ems_usb.c revision d0a71a7e6de0e0ce9f86c8ba6e13414a9df63e0b
1/*
2 * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
3 *
4 * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; version 2 of the License.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 * General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19#include <linux/init.h>
20#include <linux/signal.h>
21#include <linux/slab.h>
22#include <linux/module.h>
23#include <linux/netdevice.h>
24#include <linux/usb.h>
25
26#include <linux/can.h>
27#include <linux/can/dev.h>
28#include <linux/can/error.h>
29
30MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
31MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
32MODULE_LICENSE("GPL v2");
33
34/* Control-Values for CPC_Control() Command Subject Selection */
35#define CONTR_CAN_MESSAGE 0x04
36#define CONTR_CAN_STATE   0x0C
37#define CONTR_BUS_ERROR   0x1C
38
39/* Control Command Actions */
40#define CONTR_CONT_OFF 0
41#define CONTR_CONT_ON  1
42#define CONTR_ONCE     2
43
44/* Messages from CPC to PC */
45#define CPC_MSG_TYPE_CAN_FRAME       1  /* CAN data frame */
46#define CPC_MSG_TYPE_RTR_FRAME       8  /* CAN remote frame */
47#define CPC_MSG_TYPE_CAN_PARAMS      12 /* Actual CAN parameters */
48#define CPC_MSG_TYPE_CAN_STATE       14 /* CAN state message */
49#define CPC_MSG_TYPE_EXT_CAN_FRAME   16 /* Extended CAN data frame */
50#define CPC_MSG_TYPE_EXT_RTR_FRAME   17 /* Extended remote frame */
51#define CPC_MSG_TYPE_CONTROL         19 /* change interface behavior */
52#define CPC_MSG_TYPE_CONFIRM         20 /* command processed confirmation */
53#define CPC_MSG_TYPE_OVERRUN         21 /* overrun events */
54#define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
55#define CPC_MSG_TYPE_ERR_COUNTER     25 /* RX/TX error counter */
56
57/* Messages from the PC to the CPC interface  */
58#define CPC_CMD_TYPE_CAN_FRAME     1   /* CAN data frame */
59#define CPC_CMD_TYPE_CONTROL       3   /* control of interface behavior */
60#define CPC_CMD_TYPE_CAN_PARAMS    6   /* set CAN parameters */
61#define CPC_CMD_TYPE_RTR_FRAME     13  /* CAN remote frame */
62#define CPC_CMD_TYPE_CAN_STATE     14  /* CAN state message */
63#define CPC_CMD_TYPE_EXT_CAN_FRAME 15  /* Extended CAN data frame */
64#define CPC_CMD_TYPE_EXT_RTR_FRAME 16  /* Extended CAN remote frame */
65#define CPC_CMD_TYPE_CAN_EXIT      200 /* exit the CAN */
66
67#define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
68#define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8  /* clear CPC_MSG queue */
69#define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
70
71#define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
72
73#define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
74
75/* Overrun types */
76#define CPC_OVR_EVENT_CAN       0x01
77#define CPC_OVR_EVENT_CANSTATE  0x02
78#define CPC_OVR_EVENT_BUSERROR  0x04
79
80/*
81 * If the CAN controller lost a message we indicate it with the highest bit
82 * set in the count field.
83 */
84#define CPC_OVR_HW 0x80
85
86/* Size of the "struct ems_cpc_msg" without the union */
87#define CPC_MSG_HEADER_LEN   11
88#define CPC_CAN_MSG_MIN_SIZE 5
89
90/* Define these values to match your devices */
91#define USB_CPCUSB_VENDOR_ID 0x12D6
92
93#define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
94
95/* Mode register NXP LPC2119/SJA1000 CAN Controller */
96#define SJA1000_MOD_NORMAL 0x00
97#define SJA1000_MOD_RM     0x01
98
99/* ECC register NXP LPC2119/SJA1000 CAN Controller */
100#define SJA1000_ECC_SEG   0x1F
101#define SJA1000_ECC_DIR   0x20
102#define SJA1000_ECC_ERR   0x06
103#define SJA1000_ECC_BIT   0x00
104#define SJA1000_ECC_FORM  0x40
105#define SJA1000_ECC_STUFF 0x80
106#define SJA1000_ECC_MASK  0xc0
107
108/* Status register content */
109#define SJA1000_SR_BS 0x80
110#define SJA1000_SR_ES 0x40
111
112#define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
113
114/*
115 * The device actually uses a 16MHz clock to generate the CAN clock
116 * but it expects SJA1000 bit settings based on 8MHz (is internally
117 * converted).
118 */
119#define EMS_USB_ARM7_CLOCK 8000000
120
121/*
122 * CAN-Message representation in a CPC_MSG. Message object type is
123 * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
124 * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
125 */
126struct cpc_can_msg {
127	u32 id;
128	u8 length;
129	u8 msg[8];
130};
131
132/* Representation of the CAN parameters for the SJA1000 controller */
133struct cpc_sja1000_params {
134	u8 mode;
135	u8 acc_code0;
136	u8 acc_code1;
137	u8 acc_code2;
138	u8 acc_code3;
139	u8 acc_mask0;
140	u8 acc_mask1;
141	u8 acc_mask2;
142	u8 acc_mask3;
143	u8 btr0;
144	u8 btr1;
145	u8 outp_contr;
146};
147
148/* CAN params message representation */
149struct cpc_can_params {
150	u8 cc_type;
151
152	/* Will support M16C CAN controller in the future */
153	union {
154		struct cpc_sja1000_params sja1000;
155	} cc_params;
156};
157
158/* Structure for confirmed message handling */
159struct cpc_confirm {
160	u8 error; /* error code */
161};
162
163/* Structure for overrun conditions */
164struct cpc_overrun {
165	u8 event;
166	u8 count;
167};
168
169/* SJA1000 CAN errors (compatible to NXP LPC2119) */
170struct cpc_sja1000_can_error {
171	u8 ecc;
172	u8 rxerr;
173	u8 txerr;
174};
175
176/* structure for CAN error conditions */
177struct cpc_can_error {
178	u8 ecode;
179
180	struct {
181		u8 cc_type;
182
183		/* Other controllers may also provide error code capture regs */
184		union {
185			struct cpc_sja1000_can_error sja1000;
186		} regs;
187	} cc;
188};
189
190/*
191 * Structure containing RX/TX error counter. This structure is used to request
192 * the values of the CAN controllers TX and RX error counter.
193 */
194struct cpc_can_err_counter {
195	u8 rx;
196	u8 tx;
197};
198
199/* Main message type used between library and application */
200struct __packed ems_cpc_msg {
201	u8 type;	/* type of message */
202	u8 length;	/* length of data within union 'msg' */
203	u8 msgid;	/* confirmation handle */
204	u32 ts_sec;	/* timestamp in seconds */
205	u32 ts_nsec;	/* timestamp in nano seconds */
206
207	union {
208		u8 generic[64];
209		struct cpc_can_msg can_msg;
210		struct cpc_can_params can_params;
211		struct cpc_confirm confirmation;
212		struct cpc_overrun overrun;
213		struct cpc_can_error error;
214		struct cpc_can_err_counter err_counter;
215		u8 can_state;
216	} msg;
217};
218
219/*
220 * Table of devices that work with this driver
221 * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
222 */
223static struct usb_device_id ems_usb_table[] = {
224	{USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
225	{} /* Terminating entry */
226};
227
228MODULE_DEVICE_TABLE(usb, ems_usb_table);
229
230#define RX_BUFFER_SIZE      64
231#define CPC_HEADER_SIZE     4
232#define INTR_IN_BUFFER_SIZE 4
233
234#define MAX_RX_URBS 10
235#define MAX_TX_URBS 10
236
237struct ems_usb;
238
239struct ems_tx_urb_context {
240	struct ems_usb *dev;
241
242	u32 echo_index;
243	u8 dlc;
244};
245
246struct ems_usb {
247	struct can_priv can; /* must be the first member */
248	int open_time;
249
250	struct sk_buff *echo_skb[MAX_TX_URBS];
251
252	struct usb_device *udev;
253	struct net_device *netdev;
254
255	atomic_t active_tx_urbs;
256	struct usb_anchor tx_submitted;
257	struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
258
259	struct usb_anchor rx_submitted;
260
261	struct urb *intr_urb;
262
263	u8 *tx_msg_buffer;
264
265	u8 *intr_in_buffer;
266	unsigned int free_slots; /* remember number of available slots */
267
268	struct ems_cpc_msg active_params; /* active controller parameters */
269};
270
271static void ems_usb_read_interrupt_callback(struct urb *urb)
272{
273	struct ems_usb *dev = urb->context;
274	struct net_device *netdev = dev->netdev;
275	int err;
276
277	if (!netif_device_present(netdev))
278		return;
279
280	switch (urb->status) {
281	case 0:
282		dev->free_slots = dev->intr_in_buffer[1];
283		break;
284
285	case -ECONNRESET: /* unlink */
286	case -ENOENT:
287	case -ESHUTDOWN:
288		return;
289
290	default:
291		dev_info(netdev->dev.parent, "Rx interrupt aborted %d\n",
292			 urb->status);
293		break;
294	}
295
296	err = usb_submit_urb(urb, GFP_ATOMIC);
297
298	if (err == -ENODEV)
299		netif_device_detach(netdev);
300	else if (err)
301		dev_err(netdev->dev.parent,
302			"failed resubmitting intr urb: %d\n", err);
303}
304
305static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
306{
307	struct can_frame *cf;
308	struct sk_buff *skb;
309	int i;
310	struct net_device_stats *stats = &dev->netdev->stats;
311
312	skb = alloc_can_skb(dev->netdev, &cf);
313	if (skb == NULL)
314		return;
315
316	cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
317	cf->can_dlc = get_can_dlc(msg->msg.can_msg.length & 0xF);
318
319	if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME ||
320	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
321		cf->can_id |= CAN_EFF_FLAG;
322
323	if (msg->type == CPC_MSG_TYPE_RTR_FRAME ||
324	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
325		cf->can_id |= CAN_RTR_FLAG;
326	} else {
327		for (i = 0; i < cf->can_dlc; i++)
328			cf->data[i] = msg->msg.can_msg.msg[i];
329	}
330
331	netif_rx(skb);
332
333	stats->rx_packets++;
334	stats->rx_bytes += cf->can_dlc;
335}
336
337static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
338{
339	struct can_frame *cf;
340	struct sk_buff *skb;
341	struct net_device_stats *stats = &dev->netdev->stats;
342
343	skb = alloc_can_err_skb(dev->netdev, &cf);
344	if (skb == NULL)
345		return;
346
347	if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
348		u8 state = msg->msg.can_state;
349
350		if (state & SJA1000_SR_BS) {
351			dev->can.state = CAN_STATE_BUS_OFF;
352			cf->can_id |= CAN_ERR_BUSOFF;
353
354			can_bus_off(dev->netdev);
355		} else if (state & SJA1000_SR_ES) {
356			dev->can.state = CAN_STATE_ERROR_WARNING;
357			dev->can.can_stats.error_warning++;
358		} else {
359			dev->can.state = CAN_STATE_ERROR_ACTIVE;
360			dev->can.can_stats.error_passive++;
361		}
362	} else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
363		u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
364		u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
365		u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
366
367		/* bus error interrupt */
368		dev->can.can_stats.bus_error++;
369		stats->rx_errors++;
370
371		cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
372
373		switch (ecc & SJA1000_ECC_MASK) {
374		case SJA1000_ECC_BIT:
375			cf->data[2] |= CAN_ERR_PROT_BIT;
376			break;
377		case SJA1000_ECC_FORM:
378			cf->data[2] |= CAN_ERR_PROT_FORM;
379			break;
380		case SJA1000_ECC_STUFF:
381			cf->data[2] |= CAN_ERR_PROT_STUFF;
382			break;
383		default:
384			cf->data[2] |= CAN_ERR_PROT_UNSPEC;
385			cf->data[3] = ecc & SJA1000_ECC_SEG;
386			break;
387		}
388
389		/* Error occurred during transmission? */
390		if ((ecc & SJA1000_ECC_DIR) == 0)
391			cf->data[2] |= CAN_ERR_PROT_TX;
392
393		if (dev->can.state == CAN_STATE_ERROR_WARNING ||
394		    dev->can.state == CAN_STATE_ERROR_PASSIVE) {
395			cf->data[1] = (txerr > rxerr) ?
396			    CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
397		}
398	} else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
399		cf->can_id |= CAN_ERR_CRTL;
400		cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
401
402		stats->rx_over_errors++;
403		stats->rx_errors++;
404	}
405
406	netif_rx(skb);
407
408	stats->rx_packets++;
409	stats->rx_bytes += cf->can_dlc;
410}
411
412/*
413 * callback for bulk IN urb
414 */
415static void ems_usb_read_bulk_callback(struct urb *urb)
416{
417	struct ems_usb *dev = urb->context;
418	struct net_device *netdev;
419	int retval;
420
421	netdev = dev->netdev;
422
423	if (!netif_device_present(netdev))
424		return;
425
426	switch (urb->status) {
427	case 0: /* success */
428		break;
429
430	case -ENOENT:
431		return;
432
433	default:
434		dev_info(netdev->dev.parent, "Rx URB aborted (%d)\n",
435			 urb->status);
436		goto resubmit_urb;
437	}
438
439	if (urb->actual_length > CPC_HEADER_SIZE) {
440		struct ems_cpc_msg *msg;
441		u8 *ibuf = urb->transfer_buffer;
442		u8 msg_count, again, start;
443
444		msg_count = ibuf[0] & ~0x80;
445		again = ibuf[0] & 0x80;
446
447		start = CPC_HEADER_SIZE;
448
449		while (msg_count) {
450			msg = (struct ems_cpc_msg *)&ibuf[start];
451
452			switch (msg->type) {
453			case CPC_MSG_TYPE_CAN_STATE:
454				/* Process CAN state changes */
455				ems_usb_rx_err(dev, msg);
456				break;
457
458			case CPC_MSG_TYPE_CAN_FRAME:
459			case CPC_MSG_TYPE_EXT_CAN_FRAME:
460			case CPC_MSG_TYPE_RTR_FRAME:
461			case CPC_MSG_TYPE_EXT_RTR_FRAME:
462				ems_usb_rx_can_msg(dev, msg);
463				break;
464
465			case CPC_MSG_TYPE_CAN_FRAME_ERROR:
466				/* Process errorframe */
467				ems_usb_rx_err(dev, msg);
468				break;
469
470			case CPC_MSG_TYPE_OVERRUN:
471				/* Message lost while receiving */
472				ems_usb_rx_err(dev, msg);
473				break;
474			}
475
476			start += CPC_MSG_HEADER_LEN + msg->length;
477			msg_count--;
478
479			if (start > urb->transfer_buffer_length) {
480				dev_err(netdev->dev.parent, "format error\n");
481				break;
482			}
483		}
484	}
485
486resubmit_urb:
487	usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
488			  urb->transfer_buffer, RX_BUFFER_SIZE,
489			  ems_usb_read_bulk_callback, dev);
490
491	retval = usb_submit_urb(urb, GFP_ATOMIC);
492
493	if (retval == -ENODEV)
494		netif_device_detach(netdev);
495	else if (retval)
496		dev_err(netdev->dev.parent,
497			"failed resubmitting read bulk urb: %d\n", retval);
498}
499
500/*
501 * callback for bulk IN urb
502 */
503static void ems_usb_write_bulk_callback(struct urb *urb)
504{
505	struct ems_tx_urb_context *context = urb->context;
506	struct ems_usb *dev;
507	struct net_device *netdev;
508
509	BUG_ON(!context);
510
511	dev = context->dev;
512	netdev = dev->netdev;
513
514	/* free up our allocated buffer */
515	usb_free_coherent(urb->dev, urb->transfer_buffer_length,
516			  urb->transfer_buffer, urb->transfer_dma);
517
518	atomic_dec(&dev->active_tx_urbs);
519
520	if (!netif_device_present(netdev))
521		return;
522
523	if (urb->status)
524		dev_info(netdev->dev.parent, "Tx URB aborted (%d)\n",
525			 urb->status);
526
527	netdev->trans_start = jiffies;
528
529	/* transmission complete interrupt */
530	netdev->stats.tx_packets++;
531	netdev->stats.tx_bytes += context->dlc;
532
533	can_get_echo_skb(netdev, context->echo_index);
534
535	/* Release context */
536	context->echo_index = MAX_TX_URBS;
537
538	if (netif_queue_stopped(netdev))
539		netif_wake_queue(netdev);
540}
541
542/*
543 * Send the given CPC command synchronously
544 */
545static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
546{
547	int actual_length;
548
549	/* Copy payload */
550	memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
551	       msg->length + CPC_MSG_HEADER_LEN);
552
553	/* Clear header */
554	memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
555
556	return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
557			    &dev->tx_msg_buffer[0],
558			    msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
559			    &actual_length, 1000);
560}
561
562/*
563 * Change CAN controllers' mode register
564 */
565static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
566{
567	dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
568
569	return ems_usb_command_msg(dev, &dev->active_params);
570}
571
572/*
573 * Send a CPC_Control command to change behaviour when interface receives a CAN
574 * message, bus error or CAN state changed notifications.
575 */
576static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
577{
578	struct ems_cpc_msg cmd;
579
580	cmd.type = CPC_CMD_TYPE_CONTROL;
581	cmd.length = CPC_MSG_HEADER_LEN + 1;
582
583	cmd.msgid = 0;
584
585	cmd.msg.generic[0] = val;
586
587	return ems_usb_command_msg(dev, &cmd);
588}
589
590/*
591 * Start interface
592 */
593static int ems_usb_start(struct ems_usb *dev)
594{
595	struct net_device *netdev = dev->netdev;
596	int err, i;
597
598	dev->intr_in_buffer[0] = 0;
599	dev->free_slots = 15; /* initial size */
600
601	for (i = 0; i < MAX_RX_URBS; i++) {
602		struct urb *urb = NULL;
603		u8 *buf = NULL;
604
605		/* create a URB, and a buffer for it */
606		urb = usb_alloc_urb(0, GFP_KERNEL);
607		if (!urb) {
608			dev_err(netdev->dev.parent,
609				"No memory left for URBs\n");
610			return -ENOMEM;
611		}
612
613		buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
614					 &urb->transfer_dma);
615		if (!buf) {
616			dev_err(netdev->dev.parent,
617				"No memory left for USB buffer\n");
618			usb_free_urb(urb);
619			return -ENOMEM;
620		}
621
622		usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
623				  buf, RX_BUFFER_SIZE,
624				  ems_usb_read_bulk_callback, dev);
625		urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
626		usb_anchor_urb(urb, &dev->rx_submitted);
627
628		err = usb_submit_urb(urb, GFP_KERNEL);
629		if (err) {
630			usb_unanchor_urb(urb);
631			usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf,
632					  urb->transfer_dma);
633			break;
634		}
635
636		/* Drop reference, USB core will take care of freeing it */
637		usb_free_urb(urb);
638	}
639
640	/* Did we submit any URBs */
641	if (i == 0) {
642		dev_warn(netdev->dev.parent, "couldn't setup read URBs\n");
643		return err;
644	}
645
646	/* Warn if we've couldn't transmit all the URBs */
647	if (i < MAX_RX_URBS)
648		dev_warn(netdev->dev.parent, "rx performance may be slow\n");
649
650	/* Setup and start interrupt URB */
651	usb_fill_int_urb(dev->intr_urb, dev->udev,
652			 usb_rcvintpipe(dev->udev, 1),
653			 dev->intr_in_buffer,
654			 INTR_IN_BUFFER_SIZE,
655			 ems_usb_read_interrupt_callback, dev, 1);
656
657	err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
658	if (err) {
659		dev_warn(netdev->dev.parent, "intr URB submit failed: %d\n",
660			 err);
661
662		return err;
663	}
664
665	/* CPC-USB will transfer received message to host */
666	err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
667	if (err)
668		goto failed;
669
670	/* CPC-USB will transfer CAN state changes to host */
671	err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
672	if (err)
673		goto failed;
674
675	/* CPC-USB will transfer bus errors to host */
676	err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
677	if (err)
678		goto failed;
679
680	err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
681	if (err)
682		goto failed;
683
684	dev->can.state = CAN_STATE_ERROR_ACTIVE;
685
686	return 0;
687
688failed:
689	dev_warn(netdev->dev.parent, "couldn't submit control: %d\n", err);
690
691	return err;
692}
693
694static void unlink_all_urbs(struct ems_usb *dev)
695{
696	int i;
697
698	usb_unlink_urb(dev->intr_urb);
699
700	usb_kill_anchored_urbs(&dev->rx_submitted);
701
702	usb_kill_anchored_urbs(&dev->tx_submitted);
703	atomic_set(&dev->active_tx_urbs, 0);
704
705	for (i = 0; i < MAX_TX_URBS; i++)
706		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
707}
708
709static int ems_usb_open(struct net_device *netdev)
710{
711	struct ems_usb *dev = netdev_priv(netdev);
712	int err;
713
714	err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
715	if (err)
716		return err;
717
718	/* common open */
719	err = open_candev(netdev);
720	if (err)
721		return err;
722
723	/* finally start device */
724	err = ems_usb_start(dev);
725	if (err) {
726		if (err == -ENODEV)
727			netif_device_detach(dev->netdev);
728
729		dev_warn(netdev->dev.parent, "couldn't start device: %d\n",
730			 err);
731
732		close_candev(netdev);
733
734		return err;
735	}
736
737	dev->open_time = jiffies;
738
739	netif_start_queue(netdev);
740
741	return 0;
742}
743
744static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
745{
746	struct ems_usb *dev = netdev_priv(netdev);
747	struct ems_tx_urb_context *context = NULL;
748	struct net_device_stats *stats = &netdev->stats;
749	struct can_frame *cf = (struct can_frame *)skb->data;
750	struct ems_cpc_msg *msg;
751	struct urb *urb;
752	u8 *buf;
753	int i, err;
754	size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
755			+ sizeof(struct cpc_can_msg);
756
757	if (can_dropped_invalid_skb(netdev, skb))
758		return NETDEV_TX_OK;
759
760	/* create a URB, and a buffer for it, and copy the data to the URB */
761	urb = usb_alloc_urb(0, GFP_ATOMIC);
762	if (!urb) {
763		dev_err(netdev->dev.parent, "No memory left for URBs\n");
764		goto nomem;
765	}
766
767	buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
768	if (!buf) {
769		dev_err(netdev->dev.parent, "No memory left for USB buffer\n");
770		usb_free_urb(urb);
771		goto nomem;
772	}
773
774	msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
775
776	msg->msg.can_msg.id = cf->can_id & CAN_ERR_MASK;
777	msg->msg.can_msg.length = cf->can_dlc;
778
779	if (cf->can_id & CAN_RTR_FLAG) {
780		msg->type = cf->can_id & CAN_EFF_FLAG ?
781			CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
782
783		msg->length = CPC_CAN_MSG_MIN_SIZE;
784	} else {
785		msg->type = cf->can_id & CAN_EFF_FLAG ?
786			CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
787
788		for (i = 0; i < cf->can_dlc; i++)
789			msg->msg.can_msg.msg[i] = cf->data[i];
790
791		msg->length = CPC_CAN_MSG_MIN_SIZE + cf->can_dlc;
792	}
793
794	/* Respect byte order */
795	msg->msg.can_msg.id = cpu_to_le32(msg->msg.can_msg.id);
796
797	for (i = 0; i < MAX_TX_URBS; i++) {
798		if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
799			context = &dev->tx_contexts[i];
800			break;
801		}
802	}
803
804	/*
805	 * May never happen! When this happens we'd more URBs in flight as
806	 * allowed (MAX_TX_URBS).
807	 */
808	if (!context) {
809		usb_unanchor_urb(urb);
810		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
811
812		dev_warn(netdev->dev.parent, "couldn't find free context\n");
813
814		return NETDEV_TX_BUSY;
815	}
816
817	context->dev = dev;
818	context->echo_index = i;
819	context->dlc = cf->can_dlc;
820
821	usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
822			  size, ems_usb_write_bulk_callback, context);
823	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
824	usb_anchor_urb(urb, &dev->tx_submitted);
825
826	can_put_echo_skb(skb, netdev, context->echo_index);
827
828	atomic_inc(&dev->active_tx_urbs);
829
830	err = usb_submit_urb(urb, GFP_ATOMIC);
831	if (unlikely(err)) {
832		can_free_echo_skb(netdev, context->echo_index);
833
834		usb_unanchor_urb(urb);
835		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
836		dev_kfree_skb(skb);
837
838		atomic_dec(&dev->active_tx_urbs);
839
840		if (err == -ENODEV) {
841			netif_device_detach(netdev);
842		} else {
843			dev_warn(netdev->dev.parent, "failed tx_urb %d\n", err);
844
845			stats->tx_dropped++;
846		}
847	} else {
848		netdev->trans_start = jiffies;
849
850		/* Slow down tx path */
851		if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
852		    dev->free_slots < 5) {
853			netif_stop_queue(netdev);
854		}
855	}
856
857	/*
858	 * Release our reference to this URB, the USB core will eventually free
859	 * it entirely.
860	 */
861	usb_free_urb(urb);
862
863	return NETDEV_TX_OK;
864
865nomem:
866	dev_kfree_skb(skb);
867	stats->tx_dropped++;
868
869	return NETDEV_TX_OK;
870}
871
872static int ems_usb_close(struct net_device *netdev)
873{
874	struct ems_usb *dev = netdev_priv(netdev);
875
876	/* Stop polling */
877	unlink_all_urbs(dev);
878
879	netif_stop_queue(netdev);
880
881	/* Set CAN controller to reset mode */
882	if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
883		dev_warn(netdev->dev.parent, "couldn't stop device");
884
885	close_candev(netdev);
886
887	dev->open_time = 0;
888
889	return 0;
890}
891
892static const struct net_device_ops ems_usb_netdev_ops = {
893	.ndo_open = ems_usb_open,
894	.ndo_stop = ems_usb_close,
895	.ndo_start_xmit = ems_usb_start_xmit,
896};
897
898static struct can_bittiming_const ems_usb_bittiming_const = {
899	.name = "ems_usb",
900	.tseg1_min = 1,
901	.tseg1_max = 16,
902	.tseg2_min = 1,
903	.tseg2_max = 8,
904	.sjw_max = 4,
905	.brp_min = 1,
906	.brp_max = 64,
907	.brp_inc = 1,
908};
909
910static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
911{
912	struct ems_usb *dev = netdev_priv(netdev);
913
914	if (!dev->open_time)
915		return -EINVAL;
916
917	switch (mode) {
918	case CAN_MODE_START:
919		if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
920			dev_warn(netdev->dev.parent, "couldn't start device");
921
922		if (netif_queue_stopped(netdev))
923			netif_wake_queue(netdev);
924		break;
925
926	default:
927		return -EOPNOTSUPP;
928	}
929
930	return 0;
931}
932
933static int ems_usb_set_bittiming(struct net_device *netdev)
934{
935	struct ems_usb *dev = netdev_priv(netdev);
936	struct can_bittiming *bt = &dev->can.bittiming;
937	u8 btr0, btr1;
938
939	btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
940	btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
941		(((bt->phase_seg2 - 1) & 0x7) << 4);
942	if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
943		btr1 |= 0x80;
944
945	dev_info(netdev->dev.parent, "setting BTR0=0x%02x BTR1=0x%02x\n",
946		 btr0, btr1);
947
948	dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
949	dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
950
951	return ems_usb_command_msg(dev, &dev->active_params);
952}
953
954static void init_params_sja1000(struct ems_cpc_msg *msg)
955{
956	struct cpc_sja1000_params *sja1000 =
957		&msg->msg.can_params.cc_params.sja1000;
958
959	msg->type = CPC_CMD_TYPE_CAN_PARAMS;
960	msg->length = sizeof(struct cpc_can_params);
961	msg->msgid = 0;
962
963	msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
964
965	/* Acceptance filter open */
966	sja1000->acc_code0 = 0x00;
967	sja1000->acc_code1 = 0x00;
968	sja1000->acc_code2 = 0x00;
969	sja1000->acc_code3 = 0x00;
970
971	/* Acceptance filter open */
972	sja1000->acc_mask0 = 0xFF;
973	sja1000->acc_mask1 = 0xFF;
974	sja1000->acc_mask2 = 0xFF;
975	sja1000->acc_mask3 = 0xFF;
976
977	sja1000->btr0 = 0;
978	sja1000->btr1 = 0;
979
980	sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
981	sja1000->mode = SJA1000_MOD_RM;
982}
983
984/*
985 * probe function for new CPC-USB devices
986 */
987static int ems_usb_probe(struct usb_interface *intf,
988			 const struct usb_device_id *id)
989{
990	struct net_device *netdev;
991	struct ems_usb *dev;
992	int i, err = -ENOMEM;
993
994	netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
995	if (!netdev) {
996		dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
997		return -ENOMEM;
998	}
999
1000	dev = netdev_priv(netdev);
1001
1002	dev->udev = interface_to_usbdev(intf);
1003	dev->netdev = netdev;
1004
1005	dev->can.state = CAN_STATE_STOPPED;
1006	dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
1007	dev->can.bittiming_const = &ems_usb_bittiming_const;
1008	dev->can.do_set_bittiming = ems_usb_set_bittiming;
1009	dev->can.do_set_mode = ems_usb_set_mode;
1010	dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
1011
1012	netdev->netdev_ops = &ems_usb_netdev_ops;
1013
1014	netdev->flags |= IFF_ECHO; /* we support local echo */
1015
1016	init_usb_anchor(&dev->rx_submitted);
1017
1018	init_usb_anchor(&dev->tx_submitted);
1019	atomic_set(&dev->active_tx_urbs, 0);
1020
1021	for (i = 0; i < MAX_TX_URBS; i++)
1022		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
1023
1024	dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
1025	if (!dev->intr_urb) {
1026		dev_err(&intf->dev, "Couldn't alloc intr URB\n");
1027		goto cleanup_candev;
1028	}
1029
1030	dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
1031	if (!dev->intr_in_buffer) {
1032		dev_err(&intf->dev, "Couldn't alloc Intr buffer\n");
1033		goto cleanup_intr_urb;
1034	}
1035
1036	dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
1037				     sizeof(struct ems_cpc_msg), GFP_KERNEL);
1038	if (!dev->tx_msg_buffer) {
1039		dev_err(&intf->dev, "Couldn't alloc Tx buffer\n");
1040		goto cleanup_intr_in_buffer;
1041	}
1042
1043	usb_set_intfdata(intf, dev);
1044
1045	SET_NETDEV_DEV(netdev, &intf->dev);
1046
1047	init_params_sja1000(&dev->active_params);
1048
1049	err = ems_usb_command_msg(dev, &dev->active_params);
1050	if (err) {
1051		dev_err(netdev->dev.parent,
1052			"couldn't initialize controller: %d\n", err);
1053		goto cleanup_tx_msg_buffer;
1054	}
1055
1056	err = register_candev(netdev);
1057	if (err) {
1058		dev_err(netdev->dev.parent,
1059			"couldn't register CAN device: %d\n", err);
1060		goto cleanup_tx_msg_buffer;
1061	}
1062
1063	return 0;
1064
1065cleanup_tx_msg_buffer:
1066	kfree(dev->tx_msg_buffer);
1067
1068cleanup_intr_in_buffer:
1069	kfree(dev->intr_in_buffer);
1070
1071cleanup_intr_urb:
1072	usb_free_urb(dev->intr_urb);
1073
1074cleanup_candev:
1075	free_candev(netdev);
1076
1077	return err;
1078}
1079
1080/*
1081 * called by the usb core when the device is removed from the system
1082 */
1083static void ems_usb_disconnect(struct usb_interface *intf)
1084{
1085	struct ems_usb *dev = usb_get_intfdata(intf);
1086
1087	usb_set_intfdata(intf, NULL);
1088
1089	if (dev) {
1090		unregister_netdev(dev->netdev);
1091		free_candev(dev->netdev);
1092
1093		unlink_all_urbs(dev);
1094
1095		usb_free_urb(dev->intr_urb);
1096
1097		kfree(dev->intr_in_buffer);
1098	}
1099}
1100
1101/* usb specific object needed to register this driver with the usb subsystem */
1102static struct usb_driver ems_usb_driver = {
1103	.name = "ems_usb",
1104	.probe = ems_usb_probe,
1105	.disconnect = ems_usb_disconnect,
1106	.id_table = ems_usb_table,
1107};
1108
1109module_usb_driver(ems_usb_driver);
1110