mac.c revision 4bcf053baf6b255e8c82c7ecd0d15954adb0379b
1/*******************************************************************************
2
3  Intel PRO/1000 Linux driver
4  Copyright(c) 1999 - 2012 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  Linux NICS <linux.nics@intel.com>
24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
30
31/**
32 *  e1000e_get_bus_info_pcie - Get PCIe bus information
33 *  @hw: pointer to the HW structure
34 *
35 *  Determines and stores the system bus information for a particular
36 *  network interface.  The following bus information is determined and stored:
37 *  bus speed, bus width, type (PCIe), and PCIe function.
38 **/
39s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
40{
41	struct e1000_mac_info *mac = &hw->mac;
42	struct e1000_bus_info *bus = &hw->bus;
43	struct e1000_adapter *adapter = hw->adapter;
44	u16 pcie_link_status, cap_offset;
45
46	cap_offset = adapter->pdev->pcie_cap;
47	if (!cap_offset) {
48		bus->width = e1000_bus_width_unknown;
49	} else {
50		pci_read_config_word(adapter->pdev,
51				     cap_offset + PCIE_LINK_STATUS,
52				     &pcie_link_status);
53		bus->width = (enum e1000_bus_width)((pcie_link_status &
54						     PCIE_LINK_WIDTH_MASK) >>
55						    PCIE_LINK_WIDTH_SHIFT);
56	}
57
58	mac->ops.set_lan_id(hw);
59
60	return 0;
61}
62
63/**
64 *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
65 *
66 *  @hw: pointer to the HW structure
67 *
68 *  Determines the LAN function id by reading memory-mapped registers
69 *  and swaps the port value if requested.
70 **/
71void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
72{
73	struct e1000_bus_info *bus = &hw->bus;
74	u32 reg;
75
76	/*
77	 * The status register reports the correct function number
78	 * for the device regardless of function swap state.
79	 */
80	reg = er32(STATUS);
81	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
82}
83
84/**
85 *  e1000_set_lan_id_single_port - Set LAN id for a single port device
86 *  @hw: pointer to the HW structure
87 *
88 *  Sets the LAN function id to zero for a single port device.
89 **/
90void e1000_set_lan_id_single_port(struct e1000_hw *hw)
91{
92	struct e1000_bus_info *bus = &hw->bus;
93
94	bus->func = 0;
95}
96
97/**
98 *  e1000_clear_vfta_generic - Clear VLAN filter table
99 *  @hw: pointer to the HW structure
100 *
101 *  Clears the register array which contains the VLAN filter table by
102 *  setting all the values to 0.
103 **/
104void e1000_clear_vfta_generic(struct e1000_hw *hw)
105{
106	u32 offset;
107
108	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
109		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
110		e1e_flush();
111	}
112}
113
114/**
115 *  e1000_write_vfta_generic - Write value to VLAN filter table
116 *  @hw: pointer to the HW structure
117 *  @offset: register offset in VLAN filter table
118 *  @value: register value written to VLAN filter table
119 *
120 *  Writes value at the given offset in the register array which stores
121 *  the VLAN filter table.
122 **/
123void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
124{
125	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
126	e1e_flush();
127}
128
129/**
130 *  e1000e_init_rx_addrs - Initialize receive address's
131 *  @hw: pointer to the HW structure
132 *  @rar_count: receive address registers
133 *
134 *  Setup the receive address registers by setting the base receive address
135 *  register to the devices MAC address and clearing all the other receive
136 *  address registers to 0.
137 **/
138void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
139{
140	u32 i;
141	u8 mac_addr[ETH_ALEN] = { 0 };
142
143	/* Setup the receive address */
144	e_dbg("Programming MAC Address into RAR[0]\n");
145
146	e1000e_rar_set(hw, hw->mac.addr, 0);
147
148	/* Zero out the other (rar_entry_count - 1) receive addresses */
149	e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
150	for (i = 1; i < rar_count; i++)
151		e1000e_rar_set(hw, mac_addr, i);
152}
153
154/**
155 *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
156 *  @hw: pointer to the HW structure
157 *
158 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
159 *  can be setup by pre-boot software and must be treated like a permanent
160 *  address and must override the actual permanent MAC address. If an
161 *  alternate MAC address is found it is programmed into RAR0, replacing
162 *  the permanent address that was installed into RAR0 by the Si on reset.
163 *  This function will return SUCCESS unless it encounters an error while
164 *  reading the EEPROM.
165 **/
166s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
167{
168	u32 i;
169	s32 ret_val = 0;
170	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
171	u8 alt_mac_addr[ETH_ALEN];
172
173	ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
174	if (ret_val)
175		goto out;
176
177	/* not supported on 82573 */
178	if (hw->mac.type == e1000_82573)
179		goto out;
180
181	ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
182				 &nvm_alt_mac_addr_offset);
183	if (ret_val) {
184		e_dbg("NVM Read Error\n");
185		goto out;
186	}
187
188	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
189	    (nvm_alt_mac_addr_offset == 0x0000))
190		/* There is no Alternate MAC Address */
191		goto out;
192
193	if (hw->bus.func == E1000_FUNC_1)
194		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
195	for (i = 0; i < ETH_ALEN; i += 2) {
196		offset = nvm_alt_mac_addr_offset + (i >> 1);
197		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
198		if (ret_val) {
199			e_dbg("NVM Read Error\n");
200			goto out;
201		}
202
203		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
204		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
205	}
206
207	/* if multicast bit is set, the alternate address will not be used */
208	if (is_multicast_ether_addr(alt_mac_addr)) {
209		e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
210		goto out;
211	}
212
213	/*
214	 * We have a valid alternate MAC address, and we want to treat it the
215	 * same as the normal permanent MAC address stored by the HW into the
216	 * RAR. Do this by mapping this address into RAR0.
217	 */
218	e1000e_rar_set(hw, alt_mac_addr, 0);
219
220out:
221	return ret_val;
222}
223
224/**
225 *  e1000e_rar_set - Set receive address register
226 *  @hw: pointer to the HW structure
227 *  @addr: pointer to the receive address
228 *  @index: receive address array register
229 *
230 *  Sets the receive address array register at index to the address passed
231 *  in by addr.
232 **/
233void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
234{
235	u32 rar_low, rar_high;
236
237	/*
238	 * HW expects these in little endian so we reverse the byte order
239	 * from network order (big endian) to little endian
240	 */
241	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
242		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
243
244	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
245
246	/* If MAC address zero, no need to set the AV bit */
247	if (rar_low || rar_high)
248		rar_high |= E1000_RAH_AV;
249
250	/*
251	 * Some bridges will combine consecutive 32-bit writes into
252	 * a single burst write, which will malfunction on some parts.
253	 * The flushes avoid this.
254	 */
255	ew32(RAL(index), rar_low);
256	e1e_flush();
257	ew32(RAH(index), rar_high);
258	e1e_flush();
259}
260
261/**
262 *  e1000_hash_mc_addr - Generate a multicast hash value
263 *  @hw: pointer to the HW structure
264 *  @mc_addr: pointer to a multicast address
265 *
266 *  Generates a multicast address hash value which is used to determine
267 *  the multicast filter table array address and new table value.  See
268 *  e1000_mta_set_generic()
269 **/
270static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
271{
272	u32 hash_value, hash_mask;
273	u8 bit_shift = 0;
274
275	/* Register count multiplied by bits per register */
276	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
277
278	/*
279	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
280	 * where 0xFF would still fall within the hash mask.
281	 */
282	while (hash_mask >> bit_shift != 0xFF)
283		bit_shift++;
284
285	/*
286	 * The portion of the address that is used for the hash table
287	 * is determined by the mc_filter_type setting.
288	 * The algorithm is such that there is a total of 8 bits of shifting.
289	 * The bit_shift for a mc_filter_type of 0 represents the number of
290	 * left-shifts where the MSB of mc_addr[5] would still fall within
291	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
292	 * of 8 bits of shifting, then mc_addr[4] will shift right the
293	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
294	 * cases are a variation of this algorithm...essentially raising the
295	 * number of bits to shift mc_addr[5] left, while still keeping the
296	 * 8-bit shifting total.
297	 *
298	 * For example, given the following Destination MAC Address and an
299	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
300	 * we can see that the bit_shift for case 0 is 4.  These are the hash
301	 * values resulting from each mc_filter_type...
302	 * [0] [1] [2] [3] [4] [5]
303	 * 01  AA  00  12  34  56
304	 * LSB           MSB
305	 *
306	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
307	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
308	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
309	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
310	 */
311	switch (hw->mac.mc_filter_type) {
312	default:
313	case 0:
314		break;
315	case 1:
316		bit_shift += 1;
317		break;
318	case 2:
319		bit_shift += 2;
320		break;
321	case 3:
322		bit_shift += 4;
323		break;
324	}
325
326	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
327				   (((u16)mc_addr[5]) << bit_shift)));
328
329	return hash_value;
330}
331
332/**
333 *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
334 *  @hw: pointer to the HW structure
335 *  @mc_addr_list: array of multicast addresses to program
336 *  @mc_addr_count: number of multicast addresses to program
337 *
338 *  Updates entire Multicast Table Array.
339 *  The caller must have a packed mc_addr_list of multicast addresses.
340 **/
341void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
342					u8 *mc_addr_list, u32 mc_addr_count)
343{
344	u32 hash_value, hash_bit, hash_reg;
345	int i;
346
347	/* clear mta_shadow */
348	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
349
350	/* update mta_shadow from mc_addr_list */
351	for (i = 0; (u32)i < mc_addr_count; i++) {
352		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
353
354		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
355		hash_bit = hash_value & 0x1F;
356
357		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
358		mc_addr_list += (ETH_ALEN);
359	}
360
361	/* replace the entire MTA table */
362	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
363		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
364	e1e_flush();
365}
366
367/**
368 *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
369 *  @hw: pointer to the HW structure
370 *
371 *  Clears the base hardware counters by reading the counter registers.
372 **/
373void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
374{
375	er32(CRCERRS);
376	er32(SYMERRS);
377	er32(MPC);
378	er32(SCC);
379	er32(ECOL);
380	er32(MCC);
381	er32(LATECOL);
382	er32(COLC);
383	er32(DC);
384	er32(SEC);
385	er32(RLEC);
386	er32(XONRXC);
387	er32(XONTXC);
388	er32(XOFFRXC);
389	er32(XOFFTXC);
390	er32(FCRUC);
391	er32(GPRC);
392	er32(BPRC);
393	er32(MPRC);
394	er32(GPTC);
395	er32(GORCL);
396	er32(GORCH);
397	er32(GOTCL);
398	er32(GOTCH);
399	er32(RNBC);
400	er32(RUC);
401	er32(RFC);
402	er32(ROC);
403	er32(RJC);
404	er32(TORL);
405	er32(TORH);
406	er32(TOTL);
407	er32(TOTH);
408	er32(TPR);
409	er32(TPT);
410	er32(MPTC);
411	er32(BPTC);
412}
413
414/**
415 *  e1000e_check_for_copper_link - Check for link (Copper)
416 *  @hw: pointer to the HW structure
417 *
418 *  Checks to see of the link status of the hardware has changed.  If a
419 *  change in link status has been detected, then we read the PHY registers
420 *  to get the current speed/duplex if link exists.
421 **/
422s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
423{
424	struct e1000_mac_info *mac = &hw->mac;
425	s32 ret_val;
426	bool link;
427
428	/*
429	 * We only want to go out to the PHY registers to see if Auto-Neg
430	 * has completed and/or if our link status has changed.  The
431	 * get_link_status flag is set upon receiving a Link Status
432	 * Change or Rx Sequence Error interrupt.
433	 */
434	if (!mac->get_link_status)
435		return 0;
436
437	/*
438	 * First we want to see if the MII Status Register reports
439	 * link.  If so, then we want to get the current speed/duplex
440	 * of the PHY.
441	 */
442	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
443	if (ret_val)
444		return ret_val;
445
446	if (!link)
447		return ret_val;	/* No link detected */
448
449	mac->get_link_status = false;
450
451	/*
452	 * Check if there was DownShift, must be checked
453	 * immediately after link-up
454	 */
455	e1000e_check_downshift(hw);
456
457	/*
458	 * If we are forcing speed/duplex, then we simply return since
459	 * we have already determined whether we have link or not.
460	 */
461	if (!mac->autoneg) {
462		ret_val = -E1000_ERR_CONFIG;
463		return ret_val;
464	}
465
466	/*
467	 * Auto-Neg is enabled.  Auto Speed Detection takes care
468	 * of MAC speed/duplex configuration.  So we only need to
469	 * configure Collision Distance in the MAC.
470	 */
471	e1000e_config_collision_dist(hw);
472
473	/*
474	 * Configure Flow Control now that Auto-Neg has completed.
475	 * First, we need to restore the desired flow control
476	 * settings because we may have had to re-autoneg with a
477	 * different link partner.
478	 */
479	ret_val = e1000e_config_fc_after_link_up(hw);
480	if (ret_val)
481		e_dbg("Error configuring flow control\n");
482
483	return ret_val;
484}
485
486/**
487 *  e1000e_check_for_fiber_link - Check for link (Fiber)
488 *  @hw: pointer to the HW structure
489 *
490 *  Checks for link up on the hardware.  If link is not up and we have
491 *  a signal, then we need to force link up.
492 **/
493s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
494{
495	struct e1000_mac_info *mac = &hw->mac;
496	u32 rxcw;
497	u32 ctrl;
498	u32 status;
499	s32 ret_val;
500
501	ctrl = er32(CTRL);
502	status = er32(STATUS);
503	rxcw = er32(RXCW);
504
505	/*
506	 * If we don't have link (auto-negotiation failed or link partner
507	 * cannot auto-negotiate), the cable is plugged in (we have signal),
508	 * and our link partner is not trying to auto-negotiate with us (we
509	 * are receiving idles or data), we need to force link up. We also
510	 * need to give auto-negotiation time to complete, in case the cable
511	 * was just plugged in. The autoneg_failed flag does this.
512	 */
513	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
514	if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
515	    (!(rxcw & E1000_RXCW_C))) {
516		if (mac->autoneg_failed == 0) {
517			mac->autoneg_failed = 1;
518			return 0;
519		}
520		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
521
522		/* Disable auto-negotiation in the TXCW register */
523		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
524
525		/* Force link-up and also force full-duplex. */
526		ctrl = er32(CTRL);
527		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
528		ew32(CTRL, ctrl);
529
530		/* Configure Flow Control after forcing link up. */
531		ret_val = e1000e_config_fc_after_link_up(hw);
532		if (ret_val) {
533			e_dbg("Error configuring flow control\n");
534			return ret_val;
535		}
536	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
537		/*
538		 * If we are forcing link and we are receiving /C/ ordered
539		 * sets, re-enable auto-negotiation in the TXCW register
540		 * and disable forced link in the Device Control register
541		 * in an attempt to auto-negotiate with our link partner.
542		 */
543		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
544		ew32(TXCW, mac->txcw);
545		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
546
547		mac->serdes_has_link = true;
548	}
549
550	return 0;
551}
552
553/**
554 *  e1000e_check_for_serdes_link - Check for link (Serdes)
555 *  @hw: pointer to the HW structure
556 *
557 *  Checks for link up on the hardware.  If link is not up and we have
558 *  a signal, then we need to force link up.
559 **/
560s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
561{
562	struct e1000_mac_info *mac = &hw->mac;
563	u32 rxcw;
564	u32 ctrl;
565	u32 status;
566	s32 ret_val;
567
568	ctrl = er32(CTRL);
569	status = er32(STATUS);
570	rxcw = er32(RXCW);
571
572	/*
573	 * If we don't have link (auto-negotiation failed or link partner
574	 * cannot auto-negotiate), and our link partner is not trying to
575	 * auto-negotiate with us (we are receiving idles or data),
576	 * we need to force link up. We also need to give auto-negotiation
577	 * time to complete.
578	 */
579	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
580	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
581		if (mac->autoneg_failed == 0) {
582			mac->autoneg_failed = 1;
583			return 0;
584		}
585		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
586
587		/* Disable auto-negotiation in the TXCW register */
588		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
589
590		/* Force link-up and also force full-duplex. */
591		ctrl = er32(CTRL);
592		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
593		ew32(CTRL, ctrl);
594
595		/* Configure Flow Control after forcing link up. */
596		ret_val = e1000e_config_fc_after_link_up(hw);
597		if (ret_val) {
598			e_dbg("Error configuring flow control\n");
599			return ret_val;
600		}
601	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
602		/*
603		 * If we are forcing link and we are receiving /C/ ordered
604		 * sets, re-enable auto-negotiation in the TXCW register
605		 * and disable forced link in the Device Control register
606		 * in an attempt to auto-negotiate with our link partner.
607		 */
608		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
609		ew32(TXCW, mac->txcw);
610		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
611
612		mac->serdes_has_link = true;
613	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
614		/*
615		 * If we force link for non-auto-negotiation switch, check
616		 * link status based on MAC synchronization for internal
617		 * serdes media type.
618		 */
619		/* SYNCH bit and IV bit are sticky. */
620		udelay(10);
621		rxcw = er32(RXCW);
622		if (rxcw & E1000_RXCW_SYNCH) {
623			if (!(rxcw & E1000_RXCW_IV)) {
624				mac->serdes_has_link = true;
625				e_dbg("SERDES: Link up - forced.\n");
626			}
627		} else {
628			mac->serdes_has_link = false;
629			e_dbg("SERDES: Link down - force failed.\n");
630		}
631	}
632
633	if (E1000_TXCW_ANE & er32(TXCW)) {
634		status = er32(STATUS);
635		if (status & E1000_STATUS_LU) {
636			/* SYNCH bit and IV bit are sticky, so reread rxcw.  */
637			udelay(10);
638			rxcw = er32(RXCW);
639			if (rxcw & E1000_RXCW_SYNCH) {
640				if (!(rxcw & E1000_RXCW_IV)) {
641					mac->serdes_has_link = true;
642					e_dbg("SERDES: Link up - autoneg completed successfully.\n");
643				} else {
644					mac->serdes_has_link = false;
645					e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
646				}
647			} else {
648				mac->serdes_has_link = false;
649				e_dbg("SERDES: Link down - no sync.\n");
650			}
651		} else {
652			mac->serdes_has_link = false;
653			e_dbg("SERDES: Link down - autoneg failed\n");
654		}
655	}
656
657	return 0;
658}
659
660/**
661 *  e1000_set_default_fc_generic - Set flow control default values
662 *  @hw: pointer to the HW structure
663 *
664 *  Read the EEPROM for the default values for flow control and store the
665 *  values.
666 **/
667static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
668{
669	s32 ret_val;
670	u16 nvm_data;
671
672	/*
673	 * Read and store word 0x0F of the EEPROM. This word contains bits
674	 * that determine the hardware's default PAUSE (flow control) mode,
675	 * a bit that determines whether the HW defaults to enabling or
676	 * disabling auto-negotiation, and the direction of the
677	 * SW defined pins. If there is no SW over-ride of the flow
678	 * control setting, then the variable hw->fc will
679	 * be initialized based on a value in the EEPROM.
680	 */
681	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
682
683	if (ret_val) {
684		e_dbg("NVM Read Error\n");
685		return ret_val;
686	}
687
688	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
689		hw->fc.requested_mode = e1000_fc_none;
690	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
691		hw->fc.requested_mode = e1000_fc_tx_pause;
692	else
693		hw->fc.requested_mode = e1000_fc_full;
694
695	return 0;
696}
697
698/**
699 *  e1000e_setup_link - Setup flow control and link settings
700 *  @hw: pointer to the HW structure
701 *
702 *  Determines which flow control settings to use, then configures flow
703 *  control.  Calls the appropriate media-specific link configuration
704 *  function.  Assuming the adapter has a valid link partner, a valid link
705 *  should be established.  Assumes the hardware has previously been reset
706 *  and the transmitter and receiver are not enabled.
707 **/
708s32 e1000e_setup_link(struct e1000_hw *hw)
709{
710	struct e1000_mac_info *mac = &hw->mac;
711	s32 ret_val;
712
713	/*
714	 * In the case of the phy reset being blocked, we already have a link.
715	 * We do not need to set it up again.
716	 */
717	if (e1000_check_reset_block(hw))
718		return 0;
719
720	/*
721	 * If requested flow control is set to default, set flow control
722	 * based on the EEPROM flow control settings.
723	 */
724	if (hw->fc.requested_mode == e1000_fc_default) {
725		ret_val = e1000_set_default_fc_generic(hw);
726		if (ret_val)
727			return ret_val;
728	}
729
730	/*
731	 * Save off the requested flow control mode for use later.  Depending
732	 * on the link partner's capabilities, we may or may not use this mode.
733	 */
734	hw->fc.current_mode = hw->fc.requested_mode;
735
736	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
737
738	/* Call the necessary media_type subroutine to configure the link. */
739	ret_val = mac->ops.setup_physical_interface(hw);
740	if (ret_val)
741		return ret_val;
742
743	/*
744	 * Initialize the flow control address, type, and PAUSE timer
745	 * registers to their default values.  This is done even if flow
746	 * control is disabled, because it does not hurt anything to
747	 * initialize these registers.
748	 */
749	e_dbg("Initializing the Flow Control address, type and timer regs\n");
750	ew32(FCT, FLOW_CONTROL_TYPE);
751	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
752	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
753
754	ew32(FCTTV, hw->fc.pause_time);
755
756	return e1000e_set_fc_watermarks(hw);
757}
758
759/**
760 *  e1000_commit_fc_settings_generic - Configure flow control
761 *  @hw: pointer to the HW structure
762 *
763 *  Write the flow control settings to the Transmit Config Word Register (TXCW)
764 *  base on the flow control settings in e1000_mac_info.
765 **/
766static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
767{
768	struct e1000_mac_info *mac = &hw->mac;
769	u32 txcw;
770
771	/*
772	 * Check for a software override of the flow control settings, and
773	 * setup the device accordingly.  If auto-negotiation is enabled, then
774	 * software will have to set the "PAUSE" bits to the correct value in
775	 * the Transmit Config Word Register (TXCW) and re-start auto-
776	 * negotiation.  However, if auto-negotiation is disabled, then
777	 * software will have to manually configure the two flow control enable
778	 * bits in the CTRL register.
779	 *
780	 * The possible values of the "fc" parameter are:
781	 *      0:  Flow control is completely disabled
782	 *      1:  Rx flow control is enabled (we can receive pause frames,
783	 *          but not send pause frames).
784	 *      2:  Tx flow control is enabled (we can send pause frames but we
785	 *          do not support receiving pause frames).
786	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
787	 */
788	switch (hw->fc.current_mode) {
789	case e1000_fc_none:
790		/* Flow control completely disabled by a software over-ride. */
791		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
792		break;
793	case e1000_fc_rx_pause:
794		/*
795		 * Rx Flow control is enabled and Tx Flow control is disabled
796		 * by a software over-ride. Since there really isn't a way to
797		 * advertise that we are capable of Rx Pause ONLY, we will
798		 * advertise that we support both symmetric and asymmetric Rx
799		 * PAUSE.  Later, we will disable the adapter's ability to send
800		 * PAUSE frames.
801		 */
802		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
803		break;
804	case e1000_fc_tx_pause:
805		/*
806		 * Tx Flow control is enabled, and Rx Flow control is disabled,
807		 * by a software over-ride.
808		 */
809		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
810		break;
811	case e1000_fc_full:
812		/*
813		 * Flow control (both Rx and Tx) is enabled by a software
814		 * over-ride.
815		 */
816		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
817		break;
818	default:
819		e_dbg("Flow control param set incorrectly\n");
820		return -E1000_ERR_CONFIG;
821		break;
822	}
823
824	ew32(TXCW, txcw);
825	mac->txcw = txcw;
826
827	return 0;
828}
829
830/**
831 *  e1000_poll_fiber_serdes_link_generic - Poll for link up
832 *  @hw: pointer to the HW structure
833 *
834 *  Polls for link up by reading the status register, if link fails to come
835 *  up with auto-negotiation, then the link is forced if a signal is detected.
836 **/
837static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
838{
839	struct e1000_mac_info *mac = &hw->mac;
840	u32 i, status;
841	s32 ret_val;
842
843	/*
844	 * If we have a signal (the cable is plugged in, or assumed true for
845	 * serdes media) then poll for a "Link-Up" indication in the Device
846	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
847	 * seconds (Auto-negotiation should complete in less than 500
848	 * milliseconds even if the other end is doing it in SW).
849	 */
850	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
851		usleep_range(10000, 20000);
852		status = er32(STATUS);
853		if (status & E1000_STATUS_LU)
854			break;
855	}
856	if (i == FIBER_LINK_UP_LIMIT) {
857		e_dbg("Never got a valid link from auto-neg!!!\n");
858		mac->autoneg_failed = 1;
859		/*
860		 * AutoNeg failed to achieve a link, so we'll call
861		 * mac->check_for_link. This routine will force the
862		 * link up if we detect a signal. This will allow us to
863		 * communicate with non-autonegotiating link partners.
864		 */
865		ret_val = mac->ops.check_for_link(hw);
866		if (ret_val) {
867			e_dbg("Error while checking for link\n");
868			return ret_val;
869		}
870		mac->autoneg_failed = 0;
871	} else {
872		mac->autoneg_failed = 0;
873		e_dbg("Valid Link Found\n");
874	}
875
876	return 0;
877}
878
879/**
880 *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
881 *  @hw: pointer to the HW structure
882 *
883 *  Configures collision distance and flow control for fiber and serdes
884 *  links.  Upon successful setup, poll for link.
885 **/
886s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
887{
888	u32 ctrl;
889	s32 ret_val;
890
891	ctrl = er32(CTRL);
892
893	/* Take the link out of reset */
894	ctrl &= ~E1000_CTRL_LRST;
895
896	e1000e_config_collision_dist(hw);
897
898	ret_val = e1000_commit_fc_settings_generic(hw);
899	if (ret_val)
900		return ret_val;
901
902	/*
903	 * Since auto-negotiation is enabled, take the link out of reset (the
904	 * link will be in reset, because we previously reset the chip). This
905	 * will restart auto-negotiation.  If auto-negotiation is successful
906	 * then the link-up status bit will be set and the flow control enable
907	 * bits (RFCE and TFCE) will be set according to their negotiated value.
908	 */
909	e_dbg("Auto-negotiation enabled\n");
910
911	ew32(CTRL, ctrl);
912	e1e_flush();
913	usleep_range(1000, 2000);
914
915	/*
916	 * For these adapters, the SW definable pin 1 is set when the optics
917	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
918	 * indication.
919	 */
920	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
921	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
922		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
923	} else {
924		e_dbg("No signal detected\n");
925	}
926
927	return 0;
928}
929
930/**
931 *  e1000e_config_collision_dist - Configure collision distance
932 *  @hw: pointer to the HW structure
933 *
934 *  Configures the collision distance to the default value and is used
935 *  during link setup. Currently no func pointer exists and all
936 *  implementations are handled in the generic version of this function.
937 **/
938void e1000e_config_collision_dist(struct e1000_hw *hw)
939{
940	u32 tctl;
941
942	tctl = er32(TCTL);
943
944	tctl &= ~E1000_TCTL_COLD;
945	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
946
947	ew32(TCTL, tctl);
948	e1e_flush();
949}
950
951/**
952 *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
953 *  @hw: pointer to the HW structure
954 *
955 *  Sets the flow control high/low threshold (watermark) registers.  If
956 *  flow control XON frame transmission is enabled, then set XON frame
957 *  transmission as well.
958 **/
959s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
960{
961	u32 fcrtl = 0, fcrth = 0;
962
963	/*
964	 * Set the flow control receive threshold registers.  Normally,
965	 * these registers will be set to a default threshold that may be
966	 * adjusted later by the driver's runtime code.  However, if the
967	 * ability to transmit pause frames is not enabled, then these
968	 * registers will be set to 0.
969	 */
970	if (hw->fc.current_mode & e1000_fc_tx_pause) {
971		/*
972		 * We need to set up the Receive Threshold high and low water
973		 * marks as well as (optionally) enabling the transmission of
974		 * XON frames.
975		 */
976		fcrtl = hw->fc.low_water;
977		fcrtl |= E1000_FCRTL_XONE;
978		fcrth = hw->fc.high_water;
979	}
980	ew32(FCRTL, fcrtl);
981	ew32(FCRTH, fcrth);
982
983	return 0;
984}
985
986/**
987 *  e1000e_force_mac_fc - Force the MAC's flow control settings
988 *  @hw: pointer to the HW structure
989 *
990 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
991 *  device control register to reflect the adapter settings.  TFCE and RFCE
992 *  need to be explicitly set by software when a copper PHY is used because
993 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
994 *  also configure these bits when link is forced on a fiber connection.
995 **/
996s32 e1000e_force_mac_fc(struct e1000_hw *hw)
997{
998	u32 ctrl;
999
1000	ctrl = er32(CTRL);
1001
1002	/*
1003	 * Because we didn't get link via the internal auto-negotiation
1004	 * mechanism (we either forced link or we got link via PHY
1005	 * auto-neg), we have to manually enable/disable transmit an
1006	 * receive flow control.
1007	 *
1008	 * The "Case" statement below enables/disable flow control
1009	 * according to the "hw->fc.current_mode" parameter.
1010	 *
1011	 * The possible values of the "fc" parameter are:
1012	 *      0:  Flow control is completely disabled
1013	 *      1:  Rx flow control is enabled (we can receive pause
1014	 *          frames but not send pause frames).
1015	 *      2:  Tx flow control is enabled (we can send pause frames
1016	 *          frames but we do not receive pause frames).
1017	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
1018	 *  other:  No other values should be possible at this point.
1019	 */
1020	e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
1021
1022	switch (hw->fc.current_mode) {
1023	case e1000_fc_none:
1024		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1025		break;
1026	case e1000_fc_rx_pause:
1027		ctrl &= (~E1000_CTRL_TFCE);
1028		ctrl |= E1000_CTRL_RFCE;
1029		break;
1030	case e1000_fc_tx_pause:
1031		ctrl &= (~E1000_CTRL_RFCE);
1032		ctrl |= E1000_CTRL_TFCE;
1033		break;
1034	case e1000_fc_full:
1035		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1036		break;
1037	default:
1038		e_dbg("Flow control param set incorrectly\n");
1039		return -E1000_ERR_CONFIG;
1040	}
1041
1042	ew32(CTRL, ctrl);
1043
1044	return 0;
1045}
1046
1047/**
1048 *  e1000e_config_fc_after_link_up - Configures flow control after link
1049 *  @hw: pointer to the HW structure
1050 *
1051 *  Checks the status of auto-negotiation after link up to ensure that the
1052 *  speed and duplex were not forced.  If the link needed to be forced, then
1053 *  flow control needs to be forced also.  If auto-negotiation is enabled
1054 *  and did not fail, then we configure flow control based on our link
1055 *  partner.
1056 **/
1057s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1058{
1059	struct e1000_mac_info *mac = &hw->mac;
1060	s32 ret_val = 0;
1061	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1062	u16 speed, duplex;
1063
1064	/*
1065	 * Check for the case where we have fiber media and auto-neg failed
1066	 * so we had to force link.  In this case, we need to force the
1067	 * configuration of the MAC to match the "fc" parameter.
1068	 */
1069	if (mac->autoneg_failed) {
1070		if (hw->phy.media_type == e1000_media_type_fiber ||
1071		    hw->phy.media_type == e1000_media_type_internal_serdes)
1072			ret_val = e1000e_force_mac_fc(hw);
1073	} else {
1074		if (hw->phy.media_type == e1000_media_type_copper)
1075			ret_val = e1000e_force_mac_fc(hw);
1076	}
1077
1078	if (ret_val) {
1079		e_dbg("Error forcing flow control settings\n");
1080		return ret_val;
1081	}
1082
1083	/*
1084	 * Check for the case where we have copper media and auto-neg is
1085	 * enabled.  In this case, we need to check and see if Auto-Neg
1086	 * has completed, and if so, how the PHY and link partner has
1087	 * flow control configured.
1088	 */
1089	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1090		/*
1091		 * Read the MII Status Register and check to see if AutoNeg
1092		 * has completed.  We read this twice because this reg has
1093		 * some "sticky" (latched) bits.
1094		 */
1095		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1096		if (ret_val)
1097			return ret_val;
1098		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1099		if (ret_val)
1100			return ret_val;
1101
1102		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
1103			e_dbg("Copper PHY and Auto Neg has not completed.\n");
1104			return ret_val;
1105		}
1106
1107		/*
1108		 * The AutoNeg process has completed, so we now need to
1109		 * read both the Auto Negotiation Advertisement
1110		 * Register (Address 4) and the Auto_Negotiation Base
1111		 * Page Ability Register (Address 5) to determine how
1112		 * flow control was negotiated.
1113		 */
1114		ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
1115		if (ret_val)
1116			return ret_val;
1117		ret_val =
1118		    e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
1119		if (ret_val)
1120			return ret_val;
1121
1122		/*
1123		 * Two bits in the Auto Negotiation Advertisement Register
1124		 * (Address 4) and two bits in the Auto Negotiation Base
1125		 * Page Ability Register (Address 5) determine flow control
1126		 * for both the PHY and the link partner.  The following
1127		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1128		 * 1999, describes these PAUSE resolution bits and how flow
1129		 * control is determined based upon these settings.
1130		 * NOTE:  DC = Don't Care
1131		 *
1132		 *   LOCAL DEVICE  |   LINK PARTNER
1133		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1134		 *-------|---------|-------|---------|--------------------
1135		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1136		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1137		 *   0   |    1    |   1   |    0    | e1000_fc_none
1138		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1139		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1140		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1141		 *   1   |    1    |   0   |    0    | e1000_fc_none
1142		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1143		 *
1144		 * Are both PAUSE bits set to 1?  If so, this implies
1145		 * Symmetric Flow Control is enabled at both ends.  The
1146		 * ASM_DIR bits are irrelevant per the spec.
1147		 *
1148		 * For Symmetric Flow Control:
1149		 *
1150		 *   LOCAL DEVICE  |   LINK PARTNER
1151		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1152		 *-------|---------|-------|---------|--------------------
1153		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
1154		 *
1155		 */
1156		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1157		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1158			/*
1159			 * Now we need to check if the user selected Rx ONLY
1160			 * of pause frames.  In this case, we had to advertise
1161			 * FULL flow control because we could not advertise Rx
1162			 * ONLY. Hence, we must now check to see if we need to
1163			 * turn OFF the TRANSMISSION of PAUSE frames.
1164			 */
1165			if (hw->fc.requested_mode == e1000_fc_full) {
1166				hw->fc.current_mode = e1000_fc_full;
1167				e_dbg("Flow Control = FULL.\n");
1168			} else {
1169				hw->fc.current_mode = e1000_fc_rx_pause;
1170				e_dbg("Flow Control = Rx PAUSE frames only.\n");
1171			}
1172		}
1173		/*
1174		 * For receiving PAUSE frames ONLY.
1175		 *
1176		 *   LOCAL DEVICE  |   LINK PARTNER
1177		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1178		 *-------|---------|-------|---------|--------------------
1179		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1180		 */
1181		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1182			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1183			 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1184			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1185			hw->fc.current_mode = e1000_fc_tx_pause;
1186			e_dbg("Flow Control = Tx PAUSE frames only.\n");
1187		}
1188		/*
1189		 * For transmitting PAUSE frames ONLY.
1190		 *
1191		 *   LOCAL DEVICE  |   LINK PARTNER
1192		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1193		 *-------|---------|-------|---------|--------------------
1194		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1195		 */
1196		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1197			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1198			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1199			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1200			hw->fc.current_mode = e1000_fc_rx_pause;
1201			e_dbg("Flow Control = Rx PAUSE frames only.\n");
1202		} else {
1203			/*
1204			 * Per the IEEE spec, at this point flow control
1205			 * should be disabled.
1206			 */
1207			hw->fc.current_mode = e1000_fc_none;
1208			e_dbg("Flow Control = NONE.\n");
1209		}
1210
1211		/*
1212		 * Now we need to do one last check...  If we auto-
1213		 * negotiated to HALF DUPLEX, flow control should not be
1214		 * enabled per IEEE 802.3 spec.
1215		 */
1216		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1217		if (ret_val) {
1218			e_dbg("Error getting link speed and duplex\n");
1219			return ret_val;
1220		}
1221
1222		if (duplex == HALF_DUPLEX)
1223			hw->fc.current_mode = e1000_fc_none;
1224
1225		/*
1226		 * Now we call a subroutine to actually force the MAC
1227		 * controller to use the correct flow control settings.
1228		 */
1229		ret_val = e1000e_force_mac_fc(hw);
1230		if (ret_val) {
1231			e_dbg("Error forcing flow control settings\n");
1232			return ret_val;
1233		}
1234	}
1235
1236	return 0;
1237}
1238
1239/**
1240 *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1241 *  @hw: pointer to the HW structure
1242 *  @speed: stores the current speed
1243 *  @duplex: stores the current duplex
1244 *
1245 *  Read the status register for the current speed/duplex and store the current
1246 *  speed and duplex for copper connections.
1247 **/
1248s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1249				       u16 *duplex)
1250{
1251	u32 status;
1252
1253	status = er32(STATUS);
1254	if (status & E1000_STATUS_SPEED_1000)
1255		*speed = SPEED_1000;
1256	else if (status & E1000_STATUS_SPEED_100)
1257		*speed = SPEED_100;
1258	else
1259		*speed = SPEED_10;
1260
1261	if (status & E1000_STATUS_FD)
1262		*duplex = FULL_DUPLEX;
1263	else
1264		*duplex = HALF_DUPLEX;
1265
1266	e_dbg("%u Mbps, %s Duplex\n",
1267	      *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1268	      *duplex == FULL_DUPLEX ? "Full" : "Half");
1269
1270	return 0;
1271}
1272
1273/**
1274 *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1275 *  @hw: pointer to the HW structure
1276 *  @speed: stores the current speed
1277 *  @duplex: stores the current duplex
1278 *
1279 *  Sets the speed and duplex to gigabit full duplex (the only possible option)
1280 *  for fiber/serdes links.
1281 **/
1282s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed,
1283					     u16 *duplex)
1284{
1285	*speed = SPEED_1000;
1286	*duplex = FULL_DUPLEX;
1287
1288	return 0;
1289}
1290
1291/**
1292 *  e1000e_get_hw_semaphore - Acquire hardware semaphore
1293 *  @hw: pointer to the HW structure
1294 *
1295 *  Acquire the HW semaphore to access the PHY or NVM
1296 **/
1297s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1298{
1299	u32 swsm;
1300	s32 timeout = hw->nvm.word_size + 1;
1301	s32 i = 0;
1302
1303	/* Get the SW semaphore */
1304	while (i < timeout) {
1305		swsm = er32(SWSM);
1306		if (!(swsm & E1000_SWSM_SMBI))
1307			break;
1308
1309		udelay(50);
1310		i++;
1311	}
1312
1313	if (i == timeout) {
1314		e_dbg("Driver can't access device - SMBI bit is set.\n");
1315		return -E1000_ERR_NVM;
1316	}
1317
1318	/* Get the FW semaphore. */
1319	for (i = 0; i < timeout; i++) {
1320		swsm = er32(SWSM);
1321		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1322
1323		/* Semaphore acquired if bit latched */
1324		if (er32(SWSM) & E1000_SWSM_SWESMBI)
1325			break;
1326
1327		udelay(50);
1328	}
1329
1330	if (i == timeout) {
1331		/* Release semaphores */
1332		e1000e_put_hw_semaphore(hw);
1333		e_dbg("Driver can't access the NVM\n");
1334		return -E1000_ERR_NVM;
1335	}
1336
1337	return 0;
1338}
1339
1340/**
1341 *  e1000e_put_hw_semaphore - Release hardware semaphore
1342 *  @hw: pointer to the HW structure
1343 *
1344 *  Release hardware semaphore used to access the PHY or NVM
1345 **/
1346void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1347{
1348	u32 swsm;
1349
1350	swsm = er32(SWSM);
1351	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1352	ew32(SWSM, swsm);
1353}
1354
1355/**
1356 *  e1000e_get_auto_rd_done - Check for auto read completion
1357 *  @hw: pointer to the HW structure
1358 *
1359 *  Check EEPROM for Auto Read done bit.
1360 **/
1361s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1362{
1363	s32 i = 0;
1364
1365	while (i < AUTO_READ_DONE_TIMEOUT) {
1366		if (er32(EECD) & E1000_EECD_AUTO_RD)
1367			break;
1368		usleep_range(1000, 2000);
1369		i++;
1370	}
1371
1372	if (i == AUTO_READ_DONE_TIMEOUT) {
1373		e_dbg("Auto read by HW from NVM has not completed.\n");
1374		return -E1000_ERR_RESET;
1375	}
1376
1377	return 0;
1378}
1379
1380/**
1381 *  e1000e_valid_led_default - Verify a valid default LED config
1382 *  @hw: pointer to the HW structure
1383 *  @data: pointer to the NVM (EEPROM)
1384 *
1385 *  Read the EEPROM for the current default LED configuration.  If the
1386 *  LED configuration is not valid, set to a valid LED configuration.
1387 **/
1388s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1389{
1390	s32 ret_val;
1391
1392	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1393	if (ret_val) {
1394		e_dbg("NVM Read Error\n");
1395		return ret_val;
1396	}
1397
1398	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1399		*data = ID_LED_DEFAULT;
1400
1401	return 0;
1402}
1403
1404/**
1405 *  e1000e_id_led_init -
1406 *  @hw: pointer to the HW structure
1407 *
1408 **/
1409s32 e1000e_id_led_init(struct e1000_hw *hw)
1410{
1411	struct e1000_mac_info *mac = &hw->mac;
1412	s32 ret_val;
1413	const u32 ledctl_mask = 0x000000FF;
1414	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1415	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1416	u16 data, i, temp;
1417	const u16 led_mask = 0x0F;
1418
1419	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1420	if (ret_val)
1421		return ret_val;
1422
1423	mac->ledctl_default = er32(LEDCTL);
1424	mac->ledctl_mode1 = mac->ledctl_default;
1425	mac->ledctl_mode2 = mac->ledctl_default;
1426
1427	for (i = 0; i < 4; i++) {
1428		temp = (data >> (i << 2)) & led_mask;
1429		switch (temp) {
1430		case ID_LED_ON1_DEF2:
1431		case ID_LED_ON1_ON2:
1432		case ID_LED_ON1_OFF2:
1433			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1434			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1435			break;
1436		case ID_LED_OFF1_DEF2:
1437		case ID_LED_OFF1_ON2:
1438		case ID_LED_OFF1_OFF2:
1439			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1440			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1441			break;
1442		default:
1443			/* Do nothing */
1444			break;
1445		}
1446		switch (temp) {
1447		case ID_LED_DEF1_ON2:
1448		case ID_LED_ON1_ON2:
1449		case ID_LED_OFF1_ON2:
1450			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1451			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1452			break;
1453		case ID_LED_DEF1_OFF2:
1454		case ID_LED_ON1_OFF2:
1455		case ID_LED_OFF1_OFF2:
1456			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1457			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1458			break;
1459		default:
1460			/* Do nothing */
1461			break;
1462		}
1463	}
1464
1465	return 0;
1466}
1467
1468/**
1469 *  e1000e_setup_led_generic - Configures SW controllable LED
1470 *  @hw: pointer to the HW structure
1471 *
1472 *  This prepares the SW controllable LED for use and saves the current state
1473 *  of the LED so it can be later restored.
1474 **/
1475s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1476{
1477	u32 ledctl;
1478
1479	if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1480		return -E1000_ERR_CONFIG;
1481
1482	if (hw->phy.media_type == e1000_media_type_fiber) {
1483		ledctl = er32(LEDCTL);
1484		hw->mac.ledctl_default = ledctl;
1485		/* Turn off LED0 */
1486		ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1487			    E1000_LEDCTL_LED0_MODE_MASK);
1488		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1489			   E1000_LEDCTL_LED0_MODE_SHIFT);
1490		ew32(LEDCTL, ledctl);
1491	} else if (hw->phy.media_type == e1000_media_type_copper) {
1492		ew32(LEDCTL, hw->mac.ledctl_mode1);
1493	}
1494
1495	return 0;
1496}
1497
1498/**
1499 *  e1000e_cleanup_led_generic - Set LED config to default operation
1500 *  @hw: pointer to the HW structure
1501 *
1502 *  Remove the current LED configuration and set the LED configuration
1503 *  to the default value, saved from the EEPROM.
1504 **/
1505s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1506{
1507	ew32(LEDCTL, hw->mac.ledctl_default);
1508	return 0;
1509}
1510
1511/**
1512 *  e1000e_blink_led_generic - Blink LED
1513 *  @hw: pointer to the HW structure
1514 *
1515 *  Blink the LEDs which are set to be on.
1516 **/
1517s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1518{
1519	u32 ledctl_blink = 0;
1520	u32 i;
1521
1522	if (hw->phy.media_type == e1000_media_type_fiber) {
1523		/* always blink LED0 for PCI-E fiber */
1524		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1525		    (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1526	} else {
1527		/*
1528		 * set the blink bit for each LED that's "on" (0x0E)
1529		 * in ledctl_mode2
1530		 */
1531		ledctl_blink = hw->mac.ledctl_mode2;
1532		for (i = 0; i < 4; i++)
1533			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1534			    E1000_LEDCTL_MODE_LED_ON)
1535				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1536						 (i * 8));
1537	}
1538
1539	ew32(LEDCTL, ledctl_blink);
1540
1541	return 0;
1542}
1543
1544/**
1545 *  e1000e_led_on_generic - Turn LED on
1546 *  @hw: pointer to the HW structure
1547 *
1548 *  Turn LED on.
1549 **/
1550s32 e1000e_led_on_generic(struct e1000_hw *hw)
1551{
1552	u32 ctrl;
1553
1554	switch (hw->phy.media_type) {
1555	case e1000_media_type_fiber:
1556		ctrl = er32(CTRL);
1557		ctrl &= ~E1000_CTRL_SWDPIN0;
1558		ctrl |= E1000_CTRL_SWDPIO0;
1559		ew32(CTRL, ctrl);
1560		break;
1561	case e1000_media_type_copper:
1562		ew32(LEDCTL, hw->mac.ledctl_mode2);
1563		break;
1564	default:
1565		break;
1566	}
1567
1568	return 0;
1569}
1570
1571/**
1572 *  e1000e_led_off_generic - Turn LED off
1573 *  @hw: pointer to the HW structure
1574 *
1575 *  Turn LED off.
1576 **/
1577s32 e1000e_led_off_generic(struct e1000_hw *hw)
1578{
1579	u32 ctrl;
1580
1581	switch (hw->phy.media_type) {
1582	case e1000_media_type_fiber:
1583		ctrl = er32(CTRL);
1584		ctrl |= E1000_CTRL_SWDPIN0;
1585		ctrl |= E1000_CTRL_SWDPIO0;
1586		ew32(CTRL, ctrl);
1587		break;
1588	case e1000_media_type_copper:
1589		ew32(LEDCTL, hw->mac.ledctl_mode1);
1590		break;
1591	default:
1592		break;
1593	}
1594
1595	return 0;
1596}
1597
1598/**
1599 *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1600 *  @hw: pointer to the HW structure
1601 *  @no_snoop: bitmap of snoop events
1602 *
1603 *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1604 **/
1605void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1606{
1607	u32 gcr;
1608
1609	if (no_snoop) {
1610		gcr = er32(GCR);
1611		gcr &= ~(PCIE_NO_SNOOP_ALL);
1612		gcr |= no_snoop;
1613		ew32(GCR, gcr);
1614	}
1615}
1616
1617/**
1618 *  e1000e_disable_pcie_master - Disables PCI-express master access
1619 *  @hw: pointer to the HW structure
1620 *
1621 *  Returns 0 if successful, else returns -10
1622 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1623 *  the master requests to be disabled.
1624 *
1625 *  Disables PCI-Express master access and verifies there are no pending
1626 *  requests.
1627 **/
1628s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1629{
1630	u32 ctrl;
1631	s32 timeout = MASTER_DISABLE_TIMEOUT;
1632
1633	ctrl = er32(CTRL);
1634	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1635	ew32(CTRL, ctrl);
1636
1637	while (timeout) {
1638		if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1639			break;
1640		udelay(100);
1641		timeout--;
1642	}
1643
1644	if (!timeout) {
1645		e_dbg("Master requests are pending.\n");
1646		return -E1000_ERR_MASTER_REQUESTS_PENDING;
1647	}
1648
1649	return 0;
1650}
1651
1652/**
1653 *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1654 *  @hw: pointer to the HW structure
1655 *
1656 *  Reset the Adaptive Interframe Spacing throttle to default values.
1657 **/
1658void e1000e_reset_adaptive(struct e1000_hw *hw)
1659{
1660	struct e1000_mac_info *mac = &hw->mac;
1661
1662	if (!mac->adaptive_ifs) {
1663		e_dbg("Not in Adaptive IFS mode!\n");
1664		goto out;
1665	}
1666
1667	mac->current_ifs_val = 0;
1668	mac->ifs_min_val = IFS_MIN;
1669	mac->ifs_max_val = IFS_MAX;
1670	mac->ifs_step_size = IFS_STEP;
1671	mac->ifs_ratio = IFS_RATIO;
1672
1673	mac->in_ifs_mode = false;
1674	ew32(AIT, 0);
1675out:
1676	return;
1677}
1678
1679/**
1680 *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
1681 *  @hw: pointer to the HW structure
1682 *
1683 *  Update the Adaptive Interframe Spacing Throttle value based on the
1684 *  time between transmitted packets and time between collisions.
1685 **/
1686void e1000e_update_adaptive(struct e1000_hw *hw)
1687{
1688	struct e1000_mac_info *mac = &hw->mac;
1689
1690	if (!mac->adaptive_ifs) {
1691		e_dbg("Not in Adaptive IFS mode!\n");
1692		goto out;
1693	}
1694
1695	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1696		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1697			mac->in_ifs_mode = true;
1698			if (mac->current_ifs_val < mac->ifs_max_val) {
1699				if (!mac->current_ifs_val)
1700					mac->current_ifs_val = mac->ifs_min_val;
1701				else
1702					mac->current_ifs_val +=
1703					    mac->ifs_step_size;
1704				ew32(AIT, mac->current_ifs_val);
1705			}
1706		}
1707	} else {
1708		if (mac->in_ifs_mode &&
1709		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1710			mac->current_ifs_val = 0;
1711			mac->in_ifs_mode = false;
1712			ew32(AIT, 0);
1713		}
1714	}
1715out:
1716	return;
1717}
1718