
514
515	__m_can_get_berr_counter(dev, bec);
516
517	clk_disable_unprepare(priv->cclk);
518	clk_disable_unprepare(priv->hclk);
519
520	return 0;
521}
522
523static int m_can_handle_state_change(struct net_device *dev,
524				     enum can_state new_state)
525{
526	struct m_can_priv *priv = netdev_priv(dev);
527	struct net_device_stats *stats = &dev->stats;
528	struct can_frame *cf;
529	struct sk_buff *skb;
530	struct can_berr_counter bec;
531	unsigned int ecr;
532
533	switch (new_state) {
534	case CAN_STATE_ERROR_ACTIVE:
535		/* error warning state */
536		priv->can.can_stats.error_warning++;
537		priv->can.state = CAN_STATE_ERROR_WARNING;
538		break;
539	case CAN_STATE_ERROR_PASSIVE:
540		/* error passive state */
541		priv->can.can_stats.error_passive++;
542		priv->can.state = CAN_STATE_ERROR_PASSIVE;
543		break;
544	case CAN_STATE_BUS_OFF:
545		/* bus-off state */
546		priv->can.state = CAN_STATE_BUS_OFF;
547		m_can_disable_all_interrupts(priv);
548		can_bus_off(dev);
549		break;
550	default:
551		break;
552	}
553
554	/* propagate the error condition to the CAN stack */
555	skb = alloc_can_err_skb(dev, &cf);
556	if (unlikely(!skb))
557		return 0;
558
559	__m_can_get_berr_counter(dev, &bec);
560
561	switch (new_state) {
562	case CAN_STATE_ERROR_ACTIVE:
563		/* error warning state */
564		cf->can_id |= CAN_ERR_CRTL;
565		cf->data[1] = (bec.txerr > bec.rxerr) ?
566			CAN_ERR_CRTL_TX_WARNING :
567			CAN_ERR_CRTL_RX_WARNING;
568		cf->data[6] = bec.txerr;
569		cf->data[7] = bec.rxerr;
570		break;
571	case CAN_STATE_ERROR_PASSIVE:
572		/* error passive state */
573		cf->can_id |= CAN_ERR_CRTL;
574		ecr = m_can_read(priv, M_CAN_ECR);
575		if (ecr & ECR_RP)
576			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
577		if (bec.txerr > 127)
578			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
579		cf->data[6] = bec.txerr;
580		cf->data[7] = bec.rxerr;
581		break;
582	case CAN_STATE_BUS_OFF:
583		/* bus-off state */
584		cf->can_id |= CAN_ERR_BUSOFF;
585		break;
586	default:
587		break;
588	}
589
590	stats->rx_packets++;
591	stats->rx_bytes += cf->can_dlc;
592	netif_receive_skb(skb);
593
594	return 1;
595}
596
597static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
598{
599	struct m_can_priv *priv = netdev_priv(dev);
600	int work_done = 0;
601
602	if ((psr & PSR_EW) &&
603	    (priv->can.state != CAN_STATE_ERROR_WARNING)) {
604		netdev_dbg(dev, "entered error warning state\n");
605		work_done += m_can_handle_state_change(dev,
606						       CAN_STATE_ERROR_WARNING);
607	}
608
609	if ((psr & PSR_EP) &&
610	    (priv->can.state != CAN_STATE_ERROR_PASSIVE)) {
611		netdev_dbg(dev, "entered error passive state\n");
612		work_done += m_can_handle_state_change(dev,
613						       CAN_STATE_ERROR_PASSIVE);
614	}
615
616	if ((psr & PSR_BO) &&
617	    (priv->can.state != CAN_STATE_BUS_OFF)) {
618		netdev_dbg(dev, "entered error bus off state\n");
619		work_done += m_can_handle_state_change(dev,
620						       CAN_STATE_BUS_OFF);
621	}
622
623	return work_done;
624}
625
626static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
627{
628	if (irqstatus & IR_WDI)
629		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
630	if (irqstatus & IR_ELO)
631		netdev_err(dev, "Error Logging Overflow\n");
632	if (irqstatus & IR_BEU)
633		netdev_err(dev, "Bit Error Uncorrected\n");
634	if (irqstatus & IR_BEC)
635		netdev_err(dev, "Bit Error Corrected\n");
636	if (irqstatus & IR_TOO)
637		netdev_err(dev, "Timeout reached\n");
638	if (irqstatus & IR_MRAF)
639		netdev_err(dev, "Message RAM access failure occurred\n");
640}
641
642static inline bool is_lec_err(u32 psr)
643{
644	psr &= LEC_UNUSED;
645
646	return psr && (psr != LEC_UNUSED);
647}
648
649static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
650				   u32 psr)
651{
652	struct m_can_priv *priv = netdev_priv(dev);
653	int work_done = 0;
654
655	if (irqstatus & IR_RF0L)
656		work_done += m_can_handle_lost_msg(dev);
657
658	/* handle lec errors on the bus */
659	if ((priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
660	    is_lec_err(psr))
661		work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
662
663	/* other unproccessed error interrupts */
664	m_can_handle_other_err(dev, irqstatus);
665
666	return work_done;
667}
668
669static int m_can_poll(struct napi_struct *napi, int quota)
670{
671	struct net_device *dev = napi->dev;
672	struct m_can_priv *priv = netdev_priv(dev);
673	int work_done = 0;
674	u32 irqstatus, psr;
675
676	irqstatus = priv->irqstatus | m_can_read(priv, M_CAN_IR);
677	if (!irqstatus)
678		goto end;
679
680	psr = m_can_read(priv, M_CAN_PSR);
681	if (irqstatus & IR_ERR_STATE)
682		work_done += m_can_handle_state_errors(dev, psr);
683
684	if (irqstatus & IR_ERR_BUS)
685		work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
686
687	if (irqstatus & IR_RF0N)
688		work_done += m_can_do_rx_poll(dev, (quota - work_done));
689
690	if (work_done < quota) {
691		napi_complete(napi);
692		m_can_enable_all_interrupts(priv);
693	}
694
695end:
696	return work_done;
697}
698
699static irqreturn_t m_can_isr(int irq, void *dev_id)
700{
701	struct net_device *dev = (struct net_device *)dev_id;
702	struct m_can_priv *priv = netdev_priv(dev);
703	struct net_device_stats *stats = &dev->stats;
704	u32 ir;
705
706	ir = m_can_read(priv, M_CAN_IR);
707	if (!ir)
708		return IRQ_NONE;
709
710	/* ACK all irqs */
711	if (ir & IR_ALL_INT)
712		m_can_write(priv, M_CAN_IR, ir);
713
714	/* schedule NAPI in case of
715	 * - rx IRQ
716	 * - state change IRQ
717	 * - bus error IRQ and bus error reporting
718	 */
719	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL)) {
720		priv->irqstatus = ir;
721		m_can_disable_all_interrupts(priv);
722		napi_schedule(&priv->napi);
723	}
724
725	/* transmission complete interrupt */
726	if (ir & IR_TC) {
727		stats->tx_bytes += can_get_echo_skb(dev, 0);
728		stats->tx_packets++;
729		can_led_event(dev, CAN_LED_EVENT_TX);
730		netif_wake_queue(dev);
731	}
732
733	return IRQ_HANDLED;
734}
735
736static const struct can_bittiming_const m_can_bittiming_const = {
737	.name = KBUILD_MODNAME,
738	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
739	.tseg1_max = 64,
740	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
741	.tseg2_max = 16,
742	.sjw_max = 16,
743	.brp_min = 1,
744	.brp_max = 1024,
745	.brp_inc = 1,
746};
747
748static int m_can_set_bittiming(struct net_device *dev)
749{
750	struct m_can_priv *priv = netdev_priv(dev);
751	const struct can_bittiming *bt = &priv->can.bittiming;
752	u16 brp, sjw, tseg1, tseg2;
753	u32 reg_btp;
754
755	brp = bt->brp - 1;
756	sjw = bt->sjw - 1;
757	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
758	tseg2 = bt->phase_seg2 - 1;
759	reg_btp = (brp << BTR_BRP_SHIFT) | (sjw << BTR_SJW_SHIFT) |
760			(tseg1 << BTR_TSEG1_SHIFT) | (tseg2 << BTR_TSEG2_SHIFT);
761	m_can_write(priv, M_CAN_BTP, reg_btp);
762	netdev_dbg(dev, "setting BTP 0x%x\n", reg_btp);
763
764	return 0;
765}
766
767/* Configure M_CAN chip:
768 * - set rx buffer/fifo element size
769 * - configure rx fifo
770 * - accept non-matching frame into fifo 0
771 * - configure tx buffer
772 * - configure mode
773 * - setup bittiming
774 */
775static void m_can_chip_config(struct net_device *dev)
776{
777	struct m_can_priv *priv = netdev_priv(dev);
778	u32 cccr, test;
779
780	m_can_config_endisable(priv, true);
781
782	/* RX Buffer/FIFO Element Size 8 bytes data field */
783	m_can_write(priv, M_CAN_RXESC, M_CAN_RXESC_8BYTES);
784
785	/* Accept Non-matching Frames Into FIFO 0 */
786	m_can_write(priv, M_CAN_GFC, 0x0);
787
788	/* only support one Tx Buffer currently */
789	m_can_write(priv, M_CAN_TXBC, (1 << TXBC_NDTB_OFF) |
790		    priv->mcfg[MRAM_TXB].off);
791
792	/* only support 8 bytes firstly */
793	m_can_write(priv, M_CAN_TXESC, TXESC_TBDS_8BYTES);
794
795	m_can_write(priv, M_CAN_TXEFC, (1 << TXEFC_EFS_OFF) |
796		    priv->mcfg[MRAM_TXE].off);
797
798	/* rx fifo configuration, blocking mode, fifo size 1 */
799	m_can_write(priv, M_CAN_RXF0C,
800		    (priv->mcfg[MRAM_RXF0].num << RXFC_FS_OFF) |
801		    RXFC_FWM_1 | priv->mcfg[MRAM_RXF0].off);
802
803	m_can_write(priv, M_CAN_RXF1C,
804		    (priv->mcfg[MRAM_RXF1].num << RXFC_FS_OFF) |
805		    RXFC_FWM_1 | priv->mcfg[MRAM_RXF1].off);
806
807	cccr = m_can_read(priv, M_CAN_CCCR);
808	cccr &= ~(CCCR_TEST | CCCR_MON);
809	test = m_can_read(priv, M_CAN_TEST);
810	test &= ~TEST_LBCK;
811
812	if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
813		cccr |= CCCR_MON;
814
815	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
816		cccr |= CCCR_TEST;
817		test |= TEST_LBCK;
818	}
819
820	m_can_write(priv, M_CAN_CCCR, cccr);
821	m_can_write(priv, M_CAN_TEST, test);
822
823	/* enable interrupts */
824	m_can_write(priv, M_CAN_IR, IR_ALL_INT);
825	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
826		m_can_write(priv, M_CAN_IE, IR_ALL_INT & ~IR_ERR_LEC);
827	else
828		m_can_write(priv, M_CAN_IE, IR_ALL_INT);
829
830	/* route all interrupts to INT0 */
831	m_can_write(priv, M_CAN_ILS, ILS_ALL_INT0);
832
833	/* set bittiming params */
834	m_can_set_bittiming(dev);
835
836	m_can_config_endisable(priv, false);
837}
838
839static void m_can_start(struct net_device *dev)
840{
841	struct m_can_priv *priv = netdev_priv(dev);
842
843	/* basic m_can configuration */
844	m_can_chip_config(dev);
845
846	priv->can.state = CAN_STATE_ERROR_ACTIVE;
847
848	m_can_enable_all_interrupts(priv);
849}
850
851static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
852{
853	switch (mode) {
854	case CAN_MODE_START:
855		m_can_start(dev);
856		netif_wake_queue(dev);
857		break;
858	default:
859		return -EOPNOTSUPP;
860	}
861
862	return 0;
863}
864
865static void free_m_can_dev(struct net_device *dev)
866{
867	free_candev(dev);
868}
869
870static struct net_device *alloc_m_can_dev(void)
871{
872	struct net_device *dev;
873	struct m_can_priv *priv;
874
875	dev = alloc_candev(sizeof(*priv), 1);
876	if (!dev)
877		return NULL;
878
879	priv = netdev_priv(dev);
880	netif_napi_add(dev, &priv->napi, m_can_poll, M_CAN_NAPI_WEIGHT);
881
882	priv->dev = dev;
883	priv->can.bittiming_const = &m_can_bittiming_const;
884	priv->can.do_set_mode = m_can_set_mode;
885	priv->can.do_get_berr_counter = m_can_get_berr_counter;
886	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
887					CAN_CTRLMODE_LISTENONLY |
888					CAN_CTRLMODE_BERR_REPORTING;
889
890	return dev;
891}
892
893static int m_can_open(struct net_device *dev)
894{
895	struct m_can_priv *priv = netdev_priv(dev);
896	int err;
897
898	err = clk_prepare_enable(priv->hclk);
899	if (err)
900		return err;
901
902	err = clk_prepare_enable(priv->cclk);
903	if (err)
904		goto exit_disable_hclk;
905
906	/* open the can device */
907	err = open_candev(dev);
908	if (err) {
909		netdev_err(dev, "failed to open can device\n");
910		goto exit_disable_cclk;
911	}
912
913	/* register interrupt handler */
914	err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
915			  dev);
916	if (err < 0) {
917		netdev_err(dev, "failed to request interrupt\n");
918		goto exit_irq_fail;
919	}
920
921	/* start the m_can controller */
922	m_can_start(dev);
923
924	can_led_event(dev, CAN_LED_EVENT_OPEN);
925	napi_enable(&priv->napi);
926	netif_start_queue(dev);
927
928	return 0;
929
930exit_irq_fail:
931	close_candev(dev);
932exit_disable_cclk:
933	clk_disable_unprepare(priv->cclk);
934exit_disable_hclk:
935	clk_disable_unprepare(priv->hclk);
936	return err;
937}
938
939static void m_can_stop(struct net_device *dev)
940{
941	struct m_can_priv *priv = netdev_priv(dev);
942
943	/* disable all interrupts */
944	m_can_disable_all_interrupts(priv);
945
946	clk_disable_unprepare(priv->hclk);
947	clk_disable_unprepare(priv->cclk);
948
949	/* set the state as STOPPED */
950	priv->can.state = CAN_STATE_STOPPED;
951}
952
953static int m_can_close(struct net_device *dev)
954{
955	struct m_can_priv *priv = netdev_priv(dev);
956
957	netif_stop_queue(dev);
958	napi_disable(&priv->napi);
959	m_can_stop(dev);
960	free_irq(dev->irq, dev);
961	close_candev(dev);
962	can_led_event(dev, CAN_LED_EVENT_STOP);
963
964	return 0;
965}
966
967static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
968				    struct net_device *dev)
969{
970	struct m_can_priv *priv = netdev_priv(dev);
971	struct can_frame *cf = (struct can_frame *)skb->data;
972	u32 id;
973
974	if (can_dropped_invalid_skb(dev, skb))
975		return NETDEV_TX_OK;
976
977	netif_stop_queue(dev);
978
979	if (cf->can_id & CAN_EFF_FLAG) {
980		id = cf->can_id & CAN_EFF_MASK;
981		id |= TX_BUF_XTD;
982	} else {
983		id = ((cf->can_id & CAN_SFF_MASK) << 18);
984	}
985
986	if (cf->can_id & CAN_RTR_FLAG)
987		id |= TX_BUF_RTR;
988
989	/* message ram configuration */
990	m_can_fifo_write(priv, 0, M_CAN_FIFO_ID, id);
991	m_can_fifo_write(priv, 0, M_CAN_FIFO_DLC, cf->can_dlc << 16);
992	m_can_fifo_write(priv, 0, M_CAN_FIFO_DATA(0), *(u32 *)(cf->data + 0));
993	m_can_fifo_write(priv, 0, M_CAN_FIFO_DATA(1), *(u32 *)(cf->data + 4));
994	can_put_echo_skb(skb, dev, 0);
995
996	/* enable first TX buffer to start transfer  */
997	m_can_write(priv, M_CAN_TXBTIE, 0x1);
998	m_can_write(priv, M_CAN_TXBAR, 0x1);
999
1000	return NETDEV_TX_OK;
1001}
1002
1003static const struct net_device_ops m_can_netdev_ops = {
1004	.ndo_open = m_can_open,
1005	.ndo_stop = m_can_close,
1006	.ndo_start_xmit = m_can_start_xmit,
1007	.ndo_change_mtu = can_change_mtu,
1008};
1009
1010static int register_m_can_dev(struct net_device *dev)
1011{
1012	dev->flags |= IFF_ECHO;	/* we support local echo */
1013	dev->netdev_ops = &m_can_netdev_ops;
1014
1015	return register_candev(dev);
1016}
1017
1018static int m_can_of_parse_mram(struct platform_device *pdev,
1019			       struct m_can_priv *priv)
1020{
1021	struct device_node *np = pdev->dev.of_node;
1022	struct resource *res;
1023	void __iomem *addr;
1024	u32 out_val[MRAM_CFG_LEN];
1025	int i, start, end, ret;
1026
1027	/* message ram could be shared */
1028	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "message_ram");
1029	if (!res)
1030		return -ENODEV;
1031
1032	addr = devm_ioremap(&pdev->dev, res->start, resource_size(res));
1033	if (!addr)
1034		return -ENOMEM;
1035
1036	/* get message ram configuration */
1037	ret = of_property_read_u32_array(np, "bosch,mram-cfg",
1038					 out_val, sizeof(out_val) / 4);
1039	if (ret) {
1040		dev_err(&pdev->dev, "can not get message ram configuration\n");
1041		return -ENODEV;
1042	}
1043
1044	priv->mram_base = addr;
1045	priv->mcfg[MRAM_SIDF].off = out_val[0];
1046	priv->mcfg[MRAM_SIDF].num = out_val[1];
1047	priv->mcfg[MRAM_XIDF].off = priv->mcfg[MRAM_SIDF].off +
1048			priv->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1049	priv->mcfg[MRAM_XIDF].num = out_val[2];
1050	priv->mcfg[MRAM_RXF0].off = priv->mcfg[MRAM_XIDF].off +
1051			priv->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1052	priv->mcfg[MRAM_RXF0].num = out_val[3] & RXFC_FS_MASK;
1053	priv->mcfg[MRAM_RXF1].off = priv->mcfg[MRAM_RXF0].off +
1054			priv->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1055	priv->mcfg[MRAM_RXF1].num = out_val[4] & RXFC_FS_MASK;
1056	priv->mcfg[MRAM_RXB].off = priv->mcfg[MRAM_RXF1].off +
1057			priv->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1058	priv->mcfg[MRAM_RXB].num = out_val[5];
1059	priv->mcfg[MRAM_TXE].off = priv->mcfg[MRAM_RXB].off +
1060			priv->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1061	priv->mcfg[MRAM_TXE].num = out_val[6];
1062	priv->mcfg[MRAM_TXB].off = priv->mcfg[MRAM_TXE].off +
1063			priv->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1064	priv->mcfg[MRAM_TXB].num = out_val[7] & TXBC_NDTB_MASK;
1065
1066	dev_dbg(&pdev->dev, "mram_base %p sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1067		priv->mram_base,
1068		priv->mcfg[MRAM_SIDF].off, priv->mcfg[MRAM_SIDF].num,
1069		priv->mcfg[MRAM_XIDF].off, priv->mcfg[MRAM_XIDF].num,
1070		priv->mcfg[MRAM_RXF0].off, priv->mcfg[MRAM_RXF0].num,
1071		priv->mcfg[MRAM_RXF1].off, priv->mcfg[MRAM_RXF1].num,
1072		priv->mcfg[MRAM_RXB].off, priv->mcfg[MRAM_RXB].num,
1073		priv->mcfg[MRAM_TXE].off, priv->mcfg[MRAM_TXE].num,
1074		priv->mcfg[MRAM_TXB].off, priv->mcfg[MRAM_TXB].num);
1075
1076	/* initialize the entire Message RAM in use to avoid possible
1077	 * ECC/parity checksum errors when reading an uninitialized buffer
1078	 */
1079	start = priv->mcfg[MRAM_SIDF].off;
1080	end = priv->mcfg[MRAM_TXB].off +
1081		priv->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1082	for (i = start; i < end; i += 4)
1083		writel(0x0, priv->mram_base + i);
1084
1085	return 0;
1086}
1087
1088static int m_can_plat_probe(struct platform_device *pdev)
1089{
1090	struct net_device *dev;
1091	struct m_can_priv *priv;
1092	struct resource *res;
1093	void __iomem *addr;
1094	struct clk *hclk, *cclk;
1095	int irq, ret;
1096
1097	hclk = devm_clk_get(&pdev->dev, "hclk");
1098	cclk = devm_clk_get(&pdev->dev, "cclk");
1099	if (IS_ERR(hclk) || IS_ERR(cclk)) {
1100		dev_err(&pdev->dev, "no clock find\n");
1101		return -ENODEV;
1102	}
1103
1104	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "m_can");
1105	addr = devm_ioremap_resource(&pdev->dev, res);
1106	irq = platform_get_irq_byname(pdev, "int0");
1107	if (IS_ERR(addr) || irq < 0)
1108		return -EINVAL;
1109
1110	/* allocate the m_can device */
1111	dev = alloc_m_can_dev();
1112	if (!dev)
1113		return -ENOMEM;
1114
1115	priv = netdev_priv(dev);
1116	dev->irq = irq;
1117	priv->base = addr;
1118	priv->device = &pdev->dev;
1119	priv->hclk = hclk;
1120	priv->cclk = cclk;
1121	priv->can.clock.freq = clk_get_rate(cclk);
1122
1123	ret = m_can_of_parse_mram(pdev, priv);
1124	if (ret)
1125		goto failed_free_dev;
1126
1127	platform_set_drvdata(pdev, dev);
1128	SET_NETDEV_DEV(dev, &pdev->dev);
1129
1130	ret = register_m_can_dev(dev);
1131	if (ret) {
1132		dev_err(&pdev->dev, "registering %s failed (err=%d)\n",
1133			KBUILD_MODNAME, ret);
1134		goto failed_free_dev;
1135	}
1136
1137	devm_can_led_init(dev);
1138
1139	dev_info(&pdev->dev, "%s device registered (regs=%p, irq=%d)\n",
1140		 KBUILD_MODNAME, priv->base, dev->irq);
1141
1142	return 0;
1143
1144failed_free_dev:
1145	free_m_can_dev(dev);
1146	return ret;
1147}
1148
1149static __maybe_unused int m_can_suspend(struct device *dev)
1150{
1151	struct net_device *ndev = dev_get_drvdata(dev);
1152	struct m_can_priv *priv = netdev_priv(ndev);
1153
1154	if (netif_running(ndev)) {
1155		netif_stop_queue(ndev);
1156		netif_device_detach(ndev);
1157	}
1158
1159	/* TODO: enter low power */
1160
1161	priv->can.state = CAN_STATE_SLEEPING;
1162
1163	return 0;
1164}
1165
1166static __maybe_unused int m_can_resume(struct device *dev)
1167{
1168	struct net_device *ndev = dev_get_drvdata(dev);
1169	struct m_can_priv *priv = netdev_priv(ndev);
1170
1171	/* TODO: exit low power */
1172
1173	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1174
1175	if (netif_running(ndev)) {
1176		netif_device_attach(ndev);
1177		netif_start_queue(ndev);
1178	}
1179
1180	return 0;
1181}
1182
1183static void unregister_m_can_dev(struct net_device *dev)
1184{
1185	unregister_candev(dev);
1186}
1187
1188static int m_can_plat_remove(struct platform_device *pdev)
1189{
1190	struct net_device *dev = platform_get_drvdata(pdev);
1191
1192	unregister_m_can_dev(dev);
1193	platform_set_drvdata(pdev, NULL);
1194
1195	free_m_can_dev(dev);
1196
1197	return 0;
1198}
1199
1200static const struct dev_pm_ops m_can_pmops = {
1201	SET_SYSTEM_SLEEP_PM_OPS(m_can_suspend, m_can_resume)
1202};
1203
1204static const struct of_device_id m_can_of_table[] = {
1205	{ .compatible = "bosch,m_can", .data = NULL },
1206	{ /* sentinel */ },
1207};
1208MODULE_DEVICE_TABLE(of, m_can_of_table);
1209
1210static struct platform_driver m_can_plat_driver = {
1211	.driver = {
1212		.name = KBUILD_MODNAME,
1213		.of_match_table = m_can_of_table,
1214		.pm     = &m_can_pmops,
1215	},
1216	.probe = m_can_plat_probe,
1217	.remove = m_can_plat_remove,
1218};
1219
1220module_platform_driver(m_can_plat_driver);
1221
1222MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
1223MODULE_LICENSE("GPL v2");
1224MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
1225