bnx2x.h revision 9a2620c877454bb4b5c19f73d4d1d7b375da3632
1/* bnx2x.h: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 */
13
14#ifndef BNX2X_H
15#define BNX2X_H
16
17#include <linux/pci.h>
18#include <linux/netdevice.h>
19#include <linux/dma-mapping.h>
20#include <linux/types.h>
21#include <linux/pci_regs.h>
22
23/* compilation time flags */
24
25/* define this to make the driver freeze on error to allow getting debug info
26 * (you will need to reboot afterwards) */
27/* #define BNX2X_STOP_ON_ERROR */
28
29#define DRV_MODULE_VERSION      "1.78.17-0"
30#define DRV_MODULE_RELDATE      "2013/04/11"
31#define BNX2X_BC_VER            0x040200
32
33#if defined(CONFIG_DCB)
34#define BCM_DCBNL
35#endif
36
37#include "bnx2x_hsi.h"
38
39#include "../cnic_if.h"
40
41#define BNX2X_MIN_MSIX_VEC_CNT(bp)		((bp)->min_msix_vec_cnt)
42
43#include <linux/mdio.h>
44
45#include "bnx2x_reg.h"
46#include "bnx2x_fw_defs.h"
47#include "bnx2x_mfw_req.h"
48#include "bnx2x_link.h"
49#include "bnx2x_sp.h"
50#include "bnx2x_dcb.h"
51#include "bnx2x_stats.h"
52#include "bnx2x_vfpf.h"
53
54enum bnx2x_int_mode {
55	BNX2X_INT_MODE_MSIX,
56	BNX2X_INT_MODE_INTX,
57	BNX2X_INT_MODE_MSI
58};
59
60/* error/debug prints */
61
62#define DRV_MODULE_NAME		"bnx2x"
63
64/* for messages that are currently off */
65#define BNX2X_MSG_OFF			0x0
66#define BNX2X_MSG_MCP			0x0010000 /* was: NETIF_MSG_HW */
67#define BNX2X_MSG_STATS			0x0020000 /* was: NETIF_MSG_TIMER */
68#define BNX2X_MSG_NVM			0x0040000 /* was: NETIF_MSG_HW */
69#define BNX2X_MSG_DMAE			0x0080000 /* was: NETIF_MSG_HW */
70#define BNX2X_MSG_SP			0x0100000 /* was: NETIF_MSG_INTR */
71#define BNX2X_MSG_FP			0x0200000 /* was: NETIF_MSG_INTR */
72#define BNX2X_MSG_IOV			0x0800000
73#define BNX2X_MSG_IDLE			0x2000000 /* used for idle check*/
74#define BNX2X_MSG_ETHTOOL		0x4000000
75#define BNX2X_MSG_DCB			0x8000000
76
77/* regular debug print */
78#define DP(__mask, fmt, ...)					\
79do {								\
80	if (unlikely(bp->msg_enable & (__mask)))		\
81		pr_notice("[%s:%d(%s)]" fmt,			\
82			  __func__, __LINE__,			\
83			  bp->dev ? (bp->dev->name) : "?",	\
84			  ##__VA_ARGS__);			\
85} while (0)
86
87#define DP_CONT(__mask, fmt, ...)				\
88do {								\
89	if (unlikely(bp->msg_enable & (__mask)))		\
90		pr_cont(fmt, ##__VA_ARGS__);			\
91} while (0)
92
93/* errors debug print */
94#define BNX2X_DBG_ERR(fmt, ...)					\
95do {								\
96	if (unlikely(netif_msg_probe(bp)))			\
97		pr_err("[%s:%d(%s)]" fmt,			\
98		       __func__, __LINE__,			\
99		       bp->dev ? (bp->dev->name) : "?",		\
100		       ##__VA_ARGS__);				\
101} while (0)
102
103/* for errors (never masked) */
104#define BNX2X_ERR(fmt, ...)					\
105do {								\
106	pr_err("[%s:%d(%s)]" fmt,				\
107	       __func__, __LINE__,				\
108	       bp->dev ? (bp->dev->name) : "?",			\
109	       ##__VA_ARGS__);					\
110} while (0)
111
112#define BNX2X_ERROR(fmt, ...)					\
113	pr_err("[%s:%d]" fmt, __func__, __LINE__, ##__VA_ARGS__)
114
115/* before we have a dev->name use dev_info() */
116#define BNX2X_DEV_INFO(fmt, ...)				 \
117do {								 \
118	if (unlikely(netif_msg_probe(bp)))			 \
119		dev_info(&bp->pdev->dev, fmt, ##__VA_ARGS__);	 \
120} while (0)
121
122/* Error handling */
123void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int);
124#ifdef BNX2X_STOP_ON_ERROR
125#define bnx2x_panic()				\
126do {						\
127	bp->panic = 1;				\
128	BNX2X_ERR("driver assert\n");		\
129	bnx2x_panic_dump(bp, true);		\
130} while (0)
131#else
132#define bnx2x_panic()				\
133do {						\
134	bp->panic = 1;				\
135	BNX2X_ERR("driver assert\n");		\
136	bnx2x_panic_dump(bp, false);		\
137} while (0)
138#endif
139
140#define bnx2x_mc_addr(ha)      ((ha)->addr)
141#define bnx2x_uc_addr(ha)      ((ha)->addr)
142
143#define U64_LO(x)			((u32)(((u64)(x)) & 0xffffffff))
144#define U64_HI(x)			((u32)(((u64)(x)) >> 32))
145#define HILO_U64(hi, lo)		((((u64)(hi)) << 32) + (lo))
146
147#define REG_ADDR(bp, offset)		((bp->regview) + (offset))
148
149#define REG_RD(bp, offset)		readl(REG_ADDR(bp, offset))
150#define REG_RD8(bp, offset)		readb(REG_ADDR(bp, offset))
151#define REG_RD16(bp, offset)		readw(REG_ADDR(bp, offset))
152
153#define REG_WR(bp, offset, val)		writel((u32)val, REG_ADDR(bp, offset))
154#define REG_WR8(bp, offset, val)	writeb((u8)val, REG_ADDR(bp, offset))
155#define REG_WR16(bp, offset, val)	writew((u16)val, REG_ADDR(bp, offset))
156
157#define REG_RD_IND(bp, offset)		bnx2x_reg_rd_ind(bp, offset)
158#define REG_WR_IND(bp, offset, val)	bnx2x_reg_wr_ind(bp, offset, val)
159
160#define REG_RD_DMAE(bp, offset, valp, len32) \
161	do { \
162		bnx2x_read_dmae(bp, offset, len32);\
163		memcpy(valp, bnx2x_sp(bp, wb_data[0]), (len32) * 4); \
164	} while (0)
165
166#define REG_WR_DMAE(bp, offset, valp, len32) \
167	do { \
168		memcpy(bnx2x_sp(bp, wb_data[0]), valp, (len32) * 4); \
169		bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), \
170				 offset, len32); \
171	} while (0)
172
173#define REG_WR_DMAE_LEN(bp, offset, valp, len32) \
174	REG_WR_DMAE(bp, offset, valp, len32)
175
176#define VIRT_WR_DMAE_LEN(bp, data, addr, len32, le32_swap) \
177	do { \
178		memcpy(GUNZIP_BUF(bp), data, (len32) * 4); \
179		bnx2x_write_big_buf_wb(bp, addr, len32); \
180	} while (0)
181
182#define SHMEM_ADDR(bp, field)		(bp->common.shmem_base + \
183					 offsetof(struct shmem_region, field))
184#define SHMEM_RD(bp, field)		REG_RD(bp, SHMEM_ADDR(bp, field))
185#define SHMEM_WR(bp, field, val)	REG_WR(bp, SHMEM_ADDR(bp, field), val)
186
187#define SHMEM2_ADDR(bp, field)		(bp->common.shmem2_base + \
188					 offsetof(struct shmem2_region, field))
189#define SHMEM2_RD(bp, field)		REG_RD(bp, SHMEM2_ADDR(bp, field))
190#define SHMEM2_WR(bp, field, val)	REG_WR(bp, SHMEM2_ADDR(bp, field), val)
191#define MF_CFG_ADDR(bp, field)		(bp->common.mf_cfg_base + \
192					 offsetof(struct mf_cfg, field))
193#define MF2_CFG_ADDR(bp, field)		(bp->common.mf2_cfg_base + \
194					 offsetof(struct mf2_cfg, field))
195
196#define MF_CFG_RD(bp, field)		REG_RD(bp, MF_CFG_ADDR(bp, field))
197#define MF_CFG_WR(bp, field, val)	REG_WR(bp,\
198					       MF_CFG_ADDR(bp, field), (val))
199#define MF2_CFG_RD(bp, field)		REG_RD(bp, MF2_CFG_ADDR(bp, field))
200
201#define SHMEM2_HAS(bp, field)		((bp)->common.shmem2_base &&	\
202					 (SHMEM2_RD((bp), size) >	\
203					 offsetof(struct shmem2_region, field)))
204
205#define EMAC_RD(bp, reg)		REG_RD(bp, emac_base + reg)
206#define EMAC_WR(bp, reg, val)		REG_WR(bp, emac_base + reg, val)
207
208/* SP SB indices */
209
210/* General SP events - stats query, cfc delete, etc  */
211#define HC_SP_INDEX_ETH_DEF_CONS		3
212
213/* EQ completions */
214#define HC_SP_INDEX_EQ_CONS			7
215
216/* FCoE L2 connection completions */
217#define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS		6
218#define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS		4
219/* iSCSI L2 */
220#define HC_SP_INDEX_ETH_ISCSI_CQ_CONS		5
221#define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS	1
222
223/* Special clients parameters */
224
225/* SB indices */
226/* FCoE L2 */
227#define BNX2X_FCOE_L2_RX_INDEX \
228	(&bp->def_status_blk->sp_sb.\
229	index_values[HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS])
230
231#define BNX2X_FCOE_L2_TX_INDEX \
232	(&bp->def_status_blk->sp_sb.\
233	index_values[HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS])
234
235/**
236 *  CIDs and CLIDs:
237 *  CLIDs below is a CLID for func 0, then the CLID for other
238 *  functions will be calculated by the formula:
239 *
240 *  FUNC_N_CLID_X = N * NUM_SPECIAL_CLIENTS + FUNC_0_CLID_X
241 *
242 */
243enum {
244	BNX2X_ISCSI_ETH_CL_ID_IDX,
245	BNX2X_FCOE_ETH_CL_ID_IDX,
246	BNX2X_MAX_CNIC_ETH_CL_ID_IDX,
247};
248
249/* use a value high enough to be above all the PFs, which has least significant
250 * nibble as 8, so when cnic needs to come up with a CID for UIO to use to
251 * calculate doorbell address according to old doorbell configuration scheme
252 * (db_msg_sz 1 << 7 * cid + 0x40 DPM offset) it can come up with a valid number
253 * We must avoid coming up with cid 8 for iscsi since according to this method
254 * the designated UIO cid will come out 0 and it has a special handling for that
255 * case which doesn't suit us. Therefore will will cieling to closes cid which
256 * has least signigifcant nibble 8 and if it is 8 we will move forward to 0x18.
257 */
258
259#define BNX2X_1st_NON_L2_ETH_CID(bp)	(BNX2X_NUM_NON_CNIC_QUEUES(bp) * \
260					 (bp)->max_cos)
261/* amount of cids traversed by UIO's DPM addition to doorbell */
262#define UIO_DPM				8
263/* roundup to DPM offset */
264#define UIO_ROUNDUP(bp)			(roundup(BNX2X_1st_NON_L2_ETH_CID(bp), \
265					 UIO_DPM))
266/* offset to nearest value which has lsb nibble matching DPM */
267#define UIO_CID_OFFSET(bp)		((UIO_ROUNDUP(bp) + UIO_DPM) % \
268					 (UIO_DPM * 2))
269/* add offset to rounded-up cid to get a value which could be used with UIO */
270#define UIO_DPM_ALIGN(bp)		(UIO_ROUNDUP(bp) + UIO_CID_OFFSET(bp))
271/* but wait - avoid UIO special case for cid 0 */
272#define UIO_DPM_CID0_OFFSET(bp)		((UIO_DPM * 2) * \
273					 (UIO_DPM_ALIGN(bp) == UIO_DPM))
274/* Properly DPM aligned CID dajusted to cid 0 secal case */
275#define BNX2X_CNIC_START_ETH_CID(bp)	(UIO_DPM_ALIGN(bp) + \
276					 (UIO_DPM_CID0_OFFSET(bp)))
277/* how many cids were wasted  - need this value for cid allocation */
278#define UIO_CID_PAD(bp)			(BNX2X_CNIC_START_ETH_CID(bp) - \
279					 BNX2X_1st_NON_L2_ETH_CID(bp))
280	/* iSCSI L2 */
281#define	BNX2X_ISCSI_ETH_CID(bp)		(BNX2X_CNIC_START_ETH_CID(bp))
282	/* FCoE L2 */
283#define	BNX2X_FCOE_ETH_CID(bp)		(BNX2X_CNIC_START_ETH_CID(bp) + 1)
284
285#define CNIC_SUPPORT(bp)		((bp)->cnic_support)
286#define CNIC_ENABLED(bp)		((bp)->cnic_enabled)
287#define CNIC_LOADED(bp)			((bp)->cnic_loaded)
288#define FCOE_INIT(bp)			((bp)->fcoe_init)
289
290#define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \
291	AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
292
293#define SM_RX_ID			0
294#define SM_TX_ID			1
295
296/* defines for multiple tx priority indices */
297#define FIRST_TX_ONLY_COS_INDEX		1
298#define FIRST_TX_COS_INDEX		0
299
300/* rules for calculating the cids of tx-only connections */
301#define CID_TO_FP(cid, bp)		((cid) % BNX2X_NUM_NON_CNIC_QUEUES(bp))
302#define CID_COS_TO_TX_ONLY_CID(cid, cos, bp) \
303				(cid + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp))
304
305/* fp index inside class of service range */
306#define FP_COS_TO_TXQ(fp, cos, bp) \
307			((fp)->index + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp))
308
309/* Indexes for transmission queues array:
310 * txdata for RSS i CoS j is at location i + (j * num of RSS)
311 * txdata for FCoE (if exist) is at location max cos * num of RSS
312 * txdata for FWD (if exist) is one location after FCoE
313 * txdata for OOO (if exist) is one location after FWD
314 */
315enum {
316	FCOE_TXQ_IDX_OFFSET,
317	FWD_TXQ_IDX_OFFSET,
318	OOO_TXQ_IDX_OFFSET,
319};
320#define MAX_ETH_TXQ_IDX(bp)	(BNX2X_NUM_NON_CNIC_QUEUES(bp) * (bp)->max_cos)
321#define FCOE_TXQ_IDX(bp)	(MAX_ETH_TXQ_IDX(bp) + FCOE_TXQ_IDX_OFFSET)
322
323/* fast path */
324/*
325 * This driver uses new build_skb() API :
326 * RX ring buffer contains pointer to kmalloc() data only,
327 * skb are built only after Hardware filled the frame.
328 */
329struct sw_rx_bd {
330	u8		*data;
331	DEFINE_DMA_UNMAP_ADDR(mapping);
332};
333
334struct sw_tx_bd {
335	struct sk_buff	*skb;
336	u16		first_bd;
337	u8		flags;
338/* Set on the first BD descriptor when there is a split BD */
339#define BNX2X_TSO_SPLIT_BD		(1<<0)
340};
341
342struct sw_rx_page {
343	struct page	*page;
344	DEFINE_DMA_UNMAP_ADDR(mapping);
345};
346
347union db_prod {
348	struct doorbell_set_prod data;
349	u32		raw;
350};
351
352/* dropless fc FW/HW related params */
353#define BRB_SIZE(bp)		(CHIP_IS_E3(bp) ? 1024 : 512)
354#define MAX_AGG_QS(bp)		(CHIP_IS_E1(bp) ? \
355					ETH_MAX_AGGREGATION_QUEUES_E1 :\
356					ETH_MAX_AGGREGATION_QUEUES_E1H_E2)
357#define FW_DROP_LEVEL(bp)	(3 + MAX_SPQ_PENDING + MAX_AGG_QS(bp))
358#define FW_PREFETCH_CNT		16
359#define DROPLESS_FC_HEADROOM	100
360
361/* MC hsi */
362#define BCM_PAGE_SHIFT		12
363#define BCM_PAGE_SIZE		(1 << BCM_PAGE_SHIFT)
364#define BCM_PAGE_MASK		(~(BCM_PAGE_SIZE - 1))
365#define BCM_PAGE_ALIGN(addr)	(((addr) + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK)
366
367#define PAGES_PER_SGE_SHIFT	0
368#define PAGES_PER_SGE		(1 << PAGES_PER_SGE_SHIFT)
369#define SGE_PAGE_SIZE		PAGE_SIZE
370#define SGE_PAGE_SHIFT		PAGE_SHIFT
371#define SGE_PAGE_ALIGN(addr)	PAGE_ALIGN((typeof(PAGE_SIZE))(addr))
372#define SGE_PAGES		(SGE_PAGE_SIZE * PAGES_PER_SGE)
373#define TPA_AGG_SIZE		min_t(u32, (min_t(u32, 8, MAX_SKB_FRAGS) * \
374					    SGE_PAGES), 0xffff)
375
376/* SGE ring related macros */
377#define NUM_RX_SGE_PAGES	2
378#define RX_SGE_CNT		(BCM_PAGE_SIZE / sizeof(struct eth_rx_sge))
379#define NEXT_PAGE_SGE_DESC_CNT	2
380#define MAX_RX_SGE_CNT		(RX_SGE_CNT - NEXT_PAGE_SGE_DESC_CNT)
381/* RX_SGE_CNT is promised to be a power of 2 */
382#define RX_SGE_MASK		(RX_SGE_CNT - 1)
383#define NUM_RX_SGE		(RX_SGE_CNT * NUM_RX_SGE_PAGES)
384#define MAX_RX_SGE		(NUM_RX_SGE - 1)
385#define NEXT_SGE_IDX(x)		((((x) & RX_SGE_MASK) == \
386				  (MAX_RX_SGE_CNT - 1)) ? \
387					(x) + 1 + NEXT_PAGE_SGE_DESC_CNT : \
388					(x) + 1)
389#define RX_SGE(x)		((x) & MAX_RX_SGE)
390
391/*
392 * Number of required  SGEs is the sum of two:
393 * 1. Number of possible opened aggregations (next packet for
394 *    these aggregations will probably consume SGE immediately)
395 * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only
396 *    after placement on BD for new TPA aggregation)
397 *
398 * Takes into account NEXT_PAGE_SGE_DESC_CNT "next" elements on each page
399 */
400#define NUM_SGE_REQ		(MAX_AGG_QS(bp) + \
401					(BRB_SIZE(bp) - MAX_AGG_QS(bp)) / 2)
402#define NUM_SGE_PG_REQ		((NUM_SGE_REQ + MAX_RX_SGE_CNT - 1) / \
403						MAX_RX_SGE_CNT)
404#define SGE_TH_LO(bp)		(NUM_SGE_REQ + \
405				 NUM_SGE_PG_REQ * NEXT_PAGE_SGE_DESC_CNT)
406#define SGE_TH_HI(bp)		(SGE_TH_LO(bp) + DROPLESS_FC_HEADROOM)
407
408/* Manipulate a bit vector defined as an array of u64 */
409
410/* Number of bits in one sge_mask array element */
411#define BIT_VEC64_ELEM_SZ		64
412#define BIT_VEC64_ELEM_SHIFT		6
413#define BIT_VEC64_ELEM_MASK		((u64)BIT_VEC64_ELEM_SZ - 1)
414
415#define __BIT_VEC64_SET_BIT(el, bit) \
416	do { \
417		el = ((el) | ((u64)0x1 << (bit))); \
418	} while (0)
419
420#define __BIT_VEC64_CLEAR_BIT(el, bit) \
421	do { \
422		el = ((el) & (~((u64)0x1 << (bit)))); \
423	} while (0)
424
425#define BIT_VEC64_SET_BIT(vec64, idx) \
426	__BIT_VEC64_SET_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \
427			   (idx) & BIT_VEC64_ELEM_MASK)
428
429#define BIT_VEC64_CLEAR_BIT(vec64, idx) \
430	__BIT_VEC64_CLEAR_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \
431			     (idx) & BIT_VEC64_ELEM_MASK)
432
433#define BIT_VEC64_TEST_BIT(vec64, idx) \
434	(((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT] >> \
435	((idx) & BIT_VEC64_ELEM_MASK)) & 0x1)
436
437/* Creates a bitmask of all ones in less significant bits.
438   idx - index of the most significant bit in the created mask */
439#define BIT_VEC64_ONES_MASK(idx) \
440		(((u64)0x1 << (((idx) & BIT_VEC64_ELEM_MASK) + 1)) - 1)
441#define BIT_VEC64_ELEM_ONE_MASK	((u64)(~0))
442
443/*******************************************************/
444
445/* Number of u64 elements in SGE mask array */
446#define RX_SGE_MASK_LEN			(NUM_RX_SGE / BIT_VEC64_ELEM_SZ)
447#define RX_SGE_MASK_LEN_MASK		(RX_SGE_MASK_LEN - 1)
448#define NEXT_SGE_MASK_ELEM(el)		(((el) + 1) & RX_SGE_MASK_LEN_MASK)
449
450union host_hc_status_block {
451	/* pointer to fp status block e1x */
452	struct host_hc_status_block_e1x *e1x_sb;
453	/* pointer to fp status block e2 */
454	struct host_hc_status_block_e2  *e2_sb;
455};
456
457struct bnx2x_agg_info {
458	/*
459	 * First aggregation buffer is a data buffer, the following - are pages.
460	 * We will preallocate the data buffer for each aggregation when
461	 * we open the interface and will replace the BD at the consumer
462	 * with this one when we receive the TPA_START CQE in order to
463	 * keep the Rx BD ring consistent.
464	 */
465	struct sw_rx_bd		first_buf;
466	u8			tpa_state;
467#define BNX2X_TPA_START			1
468#define BNX2X_TPA_STOP			2
469#define BNX2X_TPA_ERROR			3
470	u8			placement_offset;
471	u16			parsing_flags;
472	u16			vlan_tag;
473	u16			len_on_bd;
474	u32			rxhash;
475	bool			l4_rxhash;
476	u16			gro_size;
477	u16			full_page;
478};
479
480#define Q_STATS_OFFSET32(stat_name) \
481			(offsetof(struct bnx2x_eth_q_stats, stat_name) / 4)
482
483struct bnx2x_fp_txdata {
484
485	struct sw_tx_bd		*tx_buf_ring;
486
487	union eth_tx_bd_types	*tx_desc_ring;
488	dma_addr_t		tx_desc_mapping;
489
490	u32			cid;
491
492	union db_prod		tx_db;
493
494	u16			tx_pkt_prod;
495	u16			tx_pkt_cons;
496	u16			tx_bd_prod;
497	u16			tx_bd_cons;
498
499	unsigned long		tx_pkt;
500
501	__le16			*tx_cons_sb;
502
503	int			txq_index;
504	struct bnx2x_fastpath	*parent_fp;
505	int			tx_ring_size;
506};
507
508enum bnx2x_tpa_mode_t {
509	TPA_MODE_LRO,
510	TPA_MODE_GRO
511};
512
513struct bnx2x_fastpath {
514	struct bnx2x		*bp; /* parent */
515
516	struct napi_struct	napi;
517
518#ifdef CONFIG_NET_RX_BUSY_POLL
519	unsigned int state;
520#define BNX2X_FP_STATE_IDLE		      0
521#define BNX2X_FP_STATE_NAPI		(1 << 0)    /* NAPI owns this FP */
522#define BNX2X_FP_STATE_POLL		(1 << 1)    /* poll owns this FP */
523#define BNX2X_FP_STATE_DISABLED		(1 << 2)
524#define BNX2X_FP_STATE_NAPI_YIELD	(1 << 3)    /* NAPI yielded this FP */
525#define BNX2X_FP_STATE_POLL_YIELD	(1 << 4)    /* poll yielded this FP */
526#define BNX2X_FP_OWNED	(BNX2X_FP_STATE_NAPI | BNX2X_FP_STATE_POLL)
527#define BNX2X_FP_YIELD	(BNX2X_FP_STATE_NAPI_YIELD | BNX2X_FP_STATE_POLL_YIELD)
528#define BNX2X_FP_LOCKED	(BNX2X_FP_OWNED | BNX2X_FP_STATE_DISABLED)
529#define BNX2X_FP_USER_PEND (BNX2X_FP_STATE_POLL | BNX2X_FP_STATE_POLL_YIELD)
530	/* protect state */
531	spinlock_t lock;
532#endif /* CONFIG_NET_RX_BUSY_POLL */
533
534	union host_hc_status_block	status_blk;
535	/* chip independent shortcuts into sb structure */
536	__le16			*sb_index_values;
537	__le16			*sb_running_index;
538	/* chip independent shortcut into rx_prods_offset memory */
539	u32			ustorm_rx_prods_offset;
540
541	u32			rx_buf_size;
542	u32			rx_frag_size; /* 0 if kmalloced(), or rx_buf_size + NET_SKB_PAD */
543	dma_addr_t		status_blk_mapping;
544
545	enum bnx2x_tpa_mode_t	mode;
546
547	u8			max_cos; /* actual number of active tx coses */
548	struct bnx2x_fp_txdata	*txdata_ptr[BNX2X_MULTI_TX_COS];
549
550	struct sw_rx_bd		*rx_buf_ring;	/* BDs mappings ring */
551	struct sw_rx_page	*rx_page_ring;	/* SGE pages mappings ring */
552
553	struct eth_rx_bd	*rx_desc_ring;
554	dma_addr_t		rx_desc_mapping;
555
556	union eth_rx_cqe	*rx_comp_ring;
557	dma_addr_t		rx_comp_mapping;
558
559	/* SGE ring */
560	struct eth_rx_sge	*rx_sge_ring;
561	dma_addr_t		rx_sge_mapping;
562
563	u64			sge_mask[RX_SGE_MASK_LEN];
564
565	u32			cid;
566
567	__le16			fp_hc_idx;
568
569	u8			index;		/* number in fp array */
570	u8			rx_queue;	/* index for skb_record */
571	u8			cl_id;		/* eth client id */
572	u8			cl_qzone_id;
573	u8			fw_sb_id;	/* status block number in FW */
574	u8			igu_sb_id;	/* status block number in HW */
575
576	u16			rx_bd_prod;
577	u16			rx_bd_cons;
578	u16			rx_comp_prod;
579	u16			rx_comp_cons;
580	u16			rx_sge_prod;
581	/* The last maximal completed SGE */
582	u16			last_max_sge;
583	__le16			*rx_cons_sb;
584	unsigned long		rx_pkt,
585				rx_calls;
586
587	/* TPA related */
588	struct bnx2x_agg_info	*tpa_info;
589	u8			disable_tpa;
590#ifdef BNX2X_STOP_ON_ERROR
591	u64			tpa_queue_used;
592#endif
593	/* The size is calculated using the following:
594	     sizeof name field from netdev structure +
595	     4 ('-Xx-' string) +
596	     4 (for the digits and to make it DWORD aligned) */
597#define FP_NAME_SIZE		(sizeof(((struct net_device *)0)->name) + 8)
598	char			name[FP_NAME_SIZE];
599};
600
601#define bnx2x_fp(bp, nr, var)	((bp)->fp[(nr)].var)
602#define bnx2x_sp_obj(bp, fp)	((bp)->sp_objs[(fp)->index])
603#define bnx2x_fp_stats(bp, fp)	(&((bp)->fp_stats[(fp)->index]))
604#define bnx2x_fp_qstats(bp, fp)	(&((bp)->fp_stats[(fp)->index].eth_q_stats))
605
606#ifdef CONFIG_NET_RX_BUSY_POLL
607static inline void bnx2x_fp_init_lock(struct bnx2x_fastpath *fp)
608{
609	spin_lock_init(&fp->lock);
610	fp->state = BNX2X_FP_STATE_IDLE;
611}
612
613/* called from the device poll routine to get ownership of a FP */
614static inline bool bnx2x_fp_lock_napi(struct bnx2x_fastpath *fp)
615{
616	bool rc = true;
617
618	spin_lock_bh(&fp->lock);
619	if (fp->state & BNX2X_FP_LOCKED) {
620		WARN_ON(fp->state & BNX2X_FP_STATE_NAPI);
621		fp->state |= BNX2X_FP_STATE_NAPI_YIELD;
622		rc = false;
623	} else {
624		/* we don't care if someone yielded */
625		fp->state = BNX2X_FP_STATE_NAPI;
626	}
627	spin_unlock_bh(&fp->lock);
628	return rc;
629}
630
631/* returns true is someone tried to get the FP while napi had it */
632static inline bool bnx2x_fp_unlock_napi(struct bnx2x_fastpath *fp)
633{
634	bool rc = false;
635
636	spin_lock_bh(&fp->lock);
637	WARN_ON(fp->state &
638		(BNX2X_FP_STATE_POLL | BNX2X_FP_STATE_NAPI_YIELD));
639
640	if (fp->state & BNX2X_FP_STATE_POLL_YIELD)
641		rc = true;
642
643	/* state ==> idle, unless currently disabled */
644	fp->state &= BNX2X_FP_STATE_DISABLED;
645	spin_unlock_bh(&fp->lock);
646	return rc;
647}
648
649/* called from bnx2x_low_latency_poll() */
650static inline bool bnx2x_fp_lock_poll(struct bnx2x_fastpath *fp)
651{
652	bool rc = true;
653
654	spin_lock_bh(&fp->lock);
655	if ((fp->state & BNX2X_FP_LOCKED)) {
656		fp->state |= BNX2X_FP_STATE_POLL_YIELD;
657		rc = false;
658	} else {
659		/* preserve yield marks */
660		fp->state |= BNX2X_FP_STATE_POLL;
661	}
662	spin_unlock_bh(&fp->lock);
663	return rc;
664}
665
666/* returns true if someone tried to get the FP while it was locked */
667static inline bool bnx2x_fp_unlock_poll(struct bnx2x_fastpath *fp)
668{
669	bool rc = false;
670
671	spin_lock_bh(&fp->lock);
672	WARN_ON(fp->state & BNX2X_FP_STATE_NAPI);
673
674	if (fp->state & BNX2X_FP_STATE_POLL_YIELD)
675		rc = true;
676
677	/* state ==> idle, unless currently disabled */
678	fp->state &= BNX2X_FP_STATE_DISABLED;
679	spin_unlock_bh(&fp->lock);
680	return rc;
681}
682
683/* true if a socket is polling, even if it did not get the lock */
684static inline bool bnx2x_fp_ll_polling(struct bnx2x_fastpath *fp)
685{
686	WARN_ON(!(fp->state & BNX2X_FP_OWNED));
687	return fp->state & BNX2X_FP_USER_PEND;
688}
689
690/* false if fp is currently owned */
691static inline bool bnx2x_fp_ll_disable(struct bnx2x_fastpath *fp)
692{
693	int rc = true;
694
695	spin_lock_bh(&fp->lock);
696	if (fp->state & BNX2X_FP_OWNED)
697		rc = false;
698	fp->state |= BNX2X_FP_STATE_DISABLED;
699	spin_unlock_bh(&fp->lock);
700
701	return rc;
702}
703#else
704static inline void bnx2x_fp_init_lock(struct bnx2x_fastpath *fp)
705{
706}
707
708static inline bool bnx2x_fp_lock_napi(struct bnx2x_fastpath *fp)
709{
710	return true;
711}
712
713static inline bool bnx2x_fp_unlock_napi(struct bnx2x_fastpath *fp)
714{
715	return false;
716}
717
718static inline bool bnx2x_fp_lock_poll(struct bnx2x_fastpath *fp)
719{
720	return false;
721}
722
723static inline bool bnx2x_fp_unlock_poll(struct bnx2x_fastpath *fp)
724{
725	return false;
726}
727
728static inline bool bnx2x_fp_ll_polling(struct bnx2x_fastpath *fp)
729{
730	return false;
731}
732static inline bool bnx2x_fp_ll_disable(struct bnx2x_fastpath *fp)
733{
734	return true;
735}
736#endif /* CONFIG_NET_RX_BUSY_POLL */
737
738/* Use 2500 as a mini-jumbo MTU for FCoE */
739#define BNX2X_FCOE_MINI_JUMBO_MTU	2500
740
741#define	FCOE_IDX_OFFSET		0
742
743#define FCOE_IDX(bp)		(BNX2X_NUM_NON_CNIC_QUEUES(bp) + \
744				 FCOE_IDX_OFFSET)
745#define bnx2x_fcoe_fp(bp)	(&bp->fp[FCOE_IDX(bp)])
746#define bnx2x_fcoe(bp, var)	(bnx2x_fcoe_fp(bp)->var)
747#define bnx2x_fcoe_inner_sp_obj(bp)	(&bp->sp_objs[FCOE_IDX(bp)])
748#define bnx2x_fcoe_sp_obj(bp, var)	(bnx2x_fcoe_inner_sp_obj(bp)->var)
749#define bnx2x_fcoe_tx(bp, var)	(bnx2x_fcoe_fp(bp)-> \
750						txdata_ptr[FIRST_TX_COS_INDEX] \
751						->var)
752
753#define IS_ETH_FP(fp)		((fp)->index < BNX2X_NUM_ETH_QUEUES((fp)->bp))
754#define IS_FCOE_FP(fp)		((fp)->index == FCOE_IDX((fp)->bp))
755#define IS_FCOE_IDX(idx)	((idx) == FCOE_IDX(bp))
756
757/* MC hsi */
758#define MAX_FETCH_BD		13	/* HW max BDs per packet */
759#define RX_COPY_THRESH		92
760
761#define NUM_TX_RINGS		16
762#define TX_DESC_CNT		(BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types))
763#define NEXT_PAGE_TX_DESC_CNT	1
764#define MAX_TX_DESC_CNT		(TX_DESC_CNT - NEXT_PAGE_TX_DESC_CNT)
765#define NUM_TX_BD		(TX_DESC_CNT * NUM_TX_RINGS)
766#define MAX_TX_BD		(NUM_TX_BD - 1)
767#define MAX_TX_AVAIL		(MAX_TX_DESC_CNT * NUM_TX_RINGS - 2)
768#define NEXT_TX_IDX(x)		((((x) & MAX_TX_DESC_CNT) == \
769				  (MAX_TX_DESC_CNT - 1)) ? \
770					(x) + 1 + NEXT_PAGE_TX_DESC_CNT : \
771					(x) + 1)
772#define TX_BD(x)		((x) & MAX_TX_BD)
773#define TX_BD_POFF(x)		((x) & MAX_TX_DESC_CNT)
774
775/* number of NEXT_PAGE descriptors may be required during placement */
776#define NEXT_CNT_PER_TX_PKT(bds)	\
777				(((bds) + MAX_TX_DESC_CNT - 1) / \
778				 MAX_TX_DESC_CNT * NEXT_PAGE_TX_DESC_CNT)
779/* max BDs per tx packet w/o next_pages:
780 * START_BD		- describes packed
781 * START_BD(splitted)	- includes unpaged data segment for GSO
782 * PARSING_BD		- for TSO and CSUM data
783 * PARSING_BD2		- for encapsulation data
784 * Frag BDs		- describes pages for frags
785 */
786#define BDS_PER_TX_PKT		4
787#define MAX_BDS_PER_TX_PKT	(MAX_SKB_FRAGS + BDS_PER_TX_PKT)
788/* max BDs per tx packet including next pages */
789#define MAX_DESC_PER_TX_PKT	(MAX_BDS_PER_TX_PKT + \
790				 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))
791
792/* The RX BD ring is special, each bd is 8 bytes but the last one is 16 */
793#define NUM_RX_RINGS		8
794#define RX_DESC_CNT		(BCM_PAGE_SIZE / sizeof(struct eth_rx_bd))
795#define NEXT_PAGE_RX_DESC_CNT	2
796#define MAX_RX_DESC_CNT		(RX_DESC_CNT - NEXT_PAGE_RX_DESC_CNT)
797#define RX_DESC_MASK		(RX_DESC_CNT - 1)
798#define NUM_RX_BD		(RX_DESC_CNT * NUM_RX_RINGS)
799#define MAX_RX_BD		(NUM_RX_BD - 1)
800#define MAX_RX_AVAIL		(MAX_RX_DESC_CNT * NUM_RX_RINGS - 2)
801
802/* dropless fc calculations for BDs
803 *
804 * Number of BDs should as number of buffers in BRB:
805 * Low threshold takes into account NEXT_PAGE_RX_DESC_CNT
806 * "next" elements on each page
807 */
808#define NUM_BD_REQ		BRB_SIZE(bp)
809#define NUM_BD_PG_REQ		((NUM_BD_REQ + MAX_RX_DESC_CNT - 1) / \
810					      MAX_RX_DESC_CNT)
811#define BD_TH_LO(bp)		(NUM_BD_REQ + \
812				 NUM_BD_PG_REQ * NEXT_PAGE_RX_DESC_CNT + \
813				 FW_DROP_LEVEL(bp))
814#define BD_TH_HI(bp)		(BD_TH_LO(bp) + DROPLESS_FC_HEADROOM)
815
816#define MIN_RX_AVAIL		((bp)->dropless_fc ? BD_TH_HI(bp) + 128 : 128)
817
818#define MIN_RX_SIZE_TPA_HW	(CHIP_IS_E1(bp) ? \
819					ETH_MIN_RX_CQES_WITH_TPA_E1 : \
820					ETH_MIN_RX_CQES_WITH_TPA_E1H_E2)
821#define MIN_RX_SIZE_NONTPA_HW   ETH_MIN_RX_CQES_WITHOUT_TPA
822#define MIN_RX_SIZE_TPA		(max_t(u32, MIN_RX_SIZE_TPA_HW, MIN_RX_AVAIL))
823#define MIN_RX_SIZE_NONTPA	(max_t(u32, MIN_RX_SIZE_NONTPA_HW,\
824								MIN_RX_AVAIL))
825
826#define NEXT_RX_IDX(x)		((((x) & RX_DESC_MASK) == \
827				  (MAX_RX_DESC_CNT - 1)) ? \
828					(x) + 1 + NEXT_PAGE_RX_DESC_CNT : \
829					(x) + 1)
830#define RX_BD(x)		((x) & MAX_RX_BD)
831
832/*
833 * As long as CQE is X times bigger than BD entry we have to allocate X times
834 * more pages for CQ ring in order to keep it balanced with BD ring
835 */
836#define CQE_BD_REL	(sizeof(union eth_rx_cqe) / sizeof(struct eth_rx_bd))
837#define NUM_RCQ_RINGS		(NUM_RX_RINGS * CQE_BD_REL)
838#define RCQ_DESC_CNT		(BCM_PAGE_SIZE / sizeof(union eth_rx_cqe))
839#define NEXT_PAGE_RCQ_DESC_CNT	1
840#define MAX_RCQ_DESC_CNT	(RCQ_DESC_CNT - NEXT_PAGE_RCQ_DESC_CNT)
841#define NUM_RCQ_BD		(RCQ_DESC_CNT * NUM_RCQ_RINGS)
842#define MAX_RCQ_BD		(NUM_RCQ_BD - 1)
843#define MAX_RCQ_AVAIL		(MAX_RCQ_DESC_CNT * NUM_RCQ_RINGS - 2)
844#define NEXT_RCQ_IDX(x)		((((x) & MAX_RCQ_DESC_CNT) == \
845				  (MAX_RCQ_DESC_CNT - 1)) ? \
846					(x) + 1 + NEXT_PAGE_RCQ_DESC_CNT : \
847					(x) + 1)
848#define RCQ_BD(x)		((x) & MAX_RCQ_BD)
849
850/* dropless fc calculations for RCQs
851 *
852 * Number of RCQs should be as number of buffers in BRB:
853 * Low threshold takes into account NEXT_PAGE_RCQ_DESC_CNT
854 * "next" elements on each page
855 */
856#define NUM_RCQ_REQ		BRB_SIZE(bp)
857#define NUM_RCQ_PG_REQ		((NUM_BD_REQ + MAX_RCQ_DESC_CNT - 1) / \
858					      MAX_RCQ_DESC_CNT)
859#define RCQ_TH_LO(bp)		(NUM_RCQ_REQ + \
860				 NUM_RCQ_PG_REQ * NEXT_PAGE_RCQ_DESC_CNT + \
861				 FW_DROP_LEVEL(bp))
862#define RCQ_TH_HI(bp)		(RCQ_TH_LO(bp) + DROPLESS_FC_HEADROOM)
863
864/* This is needed for determining of last_max */
865#define SUB_S16(a, b)		(s16)((s16)(a) - (s16)(b))
866#define SUB_S32(a, b)		(s32)((s32)(a) - (s32)(b))
867
868#define BNX2X_SWCID_SHIFT	17
869#define BNX2X_SWCID_MASK	((0x1 << BNX2X_SWCID_SHIFT) - 1)
870
871/* used on a CID received from the HW */
872#define SW_CID(x)			(le32_to_cpu(x) & BNX2X_SWCID_MASK)
873#define CQE_CMD(x)			(le32_to_cpu(x) >> \
874					COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT)
875
876#define BD_UNMAP_ADDR(bd)		HILO_U64(le32_to_cpu((bd)->addr_hi), \
877						 le32_to_cpu((bd)->addr_lo))
878#define BD_UNMAP_LEN(bd)		(le16_to_cpu((bd)->nbytes))
879
880#define BNX2X_DB_MIN_SHIFT		3	/* 8 bytes */
881#define BNX2X_DB_SHIFT			3	/* 8 bytes*/
882#if (BNX2X_DB_SHIFT < BNX2X_DB_MIN_SHIFT)
883#error "Min DB doorbell stride is 8"
884#endif
885#define DOORBELL(bp, cid, val) \
886	do { \
887		writel((u32)(val), bp->doorbells + (bp->db_size * (cid))); \
888	} while (0)
889
890/* TX CSUM helpers */
891#define SKB_CS_OFF(skb)		(offsetof(struct tcphdr, check) - \
892				 skb->csum_offset)
893#define SKB_CS(skb)		(*(u16 *)(skb_transport_header(skb) + \
894					  skb->csum_offset))
895
896#define pbd_tcp_flags(tcp_hdr)	(ntohl(tcp_flag_word(tcp_hdr))>>16 & 0xff)
897
898#define XMIT_PLAIN		0
899#define XMIT_CSUM_V4		(1 << 0)
900#define XMIT_CSUM_V6		(1 << 1)
901#define XMIT_CSUM_TCP		(1 << 2)
902#define XMIT_GSO_V4		(1 << 3)
903#define XMIT_GSO_V6		(1 << 4)
904#define XMIT_CSUM_ENC_V4	(1 << 5)
905#define XMIT_CSUM_ENC_V6	(1 << 6)
906#define XMIT_GSO_ENC_V4		(1 << 7)
907#define XMIT_GSO_ENC_V6		(1 << 8)
908
909#define XMIT_CSUM_ENC		(XMIT_CSUM_ENC_V4 | XMIT_CSUM_ENC_V6)
910#define XMIT_GSO_ENC		(XMIT_GSO_ENC_V4 | XMIT_GSO_ENC_V6)
911
912#define XMIT_CSUM		(XMIT_CSUM_V4 | XMIT_CSUM_V6 | XMIT_CSUM_ENC)
913#define XMIT_GSO		(XMIT_GSO_V4 | XMIT_GSO_V6 | XMIT_GSO_ENC)
914
915/* stuff added to make the code fit 80Col */
916#define CQE_TYPE(cqe_fp_flags)	 ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE)
917#define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG)
918#define CQE_TYPE_STOP(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG)
919#define CQE_TYPE_SLOW(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD)
920#define CQE_TYPE_FAST(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH)
921
922#define ETH_RX_ERROR_FALGS		ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG
923
924#define BNX2X_PRS_FLAG_OVERETH_IPV4(flags) \
925				(((le16_to_cpu(flags) & \
926				   PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) >> \
927				  PARSING_FLAGS_OVER_ETHERNET_PROTOCOL_SHIFT) \
928				 == PRS_FLAG_OVERETH_IPV4)
929#define BNX2X_RX_SUM_FIX(cqe) \
930	BNX2X_PRS_FLAG_OVERETH_IPV4(cqe->fast_path_cqe.pars_flags.flags)
931
932#define FP_USB_FUNC_OFF	\
933			offsetof(struct cstorm_status_block_u, func)
934#define FP_CSB_FUNC_OFF	\
935			offsetof(struct cstorm_status_block_c, func)
936
937#define HC_INDEX_ETH_RX_CQ_CONS		1
938
939#define HC_INDEX_OOO_TX_CQ_CONS		4
940
941#define HC_INDEX_ETH_TX_CQ_CONS_COS0	5
942
943#define HC_INDEX_ETH_TX_CQ_CONS_COS1	6
944
945#define HC_INDEX_ETH_TX_CQ_CONS_COS2	7
946
947#define HC_INDEX_ETH_FIRST_TX_CQ_CONS	HC_INDEX_ETH_TX_CQ_CONS_COS0
948
949#define BNX2X_RX_SB_INDEX \
950	(&fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS])
951
952#define BNX2X_TX_SB_INDEX_BASE BNX2X_TX_SB_INDEX_COS0
953
954#define BNX2X_TX_SB_INDEX_COS0 \
955	(&fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0])
956
957/* end of fast path */
958
959/* common */
960
961struct bnx2x_common {
962
963	u32			chip_id;
964/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
965#define CHIP_ID(bp)			(bp->common.chip_id & 0xfffffff0)
966
967#define CHIP_NUM(bp)			(bp->common.chip_id >> 16)
968#define CHIP_NUM_57710			0x164e
969#define CHIP_NUM_57711			0x164f
970#define CHIP_NUM_57711E			0x1650
971#define CHIP_NUM_57712			0x1662
972#define CHIP_NUM_57712_MF		0x1663
973#define CHIP_NUM_57712_VF		0x166f
974#define CHIP_NUM_57713			0x1651
975#define CHIP_NUM_57713E			0x1652
976#define CHIP_NUM_57800			0x168a
977#define CHIP_NUM_57800_MF		0x16a5
978#define CHIP_NUM_57800_VF		0x16a9
979#define CHIP_NUM_57810			0x168e
980#define CHIP_NUM_57810_MF		0x16ae
981#define CHIP_NUM_57810_VF		0x16af
982#define CHIP_NUM_57811			0x163d
983#define CHIP_NUM_57811_MF		0x163e
984#define CHIP_NUM_57811_VF		0x163f
985#define CHIP_NUM_57840_OBSOLETE		0x168d
986#define CHIP_NUM_57840_MF_OBSOLETE	0x16ab
987#define CHIP_NUM_57840_4_10		0x16a1
988#define CHIP_NUM_57840_2_20		0x16a2
989#define CHIP_NUM_57840_MF		0x16a4
990#define CHIP_NUM_57840_VF		0x16ad
991#define CHIP_IS_E1(bp)			(CHIP_NUM(bp) == CHIP_NUM_57710)
992#define CHIP_IS_57711(bp)		(CHIP_NUM(bp) == CHIP_NUM_57711)
993#define CHIP_IS_57711E(bp)		(CHIP_NUM(bp) == CHIP_NUM_57711E)
994#define CHIP_IS_57712(bp)		(CHIP_NUM(bp) == CHIP_NUM_57712)
995#define CHIP_IS_57712_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57712_VF)
996#define CHIP_IS_57712_MF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57712_MF)
997#define CHIP_IS_57800(bp)		(CHIP_NUM(bp) == CHIP_NUM_57800)
998#define CHIP_IS_57800_MF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57800_MF)
999#define CHIP_IS_57800_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57800_VF)
1000#define CHIP_IS_57810(bp)		(CHIP_NUM(bp) == CHIP_NUM_57810)
1001#define CHIP_IS_57810_MF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57810_MF)
1002#define CHIP_IS_57810_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57810_VF)
1003#define CHIP_IS_57811(bp)		(CHIP_NUM(bp) == CHIP_NUM_57811)
1004#define CHIP_IS_57811_MF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57811_MF)
1005#define CHIP_IS_57811_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57811_VF)
1006#define CHIP_IS_57840(bp)		\
1007		((CHIP_NUM(bp) == CHIP_NUM_57840_4_10) || \
1008		 (CHIP_NUM(bp) == CHIP_NUM_57840_2_20) || \
1009		 (CHIP_NUM(bp) == CHIP_NUM_57840_OBSOLETE))
1010#define CHIP_IS_57840_MF(bp)	((CHIP_NUM(bp) == CHIP_NUM_57840_MF) || \
1011				 (CHIP_NUM(bp) == CHIP_NUM_57840_MF_OBSOLETE))
1012#define CHIP_IS_57840_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57840_VF)
1013#define CHIP_IS_E1H(bp)			(CHIP_IS_57711(bp) || \
1014					 CHIP_IS_57711E(bp))
1015#define CHIP_IS_57811xx(bp)		(CHIP_IS_57811(bp) || \
1016					 CHIP_IS_57811_MF(bp) || \
1017					 CHIP_IS_57811_VF(bp))
1018#define CHIP_IS_E2(bp)			(CHIP_IS_57712(bp) || \
1019					 CHIP_IS_57712_MF(bp) || \
1020					 CHIP_IS_57712_VF(bp))
1021#define CHIP_IS_E3(bp)			(CHIP_IS_57800(bp) || \
1022					 CHIP_IS_57800_MF(bp) || \
1023					 CHIP_IS_57800_VF(bp) || \
1024					 CHIP_IS_57810(bp) || \
1025					 CHIP_IS_57810_MF(bp) || \
1026					 CHIP_IS_57810_VF(bp) || \
1027					 CHIP_IS_57811xx(bp) || \
1028					 CHIP_IS_57840(bp) || \
1029					 CHIP_IS_57840_MF(bp) || \
1030					 CHIP_IS_57840_VF(bp))
1031#define CHIP_IS_E1x(bp)			(CHIP_IS_E1((bp)) || CHIP_IS_E1H((bp)))
1032#define USES_WARPCORE(bp)		(CHIP_IS_E3(bp))
1033#define IS_E1H_OFFSET			(!CHIP_IS_E1(bp))
1034
1035#define CHIP_REV_SHIFT			12
1036#define CHIP_REV_MASK			(0xF << CHIP_REV_SHIFT)
1037#define CHIP_REV_VAL(bp)		(bp->common.chip_id & CHIP_REV_MASK)
1038#define CHIP_REV_Ax			(0x0 << CHIP_REV_SHIFT)
1039#define CHIP_REV_Bx			(0x1 << CHIP_REV_SHIFT)
1040/* assume maximum 5 revisions */
1041#define CHIP_REV_IS_SLOW(bp)		(CHIP_REV_VAL(bp) > 0x00005000)
1042/* Emul versions are A=>0xe, B=>0xc, C=>0xa, D=>8, E=>6 */
1043#define CHIP_REV_IS_EMUL(bp)		((CHIP_REV_IS_SLOW(bp)) && \
1044					 !(CHIP_REV_VAL(bp) & 0x00001000))
1045/* FPGA versions are A=>0xf, B=>0xd, C=>0xb, D=>9, E=>7 */
1046#define CHIP_REV_IS_FPGA(bp)		((CHIP_REV_IS_SLOW(bp)) && \
1047					 (CHIP_REV_VAL(bp) & 0x00001000))
1048
1049#define CHIP_TIME(bp)			((CHIP_REV_IS_EMUL(bp)) ? 2000 : \
1050					((CHIP_REV_IS_FPGA(bp)) ? 200 : 1))
1051
1052#define CHIP_METAL(bp)			(bp->common.chip_id & 0x00000ff0)
1053#define CHIP_BOND_ID(bp)		(bp->common.chip_id & 0x0000000f)
1054#define CHIP_REV_SIM(bp)		(((CHIP_REV_MASK - CHIP_REV_VAL(bp)) >>\
1055					   (CHIP_REV_SHIFT + 1)) \
1056						<< CHIP_REV_SHIFT)
1057#define CHIP_REV(bp)			(CHIP_REV_IS_SLOW(bp) ? \
1058						CHIP_REV_SIM(bp) :\
1059						CHIP_REV_VAL(bp))
1060#define CHIP_IS_E3B0(bp)		(CHIP_IS_E3(bp) && \
1061					 (CHIP_REV(bp) == CHIP_REV_Bx))
1062#define CHIP_IS_E3A0(bp)		(CHIP_IS_E3(bp) && \
1063					 (CHIP_REV(bp) == CHIP_REV_Ax))
1064/* This define is used in two main places:
1065 * 1. In the early stages of nic_load, to know if to configure Parser / Searcher
1066 * to nic-only mode or to offload mode. Offload mode is configured if either the
1067 * chip is E1x (where MIC_MODE register is not applicable), or if cnic already
1068 * registered for this port (which means that the user wants storage services).
1069 * 2. During cnic-related load, to know if offload mode is already configured in
1070 * the HW or needs to be configured.
1071 * Since the transition from nic-mode to offload-mode in HW causes traffic
1072 * corruption, nic-mode is configured only in ports on which storage services
1073 * where never requested.
1074 */
1075#define CONFIGURE_NIC_MODE(bp)		(!CHIP_IS_E1x(bp) && !CNIC_ENABLED(bp))
1076
1077	int			flash_size;
1078#define BNX2X_NVRAM_1MB_SIZE			0x20000	/* 1M bit in bytes */
1079#define BNX2X_NVRAM_TIMEOUT_COUNT		30000
1080#define BNX2X_NVRAM_PAGE_SIZE			256
1081
1082	u32			shmem_base;
1083	u32			shmem2_base;
1084	u32			mf_cfg_base;
1085	u32			mf2_cfg_base;
1086
1087	u32			hw_config;
1088
1089	u32			bc_ver;
1090
1091	u8			int_block;
1092#define INT_BLOCK_HC			0
1093#define INT_BLOCK_IGU			1
1094#define INT_BLOCK_MODE_NORMAL		0
1095#define INT_BLOCK_MODE_BW_COMP		2
1096#define CHIP_INT_MODE_IS_NBC(bp)		\
1097			(!CHIP_IS_E1x(bp) &&	\
1098			!((bp)->common.int_block & INT_BLOCK_MODE_BW_COMP))
1099#define CHIP_INT_MODE_IS_BC(bp) (!CHIP_INT_MODE_IS_NBC(bp))
1100
1101	u8			chip_port_mode;
1102#define CHIP_4_PORT_MODE			0x0
1103#define CHIP_2_PORT_MODE			0x1
1104#define CHIP_PORT_MODE_NONE			0x2
1105#define CHIP_MODE(bp)			(bp->common.chip_port_mode)
1106#define CHIP_MODE_IS_4_PORT(bp) (CHIP_MODE(bp) == CHIP_4_PORT_MODE)
1107
1108	u32			boot_mode;
1109};
1110
1111/* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */
1112#define BNX2X_IGU_STAS_MSG_VF_CNT 64
1113#define BNX2X_IGU_STAS_MSG_PF_CNT 4
1114
1115#define MAX_IGU_ATTN_ACK_TO       100
1116/* end of common */
1117
1118/* port */
1119
1120struct bnx2x_port {
1121	u32			pmf;
1122
1123	u32			link_config[LINK_CONFIG_SIZE];
1124
1125	u32			supported[LINK_CONFIG_SIZE];
1126/* link settings - missing defines */
1127#define SUPPORTED_2500baseX_Full	(1 << 15)
1128
1129	u32			advertising[LINK_CONFIG_SIZE];
1130/* link settings - missing defines */
1131#define ADVERTISED_2500baseX_Full	(1 << 15)
1132
1133	u32			phy_addr;
1134
1135	/* used to synchronize phy accesses */
1136	struct mutex		phy_mutex;
1137
1138	u32			port_stx;
1139
1140	struct nig_stats	old_nig_stats;
1141};
1142
1143/* end of port */
1144
1145#define STATS_OFFSET32(stat_name) \
1146			(offsetof(struct bnx2x_eth_stats, stat_name) / 4)
1147
1148/* slow path */
1149
1150/* slow path work-queue */
1151extern struct workqueue_struct *bnx2x_wq;
1152
1153#define BNX2X_MAX_NUM_OF_VFS	64
1154#define BNX2X_VF_CID_WND	4 /* log num of queues per VF. HW config. */
1155#define BNX2X_CIDS_PER_VF	(1 << BNX2X_VF_CID_WND)
1156
1157/* We need to reserve doorbell addresses for all VF and queue combinations */
1158#define BNX2X_VF_CIDS		(BNX2X_MAX_NUM_OF_VFS * BNX2X_CIDS_PER_VF)
1159
1160/* The doorbell is configured to have the same number of CIDs for PFs and for
1161 * VFs. For this reason the PF CID zone is as large as the VF zone.
1162 */
1163#define BNX2X_FIRST_VF_CID	BNX2X_VF_CIDS
1164#define BNX2X_MAX_NUM_VF_QUEUES	64
1165#define BNX2X_VF_ID_INVALID	0xFF
1166
1167/* the number of VF CIDS multiplied by the amount of bytes reserved for each
1168 * cid must not exceed the size of the VF doorbell
1169 */
1170#define BNX2X_VF_BAR_SIZE	512
1171#if (BNX2X_VF_BAR_SIZE < BNX2X_CIDS_PER_VF * (1 << BNX2X_DB_SHIFT))
1172#error "VF doorbell bar size is 512"
1173#endif
1174
1175/*
1176 * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
1177 * control by the number of fast-path status blocks supported by the
1178 * device (HW/FW). Each fast-path status block (FP-SB) aka non-default
1179 * status block represents an independent interrupts context that can
1180 * serve a regular L2 networking queue. However special L2 queues such
1181 * as the FCoE queue do not require a FP-SB and other components like
1182 * the CNIC may consume FP-SB reducing the number of possible L2 queues
1183 *
1184 * If the maximum number of FP-SB available is X then:
1185 * a. If CNIC is supported it consumes 1 FP-SB thus the max number of
1186 *    regular L2 queues is Y=X-1
1187 * b. In MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
1188 * c. If the FCoE L2 queue is supported the actual number of L2 queues
1189 *    is Y+1
1190 * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
1191 *    slow-path interrupts) or Y+2 if CNIC is supported (one additional
1192 *    FP interrupt context for the CNIC).
1193 * e. The number of HW context (CID count) is always X or X+1 if FCoE
1194 *    L2 queue is supported. The cid for the FCoE L2 queue is always X.
1195 */
1196
1197/* fast-path interrupt contexts E1x */
1198#define FP_SB_MAX_E1x		16
1199/* fast-path interrupt contexts E2 */
1200#define FP_SB_MAX_E2		HC_SB_MAX_SB_E2
1201
1202union cdu_context {
1203	struct eth_context eth;
1204	char pad[1024];
1205};
1206
1207/* CDU host DB constants */
1208#define CDU_ILT_PAGE_SZ_HW	2
1209#define CDU_ILT_PAGE_SZ		(8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */
1210#define ILT_PAGE_CIDS		(CDU_ILT_PAGE_SZ / sizeof(union cdu_context))
1211
1212#define CNIC_ISCSI_CID_MAX	256
1213#define CNIC_FCOE_CID_MAX	2048
1214#define CNIC_CID_MAX		(CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX)
1215#define CNIC_ILT_LINES		DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS)
1216
1217#define QM_ILT_PAGE_SZ_HW	0
1218#define QM_ILT_PAGE_SZ		(4096 << QM_ILT_PAGE_SZ_HW) /* 4K */
1219#define QM_CID_ROUND		1024
1220
1221/* TM (timers) host DB constants */
1222#define TM_ILT_PAGE_SZ_HW	0
1223#define TM_ILT_PAGE_SZ		(4096 << TM_ILT_PAGE_SZ_HW) /* 4K */
1224#define TM_CONN_NUM		(BNX2X_FIRST_VF_CID + \
1225				 BNX2X_VF_CIDS + \
1226				 CNIC_ISCSI_CID_MAX)
1227#define TM_ILT_SZ		(8 * TM_CONN_NUM)
1228#define TM_ILT_LINES		DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ)
1229
1230/* SRC (Searcher) host DB constants */
1231#define SRC_ILT_PAGE_SZ_HW	0
1232#define SRC_ILT_PAGE_SZ		(4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */
1233#define SRC_HASH_BITS		10
1234#define SRC_CONN_NUM		(1 << SRC_HASH_BITS) /* 1024 */
1235#define SRC_ILT_SZ		(sizeof(struct src_ent) * SRC_CONN_NUM)
1236#define SRC_T2_SZ		SRC_ILT_SZ
1237#define SRC_ILT_LINES		DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ)
1238
1239#define MAX_DMAE_C		8
1240
1241/* DMA memory not used in fastpath */
1242struct bnx2x_slowpath {
1243	union {
1244		struct mac_configuration_cmd		e1x;
1245		struct eth_classify_rules_ramrod_data	e2;
1246	} mac_rdata;
1247
1248	union {
1249		struct tstorm_eth_mac_filter_config	e1x;
1250		struct eth_filter_rules_ramrod_data	e2;
1251	} rx_mode_rdata;
1252
1253	union {
1254		struct mac_configuration_cmd		e1;
1255		struct eth_multicast_rules_ramrod_data  e2;
1256	} mcast_rdata;
1257
1258	struct eth_rss_update_ramrod_data	rss_rdata;
1259
1260	/* Queue State related ramrods are always sent under rtnl_lock */
1261	union {
1262		struct client_init_ramrod_data  init_data;
1263		struct client_update_ramrod_data update_data;
1264	} q_rdata;
1265
1266	union {
1267		struct function_start_data	func_start;
1268		/* pfc configuration for DCBX ramrod */
1269		struct flow_control_configuration pfc_config;
1270	} func_rdata;
1271
1272	/* afex ramrod can not be a part of func_rdata union because these
1273	 * events might arrive in parallel to other events from func_rdata.
1274	 * Therefore, if they would have been defined in the same union,
1275	 * data can get corrupted.
1276	 */
1277	union {
1278		struct afex_vif_list_ramrod_data	viflist_data;
1279		struct function_update_data		func_update;
1280	} func_afex_rdata;
1281
1282	/* used by dmae command executer */
1283	struct dmae_command		dmae[MAX_DMAE_C];
1284
1285	u32				stats_comp;
1286	union mac_stats			mac_stats;
1287	struct nig_stats		nig_stats;
1288	struct host_port_stats		port_stats;
1289	struct host_func_stats		func_stats;
1290
1291	u32				wb_comp;
1292	u32				wb_data[4];
1293
1294	union drv_info_to_mcp		drv_info_to_mcp;
1295};
1296
1297#define bnx2x_sp(bp, var)		(&bp->slowpath->var)
1298#define bnx2x_sp_mapping(bp, var) \
1299		(bp->slowpath_mapping + offsetof(struct bnx2x_slowpath, var))
1300
1301/* attn group wiring */
1302#define MAX_DYNAMIC_ATTN_GRPS		8
1303
1304struct attn_route {
1305	u32 sig[5];
1306};
1307
1308struct iro {
1309	u32 base;
1310	u16 m1;
1311	u16 m2;
1312	u16 m3;
1313	u16 size;
1314};
1315
1316struct hw_context {
1317	union cdu_context *vcxt;
1318	dma_addr_t cxt_mapping;
1319	size_t size;
1320};
1321
1322/* forward */
1323struct bnx2x_ilt;
1324
1325struct bnx2x_vfdb;
1326
1327enum bnx2x_recovery_state {
1328	BNX2X_RECOVERY_DONE,
1329	BNX2X_RECOVERY_INIT,
1330	BNX2X_RECOVERY_WAIT,
1331	BNX2X_RECOVERY_FAILED,
1332	BNX2X_RECOVERY_NIC_LOADING
1333};
1334
1335/*
1336 * Event queue (EQ or event ring) MC hsi
1337 * NUM_EQ_PAGES and EQ_DESC_CNT_PAGE must be power of 2
1338 */
1339#define NUM_EQ_PAGES		1
1340#define EQ_DESC_CNT_PAGE	(BCM_PAGE_SIZE / sizeof(union event_ring_elem))
1341#define EQ_DESC_MAX_PAGE	(EQ_DESC_CNT_PAGE - 1)
1342#define NUM_EQ_DESC		(EQ_DESC_CNT_PAGE * NUM_EQ_PAGES)
1343#define EQ_DESC_MASK		(NUM_EQ_DESC - 1)
1344#define MAX_EQ_AVAIL		(EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2)
1345
1346/* depends on EQ_DESC_CNT_PAGE being a power of 2 */
1347#define NEXT_EQ_IDX(x)		((((x) & EQ_DESC_MAX_PAGE) == \
1348				  (EQ_DESC_MAX_PAGE - 1)) ? (x) + 2 : (x) + 1)
1349
1350/* depends on the above and on NUM_EQ_PAGES being a power of 2 */
1351#define EQ_DESC(x)		((x) & EQ_DESC_MASK)
1352
1353#define BNX2X_EQ_INDEX \
1354	(&bp->def_status_blk->sp_sb.\
1355	index_values[HC_SP_INDEX_EQ_CONS])
1356
1357/* This is a data that will be used to create a link report message.
1358 * We will keep the data used for the last link report in order
1359 * to prevent reporting the same link parameters twice.
1360 */
1361struct bnx2x_link_report_data {
1362	u16 line_speed;			/* Effective line speed */
1363	unsigned long link_report_flags;/* BNX2X_LINK_REPORT_XXX flags */
1364};
1365
1366enum {
1367	BNX2X_LINK_REPORT_FD,		/* Full DUPLEX */
1368	BNX2X_LINK_REPORT_LINK_DOWN,
1369	BNX2X_LINK_REPORT_RX_FC_ON,
1370	BNX2X_LINK_REPORT_TX_FC_ON,
1371};
1372
1373enum {
1374	BNX2X_PORT_QUERY_IDX,
1375	BNX2X_PF_QUERY_IDX,
1376	BNX2X_FCOE_QUERY_IDX,
1377	BNX2X_FIRST_QUEUE_QUERY_IDX,
1378};
1379
1380struct bnx2x_fw_stats_req {
1381	struct stats_query_header hdr;
1382	struct stats_query_entry query[FP_SB_MAX_E1x+
1383		BNX2X_FIRST_QUEUE_QUERY_IDX];
1384};
1385
1386struct bnx2x_fw_stats_data {
1387	struct stats_counter		storm_counters;
1388	struct per_port_stats		port;
1389	struct per_pf_stats		pf;
1390	struct fcoe_statistics_params	fcoe;
1391	struct per_queue_stats		queue_stats[1];
1392};
1393
1394/* Public slow path states */
1395enum {
1396	BNX2X_SP_RTNL_SETUP_TC,
1397	BNX2X_SP_RTNL_TX_TIMEOUT,
1398	BNX2X_SP_RTNL_FAN_FAILURE,
1399	BNX2X_SP_RTNL_AFEX_F_UPDATE,
1400	BNX2X_SP_RTNL_ENABLE_SRIOV,
1401	BNX2X_SP_RTNL_VFPF_MCAST,
1402	BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
1403	BNX2X_SP_RTNL_RX_MODE,
1404	BNX2X_SP_RTNL_HYPERVISOR_VLAN,
1405	BNX2X_SP_RTNL_TX_STOP,
1406};
1407
1408struct bnx2x_prev_path_list {
1409	struct list_head list;
1410	u8 bus;
1411	u8 slot;
1412	u8 path;
1413	u8 aer;
1414	u8 undi;
1415};
1416
1417struct bnx2x_sp_objs {
1418	/* MACs object */
1419	struct bnx2x_vlan_mac_obj mac_obj;
1420
1421	/* Queue State object */
1422	struct bnx2x_queue_sp_obj q_obj;
1423};
1424
1425struct bnx2x_fp_stats {
1426	struct tstorm_per_queue_stats old_tclient;
1427	struct ustorm_per_queue_stats old_uclient;
1428	struct xstorm_per_queue_stats old_xclient;
1429	struct bnx2x_eth_q_stats eth_q_stats;
1430	struct bnx2x_eth_q_stats_old eth_q_stats_old;
1431};
1432
1433struct bnx2x {
1434	/* Fields used in the tx and intr/napi performance paths
1435	 * are grouped together in the beginning of the structure
1436	 */
1437	struct bnx2x_fastpath	*fp;
1438	struct bnx2x_sp_objs	*sp_objs;
1439	struct bnx2x_fp_stats	*fp_stats;
1440	struct bnx2x_fp_txdata	*bnx2x_txq;
1441	void __iomem		*regview;
1442	void __iomem		*doorbells;
1443	u16			db_size;
1444
1445	u8			pf_num;	/* absolute PF number */
1446	u8			pfid;	/* per-path PF number */
1447	int			base_fw_ndsb; /**/
1448#define BP_PATH(bp)			(CHIP_IS_E1x(bp) ? 0 : (bp->pf_num & 1))
1449#define BP_PORT(bp)			(bp->pfid & 1)
1450#define BP_FUNC(bp)			(bp->pfid)
1451#define BP_ABS_FUNC(bp)			(bp->pf_num)
1452#define BP_VN(bp)			((bp)->pfid >> 1)
1453#define BP_MAX_VN_NUM(bp)		(CHIP_MODE_IS_4_PORT(bp) ? 2 : 4)
1454#define BP_L_ID(bp)			(BP_VN(bp) << 2)
1455#define BP_FW_MB_IDX_VN(bp, vn)		(BP_PORT(bp) +\
1456	  (vn) * ((CHIP_IS_E1x(bp) || (CHIP_MODE_IS_4_PORT(bp))) ? 2  : 1))
1457#define BP_FW_MB_IDX(bp)		BP_FW_MB_IDX_VN(bp, BP_VN(bp))
1458
1459#ifdef CONFIG_BNX2X_SRIOV
1460	/* protects vf2pf mailbox from simultaneous access */
1461	struct mutex		vf2pf_mutex;
1462	/* vf pf channel mailbox contains request and response buffers */
1463	struct bnx2x_vf_mbx_msg	*vf2pf_mbox;
1464	dma_addr_t		vf2pf_mbox_mapping;
1465
1466	/* we set aside a copy of the acquire response */
1467	struct pfvf_acquire_resp_tlv acquire_resp;
1468
1469	/* bulletin board for messages from pf to vf */
1470	union pf_vf_bulletin   *pf2vf_bulletin;
1471	dma_addr_t		pf2vf_bulletin_mapping;
1472
1473	struct pf_vf_bulletin_content	old_bulletin;
1474
1475	u16 requested_nr_virtfn;
1476#endif /* CONFIG_BNX2X_SRIOV */
1477
1478	struct net_device	*dev;
1479	struct pci_dev		*pdev;
1480
1481	const struct iro	*iro_arr;
1482#define IRO (bp->iro_arr)
1483
1484	enum bnx2x_recovery_state recovery_state;
1485	int			is_leader;
1486	struct msix_entry	*msix_table;
1487
1488	int			tx_ring_size;
1489
1490/* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
1491#define ETH_OVREHEAD		(ETH_HLEN + 8 + 8)
1492#define ETH_MIN_PACKET_SIZE		60
1493#define ETH_MAX_PACKET_SIZE		1500
1494#define ETH_MAX_JUMBO_PACKET_SIZE	9600
1495/* TCP with Timestamp Option (32) + IPv6 (40) */
1496#define ETH_MAX_TPA_HEADER_SIZE		72
1497
1498	/* Max supported alignment is 256 (8 shift) */
1499#define BNX2X_RX_ALIGN_SHIFT		min(8, L1_CACHE_SHIFT)
1500
1501	/* FW uses 2 Cache lines Alignment for start packet and size
1502	 *
1503	 * We assume skb_build() uses sizeof(struct skb_shared_info) bytes
1504	 * at the end of skb->data, to avoid wasting a full cache line.
1505	 * This reduces memory use (skb->truesize).
1506	 */
1507#define BNX2X_FW_RX_ALIGN_START	(1UL << BNX2X_RX_ALIGN_SHIFT)
1508
1509#define BNX2X_FW_RX_ALIGN_END					\
1510	max_t(u64, 1UL << BNX2X_RX_ALIGN_SHIFT,			\
1511	    SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
1512
1513#define BNX2X_PXP_DRAM_ALIGN		(BNX2X_RX_ALIGN_SHIFT - 5)
1514
1515	struct host_sp_status_block *def_status_blk;
1516#define DEF_SB_IGU_ID			16
1517#define DEF_SB_ID			HC_SP_SB_ID
1518	__le16			def_idx;
1519	__le16			def_att_idx;
1520	u32			attn_state;
1521	struct attn_route	attn_group[MAX_DYNAMIC_ATTN_GRPS];
1522
1523	/* slow path ring */
1524	struct eth_spe		*spq;
1525	dma_addr_t		spq_mapping;
1526	u16			spq_prod_idx;
1527	struct eth_spe		*spq_prod_bd;
1528	struct eth_spe		*spq_last_bd;
1529	__le16			*dsb_sp_prod;
1530	atomic_t		cq_spq_left; /* ETH_XXX ramrods credit */
1531	/* used to synchronize spq accesses */
1532	spinlock_t		spq_lock;
1533
1534	/* event queue */
1535	union event_ring_elem	*eq_ring;
1536	dma_addr_t		eq_mapping;
1537	u16			eq_prod;
1538	u16			eq_cons;
1539	__le16			*eq_cons_sb;
1540	atomic_t		eq_spq_left; /* COMMON_XXX ramrods credit */
1541
1542	/* Counter for marking that there is a STAT_QUERY ramrod pending */
1543	u16			stats_pending;
1544	/*  Counter for completed statistics ramrods */
1545	u16			stats_comp;
1546
1547	/* End of fields used in the performance code paths */
1548
1549	int			panic;
1550	int			msg_enable;
1551
1552	u32			flags;
1553#define PCIX_FLAG			(1 << 0)
1554#define PCI_32BIT_FLAG			(1 << 1)
1555#define ONE_PORT_FLAG			(1 << 2)
1556#define NO_WOL_FLAG			(1 << 3)
1557#define USING_MSIX_FLAG			(1 << 5)
1558#define USING_MSI_FLAG			(1 << 6)
1559#define DISABLE_MSI_FLAG		(1 << 7)
1560#define TPA_ENABLE_FLAG			(1 << 8)
1561#define NO_MCP_FLAG			(1 << 9)
1562#define GRO_ENABLE_FLAG			(1 << 10)
1563#define MF_FUNC_DIS			(1 << 11)
1564#define OWN_CNIC_IRQ			(1 << 12)
1565#define NO_ISCSI_OOO_FLAG		(1 << 13)
1566#define NO_ISCSI_FLAG			(1 << 14)
1567#define NO_FCOE_FLAG			(1 << 15)
1568#define BC_SUPPORTS_PFC_STATS		(1 << 17)
1569#define BC_SUPPORTS_FCOE_FEATURES	(1 << 19)
1570#define USING_SINGLE_MSIX_FLAG		(1 << 20)
1571#define BC_SUPPORTS_DCBX_MSG_NON_PMF	(1 << 21)
1572#define IS_VF_FLAG			(1 << 22)
1573#define INTERRUPTS_ENABLED_FLAG		(1 << 23)
1574#define BC_SUPPORTS_RMMOD_CMD		(1 << 24)
1575#define HAS_PHYS_PORT_ID		(1 << 25)
1576
1577#define BP_NOMCP(bp)			((bp)->flags & NO_MCP_FLAG)
1578
1579#ifdef CONFIG_BNX2X_SRIOV
1580#define IS_VF(bp)			((bp)->flags & IS_VF_FLAG)
1581#define IS_PF(bp)			(!((bp)->flags & IS_VF_FLAG))
1582#else
1583#define IS_VF(bp)			false
1584#define IS_PF(bp)			true
1585#endif
1586
1587#define NO_ISCSI(bp)		((bp)->flags & NO_ISCSI_FLAG)
1588#define NO_ISCSI_OOO(bp)	((bp)->flags & NO_ISCSI_OOO_FLAG)
1589#define NO_FCOE(bp)		((bp)->flags & NO_FCOE_FLAG)
1590
1591	u8			cnic_support;
1592	bool			cnic_enabled;
1593	bool			cnic_loaded;
1594	struct cnic_eth_dev	*(*cnic_probe)(struct net_device *);
1595
1596	/* Flag that indicates that we can start looking for FCoE L2 queue
1597	 * completions in the default status block.
1598	 */
1599	bool			fcoe_init;
1600
1601	int			mrrs;
1602
1603	struct delayed_work	sp_task;
1604	atomic_t		interrupt_occurred;
1605	struct delayed_work	sp_rtnl_task;
1606
1607	struct delayed_work	period_task;
1608	struct timer_list	timer;
1609	int			current_interval;
1610
1611	u16			fw_seq;
1612	u16			fw_drv_pulse_wr_seq;
1613	u32			func_stx;
1614
1615	struct link_params	link_params;
1616	struct link_vars	link_vars;
1617	u32			link_cnt;
1618	struct bnx2x_link_report_data last_reported_link;
1619
1620	struct mdio_if_info	mdio;
1621
1622	struct bnx2x_common	common;
1623	struct bnx2x_port	port;
1624
1625	struct cmng_init	cmng;
1626
1627	u32			mf_config[E1HVN_MAX];
1628	u32			mf_ext_config;
1629	u32			path_has_ovlan; /* E3 */
1630	u16			mf_ov;
1631	u8			mf_mode;
1632#define IS_MF(bp)		(bp->mf_mode != 0)
1633#define IS_MF_SI(bp)		(bp->mf_mode == MULTI_FUNCTION_SI)
1634#define IS_MF_SD(bp)		(bp->mf_mode == MULTI_FUNCTION_SD)
1635#define IS_MF_AFEX(bp)		(bp->mf_mode == MULTI_FUNCTION_AFEX)
1636
1637	u8			wol;
1638
1639	int			rx_ring_size;
1640
1641	u16			tx_quick_cons_trip_int;
1642	u16			tx_quick_cons_trip;
1643	u16			tx_ticks_int;
1644	u16			tx_ticks;
1645
1646	u16			rx_quick_cons_trip_int;
1647	u16			rx_quick_cons_trip;
1648	u16			rx_ticks_int;
1649	u16			rx_ticks;
1650/* Maximal coalescing timeout in us */
1651#define BNX2X_MAX_COALESCE_TOUT		(0xff*BNX2X_BTR)
1652
1653	u32			lin_cnt;
1654
1655	u16			state;
1656#define BNX2X_STATE_CLOSED		0
1657#define BNX2X_STATE_OPENING_WAIT4_LOAD	0x1000
1658#define BNX2X_STATE_OPENING_WAIT4_PORT	0x2000
1659#define BNX2X_STATE_OPEN		0x3000
1660#define BNX2X_STATE_CLOSING_WAIT4_HALT	0x4000
1661#define BNX2X_STATE_CLOSING_WAIT4_DELETE 0x5000
1662
1663#define BNX2X_STATE_DIAG		0xe000
1664#define BNX2X_STATE_ERROR		0xf000
1665
1666#define BNX2X_MAX_PRIORITY		8
1667#define BNX2X_MAX_ENTRIES_PER_PRI	16
1668#define BNX2X_MAX_COS			3
1669#define BNX2X_MAX_TX_COS		2
1670	int			num_queues;
1671	uint			num_ethernet_queues;
1672	uint			num_cnic_queues;
1673	int			num_napi_queues;
1674	int			disable_tpa;
1675
1676	u32			rx_mode;
1677#define BNX2X_RX_MODE_NONE		0
1678#define BNX2X_RX_MODE_NORMAL		1
1679#define BNX2X_RX_MODE_ALLMULTI		2
1680#define BNX2X_RX_MODE_PROMISC		3
1681#define BNX2X_MAX_MULTICAST		64
1682
1683	u8			igu_dsb_id;
1684	u8			igu_base_sb;
1685	u8			igu_sb_cnt;
1686	u8			min_msix_vec_cnt;
1687
1688	u32			igu_base_addr;
1689	dma_addr_t		def_status_blk_mapping;
1690
1691	struct bnx2x_slowpath	*slowpath;
1692	dma_addr_t		slowpath_mapping;
1693
1694	/* Total number of FW statistics requests */
1695	u8			fw_stats_num;
1696
1697	/*
1698	 * This is a memory buffer that will contain both statistics
1699	 * ramrod request and data.
1700	 */
1701	void			*fw_stats;
1702	dma_addr_t		fw_stats_mapping;
1703
1704	/*
1705	 * FW statistics request shortcut (points at the
1706	 * beginning of fw_stats buffer).
1707	 */
1708	struct bnx2x_fw_stats_req	*fw_stats_req;
1709	dma_addr_t			fw_stats_req_mapping;
1710	int				fw_stats_req_sz;
1711
1712	/*
1713	 * FW statistics data shortcut (points at the beginning of
1714	 * fw_stats buffer + fw_stats_req_sz).
1715	 */
1716	struct bnx2x_fw_stats_data	*fw_stats_data;
1717	dma_addr_t			fw_stats_data_mapping;
1718	int				fw_stats_data_sz;
1719
1720	/* For max 1024 cids (VF RSS), 32KB ILT page size and 1KB
1721	 * context size we need 8 ILT entries.
1722	 */
1723#define ILT_MAX_L2_LINES	32
1724	struct hw_context	context[ILT_MAX_L2_LINES];
1725
1726	struct bnx2x_ilt	*ilt;
1727#define BP_ILT(bp)		((bp)->ilt)
1728#define ILT_MAX_LINES		256
1729/*
1730 * Maximum supported number of RSS queues: number of IGU SBs minus one that goes
1731 * to CNIC.
1732 */
1733#define BNX2X_MAX_RSS_COUNT(bp)	((bp)->igu_sb_cnt - CNIC_SUPPORT(bp))
1734
1735/*
1736 * Maximum CID count that might be required by the bnx2x:
1737 * Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI
1738 */
1739
1740#define BNX2X_L2_CID_COUNT(bp)	(BNX2X_NUM_ETH_QUEUES(bp) * BNX2X_MULTI_TX_COS \
1741				+ CNIC_SUPPORT(bp) * (2 + UIO_CID_PAD(bp)))
1742#define BNX2X_L2_MAX_CID(bp)	(BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS \
1743				+ CNIC_SUPPORT(bp) * (2 + UIO_CID_PAD(bp)))
1744#define L2_ILT_LINES(bp)	(DIV_ROUND_UP(BNX2X_L2_CID_COUNT(bp),\
1745					ILT_PAGE_CIDS))
1746
1747	int			qm_cid_count;
1748
1749	bool			dropless_fc;
1750
1751	void			*t2;
1752	dma_addr_t		t2_mapping;
1753	struct cnic_ops	__rcu	*cnic_ops;
1754	void			*cnic_data;
1755	u32			cnic_tag;
1756	struct cnic_eth_dev	cnic_eth_dev;
1757	union host_hc_status_block cnic_sb;
1758	dma_addr_t		cnic_sb_mapping;
1759	struct eth_spe		*cnic_kwq;
1760	struct eth_spe		*cnic_kwq_prod;
1761	struct eth_spe		*cnic_kwq_cons;
1762	struct eth_spe		*cnic_kwq_last;
1763	u16			cnic_kwq_pending;
1764	u16			cnic_spq_pending;
1765	u8			fip_mac[ETH_ALEN];
1766	struct mutex		cnic_mutex;
1767	struct bnx2x_vlan_mac_obj iscsi_l2_mac_obj;
1768
1769	/* Start index of the "special" (CNIC related) L2 clients */
1770	u8				cnic_base_cl_id;
1771
1772	int			dmae_ready;
1773	/* used to synchronize dmae accesses */
1774	spinlock_t		dmae_lock;
1775
1776	/* used to protect the FW mail box */
1777	struct mutex		fw_mb_mutex;
1778
1779	/* used to synchronize stats collecting */
1780	int			stats_state;
1781
1782	/* used for synchronization of concurrent threads statistics handling */
1783	spinlock_t		stats_lock;
1784
1785	/* used by dmae command loader */
1786	struct dmae_command	stats_dmae;
1787	int			executer_idx;
1788
1789	u16			stats_counter;
1790	struct bnx2x_eth_stats	eth_stats;
1791	struct host_func_stats		func_stats;
1792	struct bnx2x_eth_stats_old	eth_stats_old;
1793	struct bnx2x_net_stats_old	net_stats_old;
1794	struct bnx2x_fw_port_stats_old	fw_stats_old;
1795	bool			stats_init;
1796
1797	struct z_stream_s	*strm;
1798	void			*gunzip_buf;
1799	dma_addr_t		gunzip_mapping;
1800	int			gunzip_outlen;
1801#define FW_BUF_SIZE			0x8000
1802#define GUNZIP_BUF(bp)			(bp->gunzip_buf)
1803#define GUNZIP_PHYS(bp)			(bp->gunzip_mapping)
1804#define GUNZIP_OUTLEN(bp)		(bp->gunzip_outlen)
1805
1806	struct raw_op		*init_ops;
1807	/* Init blocks offsets inside init_ops */
1808	u16			*init_ops_offsets;
1809	/* Data blob - has 32 bit granularity */
1810	u32			*init_data;
1811	u32			init_mode_flags;
1812#define INIT_MODE_FLAGS(bp)	(bp->init_mode_flags)
1813	/* Zipped PRAM blobs - raw data */
1814	const u8		*tsem_int_table_data;
1815	const u8		*tsem_pram_data;
1816	const u8		*usem_int_table_data;
1817	const u8		*usem_pram_data;
1818	const u8		*xsem_int_table_data;
1819	const u8		*xsem_pram_data;
1820	const u8		*csem_int_table_data;
1821	const u8		*csem_pram_data;
1822#define INIT_OPS(bp)			(bp->init_ops)
1823#define INIT_OPS_OFFSETS(bp)		(bp->init_ops_offsets)
1824#define INIT_DATA(bp)			(bp->init_data)
1825#define INIT_TSEM_INT_TABLE_DATA(bp)	(bp->tsem_int_table_data)
1826#define INIT_TSEM_PRAM_DATA(bp)		(bp->tsem_pram_data)
1827#define INIT_USEM_INT_TABLE_DATA(bp)	(bp->usem_int_table_data)
1828#define INIT_USEM_PRAM_DATA(bp)		(bp->usem_pram_data)
1829#define INIT_XSEM_INT_TABLE_DATA(bp)	(bp->xsem_int_table_data)
1830#define INIT_XSEM_PRAM_DATA(bp)		(bp->xsem_pram_data)
1831#define INIT_CSEM_INT_TABLE_DATA(bp)	(bp->csem_int_table_data)
1832#define INIT_CSEM_PRAM_DATA(bp)		(bp->csem_pram_data)
1833
1834#define PHY_FW_VER_LEN			20
1835	char			fw_ver[32];
1836	const struct firmware	*firmware;
1837
1838	struct bnx2x_vfdb	*vfdb;
1839#define IS_SRIOV(bp)		((bp)->vfdb)
1840
1841	/* DCB support on/off */
1842	u16 dcb_state;
1843#define BNX2X_DCB_STATE_OFF			0
1844#define BNX2X_DCB_STATE_ON			1
1845
1846	/* DCBX engine mode */
1847	int dcbx_enabled;
1848#define BNX2X_DCBX_ENABLED_OFF			0
1849#define BNX2X_DCBX_ENABLED_ON_NEG_OFF		1
1850#define BNX2X_DCBX_ENABLED_ON_NEG_ON		2
1851#define BNX2X_DCBX_ENABLED_INVALID		(-1)
1852
1853	bool dcbx_mode_uset;
1854
1855	struct bnx2x_config_dcbx_params		dcbx_config_params;
1856	struct bnx2x_dcbx_port_params		dcbx_port_params;
1857	int					dcb_version;
1858
1859	/* CAM credit pools */
1860
1861	/* used only in sriov */
1862	struct bnx2x_credit_pool_obj		vlans_pool;
1863
1864	struct bnx2x_credit_pool_obj		macs_pool;
1865
1866	/* RX_MODE object */
1867	struct bnx2x_rx_mode_obj		rx_mode_obj;
1868
1869	/* MCAST object */
1870	struct bnx2x_mcast_obj			mcast_obj;
1871
1872	/* RSS configuration object */
1873	struct bnx2x_rss_config_obj		rss_conf_obj;
1874
1875	/* Function State controlling object */
1876	struct bnx2x_func_sp_obj		func_obj;
1877
1878	unsigned long				sp_state;
1879
1880	/* operation indication for the sp_rtnl task */
1881	unsigned long				sp_rtnl_state;
1882
1883	/* DCBX Negotiation results */
1884	struct dcbx_features			dcbx_local_feat;
1885	u32					dcbx_error;
1886
1887#ifdef BCM_DCBNL
1888	struct dcbx_features			dcbx_remote_feat;
1889	u32					dcbx_remote_flags;
1890#endif
1891	/* AFEX: store default vlan used */
1892	int					afex_def_vlan_tag;
1893	enum mf_cfg_afex_vlan_mode		afex_vlan_mode;
1894	u32					pending_max;
1895
1896	/* multiple tx classes of service */
1897	u8					max_cos;
1898
1899	/* priority to cos mapping */
1900	u8					prio_to_cos[8];
1901
1902	int fp_array_size;
1903	u32 dump_preset_idx;
1904	bool					stats_started;
1905	struct semaphore			stats_sema;
1906
1907	u8					phys_port_id[ETH_ALEN];
1908};
1909
1910/* Tx queues may be less or equal to Rx queues */
1911extern int num_queues;
1912#define BNX2X_NUM_QUEUES(bp)	(bp->num_queues)
1913#define BNX2X_NUM_ETH_QUEUES(bp) ((bp)->num_ethernet_queues)
1914#define BNX2X_NUM_NON_CNIC_QUEUES(bp)	(BNX2X_NUM_QUEUES(bp) - \
1915					 (bp)->num_cnic_queues)
1916#define BNX2X_NUM_RX_QUEUES(bp)	BNX2X_NUM_QUEUES(bp)
1917
1918#define is_multi(bp)		(BNX2X_NUM_QUEUES(bp) > 1)
1919
1920#define BNX2X_MAX_QUEUES(bp)	BNX2X_MAX_RSS_COUNT(bp)
1921/* #define is_eth_multi(bp)	(BNX2X_NUM_ETH_QUEUES(bp) > 1) */
1922
1923#define RSS_IPV4_CAP_MASK						\
1924	TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_CAPABILITY
1925
1926#define RSS_IPV4_TCP_CAP_MASK						\
1927	TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_TCP_CAPABILITY
1928
1929#define RSS_IPV6_CAP_MASK						\
1930	TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_CAPABILITY
1931
1932#define RSS_IPV6_TCP_CAP_MASK						\
1933	TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_TCP_CAPABILITY
1934
1935/* func init flags */
1936#define FUNC_FLG_RSS		0x0001
1937#define FUNC_FLG_STATS		0x0002
1938/* removed  FUNC_FLG_UNMATCHED	0x0004 */
1939#define FUNC_FLG_TPA		0x0008
1940#define FUNC_FLG_SPQ		0x0010
1941#define FUNC_FLG_LEADING	0x0020	/* PF only */
1942#define FUNC_FLG_LEADING_STATS	0x0040
1943struct bnx2x_func_init_params {
1944	/* dma */
1945	dma_addr_t	fw_stat_map;	/* valid iff FUNC_FLG_STATS */
1946	dma_addr_t	spq_map;	/* valid iff FUNC_FLG_SPQ */
1947
1948	u16		func_flgs;
1949	u16		func_id;	/* abs fid */
1950	u16		pf_id;
1951	u16		spq_prod;	/* valid iff FUNC_FLG_SPQ */
1952};
1953
1954#define for_each_cnic_queue(bp, var) \
1955	for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
1956	     (var)++) \
1957		if (skip_queue(bp, var))	\
1958			continue;		\
1959		else
1960
1961#define for_each_eth_queue(bp, var) \
1962	for ((var) = 0; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++)
1963
1964#define for_each_nondefault_eth_queue(bp, var) \
1965	for ((var) = 1; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++)
1966
1967#define for_each_queue(bp, var) \
1968	for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
1969		if (skip_queue(bp, var))	\
1970			continue;		\
1971		else
1972
1973/* Skip forwarding FP */
1974#define for_each_valid_rx_queue(bp, var)			\
1975	for ((var) = 0;						\
1976	     (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) :	\
1977		      BNX2X_NUM_ETH_QUEUES(bp));		\
1978	     (var)++)						\
1979		if (skip_rx_queue(bp, var))			\
1980			continue;				\
1981		else
1982
1983#define for_each_rx_queue_cnic(bp, var) \
1984	for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
1985	     (var)++) \
1986		if (skip_rx_queue(bp, var))	\
1987			continue;		\
1988		else
1989
1990#define for_each_rx_queue(bp, var) \
1991	for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
1992		if (skip_rx_queue(bp, var))	\
1993			continue;		\
1994		else
1995
1996/* Skip OOO FP */
1997#define for_each_valid_tx_queue(bp, var)			\
1998	for ((var) = 0;						\
1999	     (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) :	\
2000		      BNX2X_NUM_ETH_QUEUES(bp));		\
2001	     (var)++)						\
2002		if (skip_tx_queue(bp, var))			\
2003			continue;				\
2004		else
2005
2006#define for_each_tx_queue_cnic(bp, var) \
2007	for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
2008	     (var)++) \
2009		if (skip_tx_queue(bp, var))	\
2010			continue;		\
2011		else
2012
2013#define for_each_tx_queue(bp, var) \
2014	for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
2015		if (skip_tx_queue(bp, var))	\
2016			continue;		\
2017		else
2018
2019#define for_each_nondefault_queue(bp, var) \
2020	for ((var) = 1; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
2021		if (skip_queue(bp, var))	\
2022			continue;		\
2023		else
2024
2025#define for_each_cos_in_tx_queue(fp, var) \
2026	for ((var) = 0; (var) < (fp)->max_cos; (var)++)
2027
2028/* skip rx queue
2029 * if FCOE l2 support is disabled and this is the fcoe L2 queue
2030 */
2031#define skip_rx_queue(bp, idx)	(NO_FCOE(bp) && IS_FCOE_IDX(idx))
2032
2033/* skip tx queue
2034 * if FCOE l2 support is disabled and this is the fcoe L2 queue
2035 */
2036#define skip_tx_queue(bp, idx)	(NO_FCOE(bp) && IS_FCOE_IDX(idx))
2037
2038#define skip_queue(bp, idx)	(NO_FCOE(bp) && IS_FCOE_IDX(idx))
2039
2040/**
2041 * bnx2x_set_mac_one - configure a single MAC address
2042 *
2043 * @bp:			driver handle
2044 * @mac:		MAC to configure
2045 * @obj:		MAC object handle
2046 * @set:		if 'true' add a new MAC, otherwise - delete
2047 * @mac_type:		the type of the MAC to configure (e.g. ETH, UC list)
2048 * @ramrod_flags:	RAMROD_XXX flags (e.g. RAMROD_CONT, RAMROD_COMP_WAIT)
2049 *
2050 * Configures one MAC according to provided parameters or continues the
2051 * execution of previously scheduled commands if RAMROD_CONT is set in
2052 * ramrod_flags.
2053 *
2054 * Returns zero if operation has successfully completed, a positive value if the
2055 * operation has been successfully scheduled and a negative - if a requested
2056 * operations has failed.
2057 */
2058int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
2059		      struct bnx2x_vlan_mac_obj *obj, bool set,
2060		      int mac_type, unsigned long *ramrod_flags);
2061/**
2062 * bnx2x_del_all_macs - delete all MACs configured for the specific MAC object
2063 *
2064 * @bp:			driver handle
2065 * @mac_obj:		MAC object handle
2066 * @mac_type:		type of the MACs to clear (BNX2X_XXX_MAC)
2067 * @wait_for_comp:	if 'true' block until completion
2068 *
2069 * Deletes all MACs of the specific type (e.g. ETH, UC list).
2070 *
2071 * Returns zero if operation has successfully completed, a positive value if the
2072 * operation has been successfully scheduled and a negative - if a requested
2073 * operations has failed.
2074 */
2075int bnx2x_del_all_macs(struct bnx2x *bp,
2076		       struct bnx2x_vlan_mac_obj *mac_obj,
2077		       int mac_type, bool wait_for_comp);
2078
2079/* Init Function API  */
2080void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p);
2081void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
2082		    u8 vf_valid, int fw_sb_id, int igu_sb_id);
2083u32 bnx2x_get_pretend_reg(struct bnx2x *bp);
2084int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port);
2085int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port);
2086int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode);
2087int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port);
2088void bnx2x_read_mf_cfg(struct bnx2x *bp);
2089
2090int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val);
2091
2092/* dmae */
2093void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32);
2094void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
2095		      u32 len32);
2096void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx);
2097u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type);
2098u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode);
2099u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
2100		      bool with_comp, u8 comp_type);
2101
2102void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
2103			       u8 src_type, u8 dst_type);
2104int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
2105			       u32 *comp);
2106
2107/* FLR related routines */
2108u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp);
2109void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count);
2110int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt);
2111u8 bnx2x_is_pcie_pending(struct pci_dev *dev);
2112int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
2113				    char *msg, u32 poll_cnt);
2114
2115void bnx2x_calc_fc_adv(struct bnx2x *bp);
2116int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
2117		  u32 data_hi, u32 data_lo, int cmd_type);
2118void bnx2x_update_coalesce(struct bnx2x *bp);
2119int bnx2x_get_cur_phy_idx(struct bnx2x *bp);
2120
2121bool bnx2x_port_after_undi(struct bnx2x *bp);
2122
2123static inline u32 reg_poll(struct bnx2x *bp, u32 reg, u32 expected, int ms,
2124			   int wait)
2125{
2126	u32 val;
2127
2128	do {
2129		val = REG_RD(bp, reg);
2130		if (val == expected)
2131			break;
2132		ms -= wait;
2133		msleep(wait);
2134
2135	} while (ms > 0);
2136
2137	return val;
2138}
2139
2140void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id,
2141			    bool is_pf);
2142
2143#define BNX2X_ILT_ZALLOC(x, y, size)					\
2144	x = dma_zalloc_coherent(&bp->pdev->dev, size, y, GFP_KERNEL)
2145
2146#define BNX2X_ILT_FREE(x, y, size) \
2147	do { \
2148		if (x) { \
2149			dma_free_coherent(&bp->pdev->dev, size, x, y); \
2150			x = NULL; \
2151			y = 0; \
2152		} \
2153	} while (0)
2154
2155#define ILOG2(x)	(ilog2((x)))
2156
2157#define ILT_NUM_PAGE_ENTRIES	(3072)
2158/* In 57710/11 we use whole table since we have 8 func
2159 * In 57712 we have only 4 func, but use same size per func, then only half of
2160 * the table in use
2161 */
2162#define ILT_PER_FUNC		(ILT_NUM_PAGE_ENTRIES/8)
2163
2164#define FUNC_ILT_BASE(func)	(func * ILT_PER_FUNC)
2165/*
2166 * the phys address is shifted right 12 bits and has an added
2167 * 1=valid bit added to the 53rd bit
2168 * then since this is a wide register(TM)
2169 * we split it into two 32 bit writes
2170 */
2171#define ONCHIP_ADDR1(x)		((u32)(((u64)x >> 12) & 0xFFFFFFFF))
2172#define ONCHIP_ADDR2(x)		((u32)((1 << 20) | ((u64)x >> 44)))
2173
2174/* load/unload mode */
2175#define LOAD_NORMAL			0
2176#define LOAD_OPEN			1
2177#define LOAD_DIAG			2
2178#define LOAD_LOOPBACK_EXT		3
2179#define UNLOAD_NORMAL			0
2180#define UNLOAD_CLOSE			1
2181#define UNLOAD_RECOVERY			2
2182
2183/* DMAE command defines */
2184#define DMAE_TIMEOUT			-1
2185#define DMAE_PCI_ERROR			-2	/* E2 and onward */
2186#define DMAE_NOT_RDY			-3
2187#define DMAE_PCI_ERR_FLAG		0x80000000
2188
2189#define DMAE_SRC_PCI			0
2190#define DMAE_SRC_GRC			1
2191
2192#define DMAE_DST_NONE			0
2193#define DMAE_DST_PCI			1
2194#define DMAE_DST_GRC			2
2195
2196#define DMAE_COMP_PCI			0
2197#define DMAE_COMP_GRC			1
2198
2199/* E2 and onward - PCI error handling in the completion */
2200
2201#define DMAE_COMP_REGULAR		0
2202#define DMAE_COM_SET_ERR		1
2203
2204#define DMAE_CMD_SRC_PCI		(DMAE_SRC_PCI << \
2205						DMAE_COMMAND_SRC_SHIFT)
2206#define DMAE_CMD_SRC_GRC		(DMAE_SRC_GRC << \
2207						DMAE_COMMAND_SRC_SHIFT)
2208
2209#define DMAE_CMD_DST_PCI		(DMAE_DST_PCI << \
2210						DMAE_COMMAND_DST_SHIFT)
2211#define DMAE_CMD_DST_GRC		(DMAE_DST_GRC << \
2212						DMAE_COMMAND_DST_SHIFT)
2213
2214#define DMAE_CMD_C_DST_PCI		(DMAE_COMP_PCI << \
2215						DMAE_COMMAND_C_DST_SHIFT)
2216#define DMAE_CMD_C_DST_GRC		(DMAE_COMP_GRC << \
2217						DMAE_COMMAND_C_DST_SHIFT)
2218
2219#define DMAE_CMD_C_ENABLE		DMAE_COMMAND_C_TYPE_ENABLE
2220
2221#define DMAE_CMD_ENDIANITY_NO_SWAP	(0 << DMAE_COMMAND_ENDIANITY_SHIFT)
2222#define DMAE_CMD_ENDIANITY_B_SWAP	(1 << DMAE_COMMAND_ENDIANITY_SHIFT)
2223#define DMAE_CMD_ENDIANITY_DW_SWAP	(2 << DMAE_COMMAND_ENDIANITY_SHIFT)
2224#define DMAE_CMD_ENDIANITY_B_DW_SWAP	(3 << DMAE_COMMAND_ENDIANITY_SHIFT)
2225
2226#define DMAE_CMD_PORT_0			0
2227#define DMAE_CMD_PORT_1			DMAE_COMMAND_PORT
2228
2229#define DMAE_CMD_SRC_RESET		DMAE_COMMAND_SRC_RESET
2230#define DMAE_CMD_DST_RESET		DMAE_COMMAND_DST_RESET
2231#define DMAE_CMD_E1HVN_SHIFT		DMAE_COMMAND_E1HVN_SHIFT
2232
2233#define DMAE_SRC_PF			0
2234#define DMAE_SRC_VF			1
2235
2236#define DMAE_DST_PF			0
2237#define DMAE_DST_VF			1
2238
2239#define DMAE_C_SRC			0
2240#define DMAE_C_DST			1
2241
2242#define DMAE_LEN32_RD_MAX		0x80
2243#define DMAE_LEN32_WR_MAX(bp)		(CHIP_IS_E1(bp) ? 0x400 : 0x2000)
2244
2245#define DMAE_COMP_VAL			0x60d0d0ae /* E2 and on - upper bit
2246						    * indicates error
2247						    */
2248
2249#define MAX_DMAE_C_PER_PORT		8
2250#define INIT_DMAE_C(bp)			(BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \
2251					 BP_VN(bp))
2252#define PMF_DMAE_C(bp)			(BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \
2253					 E1HVN_MAX)
2254
2255/* PCIE link and speed */
2256#define PCICFG_LINK_WIDTH		0x1f00000
2257#define PCICFG_LINK_WIDTH_SHIFT		20
2258#define PCICFG_LINK_SPEED		0xf0000
2259#define PCICFG_LINK_SPEED_SHIFT		16
2260
2261#define BNX2X_NUM_TESTS_SF		7
2262#define BNX2X_NUM_TESTS_MF		3
2263#define BNX2X_NUM_TESTS(bp)		(IS_MF(bp) ? BNX2X_NUM_TESTS_MF : \
2264					     IS_VF(bp) ? 0 : BNX2X_NUM_TESTS_SF)
2265
2266#define BNX2X_PHY_LOOPBACK		0
2267#define BNX2X_MAC_LOOPBACK		1
2268#define BNX2X_EXT_LOOPBACK		2
2269#define BNX2X_PHY_LOOPBACK_FAILED	1
2270#define BNX2X_MAC_LOOPBACK_FAILED	2
2271#define BNX2X_EXT_LOOPBACK_FAILED	3
2272#define BNX2X_LOOPBACK_FAILED		(BNX2X_MAC_LOOPBACK_FAILED | \
2273					 BNX2X_PHY_LOOPBACK_FAILED)
2274
2275#define STROM_ASSERT_ARRAY_SIZE		50
2276
2277/* must be used on a CID before placing it on a HW ring */
2278#define HW_CID(bp, x)			((BP_PORT(bp) << 23) | \
2279					 (BP_VN(bp) << BNX2X_SWCID_SHIFT) | \
2280					 (x))
2281
2282#define SP_DESC_CNT		(BCM_PAGE_SIZE / sizeof(struct eth_spe))
2283#define MAX_SP_DESC_CNT			(SP_DESC_CNT - 1)
2284
2285#define BNX2X_BTR			4
2286#define MAX_SPQ_PENDING			8
2287
2288/* CMNG constants, as derived from system spec calculations */
2289/* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */
2290#define DEF_MIN_RATE					100
2291/* resolution of the rate shaping timer - 400 usec */
2292#define RS_PERIODIC_TIMEOUT_USEC			400
2293/* number of bytes in single QM arbitration cycle -
2294 * coefficient for calculating the fairness timer */
2295#define QM_ARB_BYTES					160000
2296/* resolution of Min algorithm 1:100 */
2297#define MIN_RES						100
2298/* how many bytes above threshold for the minimal credit of Min algorithm*/
2299#define MIN_ABOVE_THRESH				32768
2300/* Fairness algorithm integration time coefficient -
2301 * for calculating the actual Tfair */
2302#define T_FAIR_COEF	((MIN_ABOVE_THRESH +  QM_ARB_BYTES) * 8 * MIN_RES)
2303/* Memory of fairness algorithm . 2 cycles */
2304#define FAIR_MEM					2
2305
2306#define ATTN_NIG_FOR_FUNC		(1L << 8)
2307#define ATTN_SW_TIMER_4_FUNC		(1L << 9)
2308#define GPIO_2_FUNC			(1L << 10)
2309#define GPIO_3_FUNC			(1L << 11)
2310#define GPIO_4_FUNC			(1L << 12)
2311#define ATTN_GENERAL_ATTN_1		(1L << 13)
2312#define ATTN_GENERAL_ATTN_2		(1L << 14)
2313#define ATTN_GENERAL_ATTN_3		(1L << 15)
2314#define ATTN_GENERAL_ATTN_4		(1L << 13)
2315#define ATTN_GENERAL_ATTN_5		(1L << 14)
2316#define ATTN_GENERAL_ATTN_6		(1L << 15)
2317
2318#define ATTN_HARD_WIRED_MASK		0xff00
2319#define ATTENTION_ID			4
2320
2321#define IS_MF_STORAGE_ONLY(bp) (IS_MF_STORAGE_SD(bp) || \
2322				 IS_MF_FCOE_AFEX(bp))
2323
2324/* stuff added to make the code fit 80Col */
2325
2326#define BNX2X_PMF_LINK_ASSERT \
2327	GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + BP_FUNC(bp))
2328
2329#define BNX2X_MC_ASSERT_BITS \
2330	(GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2331	 GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2332	 GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2333	 GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT))
2334
2335#define BNX2X_MCP_ASSERT \
2336	GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT)
2337
2338#define BNX2X_GRC_TIMEOUT	GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC)
2339#define BNX2X_GRC_RSV		(GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \
2340				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \
2341				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \
2342				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \
2343				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \
2344				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC))
2345
2346#define HW_INTERRUT_ASSERT_SET_0 \
2347				(AEU_INPUTS_ATTN_BITS_TSDM_HW_INTERRUPT | \
2348				 AEU_INPUTS_ATTN_BITS_TCM_HW_INTERRUPT | \
2349				 AEU_INPUTS_ATTN_BITS_TSEMI_HW_INTERRUPT | \
2350				 AEU_INPUTS_ATTN_BITS_BRB_HW_INTERRUPT | \
2351				 AEU_INPUTS_ATTN_BITS_PBCLIENT_HW_INTERRUPT)
2352#define HW_PRTY_ASSERT_SET_0	(AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR | \
2353				 AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR | \
2354				 AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR | \
2355				 AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR |\
2356				 AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR |\
2357				 AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR |\
2358				 AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR)
2359#define HW_INTERRUT_ASSERT_SET_1 \
2360				(AEU_INPUTS_ATTN_BITS_QM_HW_INTERRUPT | \
2361				 AEU_INPUTS_ATTN_BITS_TIMERS_HW_INTERRUPT | \
2362				 AEU_INPUTS_ATTN_BITS_XSDM_HW_INTERRUPT | \
2363				 AEU_INPUTS_ATTN_BITS_XCM_HW_INTERRUPT | \
2364				 AEU_INPUTS_ATTN_BITS_XSEMI_HW_INTERRUPT | \
2365				 AEU_INPUTS_ATTN_BITS_USDM_HW_INTERRUPT | \
2366				 AEU_INPUTS_ATTN_BITS_UCM_HW_INTERRUPT | \
2367				 AEU_INPUTS_ATTN_BITS_USEMI_HW_INTERRUPT | \
2368				 AEU_INPUTS_ATTN_BITS_UPB_HW_INTERRUPT | \
2369				 AEU_INPUTS_ATTN_BITS_CSDM_HW_INTERRUPT | \
2370				 AEU_INPUTS_ATTN_BITS_CCM_HW_INTERRUPT)
2371#define HW_PRTY_ASSERT_SET_1	(AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR |\
2372				 AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR | \
2373				 AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR |\
2374				 AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR | \
2375				 AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR |\
2376				 AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR | \
2377				 AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR |\
2378				 AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR |\
2379			     AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR |\
2380				 AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR | \
2381				 AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR | \
2382				 AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR |\
2383				 AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR | \
2384				 AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR | \
2385				 AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR |\
2386				 AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR)
2387#define HW_INTERRUT_ASSERT_SET_2 \
2388				(AEU_INPUTS_ATTN_BITS_CSEMI_HW_INTERRUPT | \
2389				 AEU_INPUTS_ATTN_BITS_CDU_HW_INTERRUPT | \
2390				 AEU_INPUTS_ATTN_BITS_DMAE_HW_INTERRUPT | \
2391			AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT |\
2392				 AEU_INPUTS_ATTN_BITS_MISC_HW_INTERRUPT)
2393#define HW_PRTY_ASSERT_SET_2	(AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR | \
2394				 AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR | \
2395			AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR |\
2396				 AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR | \
2397				 AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR | \
2398				 AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR |\
2399				 AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR | \
2400				 AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR)
2401
2402#define HW_PRTY_ASSERT_SET_3 (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
2403		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
2404		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY | \
2405		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
2406
2407#define HW_PRTY_ASSERT_SET_4 (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | \
2408			      AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)
2409
2410#define MULTI_MASK			0x7f
2411
2412#define DEF_USB_FUNC_OFF	offsetof(struct cstorm_def_status_block_u, func)
2413#define DEF_CSB_FUNC_OFF	offsetof(struct cstorm_def_status_block_c, func)
2414#define DEF_XSB_FUNC_OFF	offsetof(struct xstorm_def_status_block, func)
2415#define DEF_TSB_FUNC_OFF	offsetof(struct tstorm_def_status_block, func)
2416
2417#define DEF_USB_IGU_INDEX_OFF \
2418			offsetof(struct cstorm_def_status_block_u, igu_index)
2419#define DEF_CSB_IGU_INDEX_OFF \
2420			offsetof(struct cstorm_def_status_block_c, igu_index)
2421#define DEF_XSB_IGU_INDEX_OFF \
2422			offsetof(struct xstorm_def_status_block, igu_index)
2423#define DEF_TSB_IGU_INDEX_OFF \
2424			offsetof(struct tstorm_def_status_block, igu_index)
2425
2426#define DEF_USB_SEGMENT_OFF \
2427			offsetof(struct cstorm_def_status_block_u, segment)
2428#define DEF_CSB_SEGMENT_OFF \
2429			offsetof(struct cstorm_def_status_block_c, segment)
2430#define DEF_XSB_SEGMENT_OFF \
2431			offsetof(struct xstorm_def_status_block, segment)
2432#define DEF_TSB_SEGMENT_OFF \
2433			offsetof(struct tstorm_def_status_block, segment)
2434
2435#define BNX2X_SP_DSB_INDEX \
2436		(&bp->def_status_blk->sp_sb.\
2437					index_values[HC_SP_INDEX_ETH_DEF_CONS])
2438
2439#define CAM_IS_INVALID(x) \
2440	(GET_FLAG(x.flags, \
2441	MAC_CONFIGURATION_ENTRY_ACTION_TYPE) == \
2442	(T_ETH_MAC_COMMAND_INVALIDATE))
2443
2444/* Number of u32 elements in MC hash array */
2445#define MC_HASH_SIZE			8
2446#define MC_HASH_OFFSET(bp, i)		(BAR_TSTRORM_INTMEM + \
2447	TSTORM_APPROXIMATE_MATCH_MULTICAST_FILTERING_OFFSET(BP_FUNC(bp)) + i*4)
2448
2449#ifndef PXP2_REG_PXP2_INT_STS
2450#define PXP2_REG_PXP2_INT_STS		PXP2_REG_PXP2_INT_STS_0
2451#endif
2452
2453#ifndef ETH_MAX_RX_CLIENTS_E2
2454#define ETH_MAX_RX_CLIENTS_E2		ETH_MAX_RX_CLIENTS_E1H
2455#endif
2456
2457#define BNX2X_VPD_LEN			128
2458#define VENDOR_ID_LEN			4
2459
2460#define VF_ACQUIRE_THRESH		3
2461#define VF_ACQUIRE_MAC_FILTERS		1
2462#define VF_ACQUIRE_MC_FILTERS		10
2463
2464#define GOOD_ME_REG(me_reg) (((me_reg) & ME_REG_VF_VALID) && \
2465			    (!((me_reg) & ME_REG_VF_ERR)))
2466int bnx2x_nic_load_analyze_req(struct bnx2x *bp, u32 load_code);
2467/* Congestion management fairness mode */
2468#define CMNG_FNS_NONE			0
2469#define CMNG_FNS_MINMAX			1
2470
2471#define HC_SEG_ACCESS_DEF		0   /*Driver decision 0-3*/
2472#define HC_SEG_ACCESS_ATTN		4
2473#define HC_SEG_ACCESS_NORM		0   /*Driver decision 0-1*/
2474
2475static const u32 dmae_reg_go_c[] = {
2476	DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
2477	DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
2478	DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
2479	DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
2480};
2481
2482void bnx2x_set_ethtool_ops(struct bnx2x *bp, struct net_device *netdev);
2483void bnx2x_notify_link_changed(struct bnx2x *bp);
2484
2485#define BNX2X_MF_SD_PROTOCOL(bp) \
2486	((bp)->mf_config[BP_VN(bp)] & FUNC_MF_CFG_PROTOCOL_MASK)
2487
2488#define BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) \
2489	(BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_ISCSI)
2490
2491#define BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) \
2492	(BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_FCOE)
2493
2494#define IS_MF_ISCSI_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp))
2495#define IS_MF_FCOE_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))
2496
2497#define BNX2X_MF_EXT_PROTOCOL_FCOE(bp)  ((bp)->mf_ext_config & \
2498					 MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)
2499
2500#define IS_MF_FCOE_AFEX(bp) (IS_MF_AFEX(bp) && BNX2X_MF_EXT_PROTOCOL_FCOE(bp))
2501#define IS_MF_STORAGE_SD(bp) (IS_MF_SD(bp) && \
2502				(BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) || \
2503				 BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
2504
2505#define SET_FLAG(value, mask, flag) \
2506	do {\
2507		(value) &= ~(mask);\
2508		(value) |= ((flag) << (mask##_SHIFT));\
2509	} while (0)
2510
2511#define GET_FLAG(value, mask) \
2512	(((value) & (mask)) >> (mask##_SHIFT))
2513
2514#define GET_FIELD(value, fname) \
2515	(((value) & (fname##_MASK)) >> (fname##_SHIFT))
2516
2517enum {
2518	SWITCH_UPDATE,
2519	AFEX_UPDATE,
2520};
2521
2522#define NUM_MACS	8
2523
2524void bnx2x_set_local_cmng(struct bnx2x *bp);
2525
2526#define MCPR_SCRATCH_BASE(bp) \
2527	(CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
2528
2529#define E1H_MAX_MF_SB_COUNT (HC_SB_MAX_SB_E1X/(E1HVN_MAX * PORT_MAX))
2530
2531#endif /* bnx2x.h */
2532