bnx2x.h revision ca1ee4b259ea8c4f91c84ee4c737338658711272
1/* bnx2x.h: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 */
13
14#ifndef BNX2X_H
15#define BNX2X_H
16
17#include <linux/pci.h>
18#include <linux/netdevice.h>
19#include <linux/dma-mapping.h>
20#include <linux/types.h>
21#include <linux/pci_regs.h>
22
23/* compilation time flags */
24
25/* define this to make the driver freeze on error to allow getting debug info
26 * (you will need to reboot afterwards) */
27/* #define BNX2X_STOP_ON_ERROR */
28
29#define DRV_MODULE_VERSION      "1.78.17-0"
30#define DRV_MODULE_RELDATE      "2013/04/11"
31#define BNX2X_BC_VER            0x040200
32
33#if defined(CONFIG_DCB)
34#define BCM_DCBNL
35#endif
36
37
38#include "bnx2x_hsi.h"
39
40#include "../cnic_if.h"
41
42
43#define BNX2X_MIN_MSIX_VEC_CNT(bp)		((bp)->min_msix_vec_cnt)
44
45#include <linux/mdio.h>
46
47#include "bnx2x_reg.h"
48#include "bnx2x_fw_defs.h"
49#include "bnx2x_mfw_req.h"
50#include "bnx2x_link.h"
51#include "bnx2x_sp.h"
52#include "bnx2x_dcb.h"
53#include "bnx2x_stats.h"
54#include "bnx2x_vfpf.h"
55
56enum bnx2x_int_mode {
57	BNX2X_INT_MODE_MSIX,
58	BNX2X_INT_MODE_INTX,
59	BNX2X_INT_MODE_MSI
60};
61
62/* error/debug prints */
63
64#define DRV_MODULE_NAME		"bnx2x"
65
66/* for messages that are currently off */
67#define BNX2X_MSG_OFF			0x0
68#define BNX2X_MSG_MCP			0x0010000 /* was: NETIF_MSG_HW */
69#define BNX2X_MSG_STATS			0x0020000 /* was: NETIF_MSG_TIMER */
70#define BNX2X_MSG_NVM			0x0040000 /* was: NETIF_MSG_HW */
71#define BNX2X_MSG_DMAE			0x0080000 /* was: NETIF_MSG_HW */
72#define BNX2X_MSG_SP			0x0100000 /* was: NETIF_MSG_INTR */
73#define BNX2X_MSG_FP			0x0200000 /* was: NETIF_MSG_INTR */
74#define BNX2X_MSG_IOV			0x0800000
75#define BNX2X_MSG_IDLE			0x2000000 /* used for idle check*/
76#define BNX2X_MSG_ETHTOOL		0x4000000
77#define BNX2X_MSG_DCB			0x8000000
78
79/* regular debug print */
80#define DP(__mask, fmt, ...)					\
81do {								\
82	if (unlikely(bp->msg_enable & (__mask)))		\
83		pr_notice("[%s:%d(%s)]" fmt,			\
84			  __func__, __LINE__,			\
85			  bp->dev ? (bp->dev->name) : "?",	\
86			  ##__VA_ARGS__);			\
87} while (0)
88
89#define DP_CONT(__mask, fmt, ...)				\
90do {								\
91	if (unlikely(bp->msg_enable & (__mask)))		\
92		pr_cont(fmt, ##__VA_ARGS__);			\
93} while (0)
94
95/* errors debug print */
96#define BNX2X_DBG_ERR(fmt, ...)					\
97do {								\
98	if (unlikely(netif_msg_probe(bp)))			\
99		pr_err("[%s:%d(%s)]" fmt,			\
100		       __func__, __LINE__,			\
101		       bp->dev ? (bp->dev->name) : "?",		\
102		       ##__VA_ARGS__);				\
103} while (0)
104
105/* for errors (never masked) */
106#define BNX2X_ERR(fmt, ...)					\
107do {								\
108	pr_err("[%s:%d(%s)]" fmt,				\
109	       __func__, __LINE__,				\
110	       bp->dev ? (bp->dev->name) : "?",			\
111	       ##__VA_ARGS__);					\
112} while (0)
113
114#define BNX2X_ERROR(fmt, ...)					\
115	pr_err("[%s:%d]" fmt, __func__, __LINE__, ##__VA_ARGS__)
116
117
118/* before we have a dev->name use dev_info() */
119#define BNX2X_DEV_INFO(fmt, ...)				 \
120do {								 \
121	if (unlikely(netif_msg_probe(bp)))			 \
122		dev_info(&bp->pdev->dev, fmt, ##__VA_ARGS__);	 \
123} while (0)
124
125/* Error handling */
126void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int);
127#ifdef BNX2X_STOP_ON_ERROR
128#define bnx2x_panic()				\
129do {						\
130	bp->panic = 1;				\
131	BNX2X_ERR("driver assert\n");		\
132	bnx2x_panic_dump(bp, true);		\
133} while (0)
134#else
135#define bnx2x_panic()				\
136do {						\
137	bp->panic = 1;				\
138	BNX2X_ERR("driver assert\n");		\
139	bnx2x_panic_dump(bp, false);		\
140} while (0)
141#endif
142
143#define bnx2x_mc_addr(ha)      ((ha)->addr)
144#define bnx2x_uc_addr(ha)      ((ha)->addr)
145
146#define U64_LO(x)			((u32)(((u64)(x)) & 0xffffffff))
147#define U64_HI(x)			((u32)(((u64)(x)) >> 32))
148#define HILO_U64(hi, lo)		((((u64)(hi)) << 32) + (lo))
149
150
151#define REG_ADDR(bp, offset)		((bp->regview) + (offset))
152
153#define REG_RD(bp, offset)		readl(REG_ADDR(bp, offset))
154#define REG_RD8(bp, offset)		readb(REG_ADDR(bp, offset))
155#define REG_RD16(bp, offset)		readw(REG_ADDR(bp, offset))
156
157#define REG_WR(bp, offset, val)		writel((u32)val, REG_ADDR(bp, offset))
158#define REG_WR8(bp, offset, val)	writeb((u8)val, REG_ADDR(bp, offset))
159#define REG_WR16(bp, offset, val)	writew((u16)val, REG_ADDR(bp, offset))
160
161#define REG_RD_IND(bp, offset)		bnx2x_reg_rd_ind(bp, offset)
162#define REG_WR_IND(bp, offset, val)	bnx2x_reg_wr_ind(bp, offset, val)
163
164#define REG_RD_DMAE(bp, offset, valp, len32) \
165	do { \
166		bnx2x_read_dmae(bp, offset, len32);\
167		memcpy(valp, bnx2x_sp(bp, wb_data[0]), (len32) * 4); \
168	} while (0)
169
170#define REG_WR_DMAE(bp, offset, valp, len32) \
171	do { \
172		memcpy(bnx2x_sp(bp, wb_data[0]), valp, (len32) * 4); \
173		bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), \
174				 offset, len32); \
175	} while (0)
176
177#define REG_WR_DMAE_LEN(bp, offset, valp, len32) \
178	REG_WR_DMAE(bp, offset, valp, len32)
179
180#define VIRT_WR_DMAE_LEN(bp, data, addr, len32, le32_swap) \
181	do { \
182		memcpy(GUNZIP_BUF(bp), data, (len32) * 4); \
183		bnx2x_write_big_buf_wb(bp, addr, len32); \
184	} while (0)
185
186#define SHMEM_ADDR(bp, field)		(bp->common.shmem_base + \
187					 offsetof(struct shmem_region, field))
188#define SHMEM_RD(bp, field)		REG_RD(bp, SHMEM_ADDR(bp, field))
189#define SHMEM_WR(bp, field, val)	REG_WR(bp, SHMEM_ADDR(bp, field), val)
190
191#define SHMEM2_ADDR(bp, field)		(bp->common.shmem2_base + \
192					 offsetof(struct shmem2_region, field))
193#define SHMEM2_RD(bp, field)		REG_RD(bp, SHMEM2_ADDR(bp, field))
194#define SHMEM2_WR(bp, field, val)	REG_WR(bp, SHMEM2_ADDR(bp, field), val)
195#define MF_CFG_ADDR(bp, field)		(bp->common.mf_cfg_base + \
196					 offsetof(struct mf_cfg, field))
197#define MF2_CFG_ADDR(bp, field)		(bp->common.mf2_cfg_base + \
198					 offsetof(struct mf2_cfg, field))
199
200#define MF_CFG_RD(bp, field)		REG_RD(bp, MF_CFG_ADDR(bp, field))
201#define MF_CFG_WR(bp, field, val)	REG_WR(bp,\
202					       MF_CFG_ADDR(bp, field), (val))
203#define MF2_CFG_RD(bp, field)		REG_RD(bp, MF2_CFG_ADDR(bp, field))
204
205#define SHMEM2_HAS(bp, field)		((bp)->common.shmem2_base &&	\
206					 (SHMEM2_RD((bp), size) >	\
207					 offsetof(struct shmem2_region, field)))
208
209#define EMAC_RD(bp, reg)		REG_RD(bp, emac_base + reg)
210#define EMAC_WR(bp, reg, val)		REG_WR(bp, emac_base + reg, val)
211
212/* SP SB indices */
213
214/* General SP events - stats query, cfc delete, etc  */
215#define HC_SP_INDEX_ETH_DEF_CONS		3
216
217/* EQ completions */
218#define HC_SP_INDEX_EQ_CONS			7
219
220/* FCoE L2 connection completions */
221#define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS		6
222#define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS		4
223/* iSCSI L2 */
224#define HC_SP_INDEX_ETH_ISCSI_CQ_CONS		5
225#define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS	1
226
227/* Special clients parameters */
228
229/* SB indices */
230/* FCoE L2 */
231#define BNX2X_FCOE_L2_RX_INDEX \
232	(&bp->def_status_blk->sp_sb.\
233	index_values[HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS])
234
235#define BNX2X_FCOE_L2_TX_INDEX \
236	(&bp->def_status_blk->sp_sb.\
237	index_values[HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS])
238
239/**
240 *  CIDs and CLIDs:
241 *  CLIDs below is a CLID for func 0, then the CLID for other
242 *  functions will be calculated by the formula:
243 *
244 *  FUNC_N_CLID_X = N * NUM_SPECIAL_CLIENTS + FUNC_0_CLID_X
245 *
246 */
247enum {
248	BNX2X_ISCSI_ETH_CL_ID_IDX,
249	BNX2X_FCOE_ETH_CL_ID_IDX,
250	BNX2X_MAX_CNIC_ETH_CL_ID_IDX,
251};
252
253#define BNX2X_CNIC_START_ETH_CID(bp)	(BNX2X_NUM_NON_CNIC_QUEUES(bp) *\
254					 (bp)->max_cos)
255	/* iSCSI L2 */
256#define	BNX2X_ISCSI_ETH_CID(bp)		(BNX2X_CNIC_START_ETH_CID(bp))
257	/* FCoE L2 */
258#define	BNX2X_FCOE_ETH_CID(bp)		(BNX2X_CNIC_START_ETH_CID(bp) + 1)
259
260#define CNIC_SUPPORT(bp)		((bp)->cnic_support)
261#define CNIC_ENABLED(bp)		((bp)->cnic_enabled)
262#define CNIC_LOADED(bp)			((bp)->cnic_loaded)
263#define FCOE_INIT(bp)			((bp)->fcoe_init)
264
265#define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \
266	AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
267
268#define SM_RX_ID			0
269#define SM_TX_ID			1
270
271/* defines for multiple tx priority indices */
272#define FIRST_TX_ONLY_COS_INDEX		1
273#define FIRST_TX_COS_INDEX		0
274
275/* rules for calculating the cids of tx-only connections */
276#define CID_TO_FP(cid, bp)		((cid) % BNX2X_NUM_NON_CNIC_QUEUES(bp))
277#define CID_COS_TO_TX_ONLY_CID(cid, cos, bp) \
278				(cid + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp))
279
280/* fp index inside class of service range */
281#define FP_COS_TO_TXQ(fp, cos, bp) \
282			((fp)->index + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp))
283
284/* Indexes for transmission queues array:
285 * txdata for RSS i CoS j is at location i + (j * num of RSS)
286 * txdata for FCoE (if exist) is at location max cos * num of RSS
287 * txdata for FWD (if exist) is one location after FCoE
288 * txdata for OOO (if exist) is one location after FWD
289 */
290enum {
291	FCOE_TXQ_IDX_OFFSET,
292	FWD_TXQ_IDX_OFFSET,
293	OOO_TXQ_IDX_OFFSET,
294};
295#define MAX_ETH_TXQ_IDX(bp)	(BNX2X_NUM_NON_CNIC_QUEUES(bp) * (bp)->max_cos)
296#define FCOE_TXQ_IDX(bp)	(MAX_ETH_TXQ_IDX(bp) + FCOE_TXQ_IDX_OFFSET)
297
298/* fast path */
299/*
300 * This driver uses new build_skb() API :
301 * RX ring buffer contains pointer to kmalloc() data only,
302 * skb are built only after Hardware filled the frame.
303 */
304struct sw_rx_bd {
305	u8		*data;
306	DEFINE_DMA_UNMAP_ADDR(mapping);
307};
308
309struct sw_tx_bd {
310	struct sk_buff	*skb;
311	u16		first_bd;
312	u8		flags;
313/* Set on the first BD descriptor when there is a split BD */
314#define BNX2X_TSO_SPLIT_BD		(1<<0)
315};
316
317struct sw_rx_page {
318	struct page	*page;
319	DEFINE_DMA_UNMAP_ADDR(mapping);
320};
321
322union db_prod {
323	struct doorbell_set_prod data;
324	u32		raw;
325};
326
327/* dropless fc FW/HW related params */
328#define BRB_SIZE(bp)		(CHIP_IS_E3(bp) ? 1024 : 512)
329#define MAX_AGG_QS(bp)		(CHIP_IS_E1(bp) ? \
330					ETH_MAX_AGGREGATION_QUEUES_E1 :\
331					ETH_MAX_AGGREGATION_QUEUES_E1H_E2)
332#define FW_DROP_LEVEL(bp)	(3 + MAX_SPQ_PENDING + MAX_AGG_QS(bp))
333#define FW_PREFETCH_CNT		16
334#define DROPLESS_FC_HEADROOM	100
335
336/* MC hsi */
337#define BCM_PAGE_SHIFT		12
338#define BCM_PAGE_SIZE		(1 << BCM_PAGE_SHIFT)
339#define BCM_PAGE_MASK		(~(BCM_PAGE_SIZE - 1))
340#define BCM_PAGE_ALIGN(addr)	(((addr) + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK)
341
342#define PAGES_PER_SGE_SHIFT	0
343#define PAGES_PER_SGE		(1 << PAGES_PER_SGE_SHIFT)
344#define SGE_PAGE_SIZE		PAGE_SIZE
345#define SGE_PAGE_SHIFT		PAGE_SHIFT
346#define SGE_PAGE_ALIGN(addr)	PAGE_ALIGN((typeof(PAGE_SIZE))(addr))
347#define SGE_PAGES		(SGE_PAGE_SIZE * PAGES_PER_SGE)
348#define TPA_AGG_SIZE		min_t(u32, (min_t(u32, 8, MAX_SKB_FRAGS) * \
349					    SGE_PAGES), 0xffff)
350
351/* SGE ring related macros */
352#define NUM_RX_SGE_PAGES	2
353#define RX_SGE_CNT		(BCM_PAGE_SIZE / sizeof(struct eth_rx_sge))
354#define NEXT_PAGE_SGE_DESC_CNT	2
355#define MAX_RX_SGE_CNT		(RX_SGE_CNT - NEXT_PAGE_SGE_DESC_CNT)
356/* RX_SGE_CNT is promised to be a power of 2 */
357#define RX_SGE_MASK		(RX_SGE_CNT - 1)
358#define NUM_RX_SGE		(RX_SGE_CNT * NUM_RX_SGE_PAGES)
359#define MAX_RX_SGE		(NUM_RX_SGE - 1)
360#define NEXT_SGE_IDX(x)		((((x) & RX_SGE_MASK) == \
361				  (MAX_RX_SGE_CNT - 1)) ? \
362					(x) + 1 + NEXT_PAGE_SGE_DESC_CNT : \
363					(x) + 1)
364#define RX_SGE(x)		((x) & MAX_RX_SGE)
365
366/*
367 * Number of required  SGEs is the sum of two:
368 * 1. Number of possible opened aggregations (next packet for
369 *    these aggregations will probably consume SGE immidiatelly)
370 * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only
371 *    after placement on BD for new TPA aggregation)
372 *
373 * Takes into account NEXT_PAGE_SGE_DESC_CNT "next" elements on each page
374 */
375#define NUM_SGE_REQ		(MAX_AGG_QS(bp) + \
376					(BRB_SIZE(bp) - MAX_AGG_QS(bp)) / 2)
377#define NUM_SGE_PG_REQ		((NUM_SGE_REQ + MAX_RX_SGE_CNT - 1) / \
378						MAX_RX_SGE_CNT)
379#define SGE_TH_LO(bp)		(NUM_SGE_REQ + \
380				 NUM_SGE_PG_REQ * NEXT_PAGE_SGE_DESC_CNT)
381#define SGE_TH_HI(bp)		(SGE_TH_LO(bp) + DROPLESS_FC_HEADROOM)
382
383/* Manipulate a bit vector defined as an array of u64 */
384
385/* Number of bits in one sge_mask array element */
386#define BIT_VEC64_ELEM_SZ		64
387#define BIT_VEC64_ELEM_SHIFT		6
388#define BIT_VEC64_ELEM_MASK		((u64)BIT_VEC64_ELEM_SZ - 1)
389
390
391#define __BIT_VEC64_SET_BIT(el, bit) \
392	do { \
393		el = ((el) | ((u64)0x1 << (bit))); \
394	} while (0)
395
396#define __BIT_VEC64_CLEAR_BIT(el, bit) \
397	do { \
398		el = ((el) & (~((u64)0x1 << (bit)))); \
399	} while (0)
400
401
402#define BIT_VEC64_SET_BIT(vec64, idx) \
403	__BIT_VEC64_SET_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \
404			   (idx) & BIT_VEC64_ELEM_MASK)
405
406#define BIT_VEC64_CLEAR_BIT(vec64, idx) \
407	__BIT_VEC64_CLEAR_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \
408			     (idx) & BIT_VEC64_ELEM_MASK)
409
410#define BIT_VEC64_TEST_BIT(vec64, idx) \
411	(((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT] >> \
412	((idx) & BIT_VEC64_ELEM_MASK)) & 0x1)
413
414/* Creates a bitmask of all ones in less significant bits.
415   idx - index of the most significant bit in the created mask */
416#define BIT_VEC64_ONES_MASK(idx) \
417		(((u64)0x1 << (((idx) & BIT_VEC64_ELEM_MASK) + 1)) - 1)
418#define BIT_VEC64_ELEM_ONE_MASK	((u64)(~0))
419
420/*******************************************************/
421
422
423
424/* Number of u64 elements in SGE mask array */
425#define RX_SGE_MASK_LEN			(NUM_RX_SGE / BIT_VEC64_ELEM_SZ)
426#define RX_SGE_MASK_LEN_MASK		(RX_SGE_MASK_LEN - 1)
427#define NEXT_SGE_MASK_ELEM(el)		(((el) + 1) & RX_SGE_MASK_LEN_MASK)
428
429union host_hc_status_block {
430	/* pointer to fp status block e1x */
431	struct host_hc_status_block_e1x *e1x_sb;
432	/* pointer to fp status block e2 */
433	struct host_hc_status_block_e2  *e2_sb;
434};
435
436struct bnx2x_agg_info {
437	/*
438	 * First aggregation buffer is a data buffer, the following - are pages.
439	 * We will preallocate the data buffer for each aggregation when
440	 * we open the interface and will replace the BD at the consumer
441	 * with this one when we receive the TPA_START CQE in order to
442	 * keep the Rx BD ring consistent.
443	 */
444	struct sw_rx_bd		first_buf;
445	u8			tpa_state;
446#define BNX2X_TPA_START			1
447#define BNX2X_TPA_STOP			2
448#define BNX2X_TPA_ERROR			3
449	u8			placement_offset;
450	u16			parsing_flags;
451	u16			vlan_tag;
452	u16			len_on_bd;
453	u32			rxhash;
454	bool			l4_rxhash;
455	u16			gro_size;
456	u16			full_page;
457};
458
459#define Q_STATS_OFFSET32(stat_name) \
460			(offsetof(struct bnx2x_eth_q_stats, stat_name) / 4)
461
462struct bnx2x_fp_txdata {
463
464	struct sw_tx_bd		*tx_buf_ring;
465
466	union eth_tx_bd_types	*tx_desc_ring;
467	dma_addr_t		tx_desc_mapping;
468
469	u32			cid;
470
471	union db_prod		tx_db;
472
473	u16			tx_pkt_prod;
474	u16			tx_pkt_cons;
475	u16			tx_bd_prod;
476	u16			tx_bd_cons;
477
478	unsigned long		tx_pkt;
479
480	__le16			*tx_cons_sb;
481
482	int			txq_index;
483	struct bnx2x_fastpath	*parent_fp;
484	int			tx_ring_size;
485};
486
487enum bnx2x_tpa_mode_t {
488	TPA_MODE_LRO,
489	TPA_MODE_GRO
490};
491
492struct bnx2x_fastpath {
493	struct bnx2x		*bp; /* parent */
494
495	struct napi_struct	napi;
496	union host_hc_status_block	status_blk;
497	/* chip independed shortcuts into sb structure */
498	__le16			*sb_index_values;
499	__le16			*sb_running_index;
500	/* chip independed shortcut into rx_prods_offset memory */
501	u32			ustorm_rx_prods_offset;
502
503	u32			rx_buf_size;
504	u32			rx_frag_size; /* 0 if kmalloced(), or rx_buf_size + NET_SKB_PAD */
505	dma_addr_t		status_blk_mapping;
506
507	enum bnx2x_tpa_mode_t	mode;
508
509	u8			max_cos; /* actual number of active tx coses */
510	struct bnx2x_fp_txdata	*txdata_ptr[BNX2X_MULTI_TX_COS];
511
512	struct sw_rx_bd		*rx_buf_ring;	/* BDs mappings ring */
513	struct sw_rx_page	*rx_page_ring;	/* SGE pages mappings ring */
514
515	struct eth_rx_bd	*rx_desc_ring;
516	dma_addr_t		rx_desc_mapping;
517
518	union eth_rx_cqe	*rx_comp_ring;
519	dma_addr_t		rx_comp_mapping;
520
521	/* SGE ring */
522	struct eth_rx_sge	*rx_sge_ring;
523	dma_addr_t		rx_sge_mapping;
524
525	u64			sge_mask[RX_SGE_MASK_LEN];
526
527	u32			cid;
528
529	__le16			fp_hc_idx;
530
531	u8			index;		/* number in fp array */
532	u8			rx_queue;	/* index for skb_record */
533	u8			cl_id;		/* eth client id */
534	u8			cl_qzone_id;
535	u8			fw_sb_id;	/* status block number in FW */
536	u8			igu_sb_id;	/* status block number in HW */
537
538	u16			rx_bd_prod;
539	u16			rx_bd_cons;
540	u16			rx_comp_prod;
541	u16			rx_comp_cons;
542	u16			rx_sge_prod;
543	/* The last maximal completed SGE */
544	u16			last_max_sge;
545	__le16			*rx_cons_sb;
546	unsigned long		rx_pkt,
547				rx_calls;
548
549	/* TPA related */
550	struct bnx2x_agg_info	*tpa_info;
551	u8			disable_tpa;
552#ifdef BNX2X_STOP_ON_ERROR
553	u64			tpa_queue_used;
554#endif
555	/* The size is calculated using the following:
556	     sizeof name field from netdev structure +
557	     4 ('-Xx-' string) +
558	     4 (for the digits and to make it DWORD aligned) */
559#define FP_NAME_SIZE		(sizeof(((struct net_device *)0)->name) + 8)
560	char			name[FP_NAME_SIZE];
561};
562
563#define bnx2x_fp(bp, nr, var)	((bp)->fp[(nr)].var)
564#define bnx2x_sp_obj(bp, fp)	((bp)->sp_objs[(fp)->index])
565#define bnx2x_fp_stats(bp, fp)	(&((bp)->fp_stats[(fp)->index]))
566#define bnx2x_fp_qstats(bp, fp)	(&((bp)->fp_stats[(fp)->index].eth_q_stats))
567
568/* Use 2500 as a mini-jumbo MTU for FCoE */
569#define BNX2X_FCOE_MINI_JUMBO_MTU	2500
570
571#define	FCOE_IDX_OFFSET		0
572
573#define FCOE_IDX(bp)		(BNX2X_NUM_NON_CNIC_QUEUES(bp) + \
574				 FCOE_IDX_OFFSET)
575#define bnx2x_fcoe_fp(bp)	(&bp->fp[FCOE_IDX(bp)])
576#define bnx2x_fcoe(bp, var)	(bnx2x_fcoe_fp(bp)->var)
577#define bnx2x_fcoe_inner_sp_obj(bp)	(&bp->sp_objs[FCOE_IDX(bp)])
578#define bnx2x_fcoe_sp_obj(bp, var)	(bnx2x_fcoe_inner_sp_obj(bp)->var)
579#define bnx2x_fcoe_tx(bp, var)	(bnx2x_fcoe_fp(bp)-> \
580						txdata_ptr[FIRST_TX_COS_INDEX] \
581						->var)
582
583
584#define IS_ETH_FP(fp)		((fp)->index < BNX2X_NUM_ETH_QUEUES((fp)->bp))
585#define IS_FCOE_FP(fp)		((fp)->index == FCOE_IDX((fp)->bp))
586#define IS_FCOE_IDX(idx)	((idx) == FCOE_IDX(bp))
587
588
589/* MC hsi */
590#define MAX_FETCH_BD		13	/* HW max BDs per packet */
591#define RX_COPY_THRESH		92
592
593#define NUM_TX_RINGS		16
594#define TX_DESC_CNT		(BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types))
595#define NEXT_PAGE_TX_DESC_CNT	1
596#define MAX_TX_DESC_CNT		(TX_DESC_CNT - NEXT_PAGE_TX_DESC_CNT)
597#define NUM_TX_BD		(TX_DESC_CNT * NUM_TX_RINGS)
598#define MAX_TX_BD		(NUM_TX_BD - 1)
599#define MAX_TX_AVAIL		(MAX_TX_DESC_CNT * NUM_TX_RINGS - 2)
600#define NEXT_TX_IDX(x)		((((x) & MAX_TX_DESC_CNT) == \
601				  (MAX_TX_DESC_CNT - 1)) ? \
602					(x) + 1 + NEXT_PAGE_TX_DESC_CNT : \
603					(x) + 1)
604#define TX_BD(x)		((x) & MAX_TX_BD)
605#define TX_BD_POFF(x)		((x) & MAX_TX_DESC_CNT)
606
607/* number of NEXT_PAGE descriptors may be required during placement */
608#define NEXT_CNT_PER_TX_PKT(bds)	\
609				(((bds) + MAX_TX_DESC_CNT - 1) / \
610				 MAX_TX_DESC_CNT * NEXT_PAGE_TX_DESC_CNT)
611/* max BDs per tx packet w/o next_pages:
612 * START_BD		- describes packed
613 * START_BD(splitted)	- includes unpaged data segment for GSO
614 * PARSING_BD		- for TSO and CSUM data
615 * PARSING_BD2		- for encapsulation data
616 * Frag BDs		- decribes pages for frags
617 */
618#define BDS_PER_TX_PKT		4
619#define MAX_BDS_PER_TX_PKT	(MAX_SKB_FRAGS + BDS_PER_TX_PKT)
620/* max BDs per tx packet including next pages */
621#define MAX_DESC_PER_TX_PKT	(MAX_BDS_PER_TX_PKT + \
622				 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))
623
624/* The RX BD ring is special, each bd is 8 bytes but the last one is 16 */
625#define NUM_RX_RINGS		8
626#define RX_DESC_CNT		(BCM_PAGE_SIZE / sizeof(struct eth_rx_bd))
627#define NEXT_PAGE_RX_DESC_CNT	2
628#define MAX_RX_DESC_CNT		(RX_DESC_CNT - NEXT_PAGE_RX_DESC_CNT)
629#define RX_DESC_MASK		(RX_DESC_CNT - 1)
630#define NUM_RX_BD		(RX_DESC_CNT * NUM_RX_RINGS)
631#define MAX_RX_BD		(NUM_RX_BD - 1)
632#define MAX_RX_AVAIL		(MAX_RX_DESC_CNT * NUM_RX_RINGS - 2)
633
634/* dropless fc calculations for BDs
635 *
636 * Number of BDs should as number of buffers in BRB:
637 * Low threshold takes into account NEXT_PAGE_RX_DESC_CNT
638 * "next" elements on each page
639 */
640#define NUM_BD_REQ		BRB_SIZE(bp)
641#define NUM_BD_PG_REQ		((NUM_BD_REQ + MAX_RX_DESC_CNT - 1) / \
642					      MAX_RX_DESC_CNT)
643#define BD_TH_LO(bp)		(NUM_BD_REQ + \
644				 NUM_BD_PG_REQ * NEXT_PAGE_RX_DESC_CNT + \
645				 FW_DROP_LEVEL(bp))
646#define BD_TH_HI(bp)		(BD_TH_LO(bp) + DROPLESS_FC_HEADROOM)
647
648#define MIN_RX_AVAIL		((bp)->dropless_fc ? BD_TH_HI(bp) + 128 : 128)
649
650#define MIN_RX_SIZE_TPA_HW	(CHIP_IS_E1(bp) ? \
651					ETH_MIN_RX_CQES_WITH_TPA_E1 : \
652					ETH_MIN_RX_CQES_WITH_TPA_E1H_E2)
653#define MIN_RX_SIZE_NONTPA_HW   ETH_MIN_RX_CQES_WITHOUT_TPA
654#define MIN_RX_SIZE_TPA		(max_t(u32, MIN_RX_SIZE_TPA_HW, MIN_RX_AVAIL))
655#define MIN_RX_SIZE_NONTPA	(max_t(u32, MIN_RX_SIZE_NONTPA_HW,\
656								MIN_RX_AVAIL))
657
658#define NEXT_RX_IDX(x)		((((x) & RX_DESC_MASK) == \
659				  (MAX_RX_DESC_CNT - 1)) ? \
660					(x) + 1 + NEXT_PAGE_RX_DESC_CNT : \
661					(x) + 1)
662#define RX_BD(x)		((x) & MAX_RX_BD)
663
664/*
665 * As long as CQE is X times bigger than BD entry we have to allocate X times
666 * more pages for CQ ring in order to keep it balanced with BD ring
667 */
668#define CQE_BD_REL	(sizeof(union eth_rx_cqe) / sizeof(struct eth_rx_bd))
669#define NUM_RCQ_RINGS		(NUM_RX_RINGS * CQE_BD_REL)
670#define RCQ_DESC_CNT		(BCM_PAGE_SIZE / sizeof(union eth_rx_cqe))
671#define NEXT_PAGE_RCQ_DESC_CNT	1
672#define MAX_RCQ_DESC_CNT	(RCQ_DESC_CNT - NEXT_PAGE_RCQ_DESC_CNT)
673#define NUM_RCQ_BD		(RCQ_DESC_CNT * NUM_RCQ_RINGS)
674#define MAX_RCQ_BD		(NUM_RCQ_BD - 1)
675#define MAX_RCQ_AVAIL		(MAX_RCQ_DESC_CNT * NUM_RCQ_RINGS - 2)
676#define NEXT_RCQ_IDX(x)		((((x) & MAX_RCQ_DESC_CNT) == \
677				  (MAX_RCQ_DESC_CNT - 1)) ? \
678					(x) + 1 + NEXT_PAGE_RCQ_DESC_CNT : \
679					(x) + 1)
680#define RCQ_BD(x)		((x) & MAX_RCQ_BD)
681
682/* dropless fc calculations for RCQs
683 *
684 * Number of RCQs should be as number of buffers in BRB:
685 * Low threshold takes into account NEXT_PAGE_RCQ_DESC_CNT
686 * "next" elements on each page
687 */
688#define NUM_RCQ_REQ		BRB_SIZE(bp)
689#define NUM_RCQ_PG_REQ		((NUM_BD_REQ + MAX_RCQ_DESC_CNT - 1) / \
690					      MAX_RCQ_DESC_CNT)
691#define RCQ_TH_LO(bp)		(NUM_RCQ_REQ + \
692				 NUM_RCQ_PG_REQ * NEXT_PAGE_RCQ_DESC_CNT + \
693				 FW_DROP_LEVEL(bp))
694#define RCQ_TH_HI(bp)		(RCQ_TH_LO(bp) + DROPLESS_FC_HEADROOM)
695
696
697/* This is needed for determining of last_max */
698#define SUB_S16(a, b)		(s16)((s16)(a) - (s16)(b))
699#define SUB_S32(a, b)		(s32)((s32)(a) - (s32)(b))
700
701
702#define BNX2X_SWCID_SHIFT	17
703#define BNX2X_SWCID_MASK	((0x1 << BNX2X_SWCID_SHIFT) - 1)
704
705/* used on a CID received from the HW */
706#define SW_CID(x)			(le32_to_cpu(x) & BNX2X_SWCID_MASK)
707#define CQE_CMD(x)			(le32_to_cpu(x) >> \
708					COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT)
709
710#define BD_UNMAP_ADDR(bd)		HILO_U64(le32_to_cpu((bd)->addr_hi), \
711						 le32_to_cpu((bd)->addr_lo))
712#define BD_UNMAP_LEN(bd)		(le16_to_cpu((bd)->nbytes))
713
714#define BNX2X_DB_MIN_SHIFT		3	/* 8 bytes */
715#define BNX2X_DB_SHIFT			7	/* 128 bytes*/
716#if (BNX2X_DB_SHIFT < BNX2X_DB_MIN_SHIFT)
717#error "Min DB doorbell stride is 8"
718#endif
719#define DPM_TRIGER_TYPE			0x40
720#define DOORBELL(bp, cid, val) \
721	do { \
722		writel((u32)(val), bp->doorbells + (bp->db_size * (cid)) + \
723		       DPM_TRIGER_TYPE); \
724	} while (0)
725
726
727/* TX CSUM helpers */
728#define SKB_CS_OFF(skb)		(offsetof(struct tcphdr, check) - \
729				 skb->csum_offset)
730#define SKB_CS(skb)		(*(u16 *)(skb_transport_header(skb) + \
731					  skb->csum_offset))
732
733#define pbd_tcp_flags(tcp_hdr)	(ntohl(tcp_flag_word(tcp_hdr))>>16 & 0xff)
734
735#define XMIT_PLAIN		0
736#define XMIT_CSUM_V4		(1 << 0)
737#define XMIT_CSUM_V6		(1 << 1)
738#define XMIT_CSUM_TCP		(1 << 2)
739#define XMIT_GSO_V4		(1 << 3)
740#define XMIT_GSO_V6		(1 << 4)
741#define XMIT_CSUM_ENC_V4	(1 << 5)
742#define XMIT_CSUM_ENC_V6	(1 << 6)
743#define XMIT_GSO_ENC_V4		(1 << 7)
744#define XMIT_GSO_ENC_V6		(1 << 8)
745
746#define XMIT_CSUM_ENC		(XMIT_CSUM_ENC_V4 | XMIT_CSUM_ENC_V6)
747#define XMIT_GSO_ENC		(XMIT_GSO_ENC_V4 | XMIT_GSO_ENC_V6)
748
749#define XMIT_CSUM		(XMIT_CSUM_V4 | XMIT_CSUM_V6 | XMIT_CSUM_ENC)
750#define XMIT_GSO		(XMIT_GSO_V4 | XMIT_GSO_V6 | XMIT_GSO_ENC)
751
752/* stuff added to make the code fit 80Col */
753#define CQE_TYPE(cqe_fp_flags)	 ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE)
754#define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG)
755#define CQE_TYPE_STOP(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG)
756#define CQE_TYPE_SLOW(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD)
757#define CQE_TYPE_FAST(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH)
758
759#define ETH_RX_ERROR_FALGS		ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG
760
761#define BNX2X_PRS_FLAG_OVERETH_IPV4(flags) \
762				(((le16_to_cpu(flags) & \
763				   PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) >> \
764				  PARSING_FLAGS_OVER_ETHERNET_PROTOCOL_SHIFT) \
765				 == PRS_FLAG_OVERETH_IPV4)
766#define BNX2X_RX_SUM_FIX(cqe) \
767	BNX2X_PRS_FLAG_OVERETH_IPV4(cqe->fast_path_cqe.pars_flags.flags)
768
769
770#define FP_USB_FUNC_OFF	\
771			offsetof(struct cstorm_status_block_u, func)
772#define FP_CSB_FUNC_OFF	\
773			offsetof(struct cstorm_status_block_c, func)
774
775#define HC_INDEX_ETH_RX_CQ_CONS		1
776
777#define HC_INDEX_OOO_TX_CQ_CONS		4
778
779#define HC_INDEX_ETH_TX_CQ_CONS_COS0	5
780
781#define HC_INDEX_ETH_TX_CQ_CONS_COS1	6
782
783#define HC_INDEX_ETH_TX_CQ_CONS_COS2	7
784
785#define HC_INDEX_ETH_FIRST_TX_CQ_CONS	HC_INDEX_ETH_TX_CQ_CONS_COS0
786
787#define BNX2X_RX_SB_INDEX \
788	(&fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS])
789
790#define BNX2X_TX_SB_INDEX_BASE BNX2X_TX_SB_INDEX_COS0
791
792#define BNX2X_TX_SB_INDEX_COS0 \
793	(&fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0])
794
795/* end of fast path */
796
797/* common */
798
799struct bnx2x_common {
800
801	u32			chip_id;
802/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
803#define CHIP_ID(bp)			(bp->common.chip_id & 0xfffffff0)
804
805#define CHIP_NUM(bp)			(bp->common.chip_id >> 16)
806#define CHIP_NUM_57710			0x164e
807#define CHIP_NUM_57711			0x164f
808#define CHIP_NUM_57711E			0x1650
809#define CHIP_NUM_57712			0x1662
810#define CHIP_NUM_57712_MF		0x1663
811#define CHIP_NUM_57712_VF		0x166f
812#define CHIP_NUM_57713			0x1651
813#define CHIP_NUM_57713E			0x1652
814#define CHIP_NUM_57800			0x168a
815#define CHIP_NUM_57800_MF		0x16a5
816#define CHIP_NUM_57800_VF		0x16a9
817#define CHIP_NUM_57810			0x168e
818#define CHIP_NUM_57810_MF		0x16ae
819#define CHIP_NUM_57810_VF		0x16af
820#define CHIP_NUM_57811			0x163d
821#define CHIP_NUM_57811_MF		0x163e
822#define CHIP_NUM_57811_VF		0x163f
823#define CHIP_NUM_57840_OBSOLETE		0x168d
824#define CHIP_NUM_57840_MF_OBSOLETE	0x16ab
825#define CHIP_NUM_57840_4_10		0x16a1
826#define CHIP_NUM_57840_2_20		0x16a2
827#define CHIP_NUM_57840_MF		0x16a4
828#define CHIP_NUM_57840_VF		0x16ad
829#define CHIP_IS_E1(bp)			(CHIP_NUM(bp) == CHIP_NUM_57710)
830#define CHIP_IS_57711(bp)		(CHIP_NUM(bp) == CHIP_NUM_57711)
831#define CHIP_IS_57711E(bp)		(CHIP_NUM(bp) == CHIP_NUM_57711E)
832#define CHIP_IS_57712(bp)		(CHIP_NUM(bp) == CHIP_NUM_57712)
833#define CHIP_IS_57712_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57712_VF)
834#define CHIP_IS_57712_MF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57712_MF)
835#define CHIP_IS_57800(bp)		(CHIP_NUM(bp) == CHIP_NUM_57800)
836#define CHIP_IS_57800_MF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57800_MF)
837#define CHIP_IS_57800_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57800_VF)
838#define CHIP_IS_57810(bp)		(CHIP_NUM(bp) == CHIP_NUM_57810)
839#define CHIP_IS_57810_MF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57810_MF)
840#define CHIP_IS_57810_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57810_VF)
841#define CHIP_IS_57811(bp)		(CHIP_NUM(bp) == CHIP_NUM_57811)
842#define CHIP_IS_57811_MF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57811_MF)
843#define CHIP_IS_57811_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57811_VF)
844#define CHIP_IS_57840(bp)		\
845		((CHIP_NUM(bp) == CHIP_NUM_57840_4_10) || \
846		 (CHIP_NUM(bp) == CHIP_NUM_57840_2_20) || \
847		 (CHIP_NUM(bp) == CHIP_NUM_57840_OBSOLETE))
848#define CHIP_IS_57840_MF(bp)	((CHIP_NUM(bp) == CHIP_NUM_57840_MF) || \
849				 (CHIP_NUM(bp) == CHIP_NUM_57840_MF_OBSOLETE))
850#define CHIP_IS_57840_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57840_VF)
851#define CHIP_IS_E1H(bp)			(CHIP_IS_57711(bp) || \
852					 CHIP_IS_57711E(bp))
853#define CHIP_IS_57811xx(bp)		(CHIP_IS_57811(bp) || \
854					 CHIP_IS_57811_MF(bp) || \
855					 CHIP_IS_57811_VF(bp))
856#define CHIP_IS_E2(bp)			(CHIP_IS_57712(bp) || \
857					 CHIP_IS_57712_MF(bp) || \
858					 CHIP_IS_57712_VF(bp))
859#define CHIP_IS_E3(bp)			(CHIP_IS_57800(bp) || \
860					 CHIP_IS_57800_MF(bp) || \
861					 CHIP_IS_57800_VF(bp) || \
862					 CHIP_IS_57810(bp) || \
863					 CHIP_IS_57810_MF(bp) || \
864					 CHIP_IS_57810_VF(bp) || \
865					 CHIP_IS_57811xx(bp) || \
866					 CHIP_IS_57840(bp) || \
867					 CHIP_IS_57840_MF(bp) || \
868					 CHIP_IS_57840_VF(bp))
869#define CHIP_IS_E1x(bp)			(CHIP_IS_E1((bp)) || CHIP_IS_E1H((bp)))
870#define USES_WARPCORE(bp)		(CHIP_IS_E3(bp))
871#define IS_E1H_OFFSET			(!CHIP_IS_E1(bp))
872
873#define CHIP_REV_SHIFT			12
874#define CHIP_REV_MASK			(0xF << CHIP_REV_SHIFT)
875#define CHIP_REV_VAL(bp)		(bp->common.chip_id & CHIP_REV_MASK)
876#define CHIP_REV_Ax			(0x0 << CHIP_REV_SHIFT)
877#define CHIP_REV_Bx			(0x1 << CHIP_REV_SHIFT)
878/* assume maximum 5 revisions */
879#define CHIP_REV_IS_SLOW(bp)		(CHIP_REV_VAL(bp) > 0x00005000)
880/* Emul versions are A=>0xe, B=>0xc, C=>0xa, D=>8, E=>6 */
881#define CHIP_REV_IS_EMUL(bp)		((CHIP_REV_IS_SLOW(bp)) && \
882					 !(CHIP_REV_VAL(bp) & 0x00001000))
883/* FPGA versions are A=>0xf, B=>0xd, C=>0xb, D=>9, E=>7 */
884#define CHIP_REV_IS_FPGA(bp)		((CHIP_REV_IS_SLOW(bp)) && \
885					 (CHIP_REV_VAL(bp) & 0x00001000))
886
887#define CHIP_TIME(bp)			((CHIP_REV_IS_EMUL(bp)) ? 2000 : \
888					((CHIP_REV_IS_FPGA(bp)) ? 200 : 1))
889
890#define CHIP_METAL(bp)			(bp->common.chip_id & 0x00000ff0)
891#define CHIP_BOND_ID(bp)		(bp->common.chip_id & 0x0000000f)
892#define CHIP_REV_SIM(bp)		(((CHIP_REV_MASK - CHIP_REV_VAL(bp)) >>\
893					   (CHIP_REV_SHIFT + 1)) \
894						<< CHIP_REV_SHIFT)
895#define CHIP_REV(bp)			(CHIP_REV_IS_SLOW(bp) ? \
896						CHIP_REV_SIM(bp) :\
897						CHIP_REV_VAL(bp))
898#define CHIP_IS_E3B0(bp)		(CHIP_IS_E3(bp) && \
899					 (CHIP_REV(bp) == CHIP_REV_Bx))
900#define CHIP_IS_E3A0(bp)		(CHIP_IS_E3(bp) && \
901					 (CHIP_REV(bp) == CHIP_REV_Ax))
902/* This define is used in two main places:
903 * 1. In the early stages of nic_load, to know if to configrue Parser / Searcher
904 * to nic-only mode or to offload mode. Offload mode is configured if either the
905 * chip is E1x (where MIC_MODE register is not applicable), or if cnic already
906 * registered for this port (which means that the user wants storage services).
907 * 2. During cnic-related load, to know if offload mode is already configured in
908 * the HW or needs to be configrued.
909 * Since the transition from nic-mode to offload-mode in HW causes traffic
910 * coruption, nic-mode is configured only in ports on which storage services
911 * where never requested.
912 */
913#define CONFIGURE_NIC_MODE(bp)		(!CHIP_IS_E1x(bp) && !CNIC_ENABLED(bp))
914
915	int			flash_size;
916#define BNX2X_NVRAM_1MB_SIZE			0x20000	/* 1M bit in bytes */
917#define BNX2X_NVRAM_TIMEOUT_COUNT		30000
918#define BNX2X_NVRAM_PAGE_SIZE			256
919
920	u32			shmem_base;
921	u32			shmem2_base;
922	u32			mf_cfg_base;
923	u32			mf2_cfg_base;
924
925	u32			hw_config;
926
927	u32			bc_ver;
928
929	u8			int_block;
930#define INT_BLOCK_HC			0
931#define INT_BLOCK_IGU			1
932#define INT_BLOCK_MODE_NORMAL		0
933#define INT_BLOCK_MODE_BW_COMP		2
934#define CHIP_INT_MODE_IS_NBC(bp)		\
935			(!CHIP_IS_E1x(bp) &&	\
936			!((bp)->common.int_block & INT_BLOCK_MODE_BW_COMP))
937#define CHIP_INT_MODE_IS_BC(bp) (!CHIP_INT_MODE_IS_NBC(bp))
938
939	u8			chip_port_mode;
940#define CHIP_4_PORT_MODE			0x0
941#define CHIP_2_PORT_MODE			0x1
942#define CHIP_PORT_MODE_NONE			0x2
943#define CHIP_MODE(bp)			(bp->common.chip_port_mode)
944#define CHIP_MODE_IS_4_PORT(bp) (CHIP_MODE(bp) == CHIP_4_PORT_MODE)
945
946	u32			boot_mode;
947};
948
949/* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */
950#define BNX2X_IGU_STAS_MSG_VF_CNT 64
951#define BNX2X_IGU_STAS_MSG_PF_CNT 4
952
953#define MAX_IGU_ATTN_ACK_TO       100
954/* end of common */
955
956/* port */
957
958struct bnx2x_port {
959	u32			pmf;
960
961	u32			link_config[LINK_CONFIG_SIZE];
962
963	u32			supported[LINK_CONFIG_SIZE];
964/* link settings - missing defines */
965#define SUPPORTED_2500baseX_Full	(1 << 15)
966
967	u32			advertising[LINK_CONFIG_SIZE];
968/* link settings - missing defines */
969#define ADVERTISED_2500baseX_Full	(1 << 15)
970
971	u32			phy_addr;
972
973	/* used to synchronize phy accesses */
974	struct mutex		phy_mutex;
975
976	u32			port_stx;
977
978	struct nig_stats	old_nig_stats;
979};
980
981/* end of port */
982
983#define STATS_OFFSET32(stat_name) \
984			(offsetof(struct bnx2x_eth_stats, stat_name) / 4)
985
986/* slow path */
987
988/* slow path work-queue */
989extern struct workqueue_struct *bnx2x_wq;
990
991#define BNX2X_MAX_NUM_OF_VFS	64
992#define BNX2X_VF_CID_WND	0
993#define BNX2X_CIDS_PER_VF	(1 << BNX2X_VF_CID_WND)
994#define BNX2X_CLIENTS_PER_VF	1
995#define BNX2X_FIRST_VF_CID	256
996#define BNX2X_VF_CIDS		(BNX2X_MAX_NUM_OF_VFS * BNX2X_CIDS_PER_VF)
997#define BNX2X_VF_ID_INVALID	0xFF
998
999/*
1000 * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
1001 * control by the number of fast-path status blocks supported by the
1002 * device (HW/FW). Each fast-path status block (FP-SB) aka non-default
1003 * status block represents an independent interrupts context that can
1004 * serve a regular L2 networking queue. However special L2 queues such
1005 * as the FCoE queue do not require a FP-SB and other components like
1006 * the CNIC may consume FP-SB reducing the number of possible L2 queues
1007 *
1008 * If the maximum number of FP-SB available is X then:
1009 * a. If CNIC is supported it consumes 1 FP-SB thus the max number of
1010 *    regular L2 queues is Y=X-1
1011 * b. in MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
1012 * c. If the FCoE L2 queue is supported the actual number of L2 queues
1013 *    is Y+1
1014 * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
1015 *    slow-path interrupts) or Y+2 if CNIC is supported (one additional
1016 *    FP interrupt context for the CNIC).
1017 * e. The number of HW context (CID count) is always X or X+1 if FCoE
1018 *    L2 queue is supported. the cid for the FCoE L2 queue is always X.
1019 */
1020
1021/* fast-path interrupt contexts E1x */
1022#define FP_SB_MAX_E1x		16
1023/* fast-path interrupt contexts E2 */
1024#define FP_SB_MAX_E2		HC_SB_MAX_SB_E2
1025
1026union cdu_context {
1027	struct eth_context eth;
1028	char pad[1024];
1029};
1030
1031/* CDU host DB constants */
1032#define CDU_ILT_PAGE_SZ_HW	2
1033#define CDU_ILT_PAGE_SZ		(8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */
1034#define ILT_PAGE_CIDS		(CDU_ILT_PAGE_SZ / sizeof(union cdu_context))
1035
1036#define CNIC_ISCSI_CID_MAX	256
1037#define CNIC_FCOE_CID_MAX	2048
1038#define CNIC_CID_MAX		(CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX)
1039#define CNIC_ILT_LINES		DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS)
1040
1041#define QM_ILT_PAGE_SZ_HW	0
1042#define QM_ILT_PAGE_SZ		(4096 << QM_ILT_PAGE_SZ_HW) /* 4K */
1043#define QM_CID_ROUND		1024
1044
1045/* TM (timers) host DB constants */
1046#define TM_ILT_PAGE_SZ_HW	0
1047#define TM_ILT_PAGE_SZ		(4096 << TM_ILT_PAGE_SZ_HW) /* 4K */
1048/* #define TM_CONN_NUM		(CNIC_STARTING_CID+CNIC_ISCSI_CXT_MAX) */
1049#define TM_CONN_NUM		1024
1050#define TM_ILT_SZ		(8 * TM_CONN_NUM)
1051#define TM_ILT_LINES		DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ)
1052
1053/* SRC (Searcher) host DB constants */
1054#define SRC_ILT_PAGE_SZ_HW	0
1055#define SRC_ILT_PAGE_SZ		(4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */
1056#define SRC_HASH_BITS		10
1057#define SRC_CONN_NUM		(1 << SRC_HASH_BITS) /* 1024 */
1058#define SRC_ILT_SZ		(sizeof(struct src_ent) * SRC_CONN_NUM)
1059#define SRC_T2_SZ		SRC_ILT_SZ
1060#define SRC_ILT_LINES		DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ)
1061
1062#define MAX_DMAE_C		8
1063
1064/* DMA memory not used in fastpath */
1065struct bnx2x_slowpath {
1066	union {
1067		struct mac_configuration_cmd		e1x;
1068		struct eth_classify_rules_ramrod_data	e2;
1069	} mac_rdata;
1070
1071
1072	union {
1073		struct tstorm_eth_mac_filter_config	e1x;
1074		struct eth_filter_rules_ramrod_data	e2;
1075	} rx_mode_rdata;
1076
1077	union {
1078		struct mac_configuration_cmd		e1;
1079		struct eth_multicast_rules_ramrod_data  e2;
1080	} mcast_rdata;
1081
1082	struct eth_rss_update_ramrod_data	rss_rdata;
1083
1084	/* Queue State related ramrods are always sent under rtnl_lock */
1085	union {
1086		struct client_init_ramrod_data  init_data;
1087		struct client_update_ramrod_data update_data;
1088	} q_rdata;
1089
1090	union {
1091		struct function_start_data	func_start;
1092		/* pfc configuration for DCBX ramrod */
1093		struct flow_control_configuration pfc_config;
1094	} func_rdata;
1095
1096	/* afex ramrod can not be a part of func_rdata union because these
1097	 * events might arrive in parallel to other events from func_rdata.
1098	 * Therefore, if they would have been defined in the same union,
1099	 * data can get corrupted.
1100	 */
1101	struct afex_vif_list_ramrod_data func_afex_rdata;
1102
1103	/* used by dmae command executer */
1104	struct dmae_command		dmae[MAX_DMAE_C];
1105
1106	u32				stats_comp;
1107	union mac_stats			mac_stats;
1108	struct nig_stats		nig_stats;
1109	struct host_port_stats		port_stats;
1110	struct host_func_stats		func_stats;
1111
1112	u32				wb_comp;
1113	u32				wb_data[4];
1114
1115	union drv_info_to_mcp		drv_info_to_mcp;
1116};
1117
1118#define bnx2x_sp(bp, var)		(&bp->slowpath->var)
1119#define bnx2x_sp_mapping(bp, var) \
1120		(bp->slowpath_mapping + offsetof(struct bnx2x_slowpath, var))
1121
1122
1123/* attn group wiring */
1124#define MAX_DYNAMIC_ATTN_GRPS		8
1125
1126struct attn_route {
1127	u32 sig[5];
1128};
1129
1130struct iro {
1131	u32 base;
1132	u16 m1;
1133	u16 m2;
1134	u16 m3;
1135	u16 size;
1136};
1137
1138struct hw_context {
1139	union cdu_context *vcxt;
1140	dma_addr_t cxt_mapping;
1141	size_t size;
1142};
1143
1144/* forward */
1145struct bnx2x_ilt;
1146
1147struct bnx2x_vfdb;
1148
1149enum bnx2x_recovery_state {
1150	BNX2X_RECOVERY_DONE,
1151	BNX2X_RECOVERY_INIT,
1152	BNX2X_RECOVERY_WAIT,
1153	BNX2X_RECOVERY_FAILED,
1154	BNX2X_RECOVERY_NIC_LOADING
1155};
1156
1157/*
1158 * Event queue (EQ or event ring) MC hsi
1159 * NUM_EQ_PAGES and EQ_DESC_CNT_PAGE must be power of 2
1160 */
1161#define NUM_EQ_PAGES		1
1162#define EQ_DESC_CNT_PAGE	(BCM_PAGE_SIZE / sizeof(union event_ring_elem))
1163#define EQ_DESC_MAX_PAGE	(EQ_DESC_CNT_PAGE - 1)
1164#define NUM_EQ_DESC		(EQ_DESC_CNT_PAGE * NUM_EQ_PAGES)
1165#define EQ_DESC_MASK		(NUM_EQ_DESC - 1)
1166#define MAX_EQ_AVAIL		(EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2)
1167
1168/* depends on EQ_DESC_CNT_PAGE being a power of 2 */
1169#define NEXT_EQ_IDX(x)		((((x) & EQ_DESC_MAX_PAGE) == \
1170				  (EQ_DESC_MAX_PAGE - 1)) ? (x) + 2 : (x) + 1)
1171
1172/* depends on the above and on NUM_EQ_PAGES being a power of 2 */
1173#define EQ_DESC(x)		((x) & EQ_DESC_MASK)
1174
1175#define BNX2X_EQ_INDEX \
1176	(&bp->def_status_blk->sp_sb.\
1177	index_values[HC_SP_INDEX_EQ_CONS])
1178
1179/* This is a data that will be used to create a link report message.
1180 * We will keep the data used for the last link report in order
1181 * to prevent reporting the same link parameters twice.
1182 */
1183struct bnx2x_link_report_data {
1184	u16 line_speed;			/* Effective line speed */
1185	unsigned long link_report_flags;/* BNX2X_LINK_REPORT_XXX flags */
1186};
1187
1188enum {
1189	BNX2X_LINK_REPORT_FD,		/* Full DUPLEX */
1190	BNX2X_LINK_REPORT_LINK_DOWN,
1191	BNX2X_LINK_REPORT_RX_FC_ON,
1192	BNX2X_LINK_REPORT_TX_FC_ON,
1193};
1194
1195enum {
1196	BNX2X_PORT_QUERY_IDX,
1197	BNX2X_PF_QUERY_IDX,
1198	BNX2X_FCOE_QUERY_IDX,
1199	BNX2X_FIRST_QUEUE_QUERY_IDX,
1200};
1201
1202struct bnx2x_fw_stats_req {
1203	struct stats_query_header hdr;
1204	struct stats_query_entry query[FP_SB_MAX_E1x+
1205		BNX2X_FIRST_QUEUE_QUERY_IDX];
1206};
1207
1208struct bnx2x_fw_stats_data {
1209	struct stats_counter		storm_counters;
1210	struct per_port_stats		port;
1211	struct per_pf_stats		pf;
1212	struct fcoe_statistics_params	fcoe;
1213	struct per_queue_stats		queue_stats[1];
1214};
1215
1216/* Public slow path states */
1217enum {
1218	BNX2X_SP_RTNL_SETUP_TC,
1219	BNX2X_SP_RTNL_TX_TIMEOUT,
1220	BNX2X_SP_RTNL_FAN_FAILURE,
1221	BNX2X_SP_RTNL_AFEX_F_UPDATE,
1222	BNX2X_SP_RTNL_ENABLE_SRIOV,
1223	BNX2X_SP_RTNL_VFPF_MCAST,
1224	BNX2X_SP_RTNL_VFPF_STORM_RX_MODE,
1225	BNX2X_SP_RTNL_HYPERVISOR_VLAN,
1226};
1227
1228
1229struct bnx2x_prev_path_list {
1230	struct list_head list;
1231	u8 bus;
1232	u8 slot;
1233	u8 path;
1234	u8 aer;
1235	u8 undi;
1236};
1237
1238struct bnx2x_sp_objs {
1239	/* MACs object */
1240	struct bnx2x_vlan_mac_obj mac_obj;
1241
1242	/* Queue State object */
1243	struct bnx2x_queue_sp_obj q_obj;
1244};
1245
1246struct bnx2x_fp_stats {
1247	struct tstorm_per_queue_stats old_tclient;
1248	struct ustorm_per_queue_stats old_uclient;
1249	struct xstorm_per_queue_stats old_xclient;
1250	struct bnx2x_eth_q_stats eth_q_stats;
1251	struct bnx2x_eth_q_stats_old eth_q_stats_old;
1252};
1253
1254struct bnx2x {
1255	/* Fields used in the tx and intr/napi performance paths
1256	 * are grouped together in the beginning of the structure
1257	 */
1258	struct bnx2x_fastpath	*fp;
1259	struct bnx2x_sp_objs	*sp_objs;
1260	struct bnx2x_fp_stats	*fp_stats;
1261	struct bnx2x_fp_txdata	*bnx2x_txq;
1262	void __iomem		*regview;
1263	void __iomem		*doorbells;
1264	u16			db_size;
1265
1266	u8			pf_num;	/* absolute PF number */
1267	u8			pfid;	/* per-path PF number */
1268	int			base_fw_ndsb; /**/
1269#define BP_PATH(bp)			(CHIP_IS_E1x(bp) ? 0 : (bp->pf_num & 1))
1270#define BP_PORT(bp)			(bp->pfid & 1)
1271#define BP_FUNC(bp)			(bp->pfid)
1272#define BP_ABS_FUNC(bp)			(bp->pf_num)
1273#define BP_VN(bp)			((bp)->pfid >> 1)
1274#define BP_MAX_VN_NUM(bp)		(CHIP_MODE_IS_4_PORT(bp) ? 2 : 4)
1275#define BP_L_ID(bp)			(BP_VN(bp) << 2)
1276#define BP_FW_MB_IDX_VN(bp, vn)		(BP_PORT(bp) +\
1277	  (vn) * ((CHIP_IS_E1x(bp) || (CHIP_MODE_IS_4_PORT(bp))) ? 2  : 1))
1278#define BP_FW_MB_IDX(bp)		BP_FW_MB_IDX_VN(bp, BP_VN(bp))
1279
1280#ifdef CONFIG_BNX2X_SRIOV
1281	/* protects vf2pf mailbox from simultaneous access */
1282	struct mutex		vf2pf_mutex;
1283	/* vf pf channel mailbox contains request and response buffers */
1284	struct bnx2x_vf_mbx_msg	*vf2pf_mbox;
1285	dma_addr_t		vf2pf_mbox_mapping;
1286
1287	/* we set aside a copy of the acquire response */
1288	struct pfvf_acquire_resp_tlv acquire_resp;
1289
1290	/* bulletin board for messages from pf to vf */
1291	union pf_vf_bulletin   *pf2vf_bulletin;
1292	dma_addr_t		pf2vf_bulletin_mapping;
1293
1294	struct pf_vf_bulletin_content	old_bulletin;
1295
1296	u16 requested_nr_virtfn;
1297#endif /* CONFIG_BNX2X_SRIOV */
1298
1299	struct net_device	*dev;
1300	struct pci_dev		*pdev;
1301
1302	const struct iro	*iro_arr;
1303#define IRO (bp->iro_arr)
1304
1305	enum bnx2x_recovery_state recovery_state;
1306	int			is_leader;
1307	struct msix_entry	*msix_table;
1308
1309	int			tx_ring_size;
1310
1311/* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
1312#define ETH_OVREHEAD		(ETH_HLEN + 8 + 8)
1313#define ETH_MIN_PACKET_SIZE		60
1314#define ETH_MAX_PACKET_SIZE		1500
1315#define ETH_MAX_JUMBO_PACKET_SIZE	9600
1316/* TCP with Timestamp Option (32) + IPv6 (40) */
1317#define ETH_MAX_TPA_HEADER_SIZE		72
1318
1319	/* Max supported alignment is 256 (8 shift) */
1320#define BNX2X_RX_ALIGN_SHIFT		min(8, L1_CACHE_SHIFT)
1321
1322	/* FW uses 2 Cache lines Alignment for start packet and size
1323	 *
1324	 * We assume skb_build() uses sizeof(struct skb_shared_info) bytes
1325	 * at the end of skb->data, to avoid wasting a full cache line.
1326	 * This reduces memory use (skb->truesize).
1327	 */
1328#define BNX2X_FW_RX_ALIGN_START	(1UL << BNX2X_RX_ALIGN_SHIFT)
1329
1330#define BNX2X_FW_RX_ALIGN_END					\
1331	max_t(u64, 1UL << BNX2X_RX_ALIGN_SHIFT,			\
1332	    SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
1333
1334#define BNX2X_PXP_DRAM_ALIGN		(BNX2X_RX_ALIGN_SHIFT - 5)
1335
1336	struct host_sp_status_block *def_status_blk;
1337#define DEF_SB_IGU_ID			16
1338#define DEF_SB_ID			HC_SP_SB_ID
1339	__le16			def_idx;
1340	__le16			def_att_idx;
1341	u32			attn_state;
1342	struct attn_route	attn_group[MAX_DYNAMIC_ATTN_GRPS];
1343
1344	/* slow path ring */
1345	struct eth_spe		*spq;
1346	dma_addr_t		spq_mapping;
1347	u16			spq_prod_idx;
1348	struct eth_spe		*spq_prod_bd;
1349	struct eth_spe		*spq_last_bd;
1350	__le16			*dsb_sp_prod;
1351	atomic_t		cq_spq_left; /* ETH_XXX ramrods credit */
1352	/* used to synchronize spq accesses */
1353	spinlock_t		spq_lock;
1354
1355	/* event queue */
1356	union event_ring_elem	*eq_ring;
1357	dma_addr_t		eq_mapping;
1358	u16			eq_prod;
1359	u16			eq_cons;
1360	__le16			*eq_cons_sb;
1361	atomic_t		eq_spq_left; /* COMMON_XXX ramrods credit */
1362
1363	/* Counter for marking that there is a STAT_QUERY ramrod pending */
1364	u16			stats_pending;
1365	/*  Counter for completed statistics ramrods */
1366	u16			stats_comp;
1367
1368	/* End of fields used in the performance code paths */
1369
1370	int			panic;
1371	int			msg_enable;
1372
1373	u32			flags;
1374#define PCIX_FLAG			(1 << 0)
1375#define PCI_32BIT_FLAG			(1 << 1)
1376#define ONE_PORT_FLAG			(1 << 2)
1377#define NO_WOL_FLAG			(1 << 3)
1378#define USING_DAC_FLAG			(1 << 4)
1379#define USING_MSIX_FLAG			(1 << 5)
1380#define USING_MSI_FLAG			(1 << 6)
1381#define DISABLE_MSI_FLAG		(1 << 7)
1382#define TPA_ENABLE_FLAG			(1 << 8)
1383#define NO_MCP_FLAG			(1 << 9)
1384#define GRO_ENABLE_FLAG			(1 << 10)
1385#define MF_FUNC_DIS			(1 << 11)
1386#define OWN_CNIC_IRQ			(1 << 12)
1387#define NO_ISCSI_OOO_FLAG		(1 << 13)
1388#define NO_ISCSI_FLAG			(1 << 14)
1389#define NO_FCOE_FLAG			(1 << 15)
1390#define BC_SUPPORTS_PFC_STATS		(1 << 17)
1391#define BC_SUPPORTS_FCOE_FEATURES	(1 << 19)
1392#define USING_SINGLE_MSIX_FLAG		(1 << 20)
1393#define BC_SUPPORTS_DCBX_MSG_NON_PMF	(1 << 21)
1394#define IS_VF_FLAG			(1 << 22)
1395
1396#define BP_NOMCP(bp)			((bp)->flags & NO_MCP_FLAG)
1397
1398#ifdef CONFIG_BNX2X_SRIOV
1399#define IS_VF(bp)			((bp)->flags & IS_VF_FLAG)
1400#define IS_PF(bp)			(!((bp)->flags & IS_VF_FLAG))
1401#else
1402#define IS_VF(bp)			false
1403#define IS_PF(bp)			true
1404#endif
1405
1406#define NO_ISCSI(bp)		((bp)->flags & NO_ISCSI_FLAG)
1407#define NO_ISCSI_OOO(bp)	((bp)->flags & NO_ISCSI_OOO_FLAG)
1408#define NO_FCOE(bp)		((bp)->flags & NO_FCOE_FLAG)
1409
1410	u8			cnic_support;
1411	bool			cnic_enabled;
1412	bool			cnic_loaded;
1413	struct cnic_eth_dev	*(*cnic_probe)(struct net_device *);
1414
1415	/* Flag that indicates that we can start looking for FCoE L2 queue
1416	 * completions in the default status block.
1417	 */
1418	bool			fcoe_init;
1419
1420	int			pm_cap;
1421	int			mrrs;
1422
1423	struct delayed_work	sp_task;
1424	atomic_t		interrupt_occurred;
1425	struct delayed_work	sp_rtnl_task;
1426
1427	struct delayed_work	period_task;
1428	struct timer_list	timer;
1429	int			current_interval;
1430
1431	u16			fw_seq;
1432	u16			fw_drv_pulse_wr_seq;
1433	u32			func_stx;
1434
1435	struct link_params	link_params;
1436	struct link_vars	link_vars;
1437	u32			link_cnt;
1438	struct bnx2x_link_report_data last_reported_link;
1439
1440	struct mdio_if_info	mdio;
1441
1442	struct bnx2x_common	common;
1443	struct bnx2x_port	port;
1444
1445	struct cmng_init	cmng;
1446
1447	u32			mf_config[E1HVN_MAX];
1448	u32			mf_ext_config;
1449	u32			path_has_ovlan; /* E3 */
1450	u16			mf_ov;
1451	u8			mf_mode;
1452#define IS_MF(bp)		(bp->mf_mode != 0)
1453#define IS_MF_SI(bp)		(bp->mf_mode == MULTI_FUNCTION_SI)
1454#define IS_MF_SD(bp)		(bp->mf_mode == MULTI_FUNCTION_SD)
1455#define IS_MF_AFEX(bp)		(bp->mf_mode == MULTI_FUNCTION_AFEX)
1456
1457	u8			wol;
1458
1459	int			rx_ring_size;
1460
1461	u16			tx_quick_cons_trip_int;
1462	u16			tx_quick_cons_trip;
1463	u16			tx_ticks_int;
1464	u16			tx_ticks;
1465
1466	u16			rx_quick_cons_trip_int;
1467	u16			rx_quick_cons_trip;
1468	u16			rx_ticks_int;
1469	u16			rx_ticks;
1470/* Maximal coalescing timeout in us */
1471#define BNX2X_MAX_COALESCE_TOUT		(0xf0*12)
1472
1473	u32			lin_cnt;
1474
1475	u16			state;
1476#define BNX2X_STATE_CLOSED		0
1477#define BNX2X_STATE_OPENING_WAIT4_LOAD	0x1000
1478#define BNX2X_STATE_OPENING_WAIT4_PORT	0x2000
1479#define BNX2X_STATE_OPEN		0x3000
1480#define BNX2X_STATE_CLOSING_WAIT4_HALT	0x4000
1481#define BNX2X_STATE_CLOSING_WAIT4_DELETE 0x5000
1482
1483#define BNX2X_STATE_DIAG		0xe000
1484#define BNX2X_STATE_ERROR		0xf000
1485
1486#define BNX2X_MAX_PRIORITY		8
1487#define BNX2X_MAX_ENTRIES_PER_PRI	16
1488#define BNX2X_MAX_COS			3
1489#define BNX2X_MAX_TX_COS		2
1490	int			num_queues;
1491	uint			num_ethernet_queues;
1492	uint			num_cnic_queues;
1493	int			num_napi_queues;
1494	int			disable_tpa;
1495
1496	u32			rx_mode;
1497#define BNX2X_RX_MODE_NONE		0
1498#define BNX2X_RX_MODE_NORMAL		1
1499#define BNX2X_RX_MODE_ALLMULTI		2
1500#define BNX2X_RX_MODE_PROMISC		3
1501#define BNX2X_MAX_MULTICAST		64
1502
1503	u8			igu_dsb_id;
1504	u8			igu_base_sb;
1505	u8			igu_sb_cnt;
1506	u8			min_msix_vec_cnt;
1507
1508	u32			igu_base_addr;
1509	dma_addr_t		def_status_blk_mapping;
1510
1511	struct bnx2x_slowpath	*slowpath;
1512	dma_addr_t		slowpath_mapping;
1513
1514	/* Total number of FW statistics requests */
1515	u8			fw_stats_num;
1516
1517	/*
1518	 * This is a memory buffer that will contain both statistics
1519	 * ramrod request and data.
1520	 */
1521	void			*fw_stats;
1522	dma_addr_t		fw_stats_mapping;
1523
1524	/*
1525	 * FW statistics request shortcut (points at the
1526	 * beginning of fw_stats buffer).
1527	 */
1528	struct bnx2x_fw_stats_req	*fw_stats_req;
1529	dma_addr_t			fw_stats_req_mapping;
1530	int				fw_stats_req_sz;
1531
1532	/*
1533	 * FW statistics data shortcut (points at the beginning of
1534	 * fw_stats buffer + fw_stats_req_sz).
1535	 */
1536	struct bnx2x_fw_stats_data	*fw_stats_data;
1537	dma_addr_t			fw_stats_data_mapping;
1538	int				fw_stats_data_sz;
1539
1540	/* For max 196 cids (64*3 + non-eth), 32KB ILT page size and 1KB
1541	 * context size we need 8 ILT entries.
1542	 */
1543#define ILT_MAX_L2_LINES	8
1544	struct hw_context	context[ILT_MAX_L2_LINES];
1545
1546	struct bnx2x_ilt	*ilt;
1547#define BP_ILT(bp)		((bp)->ilt)
1548#define ILT_MAX_LINES		256
1549/*
1550 * Maximum supported number of RSS queues: number of IGU SBs minus one that goes
1551 * to CNIC.
1552 */
1553#define BNX2X_MAX_RSS_COUNT(bp)	((bp)->igu_sb_cnt - CNIC_SUPPORT(bp))
1554
1555/*
1556 * Maximum CID count that might be required by the bnx2x:
1557 * Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI
1558 */
1559#define BNX2X_L2_CID_COUNT(bp)	(BNX2X_NUM_ETH_QUEUES(bp) * BNX2X_MULTI_TX_COS \
1560				+ 2 * CNIC_SUPPORT(bp))
1561#define BNX2X_L2_MAX_CID(bp)	(BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS \
1562				+ 2 * CNIC_SUPPORT(bp))
1563#define L2_ILT_LINES(bp)	(DIV_ROUND_UP(BNX2X_L2_CID_COUNT(bp),\
1564					ILT_PAGE_CIDS))
1565
1566	int			qm_cid_count;
1567
1568	bool			dropless_fc;
1569
1570	void			*t2;
1571	dma_addr_t		t2_mapping;
1572	struct cnic_ops	__rcu	*cnic_ops;
1573	void			*cnic_data;
1574	u32			cnic_tag;
1575	struct cnic_eth_dev	cnic_eth_dev;
1576	union host_hc_status_block cnic_sb;
1577	dma_addr_t		cnic_sb_mapping;
1578	struct eth_spe		*cnic_kwq;
1579	struct eth_spe		*cnic_kwq_prod;
1580	struct eth_spe		*cnic_kwq_cons;
1581	struct eth_spe		*cnic_kwq_last;
1582	u16			cnic_kwq_pending;
1583	u16			cnic_spq_pending;
1584	u8			fip_mac[ETH_ALEN];
1585	struct mutex		cnic_mutex;
1586	struct bnx2x_vlan_mac_obj iscsi_l2_mac_obj;
1587
1588	/* Start index of the "special" (CNIC related) L2 cleints */
1589	u8				cnic_base_cl_id;
1590
1591	int			dmae_ready;
1592	/* used to synchronize dmae accesses */
1593	spinlock_t		dmae_lock;
1594
1595	/* used to protect the FW mail box */
1596	struct mutex		fw_mb_mutex;
1597
1598	/* used to synchronize stats collecting */
1599	int			stats_state;
1600
1601	/* used for synchronization of concurrent threads statistics handling */
1602	spinlock_t		stats_lock;
1603
1604	/* used by dmae command loader */
1605	struct dmae_command	stats_dmae;
1606	int			executer_idx;
1607
1608	u16			stats_counter;
1609	struct bnx2x_eth_stats	eth_stats;
1610	struct host_func_stats		func_stats;
1611	struct bnx2x_eth_stats_old	eth_stats_old;
1612	struct bnx2x_net_stats_old	net_stats_old;
1613	struct bnx2x_fw_port_stats_old	fw_stats_old;
1614	bool			stats_init;
1615
1616	struct z_stream_s	*strm;
1617	void			*gunzip_buf;
1618	dma_addr_t		gunzip_mapping;
1619	int			gunzip_outlen;
1620#define FW_BUF_SIZE			0x8000
1621#define GUNZIP_BUF(bp)			(bp->gunzip_buf)
1622#define GUNZIP_PHYS(bp)			(bp->gunzip_mapping)
1623#define GUNZIP_OUTLEN(bp)		(bp->gunzip_outlen)
1624
1625	struct raw_op		*init_ops;
1626	/* Init blocks offsets inside init_ops */
1627	u16			*init_ops_offsets;
1628	/* Data blob - has 32 bit granularity */
1629	u32			*init_data;
1630	u32			init_mode_flags;
1631#define INIT_MODE_FLAGS(bp)	(bp->init_mode_flags)
1632	/* Zipped PRAM blobs - raw data */
1633	const u8		*tsem_int_table_data;
1634	const u8		*tsem_pram_data;
1635	const u8		*usem_int_table_data;
1636	const u8		*usem_pram_data;
1637	const u8		*xsem_int_table_data;
1638	const u8		*xsem_pram_data;
1639	const u8		*csem_int_table_data;
1640	const u8		*csem_pram_data;
1641#define INIT_OPS(bp)			(bp->init_ops)
1642#define INIT_OPS_OFFSETS(bp)		(bp->init_ops_offsets)
1643#define INIT_DATA(bp)			(bp->init_data)
1644#define INIT_TSEM_INT_TABLE_DATA(bp)	(bp->tsem_int_table_data)
1645#define INIT_TSEM_PRAM_DATA(bp)		(bp->tsem_pram_data)
1646#define INIT_USEM_INT_TABLE_DATA(bp)	(bp->usem_int_table_data)
1647#define INIT_USEM_PRAM_DATA(bp)		(bp->usem_pram_data)
1648#define INIT_XSEM_INT_TABLE_DATA(bp)	(bp->xsem_int_table_data)
1649#define INIT_XSEM_PRAM_DATA(bp)		(bp->xsem_pram_data)
1650#define INIT_CSEM_INT_TABLE_DATA(bp)	(bp->csem_int_table_data)
1651#define INIT_CSEM_PRAM_DATA(bp)		(bp->csem_pram_data)
1652
1653#define PHY_FW_VER_LEN			20
1654	char			fw_ver[32];
1655	const struct firmware	*firmware;
1656
1657	struct bnx2x_vfdb	*vfdb;
1658#define IS_SRIOV(bp)		((bp)->vfdb)
1659
1660	/* DCB support on/off */
1661	u16 dcb_state;
1662#define BNX2X_DCB_STATE_OFF			0
1663#define BNX2X_DCB_STATE_ON			1
1664
1665	/* DCBX engine mode */
1666	int dcbx_enabled;
1667#define BNX2X_DCBX_ENABLED_OFF			0
1668#define BNX2X_DCBX_ENABLED_ON_NEG_OFF		1
1669#define BNX2X_DCBX_ENABLED_ON_NEG_ON		2
1670#define BNX2X_DCBX_ENABLED_INVALID		(-1)
1671
1672	bool dcbx_mode_uset;
1673
1674	struct bnx2x_config_dcbx_params		dcbx_config_params;
1675	struct bnx2x_dcbx_port_params		dcbx_port_params;
1676	int					dcb_version;
1677
1678	/* CAM credit pools */
1679
1680	/* used only in sriov */
1681	struct bnx2x_credit_pool_obj		vlans_pool;
1682
1683	struct bnx2x_credit_pool_obj		macs_pool;
1684
1685	/* RX_MODE object */
1686	struct bnx2x_rx_mode_obj		rx_mode_obj;
1687
1688	/* MCAST object */
1689	struct bnx2x_mcast_obj			mcast_obj;
1690
1691	/* RSS configuration object */
1692	struct bnx2x_rss_config_obj		rss_conf_obj;
1693
1694	/* Function State controlling object */
1695	struct bnx2x_func_sp_obj		func_obj;
1696
1697	unsigned long				sp_state;
1698
1699	/* operation indication for the sp_rtnl task */
1700	unsigned long				sp_rtnl_state;
1701
1702	/* DCBX Negotation results */
1703	struct dcbx_features			dcbx_local_feat;
1704	u32					dcbx_error;
1705
1706#ifdef BCM_DCBNL
1707	struct dcbx_features			dcbx_remote_feat;
1708	u32					dcbx_remote_flags;
1709#endif
1710	/* AFEX: store default vlan used */
1711	int					afex_def_vlan_tag;
1712	enum mf_cfg_afex_vlan_mode		afex_vlan_mode;
1713	u32					pending_max;
1714
1715	/* multiple tx classes of service */
1716	u8					max_cos;
1717
1718	/* priority to cos mapping */
1719	u8					prio_to_cos[8];
1720
1721	int fp_array_size;
1722	u32 dump_preset_idx;
1723};
1724
1725/* Tx queues may be less or equal to Rx queues */
1726extern int num_queues;
1727#define BNX2X_NUM_QUEUES(bp)	(bp->num_queues)
1728#define BNX2X_NUM_ETH_QUEUES(bp) ((bp)->num_ethernet_queues)
1729#define BNX2X_NUM_NON_CNIC_QUEUES(bp)	(BNX2X_NUM_QUEUES(bp) - \
1730					 (bp)->num_cnic_queues)
1731#define BNX2X_NUM_RX_QUEUES(bp)	BNX2X_NUM_QUEUES(bp)
1732
1733#define is_multi(bp)		(BNX2X_NUM_QUEUES(bp) > 1)
1734
1735#define BNX2X_MAX_QUEUES(bp)	BNX2X_MAX_RSS_COUNT(bp)
1736/* #define is_eth_multi(bp)	(BNX2X_NUM_ETH_QUEUES(bp) > 1) */
1737
1738#define RSS_IPV4_CAP_MASK						\
1739	TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_CAPABILITY
1740
1741#define RSS_IPV4_TCP_CAP_MASK						\
1742	TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_TCP_CAPABILITY
1743
1744#define RSS_IPV6_CAP_MASK						\
1745	TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_CAPABILITY
1746
1747#define RSS_IPV6_TCP_CAP_MASK						\
1748	TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_TCP_CAPABILITY
1749
1750/* func init flags */
1751#define FUNC_FLG_RSS		0x0001
1752#define FUNC_FLG_STATS		0x0002
1753/* removed  FUNC_FLG_UNMATCHED	0x0004 */
1754#define FUNC_FLG_TPA		0x0008
1755#define FUNC_FLG_SPQ		0x0010
1756#define FUNC_FLG_LEADING	0x0020	/* PF only */
1757
1758
1759struct bnx2x_func_init_params {
1760	/* dma */
1761	dma_addr_t	fw_stat_map;	/* valid iff FUNC_FLG_STATS */
1762	dma_addr_t	spq_map;	/* valid iff FUNC_FLG_SPQ */
1763
1764	u16		func_flgs;
1765	u16		func_id;	/* abs fid */
1766	u16		pf_id;
1767	u16		spq_prod;	/* valid iff FUNC_FLG_SPQ */
1768};
1769
1770#define for_each_cnic_queue(bp, var) \
1771	for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
1772	     (var)++) \
1773		if (skip_queue(bp, var))	\
1774			continue;		\
1775		else
1776
1777#define for_each_eth_queue(bp, var) \
1778	for ((var) = 0; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++)
1779
1780#define for_each_nondefault_eth_queue(bp, var) \
1781	for ((var) = 1; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++)
1782
1783#define for_each_queue(bp, var) \
1784	for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
1785		if (skip_queue(bp, var))	\
1786			continue;		\
1787		else
1788
1789/* Skip forwarding FP */
1790#define for_each_valid_rx_queue(bp, var)			\
1791	for ((var) = 0;						\
1792	     (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) :	\
1793		      BNX2X_NUM_ETH_QUEUES(bp));		\
1794	     (var)++)						\
1795		if (skip_rx_queue(bp, var))			\
1796			continue;				\
1797		else
1798
1799#define for_each_rx_queue_cnic(bp, var) \
1800	for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
1801	     (var)++) \
1802		if (skip_rx_queue(bp, var))	\
1803			continue;		\
1804		else
1805
1806#define for_each_rx_queue(bp, var) \
1807	for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
1808		if (skip_rx_queue(bp, var))	\
1809			continue;		\
1810		else
1811
1812/* Skip OOO FP */
1813#define for_each_valid_tx_queue(bp, var)			\
1814	for ((var) = 0;						\
1815	     (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) :	\
1816		      BNX2X_NUM_ETH_QUEUES(bp));		\
1817	     (var)++)						\
1818		if (skip_tx_queue(bp, var))			\
1819			continue;				\
1820		else
1821
1822#define for_each_tx_queue_cnic(bp, var) \
1823	for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
1824	     (var)++) \
1825		if (skip_tx_queue(bp, var))	\
1826			continue;		\
1827		else
1828
1829#define for_each_tx_queue(bp, var) \
1830	for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
1831		if (skip_tx_queue(bp, var))	\
1832			continue;		\
1833		else
1834
1835#define for_each_nondefault_queue(bp, var) \
1836	for ((var) = 1; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
1837		if (skip_queue(bp, var))	\
1838			continue;		\
1839		else
1840
1841#define for_each_cos_in_tx_queue(fp, var) \
1842	for ((var) = 0; (var) < (fp)->max_cos; (var)++)
1843
1844/* skip rx queue
1845 * if FCOE l2 support is disabled and this is the fcoe L2 queue
1846 */
1847#define skip_rx_queue(bp, idx)	(NO_FCOE(bp) && IS_FCOE_IDX(idx))
1848
1849/* skip tx queue
1850 * if FCOE l2 support is disabled and this is the fcoe L2 queue
1851 */
1852#define skip_tx_queue(bp, idx)	(NO_FCOE(bp) && IS_FCOE_IDX(idx))
1853
1854#define skip_queue(bp, idx)	(NO_FCOE(bp) && IS_FCOE_IDX(idx))
1855
1856
1857
1858
1859/**
1860 * bnx2x_set_mac_one - configure a single MAC address
1861 *
1862 * @bp:			driver handle
1863 * @mac:		MAC to configure
1864 * @obj:		MAC object handle
1865 * @set:		if 'true' add a new MAC, otherwise - delete
1866 * @mac_type:		the type of the MAC to configure (e.g. ETH, UC list)
1867 * @ramrod_flags:	RAMROD_XXX flags (e.g. RAMROD_CONT, RAMROD_COMP_WAIT)
1868 *
1869 * Configures one MAC according to provided parameters or continues the
1870 * execution of previously scheduled commands if RAMROD_CONT is set in
1871 * ramrod_flags.
1872 *
1873 * Returns zero if operation has successfully completed, a positive value if the
1874 * operation has been successfully scheduled and a negative - if a requested
1875 * operations has failed.
1876 */
1877int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
1878		      struct bnx2x_vlan_mac_obj *obj, bool set,
1879		      int mac_type, unsigned long *ramrod_flags);
1880/**
1881 * bnx2x_del_all_macs - delete all MACs configured for the specific MAC object
1882 *
1883 * @bp:			driver handle
1884 * @mac_obj:		MAC object handle
1885 * @mac_type:		type of the MACs to clear (BNX2X_XXX_MAC)
1886 * @wait_for_comp:	if 'true' block until completion
1887 *
1888 * Deletes all MACs of the specific type (e.g. ETH, UC list).
1889 *
1890 * Returns zero if operation has successfully completed, a positive value if the
1891 * operation has been successfully scheduled and a negative - if a requested
1892 * operations has failed.
1893 */
1894int bnx2x_del_all_macs(struct bnx2x *bp,
1895		       struct bnx2x_vlan_mac_obj *mac_obj,
1896		       int mac_type, bool wait_for_comp);
1897
1898/* Init Function API  */
1899void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p);
1900void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
1901		    u8 vf_valid, int fw_sb_id, int igu_sb_id);
1902u32 bnx2x_get_pretend_reg(struct bnx2x *bp);
1903int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port);
1904int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port);
1905int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode);
1906int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port);
1907void bnx2x_read_mf_cfg(struct bnx2x *bp);
1908
1909int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val);
1910
1911/* dmae */
1912void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32);
1913void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
1914		      u32 len32);
1915void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx);
1916u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type);
1917u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode);
1918u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
1919		      bool with_comp, u8 comp_type);
1920
1921void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
1922			       u8 src_type, u8 dst_type);
1923int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae);
1924void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae, int msglvl);
1925
1926/* FLR related routines */
1927u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp);
1928void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count);
1929int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt);
1930u8 bnx2x_is_pcie_pending(struct pci_dev *dev);
1931int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1932				    char *msg, u32 poll_cnt);
1933
1934void bnx2x_calc_fc_adv(struct bnx2x *bp);
1935int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
1936		  u32 data_hi, u32 data_lo, int cmd_type);
1937void bnx2x_update_coalesce(struct bnx2x *bp);
1938int bnx2x_get_cur_phy_idx(struct bnx2x *bp);
1939
1940bool bnx2x_port_after_undi(struct bnx2x *bp);
1941
1942static inline u32 reg_poll(struct bnx2x *bp, u32 reg, u32 expected, int ms,
1943			   int wait)
1944{
1945	u32 val;
1946
1947	do {
1948		val = REG_RD(bp, reg);
1949		if (val == expected)
1950			break;
1951		ms -= wait;
1952		msleep(wait);
1953
1954	} while (ms > 0);
1955
1956	return val;
1957}
1958
1959void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id,
1960			    bool is_pf);
1961
1962#define BNX2X_ILT_ZALLOC(x, y, size)				\
1963	x = dma_alloc_coherent(&bp->pdev->dev, size, y,		\
1964			       GFP_KERNEL | __GFP_ZERO)
1965
1966#define BNX2X_ILT_FREE(x, y, size) \
1967	do { \
1968		if (x) { \
1969			dma_free_coherent(&bp->pdev->dev, size, x, y); \
1970			x = NULL; \
1971			y = 0; \
1972		} \
1973	} while (0)
1974
1975#define ILOG2(x)	(ilog2((x)))
1976
1977#define ILT_NUM_PAGE_ENTRIES	(3072)
1978/* In 57710/11 we use whole table since we have 8 func
1979 * In 57712 we have only 4 func, but use same size per func, then only half of
1980 * the table in use
1981 */
1982#define ILT_PER_FUNC		(ILT_NUM_PAGE_ENTRIES/8)
1983
1984#define FUNC_ILT_BASE(func)	(func * ILT_PER_FUNC)
1985/*
1986 * the phys address is shifted right 12 bits and has an added
1987 * 1=valid bit added to the 53rd bit
1988 * then since this is a wide register(TM)
1989 * we split it into two 32 bit writes
1990 */
1991#define ONCHIP_ADDR1(x)		((u32)(((u64)x >> 12) & 0xFFFFFFFF))
1992#define ONCHIP_ADDR2(x)		((u32)((1 << 20) | ((u64)x >> 44)))
1993
1994/* load/unload mode */
1995#define LOAD_NORMAL			0
1996#define LOAD_OPEN			1
1997#define LOAD_DIAG			2
1998#define LOAD_LOOPBACK_EXT		3
1999#define UNLOAD_NORMAL			0
2000#define UNLOAD_CLOSE			1
2001#define UNLOAD_RECOVERY			2
2002
2003
2004/* DMAE command defines */
2005#define DMAE_TIMEOUT			-1
2006#define DMAE_PCI_ERROR			-2	/* E2 and onward */
2007#define DMAE_NOT_RDY			-3
2008#define DMAE_PCI_ERR_FLAG		0x80000000
2009
2010#define DMAE_SRC_PCI			0
2011#define DMAE_SRC_GRC			1
2012
2013#define DMAE_DST_NONE			0
2014#define DMAE_DST_PCI			1
2015#define DMAE_DST_GRC			2
2016
2017#define DMAE_COMP_PCI			0
2018#define DMAE_COMP_GRC			1
2019
2020/* E2 and onward - PCI error handling in the completion */
2021
2022#define DMAE_COMP_REGULAR		0
2023#define DMAE_COM_SET_ERR		1
2024
2025#define DMAE_CMD_SRC_PCI		(DMAE_SRC_PCI << \
2026						DMAE_COMMAND_SRC_SHIFT)
2027#define DMAE_CMD_SRC_GRC		(DMAE_SRC_GRC << \
2028						DMAE_COMMAND_SRC_SHIFT)
2029
2030#define DMAE_CMD_DST_PCI		(DMAE_DST_PCI << \
2031						DMAE_COMMAND_DST_SHIFT)
2032#define DMAE_CMD_DST_GRC		(DMAE_DST_GRC << \
2033						DMAE_COMMAND_DST_SHIFT)
2034
2035#define DMAE_CMD_C_DST_PCI		(DMAE_COMP_PCI << \
2036						DMAE_COMMAND_C_DST_SHIFT)
2037#define DMAE_CMD_C_DST_GRC		(DMAE_COMP_GRC << \
2038						DMAE_COMMAND_C_DST_SHIFT)
2039
2040#define DMAE_CMD_C_ENABLE		DMAE_COMMAND_C_TYPE_ENABLE
2041
2042#define DMAE_CMD_ENDIANITY_NO_SWAP	(0 << DMAE_COMMAND_ENDIANITY_SHIFT)
2043#define DMAE_CMD_ENDIANITY_B_SWAP	(1 << DMAE_COMMAND_ENDIANITY_SHIFT)
2044#define DMAE_CMD_ENDIANITY_DW_SWAP	(2 << DMAE_COMMAND_ENDIANITY_SHIFT)
2045#define DMAE_CMD_ENDIANITY_B_DW_SWAP	(3 << DMAE_COMMAND_ENDIANITY_SHIFT)
2046
2047#define DMAE_CMD_PORT_0			0
2048#define DMAE_CMD_PORT_1			DMAE_COMMAND_PORT
2049
2050#define DMAE_CMD_SRC_RESET		DMAE_COMMAND_SRC_RESET
2051#define DMAE_CMD_DST_RESET		DMAE_COMMAND_DST_RESET
2052#define DMAE_CMD_E1HVN_SHIFT		DMAE_COMMAND_E1HVN_SHIFT
2053
2054#define DMAE_SRC_PF			0
2055#define DMAE_SRC_VF			1
2056
2057#define DMAE_DST_PF			0
2058#define DMAE_DST_VF			1
2059
2060#define DMAE_C_SRC			0
2061#define DMAE_C_DST			1
2062
2063#define DMAE_LEN32_RD_MAX		0x80
2064#define DMAE_LEN32_WR_MAX(bp)		(CHIP_IS_E1(bp) ? 0x400 : 0x2000)
2065
2066#define DMAE_COMP_VAL			0x60d0d0ae /* E2 and on - upper bit
2067							indicates eror */
2068
2069#define MAX_DMAE_C_PER_PORT		8
2070#define INIT_DMAE_C(bp)			(BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \
2071					 BP_VN(bp))
2072#define PMF_DMAE_C(bp)			(BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \
2073					 E1HVN_MAX)
2074
2075/* PCIE link and speed */
2076#define PCICFG_LINK_WIDTH		0x1f00000
2077#define PCICFG_LINK_WIDTH_SHIFT		20
2078#define PCICFG_LINK_SPEED		0xf0000
2079#define PCICFG_LINK_SPEED_SHIFT		16
2080
2081#define BNX2X_NUM_TESTS_SF		7
2082#define BNX2X_NUM_TESTS_MF		3
2083#define BNX2X_NUM_TESTS(bp)		(IS_MF(bp) ? BNX2X_NUM_TESTS_MF : \
2084						     BNX2X_NUM_TESTS_SF)
2085
2086#define BNX2X_PHY_LOOPBACK		0
2087#define BNX2X_MAC_LOOPBACK		1
2088#define BNX2X_EXT_LOOPBACK		2
2089#define BNX2X_PHY_LOOPBACK_FAILED	1
2090#define BNX2X_MAC_LOOPBACK_FAILED	2
2091#define BNX2X_EXT_LOOPBACK_FAILED	3
2092#define BNX2X_LOOPBACK_FAILED		(BNX2X_MAC_LOOPBACK_FAILED | \
2093					 BNX2X_PHY_LOOPBACK_FAILED)
2094
2095#define STROM_ASSERT_ARRAY_SIZE		50
2096
2097/* must be used on a CID before placing it on a HW ring */
2098#define HW_CID(bp, x)			((BP_PORT(bp) << 23) | \
2099					 (BP_VN(bp) << BNX2X_SWCID_SHIFT) | \
2100					 (x))
2101
2102#define SP_DESC_CNT		(BCM_PAGE_SIZE / sizeof(struct eth_spe))
2103#define MAX_SP_DESC_CNT			(SP_DESC_CNT - 1)
2104
2105
2106#define BNX2X_BTR			4
2107#define MAX_SPQ_PENDING			8
2108
2109/* CMNG constants, as derived from system spec calculations */
2110/* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */
2111#define DEF_MIN_RATE					100
2112/* resolution of the rate shaping timer - 400 usec */
2113#define RS_PERIODIC_TIMEOUT_USEC			400
2114/* number of bytes in single QM arbitration cycle -
2115 * coefficient for calculating the fairness timer */
2116#define QM_ARB_BYTES					160000
2117/* resolution of Min algorithm 1:100 */
2118#define MIN_RES						100
2119/* how many bytes above threshold for the minimal credit of Min algorithm*/
2120#define MIN_ABOVE_THRESH				32768
2121/* Fairness algorithm integration time coefficient -
2122 * for calculating the actual Tfair */
2123#define T_FAIR_COEF	((MIN_ABOVE_THRESH +  QM_ARB_BYTES) * 8 * MIN_RES)
2124/* Memory of fairness algorithm . 2 cycles */
2125#define FAIR_MEM					2
2126
2127#define ATTN_NIG_FOR_FUNC		(1L << 8)
2128#define ATTN_SW_TIMER_4_FUNC		(1L << 9)
2129#define GPIO_2_FUNC			(1L << 10)
2130#define GPIO_3_FUNC			(1L << 11)
2131#define GPIO_4_FUNC			(1L << 12)
2132#define ATTN_GENERAL_ATTN_1		(1L << 13)
2133#define ATTN_GENERAL_ATTN_2		(1L << 14)
2134#define ATTN_GENERAL_ATTN_3		(1L << 15)
2135#define ATTN_GENERAL_ATTN_4		(1L << 13)
2136#define ATTN_GENERAL_ATTN_5		(1L << 14)
2137#define ATTN_GENERAL_ATTN_6		(1L << 15)
2138
2139#define ATTN_HARD_WIRED_MASK		0xff00
2140#define ATTENTION_ID			4
2141
2142#define IS_MF_STORAGE_ONLY(bp) (IS_MF_STORAGE_SD(bp) || \
2143				 IS_MF_FCOE_AFEX(bp))
2144
2145/* stuff added to make the code fit 80Col */
2146
2147#define BNX2X_PMF_LINK_ASSERT \
2148	GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + BP_FUNC(bp))
2149
2150#define BNX2X_MC_ASSERT_BITS \
2151	(GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2152	 GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2153	 GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2154	 GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT))
2155
2156#define BNX2X_MCP_ASSERT \
2157	GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT)
2158
2159#define BNX2X_GRC_TIMEOUT	GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC)
2160#define BNX2X_GRC_RSV		(GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \
2161				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \
2162				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \
2163				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \
2164				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \
2165				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC))
2166
2167#define HW_INTERRUT_ASSERT_SET_0 \
2168				(AEU_INPUTS_ATTN_BITS_TSDM_HW_INTERRUPT | \
2169				 AEU_INPUTS_ATTN_BITS_TCM_HW_INTERRUPT | \
2170				 AEU_INPUTS_ATTN_BITS_TSEMI_HW_INTERRUPT | \
2171				 AEU_INPUTS_ATTN_BITS_BRB_HW_INTERRUPT | \
2172				 AEU_INPUTS_ATTN_BITS_PBCLIENT_HW_INTERRUPT)
2173#define HW_PRTY_ASSERT_SET_0	(AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR | \
2174				 AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR | \
2175				 AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR | \
2176				 AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR |\
2177				 AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR |\
2178				 AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR |\
2179				 AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR)
2180#define HW_INTERRUT_ASSERT_SET_1 \
2181				(AEU_INPUTS_ATTN_BITS_QM_HW_INTERRUPT | \
2182				 AEU_INPUTS_ATTN_BITS_TIMERS_HW_INTERRUPT | \
2183				 AEU_INPUTS_ATTN_BITS_XSDM_HW_INTERRUPT | \
2184				 AEU_INPUTS_ATTN_BITS_XCM_HW_INTERRUPT | \
2185				 AEU_INPUTS_ATTN_BITS_XSEMI_HW_INTERRUPT | \
2186				 AEU_INPUTS_ATTN_BITS_USDM_HW_INTERRUPT | \
2187				 AEU_INPUTS_ATTN_BITS_UCM_HW_INTERRUPT | \
2188				 AEU_INPUTS_ATTN_BITS_USEMI_HW_INTERRUPT | \
2189				 AEU_INPUTS_ATTN_BITS_UPB_HW_INTERRUPT | \
2190				 AEU_INPUTS_ATTN_BITS_CSDM_HW_INTERRUPT | \
2191				 AEU_INPUTS_ATTN_BITS_CCM_HW_INTERRUPT)
2192#define HW_PRTY_ASSERT_SET_1	(AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR |\
2193				 AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR | \
2194				 AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR |\
2195				 AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR | \
2196				 AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR |\
2197				 AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR | \
2198				 AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR |\
2199				 AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR |\
2200			     AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR |\
2201				 AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR | \
2202				 AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR | \
2203				 AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR |\
2204				 AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR | \
2205				 AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR | \
2206				 AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR |\
2207				 AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR)
2208#define HW_INTERRUT_ASSERT_SET_2 \
2209				(AEU_INPUTS_ATTN_BITS_CSEMI_HW_INTERRUPT | \
2210				 AEU_INPUTS_ATTN_BITS_CDU_HW_INTERRUPT | \
2211				 AEU_INPUTS_ATTN_BITS_DMAE_HW_INTERRUPT | \
2212			AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT |\
2213				 AEU_INPUTS_ATTN_BITS_MISC_HW_INTERRUPT)
2214#define HW_PRTY_ASSERT_SET_2	(AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR | \
2215				 AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR | \
2216			AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR |\
2217				 AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR | \
2218				 AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR | \
2219				 AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR |\
2220				 AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR | \
2221				 AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR)
2222
2223#define HW_PRTY_ASSERT_SET_3 (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
2224		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
2225		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY | \
2226		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
2227
2228#define HW_PRTY_ASSERT_SET_4 (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | \
2229			      AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)
2230
2231#define MULTI_MASK			0x7f
2232
2233#define DEF_USB_FUNC_OFF	offsetof(struct cstorm_def_status_block_u, func)
2234#define DEF_CSB_FUNC_OFF	offsetof(struct cstorm_def_status_block_c, func)
2235#define DEF_XSB_FUNC_OFF	offsetof(struct xstorm_def_status_block, func)
2236#define DEF_TSB_FUNC_OFF	offsetof(struct tstorm_def_status_block, func)
2237
2238#define DEF_USB_IGU_INDEX_OFF \
2239			offsetof(struct cstorm_def_status_block_u, igu_index)
2240#define DEF_CSB_IGU_INDEX_OFF \
2241			offsetof(struct cstorm_def_status_block_c, igu_index)
2242#define DEF_XSB_IGU_INDEX_OFF \
2243			offsetof(struct xstorm_def_status_block, igu_index)
2244#define DEF_TSB_IGU_INDEX_OFF \
2245			offsetof(struct tstorm_def_status_block, igu_index)
2246
2247#define DEF_USB_SEGMENT_OFF \
2248			offsetof(struct cstorm_def_status_block_u, segment)
2249#define DEF_CSB_SEGMENT_OFF \
2250			offsetof(struct cstorm_def_status_block_c, segment)
2251#define DEF_XSB_SEGMENT_OFF \
2252			offsetof(struct xstorm_def_status_block, segment)
2253#define DEF_TSB_SEGMENT_OFF \
2254			offsetof(struct tstorm_def_status_block, segment)
2255
2256#define BNX2X_SP_DSB_INDEX \
2257		(&bp->def_status_blk->sp_sb.\
2258					index_values[HC_SP_INDEX_ETH_DEF_CONS])
2259
2260#define CAM_IS_INVALID(x) \
2261	(GET_FLAG(x.flags, \
2262	MAC_CONFIGURATION_ENTRY_ACTION_TYPE) == \
2263	(T_ETH_MAC_COMMAND_INVALIDATE))
2264
2265/* Number of u32 elements in MC hash array */
2266#define MC_HASH_SIZE			8
2267#define MC_HASH_OFFSET(bp, i)		(BAR_TSTRORM_INTMEM + \
2268	TSTORM_APPROXIMATE_MATCH_MULTICAST_FILTERING_OFFSET(BP_FUNC(bp)) + i*4)
2269
2270#ifndef PXP2_REG_PXP2_INT_STS
2271#define PXP2_REG_PXP2_INT_STS		PXP2_REG_PXP2_INT_STS_0
2272#endif
2273
2274#ifndef ETH_MAX_RX_CLIENTS_E2
2275#define ETH_MAX_RX_CLIENTS_E2		ETH_MAX_RX_CLIENTS_E1H
2276#endif
2277
2278#define BNX2X_VPD_LEN			128
2279#define VENDOR_ID_LEN			4
2280
2281#define VF_ACQUIRE_THRESH		3
2282#define VF_ACQUIRE_MAC_FILTERS		1
2283#define VF_ACQUIRE_MC_FILTERS		10
2284
2285#define GOOD_ME_REG(me_reg) (((me_reg) & ME_REG_VF_VALID) && \
2286			    (!((me_reg) & ME_REG_VF_ERR)))
2287int bnx2x_nic_load_analyze_req(struct bnx2x *bp, u32 load_code);
2288/* Congestion management fairness mode */
2289#define CMNG_FNS_NONE			0
2290#define CMNG_FNS_MINMAX			1
2291
2292#define HC_SEG_ACCESS_DEF		0   /*Driver decision 0-3*/
2293#define HC_SEG_ACCESS_ATTN		4
2294#define HC_SEG_ACCESS_NORM		0   /*Driver decision 0-1*/
2295
2296static const u32 dmae_reg_go_c[] = {
2297	DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
2298	DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
2299	DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
2300	DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
2301};
2302
2303void bnx2x_set_ethtool_ops(struct bnx2x *bp, struct net_device *netdev);
2304void bnx2x_notify_link_changed(struct bnx2x *bp);
2305
2306#define BNX2X_MF_SD_PROTOCOL(bp) \
2307	((bp)->mf_config[BP_VN(bp)] & FUNC_MF_CFG_PROTOCOL_MASK)
2308
2309#define BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) \
2310	(BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_ISCSI)
2311
2312#define BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) \
2313	(BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_FCOE)
2314
2315#define IS_MF_ISCSI_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp))
2316#define IS_MF_FCOE_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))
2317
2318#define BNX2X_MF_EXT_PROTOCOL_FCOE(bp)  ((bp)->mf_ext_config & \
2319					 MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)
2320
2321#define IS_MF_FCOE_AFEX(bp) (IS_MF_AFEX(bp) && BNX2X_MF_EXT_PROTOCOL_FCOE(bp))
2322#define IS_MF_STORAGE_SD(bp) (IS_MF_SD(bp) && \
2323				(BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) || \
2324				 BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
2325
2326#define SET_FLAG(value, mask, flag) \
2327	do {\
2328		(value) &= ~(mask);\
2329		(value) |= ((flag) << (mask##_SHIFT));\
2330	} while (0)
2331
2332#define GET_FLAG(value, mask) \
2333	(((value) & (mask)) >> (mask##_SHIFT))
2334
2335#define GET_FIELD(value, fname) \
2336	(((value) & (fname##_MASK)) >> (fname##_SHIFT))
2337
2338enum {
2339	SWITCH_UPDATE,
2340	AFEX_UPDATE,
2341};
2342
2343#define NUM_MACS	8
2344
2345enum bnx2x_pci_bus_speed {
2346	BNX2X_PCI_LINK_SPEED_2500 = 2500,
2347	BNX2X_PCI_LINK_SPEED_5000 = 5000,
2348	BNX2X_PCI_LINK_SPEED_8000 = 8000
2349};
2350#endif /* bnx2x.h */
2351