main.c revision 9baa3c34ac4e27f7e062f266f50cc5dbea26a6c1
1/*
2 * Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net>
3 *
4 *  This file is free software: you may copy, redistribute and/or modify it
5 *  under the terms of the GNU General Public License as published by the
6 *  Free Software Foundation, either version 2 of the License, or (at your
7 *  option) any later version.
8 *
9 *  This file is distributed in the hope that it will be useful, but
10 *  WITHOUT ANY WARRANTY; without even the implied warranty of
11 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12 *  General Public License for more details.
13 *
14 *  You should have received a copy of the GNU General Public License
15 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
16 *
17 * This file incorporates work covered by the following copyright and
18 * permission notice:
19 *
20 * Copyright (c) 2012 Qualcomm Atheros, Inc.
21 *
22 * Permission to use, copy, modify, and/or distribute this software for any
23 * purpose with or without fee is hereby granted, provided that the above
24 * copyright notice and this permission notice appear in all copies.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
27 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
28 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
29 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
30 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
31 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
32 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
33 */
34
35#include <linux/module.h>
36#include <linux/pci.h>
37#include <linux/interrupt.h>
38#include <linux/ip.h>
39#include <linux/ipv6.h>
40#include <linux/if_vlan.h>
41#include <linux/mdio.h>
42#include <linux/aer.h>
43#include <linux/bitops.h>
44#include <linux/netdevice.h>
45#include <linux/etherdevice.h>
46#include <net/ip6_checksum.h>
47#include <linux/crc32.h>
48#include "alx.h"
49#include "hw.h"
50#include "reg.h"
51
52const char alx_drv_name[] = "alx";
53
54
55static void alx_free_txbuf(struct alx_priv *alx, int entry)
56{
57	struct alx_buffer *txb = &alx->txq.bufs[entry];
58
59	if (dma_unmap_len(txb, size)) {
60		dma_unmap_single(&alx->hw.pdev->dev,
61				 dma_unmap_addr(txb, dma),
62				 dma_unmap_len(txb, size),
63				 DMA_TO_DEVICE);
64		dma_unmap_len_set(txb, size, 0);
65	}
66
67	if (txb->skb) {
68		dev_kfree_skb_any(txb->skb);
69		txb->skb = NULL;
70	}
71}
72
73static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp)
74{
75	struct alx_rx_queue *rxq = &alx->rxq;
76	struct sk_buff *skb;
77	struct alx_buffer *cur_buf;
78	dma_addr_t dma;
79	u16 cur, next, count = 0;
80
81	next = cur = rxq->write_idx;
82	if (++next == alx->rx_ringsz)
83		next = 0;
84	cur_buf = &rxq->bufs[cur];
85
86	while (!cur_buf->skb && next != rxq->read_idx) {
87		struct alx_rfd *rfd = &rxq->rfd[cur];
88
89		skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size, gfp);
90		if (!skb)
91			break;
92		dma = dma_map_single(&alx->hw.pdev->dev,
93				     skb->data, alx->rxbuf_size,
94				     DMA_FROM_DEVICE);
95		if (dma_mapping_error(&alx->hw.pdev->dev, dma)) {
96			dev_kfree_skb(skb);
97			break;
98		}
99
100		/* Unfortunately, RX descriptor buffers must be 4-byte
101		 * aligned, so we can't use IP alignment.
102		 */
103		if (WARN_ON(dma & 3)) {
104			dev_kfree_skb(skb);
105			break;
106		}
107
108		cur_buf->skb = skb;
109		dma_unmap_len_set(cur_buf, size, alx->rxbuf_size);
110		dma_unmap_addr_set(cur_buf, dma, dma);
111		rfd->addr = cpu_to_le64(dma);
112
113		cur = next;
114		if (++next == alx->rx_ringsz)
115			next = 0;
116		cur_buf = &rxq->bufs[cur];
117		count++;
118	}
119
120	if (count) {
121		/* flush all updates before updating hardware */
122		wmb();
123		rxq->write_idx = cur;
124		alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur);
125	}
126
127	return count;
128}
129
130static inline int alx_tpd_avail(struct alx_priv *alx)
131{
132	struct alx_tx_queue *txq = &alx->txq;
133
134	if (txq->write_idx >= txq->read_idx)
135		return alx->tx_ringsz + txq->read_idx - txq->write_idx - 1;
136	return txq->read_idx - txq->write_idx - 1;
137}
138
139static bool alx_clean_tx_irq(struct alx_priv *alx)
140{
141	struct alx_tx_queue *txq = &alx->txq;
142	u16 hw_read_idx, sw_read_idx;
143	unsigned int total_bytes = 0, total_packets = 0;
144	int budget = ALX_DEFAULT_TX_WORK;
145
146	sw_read_idx = txq->read_idx;
147	hw_read_idx = alx_read_mem16(&alx->hw, ALX_TPD_PRI0_CIDX);
148
149	if (sw_read_idx != hw_read_idx) {
150		while (sw_read_idx != hw_read_idx && budget > 0) {
151			struct sk_buff *skb;
152
153			skb = txq->bufs[sw_read_idx].skb;
154			if (skb) {
155				total_bytes += skb->len;
156				total_packets++;
157				budget--;
158			}
159
160			alx_free_txbuf(alx, sw_read_idx);
161
162			if (++sw_read_idx == alx->tx_ringsz)
163				sw_read_idx = 0;
164		}
165		txq->read_idx = sw_read_idx;
166
167		netdev_completed_queue(alx->dev, total_packets, total_bytes);
168	}
169
170	if (netif_queue_stopped(alx->dev) && netif_carrier_ok(alx->dev) &&
171	    alx_tpd_avail(alx) > alx->tx_ringsz/4)
172		netif_wake_queue(alx->dev);
173
174	return sw_read_idx == hw_read_idx;
175}
176
177static void alx_schedule_link_check(struct alx_priv *alx)
178{
179	schedule_work(&alx->link_check_wk);
180}
181
182static void alx_schedule_reset(struct alx_priv *alx)
183{
184	schedule_work(&alx->reset_wk);
185}
186
187static bool alx_clean_rx_irq(struct alx_priv *alx, int budget)
188{
189	struct alx_rx_queue *rxq = &alx->rxq;
190	struct alx_rrd *rrd;
191	struct alx_buffer *rxb;
192	struct sk_buff *skb;
193	u16 length, rfd_cleaned = 0;
194
195	while (budget > 0) {
196		rrd = &rxq->rrd[rxq->rrd_read_idx];
197		if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT)))
198			break;
199		rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT);
200
201		if (ALX_GET_FIELD(le32_to_cpu(rrd->word0),
202				  RRD_SI) != rxq->read_idx ||
203		    ALX_GET_FIELD(le32_to_cpu(rrd->word0),
204				  RRD_NOR) != 1) {
205			alx_schedule_reset(alx);
206			return 0;
207		}
208
209		rxb = &rxq->bufs[rxq->read_idx];
210		dma_unmap_single(&alx->hw.pdev->dev,
211				 dma_unmap_addr(rxb, dma),
212				 dma_unmap_len(rxb, size),
213				 DMA_FROM_DEVICE);
214		dma_unmap_len_set(rxb, size, 0);
215		skb = rxb->skb;
216		rxb->skb = NULL;
217
218		if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) ||
219		    rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) {
220			rrd->word3 = 0;
221			dev_kfree_skb_any(skb);
222			goto next_pkt;
223		}
224
225		length = ALX_GET_FIELD(le32_to_cpu(rrd->word3),
226				       RRD_PKTLEN) - ETH_FCS_LEN;
227		skb_put(skb, length);
228		skb->protocol = eth_type_trans(skb, alx->dev);
229
230		skb_checksum_none_assert(skb);
231		if (alx->dev->features & NETIF_F_RXCSUM &&
232		    !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) |
233				    cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) {
234			switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2),
235					      RRD_PID)) {
236			case RRD_PID_IPV6UDP:
237			case RRD_PID_IPV4UDP:
238			case RRD_PID_IPV4TCP:
239			case RRD_PID_IPV6TCP:
240				skb->ip_summed = CHECKSUM_UNNECESSARY;
241				break;
242			}
243		}
244
245		napi_gro_receive(&alx->napi, skb);
246		budget--;
247
248next_pkt:
249		if (++rxq->read_idx == alx->rx_ringsz)
250			rxq->read_idx = 0;
251		if (++rxq->rrd_read_idx == alx->rx_ringsz)
252			rxq->rrd_read_idx = 0;
253
254		if (++rfd_cleaned > ALX_RX_ALLOC_THRESH)
255			rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC);
256	}
257
258	if (rfd_cleaned)
259		alx_refill_rx_ring(alx, GFP_ATOMIC);
260
261	return budget > 0;
262}
263
264static int alx_poll(struct napi_struct *napi, int budget)
265{
266	struct alx_priv *alx = container_of(napi, struct alx_priv, napi);
267	struct alx_hw *hw = &alx->hw;
268	bool complete = true;
269	unsigned long flags;
270
271	complete = alx_clean_tx_irq(alx) &&
272		   alx_clean_rx_irq(alx, budget);
273
274	if (!complete)
275		return 1;
276
277	napi_complete(&alx->napi);
278
279	/* enable interrupt */
280	spin_lock_irqsave(&alx->irq_lock, flags);
281	alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
282	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
283	spin_unlock_irqrestore(&alx->irq_lock, flags);
284
285	alx_post_write(hw);
286
287	return 0;
288}
289
290static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr)
291{
292	struct alx_hw *hw = &alx->hw;
293	bool write_int_mask = false;
294
295	spin_lock(&alx->irq_lock);
296
297	/* ACK interrupt */
298	alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS);
299	intr &= alx->int_mask;
300
301	if (intr & ALX_ISR_FATAL) {
302		netif_warn(alx, hw, alx->dev,
303			   "fatal interrupt 0x%x, resetting\n", intr);
304		alx_schedule_reset(alx);
305		goto out;
306	}
307
308	if (intr & ALX_ISR_ALERT)
309		netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr);
310
311	if (intr & ALX_ISR_PHY) {
312		/* suppress PHY interrupt, because the source
313		 * is from PHY internal. only the internal status
314		 * is cleared, the interrupt status could be cleared.
315		 */
316		alx->int_mask &= ~ALX_ISR_PHY;
317		write_int_mask = true;
318		alx_schedule_link_check(alx);
319	}
320
321	if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) {
322		napi_schedule(&alx->napi);
323		/* mask rx/tx interrupt, enable them when napi complete */
324		alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
325		write_int_mask = true;
326	}
327
328	if (write_int_mask)
329		alx_write_mem32(hw, ALX_IMR, alx->int_mask);
330
331	alx_write_mem32(hw, ALX_ISR, 0);
332
333 out:
334	spin_unlock(&alx->irq_lock);
335	return IRQ_HANDLED;
336}
337
338static irqreturn_t alx_intr_msi(int irq, void *data)
339{
340	struct alx_priv *alx = data;
341
342	return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR));
343}
344
345static irqreturn_t alx_intr_legacy(int irq, void *data)
346{
347	struct alx_priv *alx = data;
348	struct alx_hw *hw = &alx->hw;
349	u32 intr;
350
351	intr = alx_read_mem32(hw, ALX_ISR);
352
353	if (intr & ALX_ISR_DIS || !(intr & alx->int_mask))
354		return IRQ_NONE;
355
356	return alx_intr_handle(alx, intr);
357}
358
359static void alx_init_ring_ptrs(struct alx_priv *alx)
360{
361	struct alx_hw *hw = &alx->hw;
362	u32 addr_hi = ((u64)alx->descmem.dma) >> 32;
363
364	alx->rxq.read_idx = 0;
365	alx->rxq.write_idx = 0;
366	alx->rxq.rrd_read_idx = 0;
367	alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi);
368	alx_write_mem32(hw, ALX_RRD_ADDR_LO, alx->rxq.rrd_dma);
369	alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz);
370	alx_write_mem32(hw, ALX_RFD_ADDR_LO, alx->rxq.rfd_dma);
371	alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz);
372	alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size);
373
374	alx->txq.read_idx = 0;
375	alx->txq.write_idx = 0;
376	alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi);
377	alx_write_mem32(hw, ALX_TPD_PRI0_ADDR_LO, alx->txq.tpd_dma);
378	alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz);
379
380	/* load these pointers into the chip */
381	alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR);
382}
383
384static void alx_free_txring_buf(struct alx_priv *alx)
385{
386	struct alx_tx_queue *txq = &alx->txq;
387	int i;
388
389	if (!txq->bufs)
390		return;
391
392	for (i = 0; i < alx->tx_ringsz; i++)
393		alx_free_txbuf(alx, i);
394
395	memset(txq->bufs, 0, alx->tx_ringsz * sizeof(struct alx_buffer));
396	memset(txq->tpd, 0, alx->tx_ringsz * sizeof(struct alx_txd));
397	txq->write_idx = 0;
398	txq->read_idx = 0;
399
400	netdev_reset_queue(alx->dev);
401}
402
403static void alx_free_rxring_buf(struct alx_priv *alx)
404{
405	struct alx_rx_queue *rxq = &alx->rxq;
406	struct alx_buffer *cur_buf;
407	u16 i;
408
409	if (rxq == NULL)
410		return;
411
412	for (i = 0; i < alx->rx_ringsz; i++) {
413		cur_buf = rxq->bufs + i;
414		if (cur_buf->skb) {
415			dma_unmap_single(&alx->hw.pdev->dev,
416					 dma_unmap_addr(cur_buf, dma),
417					 dma_unmap_len(cur_buf, size),
418					 DMA_FROM_DEVICE);
419			dev_kfree_skb(cur_buf->skb);
420			cur_buf->skb = NULL;
421			dma_unmap_len_set(cur_buf, size, 0);
422			dma_unmap_addr_set(cur_buf, dma, 0);
423		}
424	}
425
426	rxq->write_idx = 0;
427	rxq->read_idx = 0;
428	rxq->rrd_read_idx = 0;
429}
430
431static void alx_free_buffers(struct alx_priv *alx)
432{
433	alx_free_txring_buf(alx);
434	alx_free_rxring_buf(alx);
435}
436
437static int alx_reinit_rings(struct alx_priv *alx)
438{
439	alx_free_buffers(alx);
440
441	alx_init_ring_ptrs(alx);
442
443	if (!alx_refill_rx_ring(alx, GFP_KERNEL))
444		return -ENOMEM;
445
446	return 0;
447}
448
449static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash)
450{
451	u32 crc32, bit, reg;
452
453	crc32 = ether_crc(ETH_ALEN, addr);
454	reg = (crc32 >> 31) & 0x1;
455	bit = (crc32 >> 26) & 0x1F;
456
457	mc_hash[reg] |= BIT(bit);
458}
459
460static void __alx_set_rx_mode(struct net_device *netdev)
461{
462	struct alx_priv *alx = netdev_priv(netdev);
463	struct alx_hw *hw = &alx->hw;
464	struct netdev_hw_addr *ha;
465	u32 mc_hash[2] = {};
466
467	if (!(netdev->flags & IFF_ALLMULTI)) {
468		netdev_for_each_mc_addr(ha, netdev)
469			alx_add_mc_addr(hw, ha->addr, mc_hash);
470
471		alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]);
472		alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]);
473	}
474
475	hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN);
476	if (netdev->flags & IFF_PROMISC)
477		hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN;
478	if (netdev->flags & IFF_ALLMULTI)
479		hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN;
480
481	alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
482}
483
484static void alx_set_rx_mode(struct net_device *netdev)
485{
486	__alx_set_rx_mode(netdev);
487}
488
489static int alx_set_mac_address(struct net_device *netdev, void *data)
490{
491	struct alx_priv *alx = netdev_priv(netdev);
492	struct alx_hw *hw = &alx->hw;
493	struct sockaddr *addr = data;
494
495	if (!is_valid_ether_addr(addr->sa_data))
496		return -EADDRNOTAVAIL;
497
498	if (netdev->addr_assign_type & NET_ADDR_RANDOM)
499		netdev->addr_assign_type ^= NET_ADDR_RANDOM;
500
501	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
502	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
503	alx_set_macaddr(hw, hw->mac_addr);
504
505	return 0;
506}
507
508static int alx_alloc_descriptors(struct alx_priv *alx)
509{
510	alx->txq.bufs = kcalloc(alx->tx_ringsz,
511				sizeof(struct alx_buffer),
512				GFP_KERNEL);
513	if (!alx->txq.bufs)
514		return -ENOMEM;
515
516	alx->rxq.bufs = kcalloc(alx->rx_ringsz,
517				sizeof(struct alx_buffer),
518				GFP_KERNEL);
519	if (!alx->rxq.bufs)
520		goto out_free;
521
522	/* physical tx/rx ring descriptors
523	 *
524	 * Allocate them as a single chunk because they must not cross a
525	 * 4G boundary (hardware has a single register for high 32 bits
526	 * of addresses only)
527	 */
528	alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz +
529			    sizeof(struct alx_rrd) * alx->rx_ringsz +
530			    sizeof(struct alx_rfd) * alx->rx_ringsz;
531	alx->descmem.virt = dma_zalloc_coherent(&alx->hw.pdev->dev,
532						alx->descmem.size,
533						&alx->descmem.dma,
534						GFP_KERNEL);
535	if (!alx->descmem.virt)
536		goto out_free;
537
538	alx->txq.tpd = alx->descmem.virt;
539	alx->txq.tpd_dma = alx->descmem.dma;
540
541	/* alignment requirement for next block */
542	BUILD_BUG_ON(sizeof(struct alx_txd) % 8);
543
544	alx->rxq.rrd =
545		(void *)((u8 *)alx->descmem.virt +
546			 sizeof(struct alx_txd) * alx->tx_ringsz);
547	alx->rxq.rrd_dma = alx->descmem.dma +
548			   sizeof(struct alx_txd) * alx->tx_ringsz;
549
550	/* alignment requirement for next block */
551	BUILD_BUG_ON(sizeof(struct alx_rrd) % 8);
552
553	alx->rxq.rfd =
554		(void *)((u8 *)alx->descmem.virt +
555			 sizeof(struct alx_txd) * alx->tx_ringsz +
556			 sizeof(struct alx_rrd) * alx->rx_ringsz);
557	alx->rxq.rfd_dma = alx->descmem.dma +
558			   sizeof(struct alx_txd) * alx->tx_ringsz +
559			   sizeof(struct alx_rrd) * alx->rx_ringsz;
560
561	return 0;
562out_free:
563	kfree(alx->txq.bufs);
564	kfree(alx->rxq.bufs);
565	return -ENOMEM;
566}
567
568static int alx_alloc_rings(struct alx_priv *alx)
569{
570	int err;
571
572	err = alx_alloc_descriptors(alx);
573	if (err)
574		return err;
575
576	alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
577	alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
578	alx->tx_ringsz = alx->tx_ringsz;
579
580	netif_napi_add(alx->dev, &alx->napi, alx_poll, 64);
581
582	alx_reinit_rings(alx);
583	return 0;
584}
585
586static void alx_free_rings(struct alx_priv *alx)
587{
588	netif_napi_del(&alx->napi);
589	alx_free_buffers(alx);
590
591	kfree(alx->txq.bufs);
592	kfree(alx->rxq.bufs);
593
594	dma_free_coherent(&alx->hw.pdev->dev,
595			  alx->descmem.size,
596			  alx->descmem.virt,
597			  alx->descmem.dma);
598}
599
600static void alx_config_vector_mapping(struct alx_priv *alx)
601{
602	struct alx_hw *hw = &alx->hw;
603
604	alx_write_mem32(hw, ALX_MSI_MAP_TBL1, 0);
605	alx_write_mem32(hw, ALX_MSI_MAP_TBL2, 0);
606	alx_write_mem32(hw, ALX_MSI_ID_MAP, 0);
607}
608
609static void alx_irq_enable(struct alx_priv *alx)
610{
611	struct alx_hw *hw = &alx->hw;
612
613	/* level-1 interrupt switch */
614	alx_write_mem32(hw, ALX_ISR, 0);
615	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
616	alx_post_write(hw);
617}
618
619static void alx_irq_disable(struct alx_priv *alx)
620{
621	struct alx_hw *hw = &alx->hw;
622
623	alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS);
624	alx_write_mem32(hw, ALX_IMR, 0);
625	alx_post_write(hw);
626
627	synchronize_irq(alx->hw.pdev->irq);
628}
629
630static int alx_request_irq(struct alx_priv *alx)
631{
632	struct pci_dev *pdev = alx->hw.pdev;
633	struct alx_hw *hw = &alx->hw;
634	int err;
635	u32 msi_ctrl;
636
637	msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT;
638
639	if (!pci_enable_msi(alx->hw.pdev)) {
640		alx->msi = true;
641
642		alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER,
643				msi_ctrl | ALX_MSI_MASK_SEL_LINE);
644		err = request_irq(pdev->irq, alx_intr_msi, 0,
645				  alx->dev->name, alx);
646		if (!err)
647			goto out;
648		/* fall back to legacy interrupt */
649		pci_disable_msi(alx->hw.pdev);
650	}
651
652	alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0);
653	err = request_irq(pdev->irq, alx_intr_legacy, IRQF_SHARED,
654			  alx->dev->name, alx);
655out:
656	if (!err)
657		alx_config_vector_mapping(alx);
658	return err;
659}
660
661static void alx_free_irq(struct alx_priv *alx)
662{
663	struct pci_dev *pdev = alx->hw.pdev;
664
665	free_irq(pdev->irq, alx);
666
667	if (alx->msi) {
668		pci_disable_msi(alx->hw.pdev);
669		alx->msi = false;
670	}
671}
672
673static int alx_identify_hw(struct alx_priv *alx)
674{
675	struct alx_hw *hw = &alx->hw;
676	int rev = alx_hw_revision(hw);
677
678	if (rev > ALX_REV_C0)
679		return -EINVAL;
680
681	hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2;
682
683	return 0;
684}
685
686static int alx_init_sw(struct alx_priv *alx)
687{
688	struct pci_dev *pdev = alx->hw.pdev;
689	struct alx_hw *hw = &alx->hw;
690	int err;
691
692	err = alx_identify_hw(alx);
693	if (err) {
694		dev_err(&pdev->dev, "unrecognized chip, aborting\n");
695		return err;
696	}
697
698	alx->hw.lnk_patch =
699		pdev->device == ALX_DEV_ID_AR8161 &&
700		pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC &&
701		pdev->subsystem_device == 0x0091 &&
702		pdev->revision == 0;
703
704	hw->smb_timer = 400;
705	hw->mtu = alx->dev->mtu;
706	alx->rxbuf_size = ALIGN(ALX_RAW_MTU(hw->mtu), 8);
707	alx->tx_ringsz = 256;
708	alx->rx_ringsz = 512;
709	hw->imt = 200;
710	alx->int_mask = ALX_ISR_MISC;
711	hw->dma_chnl = hw->max_dma_chnl;
712	hw->ith_tpd = alx->tx_ringsz / 3;
713	hw->link_speed = SPEED_UNKNOWN;
714	hw->duplex = DUPLEX_UNKNOWN;
715	hw->adv_cfg = ADVERTISED_Autoneg |
716		      ADVERTISED_10baseT_Half |
717		      ADVERTISED_10baseT_Full |
718		      ADVERTISED_100baseT_Full |
719		      ADVERTISED_100baseT_Half |
720		      ADVERTISED_1000baseT_Full;
721	hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX;
722
723	hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN |
724		      ALX_MAC_CTRL_MHASH_ALG_HI5B |
725		      ALX_MAC_CTRL_BRD_EN |
726		      ALX_MAC_CTRL_PCRCE |
727		      ALX_MAC_CTRL_CRCE |
728		      ALX_MAC_CTRL_RXFC_EN |
729		      ALX_MAC_CTRL_TXFC_EN |
730		      7 << ALX_MAC_CTRL_PRMBLEN_SHIFT;
731
732	return err;
733}
734
735
736static netdev_features_t alx_fix_features(struct net_device *netdev,
737					  netdev_features_t features)
738{
739	if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE)
740		features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
741
742	return features;
743}
744
745static void alx_netif_stop(struct alx_priv *alx)
746{
747	alx->dev->trans_start = jiffies;
748	if (netif_carrier_ok(alx->dev)) {
749		netif_carrier_off(alx->dev);
750		netif_tx_disable(alx->dev);
751		napi_disable(&alx->napi);
752	}
753}
754
755static void alx_halt(struct alx_priv *alx)
756{
757	struct alx_hw *hw = &alx->hw;
758
759	alx_netif_stop(alx);
760	hw->link_speed = SPEED_UNKNOWN;
761	hw->duplex = DUPLEX_UNKNOWN;
762
763	alx_reset_mac(hw);
764
765	/* disable l0s/l1 */
766	alx_enable_aspm(hw, false, false);
767	alx_irq_disable(alx);
768	alx_free_buffers(alx);
769}
770
771static void alx_configure(struct alx_priv *alx)
772{
773	struct alx_hw *hw = &alx->hw;
774
775	alx_configure_basic(hw);
776	alx_disable_rss(hw);
777	__alx_set_rx_mode(alx->dev);
778
779	alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
780}
781
782static void alx_activate(struct alx_priv *alx)
783{
784	/* hardware setting lost, restore it */
785	alx_reinit_rings(alx);
786	alx_configure(alx);
787
788	/* clear old interrupts */
789	alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
790
791	alx_irq_enable(alx);
792
793	alx_schedule_link_check(alx);
794}
795
796static void alx_reinit(struct alx_priv *alx)
797{
798	ASSERT_RTNL();
799
800	alx_halt(alx);
801	alx_activate(alx);
802}
803
804static int alx_change_mtu(struct net_device *netdev, int mtu)
805{
806	struct alx_priv *alx = netdev_priv(netdev);
807	int max_frame = mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
808
809	if ((max_frame < ALX_MIN_FRAME_SIZE) ||
810	    (max_frame > ALX_MAX_FRAME_SIZE))
811		return -EINVAL;
812
813	if (netdev->mtu == mtu)
814		return 0;
815
816	netdev->mtu = mtu;
817	alx->hw.mtu = mtu;
818	alx->rxbuf_size = mtu > ALX_DEF_RXBUF_SIZE ?
819			   ALIGN(max_frame, 8) : ALX_DEF_RXBUF_SIZE;
820	netdev_update_features(netdev);
821	if (netif_running(netdev))
822		alx_reinit(alx);
823	return 0;
824}
825
826static void alx_netif_start(struct alx_priv *alx)
827{
828	netif_tx_wake_all_queues(alx->dev);
829	napi_enable(&alx->napi);
830	netif_carrier_on(alx->dev);
831}
832
833static int __alx_open(struct alx_priv *alx, bool resume)
834{
835	int err;
836
837	if (!resume)
838		netif_carrier_off(alx->dev);
839
840	err = alx_alloc_rings(alx);
841	if (err)
842		return err;
843
844	alx_configure(alx);
845
846	err = alx_request_irq(alx);
847	if (err)
848		goto out_free_rings;
849
850	/* clear old interrupts */
851	alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
852
853	alx_irq_enable(alx);
854
855	if (!resume)
856		netif_tx_start_all_queues(alx->dev);
857
858	alx_schedule_link_check(alx);
859	return 0;
860
861out_free_rings:
862	alx_free_rings(alx);
863	return err;
864}
865
866static void __alx_stop(struct alx_priv *alx)
867{
868	alx_halt(alx);
869	alx_free_irq(alx);
870	alx_free_rings(alx);
871}
872
873static const char *alx_speed_desc(struct alx_hw *hw)
874{
875	switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) {
876	case ADVERTISED_1000baseT_Full:
877		return "1 Gbps Full";
878	case ADVERTISED_100baseT_Full:
879		return "100 Mbps Full";
880	case ADVERTISED_100baseT_Half:
881		return "100 Mbps Half";
882	case ADVERTISED_10baseT_Full:
883		return "10 Mbps Full";
884	case ADVERTISED_10baseT_Half:
885		return "10 Mbps Half";
886	default:
887		return "Unknown speed";
888	}
889}
890
891static void alx_check_link(struct alx_priv *alx)
892{
893	struct alx_hw *hw = &alx->hw;
894	unsigned long flags;
895	int old_speed;
896	u8 old_duplex;
897	int err;
898
899	/* clear PHY internal interrupt status, otherwise the main
900	 * interrupt status will be asserted forever
901	 */
902	alx_clear_phy_intr(hw);
903
904	old_speed = hw->link_speed;
905	old_duplex = hw->duplex;
906	err = alx_read_phy_link(hw);
907	if (err < 0)
908		goto reset;
909
910	spin_lock_irqsave(&alx->irq_lock, flags);
911	alx->int_mask |= ALX_ISR_PHY;
912	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
913	spin_unlock_irqrestore(&alx->irq_lock, flags);
914
915	if (old_speed == hw->link_speed)
916		return;
917
918	if (hw->link_speed != SPEED_UNKNOWN) {
919		netif_info(alx, link, alx->dev,
920			   "NIC Up: %s\n", alx_speed_desc(hw));
921		alx_post_phy_link(hw);
922		alx_enable_aspm(hw, true, true);
923		alx_start_mac(hw);
924
925		if (old_speed == SPEED_UNKNOWN)
926			alx_netif_start(alx);
927	} else {
928		/* link is now down */
929		alx_netif_stop(alx);
930		netif_info(alx, link, alx->dev, "Link Down\n");
931		err = alx_reset_mac(hw);
932		if (err)
933			goto reset;
934		alx_irq_disable(alx);
935
936		/* MAC reset causes all HW settings to be lost, restore all */
937		err = alx_reinit_rings(alx);
938		if (err)
939			goto reset;
940		alx_configure(alx);
941		alx_enable_aspm(hw, false, true);
942		alx_post_phy_link(hw);
943		alx_irq_enable(alx);
944	}
945
946	return;
947
948reset:
949	alx_schedule_reset(alx);
950}
951
952static int alx_open(struct net_device *netdev)
953{
954	return __alx_open(netdev_priv(netdev), false);
955}
956
957static int alx_stop(struct net_device *netdev)
958{
959	__alx_stop(netdev_priv(netdev));
960	return 0;
961}
962
963static void alx_link_check(struct work_struct *work)
964{
965	struct alx_priv *alx;
966
967	alx = container_of(work, struct alx_priv, link_check_wk);
968
969	rtnl_lock();
970	alx_check_link(alx);
971	rtnl_unlock();
972}
973
974static void alx_reset(struct work_struct *work)
975{
976	struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk);
977
978	rtnl_lock();
979	alx_reinit(alx);
980	rtnl_unlock();
981}
982
983static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first)
984{
985	u8 cso, css;
986
987	if (skb->ip_summed != CHECKSUM_PARTIAL)
988		return 0;
989
990	cso = skb_checksum_start_offset(skb);
991	if (cso & 1)
992		return -EINVAL;
993
994	css = cso + skb->csum_offset;
995	first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT);
996	first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT);
997	first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT);
998
999	return 0;
1000}
1001
1002static int alx_map_tx_skb(struct alx_priv *alx, struct sk_buff *skb)
1003{
1004	struct alx_tx_queue *txq = &alx->txq;
1005	struct alx_txd *tpd, *first_tpd;
1006	dma_addr_t dma;
1007	int maplen, f, first_idx = txq->write_idx;
1008
1009	first_tpd = &txq->tpd[txq->write_idx];
1010	tpd = first_tpd;
1011
1012	maplen = skb_headlen(skb);
1013	dma = dma_map_single(&alx->hw.pdev->dev, skb->data, maplen,
1014			     DMA_TO_DEVICE);
1015	if (dma_mapping_error(&alx->hw.pdev->dev, dma))
1016		goto err_dma;
1017
1018	dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1019	dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1020
1021	tpd->adrl.addr = cpu_to_le64(dma);
1022	tpd->len = cpu_to_le16(maplen);
1023
1024	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1025		struct skb_frag_struct *frag;
1026
1027		frag = &skb_shinfo(skb)->frags[f];
1028
1029		if (++txq->write_idx == alx->tx_ringsz)
1030			txq->write_idx = 0;
1031		tpd = &txq->tpd[txq->write_idx];
1032
1033		tpd->word1 = first_tpd->word1;
1034
1035		maplen = skb_frag_size(frag);
1036		dma = skb_frag_dma_map(&alx->hw.pdev->dev, frag, 0,
1037				       maplen, DMA_TO_DEVICE);
1038		if (dma_mapping_error(&alx->hw.pdev->dev, dma))
1039			goto err_dma;
1040		dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1041		dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1042
1043		tpd->adrl.addr = cpu_to_le64(dma);
1044		tpd->len = cpu_to_le16(maplen);
1045	}
1046
1047	/* last TPD, set EOP flag and store skb */
1048	tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT);
1049	txq->bufs[txq->write_idx].skb = skb;
1050
1051	if (++txq->write_idx == alx->tx_ringsz)
1052		txq->write_idx = 0;
1053
1054	return 0;
1055
1056err_dma:
1057	f = first_idx;
1058	while (f != txq->write_idx) {
1059		alx_free_txbuf(alx, f);
1060		if (++f == alx->tx_ringsz)
1061			f = 0;
1062	}
1063	return -ENOMEM;
1064}
1065
1066static netdev_tx_t alx_start_xmit(struct sk_buff *skb,
1067				  struct net_device *netdev)
1068{
1069	struct alx_priv *alx = netdev_priv(netdev);
1070	struct alx_tx_queue *txq = &alx->txq;
1071	struct alx_txd *first;
1072	int tpdreq = skb_shinfo(skb)->nr_frags + 1;
1073
1074	if (alx_tpd_avail(alx) < tpdreq) {
1075		netif_stop_queue(alx->dev);
1076		goto drop;
1077	}
1078
1079	first = &txq->tpd[txq->write_idx];
1080	memset(first, 0, sizeof(*first));
1081
1082	if (alx_tx_csum(skb, first))
1083		goto drop;
1084
1085	if (alx_map_tx_skb(alx, skb) < 0)
1086		goto drop;
1087
1088	netdev_sent_queue(alx->dev, skb->len);
1089
1090	/* flush updates before updating hardware */
1091	wmb();
1092	alx_write_mem16(&alx->hw, ALX_TPD_PRI0_PIDX, txq->write_idx);
1093
1094	if (alx_tpd_avail(alx) < alx->tx_ringsz/8)
1095		netif_stop_queue(alx->dev);
1096
1097	return NETDEV_TX_OK;
1098
1099drop:
1100	dev_kfree_skb_any(skb);
1101	return NETDEV_TX_OK;
1102}
1103
1104static void alx_tx_timeout(struct net_device *dev)
1105{
1106	struct alx_priv *alx = netdev_priv(dev);
1107
1108	alx_schedule_reset(alx);
1109}
1110
1111static int alx_mdio_read(struct net_device *netdev,
1112			 int prtad, int devad, u16 addr)
1113{
1114	struct alx_priv *alx = netdev_priv(netdev);
1115	struct alx_hw *hw = &alx->hw;
1116	u16 val;
1117	int err;
1118
1119	if (prtad != hw->mdio.prtad)
1120		return -EINVAL;
1121
1122	if (devad == MDIO_DEVAD_NONE)
1123		err = alx_read_phy_reg(hw, addr, &val);
1124	else
1125		err = alx_read_phy_ext(hw, devad, addr, &val);
1126
1127	if (err)
1128		return err;
1129	return val;
1130}
1131
1132static int alx_mdio_write(struct net_device *netdev,
1133			  int prtad, int devad, u16 addr, u16 val)
1134{
1135	struct alx_priv *alx = netdev_priv(netdev);
1136	struct alx_hw *hw = &alx->hw;
1137
1138	if (prtad != hw->mdio.prtad)
1139		return -EINVAL;
1140
1141	if (devad == MDIO_DEVAD_NONE)
1142		return alx_write_phy_reg(hw, addr, val);
1143
1144	return alx_write_phy_ext(hw, devad, addr, val);
1145}
1146
1147static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1148{
1149	struct alx_priv *alx = netdev_priv(netdev);
1150
1151	if (!netif_running(netdev))
1152		return -EAGAIN;
1153
1154	return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd);
1155}
1156
1157#ifdef CONFIG_NET_POLL_CONTROLLER
1158static void alx_poll_controller(struct net_device *netdev)
1159{
1160	struct alx_priv *alx = netdev_priv(netdev);
1161
1162	if (alx->msi)
1163		alx_intr_msi(0, alx);
1164	else
1165		alx_intr_legacy(0, alx);
1166}
1167#endif
1168
1169static struct rtnl_link_stats64 *alx_get_stats64(struct net_device *dev,
1170					struct rtnl_link_stats64 *net_stats)
1171{
1172	struct alx_priv *alx = netdev_priv(dev);
1173	struct alx_hw_stats *hw_stats = &alx->hw.stats;
1174
1175	spin_lock(&alx->stats_lock);
1176
1177	alx_update_hw_stats(&alx->hw);
1178
1179	net_stats->tx_bytes   = hw_stats->tx_byte_cnt;
1180	net_stats->rx_bytes   = hw_stats->rx_byte_cnt;
1181	net_stats->multicast  = hw_stats->rx_mcast;
1182	net_stats->collisions = hw_stats->tx_single_col +
1183				hw_stats->tx_multi_col +
1184				hw_stats->tx_late_col +
1185				hw_stats->tx_abort_col;
1186
1187	net_stats->rx_errors  = hw_stats->rx_frag +
1188				hw_stats->rx_fcs_err +
1189				hw_stats->rx_len_err +
1190				hw_stats->rx_ov_sz +
1191				hw_stats->rx_ov_rrd +
1192				hw_stats->rx_align_err +
1193				hw_stats->rx_ov_rxf;
1194
1195	net_stats->rx_fifo_errors   = hw_stats->rx_ov_rxf;
1196	net_stats->rx_length_errors = hw_stats->rx_len_err;
1197	net_stats->rx_crc_errors    = hw_stats->rx_fcs_err;
1198	net_stats->rx_frame_errors  = hw_stats->rx_align_err;
1199	net_stats->rx_dropped       = hw_stats->rx_ov_rrd;
1200
1201	net_stats->tx_errors = hw_stats->tx_late_col +
1202			       hw_stats->tx_abort_col +
1203			       hw_stats->tx_underrun +
1204			       hw_stats->tx_trunc;
1205
1206	net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
1207	net_stats->tx_fifo_errors    = hw_stats->tx_underrun;
1208	net_stats->tx_window_errors  = hw_stats->tx_late_col;
1209
1210	net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors;
1211	net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors;
1212
1213	spin_unlock(&alx->stats_lock);
1214
1215	return net_stats;
1216}
1217
1218static const struct net_device_ops alx_netdev_ops = {
1219	.ndo_open               = alx_open,
1220	.ndo_stop               = alx_stop,
1221	.ndo_start_xmit         = alx_start_xmit,
1222	.ndo_get_stats64        = alx_get_stats64,
1223	.ndo_set_rx_mode        = alx_set_rx_mode,
1224	.ndo_validate_addr      = eth_validate_addr,
1225	.ndo_set_mac_address    = alx_set_mac_address,
1226	.ndo_change_mtu         = alx_change_mtu,
1227	.ndo_do_ioctl           = alx_ioctl,
1228	.ndo_tx_timeout         = alx_tx_timeout,
1229	.ndo_fix_features	= alx_fix_features,
1230#ifdef CONFIG_NET_POLL_CONTROLLER
1231	.ndo_poll_controller    = alx_poll_controller,
1232#endif
1233};
1234
1235static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1236{
1237	struct net_device *netdev;
1238	struct alx_priv *alx;
1239	struct alx_hw *hw;
1240	bool phy_configured;
1241	int bars, err;
1242
1243	err = pci_enable_device_mem(pdev);
1244	if (err)
1245		return err;
1246
1247	/* The alx chip can DMA to 64-bit addresses, but it uses a single
1248	 * shared register for the high 32 bits, so only a single, aligned,
1249	 * 4 GB physical address range can be used for descriptors.
1250	 */
1251	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1252		dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n");
1253	} else {
1254		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1255		if (err) {
1256			dev_err(&pdev->dev, "No usable DMA config, aborting\n");
1257			goto out_pci_disable;
1258		}
1259	}
1260
1261	bars = pci_select_bars(pdev, IORESOURCE_MEM);
1262	err = pci_request_selected_regions(pdev, bars, alx_drv_name);
1263	if (err) {
1264		dev_err(&pdev->dev,
1265			"pci_request_selected_regions failed(bars:%d)\n", bars);
1266		goto out_pci_disable;
1267	}
1268
1269	pci_enable_pcie_error_reporting(pdev);
1270	pci_set_master(pdev);
1271
1272	if (!pdev->pm_cap) {
1273		dev_err(&pdev->dev,
1274			"Can't find power management capability, aborting\n");
1275		err = -EIO;
1276		goto out_pci_release;
1277	}
1278
1279	netdev = alloc_etherdev(sizeof(*alx));
1280	if (!netdev) {
1281		err = -ENOMEM;
1282		goto out_pci_release;
1283	}
1284
1285	SET_NETDEV_DEV(netdev, &pdev->dev);
1286	alx = netdev_priv(netdev);
1287	spin_lock_init(&alx->hw.mdio_lock);
1288	spin_lock_init(&alx->irq_lock);
1289	spin_lock_init(&alx->stats_lock);
1290	alx->dev = netdev;
1291	alx->hw.pdev = pdev;
1292	alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP |
1293			  NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL;
1294	hw = &alx->hw;
1295	pci_set_drvdata(pdev, alx);
1296
1297	hw->hw_addr = pci_ioremap_bar(pdev, 0);
1298	if (!hw->hw_addr) {
1299		dev_err(&pdev->dev, "cannot map device registers\n");
1300		err = -EIO;
1301		goto out_free_netdev;
1302	}
1303
1304	netdev->netdev_ops = &alx_netdev_ops;
1305	netdev->ethtool_ops = &alx_ethtool_ops;
1306	netdev->irq = pdev->irq;
1307	netdev->watchdog_timeo = ALX_WATCHDOG_TIME;
1308
1309	if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG)
1310		pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG;
1311
1312	err = alx_init_sw(alx);
1313	if (err) {
1314		dev_err(&pdev->dev, "net device private data init failed\n");
1315		goto out_unmap;
1316	}
1317
1318	alx_reset_pcie(hw);
1319
1320	phy_configured = alx_phy_configured(hw);
1321
1322	if (!phy_configured)
1323		alx_reset_phy(hw);
1324
1325	err = alx_reset_mac(hw);
1326	if (err) {
1327		dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err);
1328		goto out_unmap;
1329	}
1330
1331	/* setup link to put it in a known good starting state */
1332	if (!phy_configured) {
1333		err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl);
1334		if (err) {
1335			dev_err(&pdev->dev,
1336				"failed to configure PHY speed/duplex (err=%d)\n",
1337				err);
1338			goto out_unmap;
1339		}
1340	}
1341
1342	netdev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
1343
1344	if (alx_get_perm_macaddr(hw, hw->perm_addr)) {
1345		dev_warn(&pdev->dev,
1346			 "Invalid permanent address programmed, using random one\n");
1347		eth_hw_addr_random(netdev);
1348		memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len);
1349	}
1350
1351	memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN);
1352	memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN);
1353	memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN);
1354
1355	hw->mdio.prtad = 0;
1356	hw->mdio.mmds = 0;
1357	hw->mdio.dev = netdev;
1358	hw->mdio.mode_support = MDIO_SUPPORTS_C45 |
1359				MDIO_SUPPORTS_C22 |
1360				MDIO_EMULATE_C22;
1361	hw->mdio.mdio_read = alx_mdio_read;
1362	hw->mdio.mdio_write = alx_mdio_write;
1363
1364	if (!alx_get_phy_info(hw)) {
1365		dev_err(&pdev->dev, "failed to identify PHY\n");
1366		err = -EIO;
1367		goto out_unmap;
1368	}
1369
1370	INIT_WORK(&alx->link_check_wk, alx_link_check);
1371	INIT_WORK(&alx->reset_wk, alx_reset);
1372	netif_carrier_off(netdev);
1373
1374	err = register_netdev(netdev);
1375	if (err) {
1376		dev_err(&pdev->dev, "register netdevice failed\n");
1377		goto out_unmap;
1378	}
1379
1380	netdev_info(netdev,
1381		    "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n",
1382		    netdev->dev_addr);
1383
1384	return 0;
1385
1386out_unmap:
1387	iounmap(hw->hw_addr);
1388out_free_netdev:
1389	free_netdev(netdev);
1390out_pci_release:
1391	pci_release_selected_regions(pdev, bars);
1392out_pci_disable:
1393	pci_disable_device(pdev);
1394	return err;
1395}
1396
1397static void alx_remove(struct pci_dev *pdev)
1398{
1399	struct alx_priv *alx = pci_get_drvdata(pdev);
1400	struct alx_hw *hw = &alx->hw;
1401
1402	cancel_work_sync(&alx->link_check_wk);
1403	cancel_work_sync(&alx->reset_wk);
1404
1405	/* restore permanent mac address */
1406	alx_set_macaddr(hw, hw->perm_addr);
1407
1408	unregister_netdev(alx->dev);
1409	iounmap(hw->hw_addr);
1410	pci_release_selected_regions(pdev,
1411				     pci_select_bars(pdev, IORESOURCE_MEM));
1412
1413	pci_disable_pcie_error_reporting(pdev);
1414	pci_disable_device(pdev);
1415
1416	free_netdev(alx->dev);
1417}
1418
1419#ifdef CONFIG_PM_SLEEP
1420static int alx_suspend(struct device *dev)
1421{
1422	struct pci_dev *pdev = to_pci_dev(dev);
1423	struct alx_priv *alx = pci_get_drvdata(pdev);
1424
1425	if (!netif_running(alx->dev))
1426		return 0;
1427	netif_device_detach(alx->dev);
1428	__alx_stop(alx);
1429	return 0;
1430}
1431
1432static int alx_resume(struct device *dev)
1433{
1434	struct pci_dev *pdev = to_pci_dev(dev);
1435	struct alx_priv *alx = pci_get_drvdata(pdev);
1436	struct alx_hw *hw = &alx->hw;
1437
1438	alx_reset_phy(hw);
1439
1440	if (!netif_running(alx->dev))
1441		return 0;
1442	netif_device_attach(alx->dev);
1443	return __alx_open(alx, true);
1444}
1445
1446static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume);
1447#define ALX_PM_OPS      (&alx_pm_ops)
1448#else
1449#define ALX_PM_OPS      NULL
1450#endif
1451
1452
1453static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev,
1454					       pci_channel_state_t state)
1455{
1456	struct alx_priv *alx = pci_get_drvdata(pdev);
1457	struct net_device *netdev = alx->dev;
1458	pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET;
1459
1460	dev_info(&pdev->dev, "pci error detected\n");
1461
1462	rtnl_lock();
1463
1464	if (netif_running(netdev)) {
1465		netif_device_detach(netdev);
1466		alx_halt(alx);
1467	}
1468
1469	if (state == pci_channel_io_perm_failure)
1470		rc = PCI_ERS_RESULT_DISCONNECT;
1471	else
1472		pci_disable_device(pdev);
1473
1474	rtnl_unlock();
1475
1476	return rc;
1477}
1478
1479static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev)
1480{
1481	struct alx_priv *alx = pci_get_drvdata(pdev);
1482	struct alx_hw *hw = &alx->hw;
1483	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
1484
1485	dev_info(&pdev->dev, "pci error slot reset\n");
1486
1487	rtnl_lock();
1488
1489	if (pci_enable_device(pdev)) {
1490		dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n");
1491		goto out;
1492	}
1493
1494	pci_set_master(pdev);
1495
1496	alx_reset_pcie(hw);
1497	if (!alx_reset_mac(hw))
1498		rc = PCI_ERS_RESULT_RECOVERED;
1499out:
1500	pci_cleanup_aer_uncorrect_error_status(pdev);
1501
1502	rtnl_unlock();
1503
1504	return rc;
1505}
1506
1507static void alx_pci_error_resume(struct pci_dev *pdev)
1508{
1509	struct alx_priv *alx = pci_get_drvdata(pdev);
1510	struct net_device *netdev = alx->dev;
1511
1512	dev_info(&pdev->dev, "pci error resume\n");
1513
1514	rtnl_lock();
1515
1516	if (netif_running(netdev)) {
1517		alx_activate(alx);
1518		netif_device_attach(netdev);
1519	}
1520
1521	rtnl_unlock();
1522}
1523
1524static const struct pci_error_handlers alx_err_handlers = {
1525	.error_detected = alx_pci_error_detected,
1526	.slot_reset     = alx_pci_error_slot_reset,
1527	.resume         = alx_pci_error_resume,
1528};
1529
1530static const struct pci_device_id alx_pci_tbl[] = {
1531	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161),
1532	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1533	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200),
1534	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1535	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162),
1536	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1537	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) },
1538	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) },
1539	{}
1540};
1541
1542static struct pci_driver alx_driver = {
1543	.name        = alx_drv_name,
1544	.id_table    = alx_pci_tbl,
1545	.probe       = alx_probe,
1546	.remove      = alx_remove,
1547	.err_handler = &alx_err_handlers,
1548	.driver.pm   = ALX_PM_OPS,
1549};
1550
1551module_pci_driver(alx_driver);
1552MODULE_DEVICE_TABLE(pci, alx_pci_tbl);
1553MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
1554MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>");
1555MODULE_DESCRIPTION(
1556	"Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver");
1557MODULE_LICENSE("GPL");
1558