pch_can.c revision 8ac9702b9d5d81b819fc7d6b4f6abad22af01f3c
1/*
2 * Copyright (C) 1999 - 2010 Intel Corporation.
3 * Copyright (C) 2010 OKI SEMICONDUCTOR Co., LTD.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307, USA.
17 */
18
19#include <linux/interrupt.h>
20#include <linux/delay.h>
21#include <linux/io.h>
22#include <linux/module.h>
23#include <linux/sched.h>
24#include <linux/pci.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
27#include <linux/types.h>
28#include <linux/errno.h>
29#include <linux/netdevice.h>
30#include <linux/skbuff.h>
31#include <linux/can.h>
32#include <linux/can/dev.h>
33#include <linux/can/error.h>
34
35#define PCH_ENABLE		1 /* The enable flag */
36#define PCH_DISABLE		0 /* The disable flag */
37#define PCH_CTRL_INIT		BIT(0) /* The INIT bit of CANCONT register. */
38#define PCH_CTRL_IE		BIT(1) /* The IE bit of CAN control register */
39#define PCH_CTRL_IE_SIE_EIE	(BIT(3) | BIT(2) | BIT(1))
40#define PCH_CTRL_CCE		BIT(6)
41#define PCH_CTRL_OPT		BIT(7) /* The OPT bit of CANCONT register. */
42#define PCH_OPT_SILENT		BIT(3) /* The Silent bit of CANOPT reg. */
43#define PCH_OPT_LBACK		BIT(4) /* The LoopBack bit of CANOPT reg. */
44
45#define PCH_CMASK_RX_TX_SET	0x00f3
46#define PCH_CMASK_RX_TX_GET	0x0073
47#define PCH_CMASK_ALL		0xff
48#define PCH_CMASK_NEWDAT	BIT(2)
49#define PCH_CMASK_CLRINTPND	BIT(3)
50#define PCH_CMASK_CTRL		BIT(4)
51#define PCH_CMASK_ARB		BIT(5)
52#define PCH_CMASK_MASK		BIT(6)
53#define PCH_CMASK_RDWR		BIT(7)
54#define PCH_IF_MCONT_NEWDAT	BIT(15)
55#define PCH_IF_MCONT_MSGLOST	BIT(14)
56#define PCH_IF_MCONT_INTPND	BIT(13)
57#define PCH_IF_MCONT_UMASK	BIT(12)
58#define PCH_IF_MCONT_TXIE	BIT(11)
59#define PCH_IF_MCONT_RXIE	BIT(10)
60#define PCH_IF_MCONT_RMTEN	BIT(9)
61#define PCH_IF_MCONT_TXRQXT	BIT(8)
62#define PCH_IF_MCONT_EOB	BIT(7)
63#define PCH_IF_MCONT_DLC	(BIT(0) | BIT(1) | BIT(2) | BIT(3))
64#define PCH_MASK2_MDIR_MXTD	(BIT(14) | BIT(15))
65#define PCH_ID2_DIR		BIT(13)
66#define PCH_ID2_XTD		BIT(14)
67#define PCH_ID_MSGVAL		BIT(15)
68#define PCH_IF_CREQ_BUSY	BIT(15)
69
70#define PCH_STATUS_INT		0x8000
71#define PCH_REC			0x00007f00
72#define PCH_TEC			0x000000ff
73
74#define PCH_TX_OK		BIT(3)
75#define PCH_RX_OK		BIT(4)
76#define PCH_EPASSIV		BIT(5)
77#define PCH_EWARN		BIT(6)
78#define PCH_BUS_OFF		BIT(7)
79
80/* bit position of certain controller bits. */
81#define PCH_BIT_BRP		0
82#define PCH_BIT_SJW		6
83#define PCH_BIT_TSEG1		8
84#define PCH_BIT_TSEG2		12
85#define PCH_BIT_BRPE_BRPE	6
86#define PCH_MSK_BITT_BRP	0x3f
87#define PCH_MSK_BRPE_BRPE	0x3c0
88#define PCH_MSK_CTRL_IE_SIE_EIE	0x07
89#define PCH_COUNTER_LIMIT	10
90
91#define PCH_CAN_CLK		50000000	/* 50MHz */
92
93/* Define the number of message object.
94 * PCH CAN communications are done via Message RAM.
95 * The Message RAM consists of 32 message objects. */
96#define PCH_RX_OBJ_NUM		26
97#define PCH_TX_OBJ_NUM		6
98#define PCH_RX_OBJ_START	1
99#define PCH_RX_OBJ_END		PCH_RX_OBJ_NUM
100#define PCH_TX_OBJ_START	(PCH_RX_OBJ_END + 1)
101#define PCH_TX_OBJ_END		(PCH_RX_OBJ_NUM + PCH_TX_OBJ_NUM)
102
103#define PCH_FIFO_THRESH		16
104
105/* TxRqst2 show status of MsgObjNo.17~32 */
106#define PCH_TREQ2_TX_MASK	(((1 << PCH_TX_OBJ_NUM) - 1) <<\
107							(PCH_RX_OBJ_END - 16))
108
109enum pch_ifreg {
110	PCH_RX_IFREG,
111	PCH_TX_IFREG,
112};
113
114enum pch_can_err {
115	PCH_STUF_ERR = 1,
116	PCH_FORM_ERR,
117	PCH_ACK_ERR,
118	PCH_BIT1_ERR,
119	PCH_BIT0_ERR,
120	PCH_CRC_ERR,
121	PCH_LEC_ALL,
122};
123
124enum pch_can_mode {
125	PCH_CAN_ENABLE,
126	PCH_CAN_DISABLE,
127	PCH_CAN_ALL,
128	PCH_CAN_NONE,
129	PCH_CAN_STOP,
130	PCH_CAN_RUN
131};
132
133struct pch_can_if_regs {
134	u32 creq;
135	u32 cmask;
136	u32 mask1;
137	u32 mask2;
138	u32 id1;
139	u32 id2;
140	u32 mcont;
141	u32 data[4];
142	u32 rsv[13];
143};
144
145struct pch_can_regs {
146	u32 cont;
147	u32 stat;
148	u32 errc;
149	u32 bitt;
150	u32 intr;
151	u32 opt;
152	u32 brpe;
153	u32 reserve;
154	struct pch_can_if_regs ifregs[2]; /* [0]=if1  [1]=if2 */
155	u32 reserve1[8];
156	u32 treq1;
157	u32 treq2;
158	u32 reserve2[6];
159	u32 data1;
160	u32 data2;
161	u32 reserve3[6];
162	u32 canipend1;
163	u32 canipend2;
164	u32 reserve4[6];
165	u32 canmval1;
166	u32 canmval2;
167	u32 reserve5[37];
168	u32 srst;
169};
170
171struct pch_can_priv {
172	struct can_priv can;
173	unsigned int can_num;
174	struct pci_dev *dev;
175	int tx_enable[PCH_TX_OBJ_END];
176	int rx_enable[PCH_TX_OBJ_END];
177	int rx_link[PCH_TX_OBJ_END];
178	unsigned int int_enables;
179	unsigned int int_stat;
180	struct net_device *ndev;
181	unsigned int msg_obj[PCH_TX_OBJ_END];
182	struct pch_can_regs __iomem *regs;
183	struct napi_struct napi;
184	unsigned int tx_obj;	/* Point next Tx Obj index */
185	unsigned int use_msi;
186};
187
188static struct can_bittiming_const pch_can_bittiming_const = {
189	.name = KBUILD_MODNAME,
190	.tseg1_min = 1,
191	.tseg1_max = 16,
192	.tseg2_min = 1,
193	.tseg2_max = 8,
194	.sjw_max = 4,
195	.brp_min = 1,
196	.brp_max = 1024, /* 6bit + extended 4bit */
197	.brp_inc = 1,
198};
199
200static DEFINE_PCI_DEVICE_TABLE(pch_pci_tbl) = {
201	{PCI_VENDOR_ID_INTEL, 0x8818, PCI_ANY_ID, PCI_ANY_ID,},
202	{0,}
203};
204MODULE_DEVICE_TABLE(pci, pch_pci_tbl);
205
206static inline void pch_can_bit_set(void __iomem *addr, u32 mask)
207{
208	iowrite32(ioread32(addr) | mask, addr);
209}
210
211static inline void pch_can_bit_clear(void __iomem *addr, u32 mask)
212{
213	iowrite32(ioread32(addr) & ~mask, addr);
214}
215
216static void pch_can_set_run_mode(struct pch_can_priv *priv,
217				 enum pch_can_mode mode)
218{
219	switch (mode) {
220	case PCH_CAN_RUN:
221		pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_INIT);
222		break;
223
224	case PCH_CAN_STOP:
225		pch_can_bit_set(&priv->regs->cont, PCH_CTRL_INIT);
226		break;
227
228	default:
229		dev_err(&priv->ndev->dev, "%s -> Invalid Mode.\n", __func__);
230		break;
231	}
232}
233
234static void pch_can_set_optmode(struct pch_can_priv *priv)
235{
236	u32 reg_val = ioread32(&priv->regs->opt);
237
238	if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
239		reg_val |= PCH_OPT_SILENT;
240
241	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
242		reg_val |= PCH_OPT_LBACK;
243
244	pch_can_bit_set(&priv->regs->cont, PCH_CTRL_OPT);
245	iowrite32(reg_val, &priv->regs->opt);
246}
247
248static void pch_can_set_int_custom(struct pch_can_priv *priv)
249{
250	/* Clearing the IE, SIE and EIE bits of Can control register. */
251	pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
252
253	/* Appropriately setting them. */
254	pch_can_bit_set(&priv->regs->cont,
255			((priv->int_enables & PCH_MSK_CTRL_IE_SIE_EIE) << 1));
256}
257
258/* This function retrieves interrupt enabled for the CAN device. */
259static void pch_can_get_int_enables(struct pch_can_priv *priv, u32 *enables)
260{
261	/* Obtaining the status of IE, SIE and EIE interrupt bits. */
262	*enables = ((ioread32(&priv->regs->cont) & PCH_CTRL_IE_SIE_EIE) >> 1);
263}
264
265static void pch_can_set_int_enables(struct pch_can_priv *priv,
266				    enum pch_can_mode interrupt_no)
267{
268	switch (interrupt_no) {
269	case PCH_CAN_ENABLE:
270		pch_can_bit_set(&priv->regs->cont, PCH_CTRL_IE);
271		break;
272
273	case PCH_CAN_DISABLE:
274		pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE);
275		break;
276
277	case PCH_CAN_ALL:
278		pch_can_bit_set(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
279		break;
280
281	case PCH_CAN_NONE:
282		pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
283		break;
284
285	default:
286		dev_err(&priv->ndev->dev, "Invalid interrupt number.\n");
287		break;
288	}
289}
290
291static void pch_can_check_if_busy(u32 __iomem *creq_addr, u32 num)
292{
293	u32 counter = PCH_COUNTER_LIMIT;
294	u32 ifx_creq;
295
296	iowrite32(num, creq_addr);
297	while (counter) {
298		ifx_creq = ioread32(creq_addr) & PCH_IF_CREQ_BUSY;
299		if (!ifx_creq)
300			break;
301		counter--;
302		udelay(1);
303	}
304	if (!counter)
305		pr_err("%s:IF1 BUSY Flag is set forever.\n", __func__);
306}
307
308static void pch_can_set_rxtx(struct pch_can_priv *priv, u32 buff_num,
309			     u32 set, enum pch_ifreg dir)
310{
311	u32 ie;
312
313	if (dir)
314		ie = PCH_IF_MCONT_TXIE;
315	else
316		ie = PCH_IF_MCONT_RXIE;
317
318	/* Reading the receive buffer data from RAM to Interface1 registers */
319	iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
320	pch_can_check_if_busy(&priv->regs->ifregs[dir].creq, buff_num);
321
322	/* Setting the IF1MASK1 register to access MsgVal and RxIE bits */
323	iowrite32(PCH_CMASK_RDWR | PCH_CMASK_ARB | PCH_CMASK_CTRL,
324		  &priv->regs->ifregs[dir].cmask);
325
326	if (set == PCH_ENABLE) {
327		/* Setting the MsgVal and RxIE bits */
328		pch_can_bit_set(&priv->regs->ifregs[dir].mcont, ie);
329		pch_can_bit_set(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
330
331	} else if (set == PCH_DISABLE) {
332		/* Resetting the MsgVal and RxIE bits */
333		pch_can_bit_clear(&priv->regs->ifregs[dir].mcont, ie);
334		pch_can_bit_clear(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
335	}
336
337	pch_can_check_if_busy(&priv->regs->ifregs[dir].creq, buff_num);
338}
339
340static void pch_can_set_rx_all(struct pch_can_priv *priv, u32 set)
341{
342	int i;
343
344	/* Traversing to obtain the object configured as receivers. */
345	for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++)
346		pch_can_set_rxtx(priv, i, set, PCH_RX_IFREG);
347}
348
349static void pch_can_set_tx_all(struct pch_can_priv *priv, u32 set)
350{
351	int i;
352
353	/* Traversing to obtain the object configured as transmit object. */
354	for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
355		pch_can_set_rxtx(priv, i, set, PCH_TX_IFREG);
356}
357
358static u32 pch_can_get_rxtx_ir(struct pch_can_priv *priv, u32 buff_num,
359			       enum pch_ifreg dir)
360{
361	u32 ie, enable;
362
363	if (dir)
364		ie = PCH_IF_MCONT_RXIE;
365	else
366		ie = PCH_IF_MCONT_TXIE;
367
368	iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
369	pch_can_check_if_busy(&priv->regs->ifregs[dir].creq, buff_num);
370
371	if (((ioread32(&priv->regs->ifregs[dir].id2)) & PCH_ID_MSGVAL) &&
372			((ioread32(&priv->regs->ifregs[dir].mcont)) & ie)) {
373		enable = 1;
374	} else {
375		enable = 0;
376	}
377	return enable;
378}
379
380static int pch_can_int_pending(struct pch_can_priv *priv)
381{
382	return ioread32(&priv->regs->intr) & 0xffff;
383}
384
385static void pch_can_set_rx_buffer_link(struct pch_can_priv *priv,
386				       u32 buffer_num, u32 set)
387{
388	iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
389	pch_can_check_if_busy(&priv->regs->ifregs[0].creq, buffer_num);
390	iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
391		  &priv->regs->ifregs[0].cmask);
392	if (set == PCH_ENABLE)
393		pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
394				  PCH_IF_MCONT_EOB);
395	else
396		pch_can_bit_set(&priv->regs->ifregs[0].mcont, PCH_IF_MCONT_EOB);
397
398	pch_can_check_if_busy(&priv->regs->ifregs[0].creq, buffer_num);
399}
400
401static void pch_can_get_rx_buffer_link(struct pch_can_priv *priv,
402				       u32 buffer_num, u32 *link)
403{
404	iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
405	pch_can_check_if_busy(&priv->regs->ifregs[0].creq, buffer_num);
406
407	if (ioread32(&priv->regs->ifregs[0].mcont) & PCH_IF_MCONT_EOB)
408		*link = PCH_DISABLE;
409	else
410		*link = PCH_ENABLE;
411}
412
413static void pch_can_clear_buffers(struct pch_can_priv *priv)
414{
415	int i;
416
417	for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
418		iowrite32(PCH_CMASK_RX_TX_SET, &priv->regs->ifregs[0].cmask);
419		iowrite32(0xffff, &priv->regs->ifregs[0].mask1);
420		iowrite32(0xffff, &priv->regs->ifregs[0].mask2);
421		iowrite32(0x0, &priv->regs->ifregs[0].id1);
422		iowrite32(0x0, &priv->regs->ifregs[0].id2);
423		iowrite32(0x0, &priv->regs->ifregs[0].mcont);
424		iowrite32(0x0, &priv->regs->ifregs[0].data[0]);
425		iowrite32(0x0, &priv->regs->ifregs[0].data[1]);
426		iowrite32(0x0, &priv->regs->ifregs[0].data[2]);
427		iowrite32(0x0, &priv->regs->ifregs[0].data[3]);
428		iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
429			  PCH_CMASK_ARB | PCH_CMASK_CTRL,
430			  &priv->regs->ifregs[0].cmask);
431		pch_can_check_if_busy(&priv->regs->ifregs[0].creq, i);
432	}
433
434	for (i = PCH_TX_OBJ_START;  i <= PCH_TX_OBJ_END; i++) {
435		iowrite32(PCH_CMASK_RX_TX_SET, &priv->regs->ifregs[1].cmask);
436		iowrite32(0xffff, &priv->regs->ifregs[1].mask1);
437		iowrite32(0xffff, &priv->regs->ifregs[1].mask2);
438		iowrite32(0x0, &priv->regs->ifregs[1].id1);
439		iowrite32(0x0, &priv->regs->ifregs[1].id2);
440		iowrite32(0x0, &priv->regs->ifregs[1].mcont);
441		iowrite32(0x0, &priv->regs->ifregs[1].data[0]);
442		iowrite32(0x0, &priv->regs->ifregs[1].data[1]);
443		iowrite32(0x0, &priv->regs->ifregs[1].data[2]);
444		iowrite32(0x0, &priv->regs->ifregs[1].data[3]);
445		iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
446			  PCH_CMASK_ARB | PCH_CMASK_CTRL,
447			  &priv->regs->ifregs[1].cmask);
448		pch_can_check_if_busy(&priv->regs->ifregs[1].creq, i);
449	}
450}
451
452static void pch_can_config_rx_tx_buffers(struct pch_can_priv *priv)
453{
454	int i;
455
456	for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
457		iowrite32(PCH_CMASK_RX_TX_GET,
458			&priv->regs->ifregs[0].cmask);
459		pch_can_check_if_busy(&priv->regs->ifregs[0].creq, i);
460
461		iowrite32(0x0, &priv->regs->ifregs[0].id1);
462		iowrite32(0x0, &priv->regs->ifregs[0].id2);
463
464		pch_can_bit_set(&priv->regs->ifregs[0].mcont,
465				PCH_IF_MCONT_UMASK);
466
467		/* Set FIFO mode set to 0 except last Rx Obj*/
468		pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
469				  PCH_IF_MCONT_EOB);
470		/* In case FIFO mode, Last EoB of Rx Obj must be 1 */
471		if (i == PCH_RX_OBJ_END)
472			pch_can_bit_set(&priv->regs->ifregs[0].mcont,
473					  PCH_IF_MCONT_EOB);
474
475		iowrite32(0, &priv->regs->ifregs[0].mask1);
476		pch_can_bit_clear(&priv->regs->ifregs[0].mask2,
477				  0x1fff | PCH_MASK2_MDIR_MXTD);
478
479		/* Setting CMASK for writing */
480		iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
481			  PCH_CMASK_ARB | PCH_CMASK_CTRL,
482			  &priv->regs->ifregs[0].cmask);
483
484		pch_can_check_if_busy(&priv->regs->ifregs[0].creq, i);
485	}
486
487	for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
488		iowrite32(PCH_CMASK_RX_TX_GET,
489			&priv->regs->ifregs[1].cmask);
490		pch_can_check_if_busy(&priv->regs->ifregs[1].creq, i);
491
492		/* Resetting DIR bit for reception */
493		iowrite32(0x0, &priv->regs->ifregs[1].id1);
494		iowrite32(0x0, &priv->regs->ifregs[1].id2);
495		pch_can_bit_set(&priv->regs->ifregs[1].id2, PCH_ID2_DIR);
496
497		/* Setting EOB bit for transmitter */
498		iowrite32(PCH_IF_MCONT_EOB, &priv->regs->ifregs[1].mcont);
499
500		pch_can_bit_set(&priv->regs->ifregs[1].mcont,
501				PCH_IF_MCONT_UMASK);
502
503		iowrite32(0, &priv->regs->ifregs[1].mask1);
504		pch_can_bit_clear(&priv->regs->ifregs[1].mask2, 0x1fff);
505
506		/* Setting CMASK for writing */
507		iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
508			  PCH_CMASK_ARB | PCH_CMASK_CTRL,
509			  &priv->regs->ifregs[1].cmask);
510
511		pch_can_check_if_busy(&priv->regs->ifregs[1].creq, i);
512	}
513}
514
515static void pch_can_init(struct pch_can_priv *priv)
516{
517	/* Stopping the Can device. */
518	pch_can_set_run_mode(priv, PCH_CAN_STOP);
519
520	/* Clearing all the message object buffers. */
521	pch_can_clear_buffers(priv);
522
523	/* Configuring the respective message object as either rx/tx object. */
524	pch_can_config_rx_tx_buffers(priv);
525
526	/* Enabling the interrupts. */
527	pch_can_set_int_enables(priv, PCH_CAN_ALL);
528}
529
530static void pch_can_release(struct pch_can_priv *priv)
531{
532	/* Stooping the CAN device. */
533	pch_can_set_run_mode(priv, PCH_CAN_STOP);
534
535	/* Disabling the interrupts. */
536	pch_can_set_int_enables(priv, PCH_CAN_NONE);
537
538	/* Disabling all the receive object. */
539	pch_can_set_rx_all(priv, 0);
540
541	/* Disabling all the transmit object. */
542	pch_can_set_tx_all(priv, 0);
543}
544
545/* This function clears interrupt(s) from the CAN device. */
546static void pch_can_int_clr(struct pch_can_priv *priv, u32 mask)
547{
548	if (mask == PCH_STATUS_INT) {
549		ioread32(&priv->regs->stat);
550		return;
551	}
552
553	/* Clear interrupt for transmit object */
554	if ((mask >= PCH_RX_OBJ_START) && (mask <= PCH_RX_OBJ_END)) {
555		/* Setting CMASK for clearing the reception interrupts. */
556		iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
557			  &priv->regs->ifregs[0].cmask);
558
559		/* Clearing the Dir bit. */
560		pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR);
561
562		/* Clearing NewDat & IntPnd */
563		pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
564				  PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND);
565
566		pch_can_check_if_busy(&priv->regs->ifregs[0].creq, mask);
567	} else if ((mask >= PCH_TX_OBJ_START) && (mask <= PCH_TX_OBJ_END)) {
568		/* Setting CMASK for clearing interrupts for
569					 frame transmission. */
570		iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
571			  &priv->regs->ifregs[1].cmask);
572
573		/* Resetting the ID registers. */
574		pch_can_bit_set(&priv->regs->ifregs[1].id2,
575			       PCH_ID2_DIR | (0x7ff << 2));
576		iowrite32(0x0, &priv->regs->ifregs[1].id1);
577
578		/* Claring NewDat, TxRqst & IntPnd */
579		pch_can_bit_clear(&priv->regs->ifregs[1].mcont,
580				  PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND |
581				  PCH_IF_MCONT_TXRQXT);
582		pch_can_check_if_busy(&priv->regs->ifregs[1].creq, mask);
583	}
584}
585
586static int pch_can_get_buffer_status(struct pch_can_priv *priv)
587{
588	return (ioread32(&priv->regs->treq1) & 0xffff) |
589	       ((ioread32(&priv->regs->treq2) & 0xffff) << 16);
590}
591
592static void pch_can_reset(struct pch_can_priv *priv)
593{
594	/* write to sw reset register */
595	iowrite32(1, &priv->regs->srst);
596	iowrite32(0, &priv->regs->srst);
597}
598
599static void pch_can_error(struct net_device *ndev, u32 status)
600{
601	struct sk_buff *skb;
602	struct pch_can_priv *priv = netdev_priv(ndev);
603	struct can_frame *cf;
604	u32 errc, lec;
605	struct net_device_stats *stats = &(priv->ndev->stats);
606	enum can_state state = priv->can.state;
607
608	skb = alloc_can_err_skb(ndev, &cf);
609	if (!skb)
610		return;
611
612	if (status & PCH_BUS_OFF) {
613		pch_can_set_tx_all(priv, 0);
614		pch_can_set_rx_all(priv, 0);
615		state = CAN_STATE_BUS_OFF;
616		cf->can_id |= CAN_ERR_BUSOFF;
617		can_bus_off(ndev);
618		pch_can_set_run_mode(priv, PCH_CAN_RUN);
619		dev_err(&ndev->dev, "%s -> Bus Off occurres.\n", __func__);
620	}
621
622	/* Warning interrupt. */
623	if (status & PCH_EWARN) {
624		state = CAN_STATE_ERROR_WARNING;
625		priv->can.can_stats.error_warning++;
626		cf->can_id |= CAN_ERR_CRTL;
627		errc = ioread32(&priv->regs->errc);
628		if (((errc & PCH_REC) >> 8) > 96)
629			cf->data[1] |= CAN_ERR_CRTL_RX_WARNING;
630		if ((errc & PCH_TEC) > 96)
631			cf->data[1] |= CAN_ERR_CRTL_TX_WARNING;
632		dev_warn(&ndev->dev,
633			"%s -> Error Counter is more than 96.\n", __func__);
634	}
635	/* Error passive interrupt. */
636	if (status & PCH_EPASSIV) {
637		priv->can.can_stats.error_passive++;
638		state = CAN_STATE_ERROR_PASSIVE;
639		cf->can_id |= CAN_ERR_CRTL;
640		errc = ioread32(&priv->regs->errc);
641		if (((errc & PCH_REC) >> 8) > 127)
642			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
643		if ((errc & PCH_TEC) > 127)
644			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
645		dev_err(&ndev->dev,
646			"%s -> CAN controller is ERROR PASSIVE .\n", __func__);
647	}
648
649	lec = status & PCH_LEC_ALL;
650	switch (lec) {
651	case PCH_STUF_ERR:
652		cf->data[2] |= CAN_ERR_PROT_STUFF;
653		priv->can.can_stats.bus_error++;
654		stats->rx_errors++;
655		break;
656	case PCH_FORM_ERR:
657		cf->data[2] |= CAN_ERR_PROT_FORM;
658		priv->can.can_stats.bus_error++;
659		stats->rx_errors++;
660		break;
661	case PCH_ACK_ERR:
662		cf->can_id |= CAN_ERR_ACK;
663		priv->can.can_stats.bus_error++;
664		stats->rx_errors++;
665		break;
666	case PCH_BIT1_ERR:
667	case PCH_BIT0_ERR:
668		cf->data[2] |= CAN_ERR_PROT_BIT;
669		priv->can.can_stats.bus_error++;
670		stats->rx_errors++;
671		break;
672	case PCH_CRC_ERR:
673		cf->data[2] |= CAN_ERR_PROT_LOC_CRC_SEQ |
674			       CAN_ERR_PROT_LOC_CRC_DEL;
675		priv->can.can_stats.bus_error++;
676		stats->rx_errors++;
677		break;
678	case PCH_LEC_ALL: /* Written by CPU. No error status */
679		break;
680	}
681
682	priv->can.state = state;
683	netif_rx(skb);
684
685	stats->rx_packets++;
686	stats->rx_bytes += cf->can_dlc;
687}
688
689static irqreturn_t pch_can_interrupt(int irq, void *dev_id)
690{
691	struct net_device *ndev = (struct net_device *)dev_id;
692	struct pch_can_priv *priv = netdev_priv(ndev);
693
694	pch_can_set_int_enables(priv, PCH_CAN_NONE);
695
696	napi_schedule(&priv->napi);
697
698	return IRQ_HANDLED;
699}
700
701static int pch_can_rx_normal(struct net_device *ndev, u32 int_stat)
702{
703	u32 reg;
704	canid_t id;
705	u32 ide;
706	u32 rtr;
707	int i, k;
708	int rcv_pkts = 0;
709	struct sk_buff *skb;
710	struct can_frame *cf;
711	struct pch_can_priv *priv = netdev_priv(ndev);
712	struct net_device_stats *stats = &(priv->ndev->stats);
713	u16 data_reg;
714
715	/* Reading the messsage object from the Message RAM */
716	iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
717	pch_can_check_if_busy(&priv->regs->ifregs[0].creq, int_stat);
718
719	/* Reading the MCONT register. */
720	reg = ioread32(&priv->regs->ifregs[0].mcont);
721	reg &= 0xffff;
722
723	for (k = int_stat; !(reg & PCH_IF_MCONT_EOB); k++) {
724		/* If MsgLost bit set. */
725		if (reg & PCH_IF_MCONT_MSGLOST) {
726			dev_err(&priv->ndev->dev, "Msg Obj is overwritten.\n");
727			pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
728					  PCH_IF_MCONT_MSGLOST);
729			iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
730				  &priv->regs->ifregs[0].cmask);
731			pch_can_check_if_busy(&priv->regs->ifregs[0].creq, k);
732
733			skb = alloc_can_err_skb(ndev, &cf);
734			if (!skb)
735				return -ENOMEM;
736
737			priv->can.can_stats.error_passive++;
738			priv->can.state = CAN_STATE_ERROR_PASSIVE;
739			cf->can_id |= CAN_ERR_CRTL;
740			cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
741			cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
742			stats->rx_packets++;
743			stats->rx_bytes += cf->can_dlc;
744
745			netif_receive_skb(skb);
746			rcv_pkts++;
747			goto RX_NEXT;
748		}
749		if (!(reg & PCH_IF_MCONT_NEWDAT))
750			goto RX_NEXT;
751
752		skb = alloc_can_skb(priv->ndev, &cf);
753		if (!skb)
754			return -ENOMEM;
755
756		/* Get Received data */
757		ide = ((ioread32(&priv->regs->ifregs[0].id2)) & PCH_ID2_XTD) >>
758									     14;
759		if (ide) {
760			id = (ioread32(&priv->regs->ifregs[0].id1) & 0xffff);
761			id |= (((ioread32(&priv->regs->ifregs[0].id2)) &
762					    0x1fff) << 16);
763			cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
764		} else {
765			id = (((ioread32(&priv->regs->ifregs[0].id2)) &
766						     (CAN_SFF_MASK << 2)) >> 2);
767			cf->can_id = (id & CAN_SFF_MASK);
768		}
769
770		rtr = (ioread32(&priv->regs->ifregs[0].id2) &  PCH_ID2_DIR);
771		if (rtr) {
772			cf->can_dlc = 0;
773			cf->can_id |= CAN_RTR_FLAG;
774		} else {
775			cf->can_dlc =
776			      ((ioread32(&priv->regs->ifregs[0].mcont)) & 0x0f);
777		}
778
779		for (i = 0; i < cf->can_dlc; i += 2) {
780			data_reg = ioread16(&priv->regs->ifregs[0].data[i / 2]);
781			cf->data[i] = data_reg;
782			cf->data[i + 1] = data_reg >> 8;
783		}
784
785		netif_receive_skb(skb);
786		rcv_pkts++;
787		stats->rx_packets++;
788		stats->rx_bytes += cf->can_dlc;
789
790		if (k < PCH_FIFO_THRESH) {
791			iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL |
792				  PCH_CMASK_ARB, &priv->regs->ifregs[0].cmask);
793
794			/* Clearing the Dir bit. */
795			pch_can_bit_clear(&priv->regs->ifregs[0].id2,
796					  PCH_ID2_DIR);
797
798			/* Clearing NewDat & IntPnd */
799			pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
800					  PCH_IF_MCONT_INTPND);
801			pch_can_check_if_busy(&priv->regs->ifregs[0].creq, k);
802		} else if (k > PCH_FIFO_THRESH) {
803			pch_can_int_clr(priv, k);
804		} else if (k == PCH_FIFO_THRESH) {
805			int cnt;
806			for (cnt = 0; cnt < PCH_FIFO_THRESH; cnt++)
807				pch_can_int_clr(priv, cnt+1);
808		}
809RX_NEXT:
810		/* Reading the messsage object from the Message RAM */
811		iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
812		pch_can_check_if_busy(&priv->regs->ifregs[0].creq, k);
813		reg = ioread32(&priv->regs->ifregs[0].mcont);
814	}
815
816	return rcv_pkts;
817}
818
819static void pch_can_tx_complete(struct net_device *ndev, u32 int_stat)
820{
821	struct pch_can_priv *priv = netdev_priv(ndev);
822	struct net_device_stats *stats = &(priv->ndev->stats);
823	u32 dlc;
824
825	can_get_echo_skb(ndev, int_stat - PCH_RX_OBJ_END - 1);
826	iowrite32(PCH_CMASK_RX_TX_GET | PCH_CMASK_CLRINTPND,
827		  &priv->regs->ifregs[1].cmask);
828	pch_can_check_if_busy(&priv->regs->ifregs[1].creq, int_stat);
829	dlc = get_can_dlc(ioread32(&priv->regs->ifregs[1].mcont) &
830			  PCH_IF_MCONT_DLC);
831	stats->tx_bytes += dlc;
832	stats->tx_packets++;
833	if (int_stat == PCH_TX_OBJ_END)
834		netif_wake_queue(ndev);
835}
836
837static int pch_can_rx_poll(struct napi_struct *napi, int quota)
838{
839	struct net_device *ndev = napi->dev;
840	struct pch_can_priv *priv = netdev_priv(ndev);
841	u32 int_stat;
842	int rcv_pkts = 0;
843	u32 reg_stat;
844
845	int_stat = pch_can_int_pending(priv);
846	if (!int_stat)
847		goto end;
848
849	if ((int_stat == PCH_STATUS_INT) && (quota > 0)) {
850		reg_stat = ioread32(&priv->regs->stat);
851		if (reg_stat & (PCH_BUS_OFF | PCH_LEC_ALL)) {
852			if (reg_stat & PCH_BUS_OFF ||
853			   (reg_stat & PCH_LEC_ALL) != PCH_LEC_ALL) {
854				pch_can_error(ndev, reg_stat);
855				quota--;
856			}
857		}
858
859		if (reg_stat & PCH_TX_OK)
860			pch_can_bit_clear(&priv->regs->stat, PCH_TX_OK);
861
862		if (reg_stat & PCH_RX_OK)
863			pch_can_bit_clear(&priv->regs->stat, PCH_RX_OK);
864
865		int_stat = pch_can_int_pending(priv);
866	}
867
868	if (quota == 0)
869		goto end;
870
871	if ((int_stat >= PCH_RX_OBJ_START) && (int_stat <= PCH_RX_OBJ_END)) {
872		rcv_pkts += pch_can_rx_normal(ndev, int_stat);
873		quota -= rcv_pkts;
874		if (quota < 0)
875			goto end;
876	} else if ((int_stat >= PCH_TX_OBJ_START) &&
877		   (int_stat <= PCH_TX_OBJ_END)) {
878		/* Handle transmission interrupt */
879		pch_can_tx_complete(ndev, int_stat);
880	}
881
882end:
883	napi_complete(napi);
884	pch_can_set_int_enables(priv, PCH_CAN_ALL);
885
886	return rcv_pkts;
887}
888
889static int pch_set_bittiming(struct net_device *ndev)
890{
891	struct pch_can_priv *priv = netdev_priv(ndev);
892	const struct can_bittiming *bt = &priv->can.bittiming;
893	u32 canbit;
894	u32 bepe;
895	u32 brp;
896
897	/* Setting the CCE bit for accessing the Can Timing register. */
898	pch_can_bit_set(&priv->regs->cont, PCH_CTRL_CCE);
899
900	brp = (bt->tq) / (1000000000/PCH_CAN_CLK) - 1;
901	canbit = brp & PCH_MSK_BITT_BRP;
902	canbit |= (bt->sjw - 1) << PCH_BIT_SJW;
903	canbit |= (bt->phase_seg1 + bt->prop_seg - 1) << PCH_BIT_TSEG1;
904	canbit |= (bt->phase_seg2 - 1) << PCH_BIT_TSEG2;
905	bepe = (brp & PCH_MSK_BRPE_BRPE) >> PCH_BIT_BRPE_BRPE;
906	iowrite32(canbit, &priv->regs->bitt);
907	iowrite32(bepe, &priv->regs->brpe);
908	pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_CCE);
909
910	return 0;
911}
912
913static void pch_can_start(struct net_device *ndev)
914{
915	struct pch_can_priv *priv = netdev_priv(ndev);
916
917	if (priv->can.state != CAN_STATE_STOPPED)
918		pch_can_reset(priv);
919
920	pch_set_bittiming(ndev);
921	pch_can_set_optmode(priv);
922
923	pch_can_set_tx_all(priv, 1);
924	pch_can_set_rx_all(priv, 1);
925
926	/* Setting the CAN to run mode. */
927	pch_can_set_run_mode(priv, PCH_CAN_RUN);
928
929	priv->can.state = CAN_STATE_ERROR_ACTIVE;
930
931	return;
932}
933
934static int pch_can_do_set_mode(struct net_device *ndev, enum can_mode mode)
935{
936	int ret = 0;
937
938	switch (mode) {
939	case CAN_MODE_START:
940		pch_can_start(ndev);
941		netif_wake_queue(ndev);
942		break;
943	default:
944		ret = -EOPNOTSUPP;
945		break;
946	}
947
948	return ret;
949}
950
951static int pch_can_open(struct net_device *ndev)
952{
953	struct pch_can_priv *priv = netdev_priv(ndev);
954	int retval;
955
956	retval = pci_enable_msi(priv->dev);
957	if (retval) {
958		dev_info(&ndev->dev, "PCH CAN opened without MSI\n");
959		priv->use_msi = 0;
960	} else {
961		dev_info(&ndev->dev, "PCH CAN opened with MSI\n");
962		priv->use_msi = 1;
963	}
964
965	/* Regsitering the interrupt. */
966	retval = request_irq(priv->dev->irq, pch_can_interrupt, IRQF_SHARED,
967			     ndev->name, ndev);
968	if (retval) {
969		dev_err(&ndev->dev, "request_irq failed.\n");
970		goto req_irq_err;
971	}
972
973	/* Open common can device */
974	retval = open_candev(ndev);
975	if (retval) {
976		dev_err(ndev->dev.parent, "open_candev() failed %d\n", retval);
977		goto err_open_candev;
978	}
979
980	pch_can_init(priv);
981	pch_can_start(ndev);
982	napi_enable(&priv->napi);
983	netif_start_queue(ndev);
984
985	return 0;
986
987err_open_candev:
988	free_irq(priv->dev->irq, ndev);
989req_irq_err:
990	if (priv->use_msi)
991		pci_disable_msi(priv->dev);
992
993	pch_can_release(priv);
994
995	return retval;
996}
997
998static int pch_close(struct net_device *ndev)
999{
1000	struct pch_can_priv *priv = netdev_priv(ndev);
1001
1002	netif_stop_queue(ndev);
1003	napi_disable(&priv->napi);
1004	pch_can_release(priv);
1005	free_irq(priv->dev->irq, ndev);
1006	if (priv->use_msi)
1007		pci_disable_msi(priv->dev);
1008	close_candev(ndev);
1009	priv->can.state = CAN_STATE_STOPPED;
1010	return 0;
1011}
1012
1013static netdev_tx_t pch_xmit(struct sk_buff *skb, struct net_device *ndev)
1014{
1015	struct pch_can_priv *priv = netdev_priv(ndev);
1016	struct can_frame *cf = (struct can_frame *)skb->data;
1017	int tx_buffer_avail = 0;
1018	int i;
1019
1020	if (can_dropped_invalid_skb(ndev, skb))
1021		return NETDEV_TX_OK;
1022
1023	if (priv->tx_obj == PCH_TX_OBJ_END) {
1024		if (ioread32(&priv->regs->treq2) & PCH_TREQ2_TX_MASK)
1025			netif_stop_queue(ndev);
1026
1027		tx_buffer_avail = priv->tx_obj;
1028		priv->tx_obj = PCH_TX_OBJ_START;
1029	} else {
1030		tx_buffer_avail = priv->tx_obj;
1031		priv->tx_obj++;
1032	}
1033
1034	/* Reading the Msg Obj from the Msg RAM to the Interface register. */
1035	iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[1].cmask);
1036	pch_can_check_if_busy(&priv->regs->ifregs[1].creq, tx_buffer_avail);
1037
1038	/* Setting the CMASK register. */
1039	pch_can_bit_set(&priv->regs->ifregs[1].cmask, PCH_CMASK_ALL);
1040
1041	/* If ID extended is set. */
1042	pch_can_bit_clear(&priv->regs->ifregs[1].id1, 0xffff);
1043	pch_can_bit_clear(&priv->regs->ifregs[1].id2, 0x1fff | PCH_ID2_XTD);
1044	if (cf->can_id & CAN_EFF_FLAG) {
1045		pch_can_bit_set(&priv->regs->ifregs[1].id1,
1046				cf->can_id & 0xffff);
1047		pch_can_bit_set(&priv->regs->ifregs[1].id2,
1048				((cf->can_id >> 16) & 0x1fff) | PCH_ID2_XTD);
1049	} else {
1050		pch_can_bit_set(&priv->regs->ifregs[1].id1, 0);
1051		pch_can_bit_set(&priv->regs->ifregs[1].id2,
1052				(cf->can_id & CAN_SFF_MASK) << 2);
1053	}
1054
1055	/* If remote frame has to be transmitted.. */
1056	if (cf->can_id & CAN_RTR_FLAG)
1057		pch_can_bit_clear(&priv->regs->ifregs[1].id2, PCH_ID2_DIR);
1058
1059	/* Copy data to register */
1060	for (i = 0; i < cf->can_dlc; i += 2) {
1061		iowrite16(cf->data[i] | (cf->data[i + 1] << 8),
1062			  &priv->regs->ifregs[1].data[i / 2]);
1063	}
1064
1065	can_put_echo_skb(skb, ndev, tx_buffer_avail - PCH_RX_OBJ_END - 1);
1066
1067	/* Updating the size of the data. */
1068	pch_can_bit_clear(&priv->regs->ifregs[1].mcont, 0x0f);
1069	pch_can_bit_set(&priv->regs->ifregs[1].mcont, cf->can_dlc);
1070
1071	/* Clearing IntPend, NewDat & TxRqst */
1072	pch_can_bit_clear(&priv->regs->ifregs[1].mcont,
1073			  PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND |
1074			  PCH_IF_MCONT_TXRQXT);
1075
1076	/* Setting NewDat, TxRqst bits */
1077	pch_can_bit_set(&priv->regs->ifregs[1].mcont,
1078			PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_TXRQXT);
1079
1080	pch_can_check_if_busy(&priv->regs->ifregs[1].creq, tx_buffer_avail);
1081
1082	return NETDEV_TX_OK;
1083}
1084
1085static const struct net_device_ops pch_can_netdev_ops = {
1086	.ndo_open		= pch_can_open,
1087	.ndo_stop		= pch_close,
1088	.ndo_start_xmit		= pch_xmit,
1089};
1090
1091static void __devexit pch_can_remove(struct pci_dev *pdev)
1092{
1093	struct net_device *ndev = pci_get_drvdata(pdev);
1094	struct pch_can_priv *priv = netdev_priv(ndev);
1095
1096	unregister_candev(priv->ndev);
1097	free_candev(priv->ndev);
1098	pci_iounmap(pdev, priv->regs);
1099	pci_release_regions(pdev);
1100	pci_disable_device(pdev);
1101	pci_set_drvdata(pdev, NULL);
1102	pch_can_reset(priv);
1103}
1104
1105#ifdef CONFIG_PM
1106static int pch_can_suspend(struct pci_dev *pdev, pm_message_t state)
1107{
1108	int i;			/* Counter variable. */
1109	int retval;		/* Return value. */
1110	u32 buf_stat;	/* Variable for reading the transmit buffer status. */
1111	u32 counter = 0xFFFFFF;
1112
1113	struct net_device *dev = pci_get_drvdata(pdev);
1114	struct pch_can_priv *priv = netdev_priv(dev);
1115
1116	/* Stop the CAN controller */
1117	pch_can_set_run_mode(priv, PCH_CAN_STOP);
1118
1119	/* Indicate that we are aboutto/in suspend */
1120	priv->can.state = CAN_STATE_SLEEPING;
1121
1122	/* Waiting for all transmission to complete. */
1123	while (counter) {
1124		buf_stat = pch_can_get_buffer_status(priv);
1125		if (!buf_stat)
1126			break;
1127		counter--;
1128		udelay(1);
1129	}
1130	if (!counter)
1131		dev_err(&pdev->dev, "%s -> Transmission time out.\n", __func__);
1132
1133	/* Save interrupt configuration and then disable them */
1134	pch_can_get_int_enables(priv, &(priv->int_enables));
1135	pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
1136
1137	/* Save Tx buffer enable state */
1138	for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
1139		priv->tx_enable[i] = pch_can_get_rxtx_ir(priv, i, PCH_TX_IFREG);
1140
1141	/* Disable all Transmit buffers */
1142	pch_can_set_tx_all(priv, 0);
1143
1144	/* Save Rx buffer enable state */
1145	for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
1146		priv->rx_enable[i] = pch_can_get_rxtx_ir(priv, i, PCH_RX_IFREG);
1147		pch_can_get_rx_buffer_link(priv, i, &priv->rx_link[i]);
1148	}
1149
1150	/* Disable all Receive buffers */
1151	pch_can_set_rx_all(priv, 0);
1152	retval = pci_save_state(pdev);
1153	if (retval) {
1154		dev_err(&pdev->dev, "pci_save_state failed.\n");
1155	} else {
1156		pci_enable_wake(pdev, PCI_D3hot, 0);
1157		pci_disable_device(pdev);
1158		pci_set_power_state(pdev, pci_choose_state(pdev, state));
1159	}
1160
1161	return retval;
1162}
1163
1164static int pch_can_resume(struct pci_dev *pdev)
1165{
1166	int i;			/* Counter variable. */
1167	int retval;		/* Return variable. */
1168	struct net_device *dev = pci_get_drvdata(pdev);
1169	struct pch_can_priv *priv = netdev_priv(dev);
1170
1171	pci_set_power_state(pdev, PCI_D0);
1172	pci_restore_state(pdev);
1173	retval = pci_enable_device(pdev);
1174	if (retval) {
1175		dev_err(&pdev->dev, "pci_enable_device failed.\n");
1176		return retval;
1177	}
1178
1179	pci_enable_wake(pdev, PCI_D3hot, 0);
1180
1181	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1182
1183	/* Disabling all interrupts. */
1184	pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
1185
1186	/* Setting the CAN device in Stop Mode. */
1187	pch_can_set_run_mode(priv, PCH_CAN_STOP);
1188
1189	/* Configuring the transmit and receive buffers. */
1190	pch_can_config_rx_tx_buffers(priv);
1191
1192	/* Restore the CAN state */
1193	pch_set_bittiming(dev);
1194
1195	/* Listen/Active */
1196	pch_can_set_optmode(priv);
1197
1198	/* Enabling the transmit buffer. */
1199	for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
1200		pch_can_set_rxtx(priv, i, priv->tx_enable[i], PCH_TX_IFREG);
1201
1202	/* Configuring the receive buffer and enabling them. */
1203	for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
1204		/* Restore buffer link */
1205		pch_can_set_rx_buffer_link(priv, i, priv->rx_link[i]);
1206
1207		/* Restore buffer enables */
1208		pch_can_set_rxtx(priv, i, priv->rx_enable[i], PCH_RX_IFREG);
1209	}
1210
1211	/* Enable CAN Interrupts */
1212	pch_can_set_int_custom(priv);
1213
1214	/* Restore Run Mode */
1215	pch_can_set_run_mode(priv, PCH_CAN_RUN);
1216
1217	return retval;
1218}
1219#else
1220#define pch_can_suspend NULL
1221#define pch_can_resume NULL
1222#endif
1223
1224static int pch_can_get_berr_counter(const struct net_device *dev,
1225				    struct can_berr_counter *bec)
1226{
1227	struct pch_can_priv *priv = netdev_priv(dev);
1228
1229	bec->txerr = ioread32(&priv->regs->errc) & PCH_TEC;
1230	bec->rxerr = (ioread32(&priv->regs->errc) & PCH_REC) >> 8;
1231
1232	return 0;
1233}
1234
1235static int __devinit pch_can_probe(struct pci_dev *pdev,
1236				   const struct pci_device_id *id)
1237{
1238	struct net_device *ndev;
1239	struct pch_can_priv *priv;
1240	int rc;
1241	void __iomem *addr;
1242
1243	rc = pci_enable_device(pdev);
1244	if (rc) {
1245		dev_err(&pdev->dev, "Failed pci_enable_device %d\n", rc);
1246		goto probe_exit_endev;
1247	}
1248
1249	rc = pci_request_regions(pdev, KBUILD_MODNAME);
1250	if (rc) {
1251		dev_err(&pdev->dev, "Failed pci_request_regions %d\n", rc);
1252		goto probe_exit_pcireq;
1253	}
1254
1255	addr = pci_iomap(pdev, 1, 0);
1256	if (!addr) {
1257		rc = -EIO;
1258		dev_err(&pdev->dev, "Failed pci_iomap\n");
1259		goto probe_exit_ipmap;
1260	}
1261
1262	ndev = alloc_candev(sizeof(struct pch_can_priv), PCH_TX_OBJ_END);
1263	if (!ndev) {
1264		rc = -ENOMEM;
1265		dev_err(&pdev->dev, "Failed alloc_candev\n");
1266		goto probe_exit_alloc_candev;
1267	}
1268
1269	priv = netdev_priv(ndev);
1270	priv->ndev = ndev;
1271	priv->regs = addr;
1272	priv->dev = pdev;
1273	priv->can.bittiming_const = &pch_can_bittiming_const;
1274	priv->can.do_set_mode = pch_can_do_set_mode;
1275	priv->can.do_get_berr_counter = pch_can_get_berr_counter;
1276	priv->can.ctrlmode_supported = CAN_CTRLMODE_LISTENONLY |
1277				       CAN_CTRLMODE_LOOPBACK;
1278	priv->tx_obj = PCH_TX_OBJ_START; /* Point head of Tx Obj */
1279
1280	ndev->irq = pdev->irq;
1281	ndev->flags |= IFF_ECHO;
1282
1283	pci_set_drvdata(pdev, ndev);
1284	SET_NETDEV_DEV(ndev, &pdev->dev);
1285	ndev->netdev_ops = &pch_can_netdev_ops;
1286	priv->can.clock.freq = PCH_CAN_CLK; /* Hz */
1287
1288	netif_napi_add(ndev, &priv->napi, pch_can_rx_poll, PCH_RX_OBJ_END);
1289
1290	rc = register_candev(ndev);
1291	if (rc) {
1292		dev_err(&pdev->dev, "Failed register_candev %d\n", rc);
1293		goto probe_exit_reg_candev;
1294	}
1295
1296	return 0;
1297
1298probe_exit_reg_candev:
1299	free_candev(ndev);
1300probe_exit_alloc_candev:
1301	pci_iounmap(pdev, addr);
1302probe_exit_ipmap:
1303	pci_release_regions(pdev);
1304probe_exit_pcireq:
1305	pci_disable_device(pdev);
1306probe_exit_endev:
1307	return rc;
1308}
1309
1310static struct pci_driver pch_can_pci_driver = {
1311	.name = "pch_can",
1312	.id_table = pch_pci_tbl,
1313	.probe = pch_can_probe,
1314	.remove = __devexit_p(pch_can_remove),
1315	.suspend = pch_can_suspend,
1316	.resume = pch_can_resume,
1317};
1318
1319static int __init pch_can_pci_init(void)
1320{
1321	return pci_register_driver(&pch_can_pci_driver);
1322}
1323module_init(pch_can_pci_init);
1324
1325static void __exit pch_can_pci_exit(void)
1326{
1327	pci_unregister_driver(&pch_can_pci_driver);
1328}
1329module_exit(pch_can_pci_exit);
1330
1331MODULE_DESCRIPTION("Controller Area Network Driver");
1332MODULE_LICENSE("GPL v2");
1333MODULE_VERSION("0.94");
1334