sb1250-mac.c revision 0ab75ae81da249988bf3c7a38e0a48d4b9be1e0c
1/*
2 * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
3 * Copyright (c) 2006, 2007  Maciej W. Rozycki
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
17 *
18 *
19 * This driver is designed for the Broadcom SiByte SOC built-in
20 * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
21 *
22 * Updated to the driver model and the PHY abstraction layer
23 * by Maciej W. Rozycki.
24 */
25
26#include <linux/bug.h>
27#include <linux/module.h>
28#include <linux/kernel.h>
29#include <linux/string.h>
30#include <linux/timer.h>
31#include <linux/errno.h>
32#include <linux/ioport.h>
33#include <linux/slab.h>
34#include <linux/interrupt.h>
35#include <linux/netdevice.h>
36#include <linux/etherdevice.h>
37#include <linux/skbuff.h>
38#include <linux/init.h>
39#include <linux/bitops.h>
40#include <linux/err.h>
41#include <linux/ethtool.h>
42#include <linux/mii.h>
43#include <linux/phy.h>
44#include <linux/platform_device.h>
45#include <linux/prefetch.h>
46
47#include <asm/cache.h>
48#include <asm/io.h>
49#include <asm/processor.h>	/* Processor type for cache alignment. */
50
51/* Operational parameters that usually are not changed. */
52
53#define CONFIG_SBMAC_COALESCE
54
55/* Time in jiffies before concluding the transmitter is hung. */
56#define TX_TIMEOUT  (2*HZ)
57
58
59MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
60MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
61
62/* A few user-configurable values which may be modified when a driver
63   module is loaded. */
64
65/* 1 normal messages, 0 quiet .. 7 verbose. */
66static int debug = 1;
67module_param(debug, int, S_IRUGO);
68MODULE_PARM_DESC(debug, "Debug messages");
69
70#ifdef CONFIG_SBMAC_COALESCE
71static int int_pktcnt_tx = 255;
72module_param(int_pktcnt_tx, int, S_IRUGO);
73MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
74
75static int int_timeout_tx = 255;
76module_param(int_timeout_tx, int, S_IRUGO);
77MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
78
79static int int_pktcnt_rx = 64;
80module_param(int_pktcnt_rx, int, S_IRUGO);
81MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
82
83static int int_timeout_rx = 64;
84module_param(int_timeout_rx, int, S_IRUGO);
85MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
86#endif
87
88#include <asm/sibyte/board.h>
89#include <asm/sibyte/sb1250.h>
90#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
91#include <asm/sibyte/bcm1480_regs.h>
92#include <asm/sibyte/bcm1480_int.h>
93#define R_MAC_DMA_OODPKTLOST_RX	R_MAC_DMA_OODPKTLOST
94#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
95#include <asm/sibyte/sb1250_regs.h>
96#include <asm/sibyte/sb1250_int.h>
97#else
98#error invalid SiByte MAC configuration
99#endif
100#include <asm/sibyte/sb1250_scd.h>
101#include <asm/sibyte/sb1250_mac.h>
102#include <asm/sibyte/sb1250_dma.h>
103
104#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
105#define UNIT_INT(n)		(K_BCM1480_INT_MAC_0 + ((n) * 2))
106#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
107#define UNIT_INT(n)		(K_INT_MAC_0 + (n))
108#else
109#error invalid SiByte MAC configuration
110#endif
111
112#ifdef K_INT_PHY
113#define SBMAC_PHY_INT			K_INT_PHY
114#else
115#define SBMAC_PHY_INT			PHY_POLL
116#endif
117
118/**********************************************************************
119 *  Simple types
120 ********************************************************************* */
121
122enum sbmac_speed {
123	sbmac_speed_none = 0,
124	sbmac_speed_10 = SPEED_10,
125	sbmac_speed_100 = SPEED_100,
126	sbmac_speed_1000 = SPEED_1000,
127};
128
129enum sbmac_duplex {
130	sbmac_duplex_none = -1,
131	sbmac_duplex_half = DUPLEX_HALF,
132	sbmac_duplex_full = DUPLEX_FULL,
133};
134
135enum sbmac_fc {
136	sbmac_fc_none,
137	sbmac_fc_disabled,
138	sbmac_fc_frame,
139	sbmac_fc_collision,
140	sbmac_fc_carrier,
141};
142
143enum sbmac_state {
144	sbmac_state_uninit,
145	sbmac_state_off,
146	sbmac_state_on,
147	sbmac_state_broken,
148};
149
150
151/**********************************************************************
152 *  Macros
153 ********************************************************************* */
154
155
156#define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
157			  (d)->sbdma_dscrtable : (d)->f+1)
158
159
160#define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
161
162#define SBMAC_MAX_TXDESCR	256
163#define SBMAC_MAX_RXDESCR	256
164
165#define ENET_PACKET_SIZE	1518
166/*#define ENET_PACKET_SIZE	9216 */
167
168/**********************************************************************
169 *  DMA Descriptor structure
170 ********************************************************************* */
171
172struct sbdmadscr {
173	uint64_t  dscr_a;
174	uint64_t  dscr_b;
175};
176
177/**********************************************************************
178 *  DMA Controller structure
179 ********************************************************************* */
180
181struct sbmacdma {
182
183	/*
184	 * This stuff is used to identify the channel and the registers
185	 * associated with it.
186	 */
187	struct sbmac_softc	*sbdma_eth;	/* back pointer to associated
188						   MAC */
189	int			sbdma_channel;	/* channel number */
190	int			sbdma_txdir;	/* direction (1=transmit) */
191	int			sbdma_maxdescr;	/* total # of descriptors
192						   in ring */
193#ifdef CONFIG_SBMAC_COALESCE
194	int			sbdma_int_pktcnt;
195						/* # descriptors rx/tx
196						   before interrupt */
197	int			sbdma_int_timeout;
198						/* # usec rx/tx interrupt */
199#endif
200	void __iomem		*sbdma_config0;	/* DMA config register 0 */
201	void __iomem		*sbdma_config1;	/* DMA config register 1 */
202	void __iomem		*sbdma_dscrbase;
203						/* descriptor base address */
204	void __iomem		*sbdma_dscrcnt;	/* descriptor count register */
205	void __iomem		*sbdma_curdscr;	/* current descriptor
206						   address */
207	void __iomem		*sbdma_oodpktlost;
208						/* pkt drop (rx only) */
209
210	/*
211	 * This stuff is for maintenance of the ring
212	 */
213	void			*sbdma_dscrtable_unaligned;
214	struct sbdmadscr	*sbdma_dscrtable;
215						/* base of descriptor table */
216	struct sbdmadscr	*sbdma_dscrtable_end;
217						/* end of descriptor table */
218	struct sk_buff		**sbdma_ctxtable;
219						/* context table, one
220						   per descr */
221	dma_addr_t		sbdma_dscrtable_phys;
222						/* and also the phys addr */
223	struct sbdmadscr	*sbdma_addptr;	/* next dscr for sw to add */
224	struct sbdmadscr	*sbdma_remptr;	/* next dscr for sw
225						   to remove */
226};
227
228
229/**********************************************************************
230 *  Ethernet softc structure
231 ********************************************************************* */
232
233struct sbmac_softc {
234
235	/*
236	 * Linux-specific things
237	 */
238	struct net_device	*sbm_dev;	/* pointer to linux device */
239	struct napi_struct	napi;
240	struct phy_device	*phy_dev;	/* the associated PHY device */
241	struct mii_bus		*mii_bus;	/* the MII bus */
242	int			phy_irq[PHY_MAX_ADDR];
243	spinlock_t		sbm_lock;	/* spin lock */
244	int			sbm_devflags;	/* current device flags */
245
246	/*
247	 * Controller-specific things
248	 */
249	void __iomem		*sbm_base;	/* MAC's base address */
250	enum sbmac_state	sbm_state;	/* current state */
251
252	void __iomem		*sbm_macenable;	/* MAC Enable Register */
253	void __iomem		*sbm_maccfg;	/* MAC Config Register */
254	void __iomem		*sbm_fifocfg;	/* FIFO Config Register */
255	void __iomem		*sbm_framecfg;	/* Frame Config Register */
256	void __iomem		*sbm_rxfilter;	/* Receive Filter Register */
257	void __iomem		*sbm_isr;	/* Interrupt Status Register */
258	void __iomem		*sbm_imr;	/* Interrupt Mask Register */
259	void __iomem		*sbm_mdio;	/* MDIO Register */
260
261	enum sbmac_speed	sbm_speed;	/* current speed */
262	enum sbmac_duplex	sbm_duplex;	/* current duplex */
263	enum sbmac_fc		sbm_fc;		/* cur. flow control setting */
264	int			sbm_pause;	/* current pause setting */
265	int			sbm_link;	/* current link state */
266
267	unsigned char		sbm_hwaddr[ETH_ALEN];
268
269	struct sbmacdma		sbm_txdma;	/* only channel 0 for now */
270	struct sbmacdma		sbm_rxdma;
271	int			rx_hw_checksum;
272	int			sbe_idx;
273};
274
275
276/**********************************************************************
277 *  Externs
278 ********************************************************************* */
279
280/**********************************************************************
281 *  Prototypes
282 ********************************************************************* */
283
284static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
285			  int txrx, int maxdescr);
286static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
287static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
288			       struct sk_buff *m);
289static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
290static void sbdma_emptyring(struct sbmacdma *d);
291static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
292static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
293			    int work_to_do, int poll);
294static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
295			     int poll);
296static int sbmac_initctx(struct sbmac_softc *s);
297static void sbmac_channel_start(struct sbmac_softc *s);
298static void sbmac_channel_stop(struct sbmac_softc *s);
299static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
300						enum sbmac_state);
301static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
302static uint64_t sbmac_addr2reg(unsigned char *ptr);
303static irqreturn_t sbmac_intr(int irq, void *dev_instance);
304static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
305static void sbmac_setmulti(struct sbmac_softc *sc);
306static int sbmac_init(struct platform_device *pldev, long long base);
307static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
308static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
309			    enum sbmac_fc fc);
310
311static int sbmac_open(struct net_device *dev);
312static void sbmac_tx_timeout (struct net_device *dev);
313static void sbmac_set_rx_mode(struct net_device *dev);
314static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
315static int sbmac_close(struct net_device *dev);
316static int sbmac_poll(struct napi_struct *napi, int budget);
317
318static void sbmac_mii_poll(struct net_device *dev);
319static int sbmac_mii_probe(struct net_device *dev);
320
321static void sbmac_mii_sync(void __iomem *sbm_mdio);
322static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
323			       int bitcnt);
324static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
325static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
326			   u16 val);
327
328
329/**********************************************************************
330 *  Globals
331 ********************************************************************* */
332
333static char sbmac_string[] = "sb1250-mac";
334
335static char sbmac_mdio_string[] = "sb1250-mac-mdio";
336
337
338/**********************************************************************
339 *  MDIO constants
340 ********************************************************************* */
341
342#define	MII_COMMAND_START	0x01
343#define	MII_COMMAND_READ	0x02
344#define	MII_COMMAND_WRITE	0x01
345#define	MII_COMMAND_ACK		0x02
346
347#define M_MAC_MDIO_DIR_OUTPUT	0		/* for clarity */
348
349#define ENABLE 		1
350#define DISABLE		0
351
352/**********************************************************************
353 *  SBMAC_MII_SYNC(sbm_mdio)
354 *
355 *  Synchronize with the MII - send a pattern of bits to the MII
356 *  that will guarantee that it is ready to accept a command.
357 *
358 *  Input parameters:
359 *  	   sbm_mdio - address of the MAC's MDIO register
360 *
361 *  Return value:
362 *  	   nothing
363 ********************************************************************* */
364
365static void sbmac_mii_sync(void __iomem *sbm_mdio)
366{
367	int cnt;
368	uint64_t bits;
369	int mac_mdio_genc;
370
371	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
372
373	bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
374
375	__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
376
377	for (cnt = 0; cnt < 32; cnt++) {
378		__raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
379		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
380	}
381}
382
383/**********************************************************************
384 *  SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
385 *
386 *  Send some bits to the MII.  The bits to be sent are right-
387 *  justified in the 'data' parameter.
388 *
389 *  Input parameters:
390 *  	   sbm_mdio - address of the MAC's MDIO register
391 *  	   data     - data to send
392 *  	   bitcnt   - number of bits to send
393 ********************************************************************* */
394
395static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
396			       int bitcnt)
397{
398	int i;
399	uint64_t bits;
400	unsigned int curmask;
401	int mac_mdio_genc;
402
403	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
404
405	bits = M_MAC_MDIO_DIR_OUTPUT;
406	__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
407
408	curmask = 1 << (bitcnt - 1);
409
410	for (i = 0; i < bitcnt; i++) {
411		if (data & curmask)
412			bits |= M_MAC_MDIO_OUT;
413		else bits &= ~M_MAC_MDIO_OUT;
414		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
415		__raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
416		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
417		curmask >>= 1;
418	}
419}
420
421
422
423/**********************************************************************
424 *  SBMAC_MII_READ(bus, phyaddr, regidx)
425 *  Read a PHY register.
426 *
427 *  Input parameters:
428 *  	   bus     - MDIO bus handle
429 *  	   phyaddr - PHY's address
430 *  	   regnum  - index of register to read
431 *
432 *  Return value:
433 *  	   value read, or 0xffff if an error occurred.
434 ********************************************************************* */
435
436static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
437{
438	struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
439	void __iomem *sbm_mdio = sc->sbm_mdio;
440	int idx;
441	int error;
442	int regval;
443	int mac_mdio_genc;
444
445	/*
446	 * Synchronize ourselves so that the PHY knows the next
447	 * thing coming down is a command
448	 */
449	sbmac_mii_sync(sbm_mdio);
450
451	/*
452	 * Send the data to the PHY.  The sequence is
453	 * a "start" command (2 bits)
454	 * a "read" command (2 bits)
455	 * the PHY addr (5 bits)
456	 * the register index (5 bits)
457	 */
458	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
459	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
460	sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
461	sbmac_mii_senddata(sbm_mdio, regidx, 5);
462
463	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
464
465	/*
466	 * Switch the port around without a clock transition.
467	 */
468	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
469
470	/*
471	 * Send out a clock pulse to signal we want the status
472	 */
473	__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
474		     sbm_mdio);
475	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
476
477	/*
478	 * If an error occurred, the PHY will signal '1' back
479	 */
480	error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
481
482	/*
483	 * Issue an 'idle' clock pulse, but keep the direction
484	 * the same.
485	 */
486	__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
487		     sbm_mdio);
488	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
489
490	regval = 0;
491
492	for (idx = 0; idx < 16; idx++) {
493		regval <<= 1;
494
495		if (error == 0) {
496			if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
497				regval |= 1;
498		}
499
500		__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
501			     sbm_mdio);
502		__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
503	}
504
505	/* Switch back to output */
506	__raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
507
508	if (error == 0)
509		return regval;
510	return 0xffff;
511}
512
513
514/**********************************************************************
515 *  SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
516 *
517 *  Write a value to a PHY register.
518 *
519 *  Input parameters:
520 *  	   bus     - MDIO bus handle
521 *  	   phyaddr - PHY to use
522 *  	   regidx  - register within the PHY
523 *  	   regval  - data to write to register
524 *
525 *  Return value:
526 *  	   0 for success
527 ********************************************************************* */
528
529static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
530			   u16 regval)
531{
532	struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
533	void __iomem *sbm_mdio = sc->sbm_mdio;
534	int mac_mdio_genc;
535
536	sbmac_mii_sync(sbm_mdio);
537
538	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
539	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
540	sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
541	sbmac_mii_senddata(sbm_mdio, regidx, 5);
542	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
543	sbmac_mii_senddata(sbm_mdio, regval, 16);
544
545	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
546
547	__raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
548
549	return 0;
550}
551
552
553
554/**********************************************************************
555 *  SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
556 *
557 *  Initialize a DMA channel context.  Since there are potentially
558 *  eight DMA channels per MAC, it's nice to do this in a standard
559 *  way.
560 *
561 *  Input parameters:
562 *  	   d - struct sbmacdma (DMA channel context)
563 *  	   s - struct sbmac_softc (pointer to a MAC)
564 *  	   chan - channel number (0..1 right now)
565 *  	   txrx - Identifies DMA_TX or DMA_RX for channel direction
566 *      maxdescr - number of descriptors
567 *
568 *  Return value:
569 *  	   nothing
570 ********************************************************************* */
571
572static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
573			  int txrx, int maxdescr)
574{
575#ifdef CONFIG_SBMAC_COALESCE
576	int int_pktcnt, int_timeout;
577#endif
578
579	/*
580	 * Save away interesting stuff in the structure
581	 */
582
583	d->sbdma_eth       = s;
584	d->sbdma_channel   = chan;
585	d->sbdma_txdir     = txrx;
586
587#if 0
588	/* RMON clearing */
589	s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
590#endif
591
592	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
593	__raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
594	__raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
595	__raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
596	__raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
597	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
598	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
599	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
600	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
601	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
602	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
603	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
604	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
605	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
606	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
607	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
608	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
609	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
610	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
611	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
612	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
613
614	/*
615	 * initialize register pointers
616	 */
617
618	d->sbdma_config0 =
619		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
620	d->sbdma_config1 =
621		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
622	d->sbdma_dscrbase =
623		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
624	d->sbdma_dscrcnt =
625		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
626	d->sbdma_curdscr =
627		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
628	if (d->sbdma_txdir)
629		d->sbdma_oodpktlost = NULL;
630	else
631		d->sbdma_oodpktlost =
632			s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
633
634	/*
635	 * Allocate memory for the ring
636	 */
637
638	d->sbdma_maxdescr = maxdescr;
639
640	d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
641					       sizeof(*d->sbdma_dscrtable),
642					       GFP_KERNEL);
643
644	/*
645	 * The descriptor table must be aligned to at least 16 bytes or the
646	 * MAC will corrupt it.
647	 */
648	d->sbdma_dscrtable = (struct sbdmadscr *)
649			     ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
650				   sizeof(*d->sbdma_dscrtable));
651
652	d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
653
654	d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
655
656	/*
657	 * And context table
658	 */
659
660	d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
661				    sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
662
663#ifdef CONFIG_SBMAC_COALESCE
664	/*
665	 * Setup Rx/Tx DMA coalescing defaults
666	 */
667
668	int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
669	if ( int_pktcnt ) {
670		d->sbdma_int_pktcnt = int_pktcnt;
671	} else {
672		d->sbdma_int_pktcnt = 1;
673	}
674
675	int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
676	if ( int_timeout ) {
677		d->sbdma_int_timeout = int_timeout;
678	} else {
679		d->sbdma_int_timeout = 0;
680	}
681#endif
682
683}
684
685/**********************************************************************
686 *  SBDMA_CHANNEL_START(d)
687 *
688 *  Initialize the hardware registers for a DMA channel.
689 *
690 *  Input parameters:
691 *  	   d - DMA channel to init (context must be previously init'd
692 *         rxtx - DMA_RX or DMA_TX depending on what type of channel
693 *
694 *  Return value:
695 *  	   nothing
696 ********************************************************************* */
697
698static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
699{
700	/*
701	 * Turn on the DMA channel
702	 */
703
704#ifdef CONFIG_SBMAC_COALESCE
705	__raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
706		       0, d->sbdma_config1);
707	__raw_writeq(M_DMA_EOP_INT_EN |
708		       V_DMA_RINGSZ(d->sbdma_maxdescr) |
709		       V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
710		       0, d->sbdma_config0);
711#else
712	__raw_writeq(0, d->sbdma_config1);
713	__raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
714		       0, d->sbdma_config0);
715#endif
716
717	__raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
718
719	/*
720	 * Initialize ring pointers
721	 */
722
723	d->sbdma_addptr = d->sbdma_dscrtable;
724	d->sbdma_remptr = d->sbdma_dscrtable;
725}
726
727/**********************************************************************
728 *  SBDMA_CHANNEL_STOP(d)
729 *
730 *  Initialize the hardware registers for a DMA channel.
731 *
732 *  Input parameters:
733 *  	   d - DMA channel to init (context must be previously init'd
734 *
735 *  Return value:
736 *  	   nothing
737 ********************************************************************* */
738
739static void sbdma_channel_stop(struct sbmacdma *d)
740{
741	/*
742	 * Turn off the DMA channel
743	 */
744
745	__raw_writeq(0, d->sbdma_config1);
746
747	__raw_writeq(0, d->sbdma_dscrbase);
748
749	__raw_writeq(0, d->sbdma_config0);
750
751	/*
752	 * Zero ring pointers
753	 */
754
755	d->sbdma_addptr = NULL;
756	d->sbdma_remptr = NULL;
757}
758
759static inline void sbdma_align_skb(struct sk_buff *skb,
760				   unsigned int power2, unsigned int offset)
761{
762	unsigned char *addr = skb->data;
763	unsigned char *newaddr = PTR_ALIGN(addr, power2);
764
765	skb_reserve(skb, newaddr - addr + offset);
766}
767
768
769/**********************************************************************
770 *  SBDMA_ADD_RCVBUFFER(d,sb)
771 *
772 *  Add a buffer to the specified DMA channel.   For receive channels,
773 *  this queues a buffer for inbound packets.
774 *
775 *  Input parameters:
776 *	   sc - softc structure
777 *  	    d - DMA channel descriptor
778 * 	   sb - sk_buff to add, or NULL if we should allocate one
779 *
780 *  Return value:
781 *  	   0 if buffer could not be added (ring is full)
782 *  	   1 if buffer added successfully
783 ********************************************************************* */
784
785
786static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
787			       struct sk_buff *sb)
788{
789	struct net_device *dev = sc->sbm_dev;
790	struct sbdmadscr *dsc;
791	struct sbdmadscr *nextdsc;
792	struct sk_buff *sb_new = NULL;
793	int pktsize = ENET_PACKET_SIZE;
794
795	/* get pointer to our current place in the ring */
796
797	dsc = d->sbdma_addptr;
798	nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
799
800	/*
801	 * figure out if the ring is full - if the next descriptor
802	 * is the same as the one that we're going to remove from
803	 * the ring, the ring is full
804	 */
805
806	if (nextdsc == d->sbdma_remptr) {
807		return -ENOSPC;
808	}
809
810	/*
811	 * Allocate a sk_buff if we don't already have one.
812	 * If we do have an sk_buff, reset it so that it's empty.
813	 *
814	 * Note: sk_buffs don't seem to be guaranteed to have any sort
815	 * of alignment when they are allocated.  Therefore, allocate enough
816	 * extra space to make sure that:
817	 *
818	 *    1. the data does not start in the middle of a cache line.
819	 *    2. The data does not end in the middle of a cache line
820	 *    3. The buffer can be aligned such that the IP addresses are
821	 *       naturally aligned.
822	 *
823	 *  Remember, the SOCs MAC writes whole cache lines at a time,
824	 *  without reading the old contents first.  So, if the sk_buff's
825	 *  data portion starts in the middle of a cache line, the SOC
826	 *  DMA will trash the beginning (and ending) portions.
827	 */
828
829	if (sb == NULL) {
830		sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
831					       SMP_CACHE_BYTES * 2 +
832					       NET_IP_ALIGN);
833		if (sb_new == NULL)
834			return -ENOBUFS;
835
836		sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
837	}
838	else {
839		sb_new = sb;
840		/*
841		 * nothing special to reinit buffer, it's already aligned
842		 * and sb->data already points to a good place.
843		 */
844	}
845
846	/*
847	 * fill in the descriptor
848	 */
849
850#ifdef CONFIG_SBMAC_COALESCE
851	/*
852	 * Do not interrupt per DMA transfer.
853	 */
854	dsc->dscr_a = virt_to_phys(sb_new->data) |
855		V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
856#else
857	dsc->dscr_a = virt_to_phys(sb_new->data) |
858		V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
859		M_DMA_DSCRA_INTERRUPT;
860#endif
861
862	/* receiving: no options */
863	dsc->dscr_b = 0;
864
865	/*
866	 * fill in the context
867	 */
868
869	d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
870
871	/*
872	 * point at next packet
873	 */
874
875	d->sbdma_addptr = nextdsc;
876
877	/*
878	 * Give the buffer to the DMA engine.
879	 */
880
881	__raw_writeq(1, d->sbdma_dscrcnt);
882
883	return 0;					/* we did it */
884}
885
886/**********************************************************************
887 *  SBDMA_ADD_TXBUFFER(d,sb)
888 *
889 *  Add a transmit buffer to the specified DMA channel, causing a
890 *  transmit to start.
891 *
892 *  Input parameters:
893 *  	   d - DMA channel descriptor
894 * 	   sb - sk_buff to add
895 *
896 *  Return value:
897 *  	   0 transmit queued successfully
898 *  	   otherwise error code
899 ********************************************************************* */
900
901
902static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
903{
904	struct sbdmadscr *dsc;
905	struct sbdmadscr *nextdsc;
906	uint64_t phys;
907	uint64_t ncb;
908	int length;
909
910	/* get pointer to our current place in the ring */
911
912	dsc = d->sbdma_addptr;
913	nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
914
915	/*
916	 * figure out if the ring is full - if the next descriptor
917	 * is the same as the one that we're going to remove from
918	 * the ring, the ring is full
919	 */
920
921	if (nextdsc == d->sbdma_remptr) {
922		return -ENOSPC;
923	}
924
925	/*
926	 * Under Linux, it's not necessary to copy/coalesce buffers
927	 * like it is on NetBSD.  We think they're all contiguous,
928	 * but that may not be true for GBE.
929	 */
930
931	length = sb->len;
932
933	/*
934	 * fill in the descriptor.  Note that the number of cache
935	 * blocks in the descriptor is the number of blocks
936	 * *spanned*, so we need to add in the offset (if any)
937	 * while doing the calculation.
938	 */
939
940	phys = virt_to_phys(sb->data);
941	ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
942
943	dsc->dscr_a = phys |
944		V_DMA_DSCRA_A_SIZE(ncb) |
945#ifndef CONFIG_SBMAC_COALESCE
946		M_DMA_DSCRA_INTERRUPT |
947#endif
948		M_DMA_ETHTX_SOP;
949
950	/* transmitting: set outbound options and length */
951
952	dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
953		V_DMA_DSCRB_PKT_SIZE(length);
954
955	/*
956	 * fill in the context
957	 */
958
959	d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
960
961	/*
962	 * point at next packet
963	 */
964
965	d->sbdma_addptr = nextdsc;
966
967	/*
968	 * Give the buffer to the DMA engine.
969	 */
970
971	__raw_writeq(1, d->sbdma_dscrcnt);
972
973	return 0;					/* we did it */
974}
975
976
977
978
979/**********************************************************************
980 *  SBDMA_EMPTYRING(d)
981 *
982 *  Free all allocated sk_buffs on the specified DMA channel;
983 *
984 *  Input parameters:
985 *  	   d  - DMA channel
986 *
987 *  Return value:
988 *  	   nothing
989 ********************************************************************* */
990
991static void sbdma_emptyring(struct sbmacdma *d)
992{
993	int idx;
994	struct sk_buff *sb;
995
996	for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
997		sb = d->sbdma_ctxtable[idx];
998		if (sb) {
999			dev_kfree_skb(sb);
1000			d->sbdma_ctxtable[idx] = NULL;
1001		}
1002	}
1003}
1004
1005
1006/**********************************************************************
1007 *  SBDMA_FILLRING(d)
1008 *
1009 *  Fill the specified DMA channel (must be receive channel)
1010 *  with sk_buffs
1011 *
1012 *  Input parameters:
1013 *	   sc - softc structure
1014 *  	    d - DMA channel
1015 *
1016 *  Return value:
1017 *  	   nothing
1018 ********************************************************************* */
1019
1020static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1021{
1022	int idx;
1023
1024	for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1025		if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1026			break;
1027	}
1028}
1029
1030#ifdef CONFIG_NET_POLL_CONTROLLER
1031static void sbmac_netpoll(struct net_device *netdev)
1032{
1033	struct sbmac_softc *sc = netdev_priv(netdev);
1034	int irq = sc->sbm_dev->irq;
1035
1036	__raw_writeq(0, sc->sbm_imr);
1037
1038	sbmac_intr(irq, netdev);
1039
1040#ifdef CONFIG_SBMAC_COALESCE
1041	__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1042	((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1043	sc->sbm_imr);
1044#else
1045	__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1046	(M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1047#endif
1048}
1049#endif
1050
1051/**********************************************************************
1052 *  SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1053 *
1054 *  Process "completed" receive buffers on the specified DMA channel.
1055 *
1056 *  Input parameters:
1057 *            sc - softc structure
1058 *  	       d - DMA channel context
1059 *    work_to_do - no. of packets to process before enabling interrupt
1060 *                 again (for NAPI)
1061 *          poll - 1: using polling (for NAPI)
1062 *
1063 *  Return value:
1064 *  	   nothing
1065 ********************************************************************* */
1066
1067static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1068			    int work_to_do, int poll)
1069{
1070	struct net_device *dev = sc->sbm_dev;
1071	int curidx;
1072	int hwidx;
1073	struct sbdmadscr *dsc;
1074	struct sk_buff *sb;
1075	int len;
1076	int work_done = 0;
1077	int dropped = 0;
1078
1079	prefetch(d);
1080
1081again:
1082	/* Check if the HW dropped any frames */
1083	dev->stats.rx_fifo_errors
1084	    += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1085	__raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1086
1087	while (work_to_do-- > 0) {
1088		/*
1089		 * figure out where we are (as an index) and where
1090		 * the hardware is (also as an index)
1091		 *
1092		 * This could be done faster if (for example) the
1093		 * descriptor table was page-aligned and contiguous in
1094		 * both virtual and physical memory -- you could then
1095		 * just compare the low-order bits of the virtual address
1096		 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1097		 */
1098
1099		dsc = d->sbdma_remptr;
1100		curidx = dsc - d->sbdma_dscrtable;
1101
1102		prefetch(dsc);
1103		prefetch(&d->sbdma_ctxtable[curidx]);
1104
1105		hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1106			 d->sbdma_dscrtable_phys) /
1107			sizeof(*d->sbdma_dscrtable);
1108
1109		/*
1110		 * If they're the same, that means we've processed all
1111		 * of the descriptors up to (but not including) the one that
1112		 * the hardware is working on right now.
1113		 */
1114
1115		if (curidx == hwidx)
1116			goto done;
1117
1118		/*
1119		 * Otherwise, get the packet's sk_buff ptr back
1120		 */
1121
1122		sb = d->sbdma_ctxtable[curidx];
1123		d->sbdma_ctxtable[curidx] = NULL;
1124
1125		len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1126
1127		/*
1128		 * Check packet status.  If good, process it.
1129		 * If not, silently drop it and put it back on the
1130		 * receive ring.
1131		 */
1132
1133		if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1134
1135			/*
1136			 * Add a new buffer to replace the old one.  If we fail
1137			 * to allocate a buffer, we're going to drop this
1138			 * packet and put it right back on the receive ring.
1139			 */
1140
1141			if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1142				     -ENOBUFS)) {
1143				dev->stats.rx_dropped++;
1144				/* Re-add old buffer */
1145				sbdma_add_rcvbuffer(sc, d, sb);
1146				/* No point in continuing at the moment */
1147				printk(KERN_ERR "dropped packet (1)\n");
1148				d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1149				goto done;
1150			} else {
1151				/*
1152				 * Set length into the packet
1153				 */
1154				skb_put(sb,len);
1155
1156				/*
1157				 * Buffer has been replaced on the
1158				 * receive ring.  Pass the buffer to
1159				 * the kernel
1160				 */
1161				sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1162				/* Check hw IPv4/TCP checksum if supported */
1163				if (sc->rx_hw_checksum == ENABLE) {
1164					if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1165					    !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1166						sb->ip_summed = CHECKSUM_UNNECESSARY;
1167						/* don't need to set sb->csum */
1168					} else {
1169						skb_checksum_none_assert(sb);
1170					}
1171				}
1172				prefetch(sb->data);
1173				prefetch((const void *)(((char *)sb->data)+32));
1174				if (poll)
1175					dropped = netif_receive_skb(sb);
1176				else
1177					dropped = netif_rx(sb);
1178
1179				if (dropped == NET_RX_DROP) {
1180					dev->stats.rx_dropped++;
1181					d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1182					goto done;
1183				}
1184				else {
1185					dev->stats.rx_bytes += len;
1186					dev->stats.rx_packets++;
1187				}
1188			}
1189		} else {
1190			/*
1191			 * Packet was mangled somehow.  Just drop it and
1192			 * put it back on the receive ring.
1193			 */
1194			dev->stats.rx_errors++;
1195			sbdma_add_rcvbuffer(sc, d, sb);
1196		}
1197
1198
1199		/*
1200		 * .. and advance to the next buffer.
1201		 */
1202
1203		d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1204		work_done++;
1205	}
1206	if (!poll) {
1207		work_to_do = 32;
1208		goto again; /* collect fifo drop statistics again */
1209	}
1210done:
1211	return work_done;
1212}
1213
1214/**********************************************************************
1215 *  SBDMA_TX_PROCESS(sc,d)
1216 *
1217 *  Process "completed" transmit buffers on the specified DMA channel.
1218 *  This is normally called within the interrupt service routine.
1219 *  Note that this isn't really ideal for priority channels, since
1220 *  it processes all of the packets on a given channel before
1221 *  returning.
1222 *
1223 *  Input parameters:
1224 *      sc - softc structure
1225 *  	 d - DMA channel context
1226 *    poll - 1: using polling (for NAPI)
1227 *
1228 *  Return value:
1229 *  	   nothing
1230 ********************************************************************* */
1231
1232static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1233			     int poll)
1234{
1235	struct net_device *dev = sc->sbm_dev;
1236	int curidx;
1237	int hwidx;
1238	struct sbdmadscr *dsc;
1239	struct sk_buff *sb;
1240	unsigned long flags;
1241	int packets_handled = 0;
1242
1243	spin_lock_irqsave(&(sc->sbm_lock), flags);
1244
1245	if (d->sbdma_remptr == d->sbdma_addptr)
1246	  goto end_unlock;
1247
1248	hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1249		 d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1250
1251	for (;;) {
1252		/*
1253		 * figure out where we are (as an index) and where
1254		 * the hardware is (also as an index)
1255		 *
1256		 * This could be done faster if (for example) the
1257		 * descriptor table was page-aligned and contiguous in
1258		 * both virtual and physical memory -- you could then
1259		 * just compare the low-order bits of the virtual address
1260		 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1261		 */
1262
1263		curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1264
1265		/*
1266		 * If they're the same, that means we've processed all
1267		 * of the descriptors up to (but not including) the one that
1268		 * the hardware is working on right now.
1269		 */
1270
1271		if (curidx == hwidx)
1272			break;
1273
1274		/*
1275		 * Otherwise, get the packet's sk_buff ptr back
1276		 */
1277
1278		dsc = &(d->sbdma_dscrtable[curidx]);
1279		sb = d->sbdma_ctxtable[curidx];
1280		d->sbdma_ctxtable[curidx] = NULL;
1281
1282		/*
1283		 * Stats
1284		 */
1285
1286		dev->stats.tx_bytes += sb->len;
1287		dev->stats.tx_packets++;
1288
1289		/*
1290		 * for transmits, we just free buffers.
1291		 */
1292
1293		dev_kfree_skb_irq(sb);
1294
1295		/*
1296		 * .. and advance to the next buffer.
1297		 */
1298
1299		d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1300
1301		packets_handled++;
1302
1303	}
1304
1305	/*
1306	 * Decide if we should wake up the protocol or not.
1307	 * Other drivers seem to do this when we reach a low
1308	 * watermark on the transmit queue.
1309	 */
1310
1311	if (packets_handled)
1312		netif_wake_queue(d->sbdma_eth->sbm_dev);
1313
1314end_unlock:
1315	spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1316
1317}
1318
1319
1320
1321/**********************************************************************
1322 *  SBMAC_INITCTX(s)
1323 *
1324 *  Initialize an Ethernet context structure - this is called
1325 *  once per MAC on the 1250.  Memory is allocated here, so don't
1326 *  call it again from inside the ioctl routines that bring the
1327 *  interface up/down
1328 *
1329 *  Input parameters:
1330 *  	   s - sbmac context structure
1331 *
1332 *  Return value:
1333 *  	   0
1334 ********************************************************************* */
1335
1336static int sbmac_initctx(struct sbmac_softc *s)
1337{
1338
1339	/*
1340	 * figure out the addresses of some ports
1341	 */
1342
1343	s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1344	s->sbm_maccfg    = s->sbm_base + R_MAC_CFG;
1345	s->sbm_fifocfg   = s->sbm_base + R_MAC_THRSH_CFG;
1346	s->sbm_framecfg  = s->sbm_base + R_MAC_FRAMECFG;
1347	s->sbm_rxfilter  = s->sbm_base + R_MAC_ADFILTER_CFG;
1348	s->sbm_isr       = s->sbm_base + R_MAC_STATUS;
1349	s->sbm_imr       = s->sbm_base + R_MAC_INT_MASK;
1350	s->sbm_mdio      = s->sbm_base + R_MAC_MDIO;
1351
1352	/*
1353	 * Initialize the DMA channels.  Right now, only one per MAC is used
1354	 * Note: Only do this _once_, as it allocates memory from the kernel!
1355	 */
1356
1357	sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1358	sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1359
1360	/*
1361	 * initial state is OFF
1362	 */
1363
1364	s->sbm_state = sbmac_state_off;
1365
1366	return 0;
1367}
1368
1369
1370static void sbdma_uninitctx(struct sbmacdma *d)
1371{
1372	if (d->sbdma_dscrtable_unaligned) {
1373		kfree(d->sbdma_dscrtable_unaligned);
1374		d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1375	}
1376
1377	if (d->sbdma_ctxtable) {
1378		kfree(d->sbdma_ctxtable);
1379		d->sbdma_ctxtable = NULL;
1380	}
1381}
1382
1383
1384static void sbmac_uninitctx(struct sbmac_softc *sc)
1385{
1386	sbdma_uninitctx(&(sc->sbm_txdma));
1387	sbdma_uninitctx(&(sc->sbm_rxdma));
1388}
1389
1390
1391/**********************************************************************
1392 *  SBMAC_CHANNEL_START(s)
1393 *
1394 *  Start packet processing on this MAC.
1395 *
1396 *  Input parameters:
1397 *  	   s - sbmac structure
1398 *
1399 *  Return value:
1400 *  	   nothing
1401 ********************************************************************* */
1402
1403static void sbmac_channel_start(struct sbmac_softc *s)
1404{
1405	uint64_t reg;
1406	void __iomem *port;
1407	uint64_t cfg,fifo,framecfg;
1408	int idx, th_value;
1409
1410	/*
1411	 * Don't do this if running
1412	 */
1413
1414	if (s->sbm_state == sbmac_state_on)
1415		return;
1416
1417	/*
1418	 * Bring the controller out of reset, but leave it off.
1419	 */
1420
1421	__raw_writeq(0, s->sbm_macenable);
1422
1423	/*
1424	 * Ignore all received packets
1425	 */
1426
1427	__raw_writeq(0, s->sbm_rxfilter);
1428
1429	/*
1430	 * Calculate values for various control registers.
1431	 */
1432
1433	cfg = M_MAC_RETRY_EN |
1434		M_MAC_TX_HOLD_SOP_EN |
1435		V_MAC_TX_PAUSE_CNT_16K |
1436		M_MAC_AP_STAT_EN |
1437		M_MAC_FAST_SYNC |
1438		M_MAC_SS_EN |
1439		0;
1440
1441	/*
1442	 * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1443	 * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1444	 * Use a larger RD_THRSH for gigabit
1445	 */
1446	if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1447		th_value = 28;
1448	else
1449		th_value = 64;
1450
1451	fifo = V_MAC_TX_WR_THRSH(4) |	/* Must be '4' or '8' */
1452		((s->sbm_speed == sbmac_speed_1000)
1453		 ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1454		V_MAC_TX_RL_THRSH(4) |
1455		V_MAC_RX_PL_THRSH(4) |
1456		V_MAC_RX_RD_THRSH(4) |	/* Must be '4' */
1457		V_MAC_RX_RL_THRSH(8) |
1458		0;
1459
1460	framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1461		V_MAC_MAX_FRAMESZ_DEFAULT |
1462		V_MAC_BACKOFF_SEL(1);
1463
1464	/*
1465	 * Clear out the hash address map
1466	 */
1467
1468	port = s->sbm_base + R_MAC_HASH_BASE;
1469	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1470		__raw_writeq(0, port);
1471		port += sizeof(uint64_t);
1472	}
1473
1474	/*
1475	 * Clear out the exact-match table
1476	 */
1477
1478	port = s->sbm_base + R_MAC_ADDR_BASE;
1479	for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1480		__raw_writeq(0, port);
1481		port += sizeof(uint64_t);
1482	}
1483
1484	/*
1485	 * Clear out the DMA Channel mapping table registers
1486	 */
1487
1488	port = s->sbm_base + R_MAC_CHUP0_BASE;
1489	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1490		__raw_writeq(0, port);
1491		port += sizeof(uint64_t);
1492	}
1493
1494
1495	port = s->sbm_base + R_MAC_CHLO0_BASE;
1496	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1497		__raw_writeq(0, port);
1498		port += sizeof(uint64_t);
1499	}
1500
1501	/*
1502	 * Program the hardware address.  It goes into the hardware-address
1503	 * register as well as the first filter register.
1504	 */
1505
1506	reg = sbmac_addr2reg(s->sbm_hwaddr);
1507
1508	port = s->sbm_base + R_MAC_ADDR_BASE;
1509	__raw_writeq(reg, port);
1510	port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1511
1512#ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1513	/*
1514	 * Pass1 SOCs do not receive packets addressed to the
1515	 * destination address in the R_MAC_ETHERNET_ADDR register.
1516	 * Set the value to zero.
1517	 */
1518	__raw_writeq(0, port);
1519#else
1520	__raw_writeq(reg, port);
1521#endif
1522
1523	/*
1524	 * Set the receive filter for no packets, and write values
1525	 * to the various config registers
1526	 */
1527
1528	__raw_writeq(0, s->sbm_rxfilter);
1529	__raw_writeq(0, s->sbm_imr);
1530	__raw_writeq(framecfg, s->sbm_framecfg);
1531	__raw_writeq(fifo, s->sbm_fifocfg);
1532	__raw_writeq(cfg, s->sbm_maccfg);
1533
1534	/*
1535	 * Initialize DMA channels (rings should be ok now)
1536	 */
1537
1538	sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1539	sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1540
1541	/*
1542	 * Configure the speed, duplex, and flow control
1543	 */
1544
1545	sbmac_set_speed(s,s->sbm_speed);
1546	sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1547
1548	/*
1549	 * Fill the receive ring
1550	 */
1551
1552	sbdma_fillring(s, &(s->sbm_rxdma));
1553
1554	/*
1555	 * Turn on the rest of the bits in the enable register
1556	 */
1557
1558#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1559	__raw_writeq(M_MAC_RXDMA_EN0 |
1560		       M_MAC_TXDMA_EN0, s->sbm_macenable);
1561#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1562	__raw_writeq(M_MAC_RXDMA_EN0 |
1563		       M_MAC_TXDMA_EN0 |
1564		       M_MAC_RX_ENABLE |
1565		       M_MAC_TX_ENABLE, s->sbm_macenable);
1566#else
1567#error invalid SiByte MAC configuration
1568#endif
1569
1570#ifdef CONFIG_SBMAC_COALESCE
1571	__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1572		       ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1573#else
1574	__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1575		       (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1576#endif
1577
1578	/*
1579	 * Enable receiving unicasts and broadcasts
1580	 */
1581
1582	__raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1583
1584	/*
1585	 * we're running now.
1586	 */
1587
1588	s->sbm_state = sbmac_state_on;
1589
1590	/*
1591	 * Program multicast addresses
1592	 */
1593
1594	sbmac_setmulti(s);
1595
1596	/*
1597	 * If channel was in promiscuous mode before, turn that on
1598	 */
1599
1600	if (s->sbm_devflags & IFF_PROMISC) {
1601		sbmac_promiscuous_mode(s,1);
1602	}
1603
1604}
1605
1606
1607/**********************************************************************
1608 *  SBMAC_CHANNEL_STOP(s)
1609 *
1610 *  Stop packet processing on this MAC.
1611 *
1612 *  Input parameters:
1613 *  	   s - sbmac structure
1614 *
1615 *  Return value:
1616 *  	   nothing
1617 ********************************************************************* */
1618
1619static void sbmac_channel_stop(struct sbmac_softc *s)
1620{
1621	/* don't do this if already stopped */
1622
1623	if (s->sbm_state == sbmac_state_off)
1624		return;
1625
1626	/* don't accept any packets, disable all interrupts */
1627
1628	__raw_writeq(0, s->sbm_rxfilter);
1629	__raw_writeq(0, s->sbm_imr);
1630
1631	/* Turn off ticker */
1632
1633	/* XXX */
1634
1635	/* turn off receiver and transmitter */
1636
1637	__raw_writeq(0, s->sbm_macenable);
1638
1639	/* We're stopped now. */
1640
1641	s->sbm_state = sbmac_state_off;
1642
1643	/*
1644	 * Stop DMA channels (rings should be ok now)
1645	 */
1646
1647	sbdma_channel_stop(&(s->sbm_rxdma));
1648	sbdma_channel_stop(&(s->sbm_txdma));
1649
1650	/* Empty the receive and transmit rings */
1651
1652	sbdma_emptyring(&(s->sbm_rxdma));
1653	sbdma_emptyring(&(s->sbm_txdma));
1654
1655}
1656
1657/**********************************************************************
1658 *  SBMAC_SET_CHANNEL_STATE(state)
1659 *
1660 *  Set the channel's state ON or OFF
1661 *
1662 *  Input parameters:
1663 *  	   state - new state
1664 *
1665 *  Return value:
1666 *  	   old state
1667 ********************************************************************* */
1668static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1669						enum sbmac_state state)
1670{
1671	enum sbmac_state oldstate = sc->sbm_state;
1672
1673	/*
1674	 * If same as previous state, return
1675	 */
1676
1677	if (state == oldstate) {
1678		return oldstate;
1679	}
1680
1681	/*
1682	 * If new state is ON, turn channel on
1683	 */
1684
1685	if (state == sbmac_state_on) {
1686		sbmac_channel_start(sc);
1687	}
1688	else {
1689		sbmac_channel_stop(sc);
1690	}
1691
1692	/*
1693	 * Return previous state
1694	 */
1695
1696	return oldstate;
1697}
1698
1699
1700/**********************************************************************
1701 *  SBMAC_PROMISCUOUS_MODE(sc,onoff)
1702 *
1703 *  Turn on or off promiscuous mode
1704 *
1705 *  Input parameters:
1706 *  	   sc - softc
1707 *      onoff - 1 to turn on, 0 to turn off
1708 *
1709 *  Return value:
1710 *  	   nothing
1711 ********************************************************************* */
1712
1713static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1714{
1715	uint64_t reg;
1716
1717	if (sc->sbm_state != sbmac_state_on)
1718		return;
1719
1720	if (onoff) {
1721		reg = __raw_readq(sc->sbm_rxfilter);
1722		reg |= M_MAC_ALLPKT_EN;
1723		__raw_writeq(reg, sc->sbm_rxfilter);
1724	}
1725	else {
1726		reg = __raw_readq(sc->sbm_rxfilter);
1727		reg &= ~M_MAC_ALLPKT_EN;
1728		__raw_writeq(reg, sc->sbm_rxfilter);
1729	}
1730}
1731
1732/**********************************************************************
1733 *  SBMAC_SETIPHDR_OFFSET(sc,onoff)
1734 *
1735 *  Set the iphdr offset as 15 assuming ethernet encapsulation
1736 *
1737 *  Input parameters:
1738 *  	   sc - softc
1739 *
1740 *  Return value:
1741 *  	   nothing
1742 ********************************************************************* */
1743
1744static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1745{
1746	uint64_t reg;
1747
1748	/* Hard code the off set to 15 for now */
1749	reg = __raw_readq(sc->sbm_rxfilter);
1750	reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1751	__raw_writeq(reg, sc->sbm_rxfilter);
1752
1753	/* BCM1250 pass1 didn't have hardware checksum.  Everything
1754	   later does.  */
1755	if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1756		sc->rx_hw_checksum = DISABLE;
1757	} else {
1758		sc->rx_hw_checksum = ENABLE;
1759	}
1760}
1761
1762
1763/**********************************************************************
1764 *  SBMAC_ADDR2REG(ptr)
1765 *
1766 *  Convert six bytes into the 64-bit register value that
1767 *  we typically write into the SBMAC's address/mcast registers
1768 *
1769 *  Input parameters:
1770 *  	   ptr - pointer to 6 bytes
1771 *
1772 *  Return value:
1773 *  	   register value
1774 ********************************************************************* */
1775
1776static uint64_t sbmac_addr2reg(unsigned char *ptr)
1777{
1778	uint64_t reg = 0;
1779
1780	ptr += 6;
1781
1782	reg |= (uint64_t) *(--ptr);
1783	reg <<= 8;
1784	reg |= (uint64_t) *(--ptr);
1785	reg <<= 8;
1786	reg |= (uint64_t) *(--ptr);
1787	reg <<= 8;
1788	reg |= (uint64_t) *(--ptr);
1789	reg <<= 8;
1790	reg |= (uint64_t) *(--ptr);
1791	reg <<= 8;
1792	reg |= (uint64_t) *(--ptr);
1793
1794	return reg;
1795}
1796
1797
1798/**********************************************************************
1799 *  SBMAC_SET_SPEED(s,speed)
1800 *
1801 *  Configure LAN speed for the specified MAC.
1802 *  Warning: must be called when MAC is off!
1803 *
1804 *  Input parameters:
1805 *  	   s - sbmac structure
1806 *  	   speed - speed to set MAC to (see enum sbmac_speed)
1807 *
1808 *  Return value:
1809 *  	   1 if successful
1810 *      0 indicates invalid parameters
1811 ********************************************************************* */
1812
1813static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1814{
1815	uint64_t cfg;
1816	uint64_t framecfg;
1817
1818	/*
1819	 * Save new current values
1820	 */
1821
1822	s->sbm_speed = speed;
1823
1824	if (s->sbm_state == sbmac_state_on)
1825		return 0;	/* save for next restart */
1826
1827	/*
1828	 * Read current register values
1829	 */
1830
1831	cfg = __raw_readq(s->sbm_maccfg);
1832	framecfg = __raw_readq(s->sbm_framecfg);
1833
1834	/*
1835	 * Mask out the stuff we want to change
1836	 */
1837
1838	cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1839	framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1840		      M_MAC_SLOT_SIZE);
1841
1842	/*
1843	 * Now add in the new bits
1844	 */
1845
1846	switch (speed) {
1847	case sbmac_speed_10:
1848		framecfg |= V_MAC_IFG_RX_10 |
1849			V_MAC_IFG_TX_10 |
1850			K_MAC_IFG_THRSH_10 |
1851			V_MAC_SLOT_SIZE_10;
1852		cfg |= V_MAC_SPEED_SEL_10MBPS;
1853		break;
1854
1855	case sbmac_speed_100:
1856		framecfg |= V_MAC_IFG_RX_100 |
1857			V_MAC_IFG_TX_100 |
1858			V_MAC_IFG_THRSH_100 |
1859			V_MAC_SLOT_SIZE_100;
1860		cfg |= V_MAC_SPEED_SEL_100MBPS ;
1861		break;
1862
1863	case sbmac_speed_1000:
1864		framecfg |= V_MAC_IFG_RX_1000 |
1865			V_MAC_IFG_TX_1000 |
1866			V_MAC_IFG_THRSH_1000 |
1867			V_MAC_SLOT_SIZE_1000;
1868		cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1869		break;
1870
1871	default:
1872		return 0;
1873	}
1874
1875	/*
1876	 * Send the bits back to the hardware
1877	 */
1878
1879	__raw_writeq(framecfg, s->sbm_framecfg);
1880	__raw_writeq(cfg, s->sbm_maccfg);
1881
1882	return 1;
1883}
1884
1885/**********************************************************************
1886 *  SBMAC_SET_DUPLEX(s,duplex,fc)
1887 *
1888 *  Set Ethernet duplex and flow control options for this MAC
1889 *  Warning: must be called when MAC is off!
1890 *
1891 *  Input parameters:
1892 *  	   s - sbmac structure
1893 *  	   duplex - duplex setting (see enum sbmac_duplex)
1894 *  	   fc - flow control setting (see enum sbmac_fc)
1895 *
1896 *  Return value:
1897 *  	   1 if ok
1898 *  	   0 if an invalid parameter combination was specified
1899 ********************************************************************* */
1900
1901static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1902			    enum sbmac_fc fc)
1903{
1904	uint64_t cfg;
1905
1906	/*
1907	 * Save new current values
1908	 */
1909
1910	s->sbm_duplex = duplex;
1911	s->sbm_fc = fc;
1912
1913	if (s->sbm_state == sbmac_state_on)
1914		return 0;	/* save for next restart */
1915
1916	/*
1917	 * Read current register values
1918	 */
1919
1920	cfg = __raw_readq(s->sbm_maccfg);
1921
1922	/*
1923	 * Mask off the stuff we're about to change
1924	 */
1925
1926	cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1927
1928
1929	switch (duplex) {
1930	case sbmac_duplex_half:
1931		switch (fc) {
1932		case sbmac_fc_disabled:
1933			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1934			break;
1935
1936		case sbmac_fc_collision:
1937			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1938			break;
1939
1940		case sbmac_fc_carrier:
1941			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1942			break;
1943
1944		case sbmac_fc_frame:		/* not valid in half duplex */
1945		default:			/* invalid selection */
1946			return 0;
1947		}
1948		break;
1949
1950	case sbmac_duplex_full:
1951		switch (fc) {
1952		case sbmac_fc_disabled:
1953			cfg |= V_MAC_FC_CMD_DISABLED;
1954			break;
1955
1956		case sbmac_fc_frame:
1957			cfg |= V_MAC_FC_CMD_ENABLED;
1958			break;
1959
1960		case sbmac_fc_collision:	/* not valid in full duplex */
1961		case sbmac_fc_carrier:		/* not valid in full duplex */
1962		default:
1963			return 0;
1964		}
1965		break;
1966	default:
1967		return 0;
1968	}
1969
1970	/*
1971	 * Send the bits back to the hardware
1972	 */
1973
1974	__raw_writeq(cfg, s->sbm_maccfg);
1975
1976	return 1;
1977}
1978
1979
1980
1981
1982/**********************************************************************
1983 *  SBMAC_INTR()
1984 *
1985 *  Interrupt handler for MAC interrupts
1986 *
1987 *  Input parameters:
1988 *  	   MAC structure
1989 *
1990 *  Return value:
1991 *  	   nothing
1992 ********************************************************************* */
1993static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1994{
1995	struct net_device *dev = (struct net_device *) dev_instance;
1996	struct sbmac_softc *sc = netdev_priv(dev);
1997	uint64_t isr;
1998	int handled = 0;
1999
2000	/*
2001	 * Read the ISR (this clears the bits in the real
2002	 * register, except for counter addr)
2003	 */
2004
2005	isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
2006
2007	if (isr == 0)
2008		return IRQ_RETVAL(0);
2009	handled = 1;
2010
2011	/*
2012	 * Transmits on channel 0
2013	 */
2014
2015	if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
2016		sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
2017
2018	if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2019		if (napi_schedule_prep(&sc->napi)) {
2020			__raw_writeq(0, sc->sbm_imr);
2021			__napi_schedule(&sc->napi);
2022			/* Depend on the exit from poll to reenable intr */
2023		}
2024		else {
2025			/* may leave some packets behind */
2026			sbdma_rx_process(sc,&(sc->sbm_rxdma),
2027					 SBMAC_MAX_RXDESCR * 2, 0);
2028		}
2029	}
2030	return IRQ_RETVAL(handled);
2031}
2032
2033/**********************************************************************
2034 *  SBMAC_START_TX(skb,dev)
2035 *
2036 *  Start output on the specified interface.  Basically, we
2037 *  queue as many buffers as we can until the ring fills up, or
2038 *  we run off the end of the queue, whichever comes first.
2039 *
2040 *  Input parameters:
2041 *
2042 *
2043 *  Return value:
2044 *  	   nothing
2045 ********************************************************************* */
2046static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2047{
2048	struct sbmac_softc *sc = netdev_priv(dev);
2049	unsigned long flags;
2050
2051	/* lock eth irq */
2052	spin_lock_irqsave(&sc->sbm_lock, flags);
2053
2054	/*
2055	 * Put the buffer on the transmit ring.  If we
2056	 * don't have room, stop the queue.
2057	 */
2058
2059	if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2060		/* XXX save skb that we could not send */
2061		netif_stop_queue(dev);
2062		spin_unlock_irqrestore(&sc->sbm_lock, flags);
2063
2064		return NETDEV_TX_BUSY;
2065	}
2066
2067	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2068
2069	return NETDEV_TX_OK;
2070}
2071
2072/**********************************************************************
2073 *  SBMAC_SETMULTI(sc)
2074 *
2075 *  Reprogram the multicast table into the hardware, given
2076 *  the list of multicasts associated with the interface
2077 *  structure.
2078 *
2079 *  Input parameters:
2080 *  	   sc - softc
2081 *
2082 *  Return value:
2083 *  	   nothing
2084 ********************************************************************* */
2085
2086static void sbmac_setmulti(struct sbmac_softc *sc)
2087{
2088	uint64_t reg;
2089	void __iomem *port;
2090	int idx;
2091	struct netdev_hw_addr *ha;
2092	struct net_device *dev = sc->sbm_dev;
2093
2094	/*
2095	 * Clear out entire multicast table.  We do this by nuking
2096	 * the entire hash table and all the direct matches except
2097	 * the first one, which is used for our station address
2098	 */
2099
2100	for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2101		port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2102		__raw_writeq(0, port);
2103	}
2104
2105	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2106		port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2107		__raw_writeq(0, port);
2108	}
2109
2110	/*
2111	 * Clear the filter to say we don't want any multicasts.
2112	 */
2113
2114	reg = __raw_readq(sc->sbm_rxfilter);
2115	reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2116	__raw_writeq(reg, sc->sbm_rxfilter);
2117
2118	if (dev->flags & IFF_ALLMULTI) {
2119		/*
2120		 * Enable ALL multicasts.  Do this by inverting the
2121		 * multicast enable bit.
2122		 */
2123		reg = __raw_readq(sc->sbm_rxfilter);
2124		reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2125		__raw_writeq(reg, sc->sbm_rxfilter);
2126		return;
2127	}
2128
2129
2130	/*
2131	 * Progam new multicast entries.  For now, only use the
2132	 * perfect filter.  In the future we'll need to use the
2133	 * hash filter if the perfect filter overflows
2134	 */
2135
2136	/* XXX only using perfect filter for now, need to use hash
2137	 * XXX if the table overflows */
2138
2139	idx = 1;		/* skip station address */
2140	netdev_for_each_mc_addr(ha, dev) {
2141		if (idx == MAC_ADDR_COUNT)
2142			break;
2143		reg = sbmac_addr2reg(ha->addr);
2144		port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2145		__raw_writeq(reg, port);
2146		idx++;
2147	}
2148
2149	/*
2150	 * Enable the "accept multicast bits" if we programmed at least one
2151	 * multicast.
2152	 */
2153
2154	if (idx > 1) {
2155		reg = __raw_readq(sc->sbm_rxfilter);
2156		reg |= M_MAC_MCAST_EN;
2157		__raw_writeq(reg, sc->sbm_rxfilter);
2158	}
2159}
2160
2161static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
2162{
2163	if (new_mtu >  ENET_PACKET_SIZE)
2164		return -EINVAL;
2165	_dev->mtu = new_mtu;
2166	pr_info("changing the mtu to %d\n", new_mtu);
2167	return 0;
2168}
2169
2170static const struct net_device_ops sbmac_netdev_ops = {
2171	.ndo_open		= sbmac_open,
2172	.ndo_stop		= sbmac_close,
2173	.ndo_start_xmit		= sbmac_start_tx,
2174	.ndo_set_rx_mode	= sbmac_set_rx_mode,
2175	.ndo_tx_timeout		= sbmac_tx_timeout,
2176	.ndo_do_ioctl		= sbmac_mii_ioctl,
2177	.ndo_change_mtu		= sb1250_change_mtu,
2178	.ndo_validate_addr	= eth_validate_addr,
2179	.ndo_set_mac_address	= eth_mac_addr,
2180#ifdef CONFIG_NET_POLL_CONTROLLER
2181	.ndo_poll_controller	= sbmac_netpoll,
2182#endif
2183};
2184
2185/**********************************************************************
2186 *  SBMAC_INIT(dev)
2187 *
2188 *  Attach routine - init hardware and hook ourselves into linux
2189 *
2190 *  Input parameters:
2191 *  	   dev - net_device structure
2192 *
2193 *  Return value:
2194 *  	   status
2195 ********************************************************************* */
2196
2197static int sbmac_init(struct platform_device *pldev, long long base)
2198{
2199	struct net_device *dev = platform_get_drvdata(pldev);
2200	int idx = pldev->id;
2201	struct sbmac_softc *sc = netdev_priv(dev);
2202	unsigned char *eaddr;
2203	uint64_t ea_reg;
2204	int i;
2205	int err;
2206
2207	sc->sbm_dev = dev;
2208	sc->sbe_idx = idx;
2209
2210	eaddr = sc->sbm_hwaddr;
2211
2212	/*
2213	 * Read the ethernet address.  The firmware left this programmed
2214	 * for us in the ethernet address register for each mac.
2215	 */
2216
2217	ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2218	__raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2219	for (i = 0; i < 6; i++) {
2220		eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2221		ea_reg >>= 8;
2222	}
2223
2224	for (i = 0; i < 6; i++) {
2225		dev->dev_addr[i] = eaddr[i];
2226	}
2227
2228	/*
2229	 * Initialize context (get pointers to registers and stuff), then
2230	 * allocate the memory for the descriptor tables.
2231	 */
2232
2233	sbmac_initctx(sc);
2234
2235	/*
2236	 * Set up Linux device callins
2237	 */
2238
2239	spin_lock_init(&(sc->sbm_lock));
2240
2241	dev->netdev_ops = &sbmac_netdev_ops;
2242	dev->watchdog_timeo = TX_TIMEOUT;
2243
2244	netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2245
2246	dev->irq		= UNIT_INT(idx);
2247
2248	/* This is needed for PASS2 for Rx H/W checksum feature */
2249	sbmac_set_iphdr_offset(sc);
2250
2251	sc->mii_bus = mdiobus_alloc();
2252	if (sc->mii_bus == NULL) {
2253		err = -ENOMEM;
2254		goto uninit_ctx;
2255	}
2256
2257	sc->mii_bus->name = sbmac_mdio_string;
2258	snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2259		pldev->name, idx);
2260	sc->mii_bus->priv = sc;
2261	sc->mii_bus->read = sbmac_mii_read;
2262	sc->mii_bus->write = sbmac_mii_write;
2263	sc->mii_bus->irq = sc->phy_irq;
2264	for (i = 0; i < PHY_MAX_ADDR; ++i)
2265		sc->mii_bus->irq[i] = SBMAC_PHY_INT;
2266
2267	sc->mii_bus->parent = &pldev->dev;
2268	/*
2269	 * Probe PHY address
2270	 */
2271	err = mdiobus_register(sc->mii_bus);
2272	if (err) {
2273		printk(KERN_ERR "%s: unable to register MDIO bus\n",
2274		       dev->name);
2275		goto free_mdio;
2276	}
2277	platform_set_drvdata(pldev, sc->mii_bus);
2278
2279	err = register_netdev(dev);
2280	if (err) {
2281		printk(KERN_ERR "%s.%d: unable to register netdev\n",
2282		       sbmac_string, idx);
2283		goto unreg_mdio;
2284	}
2285
2286	pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2287
2288	if (sc->rx_hw_checksum == ENABLE)
2289		pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2290
2291	/*
2292	 * Display Ethernet address (this is called during the config
2293	 * process so we need to finish off the config message that
2294	 * was being displayed)
2295	 */
2296	pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2297	       dev->name, base, eaddr);
2298
2299	return 0;
2300unreg_mdio:
2301	mdiobus_unregister(sc->mii_bus);
2302free_mdio:
2303	mdiobus_free(sc->mii_bus);
2304uninit_ctx:
2305	sbmac_uninitctx(sc);
2306	return err;
2307}
2308
2309
2310static int sbmac_open(struct net_device *dev)
2311{
2312	struct sbmac_softc *sc = netdev_priv(dev);
2313	int err;
2314
2315	if (debug > 1)
2316		pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2317
2318	/*
2319	 * map/route interrupt (clear status first, in case something
2320	 * weird is pending; we haven't initialized the mac registers
2321	 * yet)
2322	 */
2323
2324	__raw_readq(sc->sbm_isr);
2325	err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2326	if (err) {
2327		printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2328		       dev->irq);
2329		goto out_err;
2330	}
2331
2332	sc->sbm_speed = sbmac_speed_none;
2333	sc->sbm_duplex = sbmac_duplex_none;
2334	sc->sbm_fc = sbmac_fc_none;
2335	sc->sbm_pause = -1;
2336	sc->sbm_link = 0;
2337
2338	/*
2339	 * Attach to the PHY
2340	 */
2341	err = sbmac_mii_probe(dev);
2342	if (err)
2343		goto out_unregister;
2344
2345	/*
2346	 * Turn on the channel
2347	 */
2348
2349	sbmac_set_channel_state(sc,sbmac_state_on);
2350
2351	netif_start_queue(dev);
2352
2353	sbmac_set_rx_mode(dev);
2354
2355	phy_start(sc->phy_dev);
2356
2357	napi_enable(&sc->napi);
2358
2359	return 0;
2360
2361out_unregister:
2362	free_irq(dev->irq, dev);
2363out_err:
2364	return err;
2365}
2366
2367static int sbmac_mii_probe(struct net_device *dev)
2368{
2369	struct sbmac_softc *sc = netdev_priv(dev);
2370	struct phy_device *phy_dev;
2371	int i;
2372
2373	for (i = 0; i < PHY_MAX_ADDR; i++) {
2374		phy_dev = sc->mii_bus->phy_map[i];
2375		if (phy_dev)
2376			break;
2377	}
2378	if (!phy_dev) {
2379		printk(KERN_ERR "%s: no PHY found\n", dev->name);
2380		return -ENXIO;
2381	}
2382
2383	phy_dev = phy_connect(dev, dev_name(&phy_dev->dev), &sbmac_mii_poll,
2384			      PHY_INTERFACE_MODE_GMII);
2385	if (IS_ERR(phy_dev)) {
2386		printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2387		return PTR_ERR(phy_dev);
2388	}
2389
2390	/* Remove any features not supported by the controller */
2391	phy_dev->supported &= SUPPORTED_10baseT_Half |
2392			      SUPPORTED_10baseT_Full |
2393			      SUPPORTED_100baseT_Half |
2394			      SUPPORTED_100baseT_Full |
2395			      SUPPORTED_1000baseT_Half |
2396			      SUPPORTED_1000baseT_Full |
2397			      SUPPORTED_Autoneg |
2398			      SUPPORTED_MII |
2399			      SUPPORTED_Pause |
2400			      SUPPORTED_Asym_Pause;
2401	phy_dev->advertising = phy_dev->supported;
2402
2403	pr_info("%s: attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
2404		dev->name, phy_dev->drv->name,
2405		dev_name(&phy_dev->dev), phy_dev->irq);
2406
2407	sc->phy_dev = phy_dev;
2408
2409	return 0;
2410}
2411
2412
2413static void sbmac_mii_poll(struct net_device *dev)
2414{
2415	struct sbmac_softc *sc = netdev_priv(dev);
2416	struct phy_device *phy_dev = sc->phy_dev;
2417	unsigned long flags;
2418	enum sbmac_fc fc;
2419	int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2420
2421	link_chg = (sc->sbm_link != phy_dev->link);
2422	speed_chg = (sc->sbm_speed != phy_dev->speed);
2423	duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2424	pause_chg = (sc->sbm_pause != phy_dev->pause);
2425
2426	if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2427		return;					/* Hmmm... */
2428
2429	if (!phy_dev->link) {
2430		if (link_chg) {
2431			sc->sbm_link = phy_dev->link;
2432			sc->sbm_speed = sbmac_speed_none;
2433			sc->sbm_duplex = sbmac_duplex_none;
2434			sc->sbm_fc = sbmac_fc_disabled;
2435			sc->sbm_pause = -1;
2436			pr_info("%s: link unavailable\n", dev->name);
2437		}
2438		return;
2439	}
2440
2441	if (phy_dev->duplex == DUPLEX_FULL) {
2442		if (phy_dev->pause)
2443			fc = sbmac_fc_frame;
2444		else
2445			fc = sbmac_fc_disabled;
2446	} else
2447		fc = sbmac_fc_collision;
2448	fc_chg = (sc->sbm_fc != fc);
2449
2450	pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2451		phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2452
2453	spin_lock_irqsave(&sc->sbm_lock, flags);
2454
2455	sc->sbm_speed = phy_dev->speed;
2456	sc->sbm_duplex = phy_dev->duplex;
2457	sc->sbm_fc = fc;
2458	sc->sbm_pause = phy_dev->pause;
2459	sc->sbm_link = phy_dev->link;
2460
2461	if ((speed_chg || duplex_chg || fc_chg) &&
2462	    sc->sbm_state != sbmac_state_off) {
2463		/*
2464		 * something changed, restart the channel
2465		 */
2466		if (debug > 1)
2467			pr_debug("%s: restarting channel "
2468				 "because PHY state changed\n", dev->name);
2469		sbmac_channel_stop(sc);
2470		sbmac_channel_start(sc);
2471	}
2472
2473	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2474}
2475
2476
2477static void sbmac_tx_timeout (struct net_device *dev)
2478{
2479	struct sbmac_softc *sc = netdev_priv(dev);
2480	unsigned long flags;
2481
2482	spin_lock_irqsave(&sc->sbm_lock, flags);
2483
2484
2485	dev->trans_start = jiffies; /* prevent tx timeout */
2486	dev->stats.tx_errors++;
2487
2488	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2489
2490	printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2491}
2492
2493
2494
2495
2496static void sbmac_set_rx_mode(struct net_device *dev)
2497{
2498	unsigned long flags;
2499	struct sbmac_softc *sc = netdev_priv(dev);
2500
2501	spin_lock_irqsave(&sc->sbm_lock, flags);
2502	if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2503		/*
2504		 * Promiscuous changed.
2505		 */
2506
2507		if (dev->flags & IFF_PROMISC) {
2508			sbmac_promiscuous_mode(sc,1);
2509		}
2510		else {
2511			sbmac_promiscuous_mode(sc,0);
2512		}
2513	}
2514	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2515
2516	/*
2517	 * Program the multicasts.  Do this every time.
2518	 */
2519
2520	sbmac_setmulti(sc);
2521
2522}
2523
2524static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2525{
2526	struct sbmac_softc *sc = netdev_priv(dev);
2527
2528	if (!netif_running(dev) || !sc->phy_dev)
2529		return -EINVAL;
2530
2531	return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2532}
2533
2534static int sbmac_close(struct net_device *dev)
2535{
2536	struct sbmac_softc *sc = netdev_priv(dev);
2537
2538	napi_disable(&sc->napi);
2539
2540	phy_stop(sc->phy_dev);
2541
2542	sbmac_set_channel_state(sc, sbmac_state_off);
2543
2544	netif_stop_queue(dev);
2545
2546	if (debug > 1)
2547		pr_debug("%s: Shutting down ethercard\n", dev->name);
2548
2549	phy_disconnect(sc->phy_dev);
2550	sc->phy_dev = NULL;
2551	free_irq(dev->irq, dev);
2552
2553	sbdma_emptyring(&(sc->sbm_txdma));
2554	sbdma_emptyring(&(sc->sbm_rxdma));
2555
2556	return 0;
2557}
2558
2559static int sbmac_poll(struct napi_struct *napi, int budget)
2560{
2561	struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2562	int work_done;
2563
2564	work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2565	sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2566
2567	if (work_done < budget) {
2568		napi_complete(napi);
2569
2570#ifdef CONFIG_SBMAC_COALESCE
2571		__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2572			     ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2573			     sc->sbm_imr);
2574#else
2575		__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2576			     (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2577#endif
2578	}
2579
2580	return work_done;
2581}
2582
2583
2584static int sbmac_probe(struct platform_device *pldev)
2585{
2586	struct net_device *dev;
2587	struct sbmac_softc *sc;
2588	void __iomem *sbm_base;
2589	struct resource *res;
2590	u64 sbmac_orig_hwaddr;
2591	int err;
2592
2593	res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2594	BUG_ON(!res);
2595	sbm_base = ioremap_nocache(res->start, resource_size(res));
2596	if (!sbm_base) {
2597		printk(KERN_ERR "%s: unable to map device registers\n",
2598		       dev_name(&pldev->dev));
2599		err = -ENOMEM;
2600		goto out_out;
2601	}
2602
2603	/*
2604	 * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2605	 * value for us by the firmware if we're going to use this MAC.
2606	 * If we find a zero, skip this MAC.
2607	 */
2608	sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2609	pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2610		 sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2611	if (sbmac_orig_hwaddr == 0) {
2612		err = 0;
2613		goto out_unmap;
2614	}
2615
2616	/*
2617	 * Okay, cool.  Initialize this MAC.
2618	 */
2619	dev = alloc_etherdev(sizeof(struct sbmac_softc));
2620	if (!dev) {
2621		err = -ENOMEM;
2622		goto out_unmap;
2623	}
2624
2625	platform_set_drvdata(pldev, dev);
2626	SET_NETDEV_DEV(dev, &pldev->dev);
2627
2628	sc = netdev_priv(dev);
2629	sc->sbm_base = sbm_base;
2630
2631	err = sbmac_init(pldev, res->start);
2632	if (err)
2633		goto out_kfree;
2634
2635	return 0;
2636
2637out_kfree:
2638	free_netdev(dev);
2639	__raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2640
2641out_unmap:
2642	iounmap(sbm_base);
2643
2644out_out:
2645	return err;
2646}
2647
2648static int __exit sbmac_remove(struct platform_device *pldev)
2649{
2650	struct net_device *dev = platform_get_drvdata(pldev);
2651	struct sbmac_softc *sc = netdev_priv(dev);
2652
2653	unregister_netdev(dev);
2654	sbmac_uninitctx(sc);
2655	mdiobus_unregister(sc->mii_bus);
2656	mdiobus_free(sc->mii_bus);
2657	iounmap(sc->sbm_base);
2658	free_netdev(dev);
2659
2660	return 0;
2661}
2662
2663static struct platform_driver sbmac_driver = {
2664	.probe = sbmac_probe,
2665	.remove = __exit_p(sbmac_remove),
2666	.driver = {
2667		.name = sbmac_string,
2668		.owner  = THIS_MODULE,
2669	},
2670};
2671
2672module_platform_driver(sbmac_driver);
2673