bnx2x.h revision 3156b8eb9d85ee475de20352c07cb386a53255c2
1/* bnx2x.h: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 */
13
14#ifndef BNX2X_H
15#define BNX2X_H
16
17#include <linux/pci.h>
18#include <linux/netdevice.h>
19#include <linux/dma-mapping.h>
20#include <linux/types.h>
21#include <linux/pci_regs.h>
22
23/* compilation time flags */
24
25/* define this to make the driver freeze on error to allow getting debug info
26 * (you will need to reboot afterwards) */
27/* #define BNX2X_STOP_ON_ERROR */
28
29#define DRV_MODULE_VERSION      "1.78.19-0"
30#define DRV_MODULE_RELDATE      "2014/02/10"
31#define BNX2X_BC_VER            0x040200
32
33#if defined(CONFIG_DCB)
34#define BCM_DCBNL
35#endif
36
37#include "bnx2x_hsi.h"
38
39#include "../cnic_if.h"
40
41#define BNX2X_MIN_MSIX_VEC_CNT(bp)		((bp)->min_msix_vec_cnt)
42
43#include <linux/mdio.h>
44
45#include "bnx2x_reg.h"
46#include "bnx2x_fw_defs.h"
47#include "bnx2x_mfw_req.h"
48#include "bnx2x_link.h"
49#include "bnx2x_sp.h"
50#include "bnx2x_dcb.h"
51#include "bnx2x_stats.h"
52#include "bnx2x_vfpf.h"
53
54enum bnx2x_int_mode {
55	BNX2X_INT_MODE_MSIX,
56	BNX2X_INT_MODE_INTX,
57	BNX2X_INT_MODE_MSI
58};
59
60/* error/debug prints */
61
62#define DRV_MODULE_NAME		"bnx2x"
63
64/* for messages that are currently off */
65#define BNX2X_MSG_OFF			0x0
66#define BNX2X_MSG_MCP			0x0010000 /* was: NETIF_MSG_HW */
67#define BNX2X_MSG_STATS			0x0020000 /* was: NETIF_MSG_TIMER */
68#define BNX2X_MSG_NVM			0x0040000 /* was: NETIF_MSG_HW */
69#define BNX2X_MSG_DMAE			0x0080000 /* was: NETIF_MSG_HW */
70#define BNX2X_MSG_SP			0x0100000 /* was: NETIF_MSG_INTR */
71#define BNX2X_MSG_FP			0x0200000 /* was: NETIF_MSG_INTR */
72#define BNX2X_MSG_IOV			0x0800000
73#define BNX2X_MSG_IDLE			0x2000000 /* used for idle check*/
74#define BNX2X_MSG_ETHTOOL		0x4000000
75#define BNX2X_MSG_DCB			0x8000000
76
77/* regular debug print */
78#define DP_INNER(fmt, ...)					\
79	pr_notice("[%s:%d(%s)]" fmt,				\
80		  __func__, __LINE__,				\
81		  bp->dev ? (bp->dev->name) : "?",		\
82		  ##__VA_ARGS__);
83
84#define DP(__mask, fmt, ...)					\
85do {								\
86	if (unlikely(bp->msg_enable & (__mask)))		\
87		DP_INNER(fmt, ##__VA_ARGS__);			\
88} while (0)
89
90#define DP_AND(__mask, fmt, ...)				\
91do {								\
92	if (unlikely((bp->msg_enable & (__mask)) == __mask))	\
93		DP_INNER(fmt, ##__VA_ARGS__);			\
94} while (0)
95
96#define DP_CONT(__mask, fmt, ...)				\
97do {								\
98	if (unlikely(bp->msg_enable & (__mask)))		\
99		pr_cont(fmt, ##__VA_ARGS__);			\
100} while (0)
101
102/* errors debug print */
103#define BNX2X_DBG_ERR(fmt, ...)					\
104do {								\
105	if (unlikely(netif_msg_probe(bp)))			\
106		pr_err("[%s:%d(%s)]" fmt,			\
107		       __func__, __LINE__,			\
108		       bp->dev ? (bp->dev->name) : "?",		\
109		       ##__VA_ARGS__);				\
110} while (0)
111
112/* for errors (never masked) */
113#define BNX2X_ERR(fmt, ...)					\
114do {								\
115	pr_err("[%s:%d(%s)]" fmt,				\
116	       __func__, __LINE__,				\
117	       bp->dev ? (bp->dev->name) : "?",			\
118	       ##__VA_ARGS__);					\
119} while (0)
120
121#define BNX2X_ERROR(fmt, ...)					\
122	pr_err("[%s:%d]" fmt, __func__, __LINE__, ##__VA_ARGS__)
123
124/* before we have a dev->name use dev_info() */
125#define BNX2X_DEV_INFO(fmt, ...)				 \
126do {								 \
127	if (unlikely(netif_msg_probe(bp)))			 \
128		dev_info(&bp->pdev->dev, fmt, ##__VA_ARGS__);	 \
129} while (0)
130
131/* Error handling */
132void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int);
133#ifdef BNX2X_STOP_ON_ERROR
134#define bnx2x_panic()				\
135do {						\
136	bp->panic = 1;				\
137	BNX2X_ERR("driver assert\n");		\
138	bnx2x_panic_dump(bp, true);		\
139} while (0)
140#else
141#define bnx2x_panic()				\
142do {						\
143	bp->panic = 1;				\
144	BNX2X_ERR("driver assert\n");		\
145	bnx2x_panic_dump(bp, false);		\
146} while (0)
147#endif
148
149#define bnx2x_mc_addr(ha)      ((ha)->addr)
150#define bnx2x_uc_addr(ha)      ((ha)->addr)
151
152#define U64_LO(x)			((u32)(((u64)(x)) & 0xffffffff))
153#define U64_HI(x)			((u32)(((u64)(x)) >> 32))
154#define HILO_U64(hi, lo)		((((u64)(hi)) << 32) + (lo))
155
156#define REG_ADDR(bp, offset)		((bp->regview) + (offset))
157
158#define REG_RD(bp, offset)		readl(REG_ADDR(bp, offset))
159#define REG_RD8(bp, offset)		readb(REG_ADDR(bp, offset))
160#define REG_RD16(bp, offset)		readw(REG_ADDR(bp, offset))
161
162#define REG_WR(bp, offset, val)		writel((u32)val, REG_ADDR(bp, offset))
163#define REG_WR8(bp, offset, val)	writeb((u8)val, REG_ADDR(bp, offset))
164#define REG_WR16(bp, offset, val)	writew((u16)val, REG_ADDR(bp, offset))
165
166#define REG_RD_IND(bp, offset)		bnx2x_reg_rd_ind(bp, offset)
167#define REG_WR_IND(bp, offset, val)	bnx2x_reg_wr_ind(bp, offset, val)
168
169#define REG_RD_DMAE(bp, offset, valp, len32) \
170	do { \
171		bnx2x_read_dmae(bp, offset, len32);\
172		memcpy(valp, bnx2x_sp(bp, wb_data[0]), (len32) * 4); \
173	} while (0)
174
175#define REG_WR_DMAE(bp, offset, valp, len32) \
176	do { \
177		memcpy(bnx2x_sp(bp, wb_data[0]), valp, (len32) * 4); \
178		bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), \
179				 offset, len32); \
180	} while (0)
181
182#define REG_WR_DMAE_LEN(bp, offset, valp, len32) \
183	REG_WR_DMAE(bp, offset, valp, len32)
184
185#define VIRT_WR_DMAE_LEN(bp, data, addr, len32, le32_swap) \
186	do { \
187		memcpy(GUNZIP_BUF(bp), data, (len32) * 4); \
188		bnx2x_write_big_buf_wb(bp, addr, len32); \
189	} while (0)
190
191#define SHMEM_ADDR(bp, field)		(bp->common.shmem_base + \
192					 offsetof(struct shmem_region, field))
193#define SHMEM_RD(bp, field)		REG_RD(bp, SHMEM_ADDR(bp, field))
194#define SHMEM_WR(bp, field, val)	REG_WR(bp, SHMEM_ADDR(bp, field), val)
195
196#define SHMEM2_ADDR(bp, field)		(bp->common.shmem2_base + \
197					 offsetof(struct shmem2_region, field))
198#define SHMEM2_RD(bp, field)		REG_RD(bp, SHMEM2_ADDR(bp, field))
199#define SHMEM2_WR(bp, field, val)	REG_WR(bp, SHMEM2_ADDR(bp, field), val)
200#define MF_CFG_ADDR(bp, field)		(bp->common.mf_cfg_base + \
201					 offsetof(struct mf_cfg, field))
202#define MF2_CFG_ADDR(bp, field)		(bp->common.mf2_cfg_base + \
203					 offsetof(struct mf2_cfg, field))
204
205#define MF_CFG_RD(bp, field)		REG_RD(bp, MF_CFG_ADDR(bp, field))
206#define MF_CFG_WR(bp, field, val)	REG_WR(bp,\
207					       MF_CFG_ADDR(bp, field), (val))
208#define MF2_CFG_RD(bp, field)		REG_RD(bp, MF2_CFG_ADDR(bp, field))
209
210#define SHMEM2_HAS(bp, field)		((bp)->common.shmem2_base &&	\
211					 (SHMEM2_RD((bp), size) >	\
212					 offsetof(struct shmem2_region, field)))
213
214#define EMAC_RD(bp, reg)		REG_RD(bp, emac_base + reg)
215#define EMAC_WR(bp, reg, val)		REG_WR(bp, emac_base + reg, val)
216
217/* SP SB indices */
218
219/* General SP events - stats query, cfc delete, etc  */
220#define HC_SP_INDEX_ETH_DEF_CONS		3
221
222/* EQ completions */
223#define HC_SP_INDEX_EQ_CONS			7
224
225/* FCoE L2 connection completions */
226#define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS		6
227#define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS		4
228/* iSCSI L2 */
229#define HC_SP_INDEX_ETH_ISCSI_CQ_CONS		5
230#define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS	1
231
232/* Special clients parameters */
233
234/* SB indices */
235/* FCoE L2 */
236#define BNX2X_FCOE_L2_RX_INDEX \
237	(&bp->def_status_blk->sp_sb.\
238	index_values[HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS])
239
240#define BNX2X_FCOE_L2_TX_INDEX \
241	(&bp->def_status_blk->sp_sb.\
242	index_values[HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS])
243
244/**
245 *  CIDs and CLIDs:
246 *  CLIDs below is a CLID for func 0, then the CLID for other
247 *  functions will be calculated by the formula:
248 *
249 *  FUNC_N_CLID_X = N * NUM_SPECIAL_CLIENTS + FUNC_0_CLID_X
250 *
251 */
252enum {
253	BNX2X_ISCSI_ETH_CL_ID_IDX,
254	BNX2X_FCOE_ETH_CL_ID_IDX,
255	BNX2X_MAX_CNIC_ETH_CL_ID_IDX,
256};
257
258/* use a value high enough to be above all the PFs, which has least significant
259 * nibble as 8, so when cnic needs to come up with a CID for UIO to use to
260 * calculate doorbell address according to old doorbell configuration scheme
261 * (db_msg_sz 1 << 7 * cid + 0x40 DPM offset) it can come up with a valid number
262 * We must avoid coming up with cid 8 for iscsi since according to this method
263 * the designated UIO cid will come out 0 and it has a special handling for that
264 * case which doesn't suit us. Therefore will will cieling to closes cid which
265 * has least signigifcant nibble 8 and if it is 8 we will move forward to 0x18.
266 */
267
268#define BNX2X_1st_NON_L2_ETH_CID(bp)	(BNX2X_NUM_NON_CNIC_QUEUES(bp) * \
269					 (bp)->max_cos)
270/* amount of cids traversed by UIO's DPM addition to doorbell */
271#define UIO_DPM				8
272/* roundup to DPM offset */
273#define UIO_ROUNDUP(bp)			(roundup(BNX2X_1st_NON_L2_ETH_CID(bp), \
274					 UIO_DPM))
275/* offset to nearest value which has lsb nibble matching DPM */
276#define UIO_CID_OFFSET(bp)		((UIO_ROUNDUP(bp) + UIO_DPM) % \
277					 (UIO_DPM * 2))
278/* add offset to rounded-up cid to get a value which could be used with UIO */
279#define UIO_DPM_ALIGN(bp)		(UIO_ROUNDUP(bp) + UIO_CID_OFFSET(bp))
280/* but wait - avoid UIO special case for cid 0 */
281#define UIO_DPM_CID0_OFFSET(bp)		((UIO_DPM * 2) * \
282					 (UIO_DPM_ALIGN(bp) == UIO_DPM))
283/* Properly DPM aligned CID dajusted to cid 0 secal case */
284#define BNX2X_CNIC_START_ETH_CID(bp)	(UIO_DPM_ALIGN(bp) + \
285					 (UIO_DPM_CID0_OFFSET(bp)))
286/* how many cids were wasted  - need this value for cid allocation */
287#define UIO_CID_PAD(bp)			(BNX2X_CNIC_START_ETH_CID(bp) - \
288					 BNX2X_1st_NON_L2_ETH_CID(bp))
289	/* iSCSI L2 */
290#define	BNX2X_ISCSI_ETH_CID(bp)		(BNX2X_CNIC_START_ETH_CID(bp))
291	/* FCoE L2 */
292#define	BNX2X_FCOE_ETH_CID(bp)		(BNX2X_CNIC_START_ETH_CID(bp) + 1)
293
294#define CNIC_SUPPORT(bp)		((bp)->cnic_support)
295#define CNIC_ENABLED(bp)		((bp)->cnic_enabled)
296#define CNIC_LOADED(bp)			((bp)->cnic_loaded)
297#define FCOE_INIT(bp)			((bp)->fcoe_init)
298
299#define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \
300	AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
301
302#define SM_RX_ID			0
303#define SM_TX_ID			1
304
305/* defines for multiple tx priority indices */
306#define FIRST_TX_ONLY_COS_INDEX		1
307#define FIRST_TX_COS_INDEX		0
308
309/* rules for calculating the cids of tx-only connections */
310#define CID_TO_FP(cid, bp)		((cid) % BNX2X_NUM_NON_CNIC_QUEUES(bp))
311#define CID_COS_TO_TX_ONLY_CID(cid, cos, bp) \
312				(cid + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp))
313
314/* fp index inside class of service range */
315#define FP_COS_TO_TXQ(fp, cos, bp) \
316			((fp)->index + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp))
317
318/* Indexes for transmission queues array:
319 * txdata for RSS i CoS j is at location i + (j * num of RSS)
320 * txdata for FCoE (if exist) is at location max cos * num of RSS
321 * txdata for FWD (if exist) is one location after FCoE
322 * txdata for OOO (if exist) is one location after FWD
323 */
324enum {
325	FCOE_TXQ_IDX_OFFSET,
326	FWD_TXQ_IDX_OFFSET,
327	OOO_TXQ_IDX_OFFSET,
328};
329#define MAX_ETH_TXQ_IDX(bp)	(BNX2X_NUM_NON_CNIC_QUEUES(bp) * (bp)->max_cos)
330#define FCOE_TXQ_IDX(bp)	(MAX_ETH_TXQ_IDX(bp) + FCOE_TXQ_IDX_OFFSET)
331
332/* fast path */
333/*
334 * This driver uses new build_skb() API :
335 * RX ring buffer contains pointer to kmalloc() data only,
336 * skb are built only after Hardware filled the frame.
337 */
338struct sw_rx_bd {
339	u8		*data;
340	DEFINE_DMA_UNMAP_ADDR(mapping);
341};
342
343struct sw_tx_bd {
344	struct sk_buff	*skb;
345	u16		first_bd;
346	u8		flags;
347/* Set on the first BD descriptor when there is a split BD */
348#define BNX2X_TSO_SPLIT_BD		(1<<0)
349};
350
351struct sw_rx_page {
352	struct page	*page;
353	DEFINE_DMA_UNMAP_ADDR(mapping);
354};
355
356union db_prod {
357	struct doorbell_set_prod data;
358	u32		raw;
359};
360
361/* dropless fc FW/HW related params */
362#define BRB_SIZE(bp)		(CHIP_IS_E3(bp) ? 1024 : 512)
363#define MAX_AGG_QS(bp)		(CHIP_IS_E1(bp) ? \
364					ETH_MAX_AGGREGATION_QUEUES_E1 :\
365					ETH_MAX_AGGREGATION_QUEUES_E1H_E2)
366#define FW_DROP_LEVEL(bp)	(3 + MAX_SPQ_PENDING + MAX_AGG_QS(bp))
367#define FW_PREFETCH_CNT		16
368#define DROPLESS_FC_HEADROOM	100
369
370/* MC hsi */
371#define BCM_PAGE_SHIFT		12
372#define BCM_PAGE_SIZE		(1 << BCM_PAGE_SHIFT)
373#define BCM_PAGE_MASK		(~(BCM_PAGE_SIZE - 1))
374#define BCM_PAGE_ALIGN(addr)	(((addr) + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK)
375
376#define PAGES_PER_SGE_SHIFT	0
377#define PAGES_PER_SGE		(1 << PAGES_PER_SGE_SHIFT)
378#define SGE_PAGE_SIZE		PAGE_SIZE
379#define SGE_PAGE_SHIFT		PAGE_SHIFT
380#define SGE_PAGE_ALIGN(addr)	PAGE_ALIGN((typeof(PAGE_SIZE))(addr))
381#define SGE_PAGES		(SGE_PAGE_SIZE * PAGES_PER_SGE)
382#define TPA_AGG_SIZE		min_t(u32, (min_t(u32, 8, MAX_SKB_FRAGS) * \
383					    SGE_PAGES), 0xffff)
384
385/* SGE ring related macros */
386#define NUM_RX_SGE_PAGES	2
387#define RX_SGE_CNT		(BCM_PAGE_SIZE / sizeof(struct eth_rx_sge))
388#define NEXT_PAGE_SGE_DESC_CNT	2
389#define MAX_RX_SGE_CNT		(RX_SGE_CNT - NEXT_PAGE_SGE_DESC_CNT)
390/* RX_SGE_CNT is promised to be a power of 2 */
391#define RX_SGE_MASK		(RX_SGE_CNT - 1)
392#define NUM_RX_SGE		(RX_SGE_CNT * NUM_RX_SGE_PAGES)
393#define MAX_RX_SGE		(NUM_RX_SGE - 1)
394#define NEXT_SGE_IDX(x)		((((x) & RX_SGE_MASK) == \
395				  (MAX_RX_SGE_CNT - 1)) ? \
396					(x) + 1 + NEXT_PAGE_SGE_DESC_CNT : \
397					(x) + 1)
398#define RX_SGE(x)		((x) & MAX_RX_SGE)
399
400/*
401 * Number of required  SGEs is the sum of two:
402 * 1. Number of possible opened aggregations (next packet for
403 *    these aggregations will probably consume SGE immediately)
404 * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only
405 *    after placement on BD for new TPA aggregation)
406 *
407 * Takes into account NEXT_PAGE_SGE_DESC_CNT "next" elements on each page
408 */
409#define NUM_SGE_REQ		(MAX_AGG_QS(bp) + \
410					(BRB_SIZE(bp) - MAX_AGG_QS(bp)) / 2)
411#define NUM_SGE_PG_REQ		((NUM_SGE_REQ + MAX_RX_SGE_CNT - 1) / \
412						MAX_RX_SGE_CNT)
413#define SGE_TH_LO(bp)		(NUM_SGE_REQ + \
414				 NUM_SGE_PG_REQ * NEXT_PAGE_SGE_DESC_CNT)
415#define SGE_TH_HI(bp)		(SGE_TH_LO(bp) + DROPLESS_FC_HEADROOM)
416
417/* Manipulate a bit vector defined as an array of u64 */
418
419/* Number of bits in one sge_mask array element */
420#define BIT_VEC64_ELEM_SZ		64
421#define BIT_VEC64_ELEM_SHIFT		6
422#define BIT_VEC64_ELEM_MASK		((u64)BIT_VEC64_ELEM_SZ - 1)
423
424#define __BIT_VEC64_SET_BIT(el, bit) \
425	do { \
426		el = ((el) | ((u64)0x1 << (bit))); \
427	} while (0)
428
429#define __BIT_VEC64_CLEAR_BIT(el, bit) \
430	do { \
431		el = ((el) & (~((u64)0x1 << (bit)))); \
432	} while (0)
433
434#define BIT_VEC64_SET_BIT(vec64, idx) \
435	__BIT_VEC64_SET_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \
436			   (idx) & BIT_VEC64_ELEM_MASK)
437
438#define BIT_VEC64_CLEAR_BIT(vec64, idx) \
439	__BIT_VEC64_CLEAR_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \
440			     (idx) & BIT_VEC64_ELEM_MASK)
441
442#define BIT_VEC64_TEST_BIT(vec64, idx) \
443	(((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT] >> \
444	((idx) & BIT_VEC64_ELEM_MASK)) & 0x1)
445
446/* Creates a bitmask of all ones in less significant bits.
447   idx - index of the most significant bit in the created mask */
448#define BIT_VEC64_ONES_MASK(idx) \
449		(((u64)0x1 << (((idx) & BIT_VEC64_ELEM_MASK) + 1)) - 1)
450#define BIT_VEC64_ELEM_ONE_MASK	((u64)(~0))
451
452/*******************************************************/
453
454/* Number of u64 elements in SGE mask array */
455#define RX_SGE_MASK_LEN			(NUM_RX_SGE / BIT_VEC64_ELEM_SZ)
456#define RX_SGE_MASK_LEN_MASK		(RX_SGE_MASK_LEN - 1)
457#define NEXT_SGE_MASK_ELEM(el)		(((el) + 1) & RX_SGE_MASK_LEN_MASK)
458
459union host_hc_status_block {
460	/* pointer to fp status block e1x */
461	struct host_hc_status_block_e1x *e1x_sb;
462	/* pointer to fp status block e2 */
463	struct host_hc_status_block_e2  *e2_sb;
464};
465
466struct bnx2x_agg_info {
467	/*
468	 * First aggregation buffer is a data buffer, the following - are pages.
469	 * We will preallocate the data buffer for each aggregation when
470	 * we open the interface and will replace the BD at the consumer
471	 * with this one when we receive the TPA_START CQE in order to
472	 * keep the Rx BD ring consistent.
473	 */
474	struct sw_rx_bd		first_buf;
475	u8			tpa_state;
476#define BNX2X_TPA_START			1
477#define BNX2X_TPA_STOP			2
478#define BNX2X_TPA_ERROR			3
479	u8			placement_offset;
480	u16			parsing_flags;
481	u16			vlan_tag;
482	u16			len_on_bd;
483	u32			rxhash;
484	enum pkt_hash_types	rxhash_type;
485	u16			gro_size;
486	u16			full_page;
487};
488
489#define Q_STATS_OFFSET32(stat_name) \
490			(offsetof(struct bnx2x_eth_q_stats, stat_name) / 4)
491
492struct bnx2x_fp_txdata {
493
494	struct sw_tx_bd		*tx_buf_ring;
495
496	union eth_tx_bd_types	*tx_desc_ring;
497	dma_addr_t		tx_desc_mapping;
498
499	u32			cid;
500
501	union db_prod		tx_db;
502
503	u16			tx_pkt_prod;
504	u16			tx_pkt_cons;
505	u16			tx_bd_prod;
506	u16			tx_bd_cons;
507
508	unsigned long		tx_pkt;
509
510	__le16			*tx_cons_sb;
511
512	int			txq_index;
513	struct bnx2x_fastpath	*parent_fp;
514	int			tx_ring_size;
515};
516
517enum bnx2x_tpa_mode_t {
518	TPA_MODE_LRO,
519	TPA_MODE_GRO
520};
521
522struct bnx2x_fastpath {
523	struct bnx2x		*bp; /* parent */
524
525	struct napi_struct	napi;
526
527#ifdef CONFIG_NET_RX_BUSY_POLL
528	unsigned int state;
529#define BNX2X_FP_STATE_IDLE		      0
530#define BNX2X_FP_STATE_NAPI		(1 << 0)    /* NAPI owns this FP */
531#define BNX2X_FP_STATE_POLL		(1 << 1)    /* poll owns this FP */
532#define BNX2X_FP_STATE_DISABLED		(1 << 2)
533#define BNX2X_FP_STATE_NAPI_YIELD	(1 << 3)    /* NAPI yielded this FP */
534#define BNX2X_FP_STATE_POLL_YIELD	(1 << 4)    /* poll yielded this FP */
535#define BNX2X_FP_OWNED	(BNX2X_FP_STATE_NAPI | BNX2X_FP_STATE_POLL)
536#define BNX2X_FP_YIELD	(BNX2X_FP_STATE_NAPI_YIELD | BNX2X_FP_STATE_POLL_YIELD)
537#define BNX2X_FP_LOCKED	(BNX2X_FP_OWNED | BNX2X_FP_STATE_DISABLED)
538#define BNX2X_FP_USER_PEND (BNX2X_FP_STATE_POLL | BNX2X_FP_STATE_POLL_YIELD)
539	/* protect state */
540	spinlock_t lock;
541#endif /* CONFIG_NET_RX_BUSY_POLL */
542
543	union host_hc_status_block	status_blk;
544	/* chip independent shortcuts into sb structure */
545	__le16			*sb_index_values;
546	__le16			*sb_running_index;
547	/* chip independent shortcut into rx_prods_offset memory */
548	u32			ustorm_rx_prods_offset;
549
550	u32			rx_buf_size;
551	u32			rx_frag_size; /* 0 if kmalloced(), or rx_buf_size + NET_SKB_PAD */
552	dma_addr_t		status_blk_mapping;
553
554	enum bnx2x_tpa_mode_t	mode;
555
556	u8			max_cos; /* actual number of active tx coses */
557	struct bnx2x_fp_txdata	*txdata_ptr[BNX2X_MULTI_TX_COS];
558
559	struct sw_rx_bd		*rx_buf_ring;	/* BDs mappings ring */
560	struct sw_rx_page	*rx_page_ring;	/* SGE pages mappings ring */
561
562	struct eth_rx_bd	*rx_desc_ring;
563	dma_addr_t		rx_desc_mapping;
564
565	union eth_rx_cqe	*rx_comp_ring;
566	dma_addr_t		rx_comp_mapping;
567
568	/* SGE ring */
569	struct eth_rx_sge	*rx_sge_ring;
570	dma_addr_t		rx_sge_mapping;
571
572	u64			sge_mask[RX_SGE_MASK_LEN];
573
574	u32			cid;
575
576	__le16			fp_hc_idx;
577
578	u8			index;		/* number in fp array */
579	u8			rx_queue;	/* index for skb_record */
580	u8			cl_id;		/* eth client id */
581	u8			cl_qzone_id;
582	u8			fw_sb_id;	/* status block number in FW */
583	u8			igu_sb_id;	/* status block number in HW */
584
585	u16			rx_bd_prod;
586	u16			rx_bd_cons;
587	u16			rx_comp_prod;
588	u16			rx_comp_cons;
589	u16			rx_sge_prod;
590	/* The last maximal completed SGE */
591	u16			last_max_sge;
592	__le16			*rx_cons_sb;
593	unsigned long		rx_pkt,
594				rx_calls;
595
596	/* TPA related */
597	struct bnx2x_agg_info	*tpa_info;
598	u8			disable_tpa;
599#ifdef BNX2X_STOP_ON_ERROR
600	u64			tpa_queue_used;
601#endif
602	/* The size is calculated using the following:
603	     sizeof name field from netdev structure +
604	     4 ('-Xx-' string) +
605	     4 (for the digits and to make it DWORD aligned) */
606#define FP_NAME_SIZE		(sizeof(((struct net_device *)0)->name) + 8)
607	char			name[FP_NAME_SIZE];
608};
609
610#define bnx2x_fp(bp, nr, var)	((bp)->fp[(nr)].var)
611#define bnx2x_sp_obj(bp, fp)	((bp)->sp_objs[(fp)->index])
612#define bnx2x_fp_stats(bp, fp)	(&((bp)->fp_stats[(fp)->index]))
613#define bnx2x_fp_qstats(bp, fp)	(&((bp)->fp_stats[(fp)->index].eth_q_stats))
614
615#ifdef CONFIG_NET_RX_BUSY_POLL
616static inline void bnx2x_fp_init_lock(struct bnx2x_fastpath *fp)
617{
618	spin_lock_init(&fp->lock);
619	fp->state = BNX2X_FP_STATE_IDLE;
620}
621
622/* called from the device poll routine to get ownership of a FP */
623static inline bool bnx2x_fp_lock_napi(struct bnx2x_fastpath *fp)
624{
625	bool rc = true;
626
627	spin_lock_bh(&fp->lock);
628	if (fp->state & BNX2X_FP_LOCKED) {
629		WARN_ON(fp->state & BNX2X_FP_STATE_NAPI);
630		fp->state |= BNX2X_FP_STATE_NAPI_YIELD;
631		rc = false;
632	} else {
633		/* we don't care if someone yielded */
634		fp->state = BNX2X_FP_STATE_NAPI;
635	}
636	spin_unlock_bh(&fp->lock);
637	return rc;
638}
639
640/* returns true is someone tried to get the FP while napi had it */
641static inline bool bnx2x_fp_unlock_napi(struct bnx2x_fastpath *fp)
642{
643	bool rc = false;
644
645	spin_lock_bh(&fp->lock);
646	WARN_ON(fp->state &
647		(BNX2X_FP_STATE_POLL | BNX2X_FP_STATE_NAPI_YIELD));
648
649	if (fp->state & BNX2X_FP_STATE_POLL_YIELD)
650		rc = true;
651
652	/* state ==> idle, unless currently disabled */
653	fp->state &= BNX2X_FP_STATE_DISABLED;
654	spin_unlock_bh(&fp->lock);
655	return rc;
656}
657
658/* called from bnx2x_low_latency_poll() */
659static inline bool bnx2x_fp_lock_poll(struct bnx2x_fastpath *fp)
660{
661	bool rc = true;
662
663	spin_lock_bh(&fp->lock);
664	if ((fp->state & BNX2X_FP_LOCKED)) {
665		fp->state |= BNX2X_FP_STATE_POLL_YIELD;
666		rc = false;
667	} else {
668		/* preserve yield marks */
669		fp->state |= BNX2X_FP_STATE_POLL;
670	}
671	spin_unlock_bh(&fp->lock);
672	return rc;
673}
674
675/* returns true if someone tried to get the FP while it was locked */
676static inline bool bnx2x_fp_unlock_poll(struct bnx2x_fastpath *fp)
677{
678	bool rc = false;
679
680	spin_lock_bh(&fp->lock);
681	WARN_ON(fp->state & BNX2X_FP_STATE_NAPI);
682
683	if (fp->state & BNX2X_FP_STATE_POLL_YIELD)
684		rc = true;
685
686	/* state ==> idle, unless currently disabled */
687	fp->state &= BNX2X_FP_STATE_DISABLED;
688	spin_unlock_bh(&fp->lock);
689	return rc;
690}
691
692/* true if a socket is polling, even if it did not get the lock */
693static inline bool bnx2x_fp_ll_polling(struct bnx2x_fastpath *fp)
694{
695	WARN_ON(!(fp->state & BNX2X_FP_OWNED));
696	return fp->state & BNX2X_FP_USER_PEND;
697}
698
699/* false if fp is currently owned */
700static inline bool bnx2x_fp_ll_disable(struct bnx2x_fastpath *fp)
701{
702	int rc = true;
703
704	spin_lock_bh(&fp->lock);
705	if (fp->state & BNX2X_FP_OWNED)
706		rc = false;
707	fp->state |= BNX2X_FP_STATE_DISABLED;
708	spin_unlock_bh(&fp->lock);
709
710	return rc;
711}
712#else
713static inline void bnx2x_fp_init_lock(struct bnx2x_fastpath *fp)
714{
715}
716
717static inline bool bnx2x_fp_lock_napi(struct bnx2x_fastpath *fp)
718{
719	return true;
720}
721
722static inline bool bnx2x_fp_unlock_napi(struct bnx2x_fastpath *fp)
723{
724	return false;
725}
726
727static inline bool bnx2x_fp_lock_poll(struct bnx2x_fastpath *fp)
728{
729	return false;
730}
731
732static inline bool bnx2x_fp_unlock_poll(struct bnx2x_fastpath *fp)
733{
734	return false;
735}
736
737static inline bool bnx2x_fp_ll_polling(struct bnx2x_fastpath *fp)
738{
739	return false;
740}
741static inline bool bnx2x_fp_ll_disable(struct bnx2x_fastpath *fp)
742{
743	return true;
744}
745#endif /* CONFIG_NET_RX_BUSY_POLL */
746
747/* Use 2500 as a mini-jumbo MTU for FCoE */
748#define BNX2X_FCOE_MINI_JUMBO_MTU	2500
749
750#define	FCOE_IDX_OFFSET		0
751
752#define FCOE_IDX(bp)		(BNX2X_NUM_NON_CNIC_QUEUES(bp) + \
753				 FCOE_IDX_OFFSET)
754#define bnx2x_fcoe_fp(bp)	(&bp->fp[FCOE_IDX(bp)])
755#define bnx2x_fcoe(bp, var)	(bnx2x_fcoe_fp(bp)->var)
756#define bnx2x_fcoe_inner_sp_obj(bp)	(&bp->sp_objs[FCOE_IDX(bp)])
757#define bnx2x_fcoe_sp_obj(bp, var)	(bnx2x_fcoe_inner_sp_obj(bp)->var)
758#define bnx2x_fcoe_tx(bp, var)	(bnx2x_fcoe_fp(bp)-> \
759						txdata_ptr[FIRST_TX_COS_INDEX] \
760						->var)
761
762#define IS_ETH_FP(fp)		((fp)->index < BNX2X_NUM_ETH_QUEUES((fp)->bp))
763#define IS_FCOE_FP(fp)		((fp)->index == FCOE_IDX((fp)->bp))
764#define IS_FCOE_IDX(idx)	((idx) == FCOE_IDX(bp))
765
766/* MC hsi */
767#define MAX_FETCH_BD		13	/* HW max BDs per packet */
768#define RX_COPY_THRESH		92
769
770#define NUM_TX_RINGS		16
771#define TX_DESC_CNT		(BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types))
772#define NEXT_PAGE_TX_DESC_CNT	1
773#define MAX_TX_DESC_CNT		(TX_DESC_CNT - NEXT_PAGE_TX_DESC_CNT)
774#define NUM_TX_BD		(TX_DESC_CNT * NUM_TX_RINGS)
775#define MAX_TX_BD		(NUM_TX_BD - 1)
776#define MAX_TX_AVAIL		(MAX_TX_DESC_CNT * NUM_TX_RINGS - 2)
777#define NEXT_TX_IDX(x)		((((x) & MAX_TX_DESC_CNT) == \
778				  (MAX_TX_DESC_CNT - 1)) ? \
779					(x) + 1 + NEXT_PAGE_TX_DESC_CNT : \
780					(x) + 1)
781#define TX_BD(x)		((x) & MAX_TX_BD)
782#define TX_BD_POFF(x)		((x) & MAX_TX_DESC_CNT)
783
784/* number of NEXT_PAGE descriptors may be required during placement */
785#define NEXT_CNT_PER_TX_PKT(bds)	\
786				(((bds) + MAX_TX_DESC_CNT - 1) / \
787				 MAX_TX_DESC_CNT * NEXT_PAGE_TX_DESC_CNT)
788/* max BDs per tx packet w/o next_pages:
789 * START_BD		- describes packed
790 * START_BD(splitted)	- includes unpaged data segment for GSO
791 * PARSING_BD		- for TSO and CSUM data
792 * PARSING_BD2		- for encapsulation data
793 * Frag BDs		- describes pages for frags
794 */
795#define BDS_PER_TX_PKT		4
796#define MAX_BDS_PER_TX_PKT	(MAX_SKB_FRAGS + BDS_PER_TX_PKT)
797/* max BDs per tx packet including next pages */
798#define MAX_DESC_PER_TX_PKT	(MAX_BDS_PER_TX_PKT + \
799				 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))
800
801/* The RX BD ring is special, each bd is 8 bytes but the last one is 16 */
802#define NUM_RX_RINGS		8
803#define RX_DESC_CNT		(BCM_PAGE_SIZE / sizeof(struct eth_rx_bd))
804#define NEXT_PAGE_RX_DESC_CNT	2
805#define MAX_RX_DESC_CNT		(RX_DESC_CNT - NEXT_PAGE_RX_DESC_CNT)
806#define RX_DESC_MASK		(RX_DESC_CNT - 1)
807#define NUM_RX_BD		(RX_DESC_CNT * NUM_RX_RINGS)
808#define MAX_RX_BD		(NUM_RX_BD - 1)
809#define MAX_RX_AVAIL		(MAX_RX_DESC_CNT * NUM_RX_RINGS - 2)
810
811/* dropless fc calculations for BDs
812 *
813 * Number of BDs should as number of buffers in BRB:
814 * Low threshold takes into account NEXT_PAGE_RX_DESC_CNT
815 * "next" elements on each page
816 */
817#define NUM_BD_REQ		BRB_SIZE(bp)
818#define NUM_BD_PG_REQ		((NUM_BD_REQ + MAX_RX_DESC_CNT - 1) / \
819					      MAX_RX_DESC_CNT)
820#define BD_TH_LO(bp)		(NUM_BD_REQ + \
821				 NUM_BD_PG_REQ * NEXT_PAGE_RX_DESC_CNT + \
822				 FW_DROP_LEVEL(bp))
823#define BD_TH_HI(bp)		(BD_TH_LO(bp) + DROPLESS_FC_HEADROOM)
824
825#define MIN_RX_AVAIL		((bp)->dropless_fc ? BD_TH_HI(bp) + 128 : 128)
826
827#define MIN_RX_SIZE_TPA_HW	(CHIP_IS_E1(bp) ? \
828					ETH_MIN_RX_CQES_WITH_TPA_E1 : \
829					ETH_MIN_RX_CQES_WITH_TPA_E1H_E2)
830#define MIN_RX_SIZE_NONTPA_HW   ETH_MIN_RX_CQES_WITHOUT_TPA
831#define MIN_RX_SIZE_TPA		(max_t(u32, MIN_RX_SIZE_TPA_HW, MIN_RX_AVAIL))
832#define MIN_RX_SIZE_NONTPA	(max_t(u32, MIN_RX_SIZE_NONTPA_HW,\
833								MIN_RX_AVAIL))
834
835#define NEXT_RX_IDX(x)		((((x) & RX_DESC_MASK) == \
836				  (MAX_RX_DESC_CNT - 1)) ? \
837					(x) + 1 + NEXT_PAGE_RX_DESC_CNT : \
838					(x) + 1)
839#define RX_BD(x)		((x) & MAX_RX_BD)
840
841/*
842 * As long as CQE is X times bigger than BD entry we have to allocate X times
843 * more pages for CQ ring in order to keep it balanced with BD ring
844 */
845#define CQE_BD_REL	(sizeof(union eth_rx_cqe) / sizeof(struct eth_rx_bd))
846#define NUM_RCQ_RINGS		(NUM_RX_RINGS * CQE_BD_REL)
847#define RCQ_DESC_CNT		(BCM_PAGE_SIZE / sizeof(union eth_rx_cqe))
848#define NEXT_PAGE_RCQ_DESC_CNT	1
849#define MAX_RCQ_DESC_CNT	(RCQ_DESC_CNT - NEXT_PAGE_RCQ_DESC_CNT)
850#define NUM_RCQ_BD		(RCQ_DESC_CNT * NUM_RCQ_RINGS)
851#define MAX_RCQ_BD		(NUM_RCQ_BD - 1)
852#define MAX_RCQ_AVAIL		(MAX_RCQ_DESC_CNT * NUM_RCQ_RINGS - 2)
853#define NEXT_RCQ_IDX(x)		((((x) & MAX_RCQ_DESC_CNT) == \
854				  (MAX_RCQ_DESC_CNT - 1)) ? \
855					(x) + 1 + NEXT_PAGE_RCQ_DESC_CNT : \
856					(x) + 1)
857#define RCQ_BD(x)		((x) & MAX_RCQ_BD)
858
859/* dropless fc calculations for RCQs
860 *
861 * Number of RCQs should be as number of buffers in BRB:
862 * Low threshold takes into account NEXT_PAGE_RCQ_DESC_CNT
863 * "next" elements on each page
864 */
865#define NUM_RCQ_REQ		BRB_SIZE(bp)
866#define NUM_RCQ_PG_REQ		((NUM_BD_REQ + MAX_RCQ_DESC_CNT - 1) / \
867					      MAX_RCQ_DESC_CNT)
868#define RCQ_TH_LO(bp)		(NUM_RCQ_REQ + \
869				 NUM_RCQ_PG_REQ * NEXT_PAGE_RCQ_DESC_CNT + \
870				 FW_DROP_LEVEL(bp))
871#define RCQ_TH_HI(bp)		(RCQ_TH_LO(bp) + DROPLESS_FC_HEADROOM)
872
873/* This is needed for determining of last_max */
874#define SUB_S16(a, b)		(s16)((s16)(a) - (s16)(b))
875#define SUB_S32(a, b)		(s32)((s32)(a) - (s32)(b))
876
877#define BNX2X_SWCID_SHIFT	17
878#define BNX2X_SWCID_MASK	((0x1 << BNX2X_SWCID_SHIFT) - 1)
879
880/* used on a CID received from the HW */
881#define SW_CID(x)			(le32_to_cpu(x) & BNX2X_SWCID_MASK)
882#define CQE_CMD(x)			(le32_to_cpu(x) >> \
883					COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT)
884
885#define BD_UNMAP_ADDR(bd)		HILO_U64(le32_to_cpu((bd)->addr_hi), \
886						 le32_to_cpu((bd)->addr_lo))
887#define BD_UNMAP_LEN(bd)		(le16_to_cpu((bd)->nbytes))
888
889#define BNX2X_DB_MIN_SHIFT		3	/* 8 bytes */
890#define BNX2X_DB_SHIFT			3	/* 8 bytes*/
891#if (BNX2X_DB_SHIFT < BNX2X_DB_MIN_SHIFT)
892#error "Min DB doorbell stride is 8"
893#endif
894#define DOORBELL(bp, cid, val) \
895	do { \
896		writel((u32)(val), bp->doorbells + (bp->db_size * (cid))); \
897	} while (0)
898
899/* TX CSUM helpers */
900#define SKB_CS_OFF(skb)		(offsetof(struct tcphdr, check) - \
901				 skb->csum_offset)
902#define SKB_CS(skb)		(*(u16 *)(skb_transport_header(skb) + \
903					  skb->csum_offset))
904
905#define pbd_tcp_flags(tcp_hdr)	(ntohl(tcp_flag_word(tcp_hdr))>>16 & 0xff)
906
907#define XMIT_PLAIN		0
908#define XMIT_CSUM_V4		(1 << 0)
909#define XMIT_CSUM_V6		(1 << 1)
910#define XMIT_CSUM_TCP		(1 << 2)
911#define XMIT_GSO_V4		(1 << 3)
912#define XMIT_GSO_V6		(1 << 4)
913#define XMIT_CSUM_ENC_V4	(1 << 5)
914#define XMIT_CSUM_ENC_V6	(1 << 6)
915#define XMIT_GSO_ENC_V4		(1 << 7)
916#define XMIT_GSO_ENC_V6		(1 << 8)
917
918#define XMIT_CSUM_ENC		(XMIT_CSUM_ENC_V4 | XMIT_CSUM_ENC_V6)
919#define XMIT_GSO_ENC		(XMIT_GSO_ENC_V4 | XMIT_GSO_ENC_V6)
920
921#define XMIT_CSUM		(XMIT_CSUM_V4 | XMIT_CSUM_V6 | XMIT_CSUM_ENC)
922#define XMIT_GSO		(XMIT_GSO_V4 | XMIT_GSO_V6 | XMIT_GSO_ENC)
923
924/* stuff added to make the code fit 80Col */
925#define CQE_TYPE(cqe_fp_flags)	 ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE)
926#define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG)
927#define CQE_TYPE_STOP(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG)
928#define CQE_TYPE_SLOW(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD)
929#define CQE_TYPE_FAST(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH)
930
931#define ETH_RX_ERROR_FALGS		ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG
932
933#define BNX2X_PRS_FLAG_OVERETH_IPV4(flags) \
934				(((le16_to_cpu(flags) & \
935				   PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) >> \
936				  PARSING_FLAGS_OVER_ETHERNET_PROTOCOL_SHIFT) \
937				 == PRS_FLAG_OVERETH_IPV4)
938#define BNX2X_RX_SUM_FIX(cqe) \
939	BNX2X_PRS_FLAG_OVERETH_IPV4(cqe->fast_path_cqe.pars_flags.flags)
940
941#define FP_USB_FUNC_OFF	\
942			offsetof(struct cstorm_status_block_u, func)
943#define FP_CSB_FUNC_OFF	\
944			offsetof(struct cstorm_status_block_c, func)
945
946#define HC_INDEX_ETH_RX_CQ_CONS		1
947
948#define HC_INDEX_OOO_TX_CQ_CONS		4
949
950#define HC_INDEX_ETH_TX_CQ_CONS_COS0	5
951
952#define HC_INDEX_ETH_TX_CQ_CONS_COS1	6
953
954#define HC_INDEX_ETH_TX_CQ_CONS_COS2	7
955
956#define HC_INDEX_ETH_FIRST_TX_CQ_CONS	HC_INDEX_ETH_TX_CQ_CONS_COS0
957
958#define BNX2X_RX_SB_INDEX \
959	(&fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS])
960
961#define BNX2X_TX_SB_INDEX_BASE BNX2X_TX_SB_INDEX_COS0
962
963#define BNX2X_TX_SB_INDEX_COS0 \
964	(&fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0])
965
966/* end of fast path */
967
968/* common */
969
970struct bnx2x_common {
971
972	u32			chip_id;
973/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
974#define CHIP_ID(bp)			(bp->common.chip_id & 0xfffffff0)
975
976#define CHIP_NUM(bp)			(bp->common.chip_id >> 16)
977#define CHIP_NUM_57710			0x164e
978#define CHIP_NUM_57711			0x164f
979#define CHIP_NUM_57711E			0x1650
980#define CHIP_NUM_57712			0x1662
981#define CHIP_NUM_57712_MF		0x1663
982#define CHIP_NUM_57712_VF		0x166f
983#define CHIP_NUM_57713			0x1651
984#define CHIP_NUM_57713E			0x1652
985#define CHIP_NUM_57800			0x168a
986#define CHIP_NUM_57800_MF		0x16a5
987#define CHIP_NUM_57800_VF		0x16a9
988#define CHIP_NUM_57810			0x168e
989#define CHIP_NUM_57810_MF		0x16ae
990#define CHIP_NUM_57810_VF		0x16af
991#define CHIP_NUM_57811			0x163d
992#define CHIP_NUM_57811_MF		0x163e
993#define CHIP_NUM_57811_VF		0x163f
994#define CHIP_NUM_57840_OBSOLETE		0x168d
995#define CHIP_NUM_57840_MF_OBSOLETE	0x16ab
996#define CHIP_NUM_57840_4_10		0x16a1
997#define CHIP_NUM_57840_2_20		0x16a2
998#define CHIP_NUM_57840_MF		0x16a4
999#define CHIP_NUM_57840_VF		0x16ad
1000#define CHIP_IS_E1(bp)			(CHIP_NUM(bp) == CHIP_NUM_57710)
1001#define CHIP_IS_57711(bp)		(CHIP_NUM(bp) == CHIP_NUM_57711)
1002#define CHIP_IS_57711E(bp)		(CHIP_NUM(bp) == CHIP_NUM_57711E)
1003#define CHIP_IS_57712(bp)		(CHIP_NUM(bp) == CHIP_NUM_57712)
1004#define CHIP_IS_57712_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57712_VF)
1005#define CHIP_IS_57712_MF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57712_MF)
1006#define CHIP_IS_57800(bp)		(CHIP_NUM(bp) == CHIP_NUM_57800)
1007#define CHIP_IS_57800_MF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57800_MF)
1008#define CHIP_IS_57800_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57800_VF)
1009#define CHIP_IS_57810(bp)		(CHIP_NUM(bp) == CHIP_NUM_57810)
1010#define CHIP_IS_57810_MF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57810_MF)
1011#define CHIP_IS_57810_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57810_VF)
1012#define CHIP_IS_57811(bp)		(CHIP_NUM(bp) == CHIP_NUM_57811)
1013#define CHIP_IS_57811_MF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57811_MF)
1014#define CHIP_IS_57811_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57811_VF)
1015#define CHIP_IS_57840(bp)		\
1016		((CHIP_NUM(bp) == CHIP_NUM_57840_4_10) || \
1017		 (CHIP_NUM(bp) == CHIP_NUM_57840_2_20) || \
1018		 (CHIP_NUM(bp) == CHIP_NUM_57840_OBSOLETE))
1019#define CHIP_IS_57840_MF(bp)	((CHIP_NUM(bp) == CHIP_NUM_57840_MF) || \
1020				 (CHIP_NUM(bp) == CHIP_NUM_57840_MF_OBSOLETE))
1021#define CHIP_IS_57840_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57840_VF)
1022#define CHIP_IS_E1H(bp)			(CHIP_IS_57711(bp) || \
1023					 CHIP_IS_57711E(bp))
1024#define CHIP_IS_57811xx(bp)		(CHIP_IS_57811(bp) || \
1025					 CHIP_IS_57811_MF(bp) || \
1026					 CHIP_IS_57811_VF(bp))
1027#define CHIP_IS_E2(bp)			(CHIP_IS_57712(bp) || \
1028					 CHIP_IS_57712_MF(bp) || \
1029					 CHIP_IS_57712_VF(bp))
1030#define CHIP_IS_E3(bp)			(CHIP_IS_57800(bp) || \
1031					 CHIP_IS_57800_MF(bp) || \
1032					 CHIP_IS_57800_VF(bp) || \
1033					 CHIP_IS_57810(bp) || \
1034					 CHIP_IS_57810_MF(bp) || \
1035					 CHIP_IS_57810_VF(bp) || \
1036					 CHIP_IS_57811xx(bp) || \
1037					 CHIP_IS_57840(bp) || \
1038					 CHIP_IS_57840_MF(bp) || \
1039					 CHIP_IS_57840_VF(bp))
1040#define CHIP_IS_E1x(bp)			(CHIP_IS_E1((bp)) || CHIP_IS_E1H((bp)))
1041#define USES_WARPCORE(bp)		(CHIP_IS_E3(bp))
1042#define IS_E1H_OFFSET			(!CHIP_IS_E1(bp))
1043
1044#define CHIP_REV_SHIFT			12
1045#define CHIP_REV_MASK			(0xF << CHIP_REV_SHIFT)
1046#define CHIP_REV_VAL(bp)		(bp->common.chip_id & CHIP_REV_MASK)
1047#define CHIP_REV_Ax			(0x0 << CHIP_REV_SHIFT)
1048#define CHIP_REV_Bx			(0x1 << CHIP_REV_SHIFT)
1049/* assume maximum 5 revisions */
1050#define CHIP_REV_IS_SLOW(bp)		(CHIP_REV_VAL(bp) > 0x00005000)
1051/* Emul versions are A=>0xe, B=>0xc, C=>0xa, D=>8, E=>6 */
1052#define CHIP_REV_IS_EMUL(bp)		((CHIP_REV_IS_SLOW(bp)) && \
1053					 !(CHIP_REV_VAL(bp) & 0x00001000))
1054/* FPGA versions are A=>0xf, B=>0xd, C=>0xb, D=>9, E=>7 */
1055#define CHIP_REV_IS_FPGA(bp)		((CHIP_REV_IS_SLOW(bp)) && \
1056					 (CHIP_REV_VAL(bp) & 0x00001000))
1057
1058#define CHIP_TIME(bp)			((CHIP_REV_IS_EMUL(bp)) ? 2000 : \
1059					((CHIP_REV_IS_FPGA(bp)) ? 200 : 1))
1060
1061#define CHIP_METAL(bp)			(bp->common.chip_id & 0x00000ff0)
1062#define CHIP_BOND_ID(bp)		(bp->common.chip_id & 0x0000000f)
1063#define CHIP_REV_SIM(bp)		(((CHIP_REV_MASK - CHIP_REV_VAL(bp)) >>\
1064					   (CHIP_REV_SHIFT + 1)) \
1065						<< CHIP_REV_SHIFT)
1066#define CHIP_REV(bp)			(CHIP_REV_IS_SLOW(bp) ? \
1067						CHIP_REV_SIM(bp) :\
1068						CHIP_REV_VAL(bp))
1069#define CHIP_IS_E3B0(bp)		(CHIP_IS_E3(bp) && \
1070					 (CHIP_REV(bp) == CHIP_REV_Bx))
1071#define CHIP_IS_E3A0(bp)		(CHIP_IS_E3(bp) && \
1072					 (CHIP_REV(bp) == CHIP_REV_Ax))
1073/* This define is used in two main places:
1074 * 1. In the early stages of nic_load, to know if to configure Parser / Searcher
1075 * to nic-only mode or to offload mode. Offload mode is configured if either the
1076 * chip is E1x (where MIC_MODE register is not applicable), or if cnic already
1077 * registered for this port (which means that the user wants storage services).
1078 * 2. During cnic-related load, to know if offload mode is already configured in
1079 * the HW or needs to be configured.
1080 * Since the transition from nic-mode to offload-mode in HW causes traffic
1081 * corruption, nic-mode is configured only in ports on which storage services
1082 * where never requested.
1083 */
1084#define CONFIGURE_NIC_MODE(bp)		(!CHIP_IS_E1x(bp) && !CNIC_ENABLED(bp))
1085
1086	int			flash_size;
1087#define BNX2X_NVRAM_1MB_SIZE			0x20000	/* 1M bit in bytes */
1088#define BNX2X_NVRAM_TIMEOUT_COUNT		30000
1089#define BNX2X_NVRAM_PAGE_SIZE			256
1090
1091	u32			shmem_base;
1092	u32			shmem2_base;
1093	u32			mf_cfg_base;
1094	u32			mf2_cfg_base;
1095
1096	u32			hw_config;
1097
1098	u32			bc_ver;
1099
1100	u8			int_block;
1101#define INT_BLOCK_HC			0
1102#define INT_BLOCK_IGU			1
1103#define INT_BLOCK_MODE_NORMAL		0
1104#define INT_BLOCK_MODE_BW_COMP		2
1105#define CHIP_INT_MODE_IS_NBC(bp)		\
1106			(!CHIP_IS_E1x(bp) &&	\
1107			!((bp)->common.int_block & INT_BLOCK_MODE_BW_COMP))
1108#define CHIP_INT_MODE_IS_BC(bp) (!CHIP_INT_MODE_IS_NBC(bp))
1109
1110	u8			chip_port_mode;
1111#define CHIP_4_PORT_MODE			0x0
1112#define CHIP_2_PORT_MODE			0x1
1113#define CHIP_PORT_MODE_NONE			0x2
1114#define CHIP_MODE(bp)			(bp->common.chip_port_mode)
1115#define CHIP_MODE_IS_4_PORT(bp) (CHIP_MODE(bp) == CHIP_4_PORT_MODE)
1116
1117	u32			boot_mode;
1118};
1119
1120/* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */
1121#define BNX2X_IGU_STAS_MSG_VF_CNT 64
1122#define BNX2X_IGU_STAS_MSG_PF_CNT 4
1123
1124#define MAX_IGU_ATTN_ACK_TO       100
1125/* end of common */
1126
1127/* port */
1128
1129struct bnx2x_port {
1130	u32			pmf;
1131
1132	u32			link_config[LINK_CONFIG_SIZE];
1133
1134	u32			supported[LINK_CONFIG_SIZE];
1135/* link settings - missing defines */
1136#define SUPPORTED_2500baseX_Full	(1 << 15)
1137
1138	u32			advertising[LINK_CONFIG_SIZE];
1139/* link settings - missing defines */
1140#define ADVERTISED_2500baseX_Full	(1 << 15)
1141
1142	u32			phy_addr;
1143
1144	/* used to synchronize phy accesses */
1145	struct mutex		phy_mutex;
1146
1147	u32			port_stx;
1148
1149	struct nig_stats	old_nig_stats;
1150};
1151
1152/* end of port */
1153
1154#define STATS_OFFSET32(stat_name) \
1155			(offsetof(struct bnx2x_eth_stats, stat_name) / 4)
1156
1157/* slow path */
1158
1159/* slow path work-queue */
1160extern struct workqueue_struct *bnx2x_wq;
1161
1162#define BNX2X_MAX_NUM_OF_VFS	64
1163#define BNX2X_VF_CID_WND	4 /* log num of queues per VF. HW config. */
1164#define BNX2X_CIDS_PER_VF	(1 << BNX2X_VF_CID_WND)
1165
1166/* We need to reserve doorbell addresses for all VF and queue combinations */
1167#define BNX2X_VF_CIDS		(BNX2X_MAX_NUM_OF_VFS * BNX2X_CIDS_PER_VF)
1168
1169/* The doorbell is configured to have the same number of CIDs for PFs and for
1170 * VFs. For this reason the PF CID zone is as large as the VF zone.
1171 */
1172#define BNX2X_FIRST_VF_CID	BNX2X_VF_CIDS
1173#define BNX2X_MAX_NUM_VF_QUEUES	64
1174#define BNX2X_VF_ID_INVALID	0xFF
1175
1176/* the number of VF CIDS multiplied by the amount of bytes reserved for each
1177 * cid must not exceed the size of the VF doorbell
1178 */
1179#define BNX2X_VF_BAR_SIZE	512
1180#if (BNX2X_VF_BAR_SIZE < BNX2X_CIDS_PER_VF * (1 << BNX2X_DB_SHIFT))
1181#error "VF doorbell bar size is 512"
1182#endif
1183
1184/*
1185 * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
1186 * control by the number of fast-path status blocks supported by the
1187 * device (HW/FW). Each fast-path status block (FP-SB) aka non-default
1188 * status block represents an independent interrupts context that can
1189 * serve a regular L2 networking queue. However special L2 queues such
1190 * as the FCoE queue do not require a FP-SB and other components like
1191 * the CNIC may consume FP-SB reducing the number of possible L2 queues
1192 *
1193 * If the maximum number of FP-SB available is X then:
1194 * a. If CNIC is supported it consumes 1 FP-SB thus the max number of
1195 *    regular L2 queues is Y=X-1
1196 * b. In MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
1197 * c. If the FCoE L2 queue is supported the actual number of L2 queues
1198 *    is Y+1
1199 * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
1200 *    slow-path interrupts) or Y+2 if CNIC is supported (one additional
1201 *    FP interrupt context for the CNIC).
1202 * e. The number of HW context (CID count) is always X or X+1 if FCoE
1203 *    L2 queue is supported. The cid for the FCoE L2 queue is always X.
1204 */
1205
1206/* fast-path interrupt contexts E1x */
1207#define FP_SB_MAX_E1x		16
1208/* fast-path interrupt contexts E2 */
1209#define FP_SB_MAX_E2		HC_SB_MAX_SB_E2
1210
1211union cdu_context {
1212	struct eth_context eth;
1213	char pad[1024];
1214};
1215
1216/* CDU host DB constants */
1217#define CDU_ILT_PAGE_SZ_HW	2
1218#define CDU_ILT_PAGE_SZ		(8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */
1219#define ILT_PAGE_CIDS		(CDU_ILT_PAGE_SZ / sizeof(union cdu_context))
1220
1221#define CNIC_ISCSI_CID_MAX	256
1222#define CNIC_FCOE_CID_MAX	2048
1223#define CNIC_CID_MAX		(CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX)
1224#define CNIC_ILT_LINES		DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS)
1225
1226#define QM_ILT_PAGE_SZ_HW	0
1227#define QM_ILT_PAGE_SZ		(4096 << QM_ILT_PAGE_SZ_HW) /* 4K */
1228#define QM_CID_ROUND		1024
1229
1230/* TM (timers) host DB constants */
1231#define TM_ILT_PAGE_SZ_HW	0
1232#define TM_ILT_PAGE_SZ		(4096 << TM_ILT_PAGE_SZ_HW) /* 4K */
1233#define TM_CONN_NUM		(BNX2X_FIRST_VF_CID + \
1234				 BNX2X_VF_CIDS + \
1235				 CNIC_ISCSI_CID_MAX)
1236#define TM_ILT_SZ		(8 * TM_CONN_NUM)
1237#define TM_ILT_LINES		DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ)
1238
1239/* SRC (Searcher) host DB constants */
1240#define SRC_ILT_PAGE_SZ_HW	0
1241#define SRC_ILT_PAGE_SZ		(4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */
1242#define SRC_HASH_BITS		10
1243#define SRC_CONN_NUM		(1 << SRC_HASH_BITS) /* 1024 */
1244#define SRC_ILT_SZ		(sizeof(struct src_ent) * SRC_CONN_NUM)
1245#define SRC_T2_SZ		SRC_ILT_SZ
1246#define SRC_ILT_LINES		DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ)
1247
1248#define MAX_DMAE_C		8
1249
1250/* DMA memory not used in fastpath */
1251struct bnx2x_slowpath {
1252	union {
1253		struct mac_configuration_cmd		e1x;
1254		struct eth_classify_rules_ramrod_data	e2;
1255	} mac_rdata;
1256
1257	union {
1258		struct tstorm_eth_mac_filter_config	e1x;
1259		struct eth_filter_rules_ramrod_data	e2;
1260	} rx_mode_rdata;
1261
1262	union {
1263		struct mac_configuration_cmd		e1;
1264		struct eth_multicast_rules_ramrod_data  e2;
1265	} mcast_rdata;
1266
1267	struct eth_rss_update_ramrod_data	rss_rdata;
1268
1269	/* Queue State related ramrods are always sent under rtnl_lock */
1270	union {
1271		struct client_init_ramrod_data  init_data;
1272		struct client_update_ramrod_data update_data;
1273		struct tpa_update_ramrod_data tpa_data;
1274	} q_rdata;
1275
1276	union {
1277		struct function_start_data	func_start;
1278		/* pfc configuration for DCBX ramrod */
1279		struct flow_control_configuration pfc_config;
1280	} func_rdata;
1281
1282	/* afex ramrod can not be a part of func_rdata union because these
1283	 * events might arrive in parallel to other events from func_rdata.
1284	 * Therefore, if they would have been defined in the same union,
1285	 * data can get corrupted.
1286	 */
1287	union {
1288		struct afex_vif_list_ramrod_data	viflist_data;
1289		struct function_update_data		func_update;
1290	} func_afex_rdata;
1291
1292	/* used by dmae command executer */
1293	struct dmae_command		dmae[MAX_DMAE_C];
1294
1295	u32				stats_comp;
1296	union mac_stats			mac_stats;
1297	struct nig_stats		nig_stats;
1298	struct host_port_stats		port_stats;
1299	struct host_func_stats		func_stats;
1300
1301	u32				wb_comp;
1302	u32				wb_data[4];
1303
1304	union drv_info_to_mcp		drv_info_to_mcp;
1305};
1306
1307#define bnx2x_sp(bp, var)		(&bp->slowpath->var)
1308#define bnx2x_sp_mapping(bp, var) \
1309		(bp->slowpath_mapping + offsetof(struct bnx2x_slowpath, var))
1310
1311/* attn group wiring */
1312#define MAX_DYNAMIC_ATTN_GRPS		8
1313
1314struct attn_route {
1315	u32 sig[5];
1316};
1317
1318struct iro {
1319	u32 base;
1320	u16 m1;
1321	u16 m2;
1322	u16 m3;
1323	u16 size;
1324};
1325
1326struct hw_context {
1327	union cdu_context *vcxt;
1328	dma_addr_t cxt_mapping;
1329	size_t size;
1330};
1331
1332/* forward */
1333struct bnx2x_ilt;
1334
1335struct bnx2x_vfdb;
1336
1337enum bnx2x_recovery_state {
1338	BNX2X_RECOVERY_DONE,
1339	BNX2X_RECOVERY_INIT,
1340	BNX2X_RECOVERY_WAIT,
1341	BNX2X_RECOVERY_FAILED,
1342	BNX2X_RECOVERY_NIC_LOADING
1343};
1344
1345/*
1346 * Event queue (EQ or event ring) MC hsi
1347 * NUM_EQ_PAGES and EQ_DESC_CNT_PAGE must be power of 2
1348 */
1349#define NUM_EQ_PAGES		1
1350#define EQ_DESC_CNT_PAGE	(BCM_PAGE_SIZE / sizeof(union event_ring_elem))
1351#define EQ_DESC_MAX_PAGE	(EQ_DESC_CNT_PAGE - 1)
1352#define NUM_EQ_DESC		(EQ_DESC_CNT_PAGE * NUM_EQ_PAGES)
1353#define EQ_DESC_MASK		(NUM_EQ_DESC - 1)
1354#define MAX_EQ_AVAIL		(EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2)
1355
1356/* depends on EQ_DESC_CNT_PAGE being a power of 2 */
1357#define NEXT_EQ_IDX(x)		((((x) & EQ_DESC_MAX_PAGE) == \
1358				  (EQ_DESC_MAX_PAGE - 1)) ? (x) + 2 : (x) + 1)
1359
1360/* depends on the above and on NUM_EQ_PAGES being a power of 2 */
1361#define EQ_DESC(x)		((x) & EQ_DESC_MASK)
1362
1363#define BNX2X_EQ_INDEX \
1364	(&bp->def_status_blk->sp_sb.\
1365	index_values[HC_SP_INDEX_EQ_CONS])
1366
1367/* This is a data that will be used to create a link report message.
1368 * We will keep the data used for the last link report in order
1369 * to prevent reporting the same link parameters twice.
1370 */
1371struct bnx2x_link_report_data {
1372	u16 line_speed;			/* Effective line speed */
1373	unsigned long link_report_flags;/* BNX2X_LINK_REPORT_XXX flags */
1374};
1375
1376enum {
1377	BNX2X_LINK_REPORT_FD,		/* Full DUPLEX */
1378	BNX2X_LINK_REPORT_LINK_DOWN,
1379	BNX2X_LINK_REPORT_RX_FC_ON,
1380	BNX2X_LINK_REPORT_TX_FC_ON,
1381};
1382
1383enum {
1384	BNX2X_PORT_QUERY_IDX,
1385	BNX2X_PF_QUERY_IDX,
1386	BNX2X_FCOE_QUERY_IDX,
1387	BNX2X_FIRST_QUEUE_QUERY_IDX,
1388};
1389
1390struct bnx2x_fw_stats_req {
1391	struct stats_query_header hdr;
1392	struct stats_query_entry query[FP_SB_MAX_E1x+
1393		BNX2X_FIRST_QUEUE_QUERY_IDX];
1394};
1395
1396struct bnx2x_fw_stats_data {
1397	struct stats_counter		storm_counters;
1398	struct per_port_stats		port;
1399	struct per_pf_stats		pf;
1400	struct fcoe_statistics_params	fcoe;
1401	struct per_queue_stats		queue_stats[1];
1402};
1403
1404/* Public slow path states */
1405enum sp_rtnl_flag {
1406	BNX2X_SP_RTNL_SETUP_TC,
1407	BNX2X_SP_RTNL_TX_TIMEOUT,
1408	BNX2X_SP_RTNL_FAN_FAILURE,
1409	BNX2X_SP_RTNL_AFEX_F_UPDATE,
1410	BNX2X_SP_RTNL_ENABLE_SRIOV,
1411	BNX2X_SP_RTNL_VFPF_MCAST,
1412	BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
1413	BNX2X_SP_RTNL_RX_MODE,
1414	BNX2X_SP_RTNL_HYPERVISOR_VLAN,
1415	BNX2X_SP_RTNL_TX_STOP,
1416};
1417
1418struct bnx2x_prev_path_list {
1419	struct list_head list;
1420	u8 bus;
1421	u8 slot;
1422	u8 path;
1423	u8 aer;
1424	u8 undi;
1425};
1426
1427struct bnx2x_sp_objs {
1428	/* MACs object */
1429	struct bnx2x_vlan_mac_obj mac_obj;
1430
1431	/* Queue State object */
1432	struct bnx2x_queue_sp_obj q_obj;
1433};
1434
1435struct bnx2x_fp_stats {
1436	struct tstorm_per_queue_stats old_tclient;
1437	struct ustorm_per_queue_stats old_uclient;
1438	struct xstorm_per_queue_stats old_xclient;
1439	struct bnx2x_eth_q_stats eth_q_stats;
1440	struct bnx2x_eth_q_stats_old eth_q_stats_old;
1441};
1442
1443struct bnx2x {
1444	/* Fields used in the tx and intr/napi performance paths
1445	 * are grouped together in the beginning of the structure
1446	 */
1447	struct bnx2x_fastpath	*fp;
1448	struct bnx2x_sp_objs	*sp_objs;
1449	struct bnx2x_fp_stats	*fp_stats;
1450	struct bnx2x_fp_txdata	*bnx2x_txq;
1451	void __iomem		*regview;
1452	void __iomem		*doorbells;
1453	u16			db_size;
1454
1455	u8			pf_num;	/* absolute PF number */
1456	u8			pfid;	/* per-path PF number */
1457	int			base_fw_ndsb; /**/
1458#define BP_PATH(bp)			(CHIP_IS_E1x(bp) ? 0 : (bp->pf_num & 1))
1459#define BP_PORT(bp)			(bp->pfid & 1)
1460#define BP_FUNC(bp)			(bp->pfid)
1461#define BP_ABS_FUNC(bp)			(bp->pf_num)
1462#define BP_VN(bp)			((bp)->pfid >> 1)
1463#define BP_MAX_VN_NUM(bp)		(CHIP_MODE_IS_4_PORT(bp) ? 2 : 4)
1464#define BP_L_ID(bp)			(BP_VN(bp) << 2)
1465#define BP_FW_MB_IDX_VN(bp, vn)		(BP_PORT(bp) +\
1466	  (vn) * ((CHIP_IS_E1x(bp) || (CHIP_MODE_IS_4_PORT(bp))) ? 2  : 1))
1467#define BP_FW_MB_IDX(bp)		BP_FW_MB_IDX_VN(bp, BP_VN(bp))
1468
1469#ifdef CONFIG_BNX2X_SRIOV
1470	/* protects vf2pf mailbox from simultaneous access */
1471	struct mutex		vf2pf_mutex;
1472	/* vf pf channel mailbox contains request and response buffers */
1473	struct bnx2x_vf_mbx_msg	*vf2pf_mbox;
1474	dma_addr_t		vf2pf_mbox_mapping;
1475
1476	/* we set aside a copy of the acquire response */
1477	struct pfvf_acquire_resp_tlv acquire_resp;
1478
1479	/* bulletin board for messages from pf to vf */
1480	union pf_vf_bulletin   *pf2vf_bulletin;
1481	dma_addr_t		pf2vf_bulletin_mapping;
1482
1483	struct pf_vf_bulletin_content	old_bulletin;
1484
1485	u16 requested_nr_virtfn;
1486#endif /* CONFIG_BNX2X_SRIOV */
1487
1488	struct net_device	*dev;
1489	struct pci_dev		*pdev;
1490
1491	const struct iro	*iro_arr;
1492#define IRO (bp->iro_arr)
1493
1494	enum bnx2x_recovery_state recovery_state;
1495	int			is_leader;
1496	struct msix_entry	*msix_table;
1497
1498	int			tx_ring_size;
1499
1500/* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
1501#define ETH_OVREHEAD		(ETH_HLEN + 8 + 8)
1502#define ETH_MIN_PACKET_SIZE		60
1503#define ETH_MAX_PACKET_SIZE		1500
1504#define ETH_MAX_JUMBO_PACKET_SIZE	9600
1505/* TCP with Timestamp Option (32) + IPv6 (40) */
1506#define ETH_MAX_TPA_HEADER_SIZE		72
1507
1508	/* Max supported alignment is 256 (8 shift) */
1509#define BNX2X_RX_ALIGN_SHIFT		min(8, L1_CACHE_SHIFT)
1510
1511	/* FW uses 2 Cache lines Alignment for start packet and size
1512	 *
1513	 * We assume skb_build() uses sizeof(struct skb_shared_info) bytes
1514	 * at the end of skb->data, to avoid wasting a full cache line.
1515	 * This reduces memory use (skb->truesize).
1516	 */
1517#define BNX2X_FW_RX_ALIGN_START	(1UL << BNX2X_RX_ALIGN_SHIFT)
1518
1519#define BNX2X_FW_RX_ALIGN_END					\
1520	max_t(u64, 1UL << BNX2X_RX_ALIGN_SHIFT,			\
1521	    SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
1522
1523#define BNX2X_PXP_DRAM_ALIGN		(BNX2X_RX_ALIGN_SHIFT - 5)
1524
1525	struct host_sp_status_block *def_status_blk;
1526#define DEF_SB_IGU_ID			16
1527#define DEF_SB_ID			HC_SP_SB_ID
1528	__le16			def_idx;
1529	__le16			def_att_idx;
1530	u32			attn_state;
1531	struct attn_route	attn_group[MAX_DYNAMIC_ATTN_GRPS];
1532
1533	/* slow path ring */
1534	struct eth_spe		*spq;
1535	dma_addr_t		spq_mapping;
1536	u16			spq_prod_idx;
1537	struct eth_spe		*spq_prod_bd;
1538	struct eth_spe		*spq_last_bd;
1539	__le16			*dsb_sp_prod;
1540	atomic_t		cq_spq_left; /* ETH_XXX ramrods credit */
1541	/* used to synchronize spq accesses */
1542	spinlock_t		spq_lock;
1543
1544	/* event queue */
1545	union event_ring_elem	*eq_ring;
1546	dma_addr_t		eq_mapping;
1547	u16			eq_prod;
1548	u16			eq_cons;
1549	__le16			*eq_cons_sb;
1550	atomic_t		eq_spq_left; /* COMMON_XXX ramrods credit */
1551
1552	/* Counter for marking that there is a STAT_QUERY ramrod pending */
1553	u16			stats_pending;
1554	/*  Counter for completed statistics ramrods */
1555	u16			stats_comp;
1556
1557	/* End of fields used in the performance code paths */
1558
1559	int			panic;
1560	int			msg_enable;
1561
1562	u32			flags;
1563#define PCIX_FLAG			(1 << 0)
1564#define PCI_32BIT_FLAG			(1 << 1)
1565#define ONE_PORT_FLAG			(1 << 2)
1566#define NO_WOL_FLAG			(1 << 3)
1567#define USING_MSIX_FLAG			(1 << 5)
1568#define USING_MSI_FLAG			(1 << 6)
1569#define DISABLE_MSI_FLAG		(1 << 7)
1570#define TPA_ENABLE_FLAG			(1 << 8)
1571#define NO_MCP_FLAG			(1 << 9)
1572#define GRO_ENABLE_FLAG			(1 << 10)
1573#define MF_FUNC_DIS			(1 << 11)
1574#define OWN_CNIC_IRQ			(1 << 12)
1575#define NO_ISCSI_OOO_FLAG		(1 << 13)
1576#define NO_ISCSI_FLAG			(1 << 14)
1577#define NO_FCOE_FLAG			(1 << 15)
1578#define BC_SUPPORTS_PFC_STATS		(1 << 17)
1579#define TX_SWITCHING			(1 << 18)
1580#define BC_SUPPORTS_FCOE_FEATURES	(1 << 19)
1581#define USING_SINGLE_MSIX_FLAG		(1 << 20)
1582#define BC_SUPPORTS_DCBX_MSG_NON_PMF	(1 << 21)
1583#define IS_VF_FLAG			(1 << 22)
1584#define INTERRUPTS_ENABLED_FLAG		(1 << 23)
1585#define BC_SUPPORTS_RMMOD_CMD		(1 << 24)
1586#define HAS_PHYS_PORT_ID		(1 << 25)
1587#define AER_ENABLED			(1 << 26)
1588
1589#define BP_NOMCP(bp)			((bp)->flags & NO_MCP_FLAG)
1590
1591#ifdef CONFIG_BNX2X_SRIOV
1592#define IS_VF(bp)			((bp)->flags & IS_VF_FLAG)
1593#define IS_PF(bp)			(!((bp)->flags & IS_VF_FLAG))
1594#else
1595#define IS_VF(bp)			false
1596#define IS_PF(bp)			true
1597#endif
1598
1599#define NO_ISCSI(bp)		((bp)->flags & NO_ISCSI_FLAG)
1600#define NO_ISCSI_OOO(bp)	((bp)->flags & NO_ISCSI_OOO_FLAG)
1601#define NO_FCOE(bp)		((bp)->flags & NO_FCOE_FLAG)
1602
1603	u8			cnic_support;
1604	bool			cnic_enabled;
1605	bool			cnic_loaded;
1606	struct cnic_eth_dev	*(*cnic_probe)(struct net_device *);
1607
1608	/* Flag that indicates that we can start looking for FCoE L2 queue
1609	 * completions in the default status block.
1610	 */
1611	bool			fcoe_init;
1612
1613	int			mrrs;
1614
1615	struct delayed_work	sp_task;
1616	atomic_t		interrupt_occurred;
1617	struct delayed_work	sp_rtnl_task;
1618
1619	struct delayed_work	period_task;
1620	struct timer_list	timer;
1621	int			current_interval;
1622
1623	u16			fw_seq;
1624	u16			fw_drv_pulse_wr_seq;
1625	u32			func_stx;
1626
1627	struct link_params	link_params;
1628	struct link_vars	link_vars;
1629	u32			link_cnt;
1630	struct bnx2x_link_report_data last_reported_link;
1631
1632	struct mdio_if_info	mdio;
1633
1634	struct bnx2x_common	common;
1635	struct bnx2x_port	port;
1636
1637	struct cmng_init	cmng;
1638
1639	u32			mf_config[E1HVN_MAX];
1640	u32			mf_ext_config;
1641	u32			path_has_ovlan; /* E3 */
1642	u16			mf_ov;
1643	u8			mf_mode;
1644#define IS_MF(bp)		(bp->mf_mode != 0)
1645#define IS_MF_SI(bp)		(bp->mf_mode == MULTI_FUNCTION_SI)
1646#define IS_MF_SD(bp)		(bp->mf_mode == MULTI_FUNCTION_SD)
1647#define IS_MF_AFEX(bp)		(bp->mf_mode == MULTI_FUNCTION_AFEX)
1648
1649	u8			wol;
1650
1651	int			rx_ring_size;
1652
1653	u16			tx_quick_cons_trip_int;
1654	u16			tx_quick_cons_trip;
1655	u16			tx_ticks_int;
1656	u16			tx_ticks;
1657
1658	u16			rx_quick_cons_trip_int;
1659	u16			rx_quick_cons_trip;
1660	u16			rx_ticks_int;
1661	u16			rx_ticks;
1662/* Maximal coalescing timeout in us */
1663#define BNX2X_MAX_COALESCE_TOUT		(0xff*BNX2X_BTR)
1664
1665	u32			lin_cnt;
1666
1667	u16			state;
1668#define BNX2X_STATE_CLOSED		0
1669#define BNX2X_STATE_OPENING_WAIT4_LOAD	0x1000
1670#define BNX2X_STATE_OPENING_WAIT4_PORT	0x2000
1671#define BNX2X_STATE_OPEN		0x3000
1672#define BNX2X_STATE_CLOSING_WAIT4_HALT	0x4000
1673#define BNX2X_STATE_CLOSING_WAIT4_DELETE 0x5000
1674
1675#define BNX2X_STATE_DIAG		0xe000
1676#define BNX2X_STATE_ERROR		0xf000
1677
1678#define BNX2X_MAX_PRIORITY		8
1679#define BNX2X_MAX_ENTRIES_PER_PRI	16
1680#define BNX2X_MAX_COS			3
1681#define BNX2X_MAX_TX_COS		2
1682	int			num_queues;
1683	uint			num_ethernet_queues;
1684	uint			num_cnic_queues;
1685	int			num_napi_queues;
1686	int			disable_tpa;
1687
1688	u32			rx_mode;
1689#define BNX2X_RX_MODE_NONE		0
1690#define BNX2X_RX_MODE_NORMAL		1
1691#define BNX2X_RX_MODE_ALLMULTI		2
1692#define BNX2X_RX_MODE_PROMISC		3
1693#define BNX2X_MAX_MULTICAST		64
1694
1695	u8			igu_dsb_id;
1696	u8			igu_base_sb;
1697	u8			igu_sb_cnt;
1698	u8			min_msix_vec_cnt;
1699
1700	u32			igu_base_addr;
1701	dma_addr_t		def_status_blk_mapping;
1702
1703	struct bnx2x_slowpath	*slowpath;
1704	dma_addr_t		slowpath_mapping;
1705
1706	/* Total number of FW statistics requests */
1707	u8			fw_stats_num;
1708
1709	/*
1710	 * This is a memory buffer that will contain both statistics
1711	 * ramrod request and data.
1712	 */
1713	void			*fw_stats;
1714	dma_addr_t		fw_stats_mapping;
1715
1716	/*
1717	 * FW statistics request shortcut (points at the
1718	 * beginning of fw_stats buffer).
1719	 */
1720	struct bnx2x_fw_stats_req	*fw_stats_req;
1721	dma_addr_t			fw_stats_req_mapping;
1722	int				fw_stats_req_sz;
1723
1724	/*
1725	 * FW statistics data shortcut (points at the beginning of
1726	 * fw_stats buffer + fw_stats_req_sz).
1727	 */
1728	struct bnx2x_fw_stats_data	*fw_stats_data;
1729	dma_addr_t			fw_stats_data_mapping;
1730	int				fw_stats_data_sz;
1731
1732	/* For max 1024 cids (VF RSS), 32KB ILT page size and 1KB
1733	 * context size we need 8 ILT entries.
1734	 */
1735#define ILT_MAX_L2_LINES	32
1736	struct hw_context	context[ILT_MAX_L2_LINES];
1737
1738	struct bnx2x_ilt	*ilt;
1739#define BP_ILT(bp)		((bp)->ilt)
1740#define ILT_MAX_LINES		256
1741/*
1742 * Maximum supported number of RSS queues: number of IGU SBs minus one that goes
1743 * to CNIC.
1744 */
1745#define BNX2X_MAX_RSS_COUNT(bp)	((bp)->igu_sb_cnt - CNIC_SUPPORT(bp))
1746
1747/*
1748 * Maximum CID count that might be required by the bnx2x:
1749 * Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI
1750 */
1751
1752#define BNX2X_L2_CID_COUNT(bp)	(BNX2X_NUM_ETH_QUEUES(bp) * BNX2X_MULTI_TX_COS \
1753				+ CNIC_SUPPORT(bp) * (2 + UIO_CID_PAD(bp)))
1754#define BNX2X_L2_MAX_CID(bp)	(BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS \
1755				+ CNIC_SUPPORT(bp) * (2 + UIO_CID_PAD(bp)))
1756#define L2_ILT_LINES(bp)	(DIV_ROUND_UP(BNX2X_L2_CID_COUNT(bp),\
1757					ILT_PAGE_CIDS))
1758
1759	int			qm_cid_count;
1760
1761	bool			dropless_fc;
1762
1763	void			*t2;
1764	dma_addr_t		t2_mapping;
1765	struct cnic_ops	__rcu	*cnic_ops;
1766	void			*cnic_data;
1767	u32			cnic_tag;
1768	struct cnic_eth_dev	cnic_eth_dev;
1769	union host_hc_status_block cnic_sb;
1770	dma_addr_t		cnic_sb_mapping;
1771	struct eth_spe		*cnic_kwq;
1772	struct eth_spe		*cnic_kwq_prod;
1773	struct eth_spe		*cnic_kwq_cons;
1774	struct eth_spe		*cnic_kwq_last;
1775	u16			cnic_kwq_pending;
1776	u16			cnic_spq_pending;
1777	u8			fip_mac[ETH_ALEN];
1778	struct mutex		cnic_mutex;
1779	struct bnx2x_vlan_mac_obj iscsi_l2_mac_obj;
1780
1781	/* Start index of the "special" (CNIC related) L2 clients */
1782	u8				cnic_base_cl_id;
1783
1784	int			dmae_ready;
1785	/* used to synchronize dmae accesses */
1786	spinlock_t		dmae_lock;
1787
1788	/* used to protect the FW mail box */
1789	struct mutex		fw_mb_mutex;
1790
1791	/* used to synchronize stats collecting */
1792	int			stats_state;
1793
1794	/* used for synchronization of concurrent threads statistics handling */
1795	spinlock_t		stats_lock;
1796
1797	/* used by dmae command loader */
1798	struct dmae_command	stats_dmae;
1799	int			executer_idx;
1800
1801	u16			stats_counter;
1802	struct bnx2x_eth_stats	eth_stats;
1803	struct host_func_stats		func_stats;
1804	struct bnx2x_eth_stats_old	eth_stats_old;
1805	struct bnx2x_net_stats_old	net_stats_old;
1806	struct bnx2x_fw_port_stats_old	fw_stats_old;
1807	bool			stats_init;
1808
1809	struct z_stream_s	*strm;
1810	void			*gunzip_buf;
1811	dma_addr_t		gunzip_mapping;
1812	int			gunzip_outlen;
1813#define FW_BUF_SIZE			0x8000
1814#define GUNZIP_BUF(bp)			(bp->gunzip_buf)
1815#define GUNZIP_PHYS(bp)			(bp->gunzip_mapping)
1816#define GUNZIP_OUTLEN(bp)		(bp->gunzip_outlen)
1817
1818	struct raw_op		*init_ops;
1819	/* Init blocks offsets inside init_ops */
1820	u16			*init_ops_offsets;
1821	/* Data blob - has 32 bit granularity */
1822	u32			*init_data;
1823	u32			init_mode_flags;
1824#define INIT_MODE_FLAGS(bp)	(bp->init_mode_flags)
1825	/* Zipped PRAM blobs - raw data */
1826	const u8		*tsem_int_table_data;
1827	const u8		*tsem_pram_data;
1828	const u8		*usem_int_table_data;
1829	const u8		*usem_pram_data;
1830	const u8		*xsem_int_table_data;
1831	const u8		*xsem_pram_data;
1832	const u8		*csem_int_table_data;
1833	const u8		*csem_pram_data;
1834#define INIT_OPS(bp)			(bp->init_ops)
1835#define INIT_OPS_OFFSETS(bp)		(bp->init_ops_offsets)
1836#define INIT_DATA(bp)			(bp->init_data)
1837#define INIT_TSEM_INT_TABLE_DATA(bp)	(bp->tsem_int_table_data)
1838#define INIT_TSEM_PRAM_DATA(bp)		(bp->tsem_pram_data)
1839#define INIT_USEM_INT_TABLE_DATA(bp)	(bp->usem_int_table_data)
1840#define INIT_USEM_PRAM_DATA(bp)		(bp->usem_pram_data)
1841#define INIT_XSEM_INT_TABLE_DATA(bp)	(bp->xsem_int_table_data)
1842#define INIT_XSEM_PRAM_DATA(bp)		(bp->xsem_pram_data)
1843#define INIT_CSEM_INT_TABLE_DATA(bp)	(bp->csem_int_table_data)
1844#define INIT_CSEM_PRAM_DATA(bp)		(bp->csem_pram_data)
1845
1846#define PHY_FW_VER_LEN			20
1847	char			fw_ver[32];
1848	const struct firmware	*firmware;
1849
1850	struct bnx2x_vfdb	*vfdb;
1851#define IS_SRIOV(bp)		((bp)->vfdb)
1852
1853	/* DCB support on/off */
1854	u16 dcb_state;
1855#define BNX2X_DCB_STATE_OFF			0
1856#define BNX2X_DCB_STATE_ON			1
1857
1858	/* DCBX engine mode */
1859	int dcbx_enabled;
1860#define BNX2X_DCBX_ENABLED_OFF			0
1861#define BNX2X_DCBX_ENABLED_ON_NEG_OFF		1
1862#define BNX2X_DCBX_ENABLED_ON_NEG_ON		2
1863#define BNX2X_DCBX_ENABLED_INVALID		(-1)
1864
1865	bool dcbx_mode_uset;
1866
1867	struct bnx2x_config_dcbx_params		dcbx_config_params;
1868	struct bnx2x_dcbx_port_params		dcbx_port_params;
1869	int					dcb_version;
1870
1871	/* CAM credit pools */
1872
1873	/* used only in sriov */
1874	struct bnx2x_credit_pool_obj		vlans_pool;
1875
1876	struct bnx2x_credit_pool_obj		macs_pool;
1877
1878	/* RX_MODE object */
1879	struct bnx2x_rx_mode_obj		rx_mode_obj;
1880
1881	/* MCAST object */
1882	struct bnx2x_mcast_obj			mcast_obj;
1883
1884	/* RSS configuration object */
1885	struct bnx2x_rss_config_obj		rss_conf_obj;
1886
1887	/* Function State controlling object */
1888	struct bnx2x_func_sp_obj		func_obj;
1889
1890	unsigned long				sp_state;
1891
1892	/* operation indication for the sp_rtnl task */
1893	unsigned long				sp_rtnl_state;
1894
1895	/* DCBX Negotiation results */
1896	struct dcbx_features			dcbx_local_feat;
1897	u32					dcbx_error;
1898
1899#ifdef BCM_DCBNL
1900	struct dcbx_features			dcbx_remote_feat;
1901	u32					dcbx_remote_flags;
1902#endif
1903	/* AFEX: store default vlan used */
1904	int					afex_def_vlan_tag;
1905	enum mf_cfg_afex_vlan_mode		afex_vlan_mode;
1906	u32					pending_max;
1907
1908	/* multiple tx classes of service */
1909	u8					max_cos;
1910
1911	/* priority to cos mapping */
1912	u8					prio_to_cos[8];
1913
1914	int fp_array_size;
1915	u32 dump_preset_idx;
1916	bool					stats_started;
1917	struct semaphore			stats_sema;
1918
1919	u8					phys_port_id[ETH_ALEN];
1920};
1921
1922/* Tx queues may be less or equal to Rx queues */
1923extern int num_queues;
1924#define BNX2X_NUM_QUEUES(bp)	(bp->num_queues)
1925#define BNX2X_NUM_ETH_QUEUES(bp) ((bp)->num_ethernet_queues)
1926#define BNX2X_NUM_NON_CNIC_QUEUES(bp)	(BNX2X_NUM_QUEUES(bp) - \
1927					 (bp)->num_cnic_queues)
1928#define BNX2X_NUM_RX_QUEUES(bp)	BNX2X_NUM_QUEUES(bp)
1929
1930#define is_multi(bp)		(BNX2X_NUM_QUEUES(bp) > 1)
1931
1932#define BNX2X_MAX_QUEUES(bp)	BNX2X_MAX_RSS_COUNT(bp)
1933/* #define is_eth_multi(bp)	(BNX2X_NUM_ETH_QUEUES(bp) > 1) */
1934
1935#define RSS_IPV4_CAP_MASK						\
1936	TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_CAPABILITY
1937
1938#define RSS_IPV4_TCP_CAP_MASK						\
1939	TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_TCP_CAPABILITY
1940
1941#define RSS_IPV6_CAP_MASK						\
1942	TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_CAPABILITY
1943
1944#define RSS_IPV6_TCP_CAP_MASK						\
1945	TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_TCP_CAPABILITY
1946
1947/* func init flags */
1948#define FUNC_FLG_RSS		0x0001
1949#define FUNC_FLG_STATS		0x0002
1950/* removed  FUNC_FLG_UNMATCHED	0x0004 */
1951#define FUNC_FLG_TPA		0x0008
1952#define FUNC_FLG_SPQ		0x0010
1953#define FUNC_FLG_LEADING	0x0020	/* PF only */
1954#define FUNC_FLG_LEADING_STATS	0x0040
1955struct bnx2x_func_init_params {
1956	/* dma */
1957	dma_addr_t	fw_stat_map;	/* valid iff FUNC_FLG_STATS */
1958	dma_addr_t	spq_map;	/* valid iff FUNC_FLG_SPQ */
1959
1960	u16		func_flgs;
1961	u16		func_id;	/* abs fid */
1962	u16		pf_id;
1963	u16		spq_prod;	/* valid iff FUNC_FLG_SPQ */
1964};
1965
1966#define for_each_cnic_queue(bp, var) \
1967	for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
1968	     (var)++) \
1969		if (skip_queue(bp, var))	\
1970			continue;		\
1971		else
1972
1973#define for_each_eth_queue(bp, var) \
1974	for ((var) = 0; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++)
1975
1976#define for_each_nondefault_eth_queue(bp, var) \
1977	for ((var) = 1; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++)
1978
1979#define for_each_queue(bp, var) \
1980	for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
1981		if (skip_queue(bp, var))	\
1982			continue;		\
1983		else
1984
1985/* Skip forwarding FP */
1986#define for_each_valid_rx_queue(bp, var)			\
1987	for ((var) = 0;						\
1988	     (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) :	\
1989		      BNX2X_NUM_ETH_QUEUES(bp));		\
1990	     (var)++)						\
1991		if (skip_rx_queue(bp, var))			\
1992			continue;				\
1993		else
1994
1995#define for_each_rx_queue_cnic(bp, var) \
1996	for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
1997	     (var)++) \
1998		if (skip_rx_queue(bp, var))	\
1999			continue;		\
2000		else
2001
2002#define for_each_rx_queue(bp, var) \
2003	for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
2004		if (skip_rx_queue(bp, var))	\
2005			continue;		\
2006		else
2007
2008/* Skip OOO FP */
2009#define for_each_valid_tx_queue(bp, var)			\
2010	for ((var) = 0;						\
2011	     (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) :	\
2012		      BNX2X_NUM_ETH_QUEUES(bp));		\
2013	     (var)++)						\
2014		if (skip_tx_queue(bp, var))			\
2015			continue;				\
2016		else
2017
2018#define for_each_tx_queue_cnic(bp, var) \
2019	for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
2020	     (var)++) \
2021		if (skip_tx_queue(bp, var))	\
2022			continue;		\
2023		else
2024
2025#define for_each_tx_queue(bp, var) \
2026	for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
2027		if (skip_tx_queue(bp, var))	\
2028			continue;		\
2029		else
2030
2031#define for_each_nondefault_queue(bp, var) \
2032	for ((var) = 1; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
2033		if (skip_queue(bp, var))	\
2034			continue;		\
2035		else
2036
2037#define for_each_cos_in_tx_queue(fp, var) \
2038	for ((var) = 0; (var) < (fp)->max_cos; (var)++)
2039
2040/* skip rx queue
2041 * if FCOE l2 support is disabled and this is the fcoe L2 queue
2042 */
2043#define skip_rx_queue(bp, idx)	(NO_FCOE(bp) && IS_FCOE_IDX(idx))
2044
2045/* skip tx queue
2046 * if FCOE l2 support is disabled and this is the fcoe L2 queue
2047 */
2048#define skip_tx_queue(bp, idx)	(NO_FCOE(bp) && IS_FCOE_IDX(idx))
2049
2050#define skip_queue(bp, idx)	(NO_FCOE(bp) && IS_FCOE_IDX(idx))
2051
2052/**
2053 * bnx2x_set_mac_one - configure a single MAC address
2054 *
2055 * @bp:			driver handle
2056 * @mac:		MAC to configure
2057 * @obj:		MAC object handle
2058 * @set:		if 'true' add a new MAC, otherwise - delete
2059 * @mac_type:		the type of the MAC to configure (e.g. ETH, UC list)
2060 * @ramrod_flags:	RAMROD_XXX flags (e.g. RAMROD_CONT, RAMROD_COMP_WAIT)
2061 *
2062 * Configures one MAC according to provided parameters or continues the
2063 * execution of previously scheduled commands if RAMROD_CONT is set in
2064 * ramrod_flags.
2065 *
2066 * Returns zero if operation has successfully completed, a positive value if the
2067 * operation has been successfully scheduled and a negative - if a requested
2068 * operations has failed.
2069 */
2070int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
2071		      struct bnx2x_vlan_mac_obj *obj, bool set,
2072		      int mac_type, unsigned long *ramrod_flags);
2073/**
2074 * bnx2x_del_all_macs - delete all MACs configured for the specific MAC object
2075 *
2076 * @bp:			driver handle
2077 * @mac_obj:		MAC object handle
2078 * @mac_type:		type of the MACs to clear (BNX2X_XXX_MAC)
2079 * @wait_for_comp:	if 'true' block until completion
2080 *
2081 * Deletes all MACs of the specific type (e.g. ETH, UC list).
2082 *
2083 * Returns zero if operation has successfully completed, a positive value if the
2084 * operation has been successfully scheduled and a negative - if a requested
2085 * operations has failed.
2086 */
2087int bnx2x_del_all_macs(struct bnx2x *bp,
2088		       struct bnx2x_vlan_mac_obj *mac_obj,
2089		       int mac_type, bool wait_for_comp);
2090
2091/* Init Function API  */
2092void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p);
2093void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
2094		    u8 vf_valid, int fw_sb_id, int igu_sb_id);
2095int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port);
2096int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port);
2097int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode);
2098int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port);
2099void bnx2x_read_mf_cfg(struct bnx2x *bp);
2100
2101int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val);
2102
2103/* dmae */
2104void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32);
2105void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
2106		      u32 len32);
2107void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx);
2108u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type);
2109u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode);
2110u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
2111		      bool with_comp, u8 comp_type);
2112
2113void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
2114			       u8 src_type, u8 dst_type);
2115int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
2116			       u32 *comp);
2117
2118/* FLR related routines */
2119u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp);
2120void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count);
2121int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt);
2122u8 bnx2x_is_pcie_pending(struct pci_dev *dev);
2123int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
2124				    char *msg, u32 poll_cnt);
2125
2126void bnx2x_calc_fc_adv(struct bnx2x *bp);
2127int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
2128		  u32 data_hi, u32 data_lo, int cmd_type);
2129void bnx2x_update_coalesce(struct bnx2x *bp);
2130int bnx2x_get_cur_phy_idx(struct bnx2x *bp);
2131
2132bool bnx2x_port_after_undi(struct bnx2x *bp);
2133
2134static inline u32 reg_poll(struct bnx2x *bp, u32 reg, u32 expected, int ms,
2135			   int wait)
2136{
2137	u32 val;
2138
2139	do {
2140		val = REG_RD(bp, reg);
2141		if (val == expected)
2142			break;
2143		ms -= wait;
2144		msleep(wait);
2145
2146	} while (ms > 0);
2147
2148	return val;
2149}
2150
2151void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id,
2152			    bool is_pf);
2153
2154#define BNX2X_ILT_ZALLOC(x, y, size)					\
2155	x = dma_zalloc_coherent(&bp->pdev->dev, size, y, GFP_KERNEL)
2156
2157#define BNX2X_ILT_FREE(x, y, size) \
2158	do { \
2159		if (x) { \
2160			dma_free_coherent(&bp->pdev->dev, size, x, y); \
2161			x = NULL; \
2162			y = 0; \
2163		} \
2164	} while (0)
2165
2166#define ILOG2(x)	(ilog2((x)))
2167
2168#define ILT_NUM_PAGE_ENTRIES	(3072)
2169/* In 57710/11 we use whole table since we have 8 func
2170 * In 57712 we have only 4 func, but use same size per func, then only half of
2171 * the table in use
2172 */
2173#define ILT_PER_FUNC		(ILT_NUM_PAGE_ENTRIES/8)
2174
2175#define FUNC_ILT_BASE(func)	(func * ILT_PER_FUNC)
2176/*
2177 * the phys address is shifted right 12 bits and has an added
2178 * 1=valid bit added to the 53rd bit
2179 * then since this is a wide register(TM)
2180 * we split it into two 32 bit writes
2181 */
2182#define ONCHIP_ADDR1(x)		((u32)(((u64)x >> 12) & 0xFFFFFFFF))
2183#define ONCHIP_ADDR2(x)		((u32)((1 << 20) | ((u64)x >> 44)))
2184
2185/* load/unload mode */
2186#define LOAD_NORMAL			0
2187#define LOAD_OPEN			1
2188#define LOAD_DIAG			2
2189#define LOAD_LOOPBACK_EXT		3
2190#define UNLOAD_NORMAL			0
2191#define UNLOAD_CLOSE			1
2192#define UNLOAD_RECOVERY			2
2193
2194/* DMAE command defines */
2195#define DMAE_TIMEOUT			-1
2196#define DMAE_PCI_ERROR			-2	/* E2 and onward */
2197#define DMAE_NOT_RDY			-3
2198#define DMAE_PCI_ERR_FLAG		0x80000000
2199
2200#define DMAE_SRC_PCI			0
2201#define DMAE_SRC_GRC			1
2202
2203#define DMAE_DST_NONE			0
2204#define DMAE_DST_PCI			1
2205#define DMAE_DST_GRC			2
2206
2207#define DMAE_COMP_PCI			0
2208#define DMAE_COMP_GRC			1
2209
2210/* E2 and onward - PCI error handling in the completion */
2211
2212#define DMAE_COMP_REGULAR		0
2213#define DMAE_COM_SET_ERR		1
2214
2215#define DMAE_CMD_SRC_PCI		(DMAE_SRC_PCI << \
2216						DMAE_COMMAND_SRC_SHIFT)
2217#define DMAE_CMD_SRC_GRC		(DMAE_SRC_GRC << \
2218						DMAE_COMMAND_SRC_SHIFT)
2219
2220#define DMAE_CMD_DST_PCI		(DMAE_DST_PCI << \
2221						DMAE_COMMAND_DST_SHIFT)
2222#define DMAE_CMD_DST_GRC		(DMAE_DST_GRC << \
2223						DMAE_COMMAND_DST_SHIFT)
2224
2225#define DMAE_CMD_C_DST_PCI		(DMAE_COMP_PCI << \
2226						DMAE_COMMAND_C_DST_SHIFT)
2227#define DMAE_CMD_C_DST_GRC		(DMAE_COMP_GRC << \
2228						DMAE_COMMAND_C_DST_SHIFT)
2229
2230#define DMAE_CMD_C_ENABLE		DMAE_COMMAND_C_TYPE_ENABLE
2231
2232#define DMAE_CMD_ENDIANITY_NO_SWAP	(0 << DMAE_COMMAND_ENDIANITY_SHIFT)
2233#define DMAE_CMD_ENDIANITY_B_SWAP	(1 << DMAE_COMMAND_ENDIANITY_SHIFT)
2234#define DMAE_CMD_ENDIANITY_DW_SWAP	(2 << DMAE_COMMAND_ENDIANITY_SHIFT)
2235#define DMAE_CMD_ENDIANITY_B_DW_SWAP	(3 << DMAE_COMMAND_ENDIANITY_SHIFT)
2236
2237#define DMAE_CMD_PORT_0			0
2238#define DMAE_CMD_PORT_1			DMAE_COMMAND_PORT
2239
2240#define DMAE_CMD_SRC_RESET		DMAE_COMMAND_SRC_RESET
2241#define DMAE_CMD_DST_RESET		DMAE_COMMAND_DST_RESET
2242#define DMAE_CMD_E1HVN_SHIFT		DMAE_COMMAND_E1HVN_SHIFT
2243
2244#define DMAE_SRC_PF			0
2245#define DMAE_SRC_VF			1
2246
2247#define DMAE_DST_PF			0
2248#define DMAE_DST_VF			1
2249
2250#define DMAE_C_SRC			0
2251#define DMAE_C_DST			1
2252
2253#define DMAE_LEN32_RD_MAX		0x80
2254#define DMAE_LEN32_WR_MAX(bp)		(CHIP_IS_E1(bp) ? 0x400 : 0x2000)
2255
2256#define DMAE_COMP_VAL			0x60d0d0ae /* E2 and on - upper bit
2257						    * indicates error
2258						    */
2259
2260#define MAX_DMAE_C_PER_PORT		8
2261#define INIT_DMAE_C(bp)			(BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \
2262					 BP_VN(bp))
2263#define PMF_DMAE_C(bp)			(BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \
2264					 E1HVN_MAX)
2265
2266/* PCIE link and speed */
2267#define PCICFG_LINK_WIDTH		0x1f00000
2268#define PCICFG_LINK_WIDTH_SHIFT		20
2269#define PCICFG_LINK_SPEED		0xf0000
2270#define PCICFG_LINK_SPEED_SHIFT		16
2271
2272#define BNX2X_NUM_TESTS_SF		7
2273#define BNX2X_NUM_TESTS_MF		3
2274#define BNX2X_NUM_TESTS(bp)		(IS_MF(bp) ? BNX2X_NUM_TESTS_MF : \
2275					     IS_VF(bp) ? 0 : BNX2X_NUM_TESTS_SF)
2276
2277#define BNX2X_PHY_LOOPBACK		0
2278#define BNX2X_MAC_LOOPBACK		1
2279#define BNX2X_EXT_LOOPBACK		2
2280#define BNX2X_PHY_LOOPBACK_FAILED	1
2281#define BNX2X_MAC_LOOPBACK_FAILED	2
2282#define BNX2X_EXT_LOOPBACK_FAILED	3
2283#define BNX2X_LOOPBACK_FAILED		(BNX2X_MAC_LOOPBACK_FAILED | \
2284					 BNX2X_PHY_LOOPBACK_FAILED)
2285
2286#define STROM_ASSERT_ARRAY_SIZE		50
2287
2288/* must be used on a CID before placing it on a HW ring */
2289#define HW_CID(bp, x)			((BP_PORT(bp) << 23) | \
2290					 (BP_VN(bp) << BNX2X_SWCID_SHIFT) | \
2291					 (x))
2292
2293#define SP_DESC_CNT		(BCM_PAGE_SIZE / sizeof(struct eth_spe))
2294#define MAX_SP_DESC_CNT			(SP_DESC_CNT - 1)
2295
2296#define BNX2X_BTR			4
2297#define MAX_SPQ_PENDING			8
2298
2299/* CMNG constants, as derived from system spec calculations */
2300/* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */
2301#define DEF_MIN_RATE					100
2302/* resolution of the rate shaping timer - 400 usec */
2303#define RS_PERIODIC_TIMEOUT_USEC			400
2304/* number of bytes in single QM arbitration cycle -
2305 * coefficient for calculating the fairness timer */
2306#define QM_ARB_BYTES					160000
2307/* resolution of Min algorithm 1:100 */
2308#define MIN_RES						100
2309/* how many bytes above threshold for the minimal credit of Min algorithm*/
2310#define MIN_ABOVE_THRESH				32768
2311/* Fairness algorithm integration time coefficient -
2312 * for calculating the actual Tfair */
2313#define T_FAIR_COEF	((MIN_ABOVE_THRESH +  QM_ARB_BYTES) * 8 * MIN_RES)
2314/* Memory of fairness algorithm . 2 cycles */
2315#define FAIR_MEM					2
2316
2317#define ATTN_NIG_FOR_FUNC		(1L << 8)
2318#define ATTN_SW_TIMER_4_FUNC		(1L << 9)
2319#define GPIO_2_FUNC			(1L << 10)
2320#define GPIO_3_FUNC			(1L << 11)
2321#define GPIO_4_FUNC			(1L << 12)
2322#define ATTN_GENERAL_ATTN_1		(1L << 13)
2323#define ATTN_GENERAL_ATTN_2		(1L << 14)
2324#define ATTN_GENERAL_ATTN_3		(1L << 15)
2325#define ATTN_GENERAL_ATTN_4		(1L << 13)
2326#define ATTN_GENERAL_ATTN_5		(1L << 14)
2327#define ATTN_GENERAL_ATTN_6		(1L << 15)
2328
2329#define ATTN_HARD_WIRED_MASK		0xff00
2330#define ATTENTION_ID			4
2331
2332#define IS_MF_STORAGE_ONLY(bp) (IS_MF_STORAGE_SD(bp) || \
2333				 IS_MF_FCOE_AFEX(bp))
2334
2335/* stuff added to make the code fit 80Col */
2336
2337#define BNX2X_PMF_LINK_ASSERT \
2338	GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + BP_FUNC(bp))
2339
2340#define BNX2X_MC_ASSERT_BITS \
2341	(GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2342	 GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2343	 GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2344	 GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT))
2345
2346#define BNX2X_MCP_ASSERT \
2347	GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT)
2348
2349#define BNX2X_GRC_TIMEOUT	GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC)
2350#define BNX2X_GRC_RSV		(GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \
2351				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \
2352				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \
2353				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \
2354				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \
2355				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC))
2356
2357#define HW_INTERRUT_ASSERT_SET_0 \
2358				(AEU_INPUTS_ATTN_BITS_TSDM_HW_INTERRUPT | \
2359				 AEU_INPUTS_ATTN_BITS_TCM_HW_INTERRUPT | \
2360				 AEU_INPUTS_ATTN_BITS_TSEMI_HW_INTERRUPT | \
2361				 AEU_INPUTS_ATTN_BITS_BRB_HW_INTERRUPT | \
2362				 AEU_INPUTS_ATTN_BITS_PBCLIENT_HW_INTERRUPT)
2363#define HW_PRTY_ASSERT_SET_0	(AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR | \
2364				 AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR | \
2365				 AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR | \
2366				 AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR |\
2367				 AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR |\
2368				 AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR |\
2369				 AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR)
2370#define HW_INTERRUT_ASSERT_SET_1 \
2371				(AEU_INPUTS_ATTN_BITS_QM_HW_INTERRUPT | \
2372				 AEU_INPUTS_ATTN_BITS_TIMERS_HW_INTERRUPT | \
2373				 AEU_INPUTS_ATTN_BITS_XSDM_HW_INTERRUPT | \
2374				 AEU_INPUTS_ATTN_BITS_XCM_HW_INTERRUPT | \
2375				 AEU_INPUTS_ATTN_BITS_XSEMI_HW_INTERRUPT | \
2376				 AEU_INPUTS_ATTN_BITS_USDM_HW_INTERRUPT | \
2377				 AEU_INPUTS_ATTN_BITS_UCM_HW_INTERRUPT | \
2378				 AEU_INPUTS_ATTN_BITS_USEMI_HW_INTERRUPT | \
2379				 AEU_INPUTS_ATTN_BITS_UPB_HW_INTERRUPT | \
2380				 AEU_INPUTS_ATTN_BITS_CSDM_HW_INTERRUPT | \
2381				 AEU_INPUTS_ATTN_BITS_CCM_HW_INTERRUPT)
2382#define HW_PRTY_ASSERT_SET_1	(AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR |\
2383				 AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR | \
2384				 AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR |\
2385				 AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR | \
2386				 AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR |\
2387				 AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR | \
2388				 AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR |\
2389				 AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR |\
2390			     AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR |\
2391				 AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR | \
2392				 AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR | \
2393				 AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR |\
2394				 AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR | \
2395				 AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR | \
2396				 AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR |\
2397				 AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR)
2398#define HW_INTERRUT_ASSERT_SET_2 \
2399				(AEU_INPUTS_ATTN_BITS_CSEMI_HW_INTERRUPT | \
2400				 AEU_INPUTS_ATTN_BITS_CDU_HW_INTERRUPT | \
2401				 AEU_INPUTS_ATTN_BITS_DMAE_HW_INTERRUPT | \
2402			AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT |\
2403				 AEU_INPUTS_ATTN_BITS_MISC_HW_INTERRUPT)
2404#define HW_PRTY_ASSERT_SET_2	(AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR | \
2405				 AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR | \
2406			AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR |\
2407				 AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR | \
2408				 AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR | \
2409				 AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR |\
2410				 AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR | \
2411				 AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR)
2412
2413#define HW_PRTY_ASSERT_SET_3 (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
2414		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
2415		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY | \
2416		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
2417
2418#define HW_PRTY_ASSERT_SET_4 (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | \
2419			      AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)
2420
2421#define MULTI_MASK			0x7f
2422
2423#define DEF_USB_FUNC_OFF	offsetof(struct cstorm_def_status_block_u, func)
2424#define DEF_CSB_FUNC_OFF	offsetof(struct cstorm_def_status_block_c, func)
2425#define DEF_XSB_FUNC_OFF	offsetof(struct xstorm_def_status_block, func)
2426#define DEF_TSB_FUNC_OFF	offsetof(struct tstorm_def_status_block, func)
2427
2428#define DEF_USB_IGU_INDEX_OFF \
2429			offsetof(struct cstorm_def_status_block_u, igu_index)
2430#define DEF_CSB_IGU_INDEX_OFF \
2431			offsetof(struct cstorm_def_status_block_c, igu_index)
2432#define DEF_XSB_IGU_INDEX_OFF \
2433			offsetof(struct xstorm_def_status_block, igu_index)
2434#define DEF_TSB_IGU_INDEX_OFF \
2435			offsetof(struct tstorm_def_status_block, igu_index)
2436
2437#define DEF_USB_SEGMENT_OFF \
2438			offsetof(struct cstorm_def_status_block_u, segment)
2439#define DEF_CSB_SEGMENT_OFF \
2440			offsetof(struct cstorm_def_status_block_c, segment)
2441#define DEF_XSB_SEGMENT_OFF \
2442			offsetof(struct xstorm_def_status_block, segment)
2443#define DEF_TSB_SEGMENT_OFF \
2444			offsetof(struct tstorm_def_status_block, segment)
2445
2446#define BNX2X_SP_DSB_INDEX \
2447		(&bp->def_status_blk->sp_sb.\
2448					index_values[HC_SP_INDEX_ETH_DEF_CONS])
2449
2450#define CAM_IS_INVALID(x) \
2451	(GET_FLAG(x.flags, \
2452	MAC_CONFIGURATION_ENTRY_ACTION_TYPE) == \
2453	(T_ETH_MAC_COMMAND_INVALIDATE))
2454
2455/* Number of u32 elements in MC hash array */
2456#define MC_HASH_SIZE			8
2457#define MC_HASH_OFFSET(bp, i)		(BAR_TSTRORM_INTMEM + \
2458	TSTORM_APPROXIMATE_MATCH_MULTICAST_FILTERING_OFFSET(BP_FUNC(bp)) + i*4)
2459
2460#ifndef PXP2_REG_PXP2_INT_STS
2461#define PXP2_REG_PXP2_INT_STS		PXP2_REG_PXP2_INT_STS_0
2462#endif
2463
2464#ifndef ETH_MAX_RX_CLIENTS_E2
2465#define ETH_MAX_RX_CLIENTS_E2		ETH_MAX_RX_CLIENTS_E1H
2466#endif
2467
2468#define BNX2X_VPD_LEN			128
2469#define VENDOR_ID_LEN			4
2470
2471#define VF_ACQUIRE_THRESH		3
2472#define VF_ACQUIRE_MAC_FILTERS		1
2473#define VF_ACQUIRE_MC_FILTERS		10
2474
2475#define GOOD_ME_REG(me_reg) (((me_reg) & ME_REG_VF_VALID) && \
2476			    (!((me_reg) & ME_REG_VF_ERR)))
2477int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err);
2478
2479/* Congestion management fairness mode */
2480#define CMNG_FNS_NONE			0
2481#define CMNG_FNS_MINMAX			1
2482
2483#define HC_SEG_ACCESS_DEF		0   /*Driver decision 0-3*/
2484#define HC_SEG_ACCESS_ATTN		4
2485#define HC_SEG_ACCESS_NORM		0   /*Driver decision 0-1*/
2486
2487static const u32 dmae_reg_go_c[] = {
2488	DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
2489	DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
2490	DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
2491	DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
2492};
2493
2494void bnx2x_set_ethtool_ops(struct bnx2x *bp, struct net_device *netdev);
2495void bnx2x_notify_link_changed(struct bnx2x *bp);
2496
2497#define BNX2X_MF_SD_PROTOCOL(bp) \
2498	((bp)->mf_config[BP_VN(bp)] & FUNC_MF_CFG_PROTOCOL_MASK)
2499
2500#define BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) \
2501	(BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_ISCSI)
2502
2503#define BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) \
2504	(BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_FCOE)
2505
2506#define IS_MF_ISCSI_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp))
2507#define IS_MF_FCOE_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))
2508
2509#define BNX2X_MF_EXT_PROTOCOL_FCOE(bp)  ((bp)->mf_ext_config & \
2510					 MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)
2511
2512#define IS_MF_FCOE_AFEX(bp) (IS_MF_AFEX(bp) && BNX2X_MF_EXT_PROTOCOL_FCOE(bp))
2513#define IS_MF_STORAGE_SD(bp) (IS_MF_SD(bp) && \
2514				(BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) || \
2515				 BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
2516
2517#define SET_FLAG(value, mask, flag) \
2518	do {\
2519		(value) &= ~(mask);\
2520		(value) |= ((flag) << (mask##_SHIFT));\
2521	} while (0)
2522
2523#define GET_FLAG(value, mask) \
2524	(((value) & (mask)) >> (mask##_SHIFT))
2525
2526#define GET_FIELD(value, fname) \
2527	(((value) & (fname##_MASK)) >> (fname##_SHIFT))
2528
2529enum {
2530	SWITCH_UPDATE,
2531	AFEX_UPDATE,
2532};
2533
2534#define NUM_MACS	8
2535
2536void bnx2x_set_local_cmng(struct bnx2x *bp);
2537
2538#define MCPR_SCRATCH_BASE(bp) \
2539	(CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
2540
2541#define E1H_MAX_MF_SB_COUNT (HC_SB_MAX_SB_E1X/(E1HVN_MAX * PORT_MAX))
2542
2543#endif /* bnx2x.h */
2544