xilinx_can.c revision b1201e44f50b017a4972a337058b36b40c90abca
1/* Xilinx CAN device driver
2 *
3 * Copyright (C) 2012 - 2014 Xilinx, Inc.
4 * Copyright (C) 2009 PetaLogix. All rights reserved.
5 *
6 * Description:
7 * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 */
18
19#include <linux/clk.h>
20#include <linux/errno.h>
21#include <linux/init.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/netdevice.h>
27#include <linux/of.h>
28#include <linux/platform_device.h>
29#include <linux/skbuff.h>
30#include <linux/string.h>
31#include <linux/types.h>
32#include <linux/can/dev.h>
33#include <linux/can/error.h>
34#include <linux/can/led.h>
35
36#define DRIVER_NAME	"xilinx_can"
37
38/* CAN registers set */
39enum xcan_reg {
40	XCAN_SRR_OFFSET		= 0x00, /* Software reset */
41	XCAN_MSR_OFFSET		= 0x04, /* Mode select */
42	XCAN_BRPR_OFFSET	= 0x08, /* Baud rate prescaler */
43	XCAN_BTR_OFFSET		= 0x0C, /* Bit timing */
44	XCAN_ECR_OFFSET		= 0x10, /* Error counter */
45	XCAN_ESR_OFFSET		= 0x14, /* Error status */
46	XCAN_SR_OFFSET		= 0x18, /* Status */
47	XCAN_ISR_OFFSET		= 0x1C, /* Interrupt status */
48	XCAN_IER_OFFSET		= 0x20, /* Interrupt enable */
49	XCAN_ICR_OFFSET		= 0x24, /* Interrupt clear */
50	XCAN_TXFIFO_ID_OFFSET	= 0x30,/* TX FIFO ID */
51	XCAN_TXFIFO_DLC_OFFSET	= 0x34, /* TX FIFO DLC */
52	XCAN_TXFIFO_DW1_OFFSET	= 0x38, /* TX FIFO Data Word 1 */
53	XCAN_TXFIFO_DW2_OFFSET	= 0x3C, /* TX FIFO Data Word 2 */
54	XCAN_RXFIFO_ID_OFFSET	= 0x50, /* RX FIFO ID */
55	XCAN_RXFIFO_DLC_OFFSET	= 0x54, /* RX FIFO DLC */
56	XCAN_RXFIFO_DW1_OFFSET	= 0x58, /* RX FIFO Data Word 1 */
57	XCAN_RXFIFO_DW2_OFFSET	= 0x5C, /* RX FIFO Data Word 2 */
58};
59
60/* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
61#define XCAN_SRR_CEN_MASK		0x00000002 /* CAN enable */
62#define XCAN_SRR_RESET_MASK		0x00000001 /* Soft Reset the CAN core */
63#define XCAN_MSR_LBACK_MASK		0x00000002 /* Loop back mode select */
64#define XCAN_MSR_SLEEP_MASK		0x00000001 /* Sleep mode select */
65#define XCAN_BRPR_BRP_MASK		0x000000FF /* Baud rate prescaler */
66#define XCAN_BTR_SJW_MASK		0x00000180 /* Synchronous jump width */
67#define XCAN_BTR_TS2_MASK		0x00000070 /* Time segment 2 */
68#define XCAN_BTR_TS1_MASK		0x0000000F /* Time segment 1 */
69#define XCAN_ECR_REC_MASK		0x0000FF00 /* Receive error counter */
70#define XCAN_ECR_TEC_MASK		0x000000FF /* Transmit error counter */
71#define XCAN_ESR_ACKER_MASK		0x00000010 /* ACK error */
72#define XCAN_ESR_BERR_MASK		0x00000008 /* Bit error */
73#define XCAN_ESR_STER_MASK		0x00000004 /* Stuff error */
74#define XCAN_ESR_FMER_MASK		0x00000002 /* Form error */
75#define XCAN_ESR_CRCER_MASK		0x00000001 /* CRC error */
76#define XCAN_SR_TXFLL_MASK		0x00000400 /* TX FIFO is full */
77#define XCAN_SR_ESTAT_MASK		0x00000180 /* Error status */
78#define XCAN_SR_ERRWRN_MASK		0x00000040 /* Error warning */
79#define XCAN_SR_NORMAL_MASK		0x00000008 /* Normal mode */
80#define XCAN_SR_LBACK_MASK		0x00000002 /* Loop back mode */
81#define XCAN_SR_CONFIG_MASK		0x00000001 /* Configuration mode */
82#define XCAN_IXR_TXFEMP_MASK		0x00004000 /* TX FIFO Empty */
83#define XCAN_IXR_WKUP_MASK		0x00000800 /* Wake up interrupt */
84#define XCAN_IXR_SLP_MASK		0x00000400 /* Sleep interrupt */
85#define XCAN_IXR_BSOFF_MASK		0x00000200 /* Bus off interrupt */
86#define XCAN_IXR_ERROR_MASK		0x00000100 /* Error interrupt */
87#define XCAN_IXR_RXNEMP_MASK		0x00000080 /* RX FIFO NotEmpty intr */
88#define XCAN_IXR_RXOFLW_MASK		0x00000040 /* RX FIFO Overflow intr */
89#define XCAN_IXR_RXOK_MASK		0x00000010 /* Message received intr */
90#define XCAN_IXR_TXFLL_MASK		0x00000004 /* Tx FIFO Full intr */
91#define XCAN_IXR_TXOK_MASK		0x00000002 /* TX successful intr */
92#define XCAN_IXR_ARBLST_MASK		0x00000001 /* Arbitration lost intr */
93#define XCAN_IDR_ID1_MASK		0xFFE00000 /* Standard msg identifier */
94#define XCAN_IDR_SRR_MASK		0x00100000 /* Substitute remote TXreq */
95#define XCAN_IDR_IDE_MASK		0x00080000 /* Identifier extension */
96#define XCAN_IDR_ID2_MASK		0x0007FFFE /* Extended message ident */
97#define XCAN_IDR_RTR_MASK		0x00000001 /* Remote TX request */
98#define XCAN_DLCR_DLC_MASK		0xF0000000 /* Data length code */
99
100#define XCAN_INTR_ALL		(XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |\
101				 XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK | \
102				 XCAN_IXR_RXNEMP_MASK | XCAN_IXR_ERROR_MASK | \
103				 XCAN_IXR_ARBLST_MASK | XCAN_IXR_RXOK_MASK)
104
105/* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
106#define XCAN_BTR_SJW_SHIFT		7  /* Synchronous jump width */
107#define XCAN_BTR_TS2_SHIFT		4  /* Time segment 2 */
108#define XCAN_IDR_ID1_SHIFT		21 /* Standard Messg Identifier */
109#define XCAN_IDR_ID2_SHIFT		1  /* Extended Message Identifier */
110#define XCAN_DLCR_DLC_SHIFT		28 /* Data length code */
111#define XCAN_ESR_REC_SHIFT		8  /* Rx Error Count */
112
113/* CAN frame length constants */
114#define XCAN_FRAME_MAX_DATA_LEN		8
115#define XCAN_TIMEOUT			(1 * HZ)
116
117/**
118 * struct xcan_priv - This definition define CAN driver instance
119 * @can:			CAN private data structure.
120 * @tx_head:			Tx CAN packets ready to send on the queue
121 * @tx_tail:			Tx CAN packets successfully sended on the queue
122 * @tx_max:			Maximum number packets the driver can send
123 * @napi:			NAPI structure
124 * @read_reg:			For reading data from CAN registers
125 * @write_reg:			For writing data to CAN registers
126 * @dev:			Network device data structure
127 * @reg_base:			Ioremapped address to registers
128 * @irq_flags:			For request_irq()
129 * @bus_clk:			Pointer to struct clk
130 * @can_clk:			Pointer to struct clk
131 */
132struct xcan_priv {
133	struct can_priv can;
134	unsigned int tx_head;
135	unsigned int tx_tail;
136	unsigned int tx_max;
137	struct napi_struct napi;
138	u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
139	void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
140			u32 val);
141	struct net_device *dev;
142	void __iomem *reg_base;
143	unsigned long irq_flags;
144	struct clk *bus_clk;
145	struct clk *can_clk;
146};
147
148/* CAN Bittiming constants as per Xilinx CAN specs */
149static const struct can_bittiming_const xcan_bittiming_const = {
150	.name = DRIVER_NAME,
151	.tseg1_min = 1,
152	.tseg1_max = 16,
153	.tseg2_min = 1,
154	.tseg2_max = 8,
155	.sjw_max = 4,
156	.brp_min = 1,
157	.brp_max = 256,
158	.brp_inc = 1,
159};
160
161/**
162 * xcan_write_reg_le - Write a value to the device register little endian
163 * @priv:	Driver private data structure
164 * @reg:	Register offset
165 * @val:	Value to write at the Register offset
166 *
167 * Write data to the paricular CAN register
168 */
169static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
170			u32 val)
171{
172	iowrite32(val, priv->reg_base + reg);
173}
174
175/**
176 * xcan_read_reg_le - Read a value from the device register little endian
177 * @priv:	Driver private data structure
178 * @reg:	Register offset
179 *
180 * Read data from the particular CAN register
181 * Return: value read from the CAN register
182 */
183static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
184{
185	return ioread32(priv->reg_base + reg);
186}
187
188/**
189 * xcan_write_reg_be - Write a value to the device register big endian
190 * @priv:	Driver private data structure
191 * @reg:	Register offset
192 * @val:	Value to write at the Register offset
193 *
194 * Write data to the paricular CAN register
195 */
196static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
197			u32 val)
198{
199	iowrite32be(val, priv->reg_base + reg);
200}
201
202/**
203 * xcan_read_reg_be - Read a value from the device register big endian
204 * @priv:	Driver private data structure
205 * @reg:	Register offset
206 *
207 * Read data from the particular CAN register
208 * Return: value read from the CAN register
209 */
210static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
211{
212	return ioread32be(priv->reg_base + reg);
213}
214
215/**
216 * set_reset_mode - Resets the CAN device mode
217 * @ndev:	Pointer to net_device structure
218 *
219 * This is the driver reset mode routine.The driver
220 * enters into configuration mode.
221 *
222 * Return: 0 on success and failure value on error
223 */
224static int set_reset_mode(struct net_device *ndev)
225{
226	struct xcan_priv *priv = netdev_priv(ndev);
227	unsigned long timeout;
228
229	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
230
231	timeout = jiffies + XCAN_TIMEOUT;
232	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
233		if (time_after(jiffies, timeout)) {
234			netdev_warn(ndev, "timed out for config mode\n");
235			return -ETIMEDOUT;
236		}
237		usleep_range(500, 10000);
238	}
239
240	return 0;
241}
242
243/**
244 * xcan_set_bittiming - CAN set bit timing routine
245 * @ndev:	Pointer to net_device structure
246 *
247 * This is the driver set bittiming  routine.
248 * Return: 0 on success and failure value on error
249 */
250static int xcan_set_bittiming(struct net_device *ndev)
251{
252	struct xcan_priv *priv = netdev_priv(ndev);
253	struct can_bittiming *bt = &priv->can.bittiming;
254	u32 btr0, btr1;
255	u32 is_config_mode;
256
257	/* Check whether Xilinx CAN is in configuration mode.
258	 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
259	 */
260	is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
261				XCAN_SR_CONFIG_MASK;
262	if (!is_config_mode) {
263		netdev_alert(ndev,
264		     "BUG! Cannot set bittiming - CAN is not in config mode\n");
265		return -EPERM;
266	}
267
268	/* Setting Baud Rate prescalar value in BRPR Register */
269	btr0 = (bt->brp - 1);
270
271	/* Setting Time Segment 1 in BTR Register */
272	btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
273
274	/* Setting Time Segment 2 in BTR Register */
275	btr1 |= (bt->phase_seg2 - 1) << XCAN_BTR_TS2_SHIFT;
276
277	/* Setting Synchronous jump width in BTR Register */
278	btr1 |= (bt->sjw - 1) << XCAN_BTR_SJW_SHIFT;
279
280	priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
281	priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
282
283	netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
284			priv->read_reg(priv, XCAN_BRPR_OFFSET),
285			priv->read_reg(priv, XCAN_BTR_OFFSET));
286
287	return 0;
288}
289
290/**
291 * xcan_chip_start - This the drivers start routine
292 * @ndev:	Pointer to net_device structure
293 *
294 * This is the drivers start routine.
295 * Based on the State of the CAN device it puts
296 * the CAN device into a proper mode.
297 *
298 * Return: 0 on success and failure value on error
299 */
300static int xcan_chip_start(struct net_device *ndev)
301{
302	struct xcan_priv *priv = netdev_priv(ndev);
303	u32 err, reg_msr, reg_sr_mask;
304	unsigned long timeout;
305
306	/* Check if it is in reset mode */
307	err = set_reset_mode(ndev);
308	if (err < 0)
309		return err;
310
311	err = xcan_set_bittiming(ndev);
312	if (err < 0)
313		return err;
314
315	/* Enable interrupts */
316	priv->write_reg(priv, XCAN_IER_OFFSET, XCAN_INTR_ALL);
317
318	/* Check whether it is loopback mode or normal mode  */
319	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
320		reg_msr = XCAN_MSR_LBACK_MASK;
321		reg_sr_mask = XCAN_SR_LBACK_MASK;
322	} else {
323		reg_msr = 0x0;
324		reg_sr_mask = XCAN_SR_NORMAL_MASK;
325	}
326
327	priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
328	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
329
330	timeout = jiffies + XCAN_TIMEOUT;
331	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & reg_sr_mask)) {
332		if (time_after(jiffies, timeout)) {
333			netdev_warn(ndev,
334				"timed out for correct mode\n");
335			return -ETIMEDOUT;
336		}
337	}
338	netdev_dbg(ndev, "status:#x%08x\n",
339			priv->read_reg(priv, XCAN_SR_OFFSET));
340
341	priv->can.state = CAN_STATE_ERROR_ACTIVE;
342	return 0;
343}
344
345/**
346 * xcan_do_set_mode - This sets the mode of the driver
347 * @ndev:	Pointer to net_device structure
348 * @mode:	Tells the mode of the driver
349 *
350 * This check the drivers state and calls the
351 * the corresponding modes to set.
352 *
353 * Return: 0 on success and failure value on error
354 */
355static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
356{
357	int ret;
358
359	switch (mode) {
360	case CAN_MODE_START:
361		ret = xcan_chip_start(ndev);
362		if (ret < 0) {
363			netdev_err(ndev, "xcan_chip_start failed!\n");
364			return ret;
365		}
366		netif_wake_queue(ndev);
367		break;
368	default:
369		ret = -EOPNOTSUPP;
370		break;
371	}
372
373	return ret;
374}
375
376/**
377 * xcan_start_xmit - Starts the transmission
378 * @skb:	sk_buff pointer that contains data to be Txed
379 * @ndev:	Pointer to net_device structure
380 *
381 * This function is invoked from upper layers to initiate transmission. This
382 * function uses the next available free txbuff and populates their fields to
383 * start the transmission.
384 *
385 * Return: 0 on success and failure value on error
386 */
387static int xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
388{
389	struct xcan_priv *priv = netdev_priv(ndev);
390	struct net_device_stats *stats = &ndev->stats;
391	struct can_frame *cf = (struct can_frame *)skb->data;
392	u32 id, dlc, data[2] = {0, 0};
393
394	if (can_dropped_invalid_skb(ndev, skb))
395		return NETDEV_TX_OK;
396
397	/* Check if the TX buffer is full */
398	if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
399			XCAN_SR_TXFLL_MASK)) {
400		netif_stop_queue(ndev);
401		netdev_err(ndev, "BUG!, TX FIFO full when queue awake!\n");
402		return NETDEV_TX_BUSY;
403	}
404
405	/* Watch carefully on the bit sequence */
406	if (cf->can_id & CAN_EFF_FLAG) {
407		/* Extended CAN ID format */
408		id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
409			XCAN_IDR_ID2_MASK;
410		id |= (((cf->can_id & CAN_EFF_MASK) >>
411			(CAN_EFF_ID_BITS-CAN_SFF_ID_BITS)) <<
412			XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
413
414		/* The substibute remote TX request bit should be "1"
415		 * for extended frames as in the Xilinx CAN datasheet
416		 */
417		id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
418
419		if (cf->can_id & CAN_RTR_FLAG)
420			/* Extended frames remote TX request */
421			id |= XCAN_IDR_RTR_MASK;
422	} else {
423		/* Standard CAN ID format */
424		id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
425			XCAN_IDR_ID1_MASK;
426
427		if (cf->can_id & CAN_RTR_FLAG)
428			/* Standard frames remote TX request */
429			id |= XCAN_IDR_SRR_MASK;
430	}
431
432	dlc = cf->can_dlc << XCAN_DLCR_DLC_SHIFT;
433
434	if (cf->can_dlc > 0)
435		data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
436	if (cf->can_dlc > 4)
437		data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
438
439	can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max);
440	priv->tx_head++;
441
442	/* Write the Frame to Xilinx CAN TX FIFO */
443	priv->write_reg(priv, XCAN_TXFIFO_ID_OFFSET, id);
444	/* If the CAN frame is RTR frame this write triggers tranmission */
445	priv->write_reg(priv, XCAN_TXFIFO_DLC_OFFSET, dlc);
446	if (!(cf->can_id & CAN_RTR_FLAG)) {
447		priv->write_reg(priv, XCAN_TXFIFO_DW1_OFFSET, data[0]);
448		/* If the CAN frame is Standard/Extended frame this
449		 * write triggers tranmission
450		 */
451		priv->write_reg(priv, XCAN_TXFIFO_DW2_OFFSET, data[1]);
452		stats->tx_bytes += cf->can_dlc;
453	}
454
455	/* Check if the TX buffer is full */
456	if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
457		netif_stop_queue(ndev);
458
459	return NETDEV_TX_OK;
460}
461
462/**
463 * xcan_rx -  Is called from CAN isr to complete the received
464 *		frame  processing
465 * @ndev:	Pointer to net_device structure
466 *
467 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
468 * does minimal processing and invokes "netif_receive_skb" to complete further
469 * processing.
470 * Return: 1 on success and 0 on failure.
471 */
472static int xcan_rx(struct net_device *ndev)
473{
474	struct xcan_priv *priv = netdev_priv(ndev);
475	struct net_device_stats *stats = &ndev->stats;
476	struct can_frame *cf;
477	struct sk_buff *skb;
478	u32 id_xcan, dlc, data[2] = {0, 0};
479
480	skb = alloc_can_skb(ndev, &cf);
481	if (unlikely(!skb)) {
482		stats->rx_dropped++;
483		return 0;
484	}
485
486	/* Read a frame from Xilinx zynq CANPS */
487	id_xcan = priv->read_reg(priv, XCAN_RXFIFO_ID_OFFSET);
488	dlc = priv->read_reg(priv, XCAN_RXFIFO_DLC_OFFSET) >>
489				XCAN_DLCR_DLC_SHIFT;
490
491	/* Change Xilinx CAN data length format to socketCAN data format */
492	cf->can_dlc = get_can_dlc(dlc);
493
494	/* Change Xilinx CAN ID format to socketCAN ID format */
495	if (id_xcan & XCAN_IDR_IDE_MASK) {
496		/* The received frame is an Extended format frame */
497		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
498		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
499				XCAN_IDR_ID2_SHIFT;
500		cf->can_id |= CAN_EFF_FLAG;
501		if (id_xcan & XCAN_IDR_RTR_MASK)
502			cf->can_id |= CAN_RTR_FLAG;
503	} else {
504		/* The received frame is a standard format frame */
505		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
506				XCAN_IDR_ID1_SHIFT;
507		if (id_xcan & XCAN_IDR_SRR_MASK)
508			cf->can_id |= CAN_RTR_FLAG;
509	}
510
511	if (!(id_xcan & XCAN_IDR_SRR_MASK)) {
512		data[0] = priv->read_reg(priv, XCAN_RXFIFO_DW1_OFFSET);
513		data[1] = priv->read_reg(priv, XCAN_RXFIFO_DW2_OFFSET);
514
515		/* Change Xilinx CAN data format to socketCAN data format */
516		if (cf->can_dlc > 0)
517			*(__be32 *)(cf->data) = cpu_to_be32(data[0]);
518		if (cf->can_dlc > 4)
519			*(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
520	}
521
522	stats->rx_bytes += cf->can_dlc;
523	stats->rx_packets++;
524	netif_receive_skb(skb);
525
526	return 1;
527}
528
529/**
530 * xcan_err_interrupt - error frame Isr
531 * @ndev:	net_device pointer
532 * @isr:	interrupt status register value
533 *
534 * This is the CAN error interrupt and it will
535 * check the the type of error and forward the error
536 * frame to upper layers.
537 */
538static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
539{
540	struct xcan_priv *priv = netdev_priv(ndev);
541	struct net_device_stats *stats = &ndev->stats;
542	struct can_frame *cf;
543	struct sk_buff *skb;
544	u32 err_status, status, txerr = 0, rxerr = 0;
545
546	skb = alloc_can_err_skb(ndev, &cf);
547
548	err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
549	priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
550	txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
551	rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
552			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
553	status = priv->read_reg(priv, XCAN_SR_OFFSET);
554
555	if (isr & XCAN_IXR_BSOFF_MASK) {
556		priv->can.state = CAN_STATE_BUS_OFF;
557		priv->can.can_stats.bus_off++;
558		/* Leave device in Config Mode in bus-off state */
559		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
560		can_bus_off(ndev);
561		if (skb)
562			cf->can_id |= CAN_ERR_BUSOFF;
563	} else if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK) {
564		priv->can.state = CAN_STATE_ERROR_PASSIVE;
565		priv->can.can_stats.error_passive++;
566		if (skb) {
567			cf->can_id |= CAN_ERR_CRTL;
568			cf->data[1] = (rxerr > 127) ?
569					CAN_ERR_CRTL_RX_PASSIVE :
570					CAN_ERR_CRTL_TX_PASSIVE;
571			cf->data[6] = txerr;
572			cf->data[7] = rxerr;
573		}
574	} else if (status & XCAN_SR_ERRWRN_MASK) {
575		priv->can.state = CAN_STATE_ERROR_WARNING;
576		priv->can.can_stats.error_warning++;
577		if (skb) {
578			cf->can_id |= CAN_ERR_CRTL;
579			cf->data[1] |= (txerr > rxerr) ?
580					CAN_ERR_CRTL_TX_WARNING :
581					CAN_ERR_CRTL_RX_WARNING;
582			cf->data[6] = txerr;
583			cf->data[7] = rxerr;
584		}
585	}
586
587	/* Check for Arbitration lost interrupt */
588	if (isr & XCAN_IXR_ARBLST_MASK) {
589		priv->can.can_stats.arbitration_lost++;
590		if (skb) {
591			cf->can_id |= CAN_ERR_LOSTARB;
592			cf->data[0] = CAN_ERR_LOSTARB_UNSPEC;
593		}
594	}
595
596	/* Check for RX FIFO Overflow interrupt */
597	if (isr & XCAN_IXR_RXOFLW_MASK) {
598		stats->rx_over_errors++;
599		stats->rx_errors++;
600		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
601		if (skb) {
602			cf->can_id |= CAN_ERR_CRTL;
603			cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
604		}
605	}
606
607	/* Check for error interrupt */
608	if (isr & XCAN_IXR_ERROR_MASK) {
609		if (skb) {
610			cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
611			cf->data[2] |= CAN_ERR_PROT_UNSPEC;
612		}
613
614		/* Check for Ack error interrupt */
615		if (err_status & XCAN_ESR_ACKER_MASK) {
616			stats->tx_errors++;
617			if (skb) {
618				cf->can_id |= CAN_ERR_ACK;
619				cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
620			}
621		}
622
623		/* Check for Bit error interrupt */
624		if (err_status & XCAN_ESR_BERR_MASK) {
625			stats->tx_errors++;
626			if (skb) {
627				cf->can_id |= CAN_ERR_PROT;
628				cf->data[2] = CAN_ERR_PROT_BIT;
629			}
630		}
631
632		/* Check for Stuff error interrupt */
633		if (err_status & XCAN_ESR_STER_MASK) {
634			stats->rx_errors++;
635			if (skb) {
636				cf->can_id |= CAN_ERR_PROT;
637				cf->data[2] = CAN_ERR_PROT_STUFF;
638			}
639		}
640
641		/* Check for Form error interrupt */
642		if (err_status & XCAN_ESR_FMER_MASK) {
643			stats->rx_errors++;
644			if (skb) {
645				cf->can_id |= CAN_ERR_PROT;
646				cf->data[2] = CAN_ERR_PROT_FORM;
647			}
648		}
649
650		/* Check for CRC error interrupt */
651		if (err_status & XCAN_ESR_CRCER_MASK) {
652			stats->rx_errors++;
653			if (skb) {
654				cf->can_id |= CAN_ERR_PROT;
655				cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ |
656						CAN_ERR_PROT_LOC_CRC_DEL;
657			}
658		}
659			priv->can.can_stats.bus_error++;
660	}
661
662	if (skb) {
663		stats->rx_packets++;
664		stats->rx_bytes += cf->can_dlc;
665		netif_rx(skb);
666	}
667
668	netdev_dbg(ndev, "%s: error status register:0x%x\n",
669			__func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
670}
671
672/**
673 * xcan_state_interrupt - It will check the state of the CAN device
674 * @ndev:	net_device pointer
675 * @isr:	interrupt status register value
676 *
677 * This will checks the state of the CAN device
678 * and puts the device into appropriate state.
679 */
680static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
681{
682	struct xcan_priv *priv = netdev_priv(ndev);
683
684	/* Check for Sleep interrupt if set put CAN device in sleep state */
685	if (isr & XCAN_IXR_SLP_MASK)
686		priv->can.state = CAN_STATE_SLEEPING;
687
688	/* Check for Wake up interrupt if set put CAN device in Active state */
689	if (isr & XCAN_IXR_WKUP_MASK)
690		priv->can.state = CAN_STATE_ERROR_ACTIVE;
691}
692
693/**
694 * xcan_rx_poll - Poll routine for rx packets (NAPI)
695 * @napi:	napi structure pointer
696 * @quota:	Max number of rx packets to be processed.
697 *
698 * This is the poll routine for rx part.
699 * It will process the packets maximux quota value.
700 *
701 * Return: number of packets received
702 */
703static int xcan_rx_poll(struct napi_struct *napi, int quota)
704{
705	struct net_device *ndev = napi->dev;
706	struct xcan_priv *priv = netdev_priv(ndev);
707	u32 isr, ier;
708	int work_done = 0;
709
710	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
711	while ((isr & XCAN_IXR_RXNEMP_MASK) && (work_done < quota)) {
712		if (isr & XCAN_IXR_RXOK_MASK) {
713			priv->write_reg(priv, XCAN_ICR_OFFSET,
714				XCAN_IXR_RXOK_MASK);
715			work_done += xcan_rx(ndev);
716		} else {
717			priv->write_reg(priv, XCAN_ICR_OFFSET,
718				XCAN_IXR_RXNEMP_MASK);
719			break;
720		}
721		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXNEMP_MASK);
722		isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
723	}
724
725	if (work_done)
726		can_led_event(ndev, CAN_LED_EVENT_RX);
727
728	if (work_done < quota) {
729		napi_complete(napi);
730		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
731		ier |= (XCAN_IXR_RXOK_MASK | XCAN_IXR_RXNEMP_MASK);
732		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
733	}
734	return work_done;
735}
736
737/**
738 * xcan_tx_interrupt - Tx Done Isr
739 * @ndev:	net_device pointer
740 * @isr:	Interrupt status register value
741 */
742static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
743{
744	struct xcan_priv *priv = netdev_priv(ndev);
745	struct net_device_stats *stats = &ndev->stats;
746
747	while ((priv->tx_head - priv->tx_tail > 0) &&
748			(isr & XCAN_IXR_TXOK_MASK)) {
749		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
750		can_get_echo_skb(ndev, priv->tx_tail %
751					priv->tx_max);
752		priv->tx_tail++;
753		stats->tx_packets++;
754		isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
755	}
756	can_led_event(ndev, CAN_LED_EVENT_TX);
757	netif_wake_queue(ndev);
758}
759
760/**
761 * xcan_interrupt - CAN Isr
762 * @irq:	irq number
763 * @dev_id:	device id poniter
764 *
765 * This is the xilinx CAN Isr. It checks for the type of interrupt
766 * and invokes the corresponding ISR.
767 *
768 * Return:
769 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
770 */
771static irqreturn_t xcan_interrupt(int irq, void *dev_id)
772{
773	struct net_device *ndev = (struct net_device *)dev_id;
774	struct xcan_priv *priv = netdev_priv(ndev);
775	u32 isr, ier;
776
777	/* Get the interrupt status from Xilinx CAN */
778	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
779	if (!isr)
780		return IRQ_NONE;
781
782	/* Check for the type of interrupt and Processing it */
783	if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
784		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
785				XCAN_IXR_WKUP_MASK));
786		xcan_state_interrupt(ndev, isr);
787	}
788
789	/* Check for Tx interrupt and Processing it */
790	if (isr & XCAN_IXR_TXOK_MASK)
791		xcan_tx_interrupt(ndev, isr);
792
793	/* Check for the type of error interrupt and Processing it */
794	if (isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
795			XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK)) {
796		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_ERROR_MASK |
797				XCAN_IXR_RXOFLW_MASK | XCAN_IXR_BSOFF_MASK |
798				XCAN_IXR_ARBLST_MASK));
799		xcan_err_interrupt(ndev, isr);
800	}
801
802	/* Check for the type of receive interrupt and Processing it */
803	if (isr & (XCAN_IXR_RXNEMP_MASK | XCAN_IXR_RXOK_MASK)) {
804		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
805		ier &= ~(XCAN_IXR_RXNEMP_MASK | XCAN_IXR_RXOK_MASK);
806		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
807		napi_schedule(&priv->napi);
808	}
809	return IRQ_HANDLED;
810}
811
812/**
813 * xcan_chip_stop - Driver stop routine
814 * @ndev:	Pointer to net_device structure
815 *
816 * This is the drivers stop routine. It will disable the
817 * interrupts and put the device into configuration mode.
818 */
819static void xcan_chip_stop(struct net_device *ndev)
820{
821	struct xcan_priv *priv = netdev_priv(ndev);
822	u32 ier;
823
824	/* Disable interrupts and leave the can in configuration mode */
825	ier = priv->read_reg(priv, XCAN_IER_OFFSET);
826	ier &= ~XCAN_INTR_ALL;
827	priv->write_reg(priv, XCAN_IER_OFFSET, ier);
828	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
829	priv->can.state = CAN_STATE_STOPPED;
830}
831
832/**
833 * xcan_open - Driver open routine
834 * @ndev:	Pointer to net_device structure
835 *
836 * This is the driver open routine.
837 * Return: 0 on success and failure value on error
838 */
839static int xcan_open(struct net_device *ndev)
840{
841	struct xcan_priv *priv = netdev_priv(ndev);
842	int ret;
843
844	ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
845			ndev->name, ndev);
846	if (ret < 0) {
847		netdev_err(ndev, "irq allocation for CAN failed\n");
848		goto err;
849	}
850
851	ret = clk_prepare_enable(priv->can_clk);
852	if (ret) {
853		netdev_err(ndev, "unable to enable device clock\n");
854		goto err_irq;
855	}
856
857	ret = clk_prepare_enable(priv->bus_clk);
858	if (ret) {
859		netdev_err(ndev, "unable to enable bus clock\n");
860		goto err_can_clk;
861	}
862
863	/* Set chip into reset mode */
864	ret = set_reset_mode(ndev);
865	if (ret < 0) {
866		netdev_err(ndev, "mode resetting failed!\n");
867		goto err_bus_clk;
868	}
869
870	/* Common open */
871	ret = open_candev(ndev);
872	if (ret)
873		goto err_bus_clk;
874
875	ret = xcan_chip_start(ndev);
876	if (ret < 0) {
877		netdev_err(ndev, "xcan_chip_start failed!\n");
878		goto err_candev;
879	}
880
881	can_led_event(ndev, CAN_LED_EVENT_OPEN);
882	napi_enable(&priv->napi);
883	netif_start_queue(ndev);
884
885	return 0;
886
887err_candev:
888	close_candev(ndev);
889err_bus_clk:
890	clk_disable_unprepare(priv->bus_clk);
891err_can_clk:
892	clk_disable_unprepare(priv->can_clk);
893err_irq:
894	free_irq(ndev->irq, ndev);
895err:
896	return ret;
897}
898
899/**
900 * xcan_close - Driver close routine
901 * @ndev:	Pointer to net_device structure
902 *
903 * Return: 0 always
904 */
905static int xcan_close(struct net_device *ndev)
906{
907	struct xcan_priv *priv = netdev_priv(ndev);
908
909	netif_stop_queue(ndev);
910	napi_disable(&priv->napi);
911	xcan_chip_stop(ndev);
912	clk_disable_unprepare(priv->bus_clk);
913	clk_disable_unprepare(priv->can_clk);
914	free_irq(ndev->irq, ndev);
915	close_candev(ndev);
916
917	can_led_event(ndev, CAN_LED_EVENT_STOP);
918
919	return 0;
920}
921
922/**
923 * xcan_get_berr_counter - error counter routine
924 * @ndev:	Pointer to net_device structure
925 * @bec:	Pointer to can_berr_counter structure
926 *
927 * This is the driver error counter routine.
928 * Return: 0 on success and failure value on error
929 */
930static int xcan_get_berr_counter(const struct net_device *ndev,
931					struct can_berr_counter *bec)
932{
933	struct xcan_priv *priv = netdev_priv(ndev);
934	int ret;
935
936	ret = clk_prepare_enable(priv->can_clk);
937	if (ret)
938		goto err;
939
940	ret = clk_prepare_enable(priv->bus_clk);
941	if (ret)
942		goto err_clk;
943
944	bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
945	bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
946			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
947
948	clk_disable_unprepare(priv->bus_clk);
949	clk_disable_unprepare(priv->can_clk);
950
951	return 0;
952
953err_clk:
954	clk_disable_unprepare(priv->can_clk);
955err:
956	return ret;
957}
958
959
960static const struct net_device_ops xcan_netdev_ops = {
961	.ndo_open	= xcan_open,
962	.ndo_stop	= xcan_close,
963	.ndo_start_xmit	= xcan_start_xmit,
964};
965
966/**
967 * xcan_suspend - Suspend method for the driver
968 * @dev:	Address of the platform_device structure
969 *
970 * Put the driver into low power mode.
971 * Return: 0 always
972 */
973static int __maybe_unused xcan_suspend(struct device *dev)
974{
975	struct platform_device *pdev = dev_get_drvdata(dev);
976	struct net_device *ndev = platform_get_drvdata(pdev);
977	struct xcan_priv *priv = netdev_priv(ndev);
978
979	if (netif_running(ndev)) {
980		netif_stop_queue(ndev);
981		netif_device_detach(ndev);
982	}
983
984	priv->write_reg(priv, XCAN_MSR_OFFSET, XCAN_MSR_SLEEP_MASK);
985	priv->can.state = CAN_STATE_SLEEPING;
986
987	clk_disable(priv->bus_clk);
988	clk_disable(priv->can_clk);
989
990	return 0;
991}
992
993/**
994 * xcan_resume - Resume from suspend
995 * @dev:	Address of the platformdevice structure
996 *
997 * Resume operation after suspend.
998 * Return: 0 on success and failure value on error
999 */
1000static int __maybe_unused xcan_resume(struct device *dev)
1001{
1002	struct platform_device *pdev = dev_get_drvdata(dev);
1003	struct net_device *ndev = platform_get_drvdata(pdev);
1004	struct xcan_priv *priv = netdev_priv(ndev);
1005	int ret;
1006
1007	ret = clk_enable(priv->bus_clk);
1008	if (ret) {
1009		dev_err(dev, "Cannot enable clock.\n");
1010		return ret;
1011	}
1012	ret = clk_enable(priv->can_clk);
1013	if (ret) {
1014		dev_err(dev, "Cannot enable clock.\n");
1015		clk_disable_unprepare(priv->bus_clk);
1016		return ret;
1017	}
1018
1019	priv->write_reg(priv, XCAN_MSR_OFFSET, 0);
1020	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
1021	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1022
1023	if (netif_running(ndev)) {
1024		netif_device_attach(ndev);
1025		netif_start_queue(ndev);
1026	}
1027
1028	return 0;
1029}
1030
1031static SIMPLE_DEV_PM_OPS(xcan_dev_pm_ops, xcan_suspend, xcan_resume);
1032
1033/**
1034 * xcan_probe - Platform registration call
1035 * @pdev:	Handle to the platform device structure
1036 *
1037 * This function does all the memory allocation and registration for the CAN
1038 * device.
1039 *
1040 * Return: 0 on success and failure value on error
1041 */
1042static int xcan_probe(struct platform_device *pdev)
1043{
1044	struct resource *res; /* IO mem resources */
1045	struct net_device *ndev;
1046	struct xcan_priv *priv;
1047	void __iomem *addr;
1048	int ret, rx_max, tx_max;
1049
1050	/* Get the virtual base address for the device */
1051	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1052	addr = devm_ioremap_resource(&pdev->dev, res);
1053	if (IS_ERR(addr)) {
1054		ret = PTR_ERR(addr);
1055		goto err;
1056	}
1057
1058	ret = of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth", &tx_max);
1059	if (ret < 0)
1060		goto err;
1061
1062	ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth", &rx_max);
1063	if (ret < 0)
1064		goto err;
1065
1066	/* Create a CAN device instance */
1067	ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1068	if (!ndev)
1069		return -ENOMEM;
1070
1071	priv = netdev_priv(ndev);
1072	priv->dev = ndev;
1073	priv->can.bittiming_const = &xcan_bittiming_const;
1074	priv->can.do_set_mode = xcan_do_set_mode;
1075	priv->can.do_get_berr_counter = xcan_get_berr_counter;
1076	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1077					CAN_CTRLMODE_BERR_REPORTING;
1078	priv->reg_base = addr;
1079	priv->tx_max = tx_max;
1080
1081	/* Get IRQ for the device */
1082	ndev->irq = platform_get_irq(pdev, 0);
1083	ndev->flags |= IFF_ECHO;	/* We support local echo */
1084
1085	platform_set_drvdata(pdev, ndev);
1086	SET_NETDEV_DEV(ndev, &pdev->dev);
1087	ndev->netdev_ops = &xcan_netdev_ops;
1088
1089	/* Getting the CAN can_clk info */
1090	priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1091	if (IS_ERR(priv->can_clk)) {
1092		dev_err(&pdev->dev, "Device clock not found.\n");
1093		ret = PTR_ERR(priv->can_clk);
1094		goto err_free;
1095	}
1096	/* Check for type of CAN device */
1097	if (of_device_is_compatible(pdev->dev.of_node,
1098				    "xlnx,zynq-can-1.0")) {
1099		priv->bus_clk = devm_clk_get(&pdev->dev, "pclk");
1100		if (IS_ERR(priv->bus_clk)) {
1101			dev_err(&pdev->dev, "bus clock not found\n");
1102			ret = PTR_ERR(priv->bus_clk);
1103			goto err_free;
1104		}
1105	} else {
1106		priv->bus_clk = devm_clk_get(&pdev->dev, "s_axi_aclk");
1107		if (IS_ERR(priv->bus_clk)) {
1108			dev_err(&pdev->dev, "bus clock not found\n");
1109			ret = PTR_ERR(priv->bus_clk);
1110			goto err_free;
1111		}
1112	}
1113
1114	ret = clk_prepare_enable(priv->can_clk);
1115	if (ret) {
1116		dev_err(&pdev->dev, "unable to enable device clock\n");
1117		goto err_free;
1118	}
1119
1120	ret = clk_prepare_enable(priv->bus_clk);
1121	if (ret) {
1122		dev_err(&pdev->dev, "unable to enable bus clock\n");
1123		goto err_unprepare_disable_dev;
1124	}
1125
1126	priv->write_reg = xcan_write_reg_le;
1127	priv->read_reg = xcan_read_reg_le;
1128
1129	if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1130		priv->write_reg = xcan_write_reg_be;
1131		priv->read_reg = xcan_read_reg_be;
1132	}
1133
1134	priv->can.clock.freq = clk_get_rate(priv->can_clk);
1135
1136	netif_napi_add(ndev, &priv->napi, xcan_rx_poll, rx_max);
1137
1138	ret = register_candev(ndev);
1139	if (ret) {
1140		dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1141		goto err_unprepare_disable_busclk;
1142	}
1143
1144	devm_can_led_init(ndev);
1145	clk_disable_unprepare(priv->bus_clk);
1146	clk_disable_unprepare(priv->can_clk);
1147	netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx fifo depth:%d\n",
1148			priv->reg_base, ndev->irq, priv->can.clock.freq,
1149			priv->tx_max);
1150
1151	return 0;
1152
1153err_unprepare_disable_busclk:
1154	clk_disable_unprepare(priv->bus_clk);
1155err_unprepare_disable_dev:
1156	clk_disable_unprepare(priv->can_clk);
1157err_free:
1158	free_candev(ndev);
1159err:
1160	return ret;
1161}
1162
1163/**
1164 * xcan_remove - Unregister the device after releasing the resources
1165 * @pdev:	Handle to the platform device structure
1166 *
1167 * This function frees all the resources allocated to the device.
1168 * Return: 0 always
1169 */
1170static int xcan_remove(struct platform_device *pdev)
1171{
1172	struct net_device *ndev = platform_get_drvdata(pdev);
1173	struct xcan_priv *priv = netdev_priv(ndev);
1174
1175	if (set_reset_mode(ndev) < 0)
1176		netdev_err(ndev, "mode resetting failed!\n");
1177
1178	unregister_candev(ndev);
1179	netif_napi_del(&priv->napi);
1180	free_candev(ndev);
1181
1182	return 0;
1183}
1184
1185/* Match table for OF platform binding */
1186static struct of_device_id xcan_of_match[] = {
1187	{ .compatible = "xlnx,zynq-can-1.0", },
1188	{ .compatible = "xlnx,axi-can-1.00.a", },
1189	{ /* end of list */ },
1190};
1191MODULE_DEVICE_TABLE(of, xcan_of_match);
1192
1193static struct platform_driver xcan_driver = {
1194	.probe = xcan_probe,
1195	.remove	= xcan_remove,
1196	.driver	= {
1197		.owner = THIS_MODULE,
1198		.name = DRIVER_NAME,
1199		.pm = &xcan_dev_pm_ops,
1200		.of_match_table	= xcan_of_match,
1201	},
1202};
1203
1204module_platform_driver(xcan_driver);
1205
1206MODULE_LICENSE("GPL");
1207MODULE_AUTHOR("Xilinx Inc");
1208MODULE_DESCRIPTION("Xilinx CAN interface");
1209