bnx2x.h revision f78afb356303e5f78750321a63809ef5c2d13c0d
1/* bnx2x.h: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 */
13
14#ifndef BNX2X_H
15#define BNX2X_H
16
17#include <linux/pci.h>
18#include <linux/netdevice.h>
19#include <linux/dma-mapping.h>
20#include <linux/types.h>
21#include <linux/pci_regs.h>
22
23/* compilation time flags */
24
25/* define this to make the driver freeze on error to allow getting debug info
26 * (you will need to reboot afterwards) */
27/* #define BNX2X_STOP_ON_ERROR */
28
29#define DRV_MODULE_VERSION      "1.78.17-0"
30#define DRV_MODULE_RELDATE      "2013/04/11"
31#define BNX2X_BC_VER            0x040200
32
33#if defined(CONFIG_DCB)
34#define BCM_DCBNL
35#endif
36
37#include "bnx2x_hsi.h"
38
39#include "../cnic_if.h"
40
41#define BNX2X_MIN_MSIX_VEC_CNT(bp)		((bp)->min_msix_vec_cnt)
42
43#include <linux/mdio.h>
44
45#include "bnx2x_reg.h"
46#include "bnx2x_fw_defs.h"
47#include "bnx2x_mfw_req.h"
48#include "bnx2x_link.h"
49#include "bnx2x_sp.h"
50#include "bnx2x_dcb.h"
51#include "bnx2x_stats.h"
52#include "bnx2x_vfpf.h"
53
54enum bnx2x_int_mode {
55	BNX2X_INT_MODE_MSIX,
56	BNX2X_INT_MODE_INTX,
57	BNX2X_INT_MODE_MSI
58};
59
60/* error/debug prints */
61
62#define DRV_MODULE_NAME		"bnx2x"
63
64/* for messages that are currently off */
65#define BNX2X_MSG_OFF			0x0
66#define BNX2X_MSG_MCP			0x0010000 /* was: NETIF_MSG_HW */
67#define BNX2X_MSG_STATS			0x0020000 /* was: NETIF_MSG_TIMER */
68#define BNX2X_MSG_NVM			0x0040000 /* was: NETIF_MSG_HW */
69#define BNX2X_MSG_DMAE			0x0080000 /* was: NETIF_MSG_HW */
70#define BNX2X_MSG_SP			0x0100000 /* was: NETIF_MSG_INTR */
71#define BNX2X_MSG_FP			0x0200000 /* was: NETIF_MSG_INTR */
72#define BNX2X_MSG_IOV			0x0800000
73#define BNX2X_MSG_IDLE			0x2000000 /* used for idle check*/
74#define BNX2X_MSG_ETHTOOL		0x4000000
75#define BNX2X_MSG_DCB			0x8000000
76
77/* regular debug print */
78#define DP(__mask, fmt, ...)					\
79do {								\
80	if (unlikely(bp->msg_enable & (__mask)))		\
81		pr_notice("[%s:%d(%s)]" fmt,			\
82			  __func__, __LINE__,			\
83			  bp->dev ? (bp->dev->name) : "?",	\
84			  ##__VA_ARGS__);			\
85} while (0)
86
87#define DP_CONT(__mask, fmt, ...)				\
88do {								\
89	if (unlikely(bp->msg_enable & (__mask)))		\
90		pr_cont(fmt, ##__VA_ARGS__);			\
91} while (0)
92
93/* errors debug print */
94#define BNX2X_DBG_ERR(fmt, ...)					\
95do {								\
96	if (unlikely(netif_msg_probe(bp)))			\
97		pr_err("[%s:%d(%s)]" fmt,			\
98		       __func__, __LINE__,			\
99		       bp->dev ? (bp->dev->name) : "?",		\
100		       ##__VA_ARGS__);				\
101} while (0)
102
103/* for errors (never masked) */
104#define BNX2X_ERR(fmt, ...)					\
105do {								\
106	pr_err("[%s:%d(%s)]" fmt,				\
107	       __func__, __LINE__,				\
108	       bp->dev ? (bp->dev->name) : "?",			\
109	       ##__VA_ARGS__);					\
110} while (0)
111
112#define BNX2X_ERROR(fmt, ...)					\
113	pr_err("[%s:%d]" fmt, __func__, __LINE__, ##__VA_ARGS__)
114
115/* before we have a dev->name use dev_info() */
116#define BNX2X_DEV_INFO(fmt, ...)				 \
117do {								 \
118	if (unlikely(netif_msg_probe(bp)))			 \
119		dev_info(&bp->pdev->dev, fmt, ##__VA_ARGS__);	 \
120} while (0)
121
122/* Error handling */
123void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int);
124#ifdef BNX2X_STOP_ON_ERROR
125#define bnx2x_panic()				\
126do {						\
127	bp->panic = 1;				\
128	BNX2X_ERR("driver assert\n");		\
129	bnx2x_panic_dump(bp, true);		\
130} while (0)
131#else
132#define bnx2x_panic()				\
133do {						\
134	bp->panic = 1;				\
135	BNX2X_ERR("driver assert\n");		\
136	bnx2x_panic_dump(bp, false);		\
137} while (0)
138#endif
139
140#define bnx2x_mc_addr(ha)      ((ha)->addr)
141#define bnx2x_uc_addr(ha)      ((ha)->addr)
142
143#define U64_LO(x)			((u32)(((u64)(x)) & 0xffffffff))
144#define U64_HI(x)			((u32)(((u64)(x)) >> 32))
145#define HILO_U64(hi, lo)		((((u64)(hi)) << 32) + (lo))
146
147#define REG_ADDR(bp, offset)		((bp->regview) + (offset))
148
149#define REG_RD(bp, offset)		readl(REG_ADDR(bp, offset))
150#define REG_RD8(bp, offset)		readb(REG_ADDR(bp, offset))
151#define REG_RD16(bp, offset)		readw(REG_ADDR(bp, offset))
152
153#define REG_WR(bp, offset, val)		writel((u32)val, REG_ADDR(bp, offset))
154#define REG_WR8(bp, offset, val)	writeb((u8)val, REG_ADDR(bp, offset))
155#define REG_WR16(bp, offset, val)	writew((u16)val, REG_ADDR(bp, offset))
156
157#define REG_RD_IND(bp, offset)		bnx2x_reg_rd_ind(bp, offset)
158#define REG_WR_IND(bp, offset, val)	bnx2x_reg_wr_ind(bp, offset, val)
159
160#define REG_RD_DMAE(bp, offset, valp, len32) \
161	do { \
162		bnx2x_read_dmae(bp, offset, len32);\
163		memcpy(valp, bnx2x_sp(bp, wb_data[0]), (len32) * 4); \
164	} while (0)
165
166#define REG_WR_DMAE(bp, offset, valp, len32) \
167	do { \
168		memcpy(bnx2x_sp(bp, wb_data[0]), valp, (len32) * 4); \
169		bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), \
170				 offset, len32); \
171	} while (0)
172
173#define REG_WR_DMAE_LEN(bp, offset, valp, len32) \
174	REG_WR_DMAE(bp, offset, valp, len32)
175
176#define VIRT_WR_DMAE_LEN(bp, data, addr, len32, le32_swap) \
177	do { \
178		memcpy(GUNZIP_BUF(bp), data, (len32) * 4); \
179		bnx2x_write_big_buf_wb(bp, addr, len32); \
180	} while (0)
181
182#define SHMEM_ADDR(bp, field)		(bp->common.shmem_base + \
183					 offsetof(struct shmem_region, field))
184#define SHMEM_RD(bp, field)		REG_RD(bp, SHMEM_ADDR(bp, field))
185#define SHMEM_WR(bp, field, val)	REG_WR(bp, SHMEM_ADDR(bp, field), val)
186
187#define SHMEM2_ADDR(bp, field)		(bp->common.shmem2_base + \
188					 offsetof(struct shmem2_region, field))
189#define SHMEM2_RD(bp, field)		REG_RD(bp, SHMEM2_ADDR(bp, field))
190#define SHMEM2_WR(bp, field, val)	REG_WR(bp, SHMEM2_ADDR(bp, field), val)
191#define MF_CFG_ADDR(bp, field)		(bp->common.mf_cfg_base + \
192					 offsetof(struct mf_cfg, field))
193#define MF2_CFG_ADDR(bp, field)		(bp->common.mf2_cfg_base + \
194					 offsetof(struct mf2_cfg, field))
195
196#define MF_CFG_RD(bp, field)		REG_RD(bp, MF_CFG_ADDR(bp, field))
197#define MF_CFG_WR(bp, field, val)	REG_WR(bp,\
198					       MF_CFG_ADDR(bp, field), (val))
199#define MF2_CFG_RD(bp, field)		REG_RD(bp, MF2_CFG_ADDR(bp, field))
200
201#define SHMEM2_HAS(bp, field)		((bp)->common.shmem2_base &&	\
202					 (SHMEM2_RD((bp), size) >	\
203					 offsetof(struct shmem2_region, field)))
204
205#define EMAC_RD(bp, reg)		REG_RD(bp, emac_base + reg)
206#define EMAC_WR(bp, reg, val)		REG_WR(bp, emac_base + reg, val)
207
208/* SP SB indices */
209
210/* General SP events - stats query, cfc delete, etc  */
211#define HC_SP_INDEX_ETH_DEF_CONS		3
212
213/* EQ completions */
214#define HC_SP_INDEX_EQ_CONS			7
215
216/* FCoE L2 connection completions */
217#define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS		6
218#define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS		4
219/* iSCSI L2 */
220#define HC_SP_INDEX_ETH_ISCSI_CQ_CONS		5
221#define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS	1
222
223/* Special clients parameters */
224
225/* SB indices */
226/* FCoE L2 */
227#define BNX2X_FCOE_L2_RX_INDEX \
228	(&bp->def_status_blk->sp_sb.\
229	index_values[HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS])
230
231#define BNX2X_FCOE_L2_TX_INDEX \
232	(&bp->def_status_blk->sp_sb.\
233	index_values[HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS])
234
235/**
236 *  CIDs and CLIDs:
237 *  CLIDs below is a CLID for func 0, then the CLID for other
238 *  functions will be calculated by the formula:
239 *
240 *  FUNC_N_CLID_X = N * NUM_SPECIAL_CLIENTS + FUNC_0_CLID_X
241 *
242 */
243enum {
244	BNX2X_ISCSI_ETH_CL_ID_IDX,
245	BNX2X_FCOE_ETH_CL_ID_IDX,
246	BNX2X_MAX_CNIC_ETH_CL_ID_IDX,
247};
248
249/* use a value high enough to be above all the PFs, which has least significant
250 * nibble as 8, so when cnic needs to come up with a CID for UIO to use to
251 * calculate doorbell address according to old doorbell configuration scheme
252 * (db_msg_sz 1 << 7 * cid + 0x40 DPM offset) it can come up with a valid number
253 * We must avoid coming up with cid 8 for iscsi since according to this method
254 * the designated UIO cid will come out 0 and it has a special handling for that
255 * case which doesn't suit us. Therefore will will cieling to closes cid which
256 * has least signigifcant nibble 8 and if it is 8 we will move forward to 0x18.
257 */
258
259#define BNX2X_1st_NON_L2_ETH_CID(bp)	(BNX2X_NUM_NON_CNIC_QUEUES(bp) * \
260					 (bp)->max_cos)
261/* amount of cids traversed by UIO's DPM addition to doorbell */
262#define UIO_DPM				8
263/* roundup to DPM offset */
264#define UIO_ROUNDUP(bp)			(roundup(BNX2X_1st_NON_L2_ETH_CID(bp), \
265					 UIO_DPM))
266/* offset to nearest value which has lsb nibble matching DPM */
267#define UIO_CID_OFFSET(bp)		((UIO_ROUNDUP(bp) + UIO_DPM) % \
268					 (UIO_DPM * 2))
269/* add offset to rounded-up cid to get a value which could be used with UIO */
270#define UIO_DPM_ALIGN(bp)		(UIO_ROUNDUP(bp) + UIO_CID_OFFSET(bp))
271/* but wait - avoid UIO special case for cid 0 */
272#define UIO_DPM_CID0_OFFSET(bp)		((UIO_DPM * 2) * \
273					 (UIO_DPM_ALIGN(bp) == UIO_DPM))
274/* Properly DPM aligned CID dajusted to cid 0 secal case */
275#define BNX2X_CNIC_START_ETH_CID(bp)	(UIO_DPM_ALIGN(bp) + \
276					 (UIO_DPM_CID0_OFFSET(bp)))
277/* how many cids were wasted  - need this value for cid allocation */
278#define UIO_CID_PAD(bp)			(BNX2X_CNIC_START_ETH_CID(bp) - \
279					 BNX2X_1st_NON_L2_ETH_CID(bp))
280	/* iSCSI L2 */
281#define	BNX2X_ISCSI_ETH_CID(bp)		(BNX2X_CNIC_START_ETH_CID(bp))
282	/* FCoE L2 */
283#define	BNX2X_FCOE_ETH_CID(bp)		(BNX2X_CNIC_START_ETH_CID(bp) + 1)
284
285#define CNIC_SUPPORT(bp)		((bp)->cnic_support)
286#define CNIC_ENABLED(bp)		((bp)->cnic_enabled)
287#define CNIC_LOADED(bp)			((bp)->cnic_loaded)
288#define FCOE_INIT(bp)			((bp)->fcoe_init)
289
290#define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \
291	AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
292
293#define SM_RX_ID			0
294#define SM_TX_ID			1
295
296/* defines for multiple tx priority indices */
297#define FIRST_TX_ONLY_COS_INDEX		1
298#define FIRST_TX_COS_INDEX		0
299
300/* rules for calculating the cids of tx-only connections */
301#define CID_TO_FP(cid, bp)		((cid) % BNX2X_NUM_NON_CNIC_QUEUES(bp))
302#define CID_COS_TO_TX_ONLY_CID(cid, cos, bp) \
303				(cid + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp))
304
305/* fp index inside class of service range */
306#define FP_COS_TO_TXQ(fp, cos, bp) \
307			((fp)->index + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp))
308
309/* Indexes for transmission queues array:
310 * txdata for RSS i CoS j is at location i + (j * num of RSS)
311 * txdata for FCoE (if exist) is at location max cos * num of RSS
312 * txdata for FWD (if exist) is one location after FCoE
313 * txdata for OOO (if exist) is one location after FWD
314 */
315enum {
316	FCOE_TXQ_IDX_OFFSET,
317	FWD_TXQ_IDX_OFFSET,
318	OOO_TXQ_IDX_OFFSET,
319};
320#define MAX_ETH_TXQ_IDX(bp)	(BNX2X_NUM_NON_CNIC_QUEUES(bp) * (bp)->max_cos)
321#define FCOE_TXQ_IDX(bp)	(MAX_ETH_TXQ_IDX(bp) + FCOE_TXQ_IDX_OFFSET)
322
323/* fast path */
324/*
325 * This driver uses new build_skb() API :
326 * RX ring buffer contains pointer to kmalloc() data only,
327 * skb are built only after Hardware filled the frame.
328 */
329struct sw_rx_bd {
330	u8		*data;
331	DEFINE_DMA_UNMAP_ADDR(mapping);
332};
333
334struct sw_tx_bd {
335	struct sk_buff	*skb;
336	u16		first_bd;
337	u8		flags;
338/* Set on the first BD descriptor when there is a split BD */
339#define BNX2X_TSO_SPLIT_BD		(1<<0)
340};
341
342struct sw_rx_page {
343	struct page	*page;
344	DEFINE_DMA_UNMAP_ADDR(mapping);
345};
346
347union db_prod {
348	struct doorbell_set_prod data;
349	u32		raw;
350};
351
352/* dropless fc FW/HW related params */
353#define BRB_SIZE(bp)		(CHIP_IS_E3(bp) ? 1024 : 512)
354#define MAX_AGG_QS(bp)		(CHIP_IS_E1(bp) ? \
355					ETH_MAX_AGGREGATION_QUEUES_E1 :\
356					ETH_MAX_AGGREGATION_QUEUES_E1H_E2)
357#define FW_DROP_LEVEL(bp)	(3 + MAX_SPQ_PENDING + MAX_AGG_QS(bp))
358#define FW_PREFETCH_CNT		16
359#define DROPLESS_FC_HEADROOM	100
360
361/* MC hsi */
362#define BCM_PAGE_SHIFT		12
363#define BCM_PAGE_SIZE		(1 << BCM_PAGE_SHIFT)
364#define BCM_PAGE_MASK		(~(BCM_PAGE_SIZE - 1))
365#define BCM_PAGE_ALIGN(addr)	(((addr) + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK)
366
367#define PAGES_PER_SGE_SHIFT	0
368#define PAGES_PER_SGE		(1 << PAGES_PER_SGE_SHIFT)
369#define SGE_PAGE_SIZE		PAGE_SIZE
370#define SGE_PAGE_SHIFT		PAGE_SHIFT
371#define SGE_PAGE_ALIGN(addr)	PAGE_ALIGN((typeof(PAGE_SIZE))(addr))
372#define SGE_PAGES		(SGE_PAGE_SIZE * PAGES_PER_SGE)
373#define TPA_AGG_SIZE		min_t(u32, (min_t(u32, 8, MAX_SKB_FRAGS) * \
374					    SGE_PAGES), 0xffff)
375
376/* SGE ring related macros */
377#define NUM_RX_SGE_PAGES	2
378#define RX_SGE_CNT		(BCM_PAGE_SIZE / sizeof(struct eth_rx_sge))
379#define NEXT_PAGE_SGE_DESC_CNT	2
380#define MAX_RX_SGE_CNT		(RX_SGE_CNT - NEXT_PAGE_SGE_DESC_CNT)
381/* RX_SGE_CNT is promised to be a power of 2 */
382#define RX_SGE_MASK		(RX_SGE_CNT - 1)
383#define NUM_RX_SGE		(RX_SGE_CNT * NUM_RX_SGE_PAGES)
384#define MAX_RX_SGE		(NUM_RX_SGE - 1)
385#define NEXT_SGE_IDX(x)		((((x) & RX_SGE_MASK) == \
386				  (MAX_RX_SGE_CNT - 1)) ? \
387					(x) + 1 + NEXT_PAGE_SGE_DESC_CNT : \
388					(x) + 1)
389#define RX_SGE(x)		((x) & MAX_RX_SGE)
390
391/*
392 * Number of required  SGEs is the sum of two:
393 * 1. Number of possible opened aggregations (next packet for
394 *    these aggregations will probably consume SGE immediately)
395 * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only
396 *    after placement on BD for new TPA aggregation)
397 *
398 * Takes into account NEXT_PAGE_SGE_DESC_CNT "next" elements on each page
399 */
400#define NUM_SGE_REQ		(MAX_AGG_QS(bp) + \
401					(BRB_SIZE(bp) - MAX_AGG_QS(bp)) / 2)
402#define NUM_SGE_PG_REQ		((NUM_SGE_REQ + MAX_RX_SGE_CNT - 1) / \
403						MAX_RX_SGE_CNT)
404#define SGE_TH_LO(bp)		(NUM_SGE_REQ + \
405				 NUM_SGE_PG_REQ * NEXT_PAGE_SGE_DESC_CNT)
406#define SGE_TH_HI(bp)		(SGE_TH_LO(bp) + DROPLESS_FC_HEADROOM)
407
408/* Manipulate a bit vector defined as an array of u64 */
409
410/* Number of bits in one sge_mask array element */
411#define BIT_VEC64_ELEM_SZ		64
412#define BIT_VEC64_ELEM_SHIFT		6
413#define BIT_VEC64_ELEM_MASK		((u64)BIT_VEC64_ELEM_SZ - 1)
414
415#define __BIT_VEC64_SET_BIT(el, bit) \
416	do { \
417		el = ((el) | ((u64)0x1 << (bit))); \
418	} while (0)
419
420#define __BIT_VEC64_CLEAR_BIT(el, bit) \
421	do { \
422		el = ((el) & (~((u64)0x1 << (bit)))); \
423	} while (0)
424
425#define BIT_VEC64_SET_BIT(vec64, idx) \
426	__BIT_VEC64_SET_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \
427			   (idx) & BIT_VEC64_ELEM_MASK)
428
429#define BIT_VEC64_CLEAR_BIT(vec64, idx) \
430	__BIT_VEC64_CLEAR_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \
431			     (idx) & BIT_VEC64_ELEM_MASK)
432
433#define BIT_VEC64_TEST_BIT(vec64, idx) \
434	(((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT] >> \
435	((idx) & BIT_VEC64_ELEM_MASK)) & 0x1)
436
437/* Creates a bitmask of all ones in less significant bits.
438   idx - index of the most significant bit in the created mask */
439#define BIT_VEC64_ONES_MASK(idx) \
440		(((u64)0x1 << (((idx) & BIT_VEC64_ELEM_MASK) + 1)) - 1)
441#define BIT_VEC64_ELEM_ONE_MASK	((u64)(~0))
442
443/*******************************************************/
444
445/* Number of u64 elements in SGE mask array */
446#define RX_SGE_MASK_LEN			(NUM_RX_SGE / BIT_VEC64_ELEM_SZ)
447#define RX_SGE_MASK_LEN_MASK		(RX_SGE_MASK_LEN - 1)
448#define NEXT_SGE_MASK_ELEM(el)		(((el) + 1) & RX_SGE_MASK_LEN_MASK)
449
450union host_hc_status_block {
451	/* pointer to fp status block e1x */
452	struct host_hc_status_block_e1x *e1x_sb;
453	/* pointer to fp status block e2 */
454	struct host_hc_status_block_e2  *e2_sb;
455};
456
457struct bnx2x_agg_info {
458	/*
459	 * First aggregation buffer is a data buffer, the following - are pages.
460	 * We will preallocate the data buffer for each aggregation when
461	 * we open the interface and will replace the BD at the consumer
462	 * with this one when we receive the TPA_START CQE in order to
463	 * keep the Rx BD ring consistent.
464	 */
465	struct sw_rx_bd		first_buf;
466	u8			tpa_state;
467#define BNX2X_TPA_START			1
468#define BNX2X_TPA_STOP			2
469#define BNX2X_TPA_ERROR			3
470	u8			placement_offset;
471	u16			parsing_flags;
472	u16			vlan_tag;
473	u16			len_on_bd;
474	u32			rxhash;
475	bool			l4_rxhash;
476	u16			gro_size;
477	u16			full_page;
478};
479
480#define Q_STATS_OFFSET32(stat_name) \
481			(offsetof(struct bnx2x_eth_q_stats, stat_name) / 4)
482
483struct bnx2x_fp_txdata {
484
485	struct sw_tx_bd		*tx_buf_ring;
486
487	union eth_tx_bd_types	*tx_desc_ring;
488	dma_addr_t		tx_desc_mapping;
489
490	u32			cid;
491
492	union db_prod		tx_db;
493
494	u16			tx_pkt_prod;
495	u16			tx_pkt_cons;
496	u16			tx_bd_prod;
497	u16			tx_bd_cons;
498
499	unsigned long		tx_pkt;
500
501	__le16			*tx_cons_sb;
502
503	int			txq_index;
504	struct bnx2x_fastpath	*parent_fp;
505	int			tx_ring_size;
506};
507
508enum bnx2x_tpa_mode_t {
509	TPA_MODE_LRO,
510	TPA_MODE_GRO
511};
512
513struct bnx2x_fastpath {
514	struct bnx2x		*bp; /* parent */
515
516	struct napi_struct	napi;
517
518#ifdef CONFIG_NET_RX_BUSY_POLL
519	unsigned int state;
520#define BNX2X_FP_STATE_IDLE		      0
521#define BNX2X_FP_STATE_NAPI		(1 << 0)    /* NAPI owns this FP */
522#define BNX2X_FP_STATE_POLL		(1 << 1)    /* poll owns this FP */
523#define BNX2X_FP_STATE_NAPI_YIELD	(1 << 2)    /* NAPI yielded this FP */
524#define BNX2X_FP_STATE_POLL_YIELD	(1 << 3)    /* poll yielded this FP */
525#define BNX2X_FP_YIELD	(BNX2X_FP_STATE_NAPI_YIELD | BNX2X_FP_STATE_POLL_YIELD)
526#define BNX2X_FP_LOCKED	(BNX2X_FP_STATE_NAPI | BNX2X_FP_STATE_POLL)
527#define BNX2X_FP_USER_PEND (BNX2X_FP_STATE_POLL | BNX2X_FP_STATE_POLL_YIELD)
528	/* protect state */
529	spinlock_t lock;
530#endif /* CONFIG_NET_RX_BUSY_POLL */
531
532	union host_hc_status_block	status_blk;
533	/* chip independent shortcuts into sb structure */
534	__le16			*sb_index_values;
535	__le16			*sb_running_index;
536	/* chip independent shortcut into rx_prods_offset memory */
537	u32			ustorm_rx_prods_offset;
538
539	u32			rx_buf_size;
540	u32			rx_frag_size; /* 0 if kmalloced(), or rx_buf_size + NET_SKB_PAD */
541	dma_addr_t		status_blk_mapping;
542
543	enum bnx2x_tpa_mode_t	mode;
544
545	u8			max_cos; /* actual number of active tx coses */
546	struct bnx2x_fp_txdata	*txdata_ptr[BNX2X_MULTI_TX_COS];
547
548	struct sw_rx_bd		*rx_buf_ring;	/* BDs mappings ring */
549	struct sw_rx_page	*rx_page_ring;	/* SGE pages mappings ring */
550
551	struct eth_rx_bd	*rx_desc_ring;
552	dma_addr_t		rx_desc_mapping;
553
554	union eth_rx_cqe	*rx_comp_ring;
555	dma_addr_t		rx_comp_mapping;
556
557	/* SGE ring */
558	struct eth_rx_sge	*rx_sge_ring;
559	dma_addr_t		rx_sge_mapping;
560
561	u64			sge_mask[RX_SGE_MASK_LEN];
562
563	u32			cid;
564
565	__le16			fp_hc_idx;
566
567	u8			index;		/* number in fp array */
568	u8			rx_queue;	/* index for skb_record */
569	u8			cl_id;		/* eth client id */
570	u8			cl_qzone_id;
571	u8			fw_sb_id;	/* status block number in FW */
572	u8			igu_sb_id;	/* status block number in HW */
573
574	u16			rx_bd_prod;
575	u16			rx_bd_cons;
576	u16			rx_comp_prod;
577	u16			rx_comp_cons;
578	u16			rx_sge_prod;
579	/* The last maximal completed SGE */
580	u16			last_max_sge;
581	__le16			*rx_cons_sb;
582	unsigned long		rx_pkt,
583				rx_calls;
584
585	/* TPA related */
586	struct bnx2x_agg_info	*tpa_info;
587	u8			disable_tpa;
588#ifdef BNX2X_STOP_ON_ERROR
589	u64			tpa_queue_used;
590#endif
591	/* The size is calculated using the following:
592	     sizeof name field from netdev structure +
593	     4 ('-Xx-' string) +
594	     4 (for the digits and to make it DWORD aligned) */
595#define FP_NAME_SIZE		(sizeof(((struct net_device *)0)->name) + 8)
596	char			name[FP_NAME_SIZE];
597};
598
599#define bnx2x_fp(bp, nr, var)	((bp)->fp[(nr)].var)
600#define bnx2x_sp_obj(bp, fp)	((bp)->sp_objs[(fp)->index])
601#define bnx2x_fp_stats(bp, fp)	(&((bp)->fp_stats[(fp)->index]))
602#define bnx2x_fp_qstats(bp, fp)	(&((bp)->fp_stats[(fp)->index].eth_q_stats))
603
604#ifdef CONFIG_NET_RX_BUSY_POLL
605static inline void bnx2x_fp_init_lock(struct bnx2x_fastpath *fp)
606{
607	spin_lock_init(&fp->lock);
608	fp->state = BNX2X_FP_STATE_IDLE;
609}
610
611/* called from the device poll routine to get ownership of a FP */
612static inline bool bnx2x_fp_lock_napi(struct bnx2x_fastpath *fp)
613{
614	bool rc = true;
615
616	spin_lock(&fp->lock);
617	if (fp->state & BNX2X_FP_LOCKED) {
618		WARN_ON(fp->state & BNX2X_FP_STATE_NAPI);
619		fp->state |= BNX2X_FP_STATE_NAPI_YIELD;
620		rc = false;
621	} else {
622		/* we don't care if someone yielded */
623		fp->state = BNX2X_FP_STATE_NAPI;
624	}
625	spin_unlock(&fp->lock);
626	return rc;
627}
628
629/* returns true is someone tried to get the FP while napi had it */
630static inline bool bnx2x_fp_unlock_napi(struct bnx2x_fastpath *fp)
631{
632	bool rc = false;
633
634	spin_lock(&fp->lock);
635	WARN_ON(fp->state &
636		(BNX2X_FP_STATE_POLL | BNX2X_FP_STATE_NAPI_YIELD));
637
638	if (fp->state & BNX2X_FP_STATE_POLL_YIELD)
639		rc = true;
640	fp->state = BNX2X_FP_STATE_IDLE;
641	spin_unlock(&fp->lock);
642	return rc;
643}
644
645/* called from bnx2x_low_latency_poll() */
646static inline bool bnx2x_fp_lock_poll(struct bnx2x_fastpath *fp)
647{
648	bool rc = true;
649
650	spin_lock_bh(&fp->lock);
651	if ((fp->state & BNX2X_FP_LOCKED)) {
652		fp->state |= BNX2X_FP_STATE_POLL_YIELD;
653		rc = false;
654	} else {
655		/* preserve yield marks */
656		fp->state |= BNX2X_FP_STATE_POLL;
657	}
658	spin_unlock_bh(&fp->lock);
659	return rc;
660}
661
662/* returns true if someone tried to get the FP while it was locked */
663static inline bool bnx2x_fp_unlock_poll(struct bnx2x_fastpath *fp)
664{
665	bool rc = false;
666
667	spin_lock_bh(&fp->lock);
668	WARN_ON(fp->state & BNX2X_FP_STATE_NAPI);
669
670	if (fp->state & BNX2X_FP_STATE_POLL_YIELD)
671		rc = true;
672	fp->state = BNX2X_FP_STATE_IDLE;
673	spin_unlock_bh(&fp->lock);
674	return rc;
675}
676
677/* true if a socket is polling, even if it did not get the lock */
678static inline bool bnx2x_fp_ll_polling(struct bnx2x_fastpath *fp)
679{
680	WARN_ON(!(fp->state & BNX2X_FP_LOCKED));
681	return fp->state & BNX2X_FP_USER_PEND;
682}
683#else
684static inline void bnx2x_fp_init_lock(struct bnx2x_fastpath *fp)
685{
686}
687
688static inline bool bnx2x_fp_lock_napi(struct bnx2x_fastpath *fp)
689{
690	return true;
691}
692
693static inline bool bnx2x_fp_unlock_napi(struct bnx2x_fastpath *fp)
694{
695	return false;
696}
697
698static inline bool bnx2x_fp_lock_poll(struct bnx2x_fastpath *fp)
699{
700	return false;
701}
702
703static inline bool bnx2x_fp_unlock_poll(struct bnx2x_fastpath *fp)
704{
705	return false;
706}
707
708static inline bool bnx2x_fp_ll_polling(struct bnx2x_fastpath *fp)
709{
710	return false;
711}
712#endif /* CONFIG_NET_RX_BUSY_POLL */
713
714/* Use 2500 as a mini-jumbo MTU for FCoE */
715#define BNX2X_FCOE_MINI_JUMBO_MTU	2500
716
717#define	FCOE_IDX_OFFSET		0
718
719#define FCOE_IDX(bp)		(BNX2X_NUM_NON_CNIC_QUEUES(bp) + \
720				 FCOE_IDX_OFFSET)
721#define bnx2x_fcoe_fp(bp)	(&bp->fp[FCOE_IDX(bp)])
722#define bnx2x_fcoe(bp, var)	(bnx2x_fcoe_fp(bp)->var)
723#define bnx2x_fcoe_inner_sp_obj(bp)	(&bp->sp_objs[FCOE_IDX(bp)])
724#define bnx2x_fcoe_sp_obj(bp, var)	(bnx2x_fcoe_inner_sp_obj(bp)->var)
725#define bnx2x_fcoe_tx(bp, var)	(bnx2x_fcoe_fp(bp)-> \
726						txdata_ptr[FIRST_TX_COS_INDEX] \
727						->var)
728
729#define IS_ETH_FP(fp)		((fp)->index < BNX2X_NUM_ETH_QUEUES((fp)->bp))
730#define IS_FCOE_FP(fp)		((fp)->index == FCOE_IDX((fp)->bp))
731#define IS_FCOE_IDX(idx)	((idx) == FCOE_IDX(bp))
732
733/* MC hsi */
734#define MAX_FETCH_BD		13	/* HW max BDs per packet */
735#define RX_COPY_THRESH		92
736
737#define NUM_TX_RINGS		16
738#define TX_DESC_CNT		(BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types))
739#define NEXT_PAGE_TX_DESC_CNT	1
740#define MAX_TX_DESC_CNT		(TX_DESC_CNT - NEXT_PAGE_TX_DESC_CNT)
741#define NUM_TX_BD		(TX_DESC_CNT * NUM_TX_RINGS)
742#define MAX_TX_BD		(NUM_TX_BD - 1)
743#define MAX_TX_AVAIL		(MAX_TX_DESC_CNT * NUM_TX_RINGS - 2)
744#define NEXT_TX_IDX(x)		((((x) & MAX_TX_DESC_CNT) == \
745				  (MAX_TX_DESC_CNT - 1)) ? \
746					(x) + 1 + NEXT_PAGE_TX_DESC_CNT : \
747					(x) + 1)
748#define TX_BD(x)		((x) & MAX_TX_BD)
749#define TX_BD_POFF(x)		((x) & MAX_TX_DESC_CNT)
750
751/* number of NEXT_PAGE descriptors may be required during placement */
752#define NEXT_CNT_PER_TX_PKT(bds)	\
753				(((bds) + MAX_TX_DESC_CNT - 1) / \
754				 MAX_TX_DESC_CNT * NEXT_PAGE_TX_DESC_CNT)
755/* max BDs per tx packet w/o next_pages:
756 * START_BD		- describes packed
757 * START_BD(splitted)	- includes unpaged data segment for GSO
758 * PARSING_BD		- for TSO and CSUM data
759 * PARSING_BD2		- for encapsulation data
760 * Frag BDs		- describes pages for frags
761 */
762#define BDS_PER_TX_PKT		4
763#define MAX_BDS_PER_TX_PKT	(MAX_SKB_FRAGS + BDS_PER_TX_PKT)
764/* max BDs per tx packet including next pages */
765#define MAX_DESC_PER_TX_PKT	(MAX_BDS_PER_TX_PKT + \
766				 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))
767
768/* The RX BD ring is special, each bd is 8 bytes but the last one is 16 */
769#define NUM_RX_RINGS		8
770#define RX_DESC_CNT		(BCM_PAGE_SIZE / sizeof(struct eth_rx_bd))
771#define NEXT_PAGE_RX_DESC_CNT	2
772#define MAX_RX_DESC_CNT		(RX_DESC_CNT - NEXT_PAGE_RX_DESC_CNT)
773#define RX_DESC_MASK		(RX_DESC_CNT - 1)
774#define NUM_RX_BD		(RX_DESC_CNT * NUM_RX_RINGS)
775#define MAX_RX_BD		(NUM_RX_BD - 1)
776#define MAX_RX_AVAIL		(MAX_RX_DESC_CNT * NUM_RX_RINGS - 2)
777
778/* dropless fc calculations for BDs
779 *
780 * Number of BDs should as number of buffers in BRB:
781 * Low threshold takes into account NEXT_PAGE_RX_DESC_CNT
782 * "next" elements on each page
783 */
784#define NUM_BD_REQ		BRB_SIZE(bp)
785#define NUM_BD_PG_REQ		((NUM_BD_REQ + MAX_RX_DESC_CNT - 1) / \
786					      MAX_RX_DESC_CNT)
787#define BD_TH_LO(bp)		(NUM_BD_REQ + \
788				 NUM_BD_PG_REQ * NEXT_PAGE_RX_DESC_CNT + \
789				 FW_DROP_LEVEL(bp))
790#define BD_TH_HI(bp)		(BD_TH_LO(bp) + DROPLESS_FC_HEADROOM)
791
792#define MIN_RX_AVAIL		((bp)->dropless_fc ? BD_TH_HI(bp) + 128 : 128)
793
794#define MIN_RX_SIZE_TPA_HW	(CHIP_IS_E1(bp) ? \
795					ETH_MIN_RX_CQES_WITH_TPA_E1 : \
796					ETH_MIN_RX_CQES_WITH_TPA_E1H_E2)
797#define MIN_RX_SIZE_NONTPA_HW   ETH_MIN_RX_CQES_WITHOUT_TPA
798#define MIN_RX_SIZE_TPA		(max_t(u32, MIN_RX_SIZE_TPA_HW, MIN_RX_AVAIL))
799#define MIN_RX_SIZE_NONTPA	(max_t(u32, MIN_RX_SIZE_NONTPA_HW,\
800								MIN_RX_AVAIL))
801
802#define NEXT_RX_IDX(x)		((((x) & RX_DESC_MASK) == \
803				  (MAX_RX_DESC_CNT - 1)) ? \
804					(x) + 1 + NEXT_PAGE_RX_DESC_CNT : \
805					(x) + 1)
806#define RX_BD(x)		((x) & MAX_RX_BD)
807
808/*
809 * As long as CQE is X times bigger than BD entry we have to allocate X times
810 * more pages for CQ ring in order to keep it balanced with BD ring
811 */
812#define CQE_BD_REL	(sizeof(union eth_rx_cqe) / sizeof(struct eth_rx_bd))
813#define NUM_RCQ_RINGS		(NUM_RX_RINGS * CQE_BD_REL)
814#define RCQ_DESC_CNT		(BCM_PAGE_SIZE / sizeof(union eth_rx_cqe))
815#define NEXT_PAGE_RCQ_DESC_CNT	1
816#define MAX_RCQ_DESC_CNT	(RCQ_DESC_CNT - NEXT_PAGE_RCQ_DESC_CNT)
817#define NUM_RCQ_BD		(RCQ_DESC_CNT * NUM_RCQ_RINGS)
818#define MAX_RCQ_BD		(NUM_RCQ_BD - 1)
819#define MAX_RCQ_AVAIL		(MAX_RCQ_DESC_CNT * NUM_RCQ_RINGS - 2)
820#define NEXT_RCQ_IDX(x)		((((x) & MAX_RCQ_DESC_CNT) == \
821				  (MAX_RCQ_DESC_CNT - 1)) ? \
822					(x) + 1 + NEXT_PAGE_RCQ_DESC_CNT : \
823					(x) + 1)
824#define RCQ_BD(x)		((x) & MAX_RCQ_BD)
825
826/* dropless fc calculations for RCQs
827 *
828 * Number of RCQs should be as number of buffers in BRB:
829 * Low threshold takes into account NEXT_PAGE_RCQ_DESC_CNT
830 * "next" elements on each page
831 */
832#define NUM_RCQ_REQ		BRB_SIZE(bp)
833#define NUM_RCQ_PG_REQ		((NUM_BD_REQ + MAX_RCQ_DESC_CNT - 1) / \
834					      MAX_RCQ_DESC_CNT)
835#define RCQ_TH_LO(bp)		(NUM_RCQ_REQ + \
836				 NUM_RCQ_PG_REQ * NEXT_PAGE_RCQ_DESC_CNT + \
837				 FW_DROP_LEVEL(bp))
838#define RCQ_TH_HI(bp)		(RCQ_TH_LO(bp) + DROPLESS_FC_HEADROOM)
839
840/* This is needed for determining of last_max */
841#define SUB_S16(a, b)		(s16)((s16)(a) - (s16)(b))
842#define SUB_S32(a, b)		(s32)((s32)(a) - (s32)(b))
843
844#define BNX2X_SWCID_SHIFT	17
845#define BNX2X_SWCID_MASK	((0x1 << BNX2X_SWCID_SHIFT) - 1)
846
847/* used on a CID received from the HW */
848#define SW_CID(x)			(le32_to_cpu(x) & BNX2X_SWCID_MASK)
849#define CQE_CMD(x)			(le32_to_cpu(x) >> \
850					COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT)
851
852#define BD_UNMAP_ADDR(bd)		HILO_U64(le32_to_cpu((bd)->addr_hi), \
853						 le32_to_cpu((bd)->addr_lo))
854#define BD_UNMAP_LEN(bd)		(le16_to_cpu((bd)->nbytes))
855
856#define BNX2X_DB_MIN_SHIFT		3	/* 8 bytes */
857#define BNX2X_DB_SHIFT			3	/* 8 bytes*/
858#if (BNX2X_DB_SHIFT < BNX2X_DB_MIN_SHIFT)
859#error "Min DB doorbell stride is 8"
860#endif
861#define DOORBELL(bp, cid, val) \
862	do { \
863		writel((u32)(val), bp->doorbells + (bp->db_size * (cid))); \
864	} while (0)
865
866/* TX CSUM helpers */
867#define SKB_CS_OFF(skb)		(offsetof(struct tcphdr, check) - \
868				 skb->csum_offset)
869#define SKB_CS(skb)		(*(u16 *)(skb_transport_header(skb) + \
870					  skb->csum_offset))
871
872#define pbd_tcp_flags(tcp_hdr)	(ntohl(tcp_flag_word(tcp_hdr))>>16 & 0xff)
873
874#define XMIT_PLAIN		0
875#define XMIT_CSUM_V4		(1 << 0)
876#define XMIT_CSUM_V6		(1 << 1)
877#define XMIT_CSUM_TCP		(1 << 2)
878#define XMIT_GSO_V4		(1 << 3)
879#define XMIT_GSO_V6		(1 << 4)
880#define XMIT_CSUM_ENC_V4	(1 << 5)
881#define XMIT_CSUM_ENC_V6	(1 << 6)
882#define XMIT_GSO_ENC_V4		(1 << 7)
883#define XMIT_GSO_ENC_V6		(1 << 8)
884
885#define XMIT_CSUM_ENC		(XMIT_CSUM_ENC_V4 | XMIT_CSUM_ENC_V6)
886#define XMIT_GSO_ENC		(XMIT_GSO_ENC_V4 | XMIT_GSO_ENC_V6)
887
888#define XMIT_CSUM		(XMIT_CSUM_V4 | XMIT_CSUM_V6 | XMIT_CSUM_ENC)
889#define XMIT_GSO		(XMIT_GSO_V4 | XMIT_GSO_V6 | XMIT_GSO_ENC)
890
891/* stuff added to make the code fit 80Col */
892#define CQE_TYPE(cqe_fp_flags)	 ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE)
893#define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG)
894#define CQE_TYPE_STOP(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG)
895#define CQE_TYPE_SLOW(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD)
896#define CQE_TYPE_FAST(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH)
897
898#define ETH_RX_ERROR_FALGS		ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG
899
900#define BNX2X_PRS_FLAG_OVERETH_IPV4(flags) \
901				(((le16_to_cpu(flags) & \
902				   PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) >> \
903				  PARSING_FLAGS_OVER_ETHERNET_PROTOCOL_SHIFT) \
904				 == PRS_FLAG_OVERETH_IPV4)
905#define BNX2X_RX_SUM_FIX(cqe) \
906	BNX2X_PRS_FLAG_OVERETH_IPV4(cqe->fast_path_cqe.pars_flags.flags)
907
908#define FP_USB_FUNC_OFF	\
909			offsetof(struct cstorm_status_block_u, func)
910#define FP_CSB_FUNC_OFF	\
911			offsetof(struct cstorm_status_block_c, func)
912
913#define HC_INDEX_ETH_RX_CQ_CONS		1
914
915#define HC_INDEX_OOO_TX_CQ_CONS		4
916
917#define HC_INDEX_ETH_TX_CQ_CONS_COS0	5
918
919#define HC_INDEX_ETH_TX_CQ_CONS_COS1	6
920
921#define HC_INDEX_ETH_TX_CQ_CONS_COS2	7
922
923#define HC_INDEX_ETH_FIRST_TX_CQ_CONS	HC_INDEX_ETH_TX_CQ_CONS_COS0
924
925#define BNX2X_RX_SB_INDEX \
926	(&fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS])
927
928#define BNX2X_TX_SB_INDEX_BASE BNX2X_TX_SB_INDEX_COS0
929
930#define BNX2X_TX_SB_INDEX_COS0 \
931	(&fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0])
932
933/* end of fast path */
934
935/* common */
936
937struct bnx2x_common {
938
939	u32			chip_id;
940/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
941#define CHIP_ID(bp)			(bp->common.chip_id & 0xfffffff0)
942
943#define CHIP_NUM(bp)			(bp->common.chip_id >> 16)
944#define CHIP_NUM_57710			0x164e
945#define CHIP_NUM_57711			0x164f
946#define CHIP_NUM_57711E			0x1650
947#define CHIP_NUM_57712			0x1662
948#define CHIP_NUM_57712_MF		0x1663
949#define CHIP_NUM_57712_VF		0x166f
950#define CHIP_NUM_57713			0x1651
951#define CHIP_NUM_57713E			0x1652
952#define CHIP_NUM_57800			0x168a
953#define CHIP_NUM_57800_MF		0x16a5
954#define CHIP_NUM_57800_VF		0x16a9
955#define CHIP_NUM_57810			0x168e
956#define CHIP_NUM_57810_MF		0x16ae
957#define CHIP_NUM_57810_VF		0x16af
958#define CHIP_NUM_57811			0x163d
959#define CHIP_NUM_57811_MF		0x163e
960#define CHIP_NUM_57811_VF		0x163f
961#define CHIP_NUM_57840_OBSOLETE		0x168d
962#define CHIP_NUM_57840_MF_OBSOLETE	0x16ab
963#define CHIP_NUM_57840_4_10		0x16a1
964#define CHIP_NUM_57840_2_20		0x16a2
965#define CHIP_NUM_57840_MF		0x16a4
966#define CHIP_NUM_57840_VF		0x16ad
967#define CHIP_IS_E1(bp)			(CHIP_NUM(bp) == CHIP_NUM_57710)
968#define CHIP_IS_57711(bp)		(CHIP_NUM(bp) == CHIP_NUM_57711)
969#define CHIP_IS_57711E(bp)		(CHIP_NUM(bp) == CHIP_NUM_57711E)
970#define CHIP_IS_57712(bp)		(CHIP_NUM(bp) == CHIP_NUM_57712)
971#define CHIP_IS_57712_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57712_VF)
972#define CHIP_IS_57712_MF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57712_MF)
973#define CHIP_IS_57800(bp)		(CHIP_NUM(bp) == CHIP_NUM_57800)
974#define CHIP_IS_57800_MF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57800_MF)
975#define CHIP_IS_57800_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57800_VF)
976#define CHIP_IS_57810(bp)		(CHIP_NUM(bp) == CHIP_NUM_57810)
977#define CHIP_IS_57810_MF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57810_MF)
978#define CHIP_IS_57810_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57810_VF)
979#define CHIP_IS_57811(bp)		(CHIP_NUM(bp) == CHIP_NUM_57811)
980#define CHIP_IS_57811_MF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57811_MF)
981#define CHIP_IS_57811_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57811_VF)
982#define CHIP_IS_57840(bp)		\
983		((CHIP_NUM(bp) == CHIP_NUM_57840_4_10) || \
984		 (CHIP_NUM(bp) == CHIP_NUM_57840_2_20) || \
985		 (CHIP_NUM(bp) == CHIP_NUM_57840_OBSOLETE))
986#define CHIP_IS_57840_MF(bp)	((CHIP_NUM(bp) == CHIP_NUM_57840_MF) || \
987				 (CHIP_NUM(bp) == CHIP_NUM_57840_MF_OBSOLETE))
988#define CHIP_IS_57840_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57840_VF)
989#define CHIP_IS_E1H(bp)			(CHIP_IS_57711(bp) || \
990					 CHIP_IS_57711E(bp))
991#define CHIP_IS_57811xx(bp)		(CHIP_IS_57811(bp) || \
992					 CHIP_IS_57811_MF(bp) || \
993					 CHIP_IS_57811_VF(bp))
994#define CHIP_IS_E2(bp)			(CHIP_IS_57712(bp) || \
995					 CHIP_IS_57712_MF(bp) || \
996					 CHIP_IS_57712_VF(bp))
997#define CHIP_IS_E3(bp)			(CHIP_IS_57800(bp) || \
998					 CHIP_IS_57800_MF(bp) || \
999					 CHIP_IS_57800_VF(bp) || \
1000					 CHIP_IS_57810(bp) || \
1001					 CHIP_IS_57810_MF(bp) || \
1002					 CHIP_IS_57810_VF(bp) || \
1003					 CHIP_IS_57811xx(bp) || \
1004					 CHIP_IS_57840(bp) || \
1005					 CHIP_IS_57840_MF(bp) || \
1006					 CHIP_IS_57840_VF(bp))
1007#define CHIP_IS_E1x(bp)			(CHIP_IS_E1((bp)) || CHIP_IS_E1H((bp)))
1008#define USES_WARPCORE(bp)		(CHIP_IS_E3(bp))
1009#define IS_E1H_OFFSET			(!CHIP_IS_E1(bp))
1010
1011#define CHIP_REV_SHIFT			12
1012#define CHIP_REV_MASK			(0xF << CHIP_REV_SHIFT)
1013#define CHIP_REV_VAL(bp)		(bp->common.chip_id & CHIP_REV_MASK)
1014#define CHIP_REV_Ax			(0x0 << CHIP_REV_SHIFT)
1015#define CHIP_REV_Bx			(0x1 << CHIP_REV_SHIFT)
1016/* assume maximum 5 revisions */
1017#define CHIP_REV_IS_SLOW(bp)		(CHIP_REV_VAL(bp) > 0x00005000)
1018/* Emul versions are A=>0xe, B=>0xc, C=>0xa, D=>8, E=>6 */
1019#define CHIP_REV_IS_EMUL(bp)		((CHIP_REV_IS_SLOW(bp)) && \
1020					 !(CHIP_REV_VAL(bp) & 0x00001000))
1021/* FPGA versions are A=>0xf, B=>0xd, C=>0xb, D=>9, E=>7 */
1022#define CHIP_REV_IS_FPGA(bp)		((CHIP_REV_IS_SLOW(bp)) && \
1023					 (CHIP_REV_VAL(bp) & 0x00001000))
1024
1025#define CHIP_TIME(bp)			((CHIP_REV_IS_EMUL(bp)) ? 2000 : \
1026					((CHIP_REV_IS_FPGA(bp)) ? 200 : 1))
1027
1028#define CHIP_METAL(bp)			(bp->common.chip_id & 0x00000ff0)
1029#define CHIP_BOND_ID(bp)		(bp->common.chip_id & 0x0000000f)
1030#define CHIP_REV_SIM(bp)		(((CHIP_REV_MASK - CHIP_REV_VAL(bp)) >>\
1031					   (CHIP_REV_SHIFT + 1)) \
1032						<< CHIP_REV_SHIFT)
1033#define CHIP_REV(bp)			(CHIP_REV_IS_SLOW(bp) ? \
1034						CHIP_REV_SIM(bp) :\
1035						CHIP_REV_VAL(bp))
1036#define CHIP_IS_E3B0(bp)		(CHIP_IS_E3(bp) && \
1037					 (CHIP_REV(bp) == CHIP_REV_Bx))
1038#define CHIP_IS_E3A0(bp)		(CHIP_IS_E3(bp) && \
1039					 (CHIP_REV(bp) == CHIP_REV_Ax))
1040/* This define is used in two main places:
1041 * 1. In the early stages of nic_load, to know if to configure Parser / Searcher
1042 * to nic-only mode or to offload mode. Offload mode is configured if either the
1043 * chip is E1x (where MIC_MODE register is not applicable), or if cnic already
1044 * registered for this port (which means that the user wants storage services).
1045 * 2. During cnic-related load, to know if offload mode is already configured in
1046 * the HW or needs to be configured.
1047 * Since the transition from nic-mode to offload-mode in HW causes traffic
1048 * corruption, nic-mode is configured only in ports on which storage services
1049 * where never requested.
1050 */
1051#define CONFIGURE_NIC_MODE(bp)		(!CHIP_IS_E1x(bp) && !CNIC_ENABLED(bp))
1052
1053	int			flash_size;
1054#define BNX2X_NVRAM_1MB_SIZE			0x20000	/* 1M bit in bytes */
1055#define BNX2X_NVRAM_TIMEOUT_COUNT		30000
1056#define BNX2X_NVRAM_PAGE_SIZE			256
1057
1058	u32			shmem_base;
1059	u32			shmem2_base;
1060	u32			mf_cfg_base;
1061	u32			mf2_cfg_base;
1062
1063	u32			hw_config;
1064
1065	u32			bc_ver;
1066
1067	u8			int_block;
1068#define INT_BLOCK_HC			0
1069#define INT_BLOCK_IGU			1
1070#define INT_BLOCK_MODE_NORMAL		0
1071#define INT_BLOCK_MODE_BW_COMP		2
1072#define CHIP_INT_MODE_IS_NBC(bp)		\
1073			(!CHIP_IS_E1x(bp) &&	\
1074			!((bp)->common.int_block & INT_BLOCK_MODE_BW_COMP))
1075#define CHIP_INT_MODE_IS_BC(bp) (!CHIP_INT_MODE_IS_NBC(bp))
1076
1077	u8			chip_port_mode;
1078#define CHIP_4_PORT_MODE			0x0
1079#define CHIP_2_PORT_MODE			0x1
1080#define CHIP_PORT_MODE_NONE			0x2
1081#define CHIP_MODE(bp)			(bp->common.chip_port_mode)
1082#define CHIP_MODE_IS_4_PORT(bp) (CHIP_MODE(bp) == CHIP_4_PORT_MODE)
1083
1084	u32			boot_mode;
1085};
1086
1087/* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */
1088#define BNX2X_IGU_STAS_MSG_VF_CNT 64
1089#define BNX2X_IGU_STAS_MSG_PF_CNT 4
1090
1091#define MAX_IGU_ATTN_ACK_TO       100
1092/* end of common */
1093
1094/* port */
1095
1096struct bnx2x_port {
1097	u32			pmf;
1098
1099	u32			link_config[LINK_CONFIG_SIZE];
1100
1101	u32			supported[LINK_CONFIG_SIZE];
1102/* link settings - missing defines */
1103#define SUPPORTED_2500baseX_Full	(1 << 15)
1104
1105	u32			advertising[LINK_CONFIG_SIZE];
1106/* link settings - missing defines */
1107#define ADVERTISED_2500baseX_Full	(1 << 15)
1108
1109	u32			phy_addr;
1110
1111	/* used to synchronize phy accesses */
1112	struct mutex		phy_mutex;
1113
1114	u32			port_stx;
1115
1116	struct nig_stats	old_nig_stats;
1117};
1118
1119/* end of port */
1120
1121#define STATS_OFFSET32(stat_name) \
1122			(offsetof(struct bnx2x_eth_stats, stat_name) / 4)
1123
1124/* slow path */
1125
1126/* slow path work-queue */
1127extern struct workqueue_struct *bnx2x_wq;
1128
1129#define BNX2X_MAX_NUM_OF_VFS	64
1130#define BNX2X_VF_CID_WND	4 /* log num of queues per VF. HW config. */
1131#define BNX2X_CIDS_PER_VF	(1 << BNX2X_VF_CID_WND)
1132
1133/* We need to reserve doorbell addresses for all VF and queue combinations */
1134#define BNX2X_VF_CIDS		(BNX2X_MAX_NUM_OF_VFS * BNX2X_CIDS_PER_VF)
1135
1136/* The doorbell is configured to have the same number of CIDs for PFs and for
1137 * VFs. For this reason the PF CID zone is as large as the VF zone.
1138 */
1139#define BNX2X_FIRST_VF_CID	BNX2X_VF_CIDS
1140#define BNX2X_MAX_NUM_VF_QUEUES	64
1141#define BNX2X_VF_ID_INVALID	0xFF
1142
1143/* the number of VF CIDS multiplied by the amount of bytes reserved for each
1144 * cid must not exceed the size of the VF doorbell
1145 */
1146#define BNX2X_VF_BAR_SIZE	512
1147#if (BNX2X_VF_BAR_SIZE < BNX2X_CIDS_PER_VF * (1 << BNX2X_DB_SHIFT))
1148#error "VF doorbell bar size is 512"
1149#endif
1150
1151/*
1152 * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
1153 * control by the number of fast-path status blocks supported by the
1154 * device (HW/FW). Each fast-path status block (FP-SB) aka non-default
1155 * status block represents an independent interrupts context that can
1156 * serve a regular L2 networking queue. However special L2 queues such
1157 * as the FCoE queue do not require a FP-SB and other components like
1158 * the CNIC may consume FP-SB reducing the number of possible L2 queues
1159 *
1160 * If the maximum number of FP-SB available is X then:
1161 * a. If CNIC is supported it consumes 1 FP-SB thus the max number of
1162 *    regular L2 queues is Y=X-1
1163 * b. In MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
1164 * c. If the FCoE L2 queue is supported the actual number of L2 queues
1165 *    is Y+1
1166 * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
1167 *    slow-path interrupts) or Y+2 if CNIC is supported (one additional
1168 *    FP interrupt context for the CNIC).
1169 * e. The number of HW context (CID count) is always X or X+1 if FCoE
1170 *    L2 queue is supported. The cid for the FCoE L2 queue is always X.
1171 */
1172
1173/* fast-path interrupt contexts E1x */
1174#define FP_SB_MAX_E1x		16
1175/* fast-path interrupt contexts E2 */
1176#define FP_SB_MAX_E2		HC_SB_MAX_SB_E2
1177
1178union cdu_context {
1179	struct eth_context eth;
1180	char pad[1024];
1181};
1182
1183/* CDU host DB constants */
1184#define CDU_ILT_PAGE_SZ_HW	2
1185#define CDU_ILT_PAGE_SZ		(8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */
1186#define ILT_PAGE_CIDS		(CDU_ILT_PAGE_SZ / sizeof(union cdu_context))
1187
1188#define CNIC_ISCSI_CID_MAX	256
1189#define CNIC_FCOE_CID_MAX	2048
1190#define CNIC_CID_MAX		(CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX)
1191#define CNIC_ILT_LINES		DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS)
1192
1193#define QM_ILT_PAGE_SZ_HW	0
1194#define QM_ILT_PAGE_SZ		(4096 << QM_ILT_PAGE_SZ_HW) /* 4K */
1195#define QM_CID_ROUND		1024
1196
1197/* TM (timers) host DB constants */
1198#define TM_ILT_PAGE_SZ_HW	0
1199#define TM_ILT_PAGE_SZ		(4096 << TM_ILT_PAGE_SZ_HW) /* 4K */
1200/* #define TM_CONN_NUM		(CNIC_STARTING_CID+CNIC_ISCSI_CXT_MAX) */
1201#define TM_CONN_NUM		1024
1202#define TM_ILT_SZ		(8 * TM_CONN_NUM)
1203#define TM_ILT_LINES		DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ)
1204
1205/* SRC (Searcher) host DB constants */
1206#define SRC_ILT_PAGE_SZ_HW	0
1207#define SRC_ILT_PAGE_SZ		(4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */
1208#define SRC_HASH_BITS		10
1209#define SRC_CONN_NUM		(1 << SRC_HASH_BITS) /* 1024 */
1210#define SRC_ILT_SZ		(sizeof(struct src_ent) * SRC_CONN_NUM)
1211#define SRC_T2_SZ		SRC_ILT_SZ
1212#define SRC_ILT_LINES		DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ)
1213
1214#define MAX_DMAE_C		8
1215
1216/* DMA memory not used in fastpath */
1217struct bnx2x_slowpath {
1218	union {
1219		struct mac_configuration_cmd		e1x;
1220		struct eth_classify_rules_ramrod_data	e2;
1221	} mac_rdata;
1222
1223	union {
1224		struct tstorm_eth_mac_filter_config	e1x;
1225		struct eth_filter_rules_ramrod_data	e2;
1226	} rx_mode_rdata;
1227
1228	union {
1229		struct mac_configuration_cmd		e1;
1230		struct eth_multicast_rules_ramrod_data  e2;
1231	} mcast_rdata;
1232
1233	struct eth_rss_update_ramrod_data	rss_rdata;
1234
1235	/* Queue State related ramrods are always sent under rtnl_lock */
1236	union {
1237		struct client_init_ramrod_data  init_data;
1238		struct client_update_ramrod_data update_data;
1239	} q_rdata;
1240
1241	union {
1242		struct function_start_data	func_start;
1243		/* pfc configuration for DCBX ramrod */
1244		struct flow_control_configuration pfc_config;
1245	} func_rdata;
1246
1247	/* afex ramrod can not be a part of func_rdata union because these
1248	 * events might arrive in parallel to other events from func_rdata.
1249	 * Therefore, if they would have been defined in the same union,
1250	 * data can get corrupted.
1251	 */
1252	struct afex_vif_list_ramrod_data func_afex_rdata;
1253
1254	/* used by dmae command executer */
1255	struct dmae_command		dmae[MAX_DMAE_C];
1256
1257	u32				stats_comp;
1258	union mac_stats			mac_stats;
1259	struct nig_stats		nig_stats;
1260	struct host_port_stats		port_stats;
1261	struct host_func_stats		func_stats;
1262
1263	u32				wb_comp;
1264	u32				wb_data[4];
1265
1266	union drv_info_to_mcp		drv_info_to_mcp;
1267};
1268
1269#define bnx2x_sp(bp, var)		(&bp->slowpath->var)
1270#define bnx2x_sp_mapping(bp, var) \
1271		(bp->slowpath_mapping + offsetof(struct bnx2x_slowpath, var))
1272
1273/* attn group wiring */
1274#define MAX_DYNAMIC_ATTN_GRPS		8
1275
1276struct attn_route {
1277	u32 sig[5];
1278};
1279
1280struct iro {
1281	u32 base;
1282	u16 m1;
1283	u16 m2;
1284	u16 m3;
1285	u16 size;
1286};
1287
1288struct hw_context {
1289	union cdu_context *vcxt;
1290	dma_addr_t cxt_mapping;
1291	size_t size;
1292};
1293
1294/* forward */
1295struct bnx2x_ilt;
1296
1297struct bnx2x_vfdb;
1298
1299enum bnx2x_recovery_state {
1300	BNX2X_RECOVERY_DONE,
1301	BNX2X_RECOVERY_INIT,
1302	BNX2X_RECOVERY_WAIT,
1303	BNX2X_RECOVERY_FAILED,
1304	BNX2X_RECOVERY_NIC_LOADING
1305};
1306
1307/*
1308 * Event queue (EQ or event ring) MC hsi
1309 * NUM_EQ_PAGES and EQ_DESC_CNT_PAGE must be power of 2
1310 */
1311#define NUM_EQ_PAGES		1
1312#define EQ_DESC_CNT_PAGE	(BCM_PAGE_SIZE / sizeof(union event_ring_elem))
1313#define EQ_DESC_MAX_PAGE	(EQ_DESC_CNT_PAGE - 1)
1314#define NUM_EQ_DESC		(EQ_DESC_CNT_PAGE * NUM_EQ_PAGES)
1315#define EQ_DESC_MASK		(NUM_EQ_DESC - 1)
1316#define MAX_EQ_AVAIL		(EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2)
1317
1318/* depends on EQ_DESC_CNT_PAGE being a power of 2 */
1319#define NEXT_EQ_IDX(x)		((((x) & EQ_DESC_MAX_PAGE) == \
1320				  (EQ_DESC_MAX_PAGE - 1)) ? (x) + 2 : (x) + 1)
1321
1322/* depends on the above and on NUM_EQ_PAGES being a power of 2 */
1323#define EQ_DESC(x)		((x) & EQ_DESC_MASK)
1324
1325#define BNX2X_EQ_INDEX \
1326	(&bp->def_status_blk->sp_sb.\
1327	index_values[HC_SP_INDEX_EQ_CONS])
1328
1329/* This is a data that will be used to create a link report message.
1330 * We will keep the data used for the last link report in order
1331 * to prevent reporting the same link parameters twice.
1332 */
1333struct bnx2x_link_report_data {
1334	u16 line_speed;			/* Effective line speed */
1335	unsigned long link_report_flags;/* BNX2X_LINK_REPORT_XXX flags */
1336};
1337
1338enum {
1339	BNX2X_LINK_REPORT_FD,		/* Full DUPLEX */
1340	BNX2X_LINK_REPORT_LINK_DOWN,
1341	BNX2X_LINK_REPORT_RX_FC_ON,
1342	BNX2X_LINK_REPORT_TX_FC_ON,
1343};
1344
1345enum {
1346	BNX2X_PORT_QUERY_IDX,
1347	BNX2X_PF_QUERY_IDX,
1348	BNX2X_FCOE_QUERY_IDX,
1349	BNX2X_FIRST_QUEUE_QUERY_IDX,
1350};
1351
1352struct bnx2x_fw_stats_req {
1353	struct stats_query_header hdr;
1354	struct stats_query_entry query[FP_SB_MAX_E1x+
1355		BNX2X_FIRST_QUEUE_QUERY_IDX];
1356};
1357
1358struct bnx2x_fw_stats_data {
1359	struct stats_counter		storm_counters;
1360	struct per_port_stats		port;
1361	struct per_pf_stats		pf;
1362	struct fcoe_statistics_params	fcoe;
1363	struct per_queue_stats		queue_stats[1];
1364};
1365
1366/* Public slow path states */
1367enum {
1368	BNX2X_SP_RTNL_SETUP_TC,
1369	BNX2X_SP_RTNL_TX_TIMEOUT,
1370	BNX2X_SP_RTNL_FAN_FAILURE,
1371	BNX2X_SP_RTNL_AFEX_F_UPDATE,
1372	BNX2X_SP_RTNL_ENABLE_SRIOV,
1373	BNX2X_SP_RTNL_VFPF_MCAST,
1374	BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
1375	BNX2X_SP_RTNL_RX_MODE,
1376	BNX2X_SP_RTNL_HYPERVISOR_VLAN,
1377	BNX2X_SP_RTNL_TX_STOP,
1378	BNX2X_SP_RTNL_TX_RESUME,
1379};
1380
1381struct bnx2x_prev_path_list {
1382	struct list_head list;
1383	u8 bus;
1384	u8 slot;
1385	u8 path;
1386	u8 aer;
1387	u8 undi;
1388};
1389
1390struct bnx2x_sp_objs {
1391	/* MACs object */
1392	struct bnx2x_vlan_mac_obj mac_obj;
1393
1394	/* Queue State object */
1395	struct bnx2x_queue_sp_obj q_obj;
1396};
1397
1398struct bnx2x_fp_stats {
1399	struct tstorm_per_queue_stats old_tclient;
1400	struct ustorm_per_queue_stats old_uclient;
1401	struct xstorm_per_queue_stats old_xclient;
1402	struct bnx2x_eth_q_stats eth_q_stats;
1403	struct bnx2x_eth_q_stats_old eth_q_stats_old;
1404};
1405
1406struct bnx2x {
1407	/* Fields used in the tx and intr/napi performance paths
1408	 * are grouped together in the beginning of the structure
1409	 */
1410	struct bnx2x_fastpath	*fp;
1411	struct bnx2x_sp_objs	*sp_objs;
1412	struct bnx2x_fp_stats	*fp_stats;
1413	struct bnx2x_fp_txdata	*bnx2x_txq;
1414	void __iomem		*regview;
1415	void __iomem		*doorbells;
1416	u16			db_size;
1417
1418	u8			pf_num;	/* absolute PF number */
1419	u8			pfid;	/* per-path PF number */
1420	int			base_fw_ndsb; /**/
1421#define BP_PATH(bp)			(CHIP_IS_E1x(bp) ? 0 : (bp->pf_num & 1))
1422#define BP_PORT(bp)			(bp->pfid & 1)
1423#define BP_FUNC(bp)			(bp->pfid)
1424#define BP_ABS_FUNC(bp)			(bp->pf_num)
1425#define BP_VN(bp)			((bp)->pfid >> 1)
1426#define BP_MAX_VN_NUM(bp)		(CHIP_MODE_IS_4_PORT(bp) ? 2 : 4)
1427#define BP_L_ID(bp)			(BP_VN(bp) << 2)
1428#define BP_FW_MB_IDX_VN(bp, vn)		(BP_PORT(bp) +\
1429	  (vn) * ((CHIP_IS_E1x(bp) || (CHIP_MODE_IS_4_PORT(bp))) ? 2  : 1))
1430#define BP_FW_MB_IDX(bp)		BP_FW_MB_IDX_VN(bp, BP_VN(bp))
1431
1432#ifdef CONFIG_BNX2X_SRIOV
1433	/* protects vf2pf mailbox from simultaneous access */
1434	struct mutex		vf2pf_mutex;
1435	/* vf pf channel mailbox contains request and response buffers */
1436	struct bnx2x_vf_mbx_msg	*vf2pf_mbox;
1437	dma_addr_t		vf2pf_mbox_mapping;
1438
1439	/* we set aside a copy of the acquire response */
1440	struct pfvf_acquire_resp_tlv acquire_resp;
1441
1442	/* bulletin board for messages from pf to vf */
1443	union pf_vf_bulletin   *pf2vf_bulletin;
1444	dma_addr_t		pf2vf_bulletin_mapping;
1445
1446	struct pf_vf_bulletin_content	old_bulletin;
1447
1448	u16 requested_nr_virtfn;
1449#endif /* CONFIG_BNX2X_SRIOV */
1450
1451	struct net_device	*dev;
1452	struct pci_dev		*pdev;
1453
1454	const struct iro	*iro_arr;
1455#define IRO (bp->iro_arr)
1456
1457	enum bnx2x_recovery_state recovery_state;
1458	int			is_leader;
1459	struct msix_entry	*msix_table;
1460
1461	int			tx_ring_size;
1462
1463/* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
1464#define ETH_OVREHEAD		(ETH_HLEN + 8 + 8)
1465#define ETH_MIN_PACKET_SIZE		60
1466#define ETH_MAX_PACKET_SIZE		1500
1467#define ETH_MAX_JUMBO_PACKET_SIZE	9600
1468/* TCP with Timestamp Option (32) + IPv6 (40) */
1469#define ETH_MAX_TPA_HEADER_SIZE		72
1470
1471	/* Max supported alignment is 256 (8 shift) */
1472#define BNX2X_RX_ALIGN_SHIFT		min(8, L1_CACHE_SHIFT)
1473
1474	/* FW uses 2 Cache lines Alignment for start packet and size
1475	 *
1476	 * We assume skb_build() uses sizeof(struct skb_shared_info) bytes
1477	 * at the end of skb->data, to avoid wasting a full cache line.
1478	 * This reduces memory use (skb->truesize).
1479	 */
1480#define BNX2X_FW_RX_ALIGN_START	(1UL << BNX2X_RX_ALIGN_SHIFT)
1481
1482#define BNX2X_FW_RX_ALIGN_END					\
1483	max_t(u64, 1UL << BNX2X_RX_ALIGN_SHIFT,			\
1484	    SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
1485
1486#define BNX2X_PXP_DRAM_ALIGN		(BNX2X_RX_ALIGN_SHIFT - 5)
1487
1488	struct host_sp_status_block *def_status_blk;
1489#define DEF_SB_IGU_ID			16
1490#define DEF_SB_ID			HC_SP_SB_ID
1491	__le16			def_idx;
1492	__le16			def_att_idx;
1493	u32			attn_state;
1494	struct attn_route	attn_group[MAX_DYNAMIC_ATTN_GRPS];
1495
1496	/* slow path ring */
1497	struct eth_spe		*spq;
1498	dma_addr_t		spq_mapping;
1499	u16			spq_prod_idx;
1500	struct eth_spe		*spq_prod_bd;
1501	struct eth_spe		*spq_last_bd;
1502	__le16			*dsb_sp_prod;
1503	atomic_t		cq_spq_left; /* ETH_XXX ramrods credit */
1504	/* used to synchronize spq accesses */
1505	spinlock_t		spq_lock;
1506
1507	/* event queue */
1508	union event_ring_elem	*eq_ring;
1509	dma_addr_t		eq_mapping;
1510	u16			eq_prod;
1511	u16			eq_cons;
1512	__le16			*eq_cons_sb;
1513	atomic_t		eq_spq_left; /* COMMON_XXX ramrods credit */
1514
1515	/* Counter for marking that there is a STAT_QUERY ramrod pending */
1516	u16			stats_pending;
1517	/*  Counter for completed statistics ramrods */
1518	u16			stats_comp;
1519
1520	/* End of fields used in the performance code paths */
1521
1522	int			panic;
1523	int			msg_enable;
1524
1525	u32			flags;
1526#define PCIX_FLAG			(1 << 0)
1527#define PCI_32BIT_FLAG			(1 << 1)
1528#define ONE_PORT_FLAG			(1 << 2)
1529#define NO_WOL_FLAG			(1 << 3)
1530#define USING_DAC_FLAG			(1 << 4)
1531#define USING_MSIX_FLAG			(1 << 5)
1532#define USING_MSI_FLAG			(1 << 6)
1533#define DISABLE_MSI_FLAG		(1 << 7)
1534#define TPA_ENABLE_FLAG			(1 << 8)
1535#define NO_MCP_FLAG			(1 << 9)
1536#define GRO_ENABLE_FLAG			(1 << 10)
1537#define MF_FUNC_DIS			(1 << 11)
1538#define OWN_CNIC_IRQ			(1 << 12)
1539#define NO_ISCSI_OOO_FLAG		(1 << 13)
1540#define NO_ISCSI_FLAG			(1 << 14)
1541#define NO_FCOE_FLAG			(1 << 15)
1542#define BC_SUPPORTS_PFC_STATS		(1 << 17)
1543#define BC_SUPPORTS_FCOE_FEATURES	(1 << 19)
1544#define USING_SINGLE_MSIX_FLAG		(1 << 20)
1545#define BC_SUPPORTS_DCBX_MSG_NON_PMF	(1 << 21)
1546#define IS_VF_FLAG			(1 << 22)
1547#define INTERRUPTS_ENABLED_FLAG		(1 << 23)
1548#define BC_SUPPORTS_RMMOD_CMD		(1 << 24)
1549
1550#define BP_NOMCP(bp)			((bp)->flags & NO_MCP_FLAG)
1551
1552#ifdef CONFIG_BNX2X_SRIOV
1553#define IS_VF(bp)			((bp)->flags & IS_VF_FLAG)
1554#define IS_PF(bp)			(!((bp)->flags & IS_VF_FLAG))
1555#else
1556#define IS_VF(bp)			false
1557#define IS_PF(bp)			true
1558#endif
1559
1560#define NO_ISCSI(bp)		((bp)->flags & NO_ISCSI_FLAG)
1561#define NO_ISCSI_OOO(bp)	((bp)->flags & NO_ISCSI_OOO_FLAG)
1562#define NO_FCOE(bp)		((bp)->flags & NO_FCOE_FLAG)
1563
1564	u8			cnic_support;
1565	bool			cnic_enabled;
1566	bool			cnic_loaded;
1567	struct cnic_eth_dev	*(*cnic_probe)(struct net_device *);
1568
1569	/* Flag that indicates that we can start looking for FCoE L2 queue
1570	 * completions in the default status block.
1571	 */
1572	bool			fcoe_init;
1573
1574	int			mrrs;
1575
1576	struct delayed_work	sp_task;
1577	atomic_t		interrupt_occurred;
1578	struct delayed_work	sp_rtnl_task;
1579
1580	struct delayed_work	period_task;
1581	struct timer_list	timer;
1582	int			current_interval;
1583
1584	u16			fw_seq;
1585	u16			fw_drv_pulse_wr_seq;
1586	u32			func_stx;
1587
1588	struct link_params	link_params;
1589	struct link_vars	link_vars;
1590	u32			link_cnt;
1591	struct bnx2x_link_report_data last_reported_link;
1592
1593	struct mdio_if_info	mdio;
1594
1595	struct bnx2x_common	common;
1596	struct bnx2x_port	port;
1597
1598	struct cmng_init	cmng;
1599
1600	u32			mf_config[E1HVN_MAX];
1601	u32			mf_ext_config;
1602	u32			path_has_ovlan; /* E3 */
1603	u16			mf_ov;
1604	u8			mf_mode;
1605#define IS_MF(bp)		(bp->mf_mode != 0)
1606#define IS_MF_SI(bp)		(bp->mf_mode == MULTI_FUNCTION_SI)
1607#define IS_MF_SD(bp)		(bp->mf_mode == MULTI_FUNCTION_SD)
1608#define IS_MF_AFEX(bp)		(bp->mf_mode == MULTI_FUNCTION_AFEX)
1609
1610	u8			wol;
1611
1612	int			rx_ring_size;
1613
1614	u16			tx_quick_cons_trip_int;
1615	u16			tx_quick_cons_trip;
1616	u16			tx_ticks_int;
1617	u16			tx_ticks;
1618
1619	u16			rx_quick_cons_trip_int;
1620	u16			rx_quick_cons_trip;
1621	u16			rx_ticks_int;
1622	u16			rx_ticks;
1623/* Maximal coalescing timeout in us */
1624#define BNX2X_MAX_COALESCE_TOUT		(0xf0*12)
1625
1626	u32			lin_cnt;
1627
1628	u16			state;
1629#define BNX2X_STATE_CLOSED		0
1630#define BNX2X_STATE_OPENING_WAIT4_LOAD	0x1000
1631#define BNX2X_STATE_OPENING_WAIT4_PORT	0x2000
1632#define BNX2X_STATE_OPEN		0x3000
1633#define BNX2X_STATE_CLOSING_WAIT4_HALT	0x4000
1634#define BNX2X_STATE_CLOSING_WAIT4_DELETE 0x5000
1635
1636#define BNX2X_STATE_DIAG		0xe000
1637#define BNX2X_STATE_ERROR		0xf000
1638
1639#define BNX2X_MAX_PRIORITY		8
1640#define BNX2X_MAX_ENTRIES_PER_PRI	16
1641#define BNX2X_MAX_COS			3
1642#define BNX2X_MAX_TX_COS		2
1643	int			num_queues;
1644	uint			num_ethernet_queues;
1645	uint			num_cnic_queues;
1646	int			num_napi_queues;
1647	int			disable_tpa;
1648
1649	u32			rx_mode;
1650#define BNX2X_RX_MODE_NONE		0
1651#define BNX2X_RX_MODE_NORMAL		1
1652#define BNX2X_RX_MODE_ALLMULTI		2
1653#define BNX2X_RX_MODE_PROMISC		3
1654#define BNX2X_MAX_MULTICAST		64
1655
1656	u8			igu_dsb_id;
1657	u8			igu_base_sb;
1658	u8			igu_sb_cnt;
1659	u8			min_msix_vec_cnt;
1660
1661	u32			igu_base_addr;
1662	dma_addr_t		def_status_blk_mapping;
1663
1664	struct bnx2x_slowpath	*slowpath;
1665	dma_addr_t		slowpath_mapping;
1666
1667	/* Total number of FW statistics requests */
1668	u8			fw_stats_num;
1669
1670	/*
1671	 * This is a memory buffer that will contain both statistics
1672	 * ramrod request and data.
1673	 */
1674	void			*fw_stats;
1675	dma_addr_t		fw_stats_mapping;
1676
1677	/*
1678	 * FW statistics request shortcut (points at the
1679	 * beginning of fw_stats buffer).
1680	 */
1681	struct bnx2x_fw_stats_req	*fw_stats_req;
1682	dma_addr_t			fw_stats_req_mapping;
1683	int				fw_stats_req_sz;
1684
1685	/*
1686	 * FW statistics data shortcut (points at the beginning of
1687	 * fw_stats buffer + fw_stats_req_sz).
1688	 */
1689	struct bnx2x_fw_stats_data	*fw_stats_data;
1690	dma_addr_t			fw_stats_data_mapping;
1691	int				fw_stats_data_sz;
1692
1693	/* For max 1024 cids (VF RSS), 32KB ILT page size and 1KB
1694	 * context size we need 8 ILT entries.
1695	 */
1696#define ILT_MAX_L2_LINES	32
1697	struct hw_context	context[ILT_MAX_L2_LINES];
1698
1699	struct bnx2x_ilt	*ilt;
1700#define BP_ILT(bp)		((bp)->ilt)
1701#define ILT_MAX_LINES		256
1702/*
1703 * Maximum supported number of RSS queues: number of IGU SBs minus one that goes
1704 * to CNIC.
1705 */
1706#define BNX2X_MAX_RSS_COUNT(bp)	((bp)->igu_sb_cnt - CNIC_SUPPORT(bp))
1707
1708/*
1709 * Maximum CID count that might be required by the bnx2x:
1710 * Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI
1711 */
1712
1713#define BNX2X_L2_CID_COUNT(bp)	(BNX2X_NUM_ETH_QUEUES(bp) * BNX2X_MULTI_TX_COS \
1714				+ CNIC_SUPPORT(bp) * (2 + UIO_CID_PAD(bp)))
1715#define BNX2X_L2_MAX_CID(bp)	(BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS \
1716				+ CNIC_SUPPORT(bp) * (2 + UIO_CID_PAD(bp)))
1717#define L2_ILT_LINES(bp)	(DIV_ROUND_UP(BNX2X_L2_CID_COUNT(bp),\
1718					ILT_PAGE_CIDS))
1719
1720	int			qm_cid_count;
1721
1722	bool			dropless_fc;
1723
1724	void			*t2;
1725	dma_addr_t		t2_mapping;
1726	struct cnic_ops	__rcu	*cnic_ops;
1727	void			*cnic_data;
1728	u32			cnic_tag;
1729	struct cnic_eth_dev	cnic_eth_dev;
1730	union host_hc_status_block cnic_sb;
1731	dma_addr_t		cnic_sb_mapping;
1732	struct eth_spe		*cnic_kwq;
1733	struct eth_spe		*cnic_kwq_prod;
1734	struct eth_spe		*cnic_kwq_cons;
1735	struct eth_spe		*cnic_kwq_last;
1736	u16			cnic_kwq_pending;
1737	u16			cnic_spq_pending;
1738	u8			fip_mac[ETH_ALEN];
1739	struct mutex		cnic_mutex;
1740	struct bnx2x_vlan_mac_obj iscsi_l2_mac_obj;
1741
1742	/* Start index of the "special" (CNIC related) L2 clients */
1743	u8				cnic_base_cl_id;
1744
1745	int			dmae_ready;
1746	/* used to synchronize dmae accesses */
1747	spinlock_t		dmae_lock;
1748
1749	/* used to protect the FW mail box */
1750	struct mutex		fw_mb_mutex;
1751
1752	/* used to synchronize stats collecting */
1753	int			stats_state;
1754
1755	/* used for synchronization of concurrent threads statistics handling */
1756	spinlock_t		stats_lock;
1757
1758	/* used by dmae command loader */
1759	struct dmae_command	stats_dmae;
1760	int			executer_idx;
1761
1762	u16			stats_counter;
1763	struct bnx2x_eth_stats	eth_stats;
1764	struct host_func_stats		func_stats;
1765	struct bnx2x_eth_stats_old	eth_stats_old;
1766	struct bnx2x_net_stats_old	net_stats_old;
1767	struct bnx2x_fw_port_stats_old	fw_stats_old;
1768	bool			stats_init;
1769
1770	struct z_stream_s	*strm;
1771	void			*gunzip_buf;
1772	dma_addr_t		gunzip_mapping;
1773	int			gunzip_outlen;
1774#define FW_BUF_SIZE			0x8000
1775#define GUNZIP_BUF(bp)			(bp->gunzip_buf)
1776#define GUNZIP_PHYS(bp)			(bp->gunzip_mapping)
1777#define GUNZIP_OUTLEN(bp)		(bp->gunzip_outlen)
1778
1779	struct raw_op		*init_ops;
1780	/* Init blocks offsets inside init_ops */
1781	u16			*init_ops_offsets;
1782	/* Data blob - has 32 bit granularity */
1783	u32			*init_data;
1784	u32			init_mode_flags;
1785#define INIT_MODE_FLAGS(bp)	(bp->init_mode_flags)
1786	/* Zipped PRAM blobs - raw data */
1787	const u8		*tsem_int_table_data;
1788	const u8		*tsem_pram_data;
1789	const u8		*usem_int_table_data;
1790	const u8		*usem_pram_data;
1791	const u8		*xsem_int_table_data;
1792	const u8		*xsem_pram_data;
1793	const u8		*csem_int_table_data;
1794	const u8		*csem_pram_data;
1795#define INIT_OPS(bp)			(bp->init_ops)
1796#define INIT_OPS_OFFSETS(bp)		(bp->init_ops_offsets)
1797#define INIT_DATA(bp)			(bp->init_data)
1798#define INIT_TSEM_INT_TABLE_DATA(bp)	(bp->tsem_int_table_data)
1799#define INIT_TSEM_PRAM_DATA(bp)		(bp->tsem_pram_data)
1800#define INIT_USEM_INT_TABLE_DATA(bp)	(bp->usem_int_table_data)
1801#define INIT_USEM_PRAM_DATA(bp)		(bp->usem_pram_data)
1802#define INIT_XSEM_INT_TABLE_DATA(bp)	(bp->xsem_int_table_data)
1803#define INIT_XSEM_PRAM_DATA(bp)		(bp->xsem_pram_data)
1804#define INIT_CSEM_INT_TABLE_DATA(bp)	(bp->csem_int_table_data)
1805#define INIT_CSEM_PRAM_DATA(bp)		(bp->csem_pram_data)
1806
1807#define PHY_FW_VER_LEN			20
1808	char			fw_ver[32];
1809	const struct firmware	*firmware;
1810
1811	struct bnx2x_vfdb	*vfdb;
1812#define IS_SRIOV(bp)		((bp)->vfdb)
1813
1814	/* DCB support on/off */
1815	u16 dcb_state;
1816#define BNX2X_DCB_STATE_OFF			0
1817#define BNX2X_DCB_STATE_ON			1
1818
1819	/* DCBX engine mode */
1820	int dcbx_enabled;
1821#define BNX2X_DCBX_ENABLED_OFF			0
1822#define BNX2X_DCBX_ENABLED_ON_NEG_OFF		1
1823#define BNX2X_DCBX_ENABLED_ON_NEG_ON		2
1824#define BNX2X_DCBX_ENABLED_INVALID		(-1)
1825
1826	bool dcbx_mode_uset;
1827
1828	struct bnx2x_config_dcbx_params		dcbx_config_params;
1829	struct bnx2x_dcbx_port_params		dcbx_port_params;
1830	int					dcb_version;
1831
1832	/* CAM credit pools */
1833
1834	/* used only in sriov */
1835	struct bnx2x_credit_pool_obj		vlans_pool;
1836
1837	struct bnx2x_credit_pool_obj		macs_pool;
1838
1839	/* RX_MODE object */
1840	struct bnx2x_rx_mode_obj		rx_mode_obj;
1841
1842	/* MCAST object */
1843	struct bnx2x_mcast_obj			mcast_obj;
1844
1845	/* RSS configuration object */
1846	struct bnx2x_rss_config_obj		rss_conf_obj;
1847
1848	/* Function State controlling object */
1849	struct bnx2x_func_sp_obj		func_obj;
1850
1851	unsigned long				sp_state;
1852
1853	/* operation indication for the sp_rtnl task */
1854	unsigned long				sp_rtnl_state;
1855
1856	/* DCBX Negotiation results */
1857	struct dcbx_features			dcbx_local_feat;
1858	u32					dcbx_error;
1859
1860#ifdef BCM_DCBNL
1861	struct dcbx_features			dcbx_remote_feat;
1862	u32					dcbx_remote_flags;
1863#endif
1864	/* AFEX: store default vlan used */
1865	int					afex_def_vlan_tag;
1866	enum mf_cfg_afex_vlan_mode		afex_vlan_mode;
1867	u32					pending_max;
1868
1869	/* multiple tx classes of service */
1870	u8					max_cos;
1871
1872	/* priority to cos mapping */
1873	u8					prio_to_cos[8];
1874
1875	int fp_array_size;
1876	u32 dump_preset_idx;
1877	bool					stats_started;
1878	struct semaphore			stats_sema;
1879};
1880
1881/* Tx queues may be less or equal to Rx queues */
1882extern int num_queues;
1883#define BNX2X_NUM_QUEUES(bp)	(bp->num_queues)
1884#define BNX2X_NUM_ETH_QUEUES(bp) ((bp)->num_ethernet_queues)
1885#define BNX2X_NUM_NON_CNIC_QUEUES(bp)	(BNX2X_NUM_QUEUES(bp) - \
1886					 (bp)->num_cnic_queues)
1887#define BNX2X_NUM_RX_QUEUES(bp)	BNX2X_NUM_QUEUES(bp)
1888
1889#define is_multi(bp)		(BNX2X_NUM_QUEUES(bp) > 1)
1890
1891#define BNX2X_MAX_QUEUES(bp)	BNX2X_MAX_RSS_COUNT(bp)
1892/* #define is_eth_multi(bp)	(BNX2X_NUM_ETH_QUEUES(bp) > 1) */
1893
1894#define RSS_IPV4_CAP_MASK						\
1895	TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_CAPABILITY
1896
1897#define RSS_IPV4_TCP_CAP_MASK						\
1898	TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_TCP_CAPABILITY
1899
1900#define RSS_IPV6_CAP_MASK						\
1901	TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_CAPABILITY
1902
1903#define RSS_IPV6_TCP_CAP_MASK						\
1904	TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_TCP_CAPABILITY
1905
1906/* func init flags */
1907#define FUNC_FLG_RSS		0x0001
1908#define FUNC_FLG_STATS		0x0002
1909/* removed  FUNC_FLG_UNMATCHED	0x0004 */
1910#define FUNC_FLG_TPA		0x0008
1911#define FUNC_FLG_SPQ		0x0010
1912#define FUNC_FLG_LEADING	0x0020	/* PF only */
1913#define FUNC_FLG_LEADING_STATS	0x0040
1914struct bnx2x_func_init_params {
1915	/* dma */
1916	dma_addr_t	fw_stat_map;	/* valid iff FUNC_FLG_STATS */
1917	dma_addr_t	spq_map;	/* valid iff FUNC_FLG_SPQ */
1918
1919	u16		func_flgs;
1920	u16		func_id;	/* abs fid */
1921	u16		pf_id;
1922	u16		spq_prod;	/* valid iff FUNC_FLG_SPQ */
1923};
1924
1925#define for_each_cnic_queue(bp, var) \
1926	for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
1927	     (var)++) \
1928		if (skip_queue(bp, var))	\
1929			continue;		\
1930		else
1931
1932#define for_each_eth_queue(bp, var) \
1933	for ((var) = 0; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++)
1934
1935#define for_each_nondefault_eth_queue(bp, var) \
1936	for ((var) = 1; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++)
1937
1938#define for_each_queue(bp, var) \
1939	for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
1940		if (skip_queue(bp, var))	\
1941			continue;		\
1942		else
1943
1944/* Skip forwarding FP */
1945#define for_each_valid_rx_queue(bp, var)			\
1946	for ((var) = 0;						\
1947	     (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) :	\
1948		      BNX2X_NUM_ETH_QUEUES(bp));		\
1949	     (var)++)						\
1950		if (skip_rx_queue(bp, var))			\
1951			continue;				\
1952		else
1953
1954#define for_each_rx_queue_cnic(bp, var) \
1955	for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
1956	     (var)++) \
1957		if (skip_rx_queue(bp, var))	\
1958			continue;		\
1959		else
1960
1961#define for_each_rx_queue(bp, var) \
1962	for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
1963		if (skip_rx_queue(bp, var))	\
1964			continue;		\
1965		else
1966
1967/* Skip OOO FP */
1968#define for_each_valid_tx_queue(bp, var)			\
1969	for ((var) = 0;						\
1970	     (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) :	\
1971		      BNX2X_NUM_ETH_QUEUES(bp));		\
1972	     (var)++)						\
1973		if (skip_tx_queue(bp, var))			\
1974			continue;				\
1975		else
1976
1977#define for_each_tx_queue_cnic(bp, var) \
1978	for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
1979	     (var)++) \
1980		if (skip_tx_queue(bp, var))	\
1981			continue;		\
1982		else
1983
1984#define for_each_tx_queue(bp, var) \
1985	for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
1986		if (skip_tx_queue(bp, var))	\
1987			continue;		\
1988		else
1989
1990#define for_each_nondefault_queue(bp, var) \
1991	for ((var) = 1; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
1992		if (skip_queue(bp, var))	\
1993			continue;		\
1994		else
1995
1996#define for_each_cos_in_tx_queue(fp, var) \
1997	for ((var) = 0; (var) < (fp)->max_cos; (var)++)
1998
1999/* skip rx queue
2000 * if FCOE l2 support is disabled and this is the fcoe L2 queue
2001 */
2002#define skip_rx_queue(bp, idx)	(NO_FCOE(bp) && IS_FCOE_IDX(idx))
2003
2004/* skip tx queue
2005 * if FCOE l2 support is disabled and this is the fcoe L2 queue
2006 */
2007#define skip_tx_queue(bp, idx)	(NO_FCOE(bp) && IS_FCOE_IDX(idx))
2008
2009#define skip_queue(bp, idx)	(NO_FCOE(bp) && IS_FCOE_IDX(idx))
2010
2011/**
2012 * bnx2x_set_mac_one - configure a single MAC address
2013 *
2014 * @bp:			driver handle
2015 * @mac:		MAC to configure
2016 * @obj:		MAC object handle
2017 * @set:		if 'true' add a new MAC, otherwise - delete
2018 * @mac_type:		the type of the MAC to configure (e.g. ETH, UC list)
2019 * @ramrod_flags:	RAMROD_XXX flags (e.g. RAMROD_CONT, RAMROD_COMP_WAIT)
2020 *
2021 * Configures one MAC according to provided parameters or continues the
2022 * execution of previously scheduled commands if RAMROD_CONT is set in
2023 * ramrod_flags.
2024 *
2025 * Returns zero if operation has successfully completed, a positive value if the
2026 * operation has been successfully scheduled and a negative - if a requested
2027 * operations has failed.
2028 */
2029int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
2030		      struct bnx2x_vlan_mac_obj *obj, bool set,
2031		      int mac_type, unsigned long *ramrod_flags);
2032/**
2033 * bnx2x_del_all_macs - delete all MACs configured for the specific MAC object
2034 *
2035 * @bp:			driver handle
2036 * @mac_obj:		MAC object handle
2037 * @mac_type:		type of the MACs to clear (BNX2X_XXX_MAC)
2038 * @wait_for_comp:	if 'true' block until completion
2039 *
2040 * Deletes all MACs of the specific type (e.g. ETH, UC list).
2041 *
2042 * Returns zero if operation has successfully completed, a positive value if the
2043 * operation has been successfully scheduled and a negative - if a requested
2044 * operations has failed.
2045 */
2046int bnx2x_del_all_macs(struct bnx2x *bp,
2047		       struct bnx2x_vlan_mac_obj *mac_obj,
2048		       int mac_type, bool wait_for_comp);
2049
2050/* Init Function API  */
2051void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p);
2052void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
2053		    u8 vf_valid, int fw_sb_id, int igu_sb_id);
2054u32 bnx2x_get_pretend_reg(struct bnx2x *bp);
2055int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port);
2056int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port);
2057int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode);
2058int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port);
2059void bnx2x_read_mf_cfg(struct bnx2x *bp);
2060
2061int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val);
2062
2063/* dmae */
2064void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32);
2065void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
2066		      u32 len32);
2067void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx);
2068u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type);
2069u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode);
2070u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
2071		      bool with_comp, u8 comp_type);
2072
2073void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
2074			       u8 src_type, u8 dst_type);
2075int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae);
2076
2077/* FLR related routines */
2078u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp);
2079void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count);
2080int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt);
2081u8 bnx2x_is_pcie_pending(struct pci_dev *dev);
2082int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
2083				    char *msg, u32 poll_cnt);
2084
2085void bnx2x_calc_fc_adv(struct bnx2x *bp);
2086int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
2087		  u32 data_hi, u32 data_lo, int cmd_type);
2088void bnx2x_update_coalesce(struct bnx2x *bp);
2089int bnx2x_get_cur_phy_idx(struct bnx2x *bp);
2090
2091bool bnx2x_port_after_undi(struct bnx2x *bp);
2092
2093static inline u32 reg_poll(struct bnx2x *bp, u32 reg, u32 expected, int ms,
2094			   int wait)
2095{
2096	u32 val;
2097
2098	do {
2099		val = REG_RD(bp, reg);
2100		if (val == expected)
2101			break;
2102		ms -= wait;
2103		msleep(wait);
2104
2105	} while (ms > 0);
2106
2107	return val;
2108}
2109
2110void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id,
2111			    bool is_pf);
2112
2113#define BNX2X_ILT_ZALLOC(x, y, size)					\
2114	x = dma_zalloc_coherent(&bp->pdev->dev, size, y, GFP_KERNEL)
2115
2116#define BNX2X_ILT_FREE(x, y, size) \
2117	do { \
2118		if (x) { \
2119			dma_free_coherent(&bp->pdev->dev, size, x, y); \
2120			x = NULL; \
2121			y = 0; \
2122		} \
2123	} while (0)
2124
2125#define ILOG2(x)	(ilog2((x)))
2126
2127#define ILT_NUM_PAGE_ENTRIES	(3072)
2128/* In 57710/11 we use whole table since we have 8 func
2129 * In 57712 we have only 4 func, but use same size per func, then only half of
2130 * the table in use
2131 */
2132#define ILT_PER_FUNC		(ILT_NUM_PAGE_ENTRIES/8)
2133
2134#define FUNC_ILT_BASE(func)	(func * ILT_PER_FUNC)
2135/*
2136 * the phys address is shifted right 12 bits and has an added
2137 * 1=valid bit added to the 53rd bit
2138 * then since this is a wide register(TM)
2139 * we split it into two 32 bit writes
2140 */
2141#define ONCHIP_ADDR1(x)		((u32)(((u64)x >> 12) & 0xFFFFFFFF))
2142#define ONCHIP_ADDR2(x)		((u32)((1 << 20) | ((u64)x >> 44)))
2143
2144/* load/unload mode */
2145#define LOAD_NORMAL			0
2146#define LOAD_OPEN			1
2147#define LOAD_DIAG			2
2148#define LOAD_LOOPBACK_EXT		3
2149#define UNLOAD_NORMAL			0
2150#define UNLOAD_CLOSE			1
2151#define UNLOAD_RECOVERY			2
2152
2153/* DMAE command defines */
2154#define DMAE_TIMEOUT			-1
2155#define DMAE_PCI_ERROR			-2	/* E2 and onward */
2156#define DMAE_NOT_RDY			-3
2157#define DMAE_PCI_ERR_FLAG		0x80000000
2158
2159#define DMAE_SRC_PCI			0
2160#define DMAE_SRC_GRC			1
2161
2162#define DMAE_DST_NONE			0
2163#define DMAE_DST_PCI			1
2164#define DMAE_DST_GRC			2
2165
2166#define DMAE_COMP_PCI			0
2167#define DMAE_COMP_GRC			1
2168
2169/* E2 and onward - PCI error handling in the completion */
2170
2171#define DMAE_COMP_REGULAR		0
2172#define DMAE_COM_SET_ERR		1
2173
2174#define DMAE_CMD_SRC_PCI		(DMAE_SRC_PCI << \
2175						DMAE_COMMAND_SRC_SHIFT)
2176#define DMAE_CMD_SRC_GRC		(DMAE_SRC_GRC << \
2177						DMAE_COMMAND_SRC_SHIFT)
2178
2179#define DMAE_CMD_DST_PCI		(DMAE_DST_PCI << \
2180						DMAE_COMMAND_DST_SHIFT)
2181#define DMAE_CMD_DST_GRC		(DMAE_DST_GRC << \
2182						DMAE_COMMAND_DST_SHIFT)
2183
2184#define DMAE_CMD_C_DST_PCI		(DMAE_COMP_PCI << \
2185						DMAE_COMMAND_C_DST_SHIFT)
2186#define DMAE_CMD_C_DST_GRC		(DMAE_COMP_GRC << \
2187						DMAE_COMMAND_C_DST_SHIFT)
2188
2189#define DMAE_CMD_C_ENABLE		DMAE_COMMAND_C_TYPE_ENABLE
2190
2191#define DMAE_CMD_ENDIANITY_NO_SWAP	(0 << DMAE_COMMAND_ENDIANITY_SHIFT)
2192#define DMAE_CMD_ENDIANITY_B_SWAP	(1 << DMAE_COMMAND_ENDIANITY_SHIFT)
2193#define DMAE_CMD_ENDIANITY_DW_SWAP	(2 << DMAE_COMMAND_ENDIANITY_SHIFT)
2194#define DMAE_CMD_ENDIANITY_B_DW_SWAP	(3 << DMAE_COMMAND_ENDIANITY_SHIFT)
2195
2196#define DMAE_CMD_PORT_0			0
2197#define DMAE_CMD_PORT_1			DMAE_COMMAND_PORT
2198
2199#define DMAE_CMD_SRC_RESET		DMAE_COMMAND_SRC_RESET
2200#define DMAE_CMD_DST_RESET		DMAE_COMMAND_DST_RESET
2201#define DMAE_CMD_E1HVN_SHIFT		DMAE_COMMAND_E1HVN_SHIFT
2202
2203#define DMAE_SRC_PF			0
2204#define DMAE_SRC_VF			1
2205
2206#define DMAE_DST_PF			0
2207#define DMAE_DST_VF			1
2208
2209#define DMAE_C_SRC			0
2210#define DMAE_C_DST			1
2211
2212#define DMAE_LEN32_RD_MAX		0x80
2213#define DMAE_LEN32_WR_MAX(bp)		(CHIP_IS_E1(bp) ? 0x400 : 0x2000)
2214
2215#define DMAE_COMP_VAL			0x60d0d0ae /* E2 and on - upper bit
2216						    * indicates error
2217						    */
2218
2219#define MAX_DMAE_C_PER_PORT		8
2220#define INIT_DMAE_C(bp)			(BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \
2221					 BP_VN(bp))
2222#define PMF_DMAE_C(bp)			(BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \
2223					 E1HVN_MAX)
2224
2225/* PCIE link and speed */
2226#define PCICFG_LINK_WIDTH		0x1f00000
2227#define PCICFG_LINK_WIDTH_SHIFT		20
2228#define PCICFG_LINK_SPEED		0xf0000
2229#define PCICFG_LINK_SPEED_SHIFT		16
2230
2231#define BNX2X_NUM_TESTS_SF		7
2232#define BNX2X_NUM_TESTS_MF		3
2233#define BNX2X_NUM_TESTS(bp)		(IS_MF(bp) ? BNX2X_NUM_TESTS_MF : \
2234						     BNX2X_NUM_TESTS_SF)
2235
2236#define BNX2X_PHY_LOOPBACK		0
2237#define BNX2X_MAC_LOOPBACK		1
2238#define BNX2X_EXT_LOOPBACK		2
2239#define BNX2X_PHY_LOOPBACK_FAILED	1
2240#define BNX2X_MAC_LOOPBACK_FAILED	2
2241#define BNX2X_EXT_LOOPBACK_FAILED	3
2242#define BNX2X_LOOPBACK_FAILED		(BNX2X_MAC_LOOPBACK_FAILED | \
2243					 BNX2X_PHY_LOOPBACK_FAILED)
2244
2245#define STROM_ASSERT_ARRAY_SIZE		50
2246
2247/* must be used on a CID before placing it on a HW ring */
2248#define HW_CID(bp, x)			((BP_PORT(bp) << 23) | \
2249					 (BP_VN(bp) << BNX2X_SWCID_SHIFT) | \
2250					 (x))
2251
2252#define SP_DESC_CNT		(BCM_PAGE_SIZE / sizeof(struct eth_spe))
2253#define MAX_SP_DESC_CNT			(SP_DESC_CNT - 1)
2254
2255#define BNX2X_BTR			4
2256#define MAX_SPQ_PENDING			8
2257
2258/* CMNG constants, as derived from system spec calculations */
2259/* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */
2260#define DEF_MIN_RATE					100
2261/* resolution of the rate shaping timer - 400 usec */
2262#define RS_PERIODIC_TIMEOUT_USEC			400
2263/* number of bytes in single QM arbitration cycle -
2264 * coefficient for calculating the fairness timer */
2265#define QM_ARB_BYTES					160000
2266/* resolution of Min algorithm 1:100 */
2267#define MIN_RES						100
2268/* how many bytes above threshold for the minimal credit of Min algorithm*/
2269#define MIN_ABOVE_THRESH				32768
2270/* Fairness algorithm integration time coefficient -
2271 * for calculating the actual Tfair */
2272#define T_FAIR_COEF	((MIN_ABOVE_THRESH +  QM_ARB_BYTES) * 8 * MIN_RES)
2273/* Memory of fairness algorithm . 2 cycles */
2274#define FAIR_MEM					2
2275
2276#define ATTN_NIG_FOR_FUNC		(1L << 8)
2277#define ATTN_SW_TIMER_4_FUNC		(1L << 9)
2278#define GPIO_2_FUNC			(1L << 10)
2279#define GPIO_3_FUNC			(1L << 11)
2280#define GPIO_4_FUNC			(1L << 12)
2281#define ATTN_GENERAL_ATTN_1		(1L << 13)
2282#define ATTN_GENERAL_ATTN_2		(1L << 14)
2283#define ATTN_GENERAL_ATTN_3		(1L << 15)
2284#define ATTN_GENERAL_ATTN_4		(1L << 13)
2285#define ATTN_GENERAL_ATTN_5		(1L << 14)
2286#define ATTN_GENERAL_ATTN_6		(1L << 15)
2287
2288#define ATTN_HARD_WIRED_MASK		0xff00
2289#define ATTENTION_ID			4
2290
2291#define IS_MF_STORAGE_ONLY(bp) (IS_MF_STORAGE_SD(bp) || \
2292				 IS_MF_FCOE_AFEX(bp))
2293
2294/* stuff added to make the code fit 80Col */
2295
2296#define BNX2X_PMF_LINK_ASSERT \
2297	GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + BP_FUNC(bp))
2298
2299#define BNX2X_MC_ASSERT_BITS \
2300	(GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2301	 GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2302	 GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2303	 GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT))
2304
2305#define BNX2X_MCP_ASSERT \
2306	GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT)
2307
2308#define BNX2X_GRC_TIMEOUT	GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC)
2309#define BNX2X_GRC_RSV		(GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \
2310				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \
2311				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \
2312				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \
2313				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \
2314				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC))
2315
2316#define HW_INTERRUT_ASSERT_SET_0 \
2317				(AEU_INPUTS_ATTN_BITS_TSDM_HW_INTERRUPT | \
2318				 AEU_INPUTS_ATTN_BITS_TCM_HW_INTERRUPT | \
2319				 AEU_INPUTS_ATTN_BITS_TSEMI_HW_INTERRUPT | \
2320				 AEU_INPUTS_ATTN_BITS_BRB_HW_INTERRUPT | \
2321				 AEU_INPUTS_ATTN_BITS_PBCLIENT_HW_INTERRUPT)
2322#define HW_PRTY_ASSERT_SET_0	(AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR | \
2323				 AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR | \
2324				 AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR | \
2325				 AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR |\
2326				 AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR |\
2327				 AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR |\
2328				 AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR)
2329#define HW_INTERRUT_ASSERT_SET_1 \
2330				(AEU_INPUTS_ATTN_BITS_QM_HW_INTERRUPT | \
2331				 AEU_INPUTS_ATTN_BITS_TIMERS_HW_INTERRUPT | \
2332				 AEU_INPUTS_ATTN_BITS_XSDM_HW_INTERRUPT | \
2333				 AEU_INPUTS_ATTN_BITS_XCM_HW_INTERRUPT | \
2334				 AEU_INPUTS_ATTN_BITS_XSEMI_HW_INTERRUPT | \
2335				 AEU_INPUTS_ATTN_BITS_USDM_HW_INTERRUPT | \
2336				 AEU_INPUTS_ATTN_BITS_UCM_HW_INTERRUPT | \
2337				 AEU_INPUTS_ATTN_BITS_USEMI_HW_INTERRUPT | \
2338				 AEU_INPUTS_ATTN_BITS_UPB_HW_INTERRUPT | \
2339				 AEU_INPUTS_ATTN_BITS_CSDM_HW_INTERRUPT | \
2340				 AEU_INPUTS_ATTN_BITS_CCM_HW_INTERRUPT)
2341#define HW_PRTY_ASSERT_SET_1	(AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR |\
2342				 AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR | \
2343				 AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR |\
2344				 AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR | \
2345				 AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR |\
2346				 AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR | \
2347				 AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR |\
2348				 AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR |\
2349			     AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR |\
2350				 AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR | \
2351				 AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR | \
2352				 AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR |\
2353				 AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR | \
2354				 AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR | \
2355				 AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR |\
2356				 AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR)
2357#define HW_INTERRUT_ASSERT_SET_2 \
2358				(AEU_INPUTS_ATTN_BITS_CSEMI_HW_INTERRUPT | \
2359				 AEU_INPUTS_ATTN_BITS_CDU_HW_INTERRUPT | \
2360				 AEU_INPUTS_ATTN_BITS_DMAE_HW_INTERRUPT | \
2361			AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT |\
2362				 AEU_INPUTS_ATTN_BITS_MISC_HW_INTERRUPT)
2363#define HW_PRTY_ASSERT_SET_2	(AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR | \
2364				 AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR | \
2365			AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR |\
2366				 AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR | \
2367				 AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR | \
2368				 AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR |\
2369				 AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR | \
2370				 AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR)
2371
2372#define HW_PRTY_ASSERT_SET_3 (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
2373		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
2374		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY | \
2375		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
2376
2377#define HW_PRTY_ASSERT_SET_4 (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | \
2378			      AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)
2379
2380#define MULTI_MASK			0x7f
2381
2382#define DEF_USB_FUNC_OFF	offsetof(struct cstorm_def_status_block_u, func)
2383#define DEF_CSB_FUNC_OFF	offsetof(struct cstorm_def_status_block_c, func)
2384#define DEF_XSB_FUNC_OFF	offsetof(struct xstorm_def_status_block, func)
2385#define DEF_TSB_FUNC_OFF	offsetof(struct tstorm_def_status_block, func)
2386
2387#define DEF_USB_IGU_INDEX_OFF \
2388			offsetof(struct cstorm_def_status_block_u, igu_index)
2389#define DEF_CSB_IGU_INDEX_OFF \
2390			offsetof(struct cstorm_def_status_block_c, igu_index)
2391#define DEF_XSB_IGU_INDEX_OFF \
2392			offsetof(struct xstorm_def_status_block, igu_index)
2393#define DEF_TSB_IGU_INDEX_OFF \
2394			offsetof(struct tstorm_def_status_block, igu_index)
2395
2396#define DEF_USB_SEGMENT_OFF \
2397			offsetof(struct cstorm_def_status_block_u, segment)
2398#define DEF_CSB_SEGMENT_OFF \
2399			offsetof(struct cstorm_def_status_block_c, segment)
2400#define DEF_XSB_SEGMENT_OFF \
2401			offsetof(struct xstorm_def_status_block, segment)
2402#define DEF_TSB_SEGMENT_OFF \
2403			offsetof(struct tstorm_def_status_block, segment)
2404
2405#define BNX2X_SP_DSB_INDEX \
2406		(&bp->def_status_blk->sp_sb.\
2407					index_values[HC_SP_INDEX_ETH_DEF_CONS])
2408
2409#define CAM_IS_INVALID(x) \
2410	(GET_FLAG(x.flags, \
2411	MAC_CONFIGURATION_ENTRY_ACTION_TYPE) == \
2412	(T_ETH_MAC_COMMAND_INVALIDATE))
2413
2414/* Number of u32 elements in MC hash array */
2415#define MC_HASH_SIZE			8
2416#define MC_HASH_OFFSET(bp, i)		(BAR_TSTRORM_INTMEM + \
2417	TSTORM_APPROXIMATE_MATCH_MULTICAST_FILTERING_OFFSET(BP_FUNC(bp)) + i*4)
2418
2419#ifndef PXP2_REG_PXP2_INT_STS
2420#define PXP2_REG_PXP2_INT_STS		PXP2_REG_PXP2_INT_STS_0
2421#endif
2422
2423#ifndef ETH_MAX_RX_CLIENTS_E2
2424#define ETH_MAX_RX_CLIENTS_E2		ETH_MAX_RX_CLIENTS_E1H
2425#endif
2426
2427#define BNX2X_VPD_LEN			128
2428#define VENDOR_ID_LEN			4
2429
2430#define VF_ACQUIRE_THRESH		3
2431#define VF_ACQUIRE_MAC_FILTERS		1
2432#define VF_ACQUIRE_MC_FILTERS		10
2433
2434#define GOOD_ME_REG(me_reg) (((me_reg) & ME_REG_VF_VALID) && \
2435			    (!((me_reg) & ME_REG_VF_ERR)))
2436int bnx2x_nic_load_analyze_req(struct bnx2x *bp, u32 load_code);
2437/* Congestion management fairness mode */
2438#define CMNG_FNS_NONE			0
2439#define CMNG_FNS_MINMAX			1
2440
2441#define HC_SEG_ACCESS_DEF		0   /*Driver decision 0-3*/
2442#define HC_SEG_ACCESS_ATTN		4
2443#define HC_SEG_ACCESS_NORM		0   /*Driver decision 0-1*/
2444
2445static const u32 dmae_reg_go_c[] = {
2446	DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
2447	DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
2448	DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
2449	DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
2450};
2451
2452void bnx2x_set_ethtool_ops(struct bnx2x *bp, struct net_device *netdev);
2453void bnx2x_notify_link_changed(struct bnx2x *bp);
2454
2455#define BNX2X_MF_SD_PROTOCOL(bp) \
2456	((bp)->mf_config[BP_VN(bp)] & FUNC_MF_CFG_PROTOCOL_MASK)
2457
2458#define BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) \
2459	(BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_ISCSI)
2460
2461#define BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) \
2462	(BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_FCOE)
2463
2464#define IS_MF_ISCSI_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp))
2465#define IS_MF_FCOE_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))
2466
2467#define BNX2X_MF_EXT_PROTOCOL_FCOE(bp)  ((bp)->mf_ext_config & \
2468					 MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)
2469
2470#define IS_MF_FCOE_AFEX(bp) (IS_MF_AFEX(bp) && BNX2X_MF_EXT_PROTOCOL_FCOE(bp))
2471#define IS_MF_STORAGE_SD(bp) (IS_MF_SD(bp) && \
2472				(BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) || \
2473				 BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
2474
2475#define SET_FLAG(value, mask, flag) \
2476	do {\
2477		(value) &= ~(mask);\
2478		(value) |= ((flag) << (mask##_SHIFT));\
2479	} while (0)
2480
2481#define GET_FLAG(value, mask) \
2482	(((value) & (mask)) >> (mask##_SHIFT))
2483
2484#define GET_FIELD(value, fname) \
2485	(((value) & (fname##_MASK)) >> (fname##_SHIFT))
2486
2487enum {
2488	SWITCH_UPDATE,
2489	AFEX_UPDATE,
2490};
2491
2492#define NUM_MACS	8
2493
2494enum bnx2x_pci_bus_speed {
2495	BNX2X_PCI_LINK_SPEED_2500 = 2500,
2496	BNX2X_PCI_LINK_SPEED_5000 = 5000,
2497	BNX2X_PCI_LINK_SPEED_8000 = 8000
2498};
2499
2500void bnx2x_set_local_cmng(struct bnx2x *bp);
2501#endif /* bnx2x.h */
2502