mcp251x.c revision 869ba1e67a894f45ba3da32af66f25104fab7d8f
1/*
2 * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
3 *
4 * MCP2510 support and bug fixes by Christian Pellegrin
5 * <chripell@evolware.org>
6 *
7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
8 *
9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
10 * Written under contract by:
11 *   Chris Elston, Katalix Systems, Ltd.
12 *
13 * Based on Microchip MCP251x CAN controller driver written by
14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
15 *
16 * Based on CAN bus driver for the CCAN controller written by
17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
18 * - Simon Kallweit, intefo AG
19 * Copyright 2007
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the version 2 of the GNU General Public License
23 * as published by the Free Software Foundation
24 *
25 * This program is distributed in the hope that it will be useful,
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28 * GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with this program; if not, see <http://www.gnu.org/licenses/>.
32 *
33 *
34 *
35 * Your platform definition file should specify something like:
36 *
37 * static struct mcp251x_platform_data mcp251x_info = {
38 *         .oscillator_frequency = 8000000,
39 * };
40 *
41 * static struct spi_board_info spi_board_info[] = {
42 *         {
43 *                 .modalias = "mcp2510",
44 *			// or "mcp2515" depending on your controller
45 *                 .platform_data = &mcp251x_info,
46 *                 .irq = IRQ_EINT13,
47 *                 .max_speed_hz = 2*1000*1000,
48 *                 .chip_select = 2,
49 *         },
50 * };
51 *
52 * Please see mcp251x.h for a description of the fields in
53 * struct mcp251x_platform_data.
54 *
55 */
56
57#include <linux/can/core.h>
58#include <linux/can/dev.h>
59#include <linux/can/led.h>
60#include <linux/can/platform/mcp251x.h>
61#include <linux/clk.h>
62#include <linux/completion.h>
63#include <linux/delay.h>
64#include <linux/device.h>
65#include <linux/dma-mapping.h>
66#include <linux/freezer.h>
67#include <linux/interrupt.h>
68#include <linux/io.h>
69#include <linux/kernel.h>
70#include <linux/module.h>
71#include <linux/netdevice.h>
72#include <linux/of.h>
73#include <linux/of_device.h>
74#include <linux/platform_device.h>
75#include <linux/slab.h>
76#include <linux/spi/spi.h>
77#include <linux/uaccess.h>
78#include <linux/regulator/consumer.h>
79
80/* SPI interface instruction set */
81#define INSTRUCTION_WRITE	0x02
82#define INSTRUCTION_READ	0x03
83#define INSTRUCTION_BIT_MODIFY	0x05
84#define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
85#define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
86#define INSTRUCTION_RESET	0xC0
87#define RTS_TXB0		0x01
88#define RTS_TXB1		0x02
89#define RTS_TXB2		0x04
90#define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))
91
92
93/* MPC251x registers */
94#define CANSTAT	      0x0e
95#define CANCTRL	      0x0f
96#  define CANCTRL_REQOP_MASK	    0xe0
97#  define CANCTRL_REQOP_CONF	    0x80
98#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
99#  define CANCTRL_REQOP_LOOPBACK    0x40
100#  define CANCTRL_REQOP_SLEEP	    0x20
101#  define CANCTRL_REQOP_NORMAL	    0x00
102#  define CANCTRL_OSM		    0x08
103#  define CANCTRL_ABAT		    0x10
104#define TEC	      0x1c
105#define REC	      0x1d
106#define CNF1	      0x2a
107#  define CNF1_SJW_SHIFT   6
108#define CNF2	      0x29
109#  define CNF2_BTLMODE	   0x80
110#  define CNF2_SAM         0x40
111#  define CNF2_PS1_SHIFT   3
112#define CNF3	      0x28
113#  define CNF3_SOF	   0x08
114#  define CNF3_WAKFIL	   0x04
115#  define CNF3_PHSEG2_MASK 0x07
116#define CANINTE	      0x2b
117#  define CANINTE_MERRE 0x80
118#  define CANINTE_WAKIE 0x40
119#  define CANINTE_ERRIE 0x20
120#  define CANINTE_TX2IE 0x10
121#  define CANINTE_TX1IE 0x08
122#  define CANINTE_TX0IE 0x04
123#  define CANINTE_RX1IE 0x02
124#  define CANINTE_RX0IE 0x01
125#define CANINTF	      0x2c
126#  define CANINTF_MERRF 0x80
127#  define CANINTF_WAKIF 0x40
128#  define CANINTF_ERRIF 0x20
129#  define CANINTF_TX2IF 0x10
130#  define CANINTF_TX1IF 0x08
131#  define CANINTF_TX0IF 0x04
132#  define CANINTF_RX1IF 0x02
133#  define CANINTF_RX0IF 0x01
134#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
135#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
136#  define CANINTF_ERR (CANINTF_ERRIF)
137#define EFLG	      0x2d
138#  define EFLG_EWARN	0x01
139#  define EFLG_RXWAR	0x02
140#  define EFLG_TXWAR	0x04
141#  define EFLG_RXEP	0x08
142#  define EFLG_TXEP	0x10
143#  define EFLG_TXBO	0x20
144#  define EFLG_RX0OVR	0x40
145#  define EFLG_RX1OVR	0x80
146#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
147#  define TXBCTRL_ABTF	0x40
148#  define TXBCTRL_MLOA	0x20
149#  define TXBCTRL_TXERR 0x10
150#  define TXBCTRL_TXREQ 0x08
151#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
152#  define SIDH_SHIFT    3
153#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
154#  define SIDL_SID_MASK    7
155#  define SIDL_SID_SHIFT   5
156#  define SIDL_EXIDE_SHIFT 3
157#  define SIDL_EID_SHIFT   16
158#  define SIDL_EID_MASK    3
159#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
160#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
161#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
162#  define DLC_RTR_SHIFT    6
163#define TXBCTRL_OFF 0
164#define TXBSIDH_OFF 1
165#define TXBSIDL_OFF 2
166#define TXBEID8_OFF 3
167#define TXBEID0_OFF 4
168#define TXBDLC_OFF  5
169#define TXBDAT_OFF  6
170#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
171#  define RXBCTRL_BUKT	0x04
172#  define RXBCTRL_RXM0	0x20
173#  define RXBCTRL_RXM1	0x40
174#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
175#  define RXBSIDH_SHIFT 3
176#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
177#  define RXBSIDL_IDE   0x08
178#  define RXBSIDL_SRR   0x10
179#  define RXBSIDL_EID   3
180#  define RXBSIDL_SHIFT 5
181#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
182#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
183#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
184#  define RXBDLC_LEN_MASK  0x0f
185#  define RXBDLC_RTR       0x40
186#define RXBCTRL_OFF 0
187#define RXBSIDH_OFF 1
188#define RXBSIDL_OFF 2
189#define RXBEID8_OFF 3
190#define RXBEID0_OFF 4
191#define RXBDLC_OFF  5
192#define RXBDAT_OFF  6
193#define RXFSIDH(n) ((n) * 4)
194#define RXFSIDL(n) ((n) * 4 + 1)
195#define RXFEID8(n) ((n) * 4 + 2)
196#define RXFEID0(n) ((n) * 4 + 3)
197#define RXMSIDH(n) ((n) * 4 + 0x20)
198#define RXMSIDL(n) ((n) * 4 + 0x21)
199#define RXMEID8(n) ((n) * 4 + 0x22)
200#define RXMEID0(n) ((n) * 4 + 0x23)
201
202#define GET_BYTE(val, byte)			\
203	(((val) >> ((byte) * 8)) & 0xff)
204#define SET_BYTE(val, byte)			\
205	(((val) & 0xff) << ((byte) * 8))
206
207/*
208 * Buffer size required for the largest SPI transfer (i.e., reading a
209 * frame)
210 */
211#define CAN_FRAME_MAX_DATA_LEN	8
212#define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
213#define CAN_FRAME_MAX_BITS	128
214
215#define TX_ECHO_SKB_MAX	1
216
217#define MCP251X_OST_DELAY_MS	(5)
218
219#define DEVICE_NAME "mcp251x"
220
221static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
222module_param(mcp251x_enable_dma, int, S_IRUGO);
223MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
224
225static const struct can_bittiming_const mcp251x_bittiming_const = {
226	.name = DEVICE_NAME,
227	.tseg1_min = 3,
228	.tseg1_max = 16,
229	.tseg2_min = 2,
230	.tseg2_max = 8,
231	.sjw_max = 4,
232	.brp_min = 1,
233	.brp_max = 64,
234	.brp_inc = 1,
235};
236
237enum mcp251x_model {
238	CAN_MCP251X_MCP2510	= 0x2510,
239	CAN_MCP251X_MCP2515	= 0x2515,
240};
241
242struct mcp251x_priv {
243	struct can_priv	   can;
244	struct net_device *net;
245	struct spi_device *spi;
246	enum mcp251x_model model;
247
248	struct mutex mcp_lock; /* SPI device lock */
249
250	u8 *spi_tx_buf;
251	u8 *spi_rx_buf;
252	dma_addr_t spi_tx_dma;
253	dma_addr_t spi_rx_dma;
254
255	struct sk_buff *tx_skb;
256	int tx_len;
257
258	struct workqueue_struct *wq;
259	struct work_struct tx_work;
260	struct work_struct restart_work;
261
262	int force_quit;
263	int after_suspend;
264#define AFTER_SUSPEND_UP 1
265#define AFTER_SUSPEND_DOWN 2
266#define AFTER_SUSPEND_POWER 4
267#define AFTER_SUSPEND_RESTART 8
268	int restart_tx;
269	struct regulator *power;
270	struct regulator *transceiver;
271	struct clk *clk;
272};
273
274#define MCP251X_IS(_model) \
275static inline int mcp251x_is_##_model(struct spi_device *spi) \
276{ \
277	struct mcp251x_priv *priv = spi_get_drvdata(spi); \
278	return priv->model == CAN_MCP251X_MCP##_model; \
279}
280
281MCP251X_IS(2510);
282MCP251X_IS(2515);
283
284static void mcp251x_clean(struct net_device *net)
285{
286	struct mcp251x_priv *priv = netdev_priv(net);
287
288	if (priv->tx_skb || priv->tx_len)
289		net->stats.tx_errors++;
290	if (priv->tx_skb)
291		dev_kfree_skb(priv->tx_skb);
292	if (priv->tx_len)
293		can_free_echo_skb(priv->net, 0);
294	priv->tx_skb = NULL;
295	priv->tx_len = 0;
296}
297
298/*
299 * Note about handling of error return of mcp251x_spi_trans: accessing
300 * registers via SPI is not really different conceptually than using
301 * normal I/O assembler instructions, although it's much more
302 * complicated from a practical POV. So it's not advisable to always
303 * check the return value of this function. Imagine that every
304 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
305 * error();", it would be a great mess (well there are some situation
306 * when exception handling C++ like could be useful after all). So we
307 * just check that transfers are OK at the beginning of our
308 * conversation with the chip and to avoid doing really nasty things
309 * (like injecting bogus packets in the network stack).
310 */
311static int mcp251x_spi_trans(struct spi_device *spi, int len)
312{
313	struct mcp251x_priv *priv = spi_get_drvdata(spi);
314	struct spi_transfer t = {
315		.tx_buf = priv->spi_tx_buf,
316		.rx_buf = priv->spi_rx_buf,
317		.len = len,
318		.cs_change = 0,
319	};
320	struct spi_message m;
321	int ret;
322
323	spi_message_init(&m);
324
325	if (mcp251x_enable_dma) {
326		t.tx_dma = priv->spi_tx_dma;
327		t.rx_dma = priv->spi_rx_dma;
328		m.is_dma_mapped = 1;
329	}
330
331	spi_message_add_tail(&t, &m);
332
333	ret = spi_sync(spi, &m);
334	if (ret)
335		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
336	return ret;
337}
338
339static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
340{
341	struct mcp251x_priv *priv = spi_get_drvdata(spi);
342	u8 val = 0;
343
344	priv->spi_tx_buf[0] = INSTRUCTION_READ;
345	priv->spi_tx_buf[1] = reg;
346
347	mcp251x_spi_trans(spi, 3);
348	val = priv->spi_rx_buf[2];
349
350	return val;
351}
352
353static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg,
354		uint8_t *v1, uint8_t *v2)
355{
356	struct mcp251x_priv *priv = spi_get_drvdata(spi);
357
358	priv->spi_tx_buf[0] = INSTRUCTION_READ;
359	priv->spi_tx_buf[1] = reg;
360
361	mcp251x_spi_trans(spi, 4);
362
363	*v1 = priv->spi_rx_buf[2];
364	*v2 = priv->spi_rx_buf[3];
365}
366
367static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
368{
369	struct mcp251x_priv *priv = spi_get_drvdata(spi);
370
371	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
372	priv->spi_tx_buf[1] = reg;
373	priv->spi_tx_buf[2] = val;
374
375	mcp251x_spi_trans(spi, 3);
376}
377
378static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
379			       u8 mask, uint8_t val)
380{
381	struct mcp251x_priv *priv = spi_get_drvdata(spi);
382
383	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
384	priv->spi_tx_buf[1] = reg;
385	priv->spi_tx_buf[2] = mask;
386	priv->spi_tx_buf[3] = val;
387
388	mcp251x_spi_trans(spi, 4);
389}
390
391static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
392				int len, int tx_buf_idx)
393{
394	struct mcp251x_priv *priv = spi_get_drvdata(spi);
395
396	if (mcp251x_is_2510(spi)) {
397		int i;
398
399		for (i = 1; i < TXBDAT_OFF + len; i++)
400			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
401					  buf[i]);
402	} else {
403		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
404		mcp251x_spi_trans(spi, TXBDAT_OFF + len);
405	}
406}
407
408static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
409			  int tx_buf_idx)
410{
411	struct mcp251x_priv *priv = spi_get_drvdata(spi);
412	u32 sid, eid, exide, rtr;
413	u8 buf[SPI_TRANSFER_BUF_LEN];
414
415	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
416	if (exide)
417		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
418	else
419		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
420	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
421	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
422
423	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
424	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
425	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
426		(exide << SIDL_EXIDE_SHIFT) |
427		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
428	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
429	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
430	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
431	memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
432	mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
433
434	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
435	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
436	mcp251x_spi_trans(priv->spi, 1);
437}
438
439static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
440				int buf_idx)
441{
442	struct mcp251x_priv *priv = spi_get_drvdata(spi);
443
444	if (mcp251x_is_2510(spi)) {
445		int i, len;
446
447		for (i = 1; i < RXBDAT_OFF; i++)
448			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
449
450		len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
451		for (; i < (RXBDAT_OFF + len); i++)
452			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
453	} else {
454		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
455		mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
456		memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
457	}
458}
459
460static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
461{
462	struct mcp251x_priv *priv = spi_get_drvdata(spi);
463	struct sk_buff *skb;
464	struct can_frame *frame;
465	u8 buf[SPI_TRANSFER_BUF_LEN];
466
467	skb = alloc_can_skb(priv->net, &frame);
468	if (!skb) {
469		dev_err(&spi->dev, "cannot allocate RX skb\n");
470		priv->net->stats.rx_dropped++;
471		return;
472	}
473
474	mcp251x_hw_rx_frame(spi, buf, buf_idx);
475	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
476		/* Extended ID format */
477		frame->can_id = CAN_EFF_FLAG;
478		frame->can_id |=
479			/* Extended ID part */
480			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
481			SET_BYTE(buf[RXBEID8_OFF], 1) |
482			SET_BYTE(buf[RXBEID0_OFF], 0) |
483			/* Standard ID part */
484			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
485			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
486		/* Remote transmission request */
487		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
488			frame->can_id |= CAN_RTR_FLAG;
489	} else {
490		/* Standard ID format */
491		frame->can_id =
492			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
493			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
494		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
495			frame->can_id |= CAN_RTR_FLAG;
496	}
497	/* Data length */
498	frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
499	memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
500
501	priv->net->stats.rx_packets++;
502	priv->net->stats.rx_bytes += frame->can_dlc;
503
504	can_led_event(priv->net, CAN_LED_EVENT_RX);
505
506	netif_rx_ni(skb);
507}
508
509static void mcp251x_hw_sleep(struct spi_device *spi)
510{
511	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
512}
513
514static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
515					   struct net_device *net)
516{
517	struct mcp251x_priv *priv = netdev_priv(net);
518	struct spi_device *spi = priv->spi;
519
520	if (priv->tx_skb || priv->tx_len) {
521		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
522		return NETDEV_TX_BUSY;
523	}
524
525	if (can_dropped_invalid_skb(net, skb))
526		return NETDEV_TX_OK;
527
528	netif_stop_queue(net);
529	priv->tx_skb = skb;
530	queue_work(priv->wq, &priv->tx_work);
531
532	return NETDEV_TX_OK;
533}
534
535static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
536{
537	struct mcp251x_priv *priv = netdev_priv(net);
538
539	switch (mode) {
540	case CAN_MODE_START:
541		mcp251x_clean(net);
542		/* We have to delay work since SPI I/O may sleep */
543		priv->can.state = CAN_STATE_ERROR_ACTIVE;
544		priv->restart_tx = 1;
545		if (priv->can.restart_ms == 0)
546			priv->after_suspend = AFTER_SUSPEND_RESTART;
547		queue_work(priv->wq, &priv->restart_work);
548		break;
549	default:
550		return -EOPNOTSUPP;
551	}
552
553	return 0;
554}
555
556static int mcp251x_set_normal_mode(struct spi_device *spi)
557{
558	struct mcp251x_priv *priv = spi_get_drvdata(spi);
559	unsigned long timeout;
560
561	/* Enable interrupts */
562	mcp251x_write_reg(spi, CANINTE,
563			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
564			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
565
566	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
567		/* Put device into loopback mode */
568		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
569	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
570		/* Put device into listen-only mode */
571		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
572	} else {
573		/* Put device into normal mode */
574		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
575
576		/* Wait for the device to enter normal mode */
577		timeout = jiffies + HZ;
578		while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
579			schedule();
580			if (time_after(jiffies, timeout)) {
581				dev_err(&spi->dev, "MCP251x didn't"
582					" enter in normal mode\n");
583				return -EBUSY;
584			}
585		}
586	}
587	priv->can.state = CAN_STATE_ERROR_ACTIVE;
588	return 0;
589}
590
591static int mcp251x_do_set_bittiming(struct net_device *net)
592{
593	struct mcp251x_priv *priv = netdev_priv(net);
594	struct can_bittiming *bt = &priv->can.bittiming;
595	struct spi_device *spi = priv->spi;
596
597	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
598			  (bt->brp - 1));
599	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
600			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
601			   CNF2_SAM : 0) |
602			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
603			  (bt->prop_seg - 1));
604	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
605			   (bt->phase_seg2 - 1));
606	dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
607		mcp251x_read_reg(spi, CNF1),
608		mcp251x_read_reg(spi, CNF2),
609		mcp251x_read_reg(spi, CNF3));
610
611	return 0;
612}
613
614static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
615			 struct spi_device *spi)
616{
617	mcp251x_do_set_bittiming(net);
618
619	mcp251x_write_reg(spi, RXBCTRL(0),
620			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
621	mcp251x_write_reg(spi, RXBCTRL(1),
622			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
623	return 0;
624}
625
626static int mcp251x_hw_reset(struct spi_device *spi)
627{
628	struct mcp251x_priv *priv = spi_get_drvdata(spi);
629	u8 reg;
630	int ret;
631
632	/* Wait for oscillator startup timer after power up */
633	mdelay(MCP251X_OST_DELAY_MS);
634
635	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
636	ret = mcp251x_spi_trans(spi, 1);
637	if (ret)
638		return ret;
639
640	/* Wait for oscillator startup timer after reset */
641	mdelay(MCP251X_OST_DELAY_MS);
642
643	reg = mcp251x_read_reg(spi, CANSTAT);
644	if ((reg & CANCTRL_REQOP_MASK) != CANCTRL_REQOP_CONF)
645		return -ENODEV;
646
647	return 0;
648}
649
650static int mcp251x_hw_probe(struct spi_device *spi)
651{
652	u8 ctrl;
653	int ret;
654
655	ret = mcp251x_hw_reset(spi);
656	if (ret)
657		return ret;
658
659	ctrl = mcp251x_read_reg(spi, CANCTRL);
660
661	dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
662
663	/* Check for power up default value */
664	if ((ctrl & 0x17) != 0x07)
665		return -ENODEV;
666
667	return 0;
668}
669
670static int mcp251x_power_enable(struct regulator *reg, int enable)
671{
672	if (IS_ERR_OR_NULL(reg))
673		return 0;
674
675	if (enable)
676		return regulator_enable(reg);
677	else
678		return regulator_disable(reg);
679}
680
681static void mcp251x_open_clean(struct net_device *net)
682{
683	struct mcp251x_priv *priv = netdev_priv(net);
684	struct spi_device *spi = priv->spi;
685
686	free_irq(spi->irq, priv);
687	mcp251x_hw_sleep(spi);
688	mcp251x_power_enable(priv->transceiver, 0);
689	close_candev(net);
690}
691
692static int mcp251x_stop(struct net_device *net)
693{
694	struct mcp251x_priv *priv = netdev_priv(net);
695	struct spi_device *spi = priv->spi;
696
697	close_candev(net);
698
699	priv->force_quit = 1;
700	free_irq(spi->irq, priv);
701	destroy_workqueue(priv->wq);
702	priv->wq = NULL;
703
704	mutex_lock(&priv->mcp_lock);
705
706	/* Disable and clear pending interrupts */
707	mcp251x_write_reg(spi, CANINTE, 0x00);
708	mcp251x_write_reg(spi, CANINTF, 0x00);
709
710	mcp251x_write_reg(spi, TXBCTRL(0), 0);
711	mcp251x_clean(net);
712
713	mcp251x_hw_sleep(spi);
714
715	mcp251x_power_enable(priv->transceiver, 0);
716
717	priv->can.state = CAN_STATE_STOPPED;
718
719	mutex_unlock(&priv->mcp_lock);
720
721	can_led_event(net, CAN_LED_EVENT_STOP);
722
723	return 0;
724}
725
726static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
727{
728	struct sk_buff *skb;
729	struct can_frame *frame;
730
731	skb = alloc_can_err_skb(net, &frame);
732	if (skb) {
733		frame->can_id |= can_id;
734		frame->data[1] = data1;
735		netif_rx_ni(skb);
736	} else {
737		netdev_err(net, "cannot allocate error skb\n");
738	}
739}
740
741static void mcp251x_tx_work_handler(struct work_struct *ws)
742{
743	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
744						 tx_work);
745	struct spi_device *spi = priv->spi;
746	struct net_device *net = priv->net;
747	struct can_frame *frame;
748
749	mutex_lock(&priv->mcp_lock);
750	if (priv->tx_skb) {
751		if (priv->can.state == CAN_STATE_BUS_OFF) {
752			mcp251x_clean(net);
753		} else {
754			frame = (struct can_frame *)priv->tx_skb->data;
755
756			if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
757				frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
758			mcp251x_hw_tx(spi, frame, 0);
759			priv->tx_len = 1 + frame->can_dlc;
760			can_put_echo_skb(priv->tx_skb, net, 0);
761			priv->tx_skb = NULL;
762		}
763	}
764	mutex_unlock(&priv->mcp_lock);
765}
766
767static void mcp251x_restart_work_handler(struct work_struct *ws)
768{
769	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
770						 restart_work);
771	struct spi_device *spi = priv->spi;
772	struct net_device *net = priv->net;
773
774	mutex_lock(&priv->mcp_lock);
775	if (priv->after_suspend) {
776		mcp251x_hw_reset(spi);
777		mcp251x_setup(net, priv, spi);
778		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
779			mcp251x_set_normal_mode(spi);
780		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
781			netif_device_attach(net);
782			mcp251x_clean(net);
783			mcp251x_set_normal_mode(spi);
784			netif_wake_queue(net);
785		} else {
786			mcp251x_hw_sleep(spi);
787		}
788		priv->after_suspend = 0;
789		priv->force_quit = 0;
790	}
791
792	if (priv->restart_tx) {
793		priv->restart_tx = 0;
794		mcp251x_write_reg(spi, TXBCTRL(0), 0);
795		mcp251x_clean(net);
796		netif_wake_queue(net);
797		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
798	}
799	mutex_unlock(&priv->mcp_lock);
800}
801
802static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
803{
804	struct mcp251x_priv *priv = dev_id;
805	struct spi_device *spi = priv->spi;
806	struct net_device *net = priv->net;
807
808	mutex_lock(&priv->mcp_lock);
809	while (!priv->force_quit) {
810		enum can_state new_state;
811		u8 intf, eflag;
812		u8 clear_intf = 0;
813		int can_id = 0, data1 = 0;
814
815		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
816
817		/* mask out flags we don't care about */
818		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
819
820		/* receive buffer 0 */
821		if (intf & CANINTF_RX0IF) {
822			mcp251x_hw_rx(spi, 0);
823			/*
824			 * Free one buffer ASAP
825			 * (The MCP2515 does this automatically.)
826			 */
827			if (mcp251x_is_2510(spi))
828				mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00);
829		}
830
831		/* receive buffer 1 */
832		if (intf & CANINTF_RX1IF) {
833			mcp251x_hw_rx(spi, 1);
834			/* the MCP2515 does this automatically */
835			if (mcp251x_is_2510(spi))
836				clear_intf |= CANINTF_RX1IF;
837		}
838
839		/* any error or tx interrupt we need to clear? */
840		if (intf & (CANINTF_ERR | CANINTF_TX))
841			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
842		if (clear_intf)
843			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
844
845		if (eflag)
846			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
847
848		/* Update can state */
849		if (eflag & EFLG_TXBO) {
850			new_state = CAN_STATE_BUS_OFF;
851			can_id |= CAN_ERR_BUSOFF;
852		} else if (eflag & EFLG_TXEP) {
853			new_state = CAN_STATE_ERROR_PASSIVE;
854			can_id |= CAN_ERR_CRTL;
855			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
856		} else if (eflag & EFLG_RXEP) {
857			new_state = CAN_STATE_ERROR_PASSIVE;
858			can_id |= CAN_ERR_CRTL;
859			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
860		} else if (eflag & EFLG_TXWAR) {
861			new_state = CAN_STATE_ERROR_WARNING;
862			can_id |= CAN_ERR_CRTL;
863			data1 |= CAN_ERR_CRTL_TX_WARNING;
864		} else if (eflag & EFLG_RXWAR) {
865			new_state = CAN_STATE_ERROR_WARNING;
866			can_id |= CAN_ERR_CRTL;
867			data1 |= CAN_ERR_CRTL_RX_WARNING;
868		} else {
869			new_state = CAN_STATE_ERROR_ACTIVE;
870		}
871
872		/* Update can state statistics */
873		switch (priv->can.state) {
874		case CAN_STATE_ERROR_ACTIVE:
875			if (new_state >= CAN_STATE_ERROR_WARNING &&
876			    new_state <= CAN_STATE_BUS_OFF)
877				priv->can.can_stats.error_warning++;
878		case CAN_STATE_ERROR_WARNING:	/* fallthrough */
879			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
880			    new_state <= CAN_STATE_BUS_OFF)
881				priv->can.can_stats.error_passive++;
882			break;
883		default:
884			break;
885		}
886		priv->can.state = new_state;
887
888		if (intf & CANINTF_ERRIF) {
889			/* Handle overflow counters */
890			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
891				if (eflag & EFLG_RX0OVR) {
892					net->stats.rx_over_errors++;
893					net->stats.rx_errors++;
894				}
895				if (eflag & EFLG_RX1OVR) {
896					net->stats.rx_over_errors++;
897					net->stats.rx_errors++;
898				}
899				can_id |= CAN_ERR_CRTL;
900				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
901			}
902			mcp251x_error_skb(net, can_id, data1);
903		}
904
905		if (priv->can.state == CAN_STATE_BUS_OFF) {
906			if (priv->can.restart_ms == 0) {
907				priv->force_quit = 1;
908				can_bus_off(net);
909				mcp251x_hw_sleep(spi);
910				break;
911			}
912		}
913
914		if (intf == 0)
915			break;
916
917		if (intf & CANINTF_TX) {
918			net->stats.tx_packets++;
919			net->stats.tx_bytes += priv->tx_len - 1;
920			can_led_event(net, CAN_LED_EVENT_TX);
921			if (priv->tx_len) {
922				can_get_echo_skb(net, 0);
923				priv->tx_len = 0;
924			}
925			netif_wake_queue(net);
926		}
927
928	}
929	mutex_unlock(&priv->mcp_lock);
930	return IRQ_HANDLED;
931}
932
933static int mcp251x_open(struct net_device *net)
934{
935	struct mcp251x_priv *priv = netdev_priv(net);
936	struct spi_device *spi = priv->spi;
937	unsigned long flags = IRQF_ONESHOT | IRQF_TRIGGER_FALLING;
938	int ret;
939
940	ret = open_candev(net);
941	if (ret) {
942		dev_err(&spi->dev, "unable to set initial baudrate!\n");
943		return ret;
944	}
945
946	mutex_lock(&priv->mcp_lock);
947	mcp251x_power_enable(priv->transceiver, 1);
948
949	priv->force_quit = 0;
950	priv->tx_skb = NULL;
951	priv->tx_len = 0;
952
953	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
954				   flags, DEVICE_NAME, priv);
955	if (ret) {
956		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
957		mcp251x_power_enable(priv->transceiver, 0);
958		close_candev(net);
959		goto open_unlock;
960	}
961
962	priv->wq = create_freezable_workqueue("mcp251x_wq");
963	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
964	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
965
966	ret = mcp251x_hw_reset(spi);
967	if (ret) {
968		mcp251x_open_clean(net);
969		goto open_unlock;
970	}
971	ret = mcp251x_setup(net, priv, spi);
972	if (ret) {
973		mcp251x_open_clean(net);
974		goto open_unlock;
975	}
976	ret = mcp251x_set_normal_mode(spi);
977	if (ret) {
978		mcp251x_open_clean(net);
979		goto open_unlock;
980	}
981
982	can_led_event(net, CAN_LED_EVENT_OPEN);
983
984	netif_wake_queue(net);
985
986open_unlock:
987	mutex_unlock(&priv->mcp_lock);
988	return ret;
989}
990
991static const struct net_device_ops mcp251x_netdev_ops = {
992	.ndo_open = mcp251x_open,
993	.ndo_stop = mcp251x_stop,
994	.ndo_start_xmit = mcp251x_hard_start_xmit,
995	.ndo_change_mtu = can_change_mtu,
996};
997
998static const struct of_device_id mcp251x_of_match[] = {
999	{
1000		.compatible	= "microchip,mcp2510",
1001		.data		= (void *)CAN_MCP251X_MCP2510,
1002	},
1003	{
1004		.compatible	= "microchip,mcp2515",
1005		.data		= (void *)CAN_MCP251X_MCP2515,
1006	},
1007	{ }
1008};
1009MODULE_DEVICE_TABLE(of, mcp251x_of_match);
1010
1011static const struct spi_device_id mcp251x_id_table[] = {
1012	{
1013		.name		= "mcp2510",
1014		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2510,
1015	},
1016	{
1017		.name		= "mcp2515",
1018		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2515,
1019	},
1020	{ }
1021};
1022MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1023
1024static int mcp251x_can_probe(struct spi_device *spi)
1025{
1026	const struct of_device_id *of_id = of_match_device(mcp251x_of_match,
1027							   &spi->dev);
1028	struct mcp251x_platform_data *pdata = dev_get_platdata(&spi->dev);
1029	struct net_device *net;
1030	struct mcp251x_priv *priv;
1031	struct clk *clk;
1032	int freq, ret;
1033
1034	clk = devm_clk_get(&spi->dev, NULL);
1035	if (IS_ERR(clk)) {
1036		if (pdata)
1037			freq = pdata->oscillator_frequency;
1038		else
1039			return PTR_ERR(clk);
1040	} else {
1041		freq = clk_get_rate(clk);
1042	}
1043
1044	/* Sanity check */
1045	if (freq < 1000000 || freq > 25000000)
1046		return -ERANGE;
1047
1048	/* Allocate can/net device */
1049	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1050	if (!net)
1051		return -ENOMEM;
1052
1053	if (!IS_ERR(clk)) {
1054		ret = clk_prepare_enable(clk);
1055		if (ret)
1056			goto out_free;
1057	}
1058
1059	net->netdev_ops = &mcp251x_netdev_ops;
1060	net->flags |= IFF_ECHO;
1061
1062	priv = netdev_priv(net);
1063	priv->can.bittiming_const = &mcp251x_bittiming_const;
1064	priv->can.do_set_mode = mcp251x_do_set_mode;
1065	priv->can.clock.freq = freq / 2;
1066	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1067		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1068	if (of_id)
1069		priv->model = (enum mcp251x_model)of_id->data;
1070	else
1071		priv->model = spi_get_device_id(spi)->driver_data;
1072	priv->net = net;
1073	priv->clk = clk;
1074
1075	spi_set_drvdata(spi, priv);
1076
1077	/* Configure the SPI bus */
1078	spi->bits_per_word = 8;
1079	if (mcp251x_is_2510(spi))
1080		spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1081	else
1082		spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1083	ret = spi_setup(spi);
1084	if (ret)
1085		goto out_clk;
1086
1087	priv->power = devm_regulator_get(&spi->dev, "vdd");
1088	priv->transceiver = devm_regulator_get(&spi->dev, "xceiver");
1089	if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1090	    (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1091		ret = -EPROBE_DEFER;
1092		goto out_clk;
1093	}
1094
1095	ret = mcp251x_power_enable(priv->power, 1);
1096	if (ret)
1097		goto out_clk;
1098
1099	priv->spi = spi;
1100	mutex_init(&priv->mcp_lock);
1101
1102	/* If requested, allocate DMA buffers */
1103	if (mcp251x_enable_dma) {
1104		spi->dev.coherent_dma_mask = ~0;
1105
1106		/*
1107		 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
1108		 * that much and share it between Tx and Rx DMA buffers.
1109		 */
1110		priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
1111						      PAGE_SIZE,
1112						      &priv->spi_tx_dma,
1113						      GFP_DMA);
1114
1115		if (priv->spi_tx_buf) {
1116			priv->spi_rx_buf = (priv->spi_tx_buf + (PAGE_SIZE / 2));
1117			priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
1118							(PAGE_SIZE / 2));
1119		} else {
1120			/* Fall back to non-DMA */
1121			mcp251x_enable_dma = 0;
1122		}
1123	}
1124
1125	/* Allocate non-DMA buffers */
1126	if (!mcp251x_enable_dma) {
1127		priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1128						GFP_KERNEL);
1129		if (!priv->spi_tx_buf) {
1130			ret = -ENOMEM;
1131			goto error_probe;
1132		}
1133		priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1134						GFP_KERNEL);
1135		if (!priv->spi_rx_buf) {
1136			ret = -ENOMEM;
1137			goto error_probe;
1138		}
1139	}
1140
1141	SET_NETDEV_DEV(net, &spi->dev);
1142
1143	/* Here is OK to not lock the MCP, no one knows about it yet */
1144	ret = mcp251x_hw_probe(spi);
1145	if (ret)
1146		goto error_probe;
1147
1148	mcp251x_hw_sleep(spi);
1149
1150	ret = register_candev(net);
1151	if (ret)
1152		goto error_probe;
1153
1154	devm_can_led_init(net);
1155
1156	return 0;
1157
1158error_probe:
1159	if (mcp251x_enable_dma)
1160		dma_free_coherent(&spi->dev, PAGE_SIZE,
1161				  priv->spi_tx_buf, priv->spi_tx_dma);
1162	mcp251x_power_enable(priv->power, 0);
1163
1164out_clk:
1165	if (!IS_ERR(clk))
1166		clk_disable_unprepare(clk);
1167
1168out_free:
1169	free_candev(net);
1170
1171	return ret;
1172}
1173
1174static int mcp251x_can_remove(struct spi_device *spi)
1175{
1176	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1177	struct net_device *net = priv->net;
1178
1179	unregister_candev(net);
1180
1181	if (mcp251x_enable_dma) {
1182		dma_free_coherent(&spi->dev, PAGE_SIZE,
1183				  priv->spi_tx_buf, priv->spi_tx_dma);
1184	}
1185
1186	mcp251x_power_enable(priv->power, 0);
1187
1188	if (!IS_ERR(priv->clk))
1189		clk_disable_unprepare(priv->clk);
1190
1191	free_candev(net);
1192
1193	return 0;
1194}
1195
1196static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1197{
1198	struct spi_device *spi = to_spi_device(dev);
1199	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1200	struct net_device *net = priv->net;
1201
1202	priv->force_quit = 1;
1203	disable_irq(spi->irq);
1204	/*
1205	 * Note: at this point neither IST nor workqueues are running.
1206	 * open/stop cannot be called anyway so locking is not needed
1207	 */
1208	if (netif_running(net)) {
1209		netif_device_detach(net);
1210
1211		mcp251x_hw_sleep(spi);
1212		mcp251x_power_enable(priv->transceiver, 0);
1213		priv->after_suspend = AFTER_SUSPEND_UP;
1214	} else {
1215		priv->after_suspend = AFTER_SUSPEND_DOWN;
1216	}
1217
1218	if (!IS_ERR_OR_NULL(priv->power)) {
1219		regulator_disable(priv->power);
1220		priv->after_suspend |= AFTER_SUSPEND_POWER;
1221	}
1222
1223	return 0;
1224}
1225
1226static int __maybe_unused mcp251x_can_resume(struct device *dev)
1227{
1228	struct spi_device *spi = to_spi_device(dev);
1229	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1230
1231	if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1232		mcp251x_power_enable(priv->power, 1);
1233		queue_work(priv->wq, &priv->restart_work);
1234	} else {
1235		if (priv->after_suspend & AFTER_SUSPEND_UP) {
1236			mcp251x_power_enable(priv->transceiver, 1);
1237			queue_work(priv->wq, &priv->restart_work);
1238		} else {
1239			priv->after_suspend = 0;
1240		}
1241	}
1242	priv->force_quit = 0;
1243	enable_irq(spi->irq);
1244	return 0;
1245}
1246
1247static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1248	mcp251x_can_resume);
1249
1250static struct spi_driver mcp251x_can_driver = {
1251	.driver = {
1252		.name = DEVICE_NAME,
1253		.owner = THIS_MODULE,
1254		.of_match_table = mcp251x_of_match,
1255		.pm = &mcp251x_can_pm_ops,
1256	},
1257	.id_table = mcp251x_id_table,
1258	.probe = mcp251x_can_probe,
1259	.remove = mcp251x_can_remove,
1260};
1261module_spi_driver(mcp251x_can_driver);
1262
1263MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1264	      "Christian Pellegrin <chripell@evolware.org>");
1265MODULE_DESCRIPTION("Microchip 251x CAN driver");
1266MODULE_LICENSE("GPL v2");
1267