rcar_can.c revision ca976d6af4e50899f4e840e8017ec29d8fe6b50e
1/* Renesas R-Car CAN device driver
2 *
3 * Copyright (C) 2013 Cogent Embedded, Inc. <source@cogentembedded.com>
4 * Copyright (C) 2013 Renesas Solutions Corp.
5 *
6 * This program is free software; you can redistribute  it and/or modify it
7 * under  the terms of  the GNU General  Public License as published by the
8 * Free Software Foundation;  either version 2 of the  License, or (at your
9 * option) any later version.
10 */
11
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/interrupt.h>
16#include <linux/errno.h>
17#include <linux/netdevice.h>
18#include <linux/platform_device.h>
19#include <linux/can/led.h>
20#include <linux/can/dev.h>
21#include <linux/clk.h>
22#include <linux/can/platform/rcar_can.h>
23#include <linux/of.h>
24
25#define RCAR_CAN_DRV_NAME	"rcar_can"
26
27/* Mailbox configuration:
28 * mailbox 60 - 63 - Rx FIFO mailboxes
29 * mailbox 56 - 59 - Tx FIFO mailboxes
30 * non-FIFO mailboxes are not used
31 */
32#define RCAR_CAN_N_MBX		64 /* Number of mailboxes in non-FIFO mode */
33#define RCAR_CAN_RX_FIFO_MBX	60 /* Mailbox - window to Rx FIFO */
34#define RCAR_CAN_TX_FIFO_MBX	56 /* Mailbox - window to Tx FIFO */
35#define RCAR_CAN_FIFO_DEPTH	4
36
37/* Mailbox registers structure */
38struct rcar_can_mbox_regs {
39	u32 id;		/* IDE and RTR bits, SID and EID */
40	u8 stub;	/* Not used */
41	u8 dlc;		/* Data Length Code - bits [0..3] */
42	u8 data[8];	/* Data Bytes */
43	u8 tsh;		/* Time Stamp Higher Byte */
44	u8 tsl;		/* Time Stamp Lower Byte */
45};
46
47struct rcar_can_regs {
48	struct rcar_can_mbox_regs mb[RCAR_CAN_N_MBX]; /* Mailbox registers */
49	u32 mkr_2_9[8];	/* Mask Registers 2-9 */
50	u32 fidcr[2];	/* FIFO Received ID Compare Register */
51	u32 mkivlr1;	/* Mask Invalid Register 1 */
52	u32 mier1;	/* Mailbox Interrupt Enable Register 1 */
53	u32 mkr_0_1[2];	/* Mask Registers 0-1 */
54	u32 mkivlr0;    /* Mask Invalid Register 0*/
55	u32 mier0;      /* Mailbox Interrupt Enable Register 0 */
56	u8 pad_440[0x3c0];
57	u8 mctl[64];	/* Message Control Registers */
58	u16 ctlr;	/* Control Register */
59	u16 str;	/* Status register */
60	u8 bcr[3];	/* Bit Configuration Register */
61	u8 clkr;	/* Clock Select Register */
62	u8 rfcr;	/* Receive FIFO Control Register */
63	u8 rfpcr;	/* Receive FIFO Pointer Control Register */
64	u8 tfcr;	/* Transmit FIFO Control Register */
65	u8 tfpcr;       /* Transmit FIFO Pointer Control Register */
66	u8 eier;	/* Error Interrupt Enable Register */
67	u8 eifr;	/* Error Interrupt Factor Judge Register */
68	u8 recr;	/* Receive Error Count Register */
69	u8 tecr;        /* Transmit Error Count Register */
70	u8 ecsr;	/* Error Code Store Register */
71	u8 cssr;	/* Channel Search Support Register */
72	u8 mssr;	/* Mailbox Search Status Register */
73	u8 msmr;	/* Mailbox Search Mode Register */
74	u16 tsr;	/* Time Stamp Register */
75	u8 afsr;	/* Acceptance Filter Support Register */
76	u8 pad_857;
77	u8 tcr;		/* Test Control Register */
78	u8 pad_859[7];
79	u8 ier;		/* Interrupt Enable Register */
80	u8 isr;		/* Interrupt Status Register */
81	u8 pad_862;
82	u8 mbsmr;	/* Mailbox Search Mask Register */
83};
84
85struct rcar_can_priv {
86	struct can_priv can;	/* Must be the first member! */
87	struct net_device *ndev;
88	struct napi_struct napi;
89	struct rcar_can_regs __iomem *regs;
90	struct clk *clk;
91	struct clk *can_clk;
92	u8 tx_dlc[RCAR_CAN_FIFO_DEPTH];
93	u32 tx_head;
94	u32 tx_tail;
95	u8 clock_select;
96	u8 ier;
97};
98
99static const struct can_bittiming_const rcar_can_bittiming_const = {
100	.name = RCAR_CAN_DRV_NAME,
101	.tseg1_min = 4,
102	.tseg1_max = 16,
103	.tseg2_min = 2,
104	.tseg2_max = 8,
105	.sjw_max = 4,
106	.brp_min = 1,
107	.brp_max = 1024,
108	.brp_inc = 1,
109};
110
111/* Control Register bits */
112#define RCAR_CAN_CTLR_BOM	(3 << 11) /* Bus-Off Recovery Mode Bits */
113#define RCAR_CAN_CTLR_BOM_ENT	(1 << 11) /* Entry to halt mode */
114					/* at bus-off entry */
115#define RCAR_CAN_CTLR_SLPM	(1 << 10)
116#define RCAR_CAN_CTLR_CANM	(3 << 8) /* Operating Mode Select Bit */
117#define RCAR_CAN_CTLR_CANM_HALT	(1 << 9)
118#define RCAR_CAN_CTLR_CANM_RESET (1 << 8)
119#define RCAR_CAN_CTLR_CANM_FORCE_RESET (3 << 8)
120#define RCAR_CAN_CTLR_MLM	(1 << 3) /* Message Lost Mode Select */
121#define RCAR_CAN_CTLR_IDFM	(3 << 1) /* ID Format Mode Select Bits */
122#define RCAR_CAN_CTLR_IDFM_MIXED (1 << 2) /* Mixed ID mode */
123#define RCAR_CAN_CTLR_MBM	(1 << 0) /* Mailbox Mode select */
124
125/* Status Register bits */
126#define RCAR_CAN_STR_RSTST	(1 << 8) /* Reset Status Bit */
127
128/* FIFO Received ID Compare Registers 0 and 1 bits */
129#define RCAR_CAN_FIDCR_IDE	(1 << 31) /* ID Extension Bit */
130#define RCAR_CAN_FIDCR_RTR	(1 << 30) /* Remote Transmission Request Bit */
131
132/* Receive FIFO Control Register bits */
133#define RCAR_CAN_RFCR_RFEST	(1 << 7) /* Receive FIFO Empty Status Flag */
134#define RCAR_CAN_RFCR_RFE	(1 << 0) /* Receive FIFO Enable */
135
136/* Transmit FIFO Control Register bits */
137#define RCAR_CAN_TFCR_TFUST	(7 << 1) /* Transmit FIFO Unsent Message */
138					/* Number Status Bits */
139#define RCAR_CAN_TFCR_TFUST_SHIFT 1	/* Offset of Transmit FIFO Unsent */
140					/* Message Number Status Bits */
141#define RCAR_CAN_TFCR_TFE	(1 << 0) /* Transmit FIFO Enable */
142
143#define RCAR_CAN_N_RX_MKREGS1	2	/* Number of mask registers */
144					/* for Rx mailboxes 0-31 */
145#define RCAR_CAN_N_RX_MKREGS2	8
146
147/* Bit Configuration Register settings */
148#define RCAR_CAN_BCR_TSEG1(x)	(((x) & 0x0f) << 20)
149#define RCAR_CAN_BCR_BPR(x)	(((x) & 0x3ff) << 8)
150#define RCAR_CAN_BCR_SJW(x)	(((x) & 0x3) << 4)
151#define RCAR_CAN_BCR_TSEG2(x)	((x) & 0x07)
152
153/* Mailbox and Mask Registers bits */
154#define RCAR_CAN_IDE		(1 << 31)
155#define RCAR_CAN_RTR		(1 << 30)
156#define RCAR_CAN_SID_SHIFT	18
157
158/* Mailbox Interrupt Enable Register 1 bits */
159#define RCAR_CAN_MIER1_RXFIE	(1 << 28) /* Receive  FIFO Interrupt Enable */
160#define RCAR_CAN_MIER1_TXFIE	(1 << 24) /* Transmit FIFO Interrupt Enable */
161
162/* Interrupt Enable Register bits */
163#define RCAR_CAN_IER_ERSIE	(1 << 5) /* Error (ERS) Interrupt Enable Bit */
164#define RCAR_CAN_IER_RXFIE	(1 << 4) /* Reception FIFO Interrupt */
165					/* Enable Bit */
166#define RCAR_CAN_IER_TXFIE	(1 << 3) /* Transmission FIFO Interrupt */
167					/* Enable Bit */
168/* Interrupt Status Register bits */
169#define RCAR_CAN_ISR_ERSF	(1 << 5) /* Error (ERS) Interrupt Status Bit */
170#define RCAR_CAN_ISR_RXFF	(1 << 4) /* Reception FIFO Interrupt */
171					/* Status Bit */
172#define RCAR_CAN_ISR_TXFF	(1 << 3) /* Transmission FIFO Interrupt */
173					/* Status Bit */
174
175/* Error Interrupt Enable Register bits */
176#define RCAR_CAN_EIER_BLIE	(1 << 7) /* Bus Lock Interrupt Enable */
177#define RCAR_CAN_EIER_OLIE	(1 << 6) /* Overload Frame Transmit */
178					/* Interrupt Enable */
179#define RCAR_CAN_EIER_ORIE	(1 << 5) /* Receive Overrun  Interrupt Enable */
180#define RCAR_CAN_EIER_BORIE	(1 << 4) /* Bus-Off Recovery Interrupt Enable */
181#define RCAR_CAN_EIER_BOEIE	(1 << 3) /* Bus-Off Entry Interrupt Enable */
182#define RCAR_CAN_EIER_EPIE	(1 << 2) /* Error Passive Interrupt Enable */
183#define RCAR_CAN_EIER_EWIE	(1 << 1) /* Error Warning Interrupt Enable */
184#define RCAR_CAN_EIER_BEIE	(1 << 0) /* Bus Error Interrupt Enable */
185
186/* Error Interrupt Factor Judge Register bits */
187#define RCAR_CAN_EIFR_BLIF	(1 << 7) /* Bus Lock Detect Flag */
188#define RCAR_CAN_EIFR_OLIF	(1 << 6) /* Overload Frame Transmission */
189					 /* Detect Flag */
190#define RCAR_CAN_EIFR_ORIF	(1 << 5) /* Receive Overrun Detect Flag */
191#define RCAR_CAN_EIFR_BORIF	(1 << 4) /* Bus-Off Recovery Detect Flag */
192#define RCAR_CAN_EIFR_BOEIF	(1 << 3) /* Bus-Off Entry Detect Flag */
193#define RCAR_CAN_EIFR_EPIF	(1 << 2) /* Error Passive Detect Flag */
194#define RCAR_CAN_EIFR_EWIF	(1 << 1) /* Error Warning Detect Flag */
195#define RCAR_CAN_EIFR_BEIF	(1 << 0) /* Bus Error Detect Flag */
196
197/* Error Code Store Register bits */
198#define RCAR_CAN_ECSR_EDPM	(1 << 7) /* Error Display Mode Select Bit */
199#define RCAR_CAN_ECSR_ADEF	(1 << 6) /* ACK Delimiter Error Flag */
200#define RCAR_CAN_ECSR_BE0F	(1 << 5) /* Bit Error (dominant) Flag */
201#define RCAR_CAN_ECSR_BE1F	(1 << 4) /* Bit Error (recessive) Flag */
202#define RCAR_CAN_ECSR_CEF	(1 << 3) /* CRC Error Flag */
203#define RCAR_CAN_ECSR_AEF	(1 << 2) /* ACK Error Flag */
204#define RCAR_CAN_ECSR_FEF	(1 << 1) /* Form Error Flag */
205#define RCAR_CAN_ECSR_SEF	(1 << 0) /* Stuff Error Flag */
206
207#define RCAR_CAN_NAPI_WEIGHT	4
208#define MAX_STR_READS		0x100
209
210static void tx_failure_cleanup(struct net_device *ndev)
211{
212	int i;
213
214	for (i = 0; i < RCAR_CAN_FIFO_DEPTH; i++)
215		can_free_echo_skb(ndev, i);
216}
217
218static void rcar_can_error(struct net_device *ndev)
219{
220	struct rcar_can_priv *priv = netdev_priv(ndev);
221	struct net_device_stats *stats = &ndev->stats;
222	struct can_frame *cf;
223	struct sk_buff *skb;
224	u8 eifr, txerr = 0, rxerr = 0;
225
226	/* Propagate the error condition to the CAN stack */
227	skb = alloc_can_err_skb(ndev, &cf);
228
229	eifr = readb(&priv->regs->eifr);
230	if (eifr & (RCAR_CAN_EIFR_EWIF | RCAR_CAN_EIFR_EPIF)) {
231		txerr = readb(&priv->regs->tecr);
232		rxerr = readb(&priv->regs->recr);
233		if (skb) {
234			cf->can_id |= CAN_ERR_CRTL;
235			cf->data[6] = txerr;
236			cf->data[7] = rxerr;
237		}
238	}
239	if (eifr & RCAR_CAN_EIFR_BEIF) {
240		int rx_errors = 0, tx_errors = 0;
241		u8 ecsr;
242
243		netdev_dbg(priv->ndev, "Bus error interrupt:\n");
244		if (skb) {
245			cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
246			cf->data[2] = CAN_ERR_PROT_UNSPEC;
247		}
248		ecsr = readb(&priv->regs->ecsr);
249		if (ecsr & RCAR_CAN_ECSR_ADEF) {
250			netdev_dbg(priv->ndev, "ACK Delimiter Error\n");
251			tx_errors++;
252			writeb(~RCAR_CAN_ECSR_ADEF, &priv->regs->ecsr);
253			if (skb)
254				cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
255		}
256		if (ecsr & RCAR_CAN_ECSR_BE0F) {
257			netdev_dbg(priv->ndev, "Bit Error (dominant)\n");
258			tx_errors++;
259			writeb(~RCAR_CAN_ECSR_BE0F, &priv->regs->ecsr);
260			if (skb)
261				cf->data[2] |= CAN_ERR_PROT_BIT0;
262		}
263		if (ecsr & RCAR_CAN_ECSR_BE1F) {
264			netdev_dbg(priv->ndev, "Bit Error (recessive)\n");
265			tx_errors++;
266			writeb(~RCAR_CAN_ECSR_BE1F, &priv->regs->ecsr);
267			if (skb)
268				cf->data[2] |= CAN_ERR_PROT_BIT1;
269		}
270		if (ecsr & RCAR_CAN_ECSR_CEF) {
271			netdev_dbg(priv->ndev, "CRC Error\n");
272			rx_errors++;
273			writeb(~RCAR_CAN_ECSR_CEF, &priv->regs->ecsr);
274			if (skb)
275				cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
276		}
277		if (ecsr & RCAR_CAN_ECSR_AEF) {
278			netdev_dbg(priv->ndev, "ACK Error\n");
279			tx_errors++;
280			writeb(~RCAR_CAN_ECSR_AEF, &priv->regs->ecsr);
281			if (skb) {
282				cf->can_id |= CAN_ERR_ACK;
283				cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
284			}
285		}
286		if (ecsr & RCAR_CAN_ECSR_FEF) {
287			netdev_dbg(priv->ndev, "Form Error\n");
288			rx_errors++;
289			writeb(~RCAR_CAN_ECSR_FEF, &priv->regs->ecsr);
290			if (skb)
291				cf->data[2] |= CAN_ERR_PROT_FORM;
292		}
293		if (ecsr & RCAR_CAN_ECSR_SEF) {
294			netdev_dbg(priv->ndev, "Stuff Error\n");
295			rx_errors++;
296			writeb(~RCAR_CAN_ECSR_SEF, &priv->regs->ecsr);
297			if (skb)
298				cf->data[2] |= CAN_ERR_PROT_STUFF;
299		}
300
301		priv->can.can_stats.bus_error++;
302		ndev->stats.rx_errors += rx_errors;
303		ndev->stats.tx_errors += tx_errors;
304		writeb(~RCAR_CAN_EIFR_BEIF, &priv->regs->eifr);
305	}
306	if (eifr & RCAR_CAN_EIFR_EWIF) {
307		netdev_dbg(priv->ndev, "Error warning interrupt\n");
308		priv->can.state = CAN_STATE_ERROR_WARNING;
309		priv->can.can_stats.error_warning++;
310		/* Clear interrupt condition */
311		writeb(~RCAR_CAN_EIFR_EWIF, &priv->regs->eifr);
312		if (skb)
313			cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
314					      CAN_ERR_CRTL_RX_WARNING;
315	}
316	if (eifr & RCAR_CAN_EIFR_EPIF) {
317		netdev_dbg(priv->ndev, "Error passive interrupt\n");
318		priv->can.state = CAN_STATE_ERROR_PASSIVE;
319		priv->can.can_stats.error_passive++;
320		/* Clear interrupt condition */
321		writeb(~RCAR_CAN_EIFR_EPIF, &priv->regs->eifr);
322		if (skb)
323			cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
324					      CAN_ERR_CRTL_RX_PASSIVE;
325	}
326	if (eifr & RCAR_CAN_EIFR_BOEIF) {
327		netdev_dbg(priv->ndev, "Bus-off entry interrupt\n");
328		tx_failure_cleanup(ndev);
329		priv->ier = RCAR_CAN_IER_ERSIE;
330		writeb(priv->ier, &priv->regs->ier);
331		priv->can.state = CAN_STATE_BUS_OFF;
332		/* Clear interrupt condition */
333		writeb(~RCAR_CAN_EIFR_BOEIF, &priv->regs->eifr);
334		can_bus_off(ndev);
335		if (skb)
336			cf->can_id |= CAN_ERR_BUSOFF;
337	}
338	if (eifr & RCAR_CAN_EIFR_ORIF) {
339		netdev_dbg(priv->ndev, "Receive overrun error interrupt\n");
340		ndev->stats.rx_over_errors++;
341		ndev->stats.rx_errors++;
342		writeb(~RCAR_CAN_EIFR_ORIF, &priv->regs->eifr);
343		if (skb) {
344			cf->can_id |= CAN_ERR_CRTL;
345			cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
346		}
347	}
348	if (eifr & RCAR_CAN_EIFR_OLIF) {
349		netdev_dbg(priv->ndev,
350			   "Overload Frame Transmission error interrupt\n");
351		ndev->stats.rx_over_errors++;
352		ndev->stats.rx_errors++;
353		writeb(~RCAR_CAN_EIFR_OLIF, &priv->regs->eifr);
354		if (skb) {
355			cf->can_id |= CAN_ERR_PROT;
356			cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
357		}
358	}
359
360	if (skb) {
361		stats->rx_packets++;
362		stats->rx_bytes += cf->can_dlc;
363		netif_rx(skb);
364	}
365}
366
367static void rcar_can_tx_done(struct net_device *ndev)
368{
369	struct rcar_can_priv *priv = netdev_priv(ndev);
370	struct net_device_stats *stats = &ndev->stats;
371	u8 isr;
372
373	while (1) {
374		u8 unsent = readb(&priv->regs->tfcr);
375
376		unsent = (unsent & RCAR_CAN_TFCR_TFUST) >>
377			  RCAR_CAN_TFCR_TFUST_SHIFT;
378		if (priv->tx_head - priv->tx_tail <= unsent)
379			break;
380		stats->tx_packets++;
381		stats->tx_bytes += priv->tx_dlc[priv->tx_tail %
382						RCAR_CAN_FIFO_DEPTH];
383		priv->tx_dlc[priv->tx_tail % RCAR_CAN_FIFO_DEPTH] = 0;
384		can_get_echo_skb(ndev, priv->tx_tail % RCAR_CAN_FIFO_DEPTH);
385		priv->tx_tail++;
386		netif_wake_queue(ndev);
387	}
388	/* Clear interrupt */
389	isr = readb(&priv->regs->isr);
390	writeb(isr & ~RCAR_CAN_ISR_TXFF, &priv->regs->isr);
391	can_led_event(ndev, CAN_LED_EVENT_TX);
392}
393
394static irqreturn_t rcar_can_interrupt(int irq, void *dev_id)
395{
396	struct net_device *ndev = dev_id;
397	struct rcar_can_priv *priv = netdev_priv(ndev);
398	u8 isr;
399
400	isr = readb(&priv->regs->isr);
401	if (!(isr & priv->ier))
402		return IRQ_NONE;
403
404	if (isr & RCAR_CAN_ISR_ERSF)
405		rcar_can_error(ndev);
406
407	if (isr & RCAR_CAN_ISR_TXFF)
408		rcar_can_tx_done(ndev);
409
410	if (isr & RCAR_CAN_ISR_RXFF) {
411		if (napi_schedule_prep(&priv->napi)) {
412			/* Disable Rx FIFO interrupts */
413			priv->ier &= ~RCAR_CAN_IER_RXFIE;
414			writeb(priv->ier, &priv->regs->ier);
415			__napi_schedule(&priv->napi);
416		}
417	}
418
419	return IRQ_HANDLED;
420}
421
422static void rcar_can_set_bittiming(struct net_device *dev)
423{
424	struct rcar_can_priv *priv = netdev_priv(dev);
425	struct can_bittiming *bt = &priv->can.bittiming;
426	u32 bcr;
427
428	bcr = RCAR_CAN_BCR_TSEG1(bt->phase_seg1 + bt->prop_seg - 1) |
429	      RCAR_CAN_BCR_BPR(bt->brp - 1) | RCAR_CAN_BCR_SJW(bt->sjw - 1) |
430	      RCAR_CAN_BCR_TSEG2(bt->phase_seg2 - 1);
431	/* Don't overwrite CLKR with 32-bit BCR access; CLKR has 8-bit access.
432	 * All the registers are big-endian but they get byte-swapped on 32-bit
433	 * read/write (but not on 8-bit, contrary to the manuals)...
434	 */
435	writel((bcr << 8) | priv->clock_select, &priv->regs->bcr);
436}
437
438static void rcar_can_start(struct net_device *ndev)
439{
440	struct rcar_can_priv *priv = netdev_priv(ndev);
441	u16 ctlr;
442	int i;
443
444	/* Set controller to known mode:
445	 * - FIFO mailbox mode
446	 * - accept all messages
447	 * - overrun mode
448	 * CAN is in sleep mode after MCU hardware or software reset.
449	 */
450	ctlr = readw(&priv->regs->ctlr);
451	ctlr &= ~RCAR_CAN_CTLR_SLPM;
452	writew(ctlr, &priv->regs->ctlr);
453	/* Go to reset mode */
454	ctlr |= RCAR_CAN_CTLR_CANM_FORCE_RESET;
455	writew(ctlr, &priv->regs->ctlr);
456	for (i = 0; i < MAX_STR_READS; i++) {
457		if (readw(&priv->regs->str) & RCAR_CAN_STR_RSTST)
458			break;
459	}
460	rcar_can_set_bittiming(ndev);
461	ctlr |= RCAR_CAN_CTLR_IDFM_MIXED; /* Select mixed ID mode */
462	ctlr |= RCAR_CAN_CTLR_BOM_ENT;	/* Entry to halt mode automatically */
463					/* at bus-off */
464	ctlr |= RCAR_CAN_CTLR_MBM;	/* Select FIFO mailbox mode */
465	ctlr |= RCAR_CAN_CTLR_MLM;	/* Overrun mode */
466	writew(ctlr, &priv->regs->ctlr);
467
468	/* Accept all SID and EID */
469	writel(0, &priv->regs->mkr_2_9[6]);
470	writel(0, &priv->regs->mkr_2_9[7]);
471	/* In FIFO mailbox mode, write "0" to bits 24 to 31 */
472	writel(0, &priv->regs->mkivlr1);
473	/* Accept all frames */
474	writel(0, &priv->regs->fidcr[0]);
475	writel(RCAR_CAN_FIDCR_IDE | RCAR_CAN_FIDCR_RTR, &priv->regs->fidcr[1]);
476	/* Enable and configure FIFO mailbox interrupts */
477	writel(RCAR_CAN_MIER1_RXFIE | RCAR_CAN_MIER1_TXFIE, &priv->regs->mier1);
478
479	priv->ier = RCAR_CAN_IER_ERSIE | RCAR_CAN_IER_RXFIE |
480		    RCAR_CAN_IER_TXFIE;
481	writeb(priv->ier, &priv->regs->ier);
482
483	/* Accumulate error codes */
484	writeb(RCAR_CAN_ECSR_EDPM, &priv->regs->ecsr);
485	/* Enable error interrupts */
486	writeb(RCAR_CAN_EIER_EWIE | RCAR_CAN_EIER_EPIE | RCAR_CAN_EIER_BOEIE |
487	       (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING ?
488	       RCAR_CAN_EIER_BEIE : 0) | RCAR_CAN_EIER_ORIE |
489	       RCAR_CAN_EIER_OLIE, &priv->regs->eier);
490	priv->can.state = CAN_STATE_ERROR_ACTIVE;
491
492	/* Go to operation mode */
493	writew(ctlr & ~RCAR_CAN_CTLR_CANM, &priv->regs->ctlr);
494	for (i = 0; i < MAX_STR_READS; i++) {
495		if (!(readw(&priv->regs->str) & RCAR_CAN_STR_RSTST))
496			break;
497	}
498	/* Enable Rx and Tx FIFO */
499	writeb(RCAR_CAN_RFCR_RFE, &priv->regs->rfcr);
500	writeb(RCAR_CAN_TFCR_TFE, &priv->regs->tfcr);
501}
502
503static int rcar_can_open(struct net_device *ndev)
504{
505	struct rcar_can_priv *priv = netdev_priv(ndev);
506	int err;
507
508	err = clk_prepare_enable(priv->clk);
509	if (err) {
510		netdev_err(ndev, "failed to enable periperal clock, error %d\n",
511			   err);
512		goto out;
513	}
514	err = clk_prepare_enable(priv->can_clk);
515	if (err) {
516		netdev_err(ndev, "failed to enable CAN clock, error %d\n",
517			   err);
518		goto out_clock;
519	}
520	err = open_candev(ndev);
521	if (err) {
522		netdev_err(ndev, "open_candev() failed, error %d\n", err);
523		goto out_can_clock;
524	}
525	napi_enable(&priv->napi);
526	err = request_irq(ndev->irq, rcar_can_interrupt, 0, ndev->name, ndev);
527	if (err) {
528		netdev_err(ndev, "error requesting interrupt %x\n", ndev->irq);
529		goto out_close;
530	}
531	can_led_event(ndev, CAN_LED_EVENT_OPEN);
532	rcar_can_start(ndev);
533	netif_start_queue(ndev);
534	return 0;
535out_close:
536	napi_disable(&priv->napi);
537	close_candev(ndev);
538out_can_clock:
539	clk_disable_unprepare(priv->can_clk);
540out_clock:
541	clk_disable_unprepare(priv->clk);
542out:
543	return err;
544}
545
546static void rcar_can_stop(struct net_device *ndev)
547{
548	struct rcar_can_priv *priv = netdev_priv(ndev);
549	u16 ctlr;
550	int i;
551
552	/* Go to (force) reset mode */
553	ctlr = readw(&priv->regs->ctlr);
554	ctlr |= RCAR_CAN_CTLR_CANM_FORCE_RESET;
555	writew(ctlr, &priv->regs->ctlr);
556	for (i = 0; i < MAX_STR_READS; i++) {
557		if (readw(&priv->regs->str) & RCAR_CAN_STR_RSTST)
558			break;
559	}
560	writel(0, &priv->regs->mier0);
561	writel(0, &priv->regs->mier1);
562	writeb(0, &priv->regs->ier);
563	writeb(0, &priv->regs->eier);
564	/* Go to sleep mode */
565	ctlr |= RCAR_CAN_CTLR_SLPM;
566	writew(ctlr, &priv->regs->ctlr);
567	priv->can.state = CAN_STATE_STOPPED;
568}
569
570static int rcar_can_close(struct net_device *ndev)
571{
572	struct rcar_can_priv *priv = netdev_priv(ndev);
573
574	netif_stop_queue(ndev);
575	rcar_can_stop(ndev);
576	free_irq(ndev->irq, ndev);
577	napi_disable(&priv->napi);
578	clk_disable_unprepare(priv->can_clk);
579	clk_disable_unprepare(priv->clk);
580	close_candev(ndev);
581	can_led_event(ndev, CAN_LED_EVENT_STOP);
582	return 0;
583}
584
585static netdev_tx_t rcar_can_start_xmit(struct sk_buff *skb,
586				       struct net_device *ndev)
587{
588	struct rcar_can_priv *priv = netdev_priv(ndev);
589	struct can_frame *cf = (struct can_frame *)skb->data;
590	u32 data, i;
591
592	if (can_dropped_invalid_skb(ndev, skb))
593		return NETDEV_TX_OK;
594
595	if (cf->can_id & CAN_EFF_FLAG)	/* Extended frame format */
596		data = (cf->can_id & CAN_EFF_MASK) | RCAR_CAN_IDE;
597	else				/* Standard frame format */
598		data = (cf->can_id & CAN_SFF_MASK) << RCAR_CAN_SID_SHIFT;
599
600	if (cf->can_id & CAN_RTR_FLAG) { /* Remote transmission request */
601		data |= RCAR_CAN_RTR;
602	} else {
603		for (i = 0; i < cf->can_dlc; i++)
604			writeb(cf->data[i],
605			       &priv->regs->mb[RCAR_CAN_TX_FIFO_MBX].data[i]);
606	}
607
608	writel(data, &priv->regs->mb[RCAR_CAN_TX_FIFO_MBX].id);
609
610	writeb(cf->can_dlc, &priv->regs->mb[RCAR_CAN_TX_FIFO_MBX].dlc);
611
612	priv->tx_dlc[priv->tx_head % RCAR_CAN_FIFO_DEPTH] = cf->can_dlc;
613	can_put_echo_skb(skb, ndev, priv->tx_head % RCAR_CAN_FIFO_DEPTH);
614	priv->tx_head++;
615	/* Start Tx: write 0xff to the TFPCR register to increment
616	 * the CPU-side pointer for the transmit FIFO to the next
617	 * mailbox location
618	 */
619	writeb(0xff, &priv->regs->tfpcr);
620	/* Stop the queue if we've filled all FIFO entries */
621	if (priv->tx_head - priv->tx_tail >= RCAR_CAN_FIFO_DEPTH)
622		netif_stop_queue(ndev);
623
624	return NETDEV_TX_OK;
625}
626
627static const struct net_device_ops rcar_can_netdev_ops = {
628	.ndo_open = rcar_can_open,
629	.ndo_stop = rcar_can_close,
630	.ndo_start_xmit = rcar_can_start_xmit,
631	.ndo_change_mtu = can_change_mtu,
632};
633
634static void rcar_can_rx_pkt(struct rcar_can_priv *priv)
635{
636	struct net_device_stats *stats = &priv->ndev->stats;
637	struct can_frame *cf;
638	struct sk_buff *skb;
639	u32 data;
640	u8 dlc;
641
642	skb = alloc_can_skb(priv->ndev, &cf);
643	if (!skb) {
644		stats->rx_dropped++;
645		return;
646	}
647
648	data = readl(&priv->regs->mb[RCAR_CAN_RX_FIFO_MBX].id);
649	if (data & RCAR_CAN_IDE)
650		cf->can_id = (data & CAN_EFF_MASK) | CAN_EFF_FLAG;
651	else
652		cf->can_id = (data >> RCAR_CAN_SID_SHIFT) & CAN_SFF_MASK;
653
654	dlc = readb(&priv->regs->mb[RCAR_CAN_RX_FIFO_MBX].dlc);
655	cf->can_dlc = get_can_dlc(dlc);
656	if (data & RCAR_CAN_RTR) {
657		cf->can_id |= CAN_RTR_FLAG;
658	} else {
659		for (dlc = 0; dlc < cf->can_dlc; dlc++)
660			cf->data[dlc] =
661			readb(&priv->regs->mb[RCAR_CAN_RX_FIFO_MBX].data[dlc]);
662	}
663
664	can_led_event(priv->ndev, CAN_LED_EVENT_RX);
665
666	stats->rx_bytes += cf->can_dlc;
667	stats->rx_packets++;
668	netif_receive_skb(skb);
669}
670
671static int rcar_can_rx_poll(struct napi_struct *napi, int quota)
672{
673	struct rcar_can_priv *priv = container_of(napi,
674						  struct rcar_can_priv, napi);
675	int num_pkts;
676
677	for (num_pkts = 0; num_pkts < quota; num_pkts++) {
678		u8 rfcr, isr;
679
680		isr = readb(&priv->regs->isr);
681		/* Clear interrupt bit */
682		if (isr & RCAR_CAN_ISR_RXFF)
683			writeb(isr & ~RCAR_CAN_ISR_RXFF, &priv->regs->isr);
684		rfcr = readb(&priv->regs->rfcr);
685		if (rfcr & RCAR_CAN_RFCR_RFEST)
686			break;
687		rcar_can_rx_pkt(priv);
688		/* Write 0xff to the RFPCR register to increment
689		 * the CPU-side pointer for the receive FIFO
690		 * to the next mailbox location
691		 */
692		writeb(0xff, &priv->regs->rfpcr);
693	}
694	/* All packets processed */
695	if (num_pkts < quota) {
696		napi_complete(napi);
697		priv->ier |= RCAR_CAN_IER_RXFIE;
698		writeb(priv->ier, &priv->regs->ier);
699	}
700	return num_pkts;
701}
702
703static int rcar_can_do_set_mode(struct net_device *ndev, enum can_mode mode)
704{
705	switch (mode) {
706	case CAN_MODE_START:
707		rcar_can_start(ndev);
708		netif_wake_queue(ndev);
709		return 0;
710	default:
711		return -EOPNOTSUPP;
712	}
713}
714
715static int rcar_can_get_berr_counter(const struct net_device *dev,
716				     struct can_berr_counter *bec)
717{
718	struct rcar_can_priv *priv = netdev_priv(dev);
719	int err;
720
721	err = clk_prepare_enable(priv->clk);
722	if (err)
723		return err;
724	bec->txerr = readb(&priv->regs->tecr);
725	bec->rxerr = readb(&priv->regs->recr);
726	clk_disable_unprepare(priv->clk);
727	return 0;
728}
729
730static const char * const clock_names[] = {
731	[CLKR_CLKP1]	= "clkp1",
732	[CLKR_CLKP2]	= "clkp2",
733	[CLKR_CLKEXT]	= "can_clk",
734};
735
736static int rcar_can_probe(struct platform_device *pdev)
737{
738	struct rcar_can_platform_data *pdata;
739	struct rcar_can_priv *priv;
740	struct net_device *ndev;
741	struct resource *mem;
742	void __iomem *addr;
743	u32 clock_select = CLKR_CLKP1;
744	int err = -ENODEV;
745	int irq;
746
747	if (pdev->dev.of_node) {
748		of_property_read_u32(pdev->dev.of_node,
749				     "renesas,can-clock-select", &clock_select);
750	} else {
751		pdata = dev_get_platdata(&pdev->dev);
752		if (!pdata) {
753			dev_err(&pdev->dev, "No platform data provided!\n");
754			goto fail;
755		}
756		clock_select = pdata->clock_select;
757	}
758
759	irq = platform_get_irq(pdev, 0);
760	if (!irq) {
761		dev_err(&pdev->dev, "No IRQ resource\n");
762		goto fail;
763	}
764
765	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
766	addr = devm_ioremap_resource(&pdev->dev, mem);
767	if (IS_ERR(addr)) {
768		err = PTR_ERR(addr);
769		goto fail;
770	}
771
772	ndev = alloc_candev(sizeof(struct rcar_can_priv), RCAR_CAN_FIFO_DEPTH);
773	if (!ndev) {
774		dev_err(&pdev->dev, "alloc_candev() failed\n");
775		err = -ENOMEM;
776		goto fail;
777	}
778
779	priv = netdev_priv(ndev);
780
781	priv->clk = devm_clk_get(&pdev->dev, "clkp1");
782	if (IS_ERR(priv->clk)) {
783		err = PTR_ERR(priv->clk);
784		dev_err(&pdev->dev, "cannot get peripheral clock: %d\n", err);
785		goto fail_clk;
786	}
787
788	if (clock_select >= ARRAY_SIZE(clock_names)) {
789		err = -EINVAL;
790		dev_err(&pdev->dev, "invalid CAN clock selected\n");
791		goto fail_clk;
792	}
793	priv->can_clk = devm_clk_get(&pdev->dev, clock_names[clock_select]);
794	if (IS_ERR(priv->can_clk)) {
795		err = PTR_ERR(priv->can_clk);
796		dev_err(&pdev->dev, "cannot get CAN clock: %d\n", err);
797		goto fail_clk;
798	}
799
800	ndev->netdev_ops = &rcar_can_netdev_ops;
801	ndev->irq = irq;
802	ndev->flags |= IFF_ECHO;
803	priv->ndev = ndev;
804	priv->regs = addr;
805	priv->clock_select = clock_select;
806	priv->can.clock.freq = clk_get_rate(priv->can_clk);
807	priv->can.bittiming_const = &rcar_can_bittiming_const;
808	priv->can.do_set_mode = rcar_can_do_set_mode;
809	priv->can.do_get_berr_counter = rcar_can_get_berr_counter;
810	priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
811	platform_set_drvdata(pdev, ndev);
812	SET_NETDEV_DEV(ndev, &pdev->dev);
813
814	netif_napi_add(ndev, &priv->napi, rcar_can_rx_poll,
815		       RCAR_CAN_NAPI_WEIGHT);
816	err = register_candev(ndev);
817	if (err) {
818		dev_err(&pdev->dev, "register_candev() failed, error %d\n",
819			err);
820		goto fail_candev;
821	}
822
823	devm_can_led_init(ndev);
824
825	dev_info(&pdev->dev, "device registered (reg_base=%p, irq=%u)\n",
826		 priv->regs, ndev->irq);
827
828	return 0;
829fail_candev:
830	netif_napi_del(&priv->napi);
831fail_clk:
832	free_candev(ndev);
833fail:
834	return err;
835}
836
837static int rcar_can_remove(struct platform_device *pdev)
838{
839	struct net_device *ndev = platform_get_drvdata(pdev);
840	struct rcar_can_priv *priv = netdev_priv(ndev);
841
842	unregister_candev(ndev);
843	netif_napi_del(&priv->napi);
844	free_candev(ndev);
845	return 0;
846}
847
848static int __maybe_unused rcar_can_suspend(struct device *dev)
849{
850	struct net_device *ndev = dev_get_drvdata(dev);
851	struct rcar_can_priv *priv = netdev_priv(ndev);
852	u16 ctlr;
853
854	if (netif_running(ndev)) {
855		netif_stop_queue(ndev);
856		netif_device_detach(ndev);
857	}
858	ctlr = readw(&priv->regs->ctlr);
859	ctlr |= RCAR_CAN_CTLR_CANM_HALT;
860	writew(ctlr, &priv->regs->ctlr);
861	ctlr |= RCAR_CAN_CTLR_SLPM;
862	writew(ctlr, &priv->regs->ctlr);
863	priv->can.state = CAN_STATE_SLEEPING;
864
865	clk_disable(priv->clk);
866	return 0;
867}
868
869static int __maybe_unused rcar_can_resume(struct device *dev)
870{
871	struct net_device *ndev = dev_get_drvdata(dev);
872	struct rcar_can_priv *priv = netdev_priv(ndev);
873	u16 ctlr;
874	int err;
875
876	err = clk_enable(priv->clk);
877	if (err) {
878		netdev_err(ndev, "clk_enable() failed, error %d\n", err);
879		return err;
880	}
881
882	ctlr = readw(&priv->regs->ctlr);
883	ctlr &= ~RCAR_CAN_CTLR_SLPM;
884	writew(ctlr, &priv->regs->ctlr);
885	ctlr &= ~RCAR_CAN_CTLR_CANM;
886	writew(ctlr, &priv->regs->ctlr);
887	priv->can.state = CAN_STATE_ERROR_ACTIVE;
888
889	if (netif_running(ndev)) {
890		netif_device_attach(ndev);
891		netif_start_queue(ndev);
892	}
893	return 0;
894}
895
896static SIMPLE_DEV_PM_OPS(rcar_can_pm_ops, rcar_can_suspend, rcar_can_resume);
897
898static const struct of_device_id rcar_can_of_table[] __maybe_unused = {
899	{ .compatible = "renesas,can-r8a7778" },
900	{ .compatible = "renesas,can-r8a7779" },
901	{ .compatible = "renesas,can-r8a7790" },
902	{ .compatible = "renesas,can-r8a7791" },
903	{ }
904};
905MODULE_DEVICE_TABLE(of, rcar_can_of_table);
906
907static struct platform_driver rcar_can_driver = {
908	.driver = {
909		.name = RCAR_CAN_DRV_NAME,
910		.owner = THIS_MODULE,
911		.of_match_table = of_match_ptr(rcar_can_of_table),
912		.pm = &rcar_can_pm_ops,
913	},
914	.probe = rcar_can_probe,
915	.remove = rcar_can_remove,
916};
917
918module_platform_driver(rcar_can_driver);
919
920MODULE_AUTHOR("Cogent Embedded, Inc.");
921MODULE_LICENSE("GPL");
922MODULE_DESCRIPTION("CAN driver for Renesas R-Car SoC");
923MODULE_ALIAS("platform:" RCAR_CAN_DRV_NAME);
924