rcar_can.c revision 862e2b6af9413b43ef044979b934cab07bfd33e5
1/* Renesas R-Car CAN device driver
2 *
3 * Copyright (C) 2013 Cogent Embedded, Inc. <source@cogentembedded.com>
4 * Copyright (C) 2013 Renesas Solutions Corp.
5 *
6 * This program is free software; you can redistribute  it and/or modify it
7 * under  the terms of  the GNU General  Public License as published by the
8 * Free Software Foundation;  either version 2 of the  License, or (at your
9 * option) any later version.
10 */
11
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/interrupt.h>
16#include <linux/errno.h>
17#include <linux/netdevice.h>
18#include <linux/platform_device.h>
19#include <linux/can/led.h>
20#include <linux/can/dev.h>
21#include <linux/clk.h>
22#include <linux/can/platform/rcar_can.h>
23
24#define RCAR_CAN_DRV_NAME	"rcar_can"
25
26/* Mailbox configuration:
27 * mailbox 60 - 63 - Rx FIFO mailboxes
28 * mailbox 56 - 59 - Tx FIFO mailboxes
29 * non-FIFO mailboxes are not used
30 */
31#define RCAR_CAN_N_MBX		64 /* Number of mailboxes in non-FIFO mode */
32#define RCAR_CAN_RX_FIFO_MBX	60 /* Mailbox - window to Rx FIFO */
33#define RCAR_CAN_TX_FIFO_MBX	56 /* Mailbox - window to Tx FIFO */
34#define RCAR_CAN_FIFO_DEPTH	4
35
36/* Mailbox registers structure */
37struct rcar_can_mbox_regs {
38	u32 id;		/* IDE and RTR bits, SID and EID */
39	u8 stub;	/* Not used */
40	u8 dlc;		/* Data Length Code - bits [0..3] */
41	u8 data[8];	/* Data Bytes */
42	u8 tsh;		/* Time Stamp Higher Byte */
43	u8 tsl;		/* Time Stamp Lower Byte */
44};
45
46struct rcar_can_regs {
47	struct rcar_can_mbox_regs mb[RCAR_CAN_N_MBX]; /* Mailbox registers */
48	u32 mkr_2_9[8];	/* Mask Registers 2-9 */
49	u32 fidcr[2];	/* FIFO Received ID Compare Register */
50	u32 mkivlr1;	/* Mask Invalid Register 1 */
51	u32 mier1;	/* Mailbox Interrupt Enable Register 1 */
52	u32 mkr_0_1[2];	/* Mask Registers 0-1 */
53	u32 mkivlr0;    /* Mask Invalid Register 0*/
54	u32 mier0;      /* Mailbox Interrupt Enable Register 0 */
55	u8 pad_440[0x3c0];
56	u8 mctl[64];	/* Message Control Registers */
57	u16 ctlr;	/* Control Register */
58	u16 str;	/* Status register */
59	u8 bcr[3];	/* Bit Configuration Register */
60	u8 clkr;	/* Clock Select Register */
61	u8 rfcr;	/* Receive FIFO Control Register */
62	u8 rfpcr;	/* Receive FIFO Pointer Control Register */
63	u8 tfcr;	/* Transmit FIFO Control Register */
64	u8 tfpcr;       /* Transmit FIFO Pointer Control Register */
65	u8 eier;	/* Error Interrupt Enable Register */
66	u8 eifr;	/* Error Interrupt Factor Judge Register */
67	u8 recr;	/* Receive Error Count Register */
68	u8 tecr;        /* Transmit Error Count Register */
69	u8 ecsr;	/* Error Code Store Register */
70	u8 cssr;	/* Channel Search Support Register */
71	u8 mssr;	/* Mailbox Search Status Register */
72	u8 msmr;	/* Mailbox Search Mode Register */
73	u16 tsr;	/* Time Stamp Register */
74	u8 afsr;	/* Acceptance Filter Support Register */
75	u8 pad_857;
76	u8 tcr;		/* Test Control Register */
77	u8 pad_859[7];
78	u8 ier;		/* Interrupt Enable Register */
79	u8 isr;		/* Interrupt Status Register */
80	u8 pad_862;
81	u8 mbsmr;	/* Mailbox Search Mask Register */
82};
83
84struct rcar_can_priv {
85	struct can_priv can;	/* Must be the first member! */
86	struct net_device *ndev;
87	struct napi_struct napi;
88	struct rcar_can_regs __iomem *regs;
89	struct clk *clk;
90	struct clk *can_clk;
91	u8 tx_dlc[RCAR_CAN_FIFO_DEPTH];
92	u32 tx_head;
93	u32 tx_tail;
94	u8 clock_select;
95	u8 ier;
96};
97
98static const struct can_bittiming_const rcar_can_bittiming_const = {
99	.name = RCAR_CAN_DRV_NAME,
100	.tseg1_min = 4,
101	.tseg1_max = 16,
102	.tseg2_min = 2,
103	.tseg2_max = 8,
104	.sjw_max = 4,
105	.brp_min = 1,
106	.brp_max = 1024,
107	.brp_inc = 1,
108};
109
110/* Control Register bits */
111#define RCAR_CAN_CTLR_BOM	(3 << 11) /* Bus-Off Recovery Mode Bits */
112#define RCAR_CAN_CTLR_BOM_ENT	(1 << 11) /* Entry to halt mode */
113					/* at bus-off entry */
114#define RCAR_CAN_CTLR_SLPM	(1 << 10)
115#define RCAR_CAN_CTLR_CANM	(3 << 8) /* Operating Mode Select Bit */
116#define RCAR_CAN_CTLR_CANM_HALT	(1 << 9)
117#define RCAR_CAN_CTLR_CANM_RESET (1 << 8)
118#define RCAR_CAN_CTLR_CANM_FORCE_RESET (3 << 8)
119#define RCAR_CAN_CTLR_MLM	(1 << 3) /* Message Lost Mode Select */
120#define RCAR_CAN_CTLR_IDFM	(3 << 1) /* ID Format Mode Select Bits */
121#define RCAR_CAN_CTLR_IDFM_MIXED (1 << 2) /* Mixed ID mode */
122#define RCAR_CAN_CTLR_MBM	(1 << 0) /* Mailbox Mode select */
123
124/* Status Register bits */
125#define RCAR_CAN_STR_RSTST	(1 << 8) /* Reset Status Bit */
126
127/* FIFO Received ID Compare Registers 0 and 1 bits */
128#define RCAR_CAN_FIDCR_IDE	(1 << 31) /* ID Extension Bit */
129#define RCAR_CAN_FIDCR_RTR	(1 << 30) /* Remote Transmission Request Bit */
130
131/* Receive FIFO Control Register bits */
132#define RCAR_CAN_RFCR_RFEST	(1 << 7) /* Receive FIFO Empty Status Flag */
133#define RCAR_CAN_RFCR_RFE	(1 << 0) /* Receive FIFO Enable */
134
135/* Transmit FIFO Control Register bits */
136#define RCAR_CAN_TFCR_TFUST	(7 << 1) /* Transmit FIFO Unsent Message */
137					/* Number Status Bits */
138#define RCAR_CAN_TFCR_TFUST_SHIFT 1	/* Offset of Transmit FIFO Unsent */
139					/* Message Number Status Bits */
140#define RCAR_CAN_TFCR_TFE	(1 << 0) /* Transmit FIFO Enable */
141
142#define RCAR_CAN_N_RX_MKREGS1	2	/* Number of mask registers */
143					/* for Rx mailboxes 0-31 */
144#define RCAR_CAN_N_RX_MKREGS2	8
145
146/* Bit Configuration Register settings */
147#define RCAR_CAN_BCR_TSEG1(x)	(((x) & 0x0f) << 20)
148#define RCAR_CAN_BCR_BPR(x)	(((x) & 0x3ff) << 8)
149#define RCAR_CAN_BCR_SJW(x)	(((x) & 0x3) << 4)
150#define RCAR_CAN_BCR_TSEG2(x)	((x) & 0x07)
151
152/* Mailbox and Mask Registers bits */
153#define RCAR_CAN_IDE		(1 << 31)
154#define RCAR_CAN_RTR		(1 << 30)
155#define RCAR_CAN_SID_SHIFT	18
156
157/* Mailbox Interrupt Enable Register 1 bits */
158#define RCAR_CAN_MIER1_RXFIE	(1 << 28) /* Receive  FIFO Interrupt Enable */
159#define RCAR_CAN_MIER1_TXFIE	(1 << 24) /* Transmit FIFO Interrupt Enable */
160
161/* Interrupt Enable Register bits */
162#define RCAR_CAN_IER_ERSIE	(1 << 5) /* Error (ERS) Interrupt Enable Bit */
163#define RCAR_CAN_IER_RXFIE	(1 << 4) /* Reception FIFO Interrupt */
164					/* Enable Bit */
165#define RCAR_CAN_IER_TXFIE	(1 << 3) /* Transmission FIFO Interrupt */
166					/* Enable Bit */
167/* Interrupt Status Register bits */
168#define RCAR_CAN_ISR_ERSF	(1 << 5) /* Error (ERS) Interrupt Status Bit */
169#define RCAR_CAN_ISR_RXFF	(1 << 4) /* Reception FIFO Interrupt */
170					/* Status Bit */
171#define RCAR_CAN_ISR_TXFF	(1 << 3) /* Transmission FIFO Interrupt */
172					/* Status Bit */
173
174/* Error Interrupt Enable Register bits */
175#define RCAR_CAN_EIER_BLIE	(1 << 7) /* Bus Lock Interrupt Enable */
176#define RCAR_CAN_EIER_OLIE	(1 << 6) /* Overload Frame Transmit */
177					/* Interrupt Enable */
178#define RCAR_CAN_EIER_ORIE	(1 << 5) /* Receive Overrun  Interrupt Enable */
179#define RCAR_CAN_EIER_BORIE	(1 << 4) /* Bus-Off Recovery Interrupt Enable */
180#define RCAR_CAN_EIER_BOEIE	(1 << 3) /* Bus-Off Entry Interrupt Enable */
181#define RCAR_CAN_EIER_EPIE	(1 << 2) /* Error Passive Interrupt Enable */
182#define RCAR_CAN_EIER_EWIE	(1 << 1) /* Error Warning Interrupt Enable */
183#define RCAR_CAN_EIER_BEIE	(1 << 0) /* Bus Error Interrupt Enable */
184
185/* Error Interrupt Factor Judge Register bits */
186#define RCAR_CAN_EIFR_BLIF	(1 << 7) /* Bus Lock Detect Flag */
187#define RCAR_CAN_EIFR_OLIF	(1 << 6) /* Overload Frame Transmission */
188					 /* Detect Flag */
189#define RCAR_CAN_EIFR_ORIF	(1 << 5) /* Receive Overrun Detect Flag */
190#define RCAR_CAN_EIFR_BORIF	(1 << 4) /* Bus-Off Recovery Detect Flag */
191#define RCAR_CAN_EIFR_BOEIF	(1 << 3) /* Bus-Off Entry Detect Flag */
192#define RCAR_CAN_EIFR_EPIF	(1 << 2) /* Error Passive Detect Flag */
193#define RCAR_CAN_EIFR_EWIF	(1 << 1) /* Error Warning Detect Flag */
194#define RCAR_CAN_EIFR_BEIF	(1 << 0) /* Bus Error Detect Flag */
195
196/* Error Code Store Register bits */
197#define RCAR_CAN_ECSR_EDPM	(1 << 7) /* Error Display Mode Select Bit */
198#define RCAR_CAN_ECSR_ADEF	(1 << 6) /* ACK Delimiter Error Flag */
199#define RCAR_CAN_ECSR_BE0F	(1 << 5) /* Bit Error (dominant) Flag */
200#define RCAR_CAN_ECSR_BE1F	(1 << 4) /* Bit Error (recessive) Flag */
201#define RCAR_CAN_ECSR_CEF	(1 << 3) /* CRC Error Flag */
202#define RCAR_CAN_ECSR_AEF	(1 << 2) /* ACK Error Flag */
203#define RCAR_CAN_ECSR_FEF	(1 << 1) /* Form Error Flag */
204#define RCAR_CAN_ECSR_SEF	(1 << 0) /* Stuff Error Flag */
205
206#define RCAR_CAN_NAPI_WEIGHT	4
207#define MAX_STR_READS		0x100
208
209static void tx_failure_cleanup(struct net_device *ndev)
210{
211	int i;
212
213	for (i = 0; i < RCAR_CAN_FIFO_DEPTH; i++)
214		can_free_echo_skb(ndev, i);
215}
216
217static void rcar_can_error(struct net_device *ndev)
218{
219	struct rcar_can_priv *priv = netdev_priv(ndev);
220	struct net_device_stats *stats = &ndev->stats;
221	struct can_frame *cf;
222	struct sk_buff *skb;
223	u8 eifr, txerr = 0, rxerr = 0;
224
225	/* Propagate the error condition to the CAN stack */
226	skb = alloc_can_err_skb(ndev, &cf);
227
228	eifr = readb(&priv->regs->eifr);
229	if (eifr & (RCAR_CAN_EIFR_EWIF | RCAR_CAN_EIFR_EPIF)) {
230		txerr = readb(&priv->regs->tecr);
231		rxerr = readb(&priv->regs->recr);
232		if (skb) {
233			cf->can_id |= CAN_ERR_CRTL;
234			cf->data[6] = txerr;
235			cf->data[7] = rxerr;
236		}
237	}
238	if (eifr & RCAR_CAN_EIFR_BEIF) {
239		int rx_errors = 0, tx_errors = 0;
240		u8 ecsr;
241
242		netdev_dbg(priv->ndev, "Bus error interrupt:\n");
243		if (skb) {
244			cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
245			cf->data[2] = CAN_ERR_PROT_UNSPEC;
246		}
247		ecsr = readb(&priv->regs->ecsr);
248		if (ecsr & RCAR_CAN_ECSR_ADEF) {
249			netdev_dbg(priv->ndev, "ACK Delimiter Error\n");
250			tx_errors++;
251			writeb(~RCAR_CAN_ECSR_ADEF, &priv->regs->ecsr);
252			if (skb)
253				cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
254		}
255		if (ecsr & RCAR_CAN_ECSR_BE0F) {
256			netdev_dbg(priv->ndev, "Bit Error (dominant)\n");
257			tx_errors++;
258			writeb(~RCAR_CAN_ECSR_BE0F, &priv->regs->ecsr);
259			if (skb)
260				cf->data[2] |= CAN_ERR_PROT_BIT0;
261		}
262		if (ecsr & RCAR_CAN_ECSR_BE1F) {
263			netdev_dbg(priv->ndev, "Bit Error (recessive)\n");
264			tx_errors++;
265			writeb(~RCAR_CAN_ECSR_BE1F, &priv->regs->ecsr);
266			if (skb)
267				cf->data[2] |= CAN_ERR_PROT_BIT1;
268		}
269		if (ecsr & RCAR_CAN_ECSR_CEF) {
270			netdev_dbg(priv->ndev, "CRC Error\n");
271			rx_errors++;
272			writeb(~RCAR_CAN_ECSR_CEF, &priv->regs->ecsr);
273			if (skb)
274				cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
275		}
276		if (ecsr & RCAR_CAN_ECSR_AEF) {
277			netdev_dbg(priv->ndev, "ACK Error\n");
278			tx_errors++;
279			writeb(~RCAR_CAN_ECSR_AEF, &priv->regs->ecsr);
280			if (skb) {
281				cf->can_id |= CAN_ERR_ACK;
282				cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
283			}
284		}
285		if (ecsr & RCAR_CAN_ECSR_FEF) {
286			netdev_dbg(priv->ndev, "Form Error\n");
287			rx_errors++;
288			writeb(~RCAR_CAN_ECSR_FEF, &priv->regs->ecsr);
289			if (skb)
290				cf->data[2] |= CAN_ERR_PROT_FORM;
291		}
292		if (ecsr & RCAR_CAN_ECSR_SEF) {
293			netdev_dbg(priv->ndev, "Stuff Error\n");
294			rx_errors++;
295			writeb(~RCAR_CAN_ECSR_SEF, &priv->regs->ecsr);
296			if (skb)
297				cf->data[2] |= CAN_ERR_PROT_STUFF;
298		}
299
300		priv->can.can_stats.bus_error++;
301		ndev->stats.rx_errors += rx_errors;
302		ndev->stats.tx_errors += tx_errors;
303		writeb(~RCAR_CAN_EIFR_BEIF, &priv->regs->eifr);
304	}
305	if (eifr & RCAR_CAN_EIFR_EWIF) {
306		netdev_dbg(priv->ndev, "Error warning interrupt\n");
307		priv->can.state = CAN_STATE_ERROR_WARNING;
308		priv->can.can_stats.error_warning++;
309		/* Clear interrupt condition */
310		writeb(~RCAR_CAN_EIFR_EWIF, &priv->regs->eifr);
311		if (skb)
312			cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
313					      CAN_ERR_CRTL_RX_WARNING;
314	}
315	if (eifr & RCAR_CAN_EIFR_EPIF) {
316		netdev_dbg(priv->ndev, "Error passive interrupt\n");
317		priv->can.state = CAN_STATE_ERROR_PASSIVE;
318		priv->can.can_stats.error_passive++;
319		/* Clear interrupt condition */
320		writeb(~RCAR_CAN_EIFR_EPIF, &priv->regs->eifr);
321		if (skb)
322			cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
323					      CAN_ERR_CRTL_RX_PASSIVE;
324	}
325	if (eifr & RCAR_CAN_EIFR_BOEIF) {
326		netdev_dbg(priv->ndev, "Bus-off entry interrupt\n");
327		tx_failure_cleanup(ndev);
328		priv->ier = RCAR_CAN_IER_ERSIE;
329		writeb(priv->ier, &priv->regs->ier);
330		priv->can.state = CAN_STATE_BUS_OFF;
331		/* Clear interrupt condition */
332		writeb(~RCAR_CAN_EIFR_BOEIF, &priv->regs->eifr);
333		can_bus_off(ndev);
334		if (skb)
335			cf->can_id |= CAN_ERR_BUSOFF;
336	}
337	if (eifr & RCAR_CAN_EIFR_ORIF) {
338		netdev_dbg(priv->ndev, "Receive overrun error interrupt\n");
339		ndev->stats.rx_over_errors++;
340		ndev->stats.rx_errors++;
341		writeb(~RCAR_CAN_EIFR_ORIF, &priv->regs->eifr);
342		if (skb) {
343			cf->can_id |= CAN_ERR_CRTL;
344			cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
345		}
346	}
347	if (eifr & RCAR_CAN_EIFR_OLIF) {
348		netdev_dbg(priv->ndev,
349			   "Overload Frame Transmission error interrupt\n");
350		ndev->stats.rx_over_errors++;
351		ndev->stats.rx_errors++;
352		writeb(~RCAR_CAN_EIFR_OLIF, &priv->regs->eifr);
353		if (skb) {
354			cf->can_id |= CAN_ERR_PROT;
355			cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
356		}
357	}
358
359	if (skb) {
360		stats->rx_packets++;
361		stats->rx_bytes += cf->can_dlc;
362		netif_rx(skb);
363	}
364}
365
366static void rcar_can_tx_done(struct net_device *ndev)
367{
368	struct rcar_can_priv *priv = netdev_priv(ndev);
369	struct net_device_stats *stats = &ndev->stats;
370	u8 isr;
371
372	while (1) {
373		u8 unsent = readb(&priv->regs->tfcr);
374
375		unsent = (unsent & RCAR_CAN_TFCR_TFUST) >>
376			  RCAR_CAN_TFCR_TFUST_SHIFT;
377		if (priv->tx_head - priv->tx_tail <= unsent)
378			break;
379		stats->tx_packets++;
380		stats->tx_bytes += priv->tx_dlc[priv->tx_tail %
381						RCAR_CAN_FIFO_DEPTH];
382		priv->tx_dlc[priv->tx_tail % RCAR_CAN_FIFO_DEPTH] = 0;
383		can_get_echo_skb(ndev, priv->tx_tail % RCAR_CAN_FIFO_DEPTH);
384		priv->tx_tail++;
385		netif_wake_queue(ndev);
386	}
387	/* Clear interrupt */
388	isr = readb(&priv->regs->isr);
389	writeb(isr & ~RCAR_CAN_ISR_TXFF, &priv->regs->isr);
390	can_led_event(ndev, CAN_LED_EVENT_TX);
391}
392
393static irqreturn_t rcar_can_interrupt(int irq, void *dev_id)
394{
395	struct net_device *ndev = dev_id;
396	struct rcar_can_priv *priv = netdev_priv(ndev);
397	u8 isr;
398
399	isr = readb(&priv->regs->isr);
400	if (!(isr & priv->ier))
401		return IRQ_NONE;
402
403	if (isr & RCAR_CAN_ISR_ERSF)
404		rcar_can_error(ndev);
405
406	if (isr & RCAR_CAN_ISR_TXFF)
407		rcar_can_tx_done(ndev);
408
409	if (isr & RCAR_CAN_ISR_RXFF) {
410		if (napi_schedule_prep(&priv->napi)) {
411			/* Disable Rx FIFO interrupts */
412			priv->ier &= ~RCAR_CAN_IER_RXFIE;
413			writeb(priv->ier, &priv->regs->ier);
414			__napi_schedule(&priv->napi);
415		}
416	}
417
418	return IRQ_HANDLED;
419}
420
421static void rcar_can_set_bittiming(struct net_device *dev)
422{
423	struct rcar_can_priv *priv = netdev_priv(dev);
424	struct can_bittiming *bt = &priv->can.bittiming;
425	u32 bcr;
426
427	bcr = RCAR_CAN_BCR_TSEG1(bt->phase_seg1 + bt->prop_seg - 1) |
428	      RCAR_CAN_BCR_BPR(bt->brp - 1) | RCAR_CAN_BCR_SJW(bt->sjw - 1) |
429	      RCAR_CAN_BCR_TSEG2(bt->phase_seg2 - 1);
430	/* Don't overwrite CLKR with 32-bit BCR access; CLKR has 8-bit access.
431	 * All the registers are big-endian but they get byte-swapped on 32-bit
432	 * read/write (but not on 8-bit, contrary to the manuals)...
433	 */
434	writel((bcr << 8) | priv->clock_select, &priv->regs->bcr);
435}
436
437static void rcar_can_start(struct net_device *ndev)
438{
439	struct rcar_can_priv *priv = netdev_priv(ndev);
440	u16 ctlr;
441	int i;
442
443	/* Set controller to known mode:
444	 * - FIFO mailbox mode
445	 * - accept all messages
446	 * - overrun mode
447	 * CAN is in sleep mode after MCU hardware or software reset.
448	 */
449	ctlr = readw(&priv->regs->ctlr);
450	ctlr &= ~RCAR_CAN_CTLR_SLPM;
451	writew(ctlr, &priv->regs->ctlr);
452	/* Go to reset mode */
453	ctlr |= RCAR_CAN_CTLR_CANM_FORCE_RESET;
454	writew(ctlr, &priv->regs->ctlr);
455	for (i = 0; i < MAX_STR_READS; i++) {
456		if (readw(&priv->regs->str) & RCAR_CAN_STR_RSTST)
457			break;
458	}
459	rcar_can_set_bittiming(ndev);
460	ctlr |= RCAR_CAN_CTLR_IDFM_MIXED; /* Select mixed ID mode */
461	ctlr |= RCAR_CAN_CTLR_BOM_ENT;	/* Entry to halt mode automatically */
462					/* at bus-off */
463	ctlr |= RCAR_CAN_CTLR_MBM;	/* Select FIFO mailbox mode */
464	ctlr |= RCAR_CAN_CTLR_MLM;	/* Overrun mode */
465	writew(ctlr, &priv->regs->ctlr);
466
467	/* Accept all SID and EID */
468	writel(0, &priv->regs->mkr_2_9[6]);
469	writel(0, &priv->regs->mkr_2_9[7]);
470	/* In FIFO mailbox mode, write "0" to bits 24 to 31 */
471	writel(0, &priv->regs->mkivlr1);
472	/* Accept all frames */
473	writel(0, &priv->regs->fidcr[0]);
474	writel(RCAR_CAN_FIDCR_IDE | RCAR_CAN_FIDCR_RTR, &priv->regs->fidcr[1]);
475	/* Enable and configure FIFO mailbox interrupts */
476	writel(RCAR_CAN_MIER1_RXFIE | RCAR_CAN_MIER1_TXFIE, &priv->regs->mier1);
477
478	priv->ier = RCAR_CAN_IER_ERSIE | RCAR_CAN_IER_RXFIE |
479		    RCAR_CAN_IER_TXFIE;
480	writeb(priv->ier, &priv->regs->ier);
481
482	/* Accumulate error codes */
483	writeb(RCAR_CAN_ECSR_EDPM, &priv->regs->ecsr);
484	/* Enable error interrupts */
485	writeb(RCAR_CAN_EIER_EWIE | RCAR_CAN_EIER_EPIE | RCAR_CAN_EIER_BOEIE |
486	       (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING ?
487	       RCAR_CAN_EIER_BEIE : 0) | RCAR_CAN_EIER_ORIE |
488	       RCAR_CAN_EIER_OLIE, &priv->regs->eier);
489	priv->can.state = CAN_STATE_ERROR_ACTIVE;
490
491	/* Go to operation mode */
492	writew(ctlr & ~RCAR_CAN_CTLR_CANM, &priv->regs->ctlr);
493	for (i = 0; i < MAX_STR_READS; i++) {
494		if (!(readw(&priv->regs->str) & RCAR_CAN_STR_RSTST))
495			break;
496	}
497	/* Enable Rx and Tx FIFO */
498	writeb(RCAR_CAN_RFCR_RFE, &priv->regs->rfcr);
499	writeb(RCAR_CAN_TFCR_TFE, &priv->regs->tfcr);
500}
501
502static int rcar_can_open(struct net_device *ndev)
503{
504	struct rcar_can_priv *priv = netdev_priv(ndev);
505	int err;
506
507	err = clk_prepare_enable(priv->clk);
508	if (err) {
509		netdev_err(ndev, "failed to enable periperal clock, error %d\n",
510			   err);
511		goto out;
512	}
513	err = clk_prepare_enable(priv->can_clk);
514	if (err) {
515		netdev_err(ndev, "failed to enable CAN clock, error %d\n",
516			   err);
517		goto out_clock;
518	}
519	err = open_candev(ndev);
520	if (err) {
521		netdev_err(ndev, "open_candev() failed, error %d\n", err);
522		goto out_can_clock;
523	}
524	napi_enable(&priv->napi);
525	err = request_irq(ndev->irq, rcar_can_interrupt, 0, ndev->name, ndev);
526	if (err) {
527		netdev_err(ndev, "error requesting interrupt %x\n", ndev->irq);
528		goto out_close;
529	}
530	can_led_event(ndev, CAN_LED_EVENT_OPEN);
531	rcar_can_start(ndev);
532	netif_start_queue(ndev);
533	return 0;
534out_close:
535	napi_disable(&priv->napi);
536	close_candev(ndev);
537out_can_clock:
538	clk_disable_unprepare(priv->can_clk);
539out_clock:
540	clk_disable_unprepare(priv->clk);
541out:
542	return err;
543}
544
545static void rcar_can_stop(struct net_device *ndev)
546{
547	struct rcar_can_priv *priv = netdev_priv(ndev);
548	u16 ctlr;
549	int i;
550
551	/* Go to (force) reset mode */
552	ctlr = readw(&priv->regs->ctlr);
553	ctlr |= RCAR_CAN_CTLR_CANM_FORCE_RESET;
554	writew(ctlr, &priv->regs->ctlr);
555	for (i = 0; i < MAX_STR_READS; i++) {
556		if (readw(&priv->regs->str) & RCAR_CAN_STR_RSTST)
557			break;
558	}
559	writel(0, &priv->regs->mier0);
560	writel(0, &priv->regs->mier1);
561	writeb(0, &priv->regs->ier);
562	writeb(0, &priv->regs->eier);
563	/* Go to sleep mode */
564	ctlr |= RCAR_CAN_CTLR_SLPM;
565	writew(ctlr, &priv->regs->ctlr);
566	priv->can.state = CAN_STATE_STOPPED;
567}
568
569static int rcar_can_close(struct net_device *ndev)
570{
571	struct rcar_can_priv *priv = netdev_priv(ndev);
572
573	netif_stop_queue(ndev);
574	rcar_can_stop(ndev);
575	free_irq(ndev->irq, ndev);
576	napi_disable(&priv->napi);
577	clk_disable_unprepare(priv->can_clk);
578	clk_disable_unprepare(priv->clk);
579	close_candev(ndev);
580	can_led_event(ndev, CAN_LED_EVENT_STOP);
581	return 0;
582}
583
584static netdev_tx_t rcar_can_start_xmit(struct sk_buff *skb,
585				       struct net_device *ndev)
586{
587	struct rcar_can_priv *priv = netdev_priv(ndev);
588	struct can_frame *cf = (struct can_frame *)skb->data;
589	u32 data, i;
590
591	if (can_dropped_invalid_skb(ndev, skb))
592		return NETDEV_TX_OK;
593
594	if (cf->can_id & CAN_EFF_FLAG)	/* Extended frame format */
595		data = (cf->can_id & CAN_EFF_MASK) | RCAR_CAN_IDE;
596	else				/* Standard frame format */
597		data = (cf->can_id & CAN_SFF_MASK) << RCAR_CAN_SID_SHIFT;
598
599	if (cf->can_id & CAN_RTR_FLAG) { /* Remote transmission request */
600		data |= RCAR_CAN_RTR;
601	} else {
602		for (i = 0; i < cf->can_dlc; i++)
603			writeb(cf->data[i],
604			       &priv->regs->mb[RCAR_CAN_TX_FIFO_MBX].data[i]);
605	}
606
607	writel(data, &priv->regs->mb[RCAR_CAN_TX_FIFO_MBX].id);
608
609	writeb(cf->can_dlc, &priv->regs->mb[RCAR_CAN_TX_FIFO_MBX].dlc);
610
611	priv->tx_dlc[priv->tx_head % RCAR_CAN_FIFO_DEPTH] = cf->can_dlc;
612	can_put_echo_skb(skb, ndev, priv->tx_head % RCAR_CAN_FIFO_DEPTH);
613	priv->tx_head++;
614	/* Start Tx: write 0xff to the TFPCR register to increment
615	 * the CPU-side pointer for the transmit FIFO to the next
616	 * mailbox location
617	 */
618	writeb(0xff, &priv->regs->tfpcr);
619	/* Stop the queue if we've filled all FIFO entries */
620	if (priv->tx_head - priv->tx_tail >= RCAR_CAN_FIFO_DEPTH)
621		netif_stop_queue(ndev);
622
623	return NETDEV_TX_OK;
624}
625
626static const struct net_device_ops rcar_can_netdev_ops = {
627	.ndo_open = rcar_can_open,
628	.ndo_stop = rcar_can_close,
629	.ndo_start_xmit = rcar_can_start_xmit,
630};
631
632static void rcar_can_rx_pkt(struct rcar_can_priv *priv)
633{
634	struct net_device_stats *stats = &priv->ndev->stats;
635	struct can_frame *cf;
636	struct sk_buff *skb;
637	u32 data;
638	u8 dlc;
639
640	skb = alloc_can_skb(priv->ndev, &cf);
641	if (!skb) {
642		stats->rx_dropped++;
643		return;
644	}
645
646	data = readl(&priv->regs->mb[RCAR_CAN_RX_FIFO_MBX].id);
647	if (data & RCAR_CAN_IDE)
648		cf->can_id = (data & CAN_EFF_MASK) | CAN_EFF_FLAG;
649	else
650		cf->can_id = (data >> RCAR_CAN_SID_SHIFT) & CAN_SFF_MASK;
651
652	dlc = readb(&priv->regs->mb[RCAR_CAN_RX_FIFO_MBX].dlc);
653	cf->can_dlc = get_can_dlc(dlc);
654	if (data & RCAR_CAN_RTR) {
655		cf->can_id |= CAN_RTR_FLAG;
656	} else {
657		for (dlc = 0; dlc < cf->can_dlc; dlc++)
658			cf->data[dlc] =
659			readb(&priv->regs->mb[RCAR_CAN_RX_FIFO_MBX].data[dlc]);
660	}
661
662	can_led_event(priv->ndev, CAN_LED_EVENT_RX);
663
664	stats->rx_bytes += cf->can_dlc;
665	stats->rx_packets++;
666	netif_receive_skb(skb);
667}
668
669static int rcar_can_rx_poll(struct napi_struct *napi, int quota)
670{
671	struct rcar_can_priv *priv = container_of(napi,
672						  struct rcar_can_priv, napi);
673	int num_pkts;
674
675	for (num_pkts = 0; num_pkts < quota; num_pkts++) {
676		u8 rfcr, isr;
677
678		isr = readb(&priv->regs->isr);
679		/* Clear interrupt bit */
680		if (isr & RCAR_CAN_ISR_RXFF)
681			writeb(isr & ~RCAR_CAN_ISR_RXFF, &priv->regs->isr);
682		rfcr = readb(&priv->regs->rfcr);
683		if (rfcr & RCAR_CAN_RFCR_RFEST)
684			break;
685		rcar_can_rx_pkt(priv);
686		/* Write 0xff to the RFPCR register to increment
687		 * the CPU-side pointer for the receive FIFO
688		 * to the next mailbox location
689		 */
690		writeb(0xff, &priv->regs->rfpcr);
691	}
692	/* All packets processed */
693	if (num_pkts < quota) {
694		napi_complete(napi);
695		priv->ier |= RCAR_CAN_IER_RXFIE;
696		writeb(priv->ier, &priv->regs->ier);
697	}
698	return num_pkts;
699}
700
701static int rcar_can_do_set_mode(struct net_device *ndev, enum can_mode mode)
702{
703	switch (mode) {
704	case CAN_MODE_START:
705		rcar_can_start(ndev);
706		netif_wake_queue(ndev);
707		return 0;
708	default:
709		return -EOPNOTSUPP;
710	}
711}
712
713static int rcar_can_get_berr_counter(const struct net_device *dev,
714				     struct can_berr_counter *bec)
715{
716	struct rcar_can_priv *priv = netdev_priv(dev);
717	int err;
718
719	err = clk_prepare_enable(priv->clk);
720	if (err)
721		return err;
722	bec->txerr = readb(&priv->regs->tecr);
723	bec->rxerr = readb(&priv->regs->recr);
724	clk_disable_unprepare(priv->clk);
725	return 0;
726}
727
728static const char * const clock_names[] = {
729	[CLKR_CLKP1]	= "clkp1",
730	[CLKR_CLKP2]	= "clkp2",
731	[CLKR_CLKEXT]	= "can_clk",
732};
733
734static int rcar_can_probe(struct platform_device *pdev)
735{
736	struct rcar_can_platform_data *pdata;
737	struct rcar_can_priv *priv;
738	struct net_device *ndev;
739	struct resource *mem;
740	void __iomem *addr;
741	u32 clock_select;
742	int err = -ENODEV;
743	int irq;
744
745	pdata = dev_get_platdata(&pdev->dev);
746	if (!pdata) {
747		dev_err(&pdev->dev, "No platform data provided!\n");
748		goto fail;
749	}
750	clock_select = pdata->clock_select;
751
752	irq = platform_get_irq(pdev, 0);
753	if (!irq) {
754		dev_err(&pdev->dev, "No IRQ resource\n");
755		goto fail;
756	}
757
758	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
759	addr = devm_ioremap_resource(&pdev->dev, mem);
760	if (IS_ERR(addr)) {
761		err = PTR_ERR(addr);
762		goto fail;
763	}
764
765	ndev = alloc_candev(sizeof(struct rcar_can_priv), RCAR_CAN_FIFO_DEPTH);
766	if (!ndev) {
767		dev_err(&pdev->dev, "alloc_candev() failed\n");
768		err = -ENOMEM;
769		goto fail;
770	}
771
772	priv = netdev_priv(ndev);
773
774	priv->clk = devm_clk_get(&pdev->dev, "clkp1");
775	if (IS_ERR(priv->clk)) {
776		err = PTR_ERR(priv->clk);
777		dev_err(&pdev->dev, "cannot get peripheral clock: %d\n", err);
778		goto fail_clk;
779	}
780
781	if (clock_select >= ARRAY_SIZE(clock_names)) {
782		err = -EINVAL;
783		dev_err(&pdev->dev, "invalid CAN clock selected\n");
784		goto fail_clk;
785	}
786	priv->can_clk = devm_clk_get(&pdev->dev, clock_names[clock_select]);
787	if (IS_ERR(priv->can_clk)) {
788		err = PTR_ERR(priv->can_clk);
789		dev_err(&pdev->dev, "cannot get CAN clock: %d\n", err);
790		goto fail_clk;
791	}
792
793	ndev->netdev_ops = &rcar_can_netdev_ops;
794	ndev->irq = irq;
795	ndev->flags |= IFF_ECHO;
796	priv->ndev = ndev;
797	priv->regs = addr;
798	priv->clock_select = clock_select;
799	priv->can.clock.freq = clk_get_rate(priv->can_clk);
800	priv->can.bittiming_const = &rcar_can_bittiming_const;
801	priv->can.do_set_mode = rcar_can_do_set_mode;
802	priv->can.do_get_berr_counter = rcar_can_get_berr_counter;
803	priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
804	platform_set_drvdata(pdev, ndev);
805	SET_NETDEV_DEV(ndev, &pdev->dev);
806
807	netif_napi_add(ndev, &priv->napi, rcar_can_rx_poll,
808		       RCAR_CAN_NAPI_WEIGHT);
809	err = register_candev(ndev);
810	if (err) {
811		dev_err(&pdev->dev, "register_candev() failed, error %d\n",
812			err);
813		goto fail_candev;
814	}
815
816	devm_can_led_init(ndev);
817
818	dev_info(&pdev->dev, "device registered (reg_base=%p, irq=%u)\n",
819		 priv->regs, ndev->irq);
820
821	return 0;
822fail_candev:
823	netif_napi_del(&priv->napi);
824fail_clk:
825	free_candev(ndev);
826fail:
827	return err;
828}
829
830static int rcar_can_remove(struct platform_device *pdev)
831{
832	struct net_device *ndev = platform_get_drvdata(pdev);
833	struct rcar_can_priv *priv = netdev_priv(ndev);
834
835	unregister_candev(ndev);
836	netif_napi_del(&priv->napi);
837	free_candev(ndev);
838	return 0;
839}
840
841static int __maybe_unused rcar_can_suspend(struct device *dev)
842{
843	struct net_device *ndev = dev_get_drvdata(dev);
844	struct rcar_can_priv *priv = netdev_priv(ndev);
845	u16 ctlr;
846
847	if (netif_running(ndev)) {
848		netif_stop_queue(ndev);
849		netif_device_detach(ndev);
850	}
851	ctlr = readw(&priv->regs->ctlr);
852	ctlr |= RCAR_CAN_CTLR_CANM_HALT;
853	writew(ctlr, &priv->regs->ctlr);
854	ctlr |= RCAR_CAN_CTLR_SLPM;
855	writew(ctlr, &priv->regs->ctlr);
856	priv->can.state = CAN_STATE_SLEEPING;
857
858	clk_disable(priv->clk);
859	return 0;
860}
861
862static int __maybe_unused rcar_can_resume(struct device *dev)
863{
864	struct net_device *ndev = dev_get_drvdata(dev);
865	struct rcar_can_priv *priv = netdev_priv(ndev);
866	u16 ctlr;
867	int err;
868
869	err = clk_enable(priv->clk);
870	if (err) {
871		netdev_err(ndev, "clk_enable() failed, error %d\n", err);
872		return err;
873	}
874
875	ctlr = readw(&priv->regs->ctlr);
876	ctlr &= ~RCAR_CAN_CTLR_SLPM;
877	writew(ctlr, &priv->regs->ctlr);
878	ctlr &= ~RCAR_CAN_CTLR_CANM;
879	writew(ctlr, &priv->regs->ctlr);
880	priv->can.state = CAN_STATE_ERROR_ACTIVE;
881
882	if (netif_running(ndev)) {
883		netif_device_attach(ndev);
884		netif_start_queue(ndev);
885	}
886	return 0;
887}
888
889static SIMPLE_DEV_PM_OPS(rcar_can_pm_ops, rcar_can_suspend, rcar_can_resume);
890
891static struct platform_driver rcar_can_driver = {
892	.driver = {
893		.name = RCAR_CAN_DRV_NAME,
894		.owner = THIS_MODULE,
895		.pm = &rcar_can_pm_ops,
896	},
897	.probe = rcar_can_probe,
898	.remove = rcar_can_remove,
899};
900
901module_platform_driver(rcar_can_driver);
902
903MODULE_AUTHOR("Cogent Embedded, Inc.");
904MODULE_LICENSE("GPL");
905MODULE_DESCRIPTION("CAN driver for Renesas R-Car SoC");
906MODULE_ALIAS("platform:" RCAR_CAN_DRV_NAME);
907