mac.c revision 57cde7630c1911ea7e8e1561cccfde8096e8bcc7
1/*******************************************************************************
2
3  Intel PRO/1000 Linux driver
4  Copyright(c) 1999 - 2012 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  Linux NICS <linux.nics@intel.com>
24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
30
31/**
32 *  e1000e_get_bus_info_pcie - Get PCIe bus information
33 *  @hw: pointer to the HW structure
34 *
35 *  Determines and stores the system bus information for a particular
36 *  network interface.  The following bus information is determined and stored:
37 *  bus speed, bus width, type (PCIe), and PCIe function.
38 **/
39s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
40{
41	struct e1000_mac_info *mac = &hw->mac;
42	struct e1000_bus_info *bus = &hw->bus;
43	struct e1000_adapter *adapter = hw->adapter;
44	u16 pcie_link_status, cap_offset;
45
46	cap_offset = adapter->pdev->pcie_cap;
47	if (!cap_offset) {
48		bus->width = e1000_bus_width_unknown;
49	} else {
50		pci_read_config_word(adapter->pdev,
51				     cap_offset + PCIE_LINK_STATUS,
52				     &pcie_link_status);
53		bus->width = (enum e1000_bus_width)((pcie_link_status &
54						     PCIE_LINK_WIDTH_MASK) >>
55						    PCIE_LINK_WIDTH_SHIFT);
56	}
57
58	mac->ops.set_lan_id(hw);
59
60	return 0;
61}
62
63/**
64 *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
65 *
66 *  @hw: pointer to the HW structure
67 *
68 *  Determines the LAN function id by reading memory-mapped registers
69 *  and swaps the port value if requested.
70 **/
71void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
72{
73	struct e1000_bus_info *bus = &hw->bus;
74	u32 reg;
75
76	/*
77	 * The status register reports the correct function number
78	 * for the device regardless of function swap state.
79	 */
80	reg = er32(STATUS);
81	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
82}
83
84/**
85 *  e1000_set_lan_id_single_port - Set LAN id for a single port device
86 *  @hw: pointer to the HW structure
87 *
88 *  Sets the LAN function id to zero for a single port device.
89 **/
90void e1000_set_lan_id_single_port(struct e1000_hw *hw)
91{
92	struct e1000_bus_info *bus = &hw->bus;
93
94	bus->func = 0;
95}
96
97/**
98 *  e1000_clear_vfta_generic - Clear VLAN filter table
99 *  @hw: pointer to the HW structure
100 *
101 *  Clears the register array which contains the VLAN filter table by
102 *  setting all the values to 0.
103 **/
104void e1000_clear_vfta_generic(struct e1000_hw *hw)
105{
106	u32 offset;
107
108	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
109		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
110		e1e_flush();
111	}
112}
113
114/**
115 *  e1000_write_vfta_generic - Write value to VLAN filter table
116 *  @hw: pointer to the HW structure
117 *  @offset: register offset in VLAN filter table
118 *  @value: register value written to VLAN filter table
119 *
120 *  Writes value at the given offset in the register array which stores
121 *  the VLAN filter table.
122 **/
123void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
124{
125	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
126	e1e_flush();
127}
128
129/**
130 *  e1000e_init_rx_addrs - Initialize receive address's
131 *  @hw: pointer to the HW structure
132 *  @rar_count: receive address registers
133 *
134 *  Setup the receive address registers by setting the base receive address
135 *  register to the devices MAC address and clearing all the other receive
136 *  address registers to 0.
137 **/
138void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
139{
140	u32 i;
141	u8 mac_addr[ETH_ALEN] = { 0 };
142
143	/* Setup the receive address */
144	e_dbg("Programming MAC Address into RAR[0]\n");
145
146	e1000e_rar_set(hw, hw->mac.addr, 0);
147
148	/* Zero out the other (rar_entry_count - 1) receive addresses */
149	e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
150	for (i = 1; i < rar_count; i++)
151		e1000e_rar_set(hw, mac_addr, i);
152}
153
154/**
155 *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
156 *  @hw: pointer to the HW structure
157 *
158 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
159 *  can be setup by pre-boot software and must be treated like a permanent
160 *  address and must override the actual permanent MAC address. If an
161 *  alternate MAC address is found it is programmed into RAR0, replacing
162 *  the permanent address that was installed into RAR0 by the Si on reset.
163 *  This function will return SUCCESS unless it encounters an error while
164 *  reading the EEPROM.
165 **/
166s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
167{
168	u32 i;
169	s32 ret_val = 0;
170	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
171	u8 alt_mac_addr[ETH_ALEN];
172
173	ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
174	if (ret_val)
175		return ret_val;
176
177	/* not supported on 82573 */
178	if (hw->mac.type == e1000_82573)
179		return 0;
180
181	ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
182				 &nvm_alt_mac_addr_offset);
183	if (ret_val) {
184		e_dbg("NVM Read Error\n");
185		return ret_val;
186	}
187
188	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
189	    (nvm_alt_mac_addr_offset == 0x0000))
190		/* There is no Alternate MAC Address */
191		return 0;
192
193	if (hw->bus.func == E1000_FUNC_1)
194		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
195	for (i = 0; i < ETH_ALEN; i += 2) {
196		offset = nvm_alt_mac_addr_offset + (i >> 1);
197		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
198		if (ret_val) {
199			e_dbg("NVM Read Error\n");
200			return ret_val;
201		}
202
203		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
204		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
205	}
206
207	/* if multicast bit is set, the alternate address will not be used */
208	if (is_multicast_ether_addr(alt_mac_addr)) {
209		e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
210		return 0;
211	}
212
213	/*
214	 * We have a valid alternate MAC address, and we want to treat it the
215	 * same as the normal permanent MAC address stored by the HW into the
216	 * RAR. Do this by mapping this address into RAR0.
217	 */
218	e1000e_rar_set(hw, alt_mac_addr, 0);
219
220	return 0;
221}
222
223/**
224 *  e1000e_rar_set - Set receive address register
225 *  @hw: pointer to the HW structure
226 *  @addr: pointer to the receive address
227 *  @index: receive address array register
228 *
229 *  Sets the receive address array register at index to the address passed
230 *  in by addr.
231 **/
232void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
233{
234	u32 rar_low, rar_high;
235
236	/*
237	 * HW expects these in little endian so we reverse the byte order
238	 * from network order (big endian) to little endian
239	 */
240	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
241		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
242
243	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
244
245	/* If MAC address zero, no need to set the AV bit */
246	if (rar_low || rar_high)
247		rar_high |= E1000_RAH_AV;
248
249	/*
250	 * Some bridges will combine consecutive 32-bit writes into
251	 * a single burst write, which will malfunction on some parts.
252	 * The flushes avoid this.
253	 */
254	ew32(RAL(index), rar_low);
255	e1e_flush();
256	ew32(RAH(index), rar_high);
257	e1e_flush();
258}
259
260/**
261 *  e1000_hash_mc_addr - Generate a multicast hash value
262 *  @hw: pointer to the HW structure
263 *  @mc_addr: pointer to a multicast address
264 *
265 *  Generates a multicast address hash value which is used to determine
266 *  the multicast filter table array address and new table value.  See
267 *  e1000_mta_set_generic()
268 **/
269static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
270{
271	u32 hash_value, hash_mask;
272	u8 bit_shift = 0;
273
274	/* Register count multiplied by bits per register */
275	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
276
277	/*
278	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
279	 * where 0xFF would still fall within the hash mask.
280	 */
281	while (hash_mask >> bit_shift != 0xFF)
282		bit_shift++;
283
284	/*
285	 * The portion of the address that is used for the hash table
286	 * is determined by the mc_filter_type setting.
287	 * The algorithm is such that there is a total of 8 bits of shifting.
288	 * The bit_shift for a mc_filter_type of 0 represents the number of
289	 * left-shifts where the MSB of mc_addr[5] would still fall within
290	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
291	 * of 8 bits of shifting, then mc_addr[4] will shift right the
292	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
293	 * cases are a variation of this algorithm...essentially raising the
294	 * number of bits to shift mc_addr[5] left, while still keeping the
295	 * 8-bit shifting total.
296	 *
297	 * For example, given the following Destination MAC Address and an
298	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
299	 * we can see that the bit_shift for case 0 is 4.  These are the hash
300	 * values resulting from each mc_filter_type...
301	 * [0] [1] [2] [3] [4] [5]
302	 * 01  AA  00  12  34  56
303	 * LSB           MSB
304	 *
305	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
306	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
307	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
308	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
309	 */
310	switch (hw->mac.mc_filter_type) {
311	default:
312	case 0:
313		break;
314	case 1:
315		bit_shift += 1;
316		break;
317	case 2:
318		bit_shift += 2;
319		break;
320	case 3:
321		bit_shift += 4;
322		break;
323	}
324
325	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
326				   (((u16)mc_addr[5]) << bit_shift)));
327
328	return hash_value;
329}
330
331/**
332 *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
333 *  @hw: pointer to the HW structure
334 *  @mc_addr_list: array of multicast addresses to program
335 *  @mc_addr_count: number of multicast addresses to program
336 *
337 *  Updates entire Multicast Table Array.
338 *  The caller must have a packed mc_addr_list of multicast addresses.
339 **/
340void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
341					u8 *mc_addr_list, u32 mc_addr_count)
342{
343	u32 hash_value, hash_bit, hash_reg;
344	int i;
345
346	/* clear mta_shadow */
347	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
348
349	/* update mta_shadow from mc_addr_list */
350	for (i = 0; (u32)i < mc_addr_count; i++) {
351		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
352
353		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
354		hash_bit = hash_value & 0x1F;
355
356		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
357		mc_addr_list += (ETH_ALEN);
358	}
359
360	/* replace the entire MTA table */
361	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
362		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
363	e1e_flush();
364}
365
366/**
367 *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
368 *  @hw: pointer to the HW structure
369 *
370 *  Clears the base hardware counters by reading the counter registers.
371 **/
372void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
373{
374	er32(CRCERRS);
375	er32(SYMERRS);
376	er32(MPC);
377	er32(SCC);
378	er32(ECOL);
379	er32(MCC);
380	er32(LATECOL);
381	er32(COLC);
382	er32(DC);
383	er32(SEC);
384	er32(RLEC);
385	er32(XONRXC);
386	er32(XONTXC);
387	er32(XOFFRXC);
388	er32(XOFFTXC);
389	er32(FCRUC);
390	er32(GPRC);
391	er32(BPRC);
392	er32(MPRC);
393	er32(GPTC);
394	er32(GORCL);
395	er32(GORCH);
396	er32(GOTCL);
397	er32(GOTCH);
398	er32(RNBC);
399	er32(RUC);
400	er32(RFC);
401	er32(ROC);
402	er32(RJC);
403	er32(TORL);
404	er32(TORH);
405	er32(TOTL);
406	er32(TOTH);
407	er32(TPR);
408	er32(TPT);
409	er32(MPTC);
410	er32(BPTC);
411}
412
413/**
414 *  e1000e_check_for_copper_link - Check for link (Copper)
415 *  @hw: pointer to the HW structure
416 *
417 *  Checks to see of the link status of the hardware has changed.  If a
418 *  change in link status has been detected, then we read the PHY registers
419 *  to get the current speed/duplex if link exists.
420 **/
421s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
422{
423	struct e1000_mac_info *mac = &hw->mac;
424	s32 ret_val;
425	bool link;
426
427	/*
428	 * We only want to go out to the PHY registers to see if Auto-Neg
429	 * has completed and/or if our link status has changed.  The
430	 * get_link_status flag is set upon receiving a Link Status
431	 * Change or Rx Sequence Error interrupt.
432	 */
433	if (!mac->get_link_status)
434		return 0;
435
436	/*
437	 * First we want to see if the MII Status Register reports
438	 * link.  If so, then we want to get the current speed/duplex
439	 * of the PHY.
440	 */
441	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
442	if (ret_val)
443		return ret_val;
444
445	if (!link)
446		return 0;	/* No link detected */
447
448	mac->get_link_status = false;
449
450	/*
451	 * Check if there was DownShift, must be checked
452	 * immediately after link-up
453	 */
454	e1000e_check_downshift(hw);
455
456	/*
457	 * If we are forcing speed/duplex, then we simply return since
458	 * we have already determined whether we have link or not.
459	 */
460	if (!mac->autoneg)
461		return -E1000_ERR_CONFIG;
462
463	/*
464	 * Auto-Neg is enabled.  Auto Speed Detection takes care
465	 * of MAC speed/duplex configuration.  So we only need to
466	 * configure Collision Distance in the MAC.
467	 */
468	mac->ops.config_collision_dist(hw);
469
470	/*
471	 * Configure Flow Control now that Auto-Neg has completed.
472	 * First, we need to restore the desired flow control
473	 * settings because we may have had to re-autoneg with a
474	 * different link partner.
475	 */
476	ret_val = e1000e_config_fc_after_link_up(hw);
477	if (ret_val)
478		e_dbg("Error configuring flow control\n");
479
480	return ret_val;
481}
482
483/**
484 *  e1000e_check_for_fiber_link - Check for link (Fiber)
485 *  @hw: pointer to the HW structure
486 *
487 *  Checks for link up on the hardware.  If link is not up and we have
488 *  a signal, then we need to force link up.
489 **/
490s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
491{
492	struct e1000_mac_info *mac = &hw->mac;
493	u32 rxcw;
494	u32 ctrl;
495	u32 status;
496	s32 ret_val;
497
498	ctrl = er32(CTRL);
499	status = er32(STATUS);
500	rxcw = er32(RXCW);
501
502	/*
503	 * If we don't have link (auto-negotiation failed or link partner
504	 * cannot auto-negotiate), the cable is plugged in (we have signal),
505	 * and our link partner is not trying to auto-negotiate with us (we
506	 * are receiving idles or data), we need to force link up. We also
507	 * need to give auto-negotiation time to complete, in case the cable
508	 * was just plugged in. The autoneg_failed flag does this.
509	 */
510	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
511	if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
512	    !(rxcw & E1000_RXCW_C)) {
513		if (!mac->autoneg_failed) {
514			mac->autoneg_failed = true;
515			return 0;
516		}
517		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
518
519		/* Disable auto-negotiation in the TXCW register */
520		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
521
522		/* Force link-up and also force full-duplex. */
523		ctrl = er32(CTRL);
524		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
525		ew32(CTRL, ctrl);
526
527		/* Configure Flow Control after forcing link up. */
528		ret_val = e1000e_config_fc_after_link_up(hw);
529		if (ret_val) {
530			e_dbg("Error configuring flow control\n");
531			return ret_val;
532		}
533	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
534		/*
535		 * If we are forcing link and we are receiving /C/ ordered
536		 * sets, re-enable auto-negotiation in the TXCW register
537		 * and disable forced link in the Device Control register
538		 * in an attempt to auto-negotiate with our link partner.
539		 */
540		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
541		ew32(TXCW, mac->txcw);
542		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
543
544		mac->serdes_has_link = true;
545	}
546
547	return 0;
548}
549
550/**
551 *  e1000e_check_for_serdes_link - Check for link (Serdes)
552 *  @hw: pointer to the HW structure
553 *
554 *  Checks for link up on the hardware.  If link is not up and we have
555 *  a signal, then we need to force link up.
556 **/
557s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
558{
559	struct e1000_mac_info *mac = &hw->mac;
560	u32 rxcw;
561	u32 ctrl;
562	u32 status;
563	s32 ret_val;
564
565	ctrl = er32(CTRL);
566	status = er32(STATUS);
567	rxcw = er32(RXCW);
568
569	/*
570	 * If we don't have link (auto-negotiation failed or link partner
571	 * cannot auto-negotiate), and our link partner is not trying to
572	 * auto-negotiate with us (we are receiving idles or data),
573	 * we need to force link up. We also need to give auto-negotiation
574	 * time to complete.
575	 */
576	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
577	if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
578		if (!mac->autoneg_failed) {
579			mac->autoneg_failed = true;
580			return 0;
581		}
582		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
583
584		/* Disable auto-negotiation in the TXCW register */
585		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
586
587		/* Force link-up and also force full-duplex. */
588		ctrl = er32(CTRL);
589		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
590		ew32(CTRL, ctrl);
591
592		/* Configure Flow Control after forcing link up. */
593		ret_val = e1000e_config_fc_after_link_up(hw);
594		if (ret_val) {
595			e_dbg("Error configuring flow control\n");
596			return ret_val;
597		}
598	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
599		/*
600		 * If we are forcing link and we are receiving /C/ ordered
601		 * sets, re-enable auto-negotiation in the TXCW register
602		 * and disable forced link in the Device Control register
603		 * in an attempt to auto-negotiate with our link partner.
604		 */
605		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
606		ew32(TXCW, mac->txcw);
607		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
608
609		mac->serdes_has_link = true;
610	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
611		/*
612		 * If we force link for non-auto-negotiation switch, check
613		 * link status based on MAC synchronization for internal
614		 * serdes media type.
615		 */
616		/* SYNCH bit and IV bit are sticky. */
617		udelay(10);
618		rxcw = er32(RXCW);
619		if (rxcw & E1000_RXCW_SYNCH) {
620			if (!(rxcw & E1000_RXCW_IV)) {
621				mac->serdes_has_link = true;
622				e_dbg("SERDES: Link up - forced.\n");
623			}
624		} else {
625			mac->serdes_has_link = false;
626			e_dbg("SERDES: Link down - force failed.\n");
627		}
628	}
629
630	if (E1000_TXCW_ANE & er32(TXCW)) {
631		status = er32(STATUS);
632		if (status & E1000_STATUS_LU) {
633			/* SYNCH bit and IV bit are sticky, so reread rxcw.  */
634			udelay(10);
635			rxcw = er32(RXCW);
636			if (rxcw & E1000_RXCW_SYNCH) {
637				if (!(rxcw & E1000_RXCW_IV)) {
638					mac->serdes_has_link = true;
639					e_dbg("SERDES: Link up - autoneg completed successfully.\n");
640				} else {
641					mac->serdes_has_link = false;
642					e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
643				}
644			} else {
645				mac->serdes_has_link = false;
646				e_dbg("SERDES: Link down - no sync.\n");
647			}
648		} else {
649			mac->serdes_has_link = false;
650			e_dbg("SERDES: Link down - autoneg failed\n");
651		}
652	}
653
654	return 0;
655}
656
657/**
658 *  e1000_set_default_fc_generic - Set flow control default values
659 *  @hw: pointer to the HW structure
660 *
661 *  Read the EEPROM for the default values for flow control and store the
662 *  values.
663 **/
664static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
665{
666	s32 ret_val;
667	u16 nvm_data;
668
669	/*
670	 * Read and store word 0x0F of the EEPROM. This word contains bits
671	 * that determine the hardware's default PAUSE (flow control) mode,
672	 * a bit that determines whether the HW defaults to enabling or
673	 * disabling auto-negotiation, and the direction of the
674	 * SW defined pins. If there is no SW over-ride of the flow
675	 * control setting, then the variable hw->fc will
676	 * be initialized based on a value in the EEPROM.
677	 */
678	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
679
680	if (ret_val) {
681		e_dbg("NVM Read Error\n");
682		return ret_val;
683	}
684
685	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
686		hw->fc.requested_mode = e1000_fc_none;
687	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
688		hw->fc.requested_mode = e1000_fc_tx_pause;
689	else
690		hw->fc.requested_mode = e1000_fc_full;
691
692	return 0;
693}
694
695/**
696 *  e1000e_setup_link_generic - Setup flow control and link settings
697 *  @hw: pointer to the HW structure
698 *
699 *  Determines which flow control settings to use, then configures flow
700 *  control.  Calls the appropriate media-specific link configuration
701 *  function.  Assuming the adapter has a valid link partner, a valid link
702 *  should be established.  Assumes the hardware has previously been reset
703 *  and the transmitter and receiver are not enabled.
704 **/
705s32 e1000e_setup_link_generic(struct e1000_hw *hw)
706{
707	struct e1000_mac_info *mac = &hw->mac;
708	s32 ret_val;
709
710	/*
711	 * In the case of the phy reset being blocked, we already have a link.
712	 * We do not need to set it up again.
713	 */
714	if (hw->phy.ops.check_reset_block(hw))
715		return 0;
716
717	/*
718	 * If requested flow control is set to default, set flow control
719	 * based on the EEPROM flow control settings.
720	 */
721	if (hw->fc.requested_mode == e1000_fc_default) {
722		ret_val = e1000_set_default_fc_generic(hw);
723		if (ret_val)
724			return ret_val;
725	}
726
727	/*
728	 * Save off the requested flow control mode for use later.  Depending
729	 * on the link partner's capabilities, we may or may not use this mode.
730	 */
731	hw->fc.current_mode = hw->fc.requested_mode;
732
733	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
734
735	/* Call the necessary media_type subroutine to configure the link. */
736	ret_val = mac->ops.setup_physical_interface(hw);
737	if (ret_val)
738		return ret_val;
739
740	/*
741	 * Initialize the flow control address, type, and PAUSE timer
742	 * registers to their default values.  This is done even if flow
743	 * control is disabled, because it does not hurt anything to
744	 * initialize these registers.
745	 */
746	e_dbg("Initializing the Flow Control address, type and timer regs\n");
747	ew32(FCT, FLOW_CONTROL_TYPE);
748	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
749	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
750
751	ew32(FCTTV, hw->fc.pause_time);
752
753	return e1000e_set_fc_watermarks(hw);
754}
755
756/**
757 *  e1000_commit_fc_settings_generic - Configure flow control
758 *  @hw: pointer to the HW structure
759 *
760 *  Write the flow control settings to the Transmit Config Word Register (TXCW)
761 *  base on the flow control settings in e1000_mac_info.
762 **/
763static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
764{
765	struct e1000_mac_info *mac = &hw->mac;
766	u32 txcw;
767
768	/*
769	 * Check for a software override of the flow control settings, and
770	 * setup the device accordingly.  If auto-negotiation is enabled, then
771	 * software will have to set the "PAUSE" bits to the correct value in
772	 * the Transmit Config Word Register (TXCW) and re-start auto-
773	 * negotiation.  However, if auto-negotiation is disabled, then
774	 * software will have to manually configure the two flow control enable
775	 * bits in the CTRL register.
776	 *
777	 * The possible values of the "fc" parameter are:
778	 *      0:  Flow control is completely disabled
779	 *      1:  Rx flow control is enabled (we can receive pause frames,
780	 *          but not send pause frames).
781	 *      2:  Tx flow control is enabled (we can send pause frames but we
782	 *          do not support receiving pause frames).
783	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
784	 */
785	switch (hw->fc.current_mode) {
786	case e1000_fc_none:
787		/* Flow control completely disabled by a software over-ride. */
788		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
789		break;
790	case e1000_fc_rx_pause:
791		/*
792		 * Rx Flow control is enabled and Tx Flow control is disabled
793		 * by a software over-ride. Since there really isn't a way to
794		 * advertise that we are capable of Rx Pause ONLY, we will
795		 * advertise that we support both symmetric and asymmetric Rx
796		 * PAUSE.  Later, we will disable the adapter's ability to send
797		 * PAUSE frames.
798		 */
799		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
800		break;
801	case e1000_fc_tx_pause:
802		/*
803		 * Tx Flow control is enabled, and Rx Flow control is disabled,
804		 * by a software over-ride.
805		 */
806		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
807		break;
808	case e1000_fc_full:
809		/*
810		 * Flow control (both Rx and Tx) is enabled by a software
811		 * over-ride.
812		 */
813		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
814		break;
815	default:
816		e_dbg("Flow control param set incorrectly\n");
817		return -E1000_ERR_CONFIG;
818		break;
819	}
820
821	ew32(TXCW, txcw);
822	mac->txcw = txcw;
823
824	return 0;
825}
826
827/**
828 *  e1000_poll_fiber_serdes_link_generic - Poll for link up
829 *  @hw: pointer to the HW structure
830 *
831 *  Polls for link up by reading the status register, if link fails to come
832 *  up with auto-negotiation, then the link is forced if a signal is detected.
833 **/
834static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
835{
836	struct e1000_mac_info *mac = &hw->mac;
837	u32 i, status;
838	s32 ret_val;
839
840	/*
841	 * If we have a signal (the cable is plugged in, or assumed true for
842	 * serdes media) then poll for a "Link-Up" indication in the Device
843	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
844	 * seconds (Auto-negotiation should complete in less than 500
845	 * milliseconds even if the other end is doing it in SW).
846	 */
847	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
848		usleep_range(10000, 20000);
849		status = er32(STATUS);
850		if (status & E1000_STATUS_LU)
851			break;
852	}
853	if (i == FIBER_LINK_UP_LIMIT) {
854		e_dbg("Never got a valid link from auto-neg!!!\n");
855		mac->autoneg_failed = true;
856		/*
857		 * AutoNeg failed to achieve a link, so we'll call
858		 * mac->check_for_link. This routine will force the
859		 * link up if we detect a signal. This will allow us to
860		 * communicate with non-autonegotiating link partners.
861		 */
862		ret_val = mac->ops.check_for_link(hw);
863		if (ret_val) {
864			e_dbg("Error while checking for link\n");
865			return ret_val;
866		}
867		mac->autoneg_failed = false;
868	} else {
869		mac->autoneg_failed = false;
870		e_dbg("Valid Link Found\n");
871	}
872
873	return 0;
874}
875
876/**
877 *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
878 *  @hw: pointer to the HW structure
879 *
880 *  Configures collision distance and flow control for fiber and serdes
881 *  links.  Upon successful setup, poll for link.
882 **/
883s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
884{
885	u32 ctrl;
886	s32 ret_val;
887
888	ctrl = er32(CTRL);
889
890	/* Take the link out of reset */
891	ctrl &= ~E1000_CTRL_LRST;
892
893	hw->mac.ops.config_collision_dist(hw);
894
895	ret_val = e1000_commit_fc_settings_generic(hw);
896	if (ret_val)
897		return ret_val;
898
899	/*
900	 * Since auto-negotiation is enabled, take the link out of reset (the
901	 * link will be in reset, because we previously reset the chip). This
902	 * will restart auto-negotiation.  If auto-negotiation is successful
903	 * then the link-up status bit will be set and the flow control enable
904	 * bits (RFCE and TFCE) will be set according to their negotiated value.
905	 */
906	e_dbg("Auto-negotiation enabled\n");
907
908	ew32(CTRL, ctrl);
909	e1e_flush();
910	usleep_range(1000, 2000);
911
912	/*
913	 * For these adapters, the SW definable pin 1 is set when the optics
914	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
915	 * indication.
916	 */
917	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
918	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
919		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
920	} else {
921		e_dbg("No signal detected\n");
922	}
923
924	return ret_val;
925}
926
927/**
928 *  e1000e_config_collision_dist_generic - Configure collision distance
929 *  @hw: pointer to the HW structure
930 *
931 *  Configures the collision distance to the default value and is used
932 *  during link setup.
933 **/
934void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
935{
936	u32 tctl;
937
938	tctl = er32(TCTL);
939
940	tctl &= ~E1000_TCTL_COLD;
941	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
942
943	ew32(TCTL, tctl);
944	e1e_flush();
945}
946
947/**
948 *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
949 *  @hw: pointer to the HW structure
950 *
951 *  Sets the flow control high/low threshold (watermark) registers.  If
952 *  flow control XON frame transmission is enabled, then set XON frame
953 *  transmission as well.
954 **/
955s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
956{
957	u32 fcrtl = 0, fcrth = 0;
958
959	/*
960	 * Set the flow control receive threshold registers.  Normally,
961	 * these registers will be set to a default threshold that may be
962	 * adjusted later by the driver's runtime code.  However, if the
963	 * ability to transmit pause frames is not enabled, then these
964	 * registers will be set to 0.
965	 */
966	if (hw->fc.current_mode & e1000_fc_tx_pause) {
967		/*
968		 * We need to set up the Receive Threshold high and low water
969		 * marks as well as (optionally) enabling the transmission of
970		 * XON frames.
971		 */
972		fcrtl = hw->fc.low_water;
973		fcrtl |= E1000_FCRTL_XONE;
974		fcrth = hw->fc.high_water;
975	}
976	ew32(FCRTL, fcrtl);
977	ew32(FCRTH, fcrth);
978
979	return 0;
980}
981
982/**
983 *  e1000e_force_mac_fc - Force the MAC's flow control settings
984 *  @hw: pointer to the HW structure
985 *
986 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
987 *  device control register to reflect the adapter settings.  TFCE and RFCE
988 *  need to be explicitly set by software when a copper PHY is used because
989 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
990 *  also configure these bits when link is forced on a fiber connection.
991 **/
992s32 e1000e_force_mac_fc(struct e1000_hw *hw)
993{
994	u32 ctrl;
995
996	ctrl = er32(CTRL);
997
998	/*
999	 * Because we didn't get link via the internal auto-negotiation
1000	 * mechanism (we either forced link or we got link via PHY
1001	 * auto-neg), we have to manually enable/disable transmit an
1002	 * receive flow control.
1003	 *
1004	 * The "Case" statement below enables/disable flow control
1005	 * according to the "hw->fc.current_mode" parameter.
1006	 *
1007	 * The possible values of the "fc" parameter are:
1008	 *      0:  Flow control is completely disabled
1009	 *      1:  Rx flow control is enabled (we can receive pause
1010	 *          frames but not send pause frames).
1011	 *      2:  Tx flow control is enabled (we can send pause frames
1012	 *          frames but we do not receive pause frames).
1013	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
1014	 *  other:  No other values should be possible at this point.
1015	 */
1016	e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
1017
1018	switch (hw->fc.current_mode) {
1019	case e1000_fc_none:
1020		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1021		break;
1022	case e1000_fc_rx_pause:
1023		ctrl &= (~E1000_CTRL_TFCE);
1024		ctrl |= E1000_CTRL_RFCE;
1025		break;
1026	case e1000_fc_tx_pause:
1027		ctrl &= (~E1000_CTRL_RFCE);
1028		ctrl |= E1000_CTRL_TFCE;
1029		break;
1030	case e1000_fc_full:
1031		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1032		break;
1033	default:
1034		e_dbg("Flow control param set incorrectly\n");
1035		return -E1000_ERR_CONFIG;
1036	}
1037
1038	ew32(CTRL, ctrl);
1039
1040	return 0;
1041}
1042
1043/**
1044 *  e1000e_config_fc_after_link_up - Configures flow control after link
1045 *  @hw: pointer to the HW structure
1046 *
1047 *  Checks the status of auto-negotiation after link up to ensure that the
1048 *  speed and duplex were not forced.  If the link needed to be forced, then
1049 *  flow control needs to be forced also.  If auto-negotiation is enabled
1050 *  and did not fail, then we configure flow control based on our link
1051 *  partner.
1052 **/
1053s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1054{
1055	struct e1000_mac_info *mac = &hw->mac;
1056	s32 ret_val = 0;
1057	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1058	u16 speed, duplex;
1059
1060	/*
1061	 * Check for the case where we have fiber media and auto-neg failed
1062	 * so we had to force link.  In this case, we need to force the
1063	 * configuration of the MAC to match the "fc" parameter.
1064	 */
1065	if (mac->autoneg_failed) {
1066		if (hw->phy.media_type == e1000_media_type_fiber ||
1067		    hw->phy.media_type == e1000_media_type_internal_serdes)
1068			ret_val = e1000e_force_mac_fc(hw);
1069	} else {
1070		if (hw->phy.media_type == e1000_media_type_copper)
1071			ret_val = e1000e_force_mac_fc(hw);
1072	}
1073
1074	if (ret_val) {
1075		e_dbg("Error forcing flow control settings\n");
1076		return ret_val;
1077	}
1078
1079	/*
1080	 * Check for the case where we have copper media and auto-neg is
1081	 * enabled.  In this case, we need to check and see if Auto-Neg
1082	 * has completed, and if so, how the PHY and link partner has
1083	 * flow control configured.
1084	 */
1085	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1086		/*
1087		 * Read the MII Status Register and check to see if AutoNeg
1088		 * has completed.  We read this twice because this reg has
1089		 * some "sticky" (latched) bits.
1090		 */
1091		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1092		if (ret_val)
1093			return ret_val;
1094		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1095		if (ret_val)
1096			return ret_val;
1097
1098		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
1099			e_dbg("Copper PHY and Auto Neg has not completed.\n");
1100			return ret_val;
1101		}
1102
1103		/*
1104		 * The AutoNeg process has completed, so we now need to
1105		 * read both the Auto Negotiation Advertisement
1106		 * Register (Address 4) and the Auto_Negotiation Base
1107		 * Page Ability Register (Address 5) to determine how
1108		 * flow control was negotiated.
1109		 */
1110		ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
1111		if (ret_val)
1112			return ret_val;
1113		ret_val =
1114		    e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
1115		if (ret_val)
1116			return ret_val;
1117
1118		/*
1119		 * Two bits in the Auto Negotiation Advertisement Register
1120		 * (Address 4) and two bits in the Auto Negotiation Base
1121		 * Page Ability Register (Address 5) determine flow control
1122		 * for both the PHY and the link partner.  The following
1123		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1124		 * 1999, describes these PAUSE resolution bits and how flow
1125		 * control is determined based upon these settings.
1126		 * NOTE:  DC = Don't Care
1127		 *
1128		 *   LOCAL DEVICE  |   LINK PARTNER
1129		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1130		 *-------|---------|-------|---------|--------------------
1131		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1132		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1133		 *   0   |    1    |   1   |    0    | e1000_fc_none
1134		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1135		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1136		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1137		 *   1   |    1    |   0   |    0    | e1000_fc_none
1138		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1139		 *
1140		 * Are both PAUSE bits set to 1?  If so, this implies
1141		 * Symmetric Flow Control is enabled at both ends.  The
1142		 * ASM_DIR bits are irrelevant per the spec.
1143		 *
1144		 * For Symmetric Flow Control:
1145		 *
1146		 *   LOCAL DEVICE  |   LINK PARTNER
1147		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1148		 *-------|---------|-------|---------|--------------------
1149		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
1150		 *
1151		 */
1152		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1153		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1154			/*
1155			 * Now we need to check if the user selected Rx ONLY
1156			 * of pause frames.  In this case, we had to advertise
1157			 * FULL flow control because we could not advertise Rx
1158			 * ONLY. Hence, we must now check to see if we need to
1159			 * turn OFF the TRANSMISSION of PAUSE frames.
1160			 */
1161			if (hw->fc.requested_mode == e1000_fc_full) {
1162				hw->fc.current_mode = e1000_fc_full;
1163				e_dbg("Flow Control = FULL.\n");
1164			} else {
1165				hw->fc.current_mode = e1000_fc_rx_pause;
1166				e_dbg("Flow Control = Rx PAUSE frames only.\n");
1167			}
1168		}
1169		/*
1170		 * For receiving PAUSE frames ONLY.
1171		 *
1172		 *   LOCAL DEVICE  |   LINK PARTNER
1173		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1174		 *-------|---------|-------|---------|--------------------
1175		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1176		 */
1177		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1178			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1179			 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1180			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1181			hw->fc.current_mode = e1000_fc_tx_pause;
1182			e_dbg("Flow Control = Tx PAUSE frames only.\n");
1183		}
1184		/*
1185		 * For transmitting PAUSE frames ONLY.
1186		 *
1187		 *   LOCAL DEVICE  |   LINK PARTNER
1188		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1189		 *-------|---------|-------|---------|--------------------
1190		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1191		 */
1192		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1193			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1194			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1195			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1196			hw->fc.current_mode = e1000_fc_rx_pause;
1197			e_dbg("Flow Control = Rx PAUSE frames only.\n");
1198		} else {
1199			/*
1200			 * Per the IEEE spec, at this point flow control
1201			 * should be disabled.
1202			 */
1203			hw->fc.current_mode = e1000_fc_none;
1204			e_dbg("Flow Control = NONE.\n");
1205		}
1206
1207		/*
1208		 * Now we need to do one last check...  If we auto-
1209		 * negotiated to HALF DUPLEX, flow control should not be
1210		 * enabled per IEEE 802.3 spec.
1211		 */
1212		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1213		if (ret_val) {
1214			e_dbg("Error getting link speed and duplex\n");
1215			return ret_val;
1216		}
1217
1218		if (duplex == HALF_DUPLEX)
1219			hw->fc.current_mode = e1000_fc_none;
1220
1221		/*
1222		 * Now we call a subroutine to actually force the MAC
1223		 * controller to use the correct flow control settings.
1224		 */
1225		ret_val = e1000e_force_mac_fc(hw);
1226		if (ret_val) {
1227			e_dbg("Error forcing flow control settings\n");
1228			return ret_val;
1229		}
1230	}
1231
1232	return 0;
1233}
1234
1235/**
1236 *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1237 *  @hw: pointer to the HW structure
1238 *  @speed: stores the current speed
1239 *  @duplex: stores the current duplex
1240 *
1241 *  Read the status register for the current speed/duplex and store the current
1242 *  speed and duplex for copper connections.
1243 **/
1244s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1245				       u16 *duplex)
1246{
1247	u32 status;
1248
1249	status = er32(STATUS);
1250	if (status & E1000_STATUS_SPEED_1000)
1251		*speed = SPEED_1000;
1252	else if (status & E1000_STATUS_SPEED_100)
1253		*speed = SPEED_100;
1254	else
1255		*speed = SPEED_10;
1256
1257	if (status & E1000_STATUS_FD)
1258		*duplex = FULL_DUPLEX;
1259	else
1260		*duplex = HALF_DUPLEX;
1261
1262	e_dbg("%u Mbps, %s Duplex\n",
1263	      *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1264	      *duplex == FULL_DUPLEX ? "Full" : "Half");
1265
1266	return 0;
1267}
1268
1269/**
1270 *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1271 *  @hw: pointer to the HW structure
1272 *  @speed: stores the current speed
1273 *  @duplex: stores the current duplex
1274 *
1275 *  Sets the speed and duplex to gigabit full duplex (the only possible option)
1276 *  for fiber/serdes links.
1277 **/
1278s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed,
1279					     u16 *duplex)
1280{
1281	*speed = SPEED_1000;
1282	*duplex = FULL_DUPLEX;
1283
1284	return 0;
1285}
1286
1287/**
1288 *  e1000e_get_hw_semaphore - Acquire hardware semaphore
1289 *  @hw: pointer to the HW structure
1290 *
1291 *  Acquire the HW semaphore to access the PHY or NVM
1292 **/
1293s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1294{
1295	u32 swsm;
1296	s32 timeout = hw->nvm.word_size + 1;
1297	s32 i = 0;
1298
1299	/* Get the SW semaphore */
1300	while (i < timeout) {
1301		swsm = er32(SWSM);
1302		if (!(swsm & E1000_SWSM_SMBI))
1303			break;
1304
1305		udelay(50);
1306		i++;
1307	}
1308
1309	if (i == timeout) {
1310		e_dbg("Driver can't access device - SMBI bit is set.\n");
1311		return -E1000_ERR_NVM;
1312	}
1313
1314	/* Get the FW semaphore. */
1315	for (i = 0; i < timeout; i++) {
1316		swsm = er32(SWSM);
1317		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1318
1319		/* Semaphore acquired if bit latched */
1320		if (er32(SWSM) & E1000_SWSM_SWESMBI)
1321			break;
1322
1323		udelay(50);
1324	}
1325
1326	if (i == timeout) {
1327		/* Release semaphores */
1328		e1000e_put_hw_semaphore(hw);
1329		e_dbg("Driver can't access the NVM\n");
1330		return -E1000_ERR_NVM;
1331	}
1332
1333	return 0;
1334}
1335
1336/**
1337 *  e1000e_put_hw_semaphore - Release hardware semaphore
1338 *  @hw: pointer to the HW structure
1339 *
1340 *  Release hardware semaphore used to access the PHY or NVM
1341 **/
1342void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1343{
1344	u32 swsm;
1345
1346	swsm = er32(SWSM);
1347	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1348	ew32(SWSM, swsm);
1349}
1350
1351/**
1352 *  e1000e_get_auto_rd_done - Check for auto read completion
1353 *  @hw: pointer to the HW structure
1354 *
1355 *  Check EEPROM for Auto Read done bit.
1356 **/
1357s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1358{
1359	s32 i = 0;
1360
1361	while (i < AUTO_READ_DONE_TIMEOUT) {
1362		if (er32(EECD) & E1000_EECD_AUTO_RD)
1363			break;
1364		usleep_range(1000, 2000);
1365		i++;
1366	}
1367
1368	if (i == AUTO_READ_DONE_TIMEOUT) {
1369		e_dbg("Auto read by HW from NVM has not completed.\n");
1370		return -E1000_ERR_RESET;
1371	}
1372
1373	return 0;
1374}
1375
1376/**
1377 *  e1000e_valid_led_default - Verify a valid default LED config
1378 *  @hw: pointer to the HW structure
1379 *  @data: pointer to the NVM (EEPROM)
1380 *
1381 *  Read the EEPROM for the current default LED configuration.  If the
1382 *  LED configuration is not valid, set to a valid LED configuration.
1383 **/
1384s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1385{
1386	s32 ret_val;
1387
1388	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1389	if (ret_val) {
1390		e_dbg("NVM Read Error\n");
1391		return ret_val;
1392	}
1393
1394	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1395		*data = ID_LED_DEFAULT;
1396
1397	return 0;
1398}
1399
1400/**
1401 *  e1000e_id_led_init_generic -
1402 *  @hw: pointer to the HW structure
1403 *
1404 **/
1405s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
1406{
1407	struct e1000_mac_info *mac = &hw->mac;
1408	s32 ret_val;
1409	const u32 ledctl_mask = 0x000000FF;
1410	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1411	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1412	u16 data, i, temp;
1413	const u16 led_mask = 0x0F;
1414
1415	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1416	if (ret_val)
1417		return ret_val;
1418
1419	mac->ledctl_default = er32(LEDCTL);
1420	mac->ledctl_mode1 = mac->ledctl_default;
1421	mac->ledctl_mode2 = mac->ledctl_default;
1422
1423	for (i = 0; i < 4; i++) {
1424		temp = (data >> (i << 2)) & led_mask;
1425		switch (temp) {
1426		case ID_LED_ON1_DEF2:
1427		case ID_LED_ON1_ON2:
1428		case ID_LED_ON1_OFF2:
1429			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1430			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1431			break;
1432		case ID_LED_OFF1_DEF2:
1433		case ID_LED_OFF1_ON2:
1434		case ID_LED_OFF1_OFF2:
1435			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1436			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1437			break;
1438		default:
1439			/* Do nothing */
1440			break;
1441		}
1442		switch (temp) {
1443		case ID_LED_DEF1_ON2:
1444		case ID_LED_ON1_ON2:
1445		case ID_LED_OFF1_ON2:
1446			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1447			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1448			break;
1449		case ID_LED_DEF1_OFF2:
1450		case ID_LED_ON1_OFF2:
1451		case ID_LED_OFF1_OFF2:
1452			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1453			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1454			break;
1455		default:
1456			/* Do nothing */
1457			break;
1458		}
1459	}
1460
1461	return 0;
1462}
1463
1464/**
1465 *  e1000e_setup_led_generic - Configures SW controllable LED
1466 *  @hw: pointer to the HW structure
1467 *
1468 *  This prepares the SW controllable LED for use and saves the current state
1469 *  of the LED so it can be later restored.
1470 **/
1471s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1472{
1473	u32 ledctl;
1474
1475	if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1476		return -E1000_ERR_CONFIG;
1477
1478	if (hw->phy.media_type == e1000_media_type_fiber) {
1479		ledctl = er32(LEDCTL);
1480		hw->mac.ledctl_default = ledctl;
1481		/* Turn off LED0 */
1482		ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1483			    E1000_LEDCTL_LED0_MODE_MASK);
1484		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1485			   E1000_LEDCTL_LED0_MODE_SHIFT);
1486		ew32(LEDCTL, ledctl);
1487	} else if (hw->phy.media_type == e1000_media_type_copper) {
1488		ew32(LEDCTL, hw->mac.ledctl_mode1);
1489	}
1490
1491	return 0;
1492}
1493
1494/**
1495 *  e1000e_cleanup_led_generic - Set LED config to default operation
1496 *  @hw: pointer to the HW structure
1497 *
1498 *  Remove the current LED configuration and set the LED configuration
1499 *  to the default value, saved from the EEPROM.
1500 **/
1501s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1502{
1503	ew32(LEDCTL, hw->mac.ledctl_default);
1504	return 0;
1505}
1506
1507/**
1508 *  e1000e_blink_led_generic - Blink LED
1509 *  @hw: pointer to the HW structure
1510 *
1511 *  Blink the LEDs which are set to be on.
1512 **/
1513s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1514{
1515	u32 ledctl_blink = 0;
1516	u32 i;
1517
1518	if (hw->phy.media_type == e1000_media_type_fiber) {
1519		/* always blink LED0 for PCI-E fiber */
1520		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1521		    (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1522	} else {
1523		/*
1524		 * set the blink bit for each LED that's "on" (0x0E)
1525		 * in ledctl_mode2
1526		 */
1527		ledctl_blink = hw->mac.ledctl_mode2;
1528		for (i = 0; i < 4; i++)
1529			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1530			    E1000_LEDCTL_MODE_LED_ON)
1531				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1532						 (i * 8));
1533	}
1534
1535	ew32(LEDCTL, ledctl_blink);
1536
1537	return 0;
1538}
1539
1540/**
1541 *  e1000e_led_on_generic - Turn LED on
1542 *  @hw: pointer to the HW structure
1543 *
1544 *  Turn LED on.
1545 **/
1546s32 e1000e_led_on_generic(struct e1000_hw *hw)
1547{
1548	u32 ctrl;
1549
1550	switch (hw->phy.media_type) {
1551	case e1000_media_type_fiber:
1552		ctrl = er32(CTRL);
1553		ctrl &= ~E1000_CTRL_SWDPIN0;
1554		ctrl |= E1000_CTRL_SWDPIO0;
1555		ew32(CTRL, ctrl);
1556		break;
1557	case e1000_media_type_copper:
1558		ew32(LEDCTL, hw->mac.ledctl_mode2);
1559		break;
1560	default:
1561		break;
1562	}
1563
1564	return 0;
1565}
1566
1567/**
1568 *  e1000e_led_off_generic - Turn LED off
1569 *  @hw: pointer to the HW structure
1570 *
1571 *  Turn LED off.
1572 **/
1573s32 e1000e_led_off_generic(struct e1000_hw *hw)
1574{
1575	u32 ctrl;
1576
1577	switch (hw->phy.media_type) {
1578	case e1000_media_type_fiber:
1579		ctrl = er32(CTRL);
1580		ctrl |= E1000_CTRL_SWDPIN0;
1581		ctrl |= E1000_CTRL_SWDPIO0;
1582		ew32(CTRL, ctrl);
1583		break;
1584	case e1000_media_type_copper:
1585		ew32(LEDCTL, hw->mac.ledctl_mode1);
1586		break;
1587	default:
1588		break;
1589	}
1590
1591	return 0;
1592}
1593
1594/**
1595 *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1596 *  @hw: pointer to the HW structure
1597 *  @no_snoop: bitmap of snoop events
1598 *
1599 *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1600 **/
1601void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1602{
1603	u32 gcr;
1604
1605	if (no_snoop) {
1606		gcr = er32(GCR);
1607		gcr &= ~(PCIE_NO_SNOOP_ALL);
1608		gcr |= no_snoop;
1609		ew32(GCR, gcr);
1610	}
1611}
1612
1613/**
1614 *  e1000e_disable_pcie_master - Disables PCI-express master access
1615 *  @hw: pointer to the HW structure
1616 *
1617 *  Returns 0 if successful, else returns -10
1618 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1619 *  the master requests to be disabled.
1620 *
1621 *  Disables PCI-Express master access and verifies there are no pending
1622 *  requests.
1623 **/
1624s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1625{
1626	u32 ctrl;
1627	s32 timeout = MASTER_DISABLE_TIMEOUT;
1628
1629	ctrl = er32(CTRL);
1630	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1631	ew32(CTRL, ctrl);
1632
1633	while (timeout) {
1634		if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1635			break;
1636		udelay(100);
1637		timeout--;
1638	}
1639
1640	if (!timeout) {
1641		e_dbg("Master requests are pending.\n");
1642		return -E1000_ERR_MASTER_REQUESTS_PENDING;
1643	}
1644
1645	return 0;
1646}
1647
1648/**
1649 *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1650 *  @hw: pointer to the HW structure
1651 *
1652 *  Reset the Adaptive Interframe Spacing throttle to default values.
1653 **/
1654void e1000e_reset_adaptive(struct e1000_hw *hw)
1655{
1656	struct e1000_mac_info *mac = &hw->mac;
1657
1658	if (!mac->adaptive_ifs) {
1659		e_dbg("Not in Adaptive IFS mode!\n");
1660		return;
1661	}
1662
1663	mac->current_ifs_val = 0;
1664	mac->ifs_min_val = IFS_MIN;
1665	mac->ifs_max_val = IFS_MAX;
1666	mac->ifs_step_size = IFS_STEP;
1667	mac->ifs_ratio = IFS_RATIO;
1668
1669	mac->in_ifs_mode = false;
1670	ew32(AIT, 0);
1671}
1672
1673/**
1674 *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
1675 *  @hw: pointer to the HW structure
1676 *
1677 *  Update the Adaptive Interframe Spacing Throttle value based on the
1678 *  time between transmitted packets and time between collisions.
1679 **/
1680void e1000e_update_adaptive(struct e1000_hw *hw)
1681{
1682	struct e1000_mac_info *mac = &hw->mac;
1683
1684	if (!mac->adaptive_ifs) {
1685		e_dbg("Not in Adaptive IFS mode!\n");
1686		return;
1687	}
1688
1689	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1690		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1691			mac->in_ifs_mode = true;
1692			if (mac->current_ifs_val < mac->ifs_max_val) {
1693				if (!mac->current_ifs_val)
1694					mac->current_ifs_val = mac->ifs_min_val;
1695				else
1696					mac->current_ifs_val +=
1697					    mac->ifs_step_size;
1698				ew32(AIT, mac->current_ifs_val);
1699			}
1700		}
1701	} else {
1702		if (mac->in_ifs_mode &&
1703		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1704			mac->current_ifs_val = 0;
1705			mac->in_ifs_mode = false;
1706			ew32(AIT, 0);
1707		}
1708	}
1709}
1710