xilinx_can.c revision 92593a035ee6a81f50b54ab34b23b1c1319ee413
1/* Xilinx CAN device driver
2 *
3 * Copyright (C) 2012 - 2014 Xilinx, Inc.
4 * Copyright (C) 2009 PetaLogix. All rights reserved.
5 *
6 * Description:
7 * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 */
18
19#include <linux/clk.h>
20#include <linux/errno.h>
21#include <linux/init.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/netdevice.h>
27#include <linux/of.h>
28#include <linux/platform_device.h>
29#include <linux/skbuff.h>
30#include <linux/string.h>
31#include <linux/types.h>
32#include <linux/can/dev.h>
33#include <linux/can/error.h>
34#include <linux/can/led.h>
35
36#define DRIVER_NAME	"xilinx_can"
37
38/* CAN registers set */
39enum xcan_reg {
40	XCAN_SRR_OFFSET		= 0x00, /* Software reset */
41	XCAN_MSR_OFFSET		= 0x04, /* Mode select */
42	XCAN_BRPR_OFFSET	= 0x08, /* Baud rate prescaler */
43	XCAN_BTR_OFFSET		= 0x0C, /* Bit timing */
44	XCAN_ECR_OFFSET		= 0x10, /* Error counter */
45	XCAN_ESR_OFFSET		= 0x14, /* Error status */
46	XCAN_SR_OFFSET		= 0x18, /* Status */
47	XCAN_ISR_OFFSET		= 0x1C, /* Interrupt status */
48	XCAN_IER_OFFSET		= 0x20, /* Interrupt enable */
49	XCAN_ICR_OFFSET		= 0x24, /* Interrupt clear */
50	XCAN_TXFIFO_ID_OFFSET	= 0x30,/* TX FIFO ID */
51	XCAN_TXFIFO_DLC_OFFSET	= 0x34, /* TX FIFO DLC */
52	XCAN_TXFIFO_DW1_OFFSET	= 0x38, /* TX FIFO Data Word 1 */
53	XCAN_TXFIFO_DW2_OFFSET	= 0x3C, /* TX FIFO Data Word 2 */
54	XCAN_RXFIFO_ID_OFFSET	= 0x50, /* RX FIFO ID */
55	XCAN_RXFIFO_DLC_OFFSET	= 0x54, /* RX FIFO DLC */
56	XCAN_RXFIFO_DW1_OFFSET	= 0x58, /* RX FIFO Data Word 1 */
57	XCAN_RXFIFO_DW2_OFFSET	= 0x5C, /* RX FIFO Data Word 2 */
58};
59
60/* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
61#define XCAN_SRR_CEN_MASK		0x00000002 /* CAN enable */
62#define XCAN_SRR_RESET_MASK		0x00000001 /* Soft Reset the CAN core */
63#define XCAN_MSR_LBACK_MASK		0x00000002 /* Loop back mode select */
64#define XCAN_MSR_SLEEP_MASK		0x00000001 /* Sleep mode select */
65#define XCAN_BRPR_BRP_MASK		0x000000FF /* Baud rate prescaler */
66#define XCAN_BTR_SJW_MASK		0x00000180 /* Synchronous jump width */
67#define XCAN_BTR_TS2_MASK		0x00000070 /* Time segment 2 */
68#define XCAN_BTR_TS1_MASK		0x0000000F /* Time segment 1 */
69#define XCAN_ECR_REC_MASK		0x0000FF00 /* Receive error counter */
70#define XCAN_ECR_TEC_MASK		0x000000FF /* Transmit error counter */
71#define XCAN_ESR_ACKER_MASK		0x00000010 /* ACK error */
72#define XCAN_ESR_BERR_MASK		0x00000008 /* Bit error */
73#define XCAN_ESR_STER_MASK		0x00000004 /* Stuff error */
74#define XCAN_ESR_FMER_MASK		0x00000002 /* Form error */
75#define XCAN_ESR_CRCER_MASK		0x00000001 /* CRC error */
76#define XCAN_SR_TXFLL_MASK		0x00000400 /* TX FIFO is full */
77#define XCAN_SR_ESTAT_MASK		0x00000180 /* Error status */
78#define XCAN_SR_ERRWRN_MASK		0x00000040 /* Error warning */
79#define XCAN_SR_NORMAL_MASK		0x00000008 /* Normal mode */
80#define XCAN_SR_LBACK_MASK		0x00000002 /* Loop back mode */
81#define XCAN_SR_CONFIG_MASK		0x00000001 /* Configuration mode */
82#define XCAN_IXR_TXFEMP_MASK		0x00004000 /* TX FIFO Empty */
83#define XCAN_IXR_WKUP_MASK		0x00000800 /* Wake up interrupt */
84#define XCAN_IXR_SLP_MASK		0x00000400 /* Sleep interrupt */
85#define XCAN_IXR_BSOFF_MASK		0x00000200 /* Bus off interrupt */
86#define XCAN_IXR_ERROR_MASK		0x00000100 /* Error interrupt */
87#define XCAN_IXR_RXNEMP_MASK		0x00000080 /* RX FIFO NotEmpty intr */
88#define XCAN_IXR_RXOFLW_MASK		0x00000040 /* RX FIFO Overflow intr */
89#define XCAN_IXR_RXOK_MASK		0x00000010 /* Message received intr */
90#define XCAN_IXR_TXFLL_MASK		0x00000004 /* Tx FIFO Full intr */
91#define XCAN_IXR_TXOK_MASK		0x00000002 /* TX successful intr */
92#define XCAN_IXR_ARBLST_MASK		0x00000001 /* Arbitration lost intr */
93#define XCAN_IDR_ID1_MASK		0xFFE00000 /* Standard msg identifier */
94#define XCAN_IDR_SRR_MASK		0x00100000 /* Substitute remote TXreq */
95#define XCAN_IDR_IDE_MASK		0x00080000 /* Identifier extension */
96#define XCAN_IDR_ID2_MASK		0x0007FFFE /* Extended message ident */
97#define XCAN_IDR_RTR_MASK		0x00000001 /* Remote TX request */
98#define XCAN_DLCR_DLC_MASK		0xF0000000 /* Data length code */
99
100#define XCAN_INTR_ALL		(XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |\
101				 XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK | \
102				 XCAN_IXR_RXNEMP_MASK | XCAN_IXR_ERROR_MASK | \
103				 XCAN_IXR_ARBLST_MASK | XCAN_IXR_RXOK_MASK)
104
105/* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
106#define XCAN_BTR_SJW_SHIFT		7  /* Synchronous jump width */
107#define XCAN_BTR_TS2_SHIFT		4  /* Time segment 2 */
108#define XCAN_IDR_ID1_SHIFT		21 /* Standard Messg Identifier */
109#define XCAN_IDR_ID2_SHIFT		1  /* Extended Message Identifier */
110#define XCAN_DLCR_DLC_SHIFT		28 /* Data length code */
111#define XCAN_ESR_REC_SHIFT		8  /* Rx Error Count */
112
113/* CAN frame length constants */
114#define XCAN_FRAME_MAX_DATA_LEN		8
115#define XCAN_TIMEOUT			(1 * HZ)
116
117/**
118 * struct xcan_priv - This definition define CAN driver instance
119 * @can:			CAN private data structure.
120 * @tx_head:			Tx CAN packets ready to send on the queue
121 * @tx_tail:			Tx CAN packets successfully sended on the queue
122 * @tx_max:			Maximum number packets the driver can send
123 * @napi:			NAPI structure
124 * @read_reg:			For reading data from CAN registers
125 * @write_reg:			For writing data to CAN registers
126 * @dev:			Network device data structure
127 * @reg_base:			Ioremapped address to registers
128 * @irq_flags:			For request_irq()
129 * @bus_clk:			Pointer to struct clk
130 * @can_clk:			Pointer to struct clk
131 */
132struct xcan_priv {
133	struct can_priv can;
134	unsigned int tx_head;
135	unsigned int tx_tail;
136	unsigned int tx_max;
137	struct napi_struct napi;
138	u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
139	void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
140			u32 val);
141	struct net_device *dev;
142	void __iomem *reg_base;
143	unsigned long irq_flags;
144	struct clk *bus_clk;
145	struct clk *can_clk;
146};
147
148/* CAN Bittiming constants as per Xilinx CAN specs */
149static const struct can_bittiming_const xcan_bittiming_const = {
150	.name = DRIVER_NAME,
151	.tseg1_min = 1,
152	.tseg1_max = 16,
153	.tseg2_min = 1,
154	.tseg2_max = 8,
155	.sjw_max = 4,
156	.brp_min = 1,
157	.brp_max = 256,
158	.brp_inc = 1,
159};
160
161/**
162 * xcan_write_reg_le - Write a value to the device register little endian
163 * @priv:	Driver private data structure
164 * @reg:	Register offset
165 * @val:	Value to write at the Register offset
166 *
167 * Write data to the paricular CAN register
168 */
169static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
170			u32 val)
171{
172	iowrite32(val, priv->reg_base + reg);
173}
174
175/**
176 * xcan_read_reg_le - Read a value from the device register little endian
177 * @priv:	Driver private data structure
178 * @reg:	Register offset
179 *
180 * Read data from the particular CAN register
181 * Return: value read from the CAN register
182 */
183static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
184{
185	return ioread32(priv->reg_base + reg);
186}
187
188/**
189 * xcan_write_reg_be - Write a value to the device register big endian
190 * @priv:	Driver private data structure
191 * @reg:	Register offset
192 * @val:	Value to write at the Register offset
193 *
194 * Write data to the paricular CAN register
195 */
196static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
197			u32 val)
198{
199	iowrite32be(val, priv->reg_base + reg);
200}
201
202/**
203 * xcan_read_reg_be - Read a value from the device register big endian
204 * @priv:	Driver private data structure
205 * @reg:	Register offset
206 *
207 * Read data from the particular CAN register
208 * Return: value read from the CAN register
209 */
210static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
211{
212	return ioread32be(priv->reg_base + reg);
213}
214
215/**
216 * set_reset_mode - Resets the CAN device mode
217 * @ndev:	Pointer to net_device structure
218 *
219 * This is the driver reset mode routine.The driver
220 * enters into configuration mode.
221 *
222 * Return: 0 on success and failure value on error
223 */
224static int set_reset_mode(struct net_device *ndev)
225{
226	struct xcan_priv *priv = netdev_priv(ndev);
227	unsigned long timeout;
228
229	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
230
231	timeout = jiffies + XCAN_TIMEOUT;
232	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
233		if (time_after(jiffies, timeout)) {
234			netdev_warn(ndev, "timed out for config mode\n");
235			return -ETIMEDOUT;
236		}
237		usleep_range(500, 10000);
238	}
239
240	return 0;
241}
242
243/**
244 * xcan_set_bittiming - CAN set bit timing routine
245 * @ndev:	Pointer to net_device structure
246 *
247 * This is the driver set bittiming  routine.
248 * Return: 0 on success and failure value on error
249 */
250static int xcan_set_bittiming(struct net_device *ndev)
251{
252	struct xcan_priv *priv = netdev_priv(ndev);
253	struct can_bittiming *bt = &priv->can.bittiming;
254	u32 btr0, btr1;
255	u32 is_config_mode;
256
257	/* Check whether Xilinx CAN is in configuration mode.
258	 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
259	 */
260	is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
261				XCAN_SR_CONFIG_MASK;
262	if (!is_config_mode) {
263		netdev_alert(ndev,
264		     "BUG! Cannot set bittiming - CAN is not in config mode\n");
265		return -EPERM;
266	}
267
268	/* Setting Baud Rate prescalar value in BRPR Register */
269	btr0 = (bt->brp - 1);
270
271	/* Setting Time Segment 1 in BTR Register */
272	btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
273
274	/* Setting Time Segment 2 in BTR Register */
275	btr1 |= (bt->phase_seg2 - 1) << XCAN_BTR_TS2_SHIFT;
276
277	/* Setting Synchronous jump width in BTR Register */
278	btr1 |= (bt->sjw - 1) << XCAN_BTR_SJW_SHIFT;
279
280	priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
281	priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
282
283	netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
284			priv->read_reg(priv, XCAN_BRPR_OFFSET),
285			priv->read_reg(priv, XCAN_BTR_OFFSET));
286
287	return 0;
288}
289
290/**
291 * xcan_chip_start - This the drivers start routine
292 * @ndev:	Pointer to net_device structure
293 *
294 * This is the drivers start routine.
295 * Based on the State of the CAN device it puts
296 * the CAN device into a proper mode.
297 *
298 * Return: 0 on success and failure value on error
299 */
300static int xcan_chip_start(struct net_device *ndev)
301{
302	struct xcan_priv *priv = netdev_priv(ndev);
303	u32 reg_msr, reg_sr_mask;
304	int err;
305	unsigned long timeout;
306
307	/* Check if it is in reset mode */
308	err = set_reset_mode(ndev);
309	if (err < 0)
310		return err;
311
312	err = xcan_set_bittiming(ndev);
313	if (err < 0)
314		return err;
315
316	/* Enable interrupts */
317	priv->write_reg(priv, XCAN_IER_OFFSET, XCAN_INTR_ALL);
318
319	/* Check whether it is loopback mode or normal mode  */
320	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
321		reg_msr = XCAN_MSR_LBACK_MASK;
322		reg_sr_mask = XCAN_SR_LBACK_MASK;
323	} else {
324		reg_msr = 0x0;
325		reg_sr_mask = XCAN_SR_NORMAL_MASK;
326	}
327
328	priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
329	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
330
331	timeout = jiffies + XCAN_TIMEOUT;
332	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & reg_sr_mask)) {
333		if (time_after(jiffies, timeout)) {
334			netdev_warn(ndev,
335				"timed out for correct mode\n");
336			return -ETIMEDOUT;
337		}
338	}
339	netdev_dbg(ndev, "status:#x%08x\n",
340			priv->read_reg(priv, XCAN_SR_OFFSET));
341
342	priv->can.state = CAN_STATE_ERROR_ACTIVE;
343	return 0;
344}
345
346/**
347 * xcan_do_set_mode - This sets the mode of the driver
348 * @ndev:	Pointer to net_device structure
349 * @mode:	Tells the mode of the driver
350 *
351 * This check the drivers state and calls the
352 * the corresponding modes to set.
353 *
354 * Return: 0 on success and failure value on error
355 */
356static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
357{
358	int ret;
359
360	switch (mode) {
361	case CAN_MODE_START:
362		ret = xcan_chip_start(ndev);
363		if (ret < 0) {
364			netdev_err(ndev, "xcan_chip_start failed!\n");
365			return ret;
366		}
367		netif_wake_queue(ndev);
368		break;
369	default:
370		ret = -EOPNOTSUPP;
371		break;
372	}
373
374	return ret;
375}
376
377/**
378 * xcan_start_xmit - Starts the transmission
379 * @skb:	sk_buff pointer that contains data to be Txed
380 * @ndev:	Pointer to net_device structure
381 *
382 * This function is invoked from upper layers to initiate transmission. This
383 * function uses the next available free txbuff and populates their fields to
384 * start the transmission.
385 *
386 * Return: 0 on success and failure value on error
387 */
388static int xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
389{
390	struct xcan_priv *priv = netdev_priv(ndev);
391	struct net_device_stats *stats = &ndev->stats;
392	struct can_frame *cf = (struct can_frame *)skb->data;
393	u32 id, dlc, data[2] = {0, 0};
394
395	if (can_dropped_invalid_skb(ndev, skb))
396		return NETDEV_TX_OK;
397
398	/* Check if the TX buffer is full */
399	if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
400			XCAN_SR_TXFLL_MASK)) {
401		netif_stop_queue(ndev);
402		netdev_err(ndev, "BUG!, TX FIFO full when queue awake!\n");
403		return NETDEV_TX_BUSY;
404	}
405
406	/* Watch carefully on the bit sequence */
407	if (cf->can_id & CAN_EFF_FLAG) {
408		/* Extended CAN ID format */
409		id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
410			XCAN_IDR_ID2_MASK;
411		id |= (((cf->can_id & CAN_EFF_MASK) >>
412			(CAN_EFF_ID_BITS-CAN_SFF_ID_BITS)) <<
413			XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
414
415		/* The substibute remote TX request bit should be "1"
416		 * for extended frames as in the Xilinx CAN datasheet
417		 */
418		id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
419
420		if (cf->can_id & CAN_RTR_FLAG)
421			/* Extended frames remote TX request */
422			id |= XCAN_IDR_RTR_MASK;
423	} else {
424		/* Standard CAN ID format */
425		id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
426			XCAN_IDR_ID1_MASK;
427
428		if (cf->can_id & CAN_RTR_FLAG)
429			/* Standard frames remote TX request */
430			id |= XCAN_IDR_SRR_MASK;
431	}
432
433	dlc = cf->can_dlc << XCAN_DLCR_DLC_SHIFT;
434
435	if (cf->can_dlc > 0)
436		data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
437	if (cf->can_dlc > 4)
438		data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
439
440	can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max);
441	priv->tx_head++;
442
443	/* Write the Frame to Xilinx CAN TX FIFO */
444	priv->write_reg(priv, XCAN_TXFIFO_ID_OFFSET, id);
445	/* If the CAN frame is RTR frame this write triggers tranmission */
446	priv->write_reg(priv, XCAN_TXFIFO_DLC_OFFSET, dlc);
447	if (!(cf->can_id & CAN_RTR_FLAG)) {
448		priv->write_reg(priv, XCAN_TXFIFO_DW1_OFFSET, data[0]);
449		/* If the CAN frame is Standard/Extended frame this
450		 * write triggers tranmission
451		 */
452		priv->write_reg(priv, XCAN_TXFIFO_DW2_OFFSET, data[1]);
453		stats->tx_bytes += cf->can_dlc;
454	}
455
456	/* Check if the TX buffer is full */
457	if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
458		netif_stop_queue(ndev);
459
460	return NETDEV_TX_OK;
461}
462
463/**
464 * xcan_rx -  Is called from CAN isr to complete the received
465 *		frame  processing
466 * @ndev:	Pointer to net_device structure
467 *
468 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
469 * does minimal processing and invokes "netif_receive_skb" to complete further
470 * processing.
471 * Return: 1 on success and 0 on failure.
472 */
473static int xcan_rx(struct net_device *ndev)
474{
475	struct xcan_priv *priv = netdev_priv(ndev);
476	struct net_device_stats *stats = &ndev->stats;
477	struct can_frame *cf;
478	struct sk_buff *skb;
479	u32 id_xcan, dlc, data[2] = {0, 0};
480
481	skb = alloc_can_skb(ndev, &cf);
482	if (unlikely(!skb)) {
483		stats->rx_dropped++;
484		return 0;
485	}
486
487	/* Read a frame from Xilinx zynq CANPS */
488	id_xcan = priv->read_reg(priv, XCAN_RXFIFO_ID_OFFSET);
489	dlc = priv->read_reg(priv, XCAN_RXFIFO_DLC_OFFSET) >>
490				XCAN_DLCR_DLC_SHIFT;
491
492	/* Change Xilinx CAN data length format to socketCAN data format */
493	cf->can_dlc = get_can_dlc(dlc);
494
495	/* Change Xilinx CAN ID format to socketCAN ID format */
496	if (id_xcan & XCAN_IDR_IDE_MASK) {
497		/* The received frame is an Extended format frame */
498		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
499		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
500				XCAN_IDR_ID2_SHIFT;
501		cf->can_id |= CAN_EFF_FLAG;
502		if (id_xcan & XCAN_IDR_RTR_MASK)
503			cf->can_id |= CAN_RTR_FLAG;
504	} else {
505		/* The received frame is a standard format frame */
506		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
507				XCAN_IDR_ID1_SHIFT;
508		if (id_xcan & XCAN_IDR_SRR_MASK)
509			cf->can_id |= CAN_RTR_FLAG;
510	}
511
512	if (!(id_xcan & XCAN_IDR_SRR_MASK)) {
513		data[0] = priv->read_reg(priv, XCAN_RXFIFO_DW1_OFFSET);
514		data[1] = priv->read_reg(priv, XCAN_RXFIFO_DW2_OFFSET);
515
516		/* Change Xilinx CAN data format to socketCAN data format */
517		if (cf->can_dlc > 0)
518			*(__be32 *)(cf->data) = cpu_to_be32(data[0]);
519		if (cf->can_dlc > 4)
520			*(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
521	}
522
523	stats->rx_bytes += cf->can_dlc;
524	stats->rx_packets++;
525	netif_receive_skb(skb);
526
527	return 1;
528}
529
530/**
531 * xcan_err_interrupt - error frame Isr
532 * @ndev:	net_device pointer
533 * @isr:	interrupt status register value
534 *
535 * This is the CAN error interrupt and it will
536 * check the the type of error and forward the error
537 * frame to upper layers.
538 */
539static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
540{
541	struct xcan_priv *priv = netdev_priv(ndev);
542	struct net_device_stats *stats = &ndev->stats;
543	struct can_frame *cf;
544	struct sk_buff *skb;
545	u32 err_status, status, txerr = 0, rxerr = 0;
546
547	skb = alloc_can_err_skb(ndev, &cf);
548
549	err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
550	priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
551	txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
552	rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
553			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
554	status = priv->read_reg(priv, XCAN_SR_OFFSET);
555
556	if (isr & XCAN_IXR_BSOFF_MASK) {
557		priv->can.state = CAN_STATE_BUS_OFF;
558		priv->can.can_stats.bus_off++;
559		/* Leave device in Config Mode in bus-off state */
560		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
561		can_bus_off(ndev);
562		if (skb)
563			cf->can_id |= CAN_ERR_BUSOFF;
564	} else if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK) {
565		priv->can.state = CAN_STATE_ERROR_PASSIVE;
566		priv->can.can_stats.error_passive++;
567		if (skb) {
568			cf->can_id |= CAN_ERR_CRTL;
569			cf->data[1] = (rxerr > 127) ?
570					CAN_ERR_CRTL_RX_PASSIVE :
571					CAN_ERR_CRTL_TX_PASSIVE;
572			cf->data[6] = txerr;
573			cf->data[7] = rxerr;
574		}
575	} else if (status & XCAN_SR_ERRWRN_MASK) {
576		priv->can.state = CAN_STATE_ERROR_WARNING;
577		priv->can.can_stats.error_warning++;
578		if (skb) {
579			cf->can_id |= CAN_ERR_CRTL;
580			cf->data[1] |= (txerr > rxerr) ?
581					CAN_ERR_CRTL_TX_WARNING :
582					CAN_ERR_CRTL_RX_WARNING;
583			cf->data[6] = txerr;
584			cf->data[7] = rxerr;
585		}
586	}
587
588	/* Check for Arbitration lost interrupt */
589	if (isr & XCAN_IXR_ARBLST_MASK) {
590		priv->can.can_stats.arbitration_lost++;
591		if (skb) {
592			cf->can_id |= CAN_ERR_LOSTARB;
593			cf->data[0] = CAN_ERR_LOSTARB_UNSPEC;
594		}
595	}
596
597	/* Check for RX FIFO Overflow interrupt */
598	if (isr & XCAN_IXR_RXOFLW_MASK) {
599		stats->rx_over_errors++;
600		stats->rx_errors++;
601		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
602		if (skb) {
603			cf->can_id |= CAN_ERR_CRTL;
604			cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
605		}
606	}
607
608	/* Check for error interrupt */
609	if (isr & XCAN_IXR_ERROR_MASK) {
610		if (skb) {
611			cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
612			cf->data[2] |= CAN_ERR_PROT_UNSPEC;
613		}
614
615		/* Check for Ack error interrupt */
616		if (err_status & XCAN_ESR_ACKER_MASK) {
617			stats->tx_errors++;
618			if (skb) {
619				cf->can_id |= CAN_ERR_ACK;
620				cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
621			}
622		}
623
624		/* Check for Bit error interrupt */
625		if (err_status & XCAN_ESR_BERR_MASK) {
626			stats->tx_errors++;
627			if (skb) {
628				cf->can_id |= CAN_ERR_PROT;
629				cf->data[2] = CAN_ERR_PROT_BIT;
630			}
631		}
632
633		/* Check for Stuff error interrupt */
634		if (err_status & XCAN_ESR_STER_MASK) {
635			stats->rx_errors++;
636			if (skb) {
637				cf->can_id |= CAN_ERR_PROT;
638				cf->data[2] = CAN_ERR_PROT_STUFF;
639			}
640		}
641
642		/* Check for Form error interrupt */
643		if (err_status & XCAN_ESR_FMER_MASK) {
644			stats->rx_errors++;
645			if (skb) {
646				cf->can_id |= CAN_ERR_PROT;
647				cf->data[2] = CAN_ERR_PROT_FORM;
648			}
649		}
650
651		/* Check for CRC error interrupt */
652		if (err_status & XCAN_ESR_CRCER_MASK) {
653			stats->rx_errors++;
654			if (skb) {
655				cf->can_id |= CAN_ERR_PROT;
656				cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ |
657						CAN_ERR_PROT_LOC_CRC_DEL;
658			}
659		}
660			priv->can.can_stats.bus_error++;
661	}
662
663	if (skb) {
664		stats->rx_packets++;
665		stats->rx_bytes += cf->can_dlc;
666		netif_rx(skb);
667	}
668
669	netdev_dbg(ndev, "%s: error status register:0x%x\n",
670			__func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
671}
672
673/**
674 * xcan_state_interrupt - It will check the state of the CAN device
675 * @ndev:	net_device pointer
676 * @isr:	interrupt status register value
677 *
678 * This will checks the state of the CAN device
679 * and puts the device into appropriate state.
680 */
681static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
682{
683	struct xcan_priv *priv = netdev_priv(ndev);
684
685	/* Check for Sleep interrupt if set put CAN device in sleep state */
686	if (isr & XCAN_IXR_SLP_MASK)
687		priv->can.state = CAN_STATE_SLEEPING;
688
689	/* Check for Wake up interrupt if set put CAN device in Active state */
690	if (isr & XCAN_IXR_WKUP_MASK)
691		priv->can.state = CAN_STATE_ERROR_ACTIVE;
692}
693
694/**
695 * xcan_rx_poll - Poll routine for rx packets (NAPI)
696 * @napi:	napi structure pointer
697 * @quota:	Max number of rx packets to be processed.
698 *
699 * This is the poll routine for rx part.
700 * It will process the packets maximux quota value.
701 *
702 * Return: number of packets received
703 */
704static int xcan_rx_poll(struct napi_struct *napi, int quota)
705{
706	struct net_device *ndev = napi->dev;
707	struct xcan_priv *priv = netdev_priv(ndev);
708	u32 isr, ier;
709	int work_done = 0;
710
711	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
712	while ((isr & XCAN_IXR_RXNEMP_MASK) && (work_done < quota)) {
713		if (isr & XCAN_IXR_RXOK_MASK) {
714			priv->write_reg(priv, XCAN_ICR_OFFSET,
715				XCAN_IXR_RXOK_MASK);
716			work_done += xcan_rx(ndev);
717		} else {
718			priv->write_reg(priv, XCAN_ICR_OFFSET,
719				XCAN_IXR_RXNEMP_MASK);
720			break;
721		}
722		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXNEMP_MASK);
723		isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
724	}
725
726	if (work_done)
727		can_led_event(ndev, CAN_LED_EVENT_RX);
728
729	if (work_done < quota) {
730		napi_complete(napi);
731		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
732		ier |= (XCAN_IXR_RXOK_MASK | XCAN_IXR_RXNEMP_MASK);
733		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
734	}
735	return work_done;
736}
737
738/**
739 * xcan_tx_interrupt - Tx Done Isr
740 * @ndev:	net_device pointer
741 * @isr:	Interrupt status register value
742 */
743static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
744{
745	struct xcan_priv *priv = netdev_priv(ndev);
746	struct net_device_stats *stats = &ndev->stats;
747
748	while ((priv->tx_head - priv->tx_tail > 0) &&
749			(isr & XCAN_IXR_TXOK_MASK)) {
750		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
751		can_get_echo_skb(ndev, priv->tx_tail %
752					priv->tx_max);
753		priv->tx_tail++;
754		stats->tx_packets++;
755		isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
756	}
757	can_led_event(ndev, CAN_LED_EVENT_TX);
758	netif_wake_queue(ndev);
759}
760
761/**
762 * xcan_interrupt - CAN Isr
763 * @irq:	irq number
764 * @dev_id:	device id poniter
765 *
766 * This is the xilinx CAN Isr. It checks for the type of interrupt
767 * and invokes the corresponding ISR.
768 *
769 * Return:
770 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
771 */
772static irqreturn_t xcan_interrupt(int irq, void *dev_id)
773{
774	struct net_device *ndev = (struct net_device *)dev_id;
775	struct xcan_priv *priv = netdev_priv(ndev);
776	u32 isr, ier;
777
778	/* Get the interrupt status from Xilinx CAN */
779	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
780	if (!isr)
781		return IRQ_NONE;
782
783	/* Check for the type of interrupt and Processing it */
784	if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
785		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
786				XCAN_IXR_WKUP_MASK));
787		xcan_state_interrupt(ndev, isr);
788	}
789
790	/* Check for Tx interrupt and Processing it */
791	if (isr & XCAN_IXR_TXOK_MASK)
792		xcan_tx_interrupt(ndev, isr);
793
794	/* Check for the type of error interrupt and Processing it */
795	if (isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
796			XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK)) {
797		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_ERROR_MASK |
798				XCAN_IXR_RXOFLW_MASK | XCAN_IXR_BSOFF_MASK |
799				XCAN_IXR_ARBLST_MASK));
800		xcan_err_interrupt(ndev, isr);
801	}
802
803	/* Check for the type of receive interrupt and Processing it */
804	if (isr & (XCAN_IXR_RXNEMP_MASK | XCAN_IXR_RXOK_MASK)) {
805		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
806		ier &= ~(XCAN_IXR_RXNEMP_MASK | XCAN_IXR_RXOK_MASK);
807		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
808		napi_schedule(&priv->napi);
809	}
810	return IRQ_HANDLED;
811}
812
813/**
814 * xcan_chip_stop - Driver stop routine
815 * @ndev:	Pointer to net_device structure
816 *
817 * This is the drivers stop routine. It will disable the
818 * interrupts and put the device into configuration mode.
819 */
820static void xcan_chip_stop(struct net_device *ndev)
821{
822	struct xcan_priv *priv = netdev_priv(ndev);
823	u32 ier;
824
825	/* Disable interrupts and leave the can in configuration mode */
826	ier = priv->read_reg(priv, XCAN_IER_OFFSET);
827	ier &= ~XCAN_INTR_ALL;
828	priv->write_reg(priv, XCAN_IER_OFFSET, ier);
829	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
830	priv->can.state = CAN_STATE_STOPPED;
831}
832
833/**
834 * xcan_open - Driver open routine
835 * @ndev:	Pointer to net_device structure
836 *
837 * This is the driver open routine.
838 * Return: 0 on success and failure value on error
839 */
840static int xcan_open(struct net_device *ndev)
841{
842	struct xcan_priv *priv = netdev_priv(ndev);
843	int ret;
844
845	ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
846			ndev->name, ndev);
847	if (ret < 0) {
848		netdev_err(ndev, "irq allocation for CAN failed\n");
849		goto err;
850	}
851
852	ret = clk_prepare_enable(priv->can_clk);
853	if (ret) {
854		netdev_err(ndev, "unable to enable device clock\n");
855		goto err_irq;
856	}
857
858	ret = clk_prepare_enable(priv->bus_clk);
859	if (ret) {
860		netdev_err(ndev, "unable to enable bus clock\n");
861		goto err_can_clk;
862	}
863
864	/* Set chip into reset mode */
865	ret = set_reset_mode(ndev);
866	if (ret < 0) {
867		netdev_err(ndev, "mode resetting failed!\n");
868		goto err_bus_clk;
869	}
870
871	/* Common open */
872	ret = open_candev(ndev);
873	if (ret)
874		goto err_bus_clk;
875
876	ret = xcan_chip_start(ndev);
877	if (ret < 0) {
878		netdev_err(ndev, "xcan_chip_start failed!\n");
879		goto err_candev;
880	}
881
882	can_led_event(ndev, CAN_LED_EVENT_OPEN);
883	napi_enable(&priv->napi);
884	netif_start_queue(ndev);
885
886	return 0;
887
888err_candev:
889	close_candev(ndev);
890err_bus_clk:
891	clk_disable_unprepare(priv->bus_clk);
892err_can_clk:
893	clk_disable_unprepare(priv->can_clk);
894err_irq:
895	free_irq(ndev->irq, ndev);
896err:
897	return ret;
898}
899
900/**
901 * xcan_close - Driver close routine
902 * @ndev:	Pointer to net_device structure
903 *
904 * Return: 0 always
905 */
906static int xcan_close(struct net_device *ndev)
907{
908	struct xcan_priv *priv = netdev_priv(ndev);
909
910	netif_stop_queue(ndev);
911	napi_disable(&priv->napi);
912	xcan_chip_stop(ndev);
913	clk_disable_unprepare(priv->bus_clk);
914	clk_disable_unprepare(priv->can_clk);
915	free_irq(ndev->irq, ndev);
916	close_candev(ndev);
917
918	can_led_event(ndev, CAN_LED_EVENT_STOP);
919
920	return 0;
921}
922
923/**
924 * xcan_get_berr_counter - error counter routine
925 * @ndev:	Pointer to net_device structure
926 * @bec:	Pointer to can_berr_counter structure
927 *
928 * This is the driver error counter routine.
929 * Return: 0 on success and failure value on error
930 */
931static int xcan_get_berr_counter(const struct net_device *ndev,
932					struct can_berr_counter *bec)
933{
934	struct xcan_priv *priv = netdev_priv(ndev);
935	int ret;
936
937	ret = clk_prepare_enable(priv->can_clk);
938	if (ret)
939		goto err;
940
941	ret = clk_prepare_enable(priv->bus_clk);
942	if (ret)
943		goto err_clk;
944
945	bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
946	bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
947			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
948
949	clk_disable_unprepare(priv->bus_clk);
950	clk_disable_unprepare(priv->can_clk);
951
952	return 0;
953
954err_clk:
955	clk_disable_unprepare(priv->can_clk);
956err:
957	return ret;
958}
959
960
961static const struct net_device_ops xcan_netdev_ops = {
962	.ndo_open	= xcan_open,
963	.ndo_stop	= xcan_close,
964	.ndo_start_xmit	= xcan_start_xmit,
965	.ndo_change_mtu	= can_change_mtu,
966};
967
968/**
969 * xcan_suspend - Suspend method for the driver
970 * @dev:	Address of the platform_device structure
971 *
972 * Put the driver into low power mode.
973 * Return: 0 always
974 */
975static int __maybe_unused xcan_suspend(struct device *dev)
976{
977	struct platform_device *pdev = dev_get_drvdata(dev);
978	struct net_device *ndev = platform_get_drvdata(pdev);
979	struct xcan_priv *priv = netdev_priv(ndev);
980
981	if (netif_running(ndev)) {
982		netif_stop_queue(ndev);
983		netif_device_detach(ndev);
984	}
985
986	priv->write_reg(priv, XCAN_MSR_OFFSET, XCAN_MSR_SLEEP_MASK);
987	priv->can.state = CAN_STATE_SLEEPING;
988
989	clk_disable(priv->bus_clk);
990	clk_disable(priv->can_clk);
991
992	return 0;
993}
994
995/**
996 * xcan_resume - Resume from suspend
997 * @dev:	Address of the platformdevice structure
998 *
999 * Resume operation after suspend.
1000 * Return: 0 on success and failure value on error
1001 */
1002static int __maybe_unused xcan_resume(struct device *dev)
1003{
1004	struct platform_device *pdev = dev_get_drvdata(dev);
1005	struct net_device *ndev = platform_get_drvdata(pdev);
1006	struct xcan_priv *priv = netdev_priv(ndev);
1007	int ret;
1008
1009	ret = clk_enable(priv->bus_clk);
1010	if (ret) {
1011		dev_err(dev, "Cannot enable clock.\n");
1012		return ret;
1013	}
1014	ret = clk_enable(priv->can_clk);
1015	if (ret) {
1016		dev_err(dev, "Cannot enable clock.\n");
1017		clk_disable_unprepare(priv->bus_clk);
1018		return ret;
1019	}
1020
1021	priv->write_reg(priv, XCAN_MSR_OFFSET, 0);
1022	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
1023	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1024
1025	if (netif_running(ndev)) {
1026		netif_device_attach(ndev);
1027		netif_start_queue(ndev);
1028	}
1029
1030	return 0;
1031}
1032
1033static SIMPLE_DEV_PM_OPS(xcan_dev_pm_ops, xcan_suspend, xcan_resume);
1034
1035/**
1036 * xcan_probe - Platform registration call
1037 * @pdev:	Handle to the platform device structure
1038 *
1039 * This function does all the memory allocation and registration for the CAN
1040 * device.
1041 *
1042 * Return: 0 on success and failure value on error
1043 */
1044static int xcan_probe(struct platform_device *pdev)
1045{
1046	struct resource *res; /* IO mem resources */
1047	struct net_device *ndev;
1048	struct xcan_priv *priv;
1049	void __iomem *addr;
1050	int ret, rx_max, tx_max;
1051
1052	/* Get the virtual base address for the device */
1053	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1054	addr = devm_ioremap_resource(&pdev->dev, res);
1055	if (IS_ERR(addr)) {
1056		ret = PTR_ERR(addr);
1057		goto err;
1058	}
1059
1060	ret = of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth", &tx_max);
1061	if (ret < 0)
1062		goto err;
1063
1064	ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth", &rx_max);
1065	if (ret < 0)
1066		goto err;
1067
1068	/* Create a CAN device instance */
1069	ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1070	if (!ndev)
1071		return -ENOMEM;
1072
1073	priv = netdev_priv(ndev);
1074	priv->dev = ndev;
1075	priv->can.bittiming_const = &xcan_bittiming_const;
1076	priv->can.do_set_mode = xcan_do_set_mode;
1077	priv->can.do_get_berr_counter = xcan_get_berr_counter;
1078	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1079					CAN_CTRLMODE_BERR_REPORTING;
1080	priv->reg_base = addr;
1081	priv->tx_max = tx_max;
1082
1083	/* Get IRQ for the device */
1084	ndev->irq = platform_get_irq(pdev, 0);
1085	ndev->flags |= IFF_ECHO;	/* We support local echo */
1086
1087	platform_set_drvdata(pdev, ndev);
1088	SET_NETDEV_DEV(ndev, &pdev->dev);
1089	ndev->netdev_ops = &xcan_netdev_ops;
1090
1091	/* Getting the CAN can_clk info */
1092	priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1093	if (IS_ERR(priv->can_clk)) {
1094		dev_err(&pdev->dev, "Device clock not found.\n");
1095		ret = PTR_ERR(priv->can_clk);
1096		goto err_free;
1097	}
1098	/* Check for type of CAN device */
1099	if (of_device_is_compatible(pdev->dev.of_node,
1100				    "xlnx,zynq-can-1.0")) {
1101		priv->bus_clk = devm_clk_get(&pdev->dev, "pclk");
1102		if (IS_ERR(priv->bus_clk)) {
1103			dev_err(&pdev->dev, "bus clock not found\n");
1104			ret = PTR_ERR(priv->bus_clk);
1105			goto err_free;
1106		}
1107	} else {
1108		priv->bus_clk = devm_clk_get(&pdev->dev, "s_axi_aclk");
1109		if (IS_ERR(priv->bus_clk)) {
1110			dev_err(&pdev->dev, "bus clock not found\n");
1111			ret = PTR_ERR(priv->bus_clk);
1112			goto err_free;
1113		}
1114	}
1115
1116	ret = clk_prepare_enable(priv->can_clk);
1117	if (ret) {
1118		dev_err(&pdev->dev, "unable to enable device clock\n");
1119		goto err_free;
1120	}
1121
1122	ret = clk_prepare_enable(priv->bus_clk);
1123	if (ret) {
1124		dev_err(&pdev->dev, "unable to enable bus clock\n");
1125		goto err_unprepare_disable_dev;
1126	}
1127
1128	priv->write_reg = xcan_write_reg_le;
1129	priv->read_reg = xcan_read_reg_le;
1130
1131	if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1132		priv->write_reg = xcan_write_reg_be;
1133		priv->read_reg = xcan_read_reg_be;
1134	}
1135
1136	priv->can.clock.freq = clk_get_rate(priv->can_clk);
1137
1138	netif_napi_add(ndev, &priv->napi, xcan_rx_poll, rx_max);
1139
1140	ret = register_candev(ndev);
1141	if (ret) {
1142		dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1143		goto err_unprepare_disable_busclk;
1144	}
1145
1146	devm_can_led_init(ndev);
1147	clk_disable_unprepare(priv->bus_clk);
1148	clk_disable_unprepare(priv->can_clk);
1149	netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx fifo depth:%d\n",
1150			priv->reg_base, ndev->irq, priv->can.clock.freq,
1151			priv->tx_max);
1152
1153	return 0;
1154
1155err_unprepare_disable_busclk:
1156	clk_disable_unprepare(priv->bus_clk);
1157err_unprepare_disable_dev:
1158	clk_disable_unprepare(priv->can_clk);
1159err_free:
1160	free_candev(ndev);
1161err:
1162	return ret;
1163}
1164
1165/**
1166 * xcan_remove - Unregister the device after releasing the resources
1167 * @pdev:	Handle to the platform device structure
1168 *
1169 * This function frees all the resources allocated to the device.
1170 * Return: 0 always
1171 */
1172static int xcan_remove(struct platform_device *pdev)
1173{
1174	struct net_device *ndev = platform_get_drvdata(pdev);
1175	struct xcan_priv *priv = netdev_priv(ndev);
1176
1177	if (set_reset_mode(ndev) < 0)
1178		netdev_err(ndev, "mode resetting failed!\n");
1179
1180	unregister_candev(ndev);
1181	netif_napi_del(&priv->napi);
1182	free_candev(ndev);
1183
1184	return 0;
1185}
1186
1187/* Match table for OF platform binding */
1188static struct of_device_id xcan_of_match[] = {
1189	{ .compatible = "xlnx,zynq-can-1.0", },
1190	{ .compatible = "xlnx,axi-can-1.00.a", },
1191	{ /* end of list */ },
1192};
1193MODULE_DEVICE_TABLE(of, xcan_of_match);
1194
1195static struct platform_driver xcan_driver = {
1196	.probe = xcan_probe,
1197	.remove	= xcan_remove,
1198	.driver	= {
1199		.owner = THIS_MODULE,
1200		.name = DRIVER_NAME,
1201		.pm = &xcan_dev_pm_ops,
1202		.of_match_table	= xcan_of_match,
1203	},
1204};
1205
1206module_platform_driver(xcan_driver);
1207
1208MODULE_LICENSE("GPL");
1209MODULE_AUTHOR("Xilinx Inc");
1210MODULE_DESCRIPTION("Xilinx CAN interface");
1211