ems_usb.c revision a1c31f1d057130cc63e72a09189410d169db7ecf
1/*
2 * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
3 *
4 * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; version 2 of the License.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 * General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19#include <linux/init.h>
20#include <linux/signal.h>
21#include <linux/slab.h>
22#include <linux/module.h>
23#include <linux/netdevice.h>
24#include <linux/usb.h>
25
26#include <linux/can.h>
27#include <linux/can/dev.h>
28#include <linux/can/error.h>
29
30MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
31MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
32MODULE_LICENSE("GPL v2");
33
34/* Control-Values for CPC_Control() Command Subject Selection */
35#define CONTR_CAN_MESSAGE 0x04
36#define CONTR_CAN_STATE   0x0C
37#define CONTR_BUS_ERROR   0x1C
38
39/* Control Command Actions */
40#define CONTR_CONT_OFF 0
41#define CONTR_CONT_ON  1
42#define CONTR_ONCE     2
43
44/* Messages from CPC to PC */
45#define CPC_MSG_TYPE_CAN_FRAME       1  /* CAN data frame */
46#define CPC_MSG_TYPE_RTR_FRAME       8  /* CAN remote frame */
47#define CPC_MSG_TYPE_CAN_PARAMS      12 /* Actual CAN parameters */
48#define CPC_MSG_TYPE_CAN_STATE       14 /* CAN state message */
49#define CPC_MSG_TYPE_EXT_CAN_FRAME   16 /* Extended CAN data frame */
50#define CPC_MSG_TYPE_EXT_RTR_FRAME   17 /* Extended remote frame */
51#define CPC_MSG_TYPE_CONTROL         19 /* change interface behavior */
52#define CPC_MSG_TYPE_CONFIRM         20 /* command processed confirmation */
53#define CPC_MSG_TYPE_OVERRUN         21 /* overrun events */
54#define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
55#define CPC_MSG_TYPE_ERR_COUNTER     25 /* RX/TX error counter */
56
57/* Messages from the PC to the CPC interface  */
58#define CPC_CMD_TYPE_CAN_FRAME     1   /* CAN data frame */
59#define CPC_CMD_TYPE_CONTROL       3   /* control of interface behavior */
60#define CPC_CMD_TYPE_CAN_PARAMS    6   /* set CAN parameters */
61#define CPC_CMD_TYPE_RTR_FRAME     13  /* CAN remote frame */
62#define CPC_CMD_TYPE_CAN_STATE     14  /* CAN state message */
63#define CPC_CMD_TYPE_EXT_CAN_FRAME 15  /* Extended CAN data frame */
64#define CPC_CMD_TYPE_EXT_RTR_FRAME 16  /* Extended CAN remote frame */
65#define CPC_CMD_TYPE_CAN_EXIT      200 /* exit the CAN */
66
67#define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
68#define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8  /* clear CPC_MSG queue */
69#define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
70
71#define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
72
73#define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
74
75/* Overrun types */
76#define CPC_OVR_EVENT_CAN       0x01
77#define CPC_OVR_EVENT_CANSTATE  0x02
78#define CPC_OVR_EVENT_BUSERROR  0x04
79
80/*
81 * If the CAN controller lost a message we indicate it with the highest bit
82 * set in the count field.
83 */
84#define CPC_OVR_HW 0x80
85
86/* Size of the "struct ems_cpc_msg" without the union */
87#define CPC_MSG_HEADER_LEN   11
88#define CPC_CAN_MSG_MIN_SIZE 5
89
90/* Define these values to match your devices */
91#define USB_CPCUSB_VENDOR_ID 0x12D6
92
93#define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
94
95/* Mode register NXP LPC2119/SJA1000 CAN Controller */
96#define SJA1000_MOD_NORMAL 0x00
97#define SJA1000_MOD_RM     0x01
98
99/* ECC register NXP LPC2119/SJA1000 CAN Controller */
100#define SJA1000_ECC_SEG   0x1F
101#define SJA1000_ECC_DIR   0x20
102#define SJA1000_ECC_ERR   0x06
103#define SJA1000_ECC_BIT   0x00
104#define SJA1000_ECC_FORM  0x40
105#define SJA1000_ECC_STUFF 0x80
106#define SJA1000_ECC_MASK  0xc0
107
108/* Status register content */
109#define SJA1000_SR_BS 0x80
110#define SJA1000_SR_ES 0x40
111
112#define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
113
114/*
115 * The device actually uses a 16MHz clock to generate the CAN clock
116 * but it expects SJA1000 bit settings based on 8MHz (is internally
117 * converted).
118 */
119#define EMS_USB_ARM7_CLOCK 8000000
120
121/*
122 * CAN-Message representation in a CPC_MSG. Message object type is
123 * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
124 * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
125 */
126struct cpc_can_msg {
127	u32 id;
128	u8 length;
129	u8 msg[8];
130};
131
132/* Representation of the CAN parameters for the SJA1000 controller */
133struct cpc_sja1000_params {
134	u8 mode;
135	u8 acc_code0;
136	u8 acc_code1;
137	u8 acc_code2;
138	u8 acc_code3;
139	u8 acc_mask0;
140	u8 acc_mask1;
141	u8 acc_mask2;
142	u8 acc_mask3;
143	u8 btr0;
144	u8 btr1;
145	u8 outp_contr;
146};
147
148/* CAN params message representation */
149struct cpc_can_params {
150	u8 cc_type;
151
152	/* Will support M16C CAN controller in the future */
153	union {
154		struct cpc_sja1000_params sja1000;
155	} cc_params;
156};
157
158/* Structure for confirmed message handling */
159struct cpc_confirm {
160	u8 error; /* error code */
161};
162
163/* Structure for overrun conditions */
164struct cpc_overrun {
165	u8 event;
166	u8 count;
167};
168
169/* SJA1000 CAN errors (compatible to NXP LPC2119) */
170struct cpc_sja1000_can_error {
171	u8 ecc;
172	u8 rxerr;
173	u8 txerr;
174};
175
176/* structure for CAN error conditions */
177struct cpc_can_error {
178	u8 ecode;
179
180	struct {
181		u8 cc_type;
182
183		/* Other controllers may also provide error code capture regs */
184		union {
185			struct cpc_sja1000_can_error sja1000;
186		} regs;
187	} cc;
188};
189
190/*
191 * Structure containing RX/TX error counter. This structure is used to request
192 * the values of the CAN controllers TX and RX error counter.
193 */
194struct cpc_can_err_counter {
195	u8 rx;
196	u8 tx;
197};
198
199/* Main message type used between library and application */
200struct __packed ems_cpc_msg {
201	u8 type;	/* type of message */
202	u8 length;	/* length of data within union 'msg' */
203	u8 msgid;	/* confirmation handle */
204	u32 ts_sec;	/* timestamp in seconds */
205	u32 ts_nsec;	/* timestamp in nano seconds */
206
207	union {
208		u8 generic[64];
209		struct cpc_can_msg can_msg;
210		struct cpc_can_params can_params;
211		struct cpc_confirm confirmation;
212		struct cpc_overrun overrun;
213		struct cpc_can_error error;
214		struct cpc_can_err_counter err_counter;
215		u8 can_state;
216	} msg;
217};
218
219/*
220 * Table of devices that work with this driver
221 * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
222 */
223static struct usb_device_id ems_usb_table[] = {
224	{USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
225	{} /* Terminating entry */
226};
227
228MODULE_DEVICE_TABLE(usb, ems_usb_table);
229
230#define RX_BUFFER_SIZE      64
231#define CPC_HEADER_SIZE     4
232#define INTR_IN_BUFFER_SIZE 4
233
234#define MAX_RX_URBS 10
235#define MAX_TX_URBS 10
236
237struct ems_usb;
238
239struct ems_tx_urb_context {
240	struct ems_usb *dev;
241
242	u32 echo_index;
243	u8 dlc;
244};
245
246struct ems_usb {
247	struct can_priv can; /* must be the first member */
248
249	struct sk_buff *echo_skb[MAX_TX_URBS];
250
251	struct usb_device *udev;
252	struct net_device *netdev;
253
254	atomic_t active_tx_urbs;
255	struct usb_anchor tx_submitted;
256	struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
257
258	struct usb_anchor rx_submitted;
259
260	struct urb *intr_urb;
261
262	u8 *tx_msg_buffer;
263
264	u8 *intr_in_buffer;
265	unsigned int free_slots; /* remember number of available slots */
266
267	struct ems_cpc_msg active_params; /* active controller parameters */
268};
269
270static void ems_usb_read_interrupt_callback(struct urb *urb)
271{
272	struct ems_usb *dev = urb->context;
273	struct net_device *netdev = dev->netdev;
274	int err;
275
276	if (!netif_device_present(netdev))
277		return;
278
279	switch (urb->status) {
280	case 0:
281		dev->free_slots = dev->intr_in_buffer[1];
282		break;
283
284	case -ECONNRESET: /* unlink */
285	case -ENOENT:
286	case -ESHUTDOWN:
287		return;
288
289	default:
290		netdev_info(netdev, "Rx interrupt aborted %d\n", urb->status);
291		break;
292	}
293
294	err = usb_submit_urb(urb, GFP_ATOMIC);
295
296	if (err == -ENODEV)
297		netif_device_detach(netdev);
298	else if (err)
299		netdev_err(netdev, "failed resubmitting intr urb: %d\n", err);
300}
301
302static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
303{
304	struct can_frame *cf;
305	struct sk_buff *skb;
306	int i;
307	struct net_device_stats *stats = &dev->netdev->stats;
308
309	skb = alloc_can_skb(dev->netdev, &cf);
310	if (skb == NULL)
311		return;
312
313	cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
314	cf->can_dlc = get_can_dlc(msg->msg.can_msg.length & 0xF);
315
316	if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME ||
317	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
318		cf->can_id |= CAN_EFF_FLAG;
319
320	if (msg->type == CPC_MSG_TYPE_RTR_FRAME ||
321	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
322		cf->can_id |= CAN_RTR_FLAG;
323	} else {
324		for (i = 0; i < cf->can_dlc; i++)
325			cf->data[i] = msg->msg.can_msg.msg[i];
326	}
327
328	netif_rx(skb);
329
330	stats->rx_packets++;
331	stats->rx_bytes += cf->can_dlc;
332}
333
334static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
335{
336	struct can_frame *cf;
337	struct sk_buff *skb;
338	struct net_device_stats *stats = &dev->netdev->stats;
339
340	skb = alloc_can_err_skb(dev->netdev, &cf);
341	if (skb == NULL)
342		return;
343
344	if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
345		u8 state = msg->msg.can_state;
346
347		if (state & SJA1000_SR_BS) {
348			dev->can.state = CAN_STATE_BUS_OFF;
349			cf->can_id |= CAN_ERR_BUSOFF;
350
351			can_bus_off(dev->netdev);
352		} else if (state & SJA1000_SR_ES) {
353			dev->can.state = CAN_STATE_ERROR_WARNING;
354			dev->can.can_stats.error_warning++;
355		} else {
356			dev->can.state = CAN_STATE_ERROR_ACTIVE;
357			dev->can.can_stats.error_passive++;
358		}
359	} else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
360		u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
361		u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
362		u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
363
364		/* bus error interrupt */
365		dev->can.can_stats.bus_error++;
366		stats->rx_errors++;
367
368		cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
369
370		switch (ecc & SJA1000_ECC_MASK) {
371		case SJA1000_ECC_BIT:
372			cf->data[2] |= CAN_ERR_PROT_BIT;
373			break;
374		case SJA1000_ECC_FORM:
375			cf->data[2] |= CAN_ERR_PROT_FORM;
376			break;
377		case SJA1000_ECC_STUFF:
378			cf->data[2] |= CAN_ERR_PROT_STUFF;
379			break;
380		default:
381			cf->data[2] |= CAN_ERR_PROT_UNSPEC;
382			cf->data[3] = ecc & SJA1000_ECC_SEG;
383			break;
384		}
385
386		/* Error occurred during transmission? */
387		if ((ecc & SJA1000_ECC_DIR) == 0)
388			cf->data[2] |= CAN_ERR_PROT_TX;
389
390		if (dev->can.state == CAN_STATE_ERROR_WARNING ||
391		    dev->can.state == CAN_STATE_ERROR_PASSIVE) {
392			cf->data[1] = (txerr > rxerr) ?
393			    CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
394		}
395	} else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
396		cf->can_id |= CAN_ERR_CRTL;
397		cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
398
399		stats->rx_over_errors++;
400		stats->rx_errors++;
401	}
402
403	netif_rx(skb);
404
405	stats->rx_packets++;
406	stats->rx_bytes += cf->can_dlc;
407}
408
409/*
410 * callback for bulk IN urb
411 */
412static void ems_usb_read_bulk_callback(struct urb *urb)
413{
414	struct ems_usb *dev = urb->context;
415	struct net_device *netdev;
416	int retval;
417
418	netdev = dev->netdev;
419
420	if (!netif_device_present(netdev))
421		return;
422
423	switch (urb->status) {
424	case 0: /* success */
425		break;
426
427	case -ENOENT:
428		return;
429
430	default:
431		netdev_info(netdev, "Rx URB aborted (%d)\n", urb->status);
432		goto resubmit_urb;
433	}
434
435	if (urb->actual_length > CPC_HEADER_SIZE) {
436		struct ems_cpc_msg *msg;
437		u8 *ibuf = urb->transfer_buffer;
438		u8 msg_count, again, start;
439
440		msg_count = ibuf[0] & ~0x80;
441		again = ibuf[0] & 0x80;
442
443		start = CPC_HEADER_SIZE;
444
445		while (msg_count) {
446			msg = (struct ems_cpc_msg *)&ibuf[start];
447
448			switch (msg->type) {
449			case CPC_MSG_TYPE_CAN_STATE:
450				/* Process CAN state changes */
451				ems_usb_rx_err(dev, msg);
452				break;
453
454			case CPC_MSG_TYPE_CAN_FRAME:
455			case CPC_MSG_TYPE_EXT_CAN_FRAME:
456			case CPC_MSG_TYPE_RTR_FRAME:
457			case CPC_MSG_TYPE_EXT_RTR_FRAME:
458				ems_usb_rx_can_msg(dev, msg);
459				break;
460
461			case CPC_MSG_TYPE_CAN_FRAME_ERROR:
462				/* Process errorframe */
463				ems_usb_rx_err(dev, msg);
464				break;
465
466			case CPC_MSG_TYPE_OVERRUN:
467				/* Message lost while receiving */
468				ems_usb_rx_err(dev, msg);
469				break;
470			}
471
472			start += CPC_MSG_HEADER_LEN + msg->length;
473			msg_count--;
474
475			if (start > urb->transfer_buffer_length) {
476				netdev_err(netdev, "format error\n");
477				break;
478			}
479		}
480	}
481
482resubmit_urb:
483	usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
484			  urb->transfer_buffer, RX_BUFFER_SIZE,
485			  ems_usb_read_bulk_callback, dev);
486
487	retval = usb_submit_urb(urb, GFP_ATOMIC);
488
489	if (retval == -ENODEV)
490		netif_device_detach(netdev);
491	else if (retval)
492		netdev_err(netdev,
493			   "failed resubmitting read bulk urb: %d\n", retval);
494}
495
496/*
497 * callback for bulk IN urb
498 */
499static void ems_usb_write_bulk_callback(struct urb *urb)
500{
501	struct ems_tx_urb_context *context = urb->context;
502	struct ems_usb *dev;
503	struct net_device *netdev;
504
505	BUG_ON(!context);
506
507	dev = context->dev;
508	netdev = dev->netdev;
509
510	/* free up our allocated buffer */
511	usb_free_coherent(urb->dev, urb->transfer_buffer_length,
512			  urb->transfer_buffer, urb->transfer_dma);
513
514	atomic_dec(&dev->active_tx_urbs);
515
516	if (!netif_device_present(netdev))
517		return;
518
519	if (urb->status)
520		netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status);
521
522	netdev->trans_start = jiffies;
523
524	/* transmission complete interrupt */
525	netdev->stats.tx_packets++;
526	netdev->stats.tx_bytes += context->dlc;
527
528	can_get_echo_skb(netdev, context->echo_index);
529
530	/* Release context */
531	context->echo_index = MAX_TX_URBS;
532
533	if (netif_queue_stopped(netdev))
534		netif_wake_queue(netdev);
535}
536
537/*
538 * Send the given CPC command synchronously
539 */
540static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
541{
542	int actual_length;
543
544	/* Copy payload */
545	memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
546	       msg->length + CPC_MSG_HEADER_LEN);
547
548	/* Clear header */
549	memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
550
551	return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
552			    &dev->tx_msg_buffer[0],
553			    msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
554			    &actual_length, 1000);
555}
556
557/*
558 * Change CAN controllers' mode register
559 */
560static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
561{
562	dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
563
564	return ems_usb_command_msg(dev, &dev->active_params);
565}
566
567/*
568 * Send a CPC_Control command to change behaviour when interface receives a CAN
569 * message, bus error or CAN state changed notifications.
570 */
571static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
572{
573	struct ems_cpc_msg cmd;
574
575	cmd.type = CPC_CMD_TYPE_CONTROL;
576	cmd.length = CPC_MSG_HEADER_LEN + 1;
577
578	cmd.msgid = 0;
579
580	cmd.msg.generic[0] = val;
581
582	return ems_usb_command_msg(dev, &cmd);
583}
584
585/*
586 * Start interface
587 */
588static int ems_usb_start(struct ems_usb *dev)
589{
590	struct net_device *netdev = dev->netdev;
591	int err, i;
592
593	dev->intr_in_buffer[0] = 0;
594	dev->free_slots = 15; /* initial size */
595
596	for (i = 0; i < MAX_RX_URBS; i++) {
597		struct urb *urb = NULL;
598		u8 *buf = NULL;
599
600		/* create a URB, and a buffer for it */
601		urb = usb_alloc_urb(0, GFP_KERNEL);
602		if (!urb) {
603			netdev_err(netdev, "No memory left for URBs\n");
604			err = -ENOMEM;
605			break;
606		}
607
608		buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
609					 &urb->transfer_dma);
610		if (!buf) {
611			netdev_err(netdev, "No memory left for USB buffer\n");
612			usb_free_urb(urb);
613			err = -ENOMEM;
614			break;
615		}
616
617		usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
618				  buf, RX_BUFFER_SIZE,
619				  ems_usb_read_bulk_callback, dev);
620		urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
621		usb_anchor_urb(urb, &dev->rx_submitted);
622
623		err = usb_submit_urb(urb, GFP_KERNEL);
624		if (err) {
625			usb_unanchor_urb(urb);
626			usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf,
627					  urb->transfer_dma);
628			usb_free_urb(urb);
629			break;
630		}
631
632		/* Drop reference, USB core will take care of freeing it */
633		usb_free_urb(urb);
634	}
635
636	/* Did we submit any URBs */
637	if (i == 0) {
638		netdev_warn(netdev, "couldn't setup read URBs\n");
639		return err;
640	}
641
642	/* Warn if we've couldn't transmit all the URBs */
643	if (i < MAX_RX_URBS)
644		netdev_warn(netdev, "rx performance may be slow\n");
645
646	/* Setup and start interrupt URB */
647	usb_fill_int_urb(dev->intr_urb, dev->udev,
648			 usb_rcvintpipe(dev->udev, 1),
649			 dev->intr_in_buffer,
650			 INTR_IN_BUFFER_SIZE,
651			 ems_usb_read_interrupt_callback, dev, 1);
652
653	err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
654	if (err) {
655		netdev_warn(netdev, "intr URB submit failed: %d\n", err);
656
657		return err;
658	}
659
660	/* CPC-USB will transfer received message to host */
661	err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
662	if (err)
663		goto failed;
664
665	/* CPC-USB will transfer CAN state changes to host */
666	err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
667	if (err)
668		goto failed;
669
670	/* CPC-USB will transfer bus errors to host */
671	err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
672	if (err)
673		goto failed;
674
675	err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
676	if (err)
677		goto failed;
678
679	dev->can.state = CAN_STATE_ERROR_ACTIVE;
680
681	return 0;
682
683failed:
684	netdev_warn(netdev, "couldn't submit control: %d\n", err);
685
686	return err;
687}
688
689static void unlink_all_urbs(struct ems_usb *dev)
690{
691	int i;
692
693	usb_unlink_urb(dev->intr_urb);
694
695	usb_kill_anchored_urbs(&dev->rx_submitted);
696
697	usb_kill_anchored_urbs(&dev->tx_submitted);
698	atomic_set(&dev->active_tx_urbs, 0);
699
700	for (i = 0; i < MAX_TX_URBS; i++)
701		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
702}
703
704static int ems_usb_open(struct net_device *netdev)
705{
706	struct ems_usb *dev = netdev_priv(netdev);
707	int err;
708
709	err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
710	if (err)
711		return err;
712
713	/* common open */
714	err = open_candev(netdev);
715	if (err)
716		return err;
717
718	/* finally start device */
719	err = ems_usb_start(dev);
720	if (err) {
721		if (err == -ENODEV)
722			netif_device_detach(dev->netdev);
723
724		netdev_warn(netdev, "couldn't start device: %d\n", err);
725
726		close_candev(netdev);
727
728		return err;
729	}
730
731
732	netif_start_queue(netdev);
733
734	return 0;
735}
736
737static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
738{
739	struct ems_usb *dev = netdev_priv(netdev);
740	struct ems_tx_urb_context *context = NULL;
741	struct net_device_stats *stats = &netdev->stats;
742	struct can_frame *cf = (struct can_frame *)skb->data;
743	struct ems_cpc_msg *msg;
744	struct urb *urb;
745	u8 *buf;
746	int i, err;
747	size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
748			+ sizeof(struct cpc_can_msg);
749
750	if (can_dropped_invalid_skb(netdev, skb))
751		return NETDEV_TX_OK;
752
753	/* create a URB, and a buffer for it, and copy the data to the URB */
754	urb = usb_alloc_urb(0, GFP_ATOMIC);
755	if (!urb) {
756		netdev_err(netdev, "No memory left for URBs\n");
757		goto nomem;
758	}
759
760	buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
761	if (!buf) {
762		netdev_err(netdev, "No memory left for USB buffer\n");
763		usb_free_urb(urb);
764		goto nomem;
765	}
766
767	msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
768
769	msg->msg.can_msg.id = cf->can_id & CAN_ERR_MASK;
770	msg->msg.can_msg.length = cf->can_dlc;
771
772	if (cf->can_id & CAN_RTR_FLAG) {
773		msg->type = cf->can_id & CAN_EFF_FLAG ?
774			CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
775
776		msg->length = CPC_CAN_MSG_MIN_SIZE;
777	} else {
778		msg->type = cf->can_id & CAN_EFF_FLAG ?
779			CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
780
781		for (i = 0; i < cf->can_dlc; i++)
782			msg->msg.can_msg.msg[i] = cf->data[i];
783
784		msg->length = CPC_CAN_MSG_MIN_SIZE + cf->can_dlc;
785	}
786
787	/* Respect byte order */
788	msg->msg.can_msg.id = cpu_to_le32(msg->msg.can_msg.id);
789
790	for (i = 0; i < MAX_TX_URBS; i++) {
791		if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
792			context = &dev->tx_contexts[i];
793			break;
794		}
795	}
796
797	/*
798	 * May never happen! When this happens we'd more URBs in flight as
799	 * allowed (MAX_TX_URBS).
800	 */
801	if (!context) {
802		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
803		usb_free_urb(urb);
804
805		netdev_warn(netdev, "couldn't find free context\n");
806
807		return NETDEV_TX_BUSY;
808	}
809
810	context->dev = dev;
811	context->echo_index = i;
812	context->dlc = cf->can_dlc;
813
814	usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
815			  size, ems_usb_write_bulk_callback, context);
816	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
817	usb_anchor_urb(urb, &dev->tx_submitted);
818
819	can_put_echo_skb(skb, netdev, context->echo_index);
820
821	atomic_inc(&dev->active_tx_urbs);
822
823	err = usb_submit_urb(urb, GFP_ATOMIC);
824	if (unlikely(err)) {
825		can_free_echo_skb(netdev, context->echo_index);
826
827		usb_unanchor_urb(urb);
828		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
829		dev_kfree_skb(skb);
830
831		atomic_dec(&dev->active_tx_urbs);
832
833		if (err == -ENODEV) {
834			netif_device_detach(netdev);
835		} else {
836			netdev_warn(netdev, "failed tx_urb %d\n", err);
837
838			stats->tx_dropped++;
839		}
840	} else {
841		netdev->trans_start = jiffies;
842
843		/* Slow down tx path */
844		if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
845		    dev->free_slots < 5) {
846			netif_stop_queue(netdev);
847		}
848	}
849
850	/*
851	 * Release our reference to this URB, the USB core will eventually free
852	 * it entirely.
853	 */
854	usb_free_urb(urb);
855
856	return NETDEV_TX_OK;
857
858nomem:
859	dev_kfree_skb(skb);
860	stats->tx_dropped++;
861
862	return NETDEV_TX_OK;
863}
864
865static int ems_usb_close(struct net_device *netdev)
866{
867	struct ems_usb *dev = netdev_priv(netdev);
868
869	/* Stop polling */
870	unlink_all_urbs(dev);
871
872	netif_stop_queue(netdev);
873
874	/* Set CAN controller to reset mode */
875	if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
876		netdev_warn(netdev, "couldn't stop device");
877
878	close_candev(netdev);
879
880	return 0;
881}
882
883static const struct net_device_ops ems_usb_netdev_ops = {
884	.ndo_open = ems_usb_open,
885	.ndo_stop = ems_usb_close,
886	.ndo_start_xmit = ems_usb_start_xmit,
887};
888
889static const struct can_bittiming_const ems_usb_bittiming_const = {
890	.name = "ems_usb",
891	.tseg1_min = 1,
892	.tseg1_max = 16,
893	.tseg2_min = 1,
894	.tseg2_max = 8,
895	.sjw_max = 4,
896	.brp_min = 1,
897	.brp_max = 64,
898	.brp_inc = 1,
899};
900
901static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
902{
903	struct ems_usb *dev = netdev_priv(netdev);
904
905	switch (mode) {
906	case CAN_MODE_START:
907		if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
908			netdev_warn(netdev, "couldn't start device");
909
910		if (netif_queue_stopped(netdev))
911			netif_wake_queue(netdev);
912		break;
913
914	default:
915		return -EOPNOTSUPP;
916	}
917
918	return 0;
919}
920
921static int ems_usb_set_bittiming(struct net_device *netdev)
922{
923	struct ems_usb *dev = netdev_priv(netdev);
924	struct can_bittiming *bt = &dev->can.bittiming;
925	u8 btr0, btr1;
926
927	btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
928	btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
929		(((bt->phase_seg2 - 1) & 0x7) << 4);
930	if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
931		btr1 |= 0x80;
932
933	netdev_info(netdev, "setting BTR0=0x%02x BTR1=0x%02x\n", btr0, btr1);
934
935	dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
936	dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
937
938	return ems_usb_command_msg(dev, &dev->active_params);
939}
940
941static void init_params_sja1000(struct ems_cpc_msg *msg)
942{
943	struct cpc_sja1000_params *sja1000 =
944		&msg->msg.can_params.cc_params.sja1000;
945
946	msg->type = CPC_CMD_TYPE_CAN_PARAMS;
947	msg->length = sizeof(struct cpc_can_params);
948	msg->msgid = 0;
949
950	msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
951
952	/* Acceptance filter open */
953	sja1000->acc_code0 = 0x00;
954	sja1000->acc_code1 = 0x00;
955	sja1000->acc_code2 = 0x00;
956	sja1000->acc_code3 = 0x00;
957
958	/* Acceptance filter open */
959	sja1000->acc_mask0 = 0xFF;
960	sja1000->acc_mask1 = 0xFF;
961	sja1000->acc_mask2 = 0xFF;
962	sja1000->acc_mask3 = 0xFF;
963
964	sja1000->btr0 = 0;
965	sja1000->btr1 = 0;
966
967	sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
968	sja1000->mode = SJA1000_MOD_RM;
969}
970
971/*
972 * probe function for new CPC-USB devices
973 */
974static int ems_usb_probe(struct usb_interface *intf,
975			 const struct usb_device_id *id)
976{
977	struct net_device *netdev;
978	struct ems_usb *dev;
979	int i, err = -ENOMEM;
980
981	netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
982	if (!netdev) {
983		dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
984		return -ENOMEM;
985	}
986
987	dev = netdev_priv(netdev);
988
989	dev->udev = interface_to_usbdev(intf);
990	dev->netdev = netdev;
991
992	dev->can.state = CAN_STATE_STOPPED;
993	dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
994	dev->can.bittiming_const = &ems_usb_bittiming_const;
995	dev->can.do_set_bittiming = ems_usb_set_bittiming;
996	dev->can.do_set_mode = ems_usb_set_mode;
997	dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
998
999	netdev->netdev_ops = &ems_usb_netdev_ops;
1000
1001	netdev->flags |= IFF_ECHO; /* we support local echo */
1002
1003	init_usb_anchor(&dev->rx_submitted);
1004
1005	init_usb_anchor(&dev->tx_submitted);
1006	atomic_set(&dev->active_tx_urbs, 0);
1007
1008	for (i = 0; i < MAX_TX_URBS; i++)
1009		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
1010
1011	dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
1012	if (!dev->intr_urb) {
1013		dev_err(&intf->dev, "Couldn't alloc intr URB\n");
1014		goto cleanup_candev;
1015	}
1016
1017	dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
1018	if (!dev->intr_in_buffer)
1019		goto cleanup_intr_urb;
1020
1021	dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
1022				     sizeof(struct ems_cpc_msg), GFP_KERNEL);
1023	if (!dev->tx_msg_buffer)
1024		goto cleanup_intr_in_buffer;
1025
1026	usb_set_intfdata(intf, dev);
1027
1028	SET_NETDEV_DEV(netdev, &intf->dev);
1029
1030	init_params_sja1000(&dev->active_params);
1031
1032	err = ems_usb_command_msg(dev, &dev->active_params);
1033	if (err) {
1034		netdev_err(netdev, "couldn't initialize controller: %d\n", err);
1035		goto cleanup_tx_msg_buffer;
1036	}
1037
1038	err = register_candev(netdev);
1039	if (err) {
1040		netdev_err(netdev, "couldn't register CAN device: %d\n", err);
1041		goto cleanup_tx_msg_buffer;
1042	}
1043
1044	return 0;
1045
1046cleanup_tx_msg_buffer:
1047	kfree(dev->tx_msg_buffer);
1048
1049cleanup_intr_in_buffer:
1050	kfree(dev->intr_in_buffer);
1051
1052cleanup_intr_urb:
1053	usb_free_urb(dev->intr_urb);
1054
1055cleanup_candev:
1056	free_candev(netdev);
1057
1058	return err;
1059}
1060
1061/*
1062 * called by the usb core when the device is removed from the system
1063 */
1064static void ems_usb_disconnect(struct usb_interface *intf)
1065{
1066	struct ems_usb *dev = usb_get_intfdata(intf);
1067
1068	usb_set_intfdata(intf, NULL);
1069
1070	if (dev) {
1071		unregister_netdev(dev->netdev);
1072		free_candev(dev->netdev);
1073
1074		unlink_all_urbs(dev);
1075
1076		usb_free_urb(dev->intr_urb);
1077
1078		kfree(dev->intr_in_buffer);
1079	}
1080}
1081
1082/* usb specific object needed to register this driver with the usb subsystem */
1083static struct usb_driver ems_usb_driver = {
1084	.name = "ems_usb",
1085	.probe = ems_usb_probe,
1086	.disconnect = ems_usb_disconnect,
1087	.id_table = ems_usb_table,
1088};
1089
1090module_usb_driver(ems_usb_driver);
1091