ems_usb.c revision 09da6c5f60ad2e2018366e47192a9ddbccfb3ac5
1/*
2 * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
3 *
4 * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; version 2 of the License.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 * General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19#include <linux/init.h>
20#include <linux/signal.h>
21#include <linux/slab.h>
22#include <linux/module.h>
23#include <linux/netdevice.h>
24#include <linux/usb.h>
25
26#include <linux/can.h>
27#include <linux/can/dev.h>
28#include <linux/can/error.h>
29
30MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
31MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
32MODULE_LICENSE("GPL v2");
33
34/* Control-Values for CPC_Control() Command Subject Selection */
35#define CONTR_CAN_MESSAGE 0x04
36#define CONTR_CAN_STATE   0x0C
37#define CONTR_BUS_ERROR   0x1C
38
39/* Control Command Actions */
40#define CONTR_CONT_OFF 0
41#define CONTR_CONT_ON  1
42#define CONTR_ONCE     2
43
44/* Messages from CPC to PC */
45#define CPC_MSG_TYPE_CAN_FRAME       1  /* CAN data frame */
46#define CPC_MSG_TYPE_RTR_FRAME       8  /* CAN remote frame */
47#define CPC_MSG_TYPE_CAN_PARAMS      12 /* Actual CAN parameters */
48#define CPC_MSG_TYPE_CAN_STATE       14 /* CAN state message */
49#define CPC_MSG_TYPE_EXT_CAN_FRAME   16 /* Extended CAN data frame */
50#define CPC_MSG_TYPE_EXT_RTR_FRAME   17 /* Extended remote frame */
51#define CPC_MSG_TYPE_CONTROL         19 /* change interface behavior */
52#define CPC_MSG_TYPE_CONFIRM         20 /* command processed confirmation */
53#define CPC_MSG_TYPE_OVERRUN         21 /* overrun events */
54#define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
55#define CPC_MSG_TYPE_ERR_COUNTER     25 /* RX/TX error counter */
56
57/* Messages from the PC to the CPC interface  */
58#define CPC_CMD_TYPE_CAN_FRAME     1   /* CAN data frame */
59#define CPC_CMD_TYPE_CONTROL       3   /* control of interface behavior */
60#define CPC_CMD_TYPE_CAN_PARAMS    6   /* set CAN parameters */
61#define CPC_CMD_TYPE_RTR_FRAME     13  /* CAN remote frame */
62#define CPC_CMD_TYPE_CAN_STATE     14  /* CAN state message */
63#define CPC_CMD_TYPE_EXT_CAN_FRAME 15  /* Extended CAN data frame */
64#define CPC_CMD_TYPE_EXT_RTR_FRAME 16  /* Extended CAN remote frame */
65#define CPC_CMD_TYPE_CAN_EXIT      200 /* exit the CAN */
66
67#define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
68#define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8  /* clear CPC_MSG queue */
69#define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
70
71#define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
72
73#define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
74
75/* Overrun types */
76#define CPC_OVR_EVENT_CAN       0x01
77#define CPC_OVR_EVENT_CANSTATE  0x02
78#define CPC_OVR_EVENT_BUSERROR  0x04
79
80/*
81 * If the CAN controller lost a message we indicate it with the highest bit
82 * set in the count field.
83 */
84#define CPC_OVR_HW 0x80
85
86/* Size of the "struct ems_cpc_msg" without the union */
87#define CPC_MSG_HEADER_LEN   11
88#define CPC_CAN_MSG_MIN_SIZE 5
89
90/* Define these values to match your devices */
91#define USB_CPCUSB_VENDOR_ID 0x12D6
92
93#define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
94
95/* Mode register NXP LPC2119/SJA1000 CAN Controller */
96#define SJA1000_MOD_NORMAL 0x00
97#define SJA1000_MOD_RM     0x01
98
99/* ECC register NXP LPC2119/SJA1000 CAN Controller */
100#define SJA1000_ECC_SEG   0x1F
101#define SJA1000_ECC_DIR   0x20
102#define SJA1000_ECC_ERR   0x06
103#define SJA1000_ECC_BIT   0x00
104#define SJA1000_ECC_FORM  0x40
105#define SJA1000_ECC_STUFF 0x80
106#define SJA1000_ECC_MASK  0xc0
107
108/* Status register content */
109#define SJA1000_SR_BS 0x80
110#define SJA1000_SR_ES 0x40
111
112#define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
113
114/*
115 * The device actually uses a 16MHz clock to generate the CAN clock
116 * but it expects SJA1000 bit settings based on 8MHz (is internally
117 * converted).
118 */
119#define EMS_USB_ARM7_CLOCK 8000000
120
121/*
122 * CAN-Message representation in a CPC_MSG. Message object type is
123 * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
124 * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
125 */
126struct cpc_can_msg {
127	u32 id;
128	u8 length;
129	u8 msg[8];
130};
131
132/* Representation of the CAN parameters for the SJA1000 controller */
133struct cpc_sja1000_params {
134	u8 mode;
135	u8 acc_code0;
136	u8 acc_code1;
137	u8 acc_code2;
138	u8 acc_code3;
139	u8 acc_mask0;
140	u8 acc_mask1;
141	u8 acc_mask2;
142	u8 acc_mask3;
143	u8 btr0;
144	u8 btr1;
145	u8 outp_contr;
146};
147
148/* CAN params message representation */
149struct cpc_can_params {
150	u8 cc_type;
151
152	/* Will support M16C CAN controller in the future */
153	union {
154		struct cpc_sja1000_params sja1000;
155	} cc_params;
156};
157
158/* Structure for confirmed message handling */
159struct cpc_confirm {
160	u8 error; /* error code */
161};
162
163/* Structure for overrun conditions */
164struct cpc_overrun {
165	u8 event;
166	u8 count;
167};
168
169/* SJA1000 CAN errors (compatible to NXP LPC2119) */
170struct cpc_sja1000_can_error {
171	u8 ecc;
172	u8 rxerr;
173	u8 txerr;
174};
175
176/* structure for CAN error conditions */
177struct cpc_can_error {
178	u8 ecode;
179
180	struct {
181		u8 cc_type;
182
183		/* Other controllers may also provide error code capture regs */
184		union {
185			struct cpc_sja1000_can_error sja1000;
186		} regs;
187	} cc;
188};
189
190/*
191 * Structure containing RX/TX error counter. This structure is used to request
192 * the values of the CAN controllers TX and RX error counter.
193 */
194struct cpc_can_err_counter {
195	u8 rx;
196	u8 tx;
197};
198
199/* Main message type used between library and application */
200struct __packed ems_cpc_msg {
201	u8 type;	/* type of message */
202	u8 length;	/* length of data within union 'msg' */
203	u8 msgid;	/* confirmation handle */
204	u32 ts_sec;	/* timestamp in seconds */
205	u32 ts_nsec;	/* timestamp in nano seconds */
206
207	union {
208		u8 generic[64];
209		struct cpc_can_msg can_msg;
210		struct cpc_can_params can_params;
211		struct cpc_confirm confirmation;
212		struct cpc_overrun overrun;
213		struct cpc_can_error error;
214		struct cpc_can_err_counter err_counter;
215		u8 can_state;
216	} msg;
217};
218
219/*
220 * Table of devices that work with this driver
221 * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
222 */
223static struct usb_device_id ems_usb_table[] = {
224	{USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
225	{} /* Terminating entry */
226};
227
228MODULE_DEVICE_TABLE(usb, ems_usb_table);
229
230#define RX_BUFFER_SIZE      64
231#define CPC_HEADER_SIZE     4
232#define INTR_IN_BUFFER_SIZE 4
233
234#define MAX_RX_URBS 10
235#define MAX_TX_URBS 10
236
237struct ems_usb;
238
239struct ems_tx_urb_context {
240	struct ems_usb *dev;
241
242	u32 echo_index;
243	u8 dlc;
244};
245
246struct ems_usb {
247	struct can_priv can; /* must be the first member */
248
249	struct sk_buff *echo_skb[MAX_TX_URBS];
250
251	struct usb_device *udev;
252	struct net_device *netdev;
253
254	atomic_t active_tx_urbs;
255	struct usb_anchor tx_submitted;
256	struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
257
258	struct usb_anchor rx_submitted;
259
260	struct urb *intr_urb;
261
262	u8 *tx_msg_buffer;
263
264	u8 *intr_in_buffer;
265	unsigned int free_slots; /* remember number of available slots */
266
267	struct ems_cpc_msg active_params; /* active controller parameters */
268};
269
270static void ems_usb_read_interrupt_callback(struct urb *urb)
271{
272	struct ems_usb *dev = urb->context;
273	struct net_device *netdev = dev->netdev;
274	int err;
275
276	if (!netif_device_present(netdev))
277		return;
278
279	switch (urb->status) {
280	case 0:
281		dev->free_slots = dev->intr_in_buffer[1];
282		break;
283
284	case -ECONNRESET: /* unlink */
285	case -ENOENT:
286	case -ESHUTDOWN:
287		return;
288
289	default:
290		netdev_info(netdev, "Rx interrupt aborted %d\n", urb->status);
291		break;
292	}
293
294	err = usb_submit_urb(urb, GFP_ATOMIC);
295
296	if (err == -ENODEV)
297		netif_device_detach(netdev);
298	else if (err)
299		netdev_err(netdev, "failed resubmitting intr urb: %d\n", err);
300}
301
302static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
303{
304	struct can_frame *cf;
305	struct sk_buff *skb;
306	int i;
307	struct net_device_stats *stats = &dev->netdev->stats;
308
309	skb = alloc_can_skb(dev->netdev, &cf);
310	if (skb == NULL)
311		return;
312
313	cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
314	cf->can_dlc = get_can_dlc(msg->msg.can_msg.length & 0xF);
315
316	if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME ||
317	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
318		cf->can_id |= CAN_EFF_FLAG;
319
320	if (msg->type == CPC_MSG_TYPE_RTR_FRAME ||
321	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
322		cf->can_id |= CAN_RTR_FLAG;
323	} else {
324		for (i = 0; i < cf->can_dlc; i++)
325			cf->data[i] = msg->msg.can_msg.msg[i];
326	}
327
328	netif_rx(skb);
329
330	stats->rx_packets++;
331	stats->rx_bytes += cf->can_dlc;
332}
333
334static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
335{
336	struct can_frame *cf;
337	struct sk_buff *skb;
338	struct net_device_stats *stats = &dev->netdev->stats;
339
340	skb = alloc_can_err_skb(dev->netdev, &cf);
341	if (skb == NULL)
342		return;
343
344	if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
345		u8 state = msg->msg.can_state;
346
347		if (state & SJA1000_SR_BS) {
348			dev->can.state = CAN_STATE_BUS_OFF;
349			cf->can_id |= CAN_ERR_BUSOFF;
350
351			can_bus_off(dev->netdev);
352		} else if (state & SJA1000_SR_ES) {
353			dev->can.state = CAN_STATE_ERROR_WARNING;
354			dev->can.can_stats.error_warning++;
355		} else {
356			dev->can.state = CAN_STATE_ERROR_ACTIVE;
357			dev->can.can_stats.error_passive++;
358		}
359	} else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
360		u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
361		u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
362		u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
363
364		/* bus error interrupt */
365		dev->can.can_stats.bus_error++;
366		stats->rx_errors++;
367
368		cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
369
370		switch (ecc & SJA1000_ECC_MASK) {
371		case SJA1000_ECC_BIT:
372			cf->data[2] |= CAN_ERR_PROT_BIT;
373			break;
374		case SJA1000_ECC_FORM:
375			cf->data[2] |= CAN_ERR_PROT_FORM;
376			break;
377		case SJA1000_ECC_STUFF:
378			cf->data[2] |= CAN_ERR_PROT_STUFF;
379			break;
380		default:
381			cf->data[2] |= CAN_ERR_PROT_UNSPEC;
382			cf->data[3] = ecc & SJA1000_ECC_SEG;
383			break;
384		}
385
386		/* Error occurred during transmission? */
387		if ((ecc & SJA1000_ECC_DIR) == 0)
388			cf->data[2] |= CAN_ERR_PROT_TX;
389
390		if (dev->can.state == CAN_STATE_ERROR_WARNING ||
391		    dev->can.state == CAN_STATE_ERROR_PASSIVE) {
392			cf->data[1] = (txerr > rxerr) ?
393			    CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
394		}
395	} else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
396		cf->can_id |= CAN_ERR_CRTL;
397		cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
398
399		stats->rx_over_errors++;
400		stats->rx_errors++;
401	}
402
403	netif_rx(skb);
404
405	stats->rx_packets++;
406	stats->rx_bytes += cf->can_dlc;
407}
408
409/*
410 * callback for bulk IN urb
411 */
412static void ems_usb_read_bulk_callback(struct urb *urb)
413{
414	struct ems_usb *dev = urb->context;
415	struct net_device *netdev;
416	int retval;
417
418	netdev = dev->netdev;
419
420	if (!netif_device_present(netdev))
421		return;
422
423	switch (urb->status) {
424	case 0: /* success */
425		break;
426
427	case -ENOENT:
428		return;
429
430	default:
431		netdev_info(netdev, "Rx URB aborted (%d)\n", urb->status);
432		goto resubmit_urb;
433	}
434
435	if (urb->actual_length > CPC_HEADER_SIZE) {
436		struct ems_cpc_msg *msg;
437		u8 *ibuf = urb->transfer_buffer;
438		u8 msg_count, again, start;
439
440		msg_count = ibuf[0] & ~0x80;
441		again = ibuf[0] & 0x80;
442
443		start = CPC_HEADER_SIZE;
444
445		while (msg_count) {
446			msg = (struct ems_cpc_msg *)&ibuf[start];
447
448			switch (msg->type) {
449			case CPC_MSG_TYPE_CAN_STATE:
450				/* Process CAN state changes */
451				ems_usb_rx_err(dev, msg);
452				break;
453
454			case CPC_MSG_TYPE_CAN_FRAME:
455			case CPC_MSG_TYPE_EXT_CAN_FRAME:
456			case CPC_MSG_TYPE_RTR_FRAME:
457			case CPC_MSG_TYPE_EXT_RTR_FRAME:
458				ems_usb_rx_can_msg(dev, msg);
459				break;
460
461			case CPC_MSG_TYPE_CAN_FRAME_ERROR:
462				/* Process errorframe */
463				ems_usb_rx_err(dev, msg);
464				break;
465
466			case CPC_MSG_TYPE_OVERRUN:
467				/* Message lost while receiving */
468				ems_usb_rx_err(dev, msg);
469				break;
470			}
471
472			start += CPC_MSG_HEADER_LEN + msg->length;
473			msg_count--;
474
475			if (start > urb->transfer_buffer_length) {
476				netdev_err(netdev, "format error\n");
477				break;
478			}
479		}
480	}
481
482resubmit_urb:
483	usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
484			  urb->transfer_buffer, RX_BUFFER_SIZE,
485			  ems_usb_read_bulk_callback, dev);
486
487	retval = usb_submit_urb(urb, GFP_ATOMIC);
488
489	if (retval == -ENODEV)
490		netif_device_detach(netdev);
491	else if (retval)
492		netdev_err(netdev,
493			   "failed resubmitting read bulk urb: %d\n", retval);
494}
495
496/*
497 * callback for bulk IN urb
498 */
499static void ems_usb_write_bulk_callback(struct urb *urb)
500{
501	struct ems_tx_urb_context *context = urb->context;
502	struct ems_usb *dev;
503	struct net_device *netdev;
504
505	BUG_ON(!context);
506
507	dev = context->dev;
508	netdev = dev->netdev;
509
510	/* free up our allocated buffer */
511	usb_free_coherent(urb->dev, urb->transfer_buffer_length,
512			  urb->transfer_buffer, urb->transfer_dma);
513
514	atomic_dec(&dev->active_tx_urbs);
515
516	if (!netif_device_present(netdev))
517		return;
518
519	if (urb->status)
520		netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status);
521
522	netdev->trans_start = jiffies;
523
524	/* transmission complete interrupt */
525	netdev->stats.tx_packets++;
526	netdev->stats.tx_bytes += context->dlc;
527
528	can_get_echo_skb(netdev, context->echo_index);
529
530	/* Release context */
531	context->echo_index = MAX_TX_URBS;
532
533	if (netif_queue_stopped(netdev))
534		netif_wake_queue(netdev);
535}
536
537/*
538 * Send the given CPC command synchronously
539 */
540static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
541{
542	int actual_length;
543
544	/* Copy payload */
545	memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
546	       msg->length + CPC_MSG_HEADER_LEN);
547
548	/* Clear header */
549	memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
550
551	return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
552			    &dev->tx_msg_buffer[0],
553			    msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
554			    &actual_length, 1000);
555}
556
557/*
558 * Change CAN controllers' mode register
559 */
560static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
561{
562	dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
563
564	return ems_usb_command_msg(dev, &dev->active_params);
565}
566
567/*
568 * Send a CPC_Control command to change behaviour when interface receives a CAN
569 * message, bus error or CAN state changed notifications.
570 */
571static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
572{
573	struct ems_cpc_msg cmd;
574
575	cmd.type = CPC_CMD_TYPE_CONTROL;
576	cmd.length = CPC_MSG_HEADER_LEN + 1;
577
578	cmd.msgid = 0;
579
580	cmd.msg.generic[0] = val;
581
582	return ems_usb_command_msg(dev, &cmd);
583}
584
585/*
586 * Start interface
587 */
588static int ems_usb_start(struct ems_usb *dev)
589{
590	struct net_device *netdev = dev->netdev;
591	int err, i;
592
593	dev->intr_in_buffer[0] = 0;
594	dev->free_slots = 15; /* initial size */
595
596	for (i = 0; i < MAX_RX_URBS; i++) {
597		struct urb *urb = NULL;
598		u8 *buf = NULL;
599
600		/* create a URB, and a buffer for it */
601		urb = usb_alloc_urb(0, GFP_KERNEL);
602		if (!urb) {
603			netdev_err(netdev, "No memory left for URBs\n");
604			err = -ENOMEM;
605			break;
606		}
607
608		buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
609					 &urb->transfer_dma);
610		if (!buf) {
611			netdev_err(netdev, "No memory left for USB buffer\n");
612			usb_free_urb(urb);
613			err = -ENOMEM;
614			break;
615		}
616
617		usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
618				  buf, RX_BUFFER_SIZE,
619				  ems_usb_read_bulk_callback, dev);
620		urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
621		usb_anchor_urb(urb, &dev->rx_submitted);
622
623		err = usb_submit_urb(urb, GFP_KERNEL);
624		if (err) {
625			usb_unanchor_urb(urb);
626			usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf,
627					  urb->transfer_dma);
628			break;
629		}
630
631		/* Drop reference, USB core will take care of freeing it */
632		usb_free_urb(urb);
633	}
634
635	/* Did we submit any URBs */
636	if (i == 0) {
637		netdev_warn(netdev, "couldn't setup read URBs\n");
638		return err;
639	}
640
641	/* Warn if we've couldn't transmit all the URBs */
642	if (i < MAX_RX_URBS)
643		netdev_warn(netdev, "rx performance may be slow\n");
644
645	/* Setup and start interrupt URB */
646	usb_fill_int_urb(dev->intr_urb, dev->udev,
647			 usb_rcvintpipe(dev->udev, 1),
648			 dev->intr_in_buffer,
649			 INTR_IN_BUFFER_SIZE,
650			 ems_usb_read_interrupt_callback, dev, 1);
651
652	err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
653	if (err) {
654		netdev_warn(netdev, "intr URB submit failed: %d\n", err);
655
656		return err;
657	}
658
659	/* CPC-USB will transfer received message to host */
660	err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
661	if (err)
662		goto failed;
663
664	/* CPC-USB will transfer CAN state changes to host */
665	err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
666	if (err)
667		goto failed;
668
669	/* CPC-USB will transfer bus errors to host */
670	err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
671	if (err)
672		goto failed;
673
674	err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
675	if (err)
676		goto failed;
677
678	dev->can.state = CAN_STATE_ERROR_ACTIVE;
679
680	return 0;
681
682failed:
683	netdev_warn(netdev, "couldn't submit control: %d\n", err);
684
685	return err;
686}
687
688static void unlink_all_urbs(struct ems_usb *dev)
689{
690	int i;
691
692	usb_unlink_urb(dev->intr_urb);
693
694	usb_kill_anchored_urbs(&dev->rx_submitted);
695
696	usb_kill_anchored_urbs(&dev->tx_submitted);
697	atomic_set(&dev->active_tx_urbs, 0);
698
699	for (i = 0; i < MAX_TX_URBS; i++)
700		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
701}
702
703static int ems_usb_open(struct net_device *netdev)
704{
705	struct ems_usb *dev = netdev_priv(netdev);
706	int err;
707
708	err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
709	if (err)
710		return err;
711
712	/* common open */
713	err = open_candev(netdev);
714	if (err)
715		return err;
716
717	/* finally start device */
718	err = ems_usb_start(dev);
719	if (err) {
720		if (err == -ENODEV)
721			netif_device_detach(dev->netdev);
722
723		netdev_warn(netdev, "couldn't start device: %d\n", err);
724
725		close_candev(netdev);
726
727		return err;
728	}
729
730
731	netif_start_queue(netdev);
732
733	return 0;
734}
735
736static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
737{
738	struct ems_usb *dev = netdev_priv(netdev);
739	struct ems_tx_urb_context *context = NULL;
740	struct net_device_stats *stats = &netdev->stats;
741	struct can_frame *cf = (struct can_frame *)skb->data;
742	struct ems_cpc_msg *msg;
743	struct urb *urb;
744	u8 *buf;
745	int i, err;
746	size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
747			+ sizeof(struct cpc_can_msg);
748
749	if (can_dropped_invalid_skb(netdev, skb))
750		return NETDEV_TX_OK;
751
752	/* create a URB, and a buffer for it, and copy the data to the URB */
753	urb = usb_alloc_urb(0, GFP_ATOMIC);
754	if (!urb) {
755		netdev_err(netdev, "No memory left for URBs\n");
756		goto nomem;
757	}
758
759	buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
760	if (!buf) {
761		netdev_err(netdev, "No memory left for USB buffer\n");
762		usb_free_urb(urb);
763		goto nomem;
764	}
765
766	msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
767
768	msg->msg.can_msg.id = cf->can_id & CAN_ERR_MASK;
769	msg->msg.can_msg.length = cf->can_dlc;
770
771	if (cf->can_id & CAN_RTR_FLAG) {
772		msg->type = cf->can_id & CAN_EFF_FLAG ?
773			CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
774
775		msg->length = CPC_CAN_MSG_MIN_SIZE;
776	} else {
777		msg->type = cf->can_id & CAN_EFF_FLAG ?
778			CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
779
780		for (i = 0; i < cf->can_dlc; i++)
781			msg->msg.can_msg.msg[i] = cf->data[i];
782
783		msg->length = CPC_CAN_MSG_MIN_SIZE + cf->can_dlc;
784	}
785
786	/* Respect byte order */
787	msg->msg.can_msg.id = cpu_to_le32(msg->msg.can_msg.id);
788
789	for (i = 0; i < MAX_TX_URBS; i++) {
790		if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
791			context = &dev->tx_contexts[i];
792			break;
793		}
794	}
795
796	/*
797	 * May never happen! When this happens we'd more URBs in flight as
798	 * allowed (MAX_TX_URBS).
799	 */
800	if (!context) {
801		usb_unanchor_urb(urb);
802		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
803
804		netdev_warn(netdev, "couldn't find free context\n");
805
806		return NETDEV_TX_BUSY;
807	}
808
809	context->dev = dev;
810	context->echo_index = i;
811	context->dlc = cf->can_dlc;
812
813	usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
814			  size, ems_usb_write_bulk_callback, context);
815	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
816	usb_anchor_urb(urb, &dev->tx_submitted);
817
818	can_put_echo_skb(skb, netdev, context->echo_index);
819
820	atomic_inc(&dev->active_tx_urbs);
821
822	err = usb_submit_urb(urb, GFP_ATOMIC);
823	if (unlikely(err)) {
824		can_free_echo_skb(netdev, context->echo_index);
825
826		usb_unanchor_urb(urb);
827		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
828		dev_kfree_skb(skb);
829
830		atomic_dec(&dev->active_tx_urbs);
831
832		if (err == -ENODEV) {
833			netif_device_detach(netdev);
834		} else {
835			netdev_warn(netdev, "failed tx_urb %d\n", err);
836
837			stats->tx_dropped++;
838		}
839	} else {
840		netdev->trans_start = jiffies;
841
842		/* Slow down tx path */
843		if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
844		    dev->free_slots < 5) {
845			netif_stop_queue(netdev);
846		}
847	}
848
849	/*
850	 * Release our reference to this URB, the USB core will eventually free
851	 * it entirely.
852	 */
853	usb_free_urb(urb);
854
855	return NETDEV_TX_OK;
856
857nomem:
858	dev_kfree_skb(skb);
859	stats->tx_dropped++;
860
861	return NETDEV_TX_OK;
862}
863
864static int ems_usb_close(struct net_device *netdev)
865{
866	struct ems_usb *dev = netdev_priv(netdev);
867
868	/* Stop polling */
869	unlink_all_urbs(dev);
870
871	netif_stop_queue(netdev);
872
873	/* Set CAN controller to reset mode */
874	if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
875		netdev_warn(netdev, "couldn't stop device");
876
877	close_candev(netdev);
878
879	return 0;
880}
881
882static const struct net_device_ops ems_usb_netdev_ops = {
883	.ndo_open = ems_usb_open,
884	.ndo_stop = ems_usb_close,
885	.ndo_start_xmit = ems_usb_start_xmit,
886};
887
888static const struct can_bittiming_const ems_usb_bittiming_const = {
889	.name = "ems_usb",
890	.tseg1_min = 1,
891	.tseg1_max = 16,
892	.tseg2_min = 1,
893	.tseg2_max = 8,
894	.sjw_max = 4,
895	.brp_min = 1,
896	.brp_max = 64,
897	.brp_inc = 1,
898};
899
900static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
901{
902	struct ems_usb *dev = netdev_priv(netdev);
903
904	switch (mode) {
905	case CAN_MODE_START:
906		if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
907			netdev_warn(netdev, "couldn't start device");
908
909		if (netif_queue_stopped(netdev))
910			netif_wake_queue(netdev);
911		break;
912
913	default:
914		return -EOPNOTSUPP;
915	}
916
917	return 0;
918}
919
920static int ems_usb_set_bittiming(struct net_device *netdev)
921{
922	struct ems_usb *dev = netdev_priv(netdev);
923	struct can_bittiming *bt = &dev->can.bittiming;
924	u8 btr0, btr1;
925
926	btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
927	btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
928		(((bt->phase_seg2 - 1) & 0x7) << 4);
929	if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
930		btr1 |= 0x80;
931
932	netdev_info(netdev, "setting BTR0=0x%02x BTR1=0x%02x\n", btr0, btr1);
933
934	dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
935	dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
936
937	return ems_usb_command_msg(dev, &dev->active_params);
938}
939
940static void init_params_sja1000(struct ems_cpc_msg *msg)
941{
942	struct cpc_sja1000_params *sja1000 =
943		&msg->msg.can_params.cc_params.sja1000;
944
945	msg->type = CPC_CMD_TYPE_CAN_PARAMS;
946	msg->length = sizeof(struct cpc_can_params);
947	msg->msgid = 0;
948
949	msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
950
951	/* Acceptance filter open */
952	sja1000->acc_code0 = 0x00;
953	sja1000->acc_code1 = 0x00;
954	sja1000->acc_code2 = 0x00;
955	sja1000->acc_code3 = 0x00;
956
957	/* Acceptance filter open */
958	sja1000->acc_mask0 = 0xFF;
959	sja1000->acc_mask1 = 0xFF;
960	sja1000->acc_mask2 = 0xFF;
961	sja1000->acc_mask3 = 0xFF;
962
963	sja1000->btr0 = 0;
964	sja1000->btr1 = 0;
965
966	sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
967	sja1000->mode = SJA1000_MOD_RM;
968}
969
970/*
971 * probe function for new CPC-USB devices
972 */
973static int ems_usb_probe(struct usb_interface *intf,
974			 const struct usb_device_id *id)
975{
976	struct net_device *netdev;
977	struct ems_usb *dev;
978	int i, err = -ENOMEM;
979
980	netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
981	if (!netdev) {
982		dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
983		return -ENOMEM;
984	}
985
986	dev = netdev_priv(netdev);
987
988	dev->udev = interface_to_usbdev(intf);
989	dev->netdev = netdev;
990
991	dev->can.state = CAN_STATE_STOPPED;
992	dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
993	dev->can.bittiming_const = &ems_usb_bittiming_const;
994	dev->can.do_set_bittiming = ems_usb_set_bittiming;
995	dev->can.do_set_mode = ems_usb_set_mode;
996	dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
997
998	netdev->netdev_ops = &ems_usb_netdev_ops;
999
1000	netdev->flags |= IFF_ECHO; /* we support local echo */
1001
1002	init_usb_anchor(&dev->rx_submitted);
1003
1004	init_usb_anchor(&dev->tx_submitted);
1005	atomic_set(&dev->active_tx_urbs, 0);
1006
1007	for (i = 0; i < MAX_TX_URBS; i++)
1008		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
1009
1010	dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
1011	if (!dev->intr_urb) {
1012		dev_err(&intf->dev, "Couldn't alloc intr URB\n");
1013		goto cleanup_candev;
1014	}
1015
1016	dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
1017	if (!dev->intr_in_buffer)
1018		goto cleanup_intr_urb;
1019
1020	dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
1021				     sizeof(struct ems_cpc_msg), GFP_KERNEL);
1022	if (!dev->tx_msg_buffer) {
1023		dev_err(&intf->dev, "Couldn't alloc Tx buffer\n");
1024		goto cleanup_intr_in_buffer;
1025	}
1026
1027	usb_set_intfdata(intf, dev);
1028
1029	SET_NETDEV_DEV(netdev, &intf->dev);
1030
1031	init_params_sja1000(&dev->active_params);
1032
1033	err = ems_usb_command_msg(dev, &dev->active_params);
1034	if (err) {
1035		netdev_err(netdev, "couldn't initialize controller: %d\n", err);
1036		goto cleanup_tx_msg_buffer;
1037	}
1038
1039	err = register_candev(netdev);
1040	if (err) {
1041		netdev_err(netdev, "couldn't register CAN device: %d\n", err);
1042		goto cleanup_tx_msg_buffer;
1043	}
1044
1045	return 0;
1046
1047cleanup_tx_msg_buffer:
1048	kfree(dev->tx_msg_buffer);
1049
1050cleanup_intr_in_buffer:
1051	kfree(dev->intr_in_buffer);
1052
1053cleanup_intr_urb:
1054	usb_free_urb(dev->intr_urb);
1055
1056cleanup_candev:
1057	free_candev(netdev);
1058
1059	return err;
1060}
1061
1062/*
1063 * called by the usb core when the device is removed from the system
1064 */
1065static void ems_usb_disconnect(struct usb_interface *intf)
1066{
1067	struct ems_usb *dev = usb_get_intfdata(intf);
1068
1069	usb_set_intfdata(intf, NULL);
1070
1071	if (dev) {
1072		unregister_netdev(dev->netdev);
1073		free_candev(dev->netdev);
1074
1075		unlink_all_urbs(dev);
1076
1077		usb_free_urb(dev->intr_urb);
1078
1079		kfree(dev->intr_in_buffer);
1080	}
1081}
1082
1083/* usb specific object needed to register this driver with the usb subsystem */
1084static struct usb_driver ems_usb_driver = {
1085	.name = "ems_usb",
1086	.probe = ems_usb_probe,
1087	.disconnect = ems_usb_disconnect,
1088	.id_table = ems_usb_table,
1089};
1090
1091module_usb_driver(ems_usb_driver);
1092