sb1250-mac.c revision 720a43efd30f04a0a492c85fb997361c44fbae05
1/*
2 * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
3 * Copyright (c) 2006, 2007  Maciej W. Rozycki
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18 *
19 *
20 * This driver is designed for the Broadcom SiByte SOC built-in
21 * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
22 *
23 * Updated to the driver model and the PHY abstraction layer
24 * by Maciej W. Rozycki.
25 */
26
27#include <linux/bug.h>
28#include <linux/module.h>
29#include <linux/kernel.h>
30#include <linux/string.h>
31#include <linux/timer.h>
32#include <linux/errno.h>
33#include <linux/ioport.h>
34#include <linux/slab.h>
35#include <linux/interrupt.h>
36#include <linux/netdevice.h>
37#include <linux/etherdevice.h>
38#include <linux/skbuff.h>
39#include <linux/init.h>
40#include <linux/bitops.h>
41#include <linux/err.h>
42#include <linux/ethtool.h>
43#include <linux/mii.h>
44#include <linux/phy.h>
45#include <linux/platform_device.h>
46#include <linux/prefetch.h>
47
48#include <asm/cache.h>
49#include <asm/io.h>
50#include <asm/processor.h>	/* Processor type for cache alignment. */
51
52/* Operational parameters that usually are not changed. */
53
54#define CONFIG_SBMAC_COALESCE
55
56/* Time in jiffies before concluding the transmitter is hung. */
57#define TX_TIMEOUT  (2*HZ)
58
59
60MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
61MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
62
63/* A few user-configurable values which may be modified when a driver
64   module is loaded. */
65
66/* 1 normal messages, 0 quiet .. 7 verbose. */
67static int debug = 1;
68module_param(debug, int, S_IRUGO);
69MODULE_PARM_DESC(debug, "Debug messages");
70
71#ifdef CONFIG_SBMAC_COALESCE
72static int int_pktcnt_tx = 255;
73module_param(int_pktcnt_tx, int, S_IRUGO);
74MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
75
76static int int_timeout_tx = 255;
77module_param(int_timeout_tx, int, S_IRUGO);
78MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
79
80static int int_pktcnt_rx = 64;
81module_param(int_pktcnt_rx, int, S_IRUGO);
82MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
83
84static int int_timeout_rx = 64;
85module_param(int_timeout_rx, int, S_IRUGO);
86MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
87#endif
88
89#include <asm/sibyte/board.h>
90#include <asm/sibyte/sb1250.h>
91#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
92#include <asm/sibyte/bcm1480_regs.h>
93#include <asm/sibyte/bcm1480_int.h>
94#define R_MAC_DMA_OODPKTLOST_RX	R_MAC_DMA_OODPKTLOST
95#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
96#include <asm/sibyte/sb1250_regs.h>
97#include <asm/sibyte/sb1250_int.h>
98#else
99#error invalid SiByte MAC configuration
100#endif
101#include <asm/sibyte/sb1250_scd.h>
102#include <asm/sibyte/sb1250_mac.h>
103#include <asm/sibyte/sb1250_dma.h>
104
105#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
106#define UNIT_INT(n)		(K_BCM1480_INT_MAC_0 + ((n) * 2))
107#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
108#define UNIT_INT(n)		(K_INT_MAC_0 + (n))
109#else
110#error invalid SiByte MAC configuration
111#endif
112
113#ifdef K_INT_PHY
114#define SBMAC_PHY_INT			K_INT_PHY
115#else
116#define SBMAC_PHY_INT			PHY_POLL
117#endif
118
119/**********************************************************************
120 *  Simple types
121 ********************************************************************* */
122
123enum sbmac_speed {
124	sbmac_speed_none = 0,
125	sbmac_speed_10 = SPEED_10,
126	sbmac_speed_100 = SPEED_100,
127	sbmac_speed_1000 = SPEED_1000,
128};
129
130enum sbmac_duplex {
131	sbmac_duplex_none = -1,
132	sbmac_duplex_half = DUPLEX_HALF,
133	sbmac_duplex_full = DUPLEX_FULL,
134};
135
136enum sbmac_fc {
137	sbmac_fc_none,
138	sbmac_fc_disabled,
139	sbmac_fc_frame,
140	sbmac_fc_collision,
141	sbmac_fc_carrier,
142};
143
144enum sbmac_state {
145	sbmac_state_uninit,
146	sbmac_state_off,
147	sbmac_state_on,
148	sbmac_state_broken,
149};
150
151
152/**********************************************************************
153 *  Macros
154 ********************************************************************* */
155
156
157#define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
158			  (d)->sbdma_dscrtable : (d)->f+1)
159
160
161#define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
162
163#define SBMAC_MAX_TXDESCR	256
164#define SBMAC_MAX_RXDESCR	256
165
166#define ENET_PACKET_SIZE	1518
167/*#define ENET_PACKET_SIZE	9216 */
168
169/**********************************************************************
170 *  DMA Descriptor structure
171 ********************************************************************* */
172
173struct sbdmadscr {
174	uint64_t  dscr_a;
175	uint64_t  dscr_b;
176};
177
178/**********************************************************************
179 *  DMA Controller structure
180 ********************************************************************* */
181
182struct sbmacdma {
183
184	/*
185	 * This stuff is used to identify the channel and the registers
186	 * associated with it.
187	 */
188	struct sbmac_softc	*sbdma_eth;	/* back pointer to associated
189						   MAC */
190	int			sbdma_channel;	/* channel number */
191	int			sbdma_txdir;	/* direction (1=transmit) */
192	int			sbdma_maxdescr;	/* total # of descriptors
193						   in ring */
194#ifdef CONFIG_SBMAC_COALESCE
195	int			sbdma_int_pktcnt;
196						/* # descriptors rx/tx
197						   before interrupt */
198	int			sbdma_int_timeout;
199						/* # usec rx/tx interrupt */
200#endif
201	void __iomem		*sbdma_config0;	/* DMA config register 0 */
202	void __iomem		*sbdma_config1;	/* DMA config register 1 */
203	void __iomem		*sbdma_dscrbase;
204						/* descriptor base address */
205	void __iomem		*sbdma_dscrcnt;	/* descriptor count register */
206	void __iomem		*sbdma_curdscr;	/* current descriptor
207						   address */
208	void __iomem		*sbdma_oodpktlost;
209						/* pkt drop (rx only) */
210
211	/*
212	 * This stuff is for maintenance of the ring
213	 */
214	void			*sbdma_dscrtable_unaligned;
215	struct sbdmadscr	*sbdma_dscrtable;
216						/* base of descriptor table */
217	struct sbdmadscr	*sbdma_dscrtable_end;
218						/* end of descriptor table */
219	struct sk_buff		**sbdma_ctxtable;
220						/* context table, one
221						   per descr */
222	dma_addr_t		sbdma_dscrtable_phys;
223						/* and also the phys addr */
224	struct sbdmadscr	*sbdma_addptr;	/* next dscr for sw to add */
225	struct sbdmadscr	*sbdma_remptr;	/* next dscr for sw
226						   to remove */
227};
228
229
230/**********************************************************************
231 *  Ethernet softc structure
232 ********************************************************************* */
233
234struct sbmac_softc {
235
236	/*
237	 * Linux-specific things
238	 */
239	struct net_device	*sbm_dev;	/* pointer to linux device */
240	struct napi_struct	napi;
241	struct phy_device	*phy_dev;	/* the associated PHY device */
242	struct mii_bus		*mii_bus;	/* the MII bus */
243	int			phy_irq[PHY_MAX_ADDR];
244	spinlock_t		sbm_lock;	/* spin lock */
245	int			sbm_devflags;	/* current device flags */
246
247	/*
248	 * Controller-specific things
249	 */
250	void __iomem		*sbm_base;	/* MAC's base address */
251	enum sbmac_state	sbm_state;	/* current state */
252
253	void __iomem		*sbm_macenable;	/* MAC Enable Register */
254	void __iomem		*sbm_maccfg;	/* MAC Config Register */
255	void __iomem		*sbm_fifocfg;	/* FIFO Config Register */
256	void __iomem		*sbm_framecfg;	/* Frame Config Register */
257	void __iomem		*sbm_rxfilter;	/* Receive Filter Register */
258	void __iomem		*sbm_isr;	/* Interrupt Status Register */
259	void __iomem		*sbm_imr;	/* Interrupt Mask Register */
260	void __iomem		*sbm_mdio;	/* MDIO Register */
261
262	enum sbmac_speed	sbm_speed;	/* current speed */
263	enum sbmac_duplex	sbm_duplex;	/* current duplex */
264	enum sbmac_fc		sbm_fc;		/* cur. flow control setting */
265	int			sbm_pause;	/* current pause setting */
266	int			sbm_link;	/* current link state */
267
268	unsigned char		sbm_hwaddr[ETH_ALEN];
269
270	struct sbmacdma		sbm_txdma;	/* only channel 0 for now */
271	struct sbmacdma		sbm_rxdma;
272	int			rx_hw_checksum;
273	int			sbe_idx;
274};
275
276
277/**********************************************************************
278 *  Externs
279 ********************************************************************* */
280
281/**********************************************************************
282 *  Prototypes
283 ********************************************************************* */
284
285static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
286			  int txrx, int maxdescr);
287static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
288static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
289			       struct sk_buff *m);
290static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
291static void sbdma_emptyring(struct sbmacdma *d);
292static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
293static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
294			    int work_to_do, int poll);
295static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
296			     int poll);
297static int sbmac_initctx(struct sbmac_softc *s);
298static void sbmac_channel_start(struct sbmac_softc *s);
299static void sbmac_channel_stop(struct sbmac_softc *s);
300static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
301						enum sbmac_state);
302static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
303static uint64_t sbmac_addr2reg(unsigned char *ptr);
304static irqreturn_t sbmac_intr(int irq, void *dev_instance);
305static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
306static void sbmac_setmulti(struct sbmac_softc *sc);
307static int sbmac_init(struct platform_device *pldev, long long base);
308static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
309static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
310			    enum sbmac_fc fc);
311
312static int sbmac_open(struct net_device *dev);
313static void sbmac_tx_timeout (struct net_device *dev);
314static void sbmac_set_rx_mode(struct net_device *dev);
315static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
316static int sbmac_close(struct net_device *dev);
317static int sbmac_poll(struct napi_struct *napi, int budget);
318
319static void sbmac_mii_poll(struct net_device *dev);
320static int sbmac_mii_probe(struct net_device *dev);
321
322static void sbmac_mii_sync(void __iomem *sbm_mdio);
323static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
324			       int bitcnt);
325static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
326static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
327			   u16 val);
328
329
330/**********************************************************************
331 *  Globals
332 ********************************************************************* */
333
334static char sbmac_string[] = "sb1250-mac";
335
336static char sbmac_mdio_string[] = "sb1250-mac-mdio";
337
338
339/**********************************************************************
340 *  MDIO constants
341 ********************************************************************* */
342
343#define	MII_COMMAND_START	0x01
344#define	MII_COMMAND_READ	0x02
345#define	MII_COMMAND_WRITE	0x01
346#define	MII_COMMAND_ACK		0x02
347
348#define M_MAC_MDIO_DIR_OUTPUT	0		/* for clarity */
349
350#define ENABLE 		1
351#define DISABLE		0
352
353/**********************************************************************
354 *  SBMAC_MII_SYNC(sbm_mdio)
355 *
356 *  Synchronize with the MII - send a pattern of bits to the MII
357 *  that will guarantee that it is ready to accept a command.
358 *
359 *  Input parameters:
360 *  	   sbm_mdio - address of the MAC's MDIO register
361 *
362 *  Return value:
363 *  	   nothing
364 ********************************************************************* */
365
366static void sbmac_mii_sync(void __iomem *sbm_mdio)
367{
368	int cnt;
369	uint64_t bits;
370	int mac_mdio_genc;
371
372	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
373
374	bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
375
376	__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
377
378	for (cnt = 0; cnt < 32; cnt++) {
379		__raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
380		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
381	}
382}
383
384/**********************************************************************
385 *  SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
386 *
387 *  Send some bits to the MII.  The bits to be sent are right-
388 *  justified in the 'data' parameter.
389 *
390 *  Input parameters:
391 *  	   sbm_mdio - address of the MAC's MDIO register
392 *  	   data     - data to send
393 *  	   bitcnt   - number of bits to send
394 ********************************************************************* */
395
396static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
397			       int bitcnt)
398{
399	int i;
400	uint64_t bits;
401	unsigned int curmask;
402	int mac_mdio_genc;
403
404	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
405
406	bits = M_MAC_MDIO_DIR_OUTPUT;
407	__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
408
409	curmask = 1 << (bitcnt - 1);
410
411	for (i = 0; i < bitcnt; i++) {
412		if (data & curmask)
413			bits |= M_MAC_MDIO_OUT;
414		else bits &= ~M_MAC_MDIO_OUT;
415		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
416		__raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
417		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
418		curmask >>= 1;
419	}
420}
421
422
423
424/**********************************************************************
425 *  SBMAC_MII_READ(bus, phyaddr, regidx)
426 *  Read a PHY register.
427 *
428 *  Input parameters:
429 *  	   bus     - MDIO bus handle
430 *  	   phyaddr - PHY's address
431 *  	   regnum  - index of register to read
432 *
433 *  Return value:
434 *  	   value read, or 0xffff if an error occurred.
435 ********************************************************************* */
436
437static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
438{
439	struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
440	void __iomem *sbm_mdio = sc->sbm_mdio;
441	int idx;
442	int error;
443	int regval;
444	int mac_mdio_genc;
445
446	/*
447	 * Synchronize ourselves so that the PHY knows the next
448	 * thing coming down is a command
449	 */
450	sbmac_mii_sync(sbm_mdio);
451
452	/*
453	 * Send the data to the PHY.  The sequence is
454	 * a "start" command (2 bits)
455	 * a "read" command (2 bits)
456	 * the PHY addr (5 bits)
457	 * the register index (5 bits)
458	 */
459	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
460	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
461	sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
462	sbmac_mii_senddata(sbm_mdio, regidx, 5);
463
464	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
465
466	/*
467	 * Switch the port around without a clock transition.
468	 */
469	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
470
471	/*
472	 * Send out a clock pulse to signal we want the status
473	 */
474	__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
475		     sbm_mdio);
476	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
477
478	/*
479	 * If an error occurred, the PHY will signal '1' back
480	 */
481	error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
482
483	/*
484	 * Issue an 'idle' clock pulse, but keep the direction
485	 * the same.
486	 */
487	__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
488		     sbm_mdio);
489	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
490
491	regval = 0;
492
493	for (idx = 0; idx < 16; idx++) {
494		regval <<= 1;
495
496		if (error == 0) {
497			if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
498				regval |= 1;
499		}
500
501		__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
502			     sbm_mdio);
503		__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
504	}
505
506	/* Switch back to output */
507	__raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
508
509	if (error == 0)
510		return regval;
511	return 0xffff;
512}
513
514
515/**********************************************************************
516 *  SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
517 *
518 *  Write a value to a PHY register.
519 *
520 *  Input parameters:
521 *  	   bus     - MDIO bus handle
522 *  	   phyaddr - PHY to use
523 *  	   regidx  - register within the PHY
524 *  	   regval  - data to write to register
525 *
526 *  Return value:
527 *  	   0 for success
528 ********************************************************************* */
529
530static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
531			   u16 regval)
532{
533	struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
534	void __iomem *sbm_mdio = sc->sbm_mdio;
535	int mac_mdio_genc;
536
537	sbmac_mii_sync(sbm_mdio);
538
539	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
540	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
541	sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
542	sbmac_mii_senddata(sbm_mdio, regidx, 5);
543	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
544	sbmac_mii_senddata(sbm_mdio, regval, 16);
545
546	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
547
548	__raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
549
550	return 0;
551}
552
553
554
555/**********************************************************************
556 *  SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
557 *
558 *  Initialize a DMA channel context.  Since there are potentially
559 *  eight DMA channels per MAC, it's nice to do this in a standard
560 *  way.
561 *
562 *  Input parameters:
563 *  	   d - struct sbmacdma (DMA channel context)
564 *  	   s - struct sbmac_softc (pointer to a MAC)
565 *  	   chan - channel number (0..1 right now)
566 *  	   txrx - Identifies DMA_TX or DMA_RX for channel direction
567 *      maxdescr - number of descriptors
568 *
569 *  Return value:
570 *  	   nothing
571 ********************************************************************* */
572
573static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
574			  int txrx, int maxdescr)
575{
576#ifdef CONFIG_SBMAC_COALESCE
577	int int_pktcnt, int_timeout;
578#endif
579
580	/*
581	 * Save away interesting stuff in the structure
582	 */
583
584	d->sbdma_eth       = s;
585	d->sbdma_channel   = chan;
586	d->sbdma_txdir     = txrx;
587
588#if 0
589	/* RMON clearing */
590	s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
591#endif
592
593	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
594	__raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
595	__raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
596	__raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
597	__raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
598	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
599	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
600	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
601	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
602	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
603	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
604	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
605	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
606	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
607	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
608	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
609	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
610	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
611	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
612	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
613	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
614
615	/*
616	 * initialize register pointers
617	 */
618
619	d->sbdma_config0 =
620		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
621	d->sbdma_config1 =
622		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
623	d->sbdma_dscrbase =
624		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
625	d->sbdma_dscrcnt =
626		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
627	d->sbdma_curdscr =
628		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
629	if (d->sbdma_txdir)
630		d->sbdma_oodpktlost = NULL;
631	else
632		d->sbdma_oodpktlost =
633			s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
634
635	/*
636	 * Allocate memory for the ring
637	 */
638
639	d->sbdma_maxdescr = maxdescr;
640
641	d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
642					       sizeof(*d->sbdma_dscrtable),
643					       GFP_KERNEL);
644
645	/*
646	 * The descriptor table must be aligned to at least 16 bytes or the
647	 * MAC will corrupt it.
648	 */
649	d->sbdma_dscrtable = (struct sbdmadscr *)
650			     ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
651				   sizeof(*d->sbdma_dscrtable));
652
653	d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
654
655	d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
656
657	/*
658	 * And context table
659	 */
660
661	d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
662				    sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
663
664#ifdef CONFIG_SBMAC_COALESCE
665	/*
666	 * Setup Rx/Tx DMA coalescing defaults
667	 */
668
669	int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
670	if ( int_pktcnt ) {
671		d->sbdma_int_pktcnt = int_pktcnt;
672	} else {
673		d->sbdma_int_pktcnt = 1;
674	}
675
676	int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
677	if ( int_timeout ) {
678		d->sbdma_int_timeout = int_timeout;
679	} else {
680		d->sbdma_int_timeout = 0;
681	}
682#endif
683
684}
685
686/**********************************************************************
687 *  SBDMA_CHANNEL_START(d)
688 *
689 *  Initialize the hardware registers for a DMA channel.
690 *
691 *  Input parameters:
692 *  	   d - DMA channel to init (context must be previously init'd
693 *         rxtx - DMA_RX or DMA_TX depending on what type of channel
694 *
695 *  Return value:
696 *  	   nothing
697 ********************************************************************* */
698
699static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
700{
701	/*
702	 * Turn on the DMA channel
703	 */
704
705#ifdef CONFIG_SBMAC_COALESCE
706	__raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
707		       0, d->sbdma_config1);
708	__raw_writeq(M_DMA_EOP_INT_EN |
709		       V_DMA_RINGSZ(d->sbdma_maxdescr) |
710		       V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
711		       0, d->sbdma_config0);
712#else
713	__raw_writeq(0, d->sbdma_config1);
714	__raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
715		       0, d->sbdma_config0);
716#endif
717
718	__raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
719
720	/*
721	 * Initialize ring pointers
722	 */
723
724	d->sbdma_addptr = d->sbdma_dscrtable;
725	d->sbdma_remptr = d->sbdma_dscrtable;
726}
727
728/**********************************************************************
729 *  SBDMA_CHANNEL_STOP(d)
730 *
731 *  Initialize the hardware registers for a DMA channel.
732 *
733 *  Input parameters:
734 *  	   d - DMA channel to init (context must be previously init'd
735 *
736 *  Return value:
737 *  	   nothing
738 ********************************************************************* */
739
740static void sbdma_channel_stop(struct sbmacdma *d)
741{
742	/*
743	 * Turn off the DMA channel
744	 */
745
746	__raw_writeq(0, d->sbdma_config1);
747
748	__raw_writeq(0, d->sbdma_dscrbase);
749
750	__raw_writeq(0, d->sbdma_config0);
751
752	/*
753	 * Zero ring pointers
754	 */
755
756	d->sbdma_addptr = NULL;
757	d->sbdma_remptr = NULL;
758}
759
760static inline void sbdma_align_skb(struct sk_buff *skb,
761				   unsigned int power2, unsigned int offset)
762{
763	unsigned char *addr = skb->data;
764	unsigned char *newaddr = PTR_ALIGN(addr, power2);
765
766	skb_reserve(skb, newaddr - addr + offset);
767}
768
769
770/**********************************************************************
771 *  SBDMA_ADD_RCVBUFFER(d,sb)
772 *
773 *  Add a buffer to the specified DMA channel.   For receive channels,
774 *  this queues a buffer for inbound packets.
775 *
776 *  Input parameters:
777 *	   sc - softc structure
778 *  	    d - DMA channel descriptor
779 * 	   sb - sk_buff to add, or NULL if we should allocate one
780 *
781 *  Return value:
782 *  	   0 if buffer could not be added (ring is full)
783 *  	   1 if buffer added successfully
784 ********************************************************************* */
785
786
787static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
788			       struct sk_buff *sb)
789{
790	struct net_device *dev = sc->sbm_dev;
791	struct sbdmadscr *dsc;
792	struct sbdmadscr *nextdsc;
793	struct sk_buff *sb_new = NULL;
794	int pktsize = ENET_PACKET_SIZE;
795
796	/* get pointer to our current place in the ring */
797
798	dsc = d->sbdma_addptr;
799	nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
800
801	/*
802	 * figure out if the ring is full - if the next descriptor
803	 * is the same as the one that we're going to remove from
804	 * the ring, the ring is full
805	 */
806
807	if (nextdsc == d->sbdma_remptr) {
808		return -ENOSPC;
809	}
810
811	/*
812	 * Allocate a sk_buff if we don't already have one.
813	 * If we do have an sk_buff, reset it so that it's empty.
814	 *
815	 * Note: sk_buffs don't seem to be guaranteed to have any sort
816	 * of alignment when they are allocated.  Therefore, allocate enough
817	 * extra space to make sure that:
818	 *
819	 *    1. the data does not start in the middle of a cache line.
820	 *    2. The data does not end in the middle of a cache line
821	 *    3. The buffer can be aligned such that the IP addresses are
822	 *       naturally aligned.
823	 *
824	 *  Remember, the SOCs MAC writes whole cache lines at a time,
825	 *  without reading the old contents first.  So, if the sk_buff's
826	 *  data portion starts in the middle of a cache line, the SOC
827	 *  DMA will trash the beginning (and ending) portions.
828	 */
829
830	if (sb == NULL) {
831		sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
832					       SMP_CACHE_BYTES * 2 +
833					       NET_IP_ALIGN);
834		if (sb_new == NULL)
835			return -ENOBUFS;
836
837		sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
838	}
839	else {
840		sb_new = sb;
841		/*
842		 * nothing special to reinit buffer, it's already aligned
843		 * and sb->data already points to a good place.
844		 */
845	}
846
847	/*
848	 * fill in the descriptor
849	 */
850
851#ifdef CONFIG_SBMAC_COALESCE
852	/*
853	 * Do not interrupt per DMA transfer.
854	 */
855	dsc->dscr_a = virt_to_phys(sb_new->data) |
856		V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
857#else
858	dsc->dscr_a = virt_to_phys(sb_new->data) |
859		V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
860		M_DMA_DSCRA_INTERRUPT;
861#endif
862
863	/* receiving: no options */
864	dsc->dscr_b = 0;
865
866	/*
867	 * fill in the context
868	 */
869
870	d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
871
872	/*
873	 * point at next packet
874	 */
875
876	d->sbdma_addptr = nextdsc;
877
878	/*
879	 * Give the buffer to the DMA engine.
880	 */
881
882	__raw_writeq(1, d->sbdma_dscrcnt);
883
884	return 0;					/* we did it */
885}
886
887/**********************************************************************
888 *  SBDMA_ADD_TXBUFFER(d,sb)
889 *
890 *  Add a transmit buffer to the specified DMA channel, causing a
891 *  transmit to start.
892 *
893 *  Input parameters:
894 *  	   d - DMA channel descriptor
895 * 	   sb - sk_buff to add
896 *
897 *  Return value:
898 *  	   0 transmit queued successfully
899 *  	   otherwise error code
900 ********************************************************************* */
901
902
903static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
904{
905	struct sbdmadscr *dsc;
906	struct sbdmadscr *nextdsc;
907	uint64_t phys;
908	uint64_t ncb;
909	int length;
910
911	/* get pointer to our current place in the ring */
912
913	dsc = d->sbdma_addptr;
914	nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
915
916	/*
917	 * figure out if the ring is full - if the next descriptor
918	 * is the same as the one that we're going to remove from
919	 * the ring, the ring is full
920	 */
921
922	if (nextdsc == d->sbdma_remptr) {
923		return -ENOSPC;
924	}
925
926	/*
927	 * Under Linux, it's not necessary to copy/coalesce buffers
928	 * like it is on NetBSD.  We think they're all contiguous,
929	 * but that may not be true for GBE.
930	 */
931
932	length = sb->len;
933
934	/*
935	 * fill in the descriptor.  Note that the number of cache
936	 * blocks in the descriptor is the number of blocks
937	 * *spanned*, so we need to add in the offset (if any)
938	 * while doing the calculation.
939	 */
940
941	phys = virt_to_phys(sb->data);
942	ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
943
944	dsc->dscr_a = phys |
945		V_DMA_DSCRA_A_SIZE(ncb) |
946#ifndef CONFIG_SBMAC_COALESCE
947		M_DMA_DSCRA_INTERRUPT |
948#endif
949		M_DMA_ETHTX_SOP;
950
951	/* transmitting: set outbound options and length */
952
953	dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
954		V_DMA_DSCRB_PKT_SIZE(length);
955
956	/*
957	 * fill in the context
958	 */
959
960	d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
961
962	/*
963	 * point at next packet
964	 */
965
966	d->sbdma_addptr = nextdsc;
967
968	/*
969	 * Give the buffer to the DMA engine.
970	 */
971
972	__raw_writeq(1, d->sbdma_dscrcnt);
973
974	return 0;					/* we did it */
975}
976
977
978
979
980/**********************************************************************
981 *  SBDMA_EMPTYRING(d)
982 *
983 *  Free all allocated sk_buffs on the specified DMA channel;
984 *
985 *  Input parameters:
986 *  	   d  - DMA channel
987 *
988 *  Return value:
989 *  	   nothing
990 ********************************************************************* */
991
992static void sbdma_emptyring(struct sbmacdma *d)
993{
994	int idx;
995	struct sk_buff *sb;
996
997	for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
998		sb = d->sbdma_ctxtable[idx];
999		if (sb) {
1000			dev_kfree_skb(sb);
1001			d->sbdma_ctxtable[idx] = NULL;
1002		}
1003	}
1004}
1005
1006
1007/**********************************************************************
1008 *  SBDMA_FILLRING(d)
1009 *
1010 *  Fill the specified DMA channel (must be receive channel)
1011 *  with sk_buffs
1012 *
1013 *  Input parameters:
1014 *	   sc - softc structure
1015 *  	    d - DMA channel
1016 *
1017 *  Return value:
1018 *  	   nothing
1019 ********************************************************************* */
1020
1021static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1022{
1023	int idx;
1024
1025	for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1026		if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1027			break;
1028	}
1029}
1030
1031#ifdef CONFIG_NET_POLL_CONTROLLER
1032static void sbmac_netpoll(struct net_device *netdev)
1033{
1034	struct sbmac_softc *sc = netdev_priv(netdev);
1035	int irq = sc->sbm_dev->irq;
1036
1037	__raw_writeq(0, sc->sbm_imr);
1038
1039	sbmac_intr(irq, netdev);
1040
1041#ifdef CONFIG_SBMAC_COALESCE
1042	__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1043	((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1044	sc->sbm_imr);
1045#else
1046	__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1047	(M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1048#endif
1049}
1050#endif
1051
1052/**********************************************************************
1053 *  SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1054 *
1055 *  Process "completed" receive buffers on the specified DMA channel.
1056 *
1057 *  Input parameters:
1058 *            sc - softc structure
1059 *  	       d - DMA channel context
1060 *    work_to_do - no. of packets to process before enabling interrupt
1061 *                 again (for NAPI)
1062 *          poll - 1: using polling (for NAPI)
1063 *
1064 *  Return value:
1065 *  	   nothing
1066 ********************************************************************* */
1067
1068static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1069			    int work_to_do, int poll)
1070{
1071	struct net_device *dev = sc->sbm_dev;
1072	int curidx;
1073	int hwidx;
1074	struct sbdmadscr *dsc;
1075	struct sk_buff *sb;
1076	int len;
1077	int work_done = 0;
1078	int dropped = 0;
1079
1080	prefetch(d);
1081
1082again:
1083	/* Check if the HW dropped any frames */
1084	dev->stats.rx_fifo_errors
1085	    += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1086	__raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1087
1088	while (work_to_do-- > 0) {
1089		/*
1090		 * figure out where we are (as an index) and where
1091		 * the hardware is (also as an index)
1092		 *
1093		 * This could be done faster if (for example) the
1094		 * descriptor table was page-aligned and contiguous in
1095		 * both virtual and physical memory -- you could then
1096		 * just compare the low-order bits of the virtual address
1097		 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1098		 */
1099
1100		dsc = d->sbdma_remptr;
1101		curidx = dsc - d->sbdma_dscrtable;
1102
1103		prefetch(dsc);
1104		prefetch(&d->sbdma_ctxtable[curidx]);
1105
1106		hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1107			 d->sbdma_dscrtable_phys) /
1108			sizeof(*d->sbdma_dscrtable);
1109
1110		/*
1111		 * If they're the same, that means we've processed all
1112		 * of the descriptors up to (but not including) the one that
1113		 * the hardware is working on right now.
1114		 */
1115
1116		if (curidx == hwidx)
1117			goto done;
1118
1119		/*
1120		 * Otherwise, get the packet's sk_buff ptr back
1121		 */
1122
1123		sb = d->sbdma_ctxtable[curidx];
1124		d->sbdma_ctxtable[curidx] = NULL;
1125
1126		len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1127
1128		/*
1129		 * Check packet status.  If good, process it.
1130		 * If not, silently drop it and put it back on the
1131		 * receive ring.
1132		 */
1133
1134		if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1135
1136			/*
1137			 * Add a new buffer to replace the old one.  If we fail
1138			 * to allocate a buffer, we're going to drop this
1139			 * packet and put it right back on the receive ring.
1140			 */
1141
1142			if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1143				     -ENOBUFS)) {
1144				dev->stats.rx_dropped++;
1145				/* Re-add old buffer */
1146				sbdma_add_rcvbuffer(sc, d, sb);
1147				/* No point in continuing at the moment */
1148				printk(KERN_ERR "dropped packet (1)\n");
1149				d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1150				goto done;
1151			} else {
1152				/*
1153				 * Set length into the packet
1154				 */
1155				skb_put(sb,len);
1156
1157				/*
1158				 * Buffer has been replaced on the
1159				 * receive ring.  Pass the buffer to
1160				 * the kernel
1161				 */
1162				sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1163				/* Check hw IPv4/TCP checksum if supported */
1164				if (sc->rx_hw_checksum == ENABLE) {
1165					if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1166					    !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1167						sb->ip_summed = CHECKSUM_UNNECESSARY;
1168						/* don't need to set sb->csum */
1169					} else {
1170						skb_checksum_none_assert(sb);
1171					}
1172				}
1173				prefetch(sb->data);
1174				prefetch((const void *)(((char *)sb->data)+32));
1175				if (poll)
1176					dropped = netif_receive_skb(sb);
1177				else
1178					dropped = netif_rx(sb);
1179
1180				if (dropped == NET_RX_DROP) {
1181					dev->stats.rx_dropped++;
1182					d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1183					goto done;
1184				}
1185				else {
1186					dev->stats.rx_bytes += len;
1187					dev->stats.rx_packets++;
1188				}
1189			}
1190		} else {
1191			/*
1192			 * Packet was mangled somehow.  Just drop it and
1193			 * put it back on the receive ring.
1194			 */
1195			dev->stats.rx_errors++;
1196			sbdma_add_rcvbuffer(sc, d, sb);
1197		}
1198
1199
1200		/*
1201		 * .. and advance to the next buffer.
1202		 */
1203
1204		d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1205		work_done++;
1206	}
1207	if (!poll) {
1208		work_to_do = 32;
1209		goto again; /* collect fifo drop statistics again */
1210	}
1211done:
1212	return work_done;
1213}
1214
1215/**********************************************************************
1216 *  SBDMA_TX_PROCESS(sc,d)
1217 *
1218 *  Process "completed" transmit buffers on the specified DMA channel.
1219 *  This is normally called within the interrupt service routine.
1220 *  Note that this isn't really ideal for priority channels, since
1221 *  it processes all of the packets on a given channel before
1222 *  returning.
1223 *
1224 *  Input parameters:
1225 *      sc - softc structure
1226 *  	 d - DMA channel context
1227 *    poll - 1: using polling (for NAPI)
1228 *
1229 *  Return value:
1230 *  	   nothing
1231 ********************************************************************* */
1232
1233static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1234			     int poll)
1235{
1236	struct net_device *dev = sc->sbm_dev;
1237	int curidx;
1238	int hwidx;
1239	struct sbdmadscr *dsc;
1240	struct sk_buff *sb;
1241	unsigned long flags;
1242	int packets_handled = 0;
1243
1244	spin_lock_irqsave(&(sc->sbm_lock), flags);
1245
1246	if (d->sbdma_remptr == d->sbdma_addptr)
1247	  goto end_unlock;
1248
1249	hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1250		 d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1251
1252	for (;;) {
1253		/*
1254		 * figure out where we are (as an index) and where
1255		 * the hardware is (also as an index)
1256		 *
1257		 * This could be done faster if (for example) the
1258		 * descriptor table was page-aligned and contiguous in
1259		 * both virtual and physical memory -- you could then
1260		 * just compare the low-order bits of the virtual address
1261		 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1262		 */
1263
1264		curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1265
1266		/*
1267		 * If they're the same, that means we've processed all
1268		 * of the descriptors up to (but not including) the one that
1269		 * the hardware is working on right now.
1270		 */
1271
1272		if (curidx == hwidx)
1273			break;
1274
1275		/*
1276		 * Otherwise, get the packet's sk_buff ptr back
1277		 */
1278
1279		dsc = &(d->sbdma_dscrtable[curidx]);
1280		sb = d->sbdma_ctxtable[curidx];
1281		d->sbdma_ctxtable[curidx] = NULL;
1282
1283		/*
1284		 * Stats
1285		 */
1286
1287		dev->stats.tx_bytes += sb->len;
1288		dev->stats.tx_packets++;
1289
1290		/*
1291		 * for transmits, we just free buffers.
1292		 */
1293
1294		dev_kfree_skb_irq(sb);
1295
1296		/*
1297		 * .. and advance to the next buffer.
1298		 */
1299
1300		d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1301
1302		packets_handled++;
1303
1304	}
1305
1306	/*
1307	 * Decide if we should wake up the protocol or not.
1308	 * Other drivers seem to do this when we reach a low
1309	 * watermark on the transmit queue.
1310	 */
1311
1312	if (packets_handled)
1313		netif_wake_queue(d->sbdma_eth->sbm_dev);
1314
1315end_unlock:
1316	spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1317
1318}
1319
1320
1321
1322/**********************************************************************
1323 *  SBMAC_INITCTX(s)
1324 *
1325 *  Initialize an Ethernet context structure - this is called
1326 *  once per MAC on the 1250.  Memory is allocated here, so don't
1327 *  call it again from inside the ioctl routines that bring the
1328 *  interface up/down
1329 *
1330 *  Input parameters:
1331 *  	   s - sbmac context structure
1332 *
1333 *  Return value:
1334 *  	   0
1335 ********************************************************************* */
1336
1337static int sbmac_initctx(struct sbmac_softc *s)
1338{
1339
1340	/*
1341	 * figure out the addresses of some ports
1342	 */
1343
1344	s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1345	s->sbm_maccfg    = s->sbm_base + R_MAC_CFG;
1346	s->sbm_fifocfg   = s->sbm_base + R_MAC_THRSH_CFG;
1347	s->sbm_framecfg  = s->sbm_base + R_MAC_FRAMECFG;
1348	s->sbm_rxfilter  = s->sbm_base + R_MAC_ADFILTER_CFG;
1349	s->sbm_isr       = s->sbm_base + R_MAC_STATUS;
1350	s->sbm_imr       = s->sbm_base + R_MAC_INT_MASK;
1351	s->sbm_mdio      = s->sbm_base + R_MAC_MDIO;
1352
1353	/*
1354	 * Initialize the DMA channels.  Right now, only one per MAC is used
1355	 * Note: Only do this _once_, as it allocates memory from the kernel!
1356	 */
1357
1358	sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1359	sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1360
1361	/*
1362	 * initial state is OFF
1363	 */
1364
1365	s->sbm_state = sbmac_state_off;
1366
1367	return 0;
1368}
1369
1370
1371static void sbdma_uninitctx(struct sbmacdma *d)
1372{
1373	if (d->sbdma_dscrtable_unaligned) {
1374		kfree(d->sbdma_dscrtable_unaligned);
1375		d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1376	}
1377
1378	if (d->sbdma_ctxtable) {
1379		kfree(d->sbdma_ctxtable);
1380		d->sbdma_ctxtable = NULL;
1381	}
1382}
1383
1384
1385static void sbmac_uninitctx(struct sbmac_softc *sc)
1386{
1387	sbdma_uninitctx(&(sc->sbm_txdma));
1388	sbdma_uninitctx(&(sc->sbm_rxdma));
1389}
1390
1391
1392/**********************************************************************
1393 *  SBMAC_CHANNEL_START(s)
1394 *
1395 *  Start packet processing on this MAC.
1396 *
1397 *  Input parameters:
1398 *  	   s - sbmac structure
1399 *
1400 *  Return value:
1401 *  	   nothing
1402 ********************************************************************* */
1403
1404static void sbmac_channel_start(struct sbmac_softc *s)
1405{
1406	uint64_t reg;
1407	void __iomem *port;
1408	uint64_t cfg,fifo,framecfg;
1409	int idx, th_value;
1410
1411	/*
1412	 * Don't do this if running
1413	 */
1414
1415	if (s->sbm_state == sbmac_state_on)
1416		return;
1417
1418	/*
1419	 * Bring the controller out of reset, but leave it off.
1420	 */
1421
1422	__raw_writeq(0, s->sbm_macenable);
1423
1424	/*
1425	 * Ignore all received packets
1426	 */
1427
1428	__raw_writeq(0, s->sbm_rxfilter);
1429
1430	/*
1431	 * Calculate values for various control registers.
1432	 */
1433
1434	cfg = M_MAC_RETRY_EN |
1435		M_MAC_TX_HOLD_SOP_EN |
1436		V_MAC_TX_PAUSE_CNT_16K |
1437		M_MAC_AP_STAT_EN |
1438		M_MAC_FAST_SYNC |
1439		M_MAC_SS_EN |
1440		0;
1441
1442	/*
1443	 * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1444	 * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1445	 * Use a larger RD_THRSH for gigabit
1446	 */
1447	if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1448		th_value = 28;
1449	else
1450		th_value = 64;
1451
1452	fifo = V_MAC_TX_WR_THRSH(4) |	/* Must be '4' or '8' */
1453		((s->sbm_speed == sbmac_speed_1000)
1454		 ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1455		V_MAC_TX_RL_THRSH(4) |
1456		V_MAC_RX_PL_THRSH(4) |
1457		V_MAC_RX_RD_THRSH(4) |	/* Must be '4' */
1458		V_MAC_RX_RL_THRSH(8) |
1459		0;
1460
1461	framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1462		V_MAC_MAX_FRAMESZ_DEFAULT |
1463		V_MAC_BACKOFF_SEL(1);
1464
1465	/*
1466	 * Clear out the hash address map
1467	 */
1468
1469	port = s->sbm_base + R_MAC_HASH_BASE;
1470	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1471		__raw_writeq(0, port);
1472		port += sizeof(uint64_t);
1473	}
1474
1475	/*
1476	 * Clear out the exact-match table
1477	 */
1478
1479	port = s->sbm_base + R_MAC_ADDR_BASE;
1480	for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1481		__raw_writeq(0, port);
1482		port += sizeof(uint64_t);
1483	}
1484
1485	/*
1486	 * Clear out the DMA Channel mapping table registers
1487	 */
1488
1489	port = s->sbm_base + R_MAC_CHUP0_BASE;
1490	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1491		__raw_writeq(0, port);
1492		port += sizeof(uint64_t);
1493	}
1494
1495
1496	port = s->sbm_base + R_MAC_CHLO0_BASE;
1497	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1498		__raw_writeq(0, port);
1499		port += sizeof(uint64_t);
1500	}
1501
1502	/*
1503	 * Program the hardware address.  It goes into the hardware-address
1504	 * register as well as the first filter register.
1505	 */
1506
1507	reg = sbmac_addr2reg(s->sbm_hwaddr);
1508
1509	port = s->sbm_base + R_MAC_ADDR_BASE;
1510	__raw_writeq(reg, port);
1511	port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1512
1513#ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1514	/*
1515	 * Pass1 SOCs do not receive packets addressed to the
1516	 * destination address in the R_MAC_ETHERNET_ADDR register.
1517	 * Set the value to zero.
1518	 */
1519	__raw_writeq(0, port);
1520#else
1521	__raw_writeq(reg, port);
1522#endif
1523
1524	/*
1525	 * Set the receive filter for no packets, and write values
1526	 * to the various config registers
1527	 */
1528
1529	__raw_writeq(0, s->sbm_rxfilter);
1530	__raw_writeq(0, s->sbm_imr);
1531	__raw_writeq(framecfg, s->sbm_framecfg);
1532	__raw_writeq(fifo, s->sbm_fifocfg);
1533	__raw_writeq(cfg, s->sbm_maccfg);
1534
1535	/*
1536	 * Initialize DMA channels (rings should be ok now)
1537	 */
1538
1539	sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1540	sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1541
1542	/*
1543	 * Configure the speed, duplex, and flow control
1544	 */
1545
1546	sbmac_set_speed(s,s->sbm_speed);
1547	sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1548
1549	/*
1550	 * Fill the receive ring
1551	 */
1552
1553	sbdma_fillring(s, &(s->sbm_rxdma));
1554
1555	/*
1556	 * Turn on the rest of the bits in the enable register
1557	 */
1558
1559#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1560	__raw_writeq(M_MAC_RXDMA_EN0 |
1561		       M_MAC_TXDMA_EN0, s->sbm_macenable);
1562#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1563	__raw_writeq(M_MAC_RXDMA_EN0 |
1564		       M_MAC_TXDMA_EN0 |
1565		       M_MAC_RX_ENABLE |
1566		       M_MAC_TX_ENABLE, s->sbm_macenable);
1567#else
1568#error invalid SiByte MAC configuration
1569#endif
1570
1571#ifdef CONFIG_SBMAC_COALESCE
1572	__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1573		       ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1574#else
1575	__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1576		       (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1577#endif
1578
1579	/*
1580	 * Enable receiving unicasts and broadcasts
1581	 */
1582
1583	__raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1584
1585	/*
1586	 * we're running now.
1587	 */
1588
1589	s->sbm_state = sbmac_state_on;
1590
1591	/*
1592	 * Program multicast addresses
1593	 */
1594
1595	sbmac_setmulti(s);
1596
1597	/*
1598	 * If channel was in promiscuous mode before, turn that on
1599	 */
1600
1601	if (s->sbm_devflags & IFF_PROMISC) {
1602		sbmac_promiscuous_mode(s,1);
1603	}
1604
1605}
1606
1607
1608/**********************************************************************
1609 *  SBMAC_CHANNEL_STOP(s)
1610 *
1611 *  Stop packet processing on this MAC.
1612 *
1613 *  Input parameters:
1614 *  	   s - sbmac structure
1615 *
1616 *  Return value:
1617 *  	   nothing
1618 ********************************************************************* */
1619
1620static void sbmac_channel_stop(struct sbmac_softc *s)
1621{
1622	/* don't do this if already stopped */
1623
1624	if (s->sbm_state == sbmac_state_off)
1625		return;
1626
1627	/* don't accept any packets, disable all interrupts */
1628
1629	__raw_writeq(0, s->sbm_rxfilter);
1630	__raw_writeq(0, s->sbm_imr);
1631
1632	/* Turn off ticker */
1633
1634	/* XXX */
1635
1636	/* turn off receiver and transmitter */
1637
1638	__raw_writeq(0, s->sbm_macenable);
1639
1640	/* We're stopped now. */
1641
1642	s->sbm_state = sbmac_state_off;
1643
1644	/*
1645	 * Stop DMA channels (rings should be ok now)
1646	 */
1647
1648	sbdma_channel_stop(&(s->sbm_rxdma));
1649	sbdma_channel_stop(&(s->sbm_txdma));
1650
1651	/* Empty the receive and transmit rings */
1652
1653	sbdma_emptyring(&(s->sbm_rxdma));
1654	sbdma_emptyring(&(s->sbm_txdma));
1655
1656}
1657
1658/**********************************************************************
1659 *  SBMAC_SET_CHANNEL_STATE(state)
1660 *
1661 *  Set the channel's state ON or OFF
1662 *
1663 *  Input parameters:
1664 *  	   state - new state
1665 *
1666 *  Return value:
1667 *  	   old state
1668 ********************************************************************* */
1669static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1670						enum sbmac_state state)
1671{
1672	enum sbmac_state oldstate = sc->sbm_state;
1673
1674	/*
1675	 * If same as previous state, return
1676	 */
1677
1678	if (state == oldstate) {
1679		return oldstate;
1680	}
1681
1682	/*
1683	 * If new state is ON, turn channel on
1684	 */
1685
1686	if (state == sbmac_state_on) {
1687		sbmac_channel_start(sc);
1688	}
1689	else {
1690		sbmac_channel_stop(sc);
1691	}
1692
1693	/*
1694	 * Return previous state
1695	 */
1696
1697	return oldstate;
1698}
1699
1700
1701/**********************************************************************
1702 *  SBMAC_PROMISCUOUS_MODE(sc,onoff)
1703 *
1704 *  Turn on or off promiscuous mode
1705 *
1706 *  Input parameters:
1707 *  	   sc - softc
1708 *      onoff - 1 to turn on, 0 to turn off
1709 *
1710 *  Return value:
1711 *  	   nothing
1712 ********************************************************************* */
1713
1714static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1715{
1716	uint64_t reg;
1717
1718	if (sc->sbm_state != sbmac_state_on)
1719		return;
1720
1721	if (onoff) {
1722		reg = __raw_readq(sc->sbm_rxfilter);
1723		reg |= M_MAC_ALLPKT_EN;
1724		__raw_writeq(reg, sc->sbm_rxfilter);
1725	}
1726	else {
1727		reg = __raw_readq(sc->sbm_rxfilter);
1728		reg &= ~M_MAC_ALLPKT_EN;
1729		__raw_writeq(reg, sc->sbm_rxfilter);
1730	}
1731}
1732
1733/**********************************************************************
1734 *  SBMAC_SETIPHDR_OFFSET(sc,onoff)
1735 *
1736 *  Set the iphdr offset as 15 assuming ethernet encapsulation
1737 *
1738 *  Input parameters:
1739 *  	   sc - softc
1740 *
1741 *  Return value:
1742 *  	   nothing
1743 ********************************************************************* */
1744
1745static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1746{
1747	uint64_t reg;
1748
1749	/* Hard code the off set to 15 for now */
1750	reg = __raw_readq(sc->sbm_rxfilter);
1751	reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1752	__raw_writeq(reg, sc->sbm_rxfilter);
1753
1754	/* BCM1250 pass1 didn't have hardware checksum.  Everything
1755	   later does.  */
1756	if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1757		sc->rx_hw_checksum = DISABLE;
1758	} else {
1759		sc->rx_hw_checksum = ENABLE;
1760	}
1761}
1762
1763
1764/**********************************************************************
1765 *  SBMAC_ADDR2REG(ptr)
1766 *
1767 *  Convert six bytes into the 64-bit register value that
1768 *  we typically write into the SBMAC's address/mcast registers
1769 *
1770 *  Input parameters:
1771 *  	   ptr - pointer to 6 bytes
1772 *
1773 *  Return value:
1774 *  	   register value
1775 ********************************************************************* */
1776
1777static uint64_t sbmac_addr2reg(unsigned char *ptr)
1778{
1779	uint64_t reg = 0;
1780
1781	ptr += 6;
1782
1783	reg |= (uint64_t) *(--ptr);
1784	reg <<= 8;
1785	reg |= (uint64_t) *(--ptr);
1786	reg <<= 8;
1787	reg |= (uint64_t) *(--ptr);
1788	reg <<= 8;
1789	reg |= (uint64_t) *(--ptr);
1790	reg <<= 8;
1791	reg |= (uint64_t) *(--ptr);
1792	reg <<= 8;
1793	reg |= (uint64_t) *(--ptr);
1794
1795	return reg;
1796}
1797
1798
1799/**********************************************************************
1800 *  SBMAC_SET_SPEED(s,speed)
1801 *
1802 *  Configure LAN speed for the specified MAC.
1803 *  Warning: must be called when MAC is off!
1804 *
1805 *  Input parameters:
1806 *  	   s - sbmac structure
1807 *  	   speed - speed to set MAC to (see enum sbmac_speed)
1808 *
1809 *  Return value:
1810 *  	   1 if successful
1811 *      0 indicates invalid parameters
1812 ********************************************************************* */
1813
1814static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1815{
1816	uint64_t cfg;
1817	uint64_t framecfg;
1818
1819	/*
1820	 * Save new current values
1821	 */
1822
1823	s->sbm_speed = speed;
1824
1825	if (s->sbm_state == sbmac_state_on)
1826		return 0;	/* save for next restart */
1827
1828	/*
1829	 * Read current register values
1830	 */
1831
1832	cfg = __raw_readq(s->sbm_maccfg);
1833	framecfg = __raw_readq(s->sbm_framecfg);
1834
1835	/*
1836	 * Mask out the stuff we want to change
1837	 */
1838
1839	cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1840	framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1841		      M_MAC_SLOT_SIZE);
1842
1843	/*
1844	 * Now add in the new bits
1845	 */
1846
1847	switch (speed) {
1848	case sbmac_speed_10:
1849		framecfg |= V_MAC_IFG_RX_10 |
1850			V_MAC_IFG_TX_10 |
1851			K_MAC_IFG_THRSH_10 |
1852			V_MAC_SLOT_SIZE_10;
1853		cfg |= V_MAC_SPEED_SEL_10MBPS;
1854		break;
1855
1856	case sbmac_speed_100:
1857		framecfg |= V_MAC_IFG_RX_100 |
1858			V_MAC_IFG_TX_100 |
1859			V_MAC_IFG_THRSH_100 |
1860			V_MAC_SLOT_SIZE_100;
1861		cfg |= V_MAC_SPEED_SEL_100MBPS ;
1862		break;
1863
1864	case sbmac_speed_1000:
1865		framecfg |= V_MAC_IFG_RX_1000 |
1866			V_MAC_IFG_TX_1000 |
1867			V_MAC_IFG_THRSH_1000 |
1868			V_MAC_SLOT_SIZE_1000;
1869		cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1870		break;
1871
1872	default:
1873		return 0;
1874	}
1875
1876	/*
1877	 * Send the bits back to the hardware
1878	 */
1879
1880	__raw_writeq(framecfg, s->sbm_framecfg);
1881	__raw_writeq(cfg, s->sbm_maccfg);
1882
1883	return 1;
1884}
1885
1886/**********************************************************************
1887 *  SBMAC_SET_DUPLEX(s,duplex,fc)
1888 *
1889 *  Set Ethernet duplex and flow control options for this MAC
1890 *  Warning: must be called when MAC is off!
1891 *
1892 *  Input parameters:
1893 *  	   s - sbmac structure
1894 *  	   duplex - duplex setting (see enum sbmac_duplex)
1895 *  	   fc - flow control setting (see enum sbmac_fc)
1896 *
1897 *  Return value:
1898 *  	   1 if ok
1899 *  	   0 if an invalid parameter combination was specified
1900 ********************************************************************* */
1901
1902static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1903			    enum sbmac_fc fc)
1904{
1905	uint64_t cfg;
1906
1907	/*
1908	 * Save new current values
1909	 */
1910
1911	s->sbm_duplex = duplex;
1912	s->sbm_fc = fc;
1913
1914	if (s->sbm_state == sbmac_state_on)
1915		return 0;	/* save for next restart */
1916
1917	/*
1918	 * Read current register values
1919	 */
1920
1921	cfg = __raw_readq(s->sbm_maccfg);
1922
1923	/*
1924	 * Mask off the stuff we're about to change
1925	 */
1926
1927	cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1928
1929
1930	switch (duplex) {
1931	case sbmac_duplex_half:
1932		switch (fc) {
1933		case sbmac_fc_disabled:
1934			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1935			break;
1936
1937		case sbmac_fc_collision:
1938			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1939			break;
1940
1941		case sbmac_fc_carrier:
1942			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1943			break;
1944
1945		case sbmac_fc_frame:		/* not valid in half duplex */
1946		default:			/* invalid selection */
1947			return 0;
1948		}
1949		break;
1950
1951	case sbmac_duplex_full:
1952		switch (fc) {
1953		case sbmac_fc_disabled:
1954			cfg |= V_MAC_FC_CMD_DISABLED;
1955			break;
1956
1957		case sbmac_fc_frame:
1958			cfg |= V_MAC_FC_CMD_ENABLED;
1959			break;
1960
1961		case sbmac_fc_collision:	/* not valid in full duplex */
1962		case sbmac_fc_carrier:		/* not valid in full duplex */
1963		default:
1964			return 0;
1965		}
1966		break;
1967	default:
1968		return 0;
1969	}
1970
1971	/*
1972	 * Send the bits back to the hardware
1973	 */
1974
1975	__raw_writeq(cfg, s->sbm_maccfg);
1976
1977	return 1;
1978}
1979
1980
1981
1982
1983/**********************************************************************
1984 *  SBMAC_INTR()
1985 *
1986 *  Interrupt handler for MAC interrupts
1987 *
1988 *  Input parameters:
1989 *  	   MAC structure
1990 *
1991 *  Return value:
1992 *  	   nothing
1993 ********************************************************************* */
1994static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1995{
1996	struct net_device *dev = (struct net_device *) dev_instance;
1997	struct sbmac_softc *sc = netdev_priv(dev);
1998	uint64_t isr;
1999	int handled = 0;
2000
2001	/*
2002	 * Read the ISR (this clears the bits in the real
2003	 * register, except for counter addr)
2004	 */
2005
2006	isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
2007
2008	if (isr == 0)
2009		return IRQ_RETVAL(0);
2010	handled = 1;
2011
2012	/*
2013	 * Transmits on channel 0
2014	 */
2015
2016	if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
2017		sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
2018
2019	if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2020		if (napi_schedule_prep(&sc->napi)) {
2021			__raw_writeq(0, sc->sbm_imr);
2022			__napi_schedule(&sc->napi);
2023			/* Depend on the exit from poll to reenable intr */
2024		}
2025		else {
2026			/* may leave some packets behind */
2027			sbdma_rx_process(sc,&(sc->sbm_rxdma),
2028					 SBMAC_MAX_RXDESCR * 2, 0);
2029		}
2030	}
2031	return IRQ_RETVAL(handled);
2032}
2033
2034/**********************************************************************
2035 *  SBMAC_START_TX(skb,dev)
2036 *
2037 *  Start output on the specified interface.  Basically, we
2038 *  queue as many buffers as we can until the ring fills up, or
2039 *  we run off the end of the queue, whichever comes first.
2040 *
2041 *  Input parameters:
2042 *
2043 *
2044 *  Return value:
2045 *  	   nothing
2046 ********************************************************************* */
2047static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2048{
2049	struct sbmac_softc *sc = netdev_priv(dev);
2050	unsigned long flags;
2051
2052	/* lock eth irq */
2053	spin_lock_irqsave(&sc->sbm_lock, flags);
2054
2055	/*
2056	 * Put the buffer on the transmit ring.  If we
2057	 * don't have room, stop the queue.
2058	 */
2059
2060	if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2061		/* XXX save skb that we could not send */
2062		netif_stop_queue(dev);
2063		spin_unlock_irqrestore(&sc->sbm_lock, flags);
2064
2065		return NETDEV_TX_BUSY;
2066	}
2067
2068	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2069
2070	return NETDEV_TX_OK;
2071}
2072
2073/**********************************************************************
2074 *  SBMAC_SETMULTI(sc)
2075 *
2076 *  Reprogram the multicast table into the hardware, given
2077 *  the list of multicasts associated with the interface
2078 *  structure.
2079 *
2080 *  Input parameters:
2081 *  	   sc - softc
2082 *
2083 *  Return value:
2084 *  	   nothing
2085 ********************************************************************* */
2086
2087static void sbmac_setmulti(struct sbmac_softc *sc)
2088{
2089	uint64_t reg;
2090	void __iomem *port;
2091	int idx;
2092	struct netdev_hw_addr *ha;
2093	struct net_device *dev = sc->sbm_dev;
2094
2095	/*
2096	 * Clear out entire multicast table.  We do this by nuking
2097	 * the entire hash table and all the direct matches except
2098	 * the first one, which is used for our station address
2099	 */
2100
2101	for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2102		port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2103		__raw_writeq(0, port);
2104	}
2105
2106	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2107		port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2108		__raw_writeq(0, port);
2109	}
2110
2111	/*
2112	 * Clear the filter to say we don't want any multicasts.
2113	 */
2114
2115	reg = __raw_readq(sc->sbm_rxfilter);
2116	reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2117	__raw_writeq(reg, sc->sbm_rxfilter);
2118
2119	if (dev->flags & IFF_ALLMULTI) {
2120		/*
2121		 * Enable ALL multicasts.  Do this by inverting the
2122		 * multicast enable bit.
2123		 */
2124		reg = __raw_readq(sc->sbm_rxfilter);
2125		reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2126		__raw_writeq(reg, sc->sbm_rxfilter);
2127		return;
2128	}
2129
2130
2131	/*
2132	 * Progam new multicast entries.  For now, only use the
2133	 * perfect filter.  In the future we'll need to use the
2134	 * hash filter if the perfect filter overflows
2135	 */
2136
2137	/* XXX only using perfect filter for now, need to use hash
2138	 * XXX if the table overflows */
2139
2140	idx = 1;		/* skip station address */
2141	netdev_for_each_mc_addr(ha, dev) {
2142		if (idx == MAC_ADDR_COUNT)
2143			break;
2144		reg = sbmac_addr2reg(ha->addr);
2145		port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2146		__raw_writeq(reg, port);
2147		idx++;
2148	}
2149
2150	/*
2151	 * Enable the "accept multicast bits" if we programmed at least one
2152	 * multicast.
2153	 */
2154
2155	if (idx > 1) {
2156		reg = __raw_readq(sc->sbm_rxfilter);
2157		reg |= M_MAC_MCAST_EN;
2158		__raw_writeq(reg, sc->sbm_rxfilter);
2159	}
2160}
2161
2162static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
2163{
2164	if (new_mtu >  ENET_PACKET_SIZE)
2165		return -EINVAL;
2166	_dev->mtu = new_mtu;
2167	pr_info("changing the mtu to %d\n", new_mtu);
2168	return 0;
2169}
2170
2171static const struct net_device_ops sbmac_netdev_ops = {
2172	.ndo_open		= sbmac_open,
2173	.ndo_stop		= sbmac_close,
2174	.ndo_start_xmit		= sbmac_start_tx,
2175	.ndo_set_rx_mode	= sbmac_set_rx_mode,
2176	.ndo_tx_timeout		= sbmac_tx_timeout,
2177	.ndo_do_ioctl		= sbmac_mii_ioctl,
2178	.ndo_change_mtu		= sb1250_change_mtu,
2179	.ndo_validate_addr	= eth_validate_addr,
2180	.ndo_set_mac_address	= eth_mac_addr,
2181#ifdef CONFIG_NET_POLL_CONTROLLER
2182	.ndo_poll_controller	= sbmac_netpoll,
2183#endif
2184};
2185
2186/**********************************************************************
2187 *  SBMAC_INIT(dev)
2188 *
2189 *  Attach routine - init hardware and hook ourselves into linux
2190 *
2191 *  Input parameters:
2192 *  	   dev - net_device structure
2193 *
2194 *  Return value:
2195 *  	   status
2196 ********************************************************************* */
2197
2198static int sbmac_init(struct platform_device *pldev, long long base)
2199{
2200	struct net_device *dev = dev_get_drvdata(&pldev->dev);
2201	int idx = pldev->id;
2202	struct sbmac_softc *sc = netdev_priv(dev);
2203	unsigned char *eaddr;
2204	uint64_t ea_reg;
2205	int i;
2206	int err;
2207
2208	sc->sbm_dev = dev;
2209	sc->sbe_idx = idx;
2210
2211	eaddr = sc->sbm_hwaddr;
2212
2213	/*
2214	 * Read the ethernet address.  The firmware left this programmed
2215	 * for us in the ethernet address register for each mac.
2216	 */
2217
2218	ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2219	__raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2220	for (i = 0; i < 6; i++) {
2221		eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2222		ea_reg >>= 8;
2223	}
2224
2225	for (i = 0; i < 6; i++) {
2226		dev->dev_addr[i] = eaddr[i];
2227	}
2228
2229	/*
2230	 * Initialize context (get pointers to registers and stuff), then
2231	 * allocate the memory for the descriptor tables.
2232	 */
2233
2234	sbmac_initctx(sc);
2235
2236	/*
2237	 * Set up Linux device callins
2238	 */
2239
2240	spin_lock_init(&(sc->sbm_lock));
2241
2242	dev->netdev_ops = &sbmac_netdev_ops;
2243	dev->watchdog_timeo = TX_TIMEOUT;
2244
2245	netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2246
2247	dev->irq		= UNIT_INT(idx);
2248
2249	/* This is needed for PASS2 for Rx H/W checksum feature */
2250	sbmac_set_iphdr_offset(sc);
2251
2252	sc->mii_bus = mdiobus_alloc();
2253	if (sc->mii_bus == NULL) {
2254		err = -ENOMEM;
2255		goto uninit_ctx;
2256	}
2257
2258	sc->mii_bus->name = sbmac_mdio_string;
2259	snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2260		pldev->name, idx);
2261	sc->mii_bus->priv = sc;
2262	sc->mii_bus->read = sbmac_mii_read;
2263	sc->mii_bus->write = sbmac_mii_write;
2264	sc->mii_bus->irq = sc->phy_irq;
2265	for (i = 0; i < PHY_MAX_ADDR; ++i)
2266		sc->mii_bus->irq[i] = SBMAC_PHY_INT;
2267
2268	sc->mii_bus->parent = &pldev->dev;
2269	/*
2270	 * Probe PHY address
2271	 */
2272	err = mdiobus_register(sc->mii_bus);
2273	if (err) {
2274		printk(KERN_ERR "%s: unable to register MDIO bus\n",
2275		       dev->name);
2276		goto free_mdio;
2277	}
2278	dev_set_drvdata(&pldev->dev, sc->mii_bus);
2279
2280	err = register_netdev(dev);
2281	if (err) {
2282		printk(KERN_ERR "%s.%d: unable to register netdev\n",
2283		       sbmac_string, idx);
2284		goto unreg_mdio;
2285	}
2286
2287	pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2288
2289	if (sc->rx_hw_checksum == ENABLE)
2290		pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2291
2292	/*
2293	 * Display Ethernet address (this is called during the config
2294	 * process so we need to finish off the config message that
2295	 * was being displayed)
2296	 */
2297	pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2298	       dev->name, base, eaddr);
2299
2300	return 0;
2301unreg_mdio:
2302	mdiobus_unregister(sc->mii_bus);
2303	dev_set_drvdata(&pldev->dev, NULL);
2304free_mdio:
2305	mdiobus_free(sc->mii_bus);
2306uninit_ctx:
2307	sbmac_uninitctx(sc);
2308	return err;
2309}
2310
2311
2312static int sbmac_open(struct net_device *dev)
2313{
2314	struct sbmac_softc *sc = netdev_priv(dev);
2315	int err;
2316
2317	if (debug > 1)
2318		pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2319
2320	/*
2321	 * map/route interrupt (clear status first, in case something
2322	 * weird is pending; we haven't initialized the mac registers
2323	 * yet)
2324	 */
2325
2326	__raw_readq(sc->sbm_isr);
2327	err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2328	if (err) {
2329		printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2330		       dev->irq);
2331		goto out_err;
2332	}
2333
2334	sc->sbm_speed = sbmac_speed_none;
2335	sc->sbm_duplex = sbmac_duplex_none;
2336	sc->sbm_fc = sbmac_fc_none;
2337	sc->sbm_pause = -1;
2338	sc->sbm_link = 0;
2339
2340	/*
2341	 * Attach to the PHY
2342	 */
2343	err = sbmac_mii_probe(dev);
2344	if (err)
2345		goto out_unregister;
2346
2347	/*
2348	 * Turn on the channel
2349	 */
2350
2351	sbmac_set_channel_state(sc,sbmac_state_on);
2352
2353	netif_start_queue(dev);
2354
2355	sbmac_set_rx_mode(dev);
2356
2357	phy_start(sc->phy_dev);
2358
2359	napi_enable(&sc->napi);
2360
2361	return 0;
2362
2363out_unregister:
2364	free_irq(dev->irq, dev);
2365out_err:
2366	return err;
2367}
2368
2369static int sbmac_mii_probe(struct net_device *dev)
2370{
2371	struct sbmac_softc *sc = netdev_priv(dev);
2372	struct phy_device *phy_dev;
2373	int i;
2374
2375	for (i = 0; i < PHY_MAX_ADDR; i++) {
2376		phy_dev = sc->mii_bus->phy_map[i];
2377		if (phy_dev)
2378			break;
2379	}
2380	if (!phy_dev) {
2381		printk(KERN_ERR "%s: no PHY found\n", dev->name);
2382		return -ENXIO;
2383	}
2384
2385	phy_dev = phy_connect(dev, dev_name(&phy_dev->dev), &sbmac_mii_poll,
2386			      PHY_INTERFACE_MODE_GMII);
2387	if (IS_ERR(phy_dev)) {
2388		printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2389		return PTR_ERR(phy_dev);
2390	}
2391
2392	/* Remove any features not supported by the controller */
2393	phy_dev->supported &= SUPPORTED_10baseT_Half |
2394			      SUPPORTED_10baseT_Full |
2395			      SUPPORTED_100baseT_Half |
2396			      SUPPORTED_100baseT_Full |
2397			      SUPPORTED_1000baseT_Half |
2398			      SUPPORTED_1000baseT_Full |
2399			      SUPPORTED_Autoneg |
2400			      SUPPORTED_MII |
2401			      SUPPORTED_Pause |
2402			      SUPPORTED_Asym_Pause;
2403	phy_dev->advertising = phy_dev->supported;
2404
2405	pr_info("%s: attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
2406		dev->name, phy_dev->drv->name,
2407		dev_name(&phy_dev->dev), phy_dev->irq);
2408
2409	sc->phy_dev = phy_dev;
2410
2411	return 0;
2412}
2413
2414
2415static void sbmac_mii_poll(struct net_device *dev)
2416{
2417	struct sbmac_softc *sc = netdev_priv(dev);
2418	struct phy_device *phy_dev = sc->phy_dev;
2419	unsigned long flags;
2420	enum sbmac_fc fc;
2421	int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2422
2423	link_chg = (sc->sbm_link != phy_dev->link);
2424	speed_chg = (sc->sbm_speed != phy_dev->speed);
2425	duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2426	pause_chg = (sc->sbm_pause != phy_dev->pause);
2427
2428	if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2429		return;					/* Hmmm... */
2430
2431	if (!phy_dev->link) {
2432		if (link_chg) {
2433			sc->sbm_link = phy_dev->link;
2434			sc->sbm_speed = sbmac_speed_none;
2435			sc->sbm_duplex = sbmac_duplex_none;
2436			sc->sbm_fc = sbmac_fc_disabled;
2437			sc->sbm_pause = -1;
2438			pr_info("%s: link unavailable\n", dev->name);
2439		}
2440		return;
2441	}
2442
2443	if (phy_dev->duplex == DUPLEX_FULL) {
2444		if (phy_dev->pause)
2445			fc = sbmac_fc_frame;
2446		else
2447			fc = sbmac_fc_disabled;
2448	} else
2449		fc = sbmac_fc_collision;
2450	fc_chg = (sc->sbm_fc != fc);
2451
2452	pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2453		phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2454
2455	spin_lock_irqsave(&sc->sbm_lock, flags);
2456
2457	sc->sbm_speed = phy_dev->speed;
2458	sc->sbm_duplex = phy_dev->duplex;
2459	sc->sbm_fc = fc;
2460	sc->sbm_pause = phy_dev->pause;
2461	sc->sbm_link = phy_dev->link;
2462
2463	if ((speed_chg || duplex_chg || fc_chg) &&
2464	    sc->sbm_state != sbmac_state_off) {
2465		/*
2466		 * something changed, restart the channel
2467		 */
2468		if (debug > 1)
2469			pr_debug("%s: restarting channel "
2470				 "because PHY state changed\n", dev->name);
2471		sbmac_channel_stop(sc);
2472		sbmac_channel_start(sc);
2473	}
2474
2475	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2476}
2477
2478
2479static void sbmac_tx_timeout (struct net_device *dev)
2480{
2481	struct sbmac_softc *sc = netdev_priv(dev);
2482	unsigned long flags;
2483
2484	spin_lock_irqsave(&sc->sbm_lock, flags);
2485
2486
2487	dev->trans_start = jiffies; /* prevent tx timeout */
2488	dev->stats.tx_errors++;
2489
2490	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2491
2492	printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2493}
2494
2495
2496
2497
2498static void sbmac_set_rx_mode(struct net_device *dev)
2499{
2500	unsigned long flags;
2501	struct sbmac_softc *sc = netdev_priv(dev);
2502
2503	spin_lock_irqsave(&sc->sbm_lock, flags);
2504	if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2505		/*
2506		 * Promiscuous changed.
2507		 */
2508
2509		if (dev->flags & IFF_PROMISC) {
2510			sbmac_promiscuous_mode(sc,1);
2511		}
2512		else {
2513			sbmac_promiscuous_mode(sc,0);
2514		}
2515	}
2516	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2517
2518	/*
2519	 * Program the multicasts.  Do this every time.
2520	 */
2521
2522	sbmac_setmulti(sc);
2523
2524}
2525
2526static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2527{
2528	struct sbmac_softc *sc = netdev_priv(dev);
2529
2530	if (!netif_running(dev) || !sc->phy_dev)
2531		return -EINVAL;
2532
2533	return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2534}
2535
2536static int sbmac_close(struct net_device *dev)
2537{
2538	struct sbmac_softc *sc = netdev_priv(dev);
2539
2540	napi_disable(&sc->napi);
2541
2542	phy_stop(sc->phy_dev);
2543
2544	sbmac_set_channel_state(sc, sbmac_state_off);
2545
2546	netif_stop_queue(dev);
2547
2548	if (debug > 1)
2549		pr_debug("%s: Shutting down ethercard\n", dev->name);
2550
2551	phy_disconnect(sc->phy_dev);
2552	sc->phy_dev = NULL;
2553	free_irq(dev->irq, dev);
2554
2555	sbdma_emptyring(&(sc->sbm_txdma));
2556	sbdma_emptyring(&(sc->sbm_rxdma));
2557
2558	return 0;
2559}
2560
2561static int sbmac_poll(struct napi_struct *napi, int budget)
2562{
2563	struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2564	int work_done;
2565
2566	work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2567	sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2568
2569	if (work_done < budget) {
2570		napi_complete(napi);
2571
2572#ifdef CONFIG_SBMAC_COALESCE
2573		__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2574			     ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2575			     sc->sbm_imr);
2576#else
2577		__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2578			     (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2579#endif
2580	}
2581
2582	return work_done;
2583}
2584
2585
2586static int sbmac_probe(struct platform_device *pldev)
2587{
2588	struct net_device *dev;
2589	struct sbmac_softc *sc;
2590	void __iomem *sbm_base;
2591	struct resource *res;
2592	u64 sbmac_orig_hwaddr;
2593	int err;
2594
2595	res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2596	BUG_ON(!res);
2597	sbm_base = ioremap_nocache(res->start, resource_size(res));
2598	if (!sbm_base) {
2599		printk(KERN_ERR "%s: unable to map device registers\n",
2600		       dev_name(&pldev->dev));
2601		err = -ENOMEM;
2602		goto out_out;
2603	}
2604
2605	/*
2606	 * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2607	 * value for us by the firmware if we're going to use this MAC.
2608	 * If we find a zero, skip this MAC.
2609	 */
2610	sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2611	pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2612		 sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2613	if (sbmac_orig_hwaddr == 0) {
2614		err = 0;
2615		goto out_unmap;
2616	}
2617
2618	/*
2619	 * Okay, cool.  Initialize this MAC.
2620	 */
2621	dev = alloc_etherdev(sizeof(struct sbmac_softc));
2622	if (!dev) {
2623		err = -ENOMEM;
2624		goto out_unmap;
2625	}
2626
2627	dev_set_drvdata(&pldev->dev, dev);
2628	SET_NETDEV_DEV(dev, &pldev->dev);
2629
2630	sc = netdev_priv(dev);
2631	sc->sbm_base = sbm_base;
2632
2633	err = sbmac_init(pldev, res->start);
2634	if (err)
2635		goto out_kfree;
2636
2637	return 0;
2638
2639out_kfree:
2640	free_netdev(dev);
2641	__raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2642
2643out_unmap:
2644	iounmap(sbm_base);
2645
2646out_out:
2647	return err;
2648}
2649
2650static int __exit sbmac_remove(struct platform_device *pldev)
2651{
2652	struct net_device *dev = dev_get_drvdata(&pldev->dev);
2653	struct sbmac_softc *sc = netdev_priv(dev);
2654
2655	unregister_netdev(dev);
2656	sbmac_uninitctx(sc);
2657	mdiobus_unregister(sc->mii_bus);
2658	mdiobus_free(sc->mii_bus);
2659	iounmap(sc->sbm_base);
2660	free_netdev(dev);
2661
2662	return 0;
2663}
2664
2665static struct platform_driver sbmac_driver = {
2666	.probe = sbmac_probe,
2667	.remove = __exit_p(sbmac_remove),
2668	.driver = {
2669		.name = sbmac_string,
2670		.owner  = THIS_MODULE,
2671	},
2672};
2673
2674module_platform_driver(sbmac_driver);
2675