mac.c revision 7eb61d81946ccb61726600c6e8ceefcce9844f02
1/*******************************************************************************
2
3  Intel PRO/1000 Linux driver
4  Copyright(c) 1999 - 2012 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  Linux NICS <linux.nics@intel.com>
24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
30
31/**
32 *  e1000e_get_bus_info_pcie - Get PCIe bus information
33 *  @hw: pointer to the HW structure
34 *
35 *  Determines and stores the system bus information for a particular
36 *  network interface.  The following bus information is determined and stored:
37 *  bus speed, bus width, type (PCIe), and PCIe function.
38 **/
39s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
40{
41	struct e1000_mac_info *mac = &hw->mac;
42	struct e1000_bus_info *bus = &hw->bus;
43	struct e1000_adapter *adapter = hw->adapter;
44	u16 pcie_link_status, cap_offset;
45
46	cap_offset = adapter->pdev->pcie_cap;
47	if (!cap_offset) {
48		bus->width = e1000_bus_width_unknown;
49	} else {
50		pci_read_config_word(adapter->pdev,
51				     cap_offset + PCIE_LINK_STATUS,
52				     &pcie_link_status);
53		bus->width = (enum e1000_bus_width)((pcie_link_status &
54						     PCIE_LINK_WIDTH_MASK) >>
55						    PCIE_LINK_WIDTH_SHIFT);
56	}
57
58	mac->ops.set_lan_id(hw);
59
60	return 0;
61}
62
63/**
64 *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
65 *
66 *  @hw: pointer to the HW structure
67 *
68 *  Determines the LAN function id by reading memory-mapped registers
69 *  and swaps the port value if requested.
70 **/
71void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
72{
73	struct e1000_bus_info *bus = &hw->bus;
74	u32 reg;
75
76	/*
77	 * The status register reports the correct function number
78	 * for the device regardless of function swap state.
79	 */
80	reg = er32(STATUS);
81	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
82}
83
84/**
85 *  e1000_set_lan_id_single_port - Set LAN id for a single port device
86 *  @hw: pointer to the HW structure
87 *
88 *  Sets the LAN function id to zero for a single port device.
89 **/
90void e1000_set_lan_id_single_port(struct e1000_hw *hw)
91{
92	struct e1000_bus_info *bus = &hw->bus;
93
94	bus->func = 0;
95}
96
97/**
98 *  e1000_clear_vfta_generic - Clear VLAN filter table
99 *  @hw: pointer to the HW structure
100 *
101 *  Clears the register array which contains the VLAN filter table by
102 *  setting all the values to 0.
103 **/
104void e1000_clear_vfta_generic(struct e1000_hw *hw)
105{
106	u32 offset;
107
108	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
109		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
110		e1e_flush();
111	}
112}
113
114/**
115 *  e1000_write_vfta_generic - Write value to VLAN filter table
116 *  @hw: pointer to the HW structure
117 *  @offset: register offset in VLAN filter table
118 *  @value: register value written to VLAN filter table
119 *
120 *  Writes value at the given offset in the register array which stores
121 *  the VLAN filter table.
122 **/
123void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
124{
125	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
126	e1e_flush();
127}
128
129/**
130 *  e1000e_init_rx_addrs - Initialize receive address's
131 *  @hw: pointer to the HW structure
132 *  @rar_count: receive address registers
133 *
134 *  Setup the receive address registers by setting the base receive address
135 *  register to the devices MAC address and clearing all the other receive
136 *  address registers to 0.
137 **/
138void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
139{
140	u32 i;
141	u8 mac_addr[ETH_ALEN] = { 0 };
142
143	/* Setup the receive address */
144	e_dbg("Programming MAC Address into RAR[0]\n");
145
146	e1000e_rar_set(hw, hw->mac.addr, 0);
147
148	/* Zero out the other (rar_entry_count - 1) receive addresses */
149	e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
150	for (i = 1; i < rar_count; i++)
151		e1000e_rar_set(hw, mac_addr, i);
152}
153
154/**
155 *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
156 *  @hw: pointer to the HW structure
157 *
158 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
159 *  can be setup by pre-boot software and must be treated like a permanent
160 *  address and must override the actual permanent MAC address. If an
161 *  alternate MAC address is found it is programmed into RAR0, replacing
162 *  the permanent address that was installed into RAR0 by the Si on reset.
163 *  This function will return SUCCESS unless it encounters an error while
164 *  reading the EEPROM.
165 **/
166s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
167{
168	u32 i;
169	s32 ret_val = 0;
170	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
171	u8 alt_mac_addr[ETH_ALEN];
172
173	ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
174	if (ret_val)
175		goto out;
176
177	/* not supported on 82573 */
178	if (hw->mac.type == e1000_82573)
179		goto out;
180
181	ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
182				 &nvm_alt_mac_addr_offset);
183	if (ret_val) {
184		e_dbg("NVM Read Error\n");
185		goto out;
186	}
187
188	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
189	    (nvm_alt_mac_addr_offset == 0x0000))
190		/* There is no Alternate MAC Address */
191		goto out;
192
193	if (hw->bus.func == E1000_FUNC_1)
194		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
195	for (i = 0; i < ETH_ALEN; i += 2) {
196		offset = nvm_alt_mac_addr_offset + (i >> 1);
197		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
198		if (ret_val) {
199			e_dbg("NVM Read Error\n");
200			goto out;
201		}
202
203		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
204		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
205	}
206
207	/* if multicast bit is set, the alternate address will not be used */
208	if (is_multicast_ether_addr(alt_mac_addr)) {
209		e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
210		goto out;
211	}
212
213	/*
214	 * We have a valid alternate MAC address, and we want to treat it the
215	 * same as the normal permanent MAC address stored by the HW into the
216	 * RAR. Do this by mapping this address into RAR0.
217	 */
218	e1000e_rar_set(hw, alt_mac_addr, 0);
219
220out:
221	return ret_val;
222}
223
224/**
225 *  e1000e_rar_set - Set receive address register
226 *  @hw: pointer to the HW structure
227 *  @addr: pointer to the receive address
228 *  @index: receive address array register
229 *
230 *  Sets the receive address array register at index to the address passed
231 *  in by addr.
232 **/
233void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
234{
235	u32 rar_low, rar_high;
236
237	/*
238	 * HW expects these in little endian so we reverse the byte order
239	 * from network order (big endian) to little endian
240	 */
241	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
242		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
243
244	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
245
246	/* If MAC address zero, no need to set the AV bit */
247	if (rar_low || rar_high)
248		rar_high |= E1000_RAH_AV;
249
250	/*
251	 * Some bridges will combine consecutive 32-bit writes into
252	 * a single burst write, which will malfunction on some parts.
253	 * The flushes avoid this.
254	 */
255	ew32(RAL(index), rar_low);
256	e1e_flush();
257	ew32(RAH(index), rar_high);
258	e1e_flush();
259}
260
261/**
262 *  e1000_hash_mc_addr - Generate a multicast hash value
263 *  @hw: pointer to the HW structure
264 *  @mc_addr: pointer to a multicast address
265 *
266 *  Generates a multicast address hash value which is used to determine
267 *  the multicast filter table array address and new table value.  See
268 *  e1000_mta_set_generic()
269 **/
270static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
271{
272	u32 hash_value, hash_mask;
273	u8 bit_shift = 0;
274
275	/* Register count multiplied by bits per register */
276	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
277
278	/*
279	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
280	 * where 0xFF would still fall within the hash mask.
281	 */
282	while (hash_mask >> bit_shift != 0xFF)
283		bit_shift++;
284
285	/*
286	 * The portion of the address that is used for the hash table
287	 * is determined by the mc_filter_type setting.
288	 * The algorithm is such that there is a total of 8 bits of shifting.
289	 * The bit_shift for a mc_filter_type of 0 represents the number of
290	 * left-shifts where the MSB of mc_addr[5] would still fall within
291	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
292	 * of 8 bits of shifting, then mc_addr[4] will shift right the
293	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
294	 * cases are a variation of this algorithm...essentially raising the
295	 * number of bits to shift mc_addr[5] left, while still keeping the
296	 * 8-bit shifting total.
297	 *
298	 * For example, given the following Destination MAC Address and an
299	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
300	 * we can see that the bit_shift for case 0 is 4.  These are the hash
301	 * values resulting from each mc_filter_type...
302	 * [0] [1] [2] [3] [4] [5]
303	 * 01  AA  00  12  34  56
304	 * LSB           MSB
305	 *
306	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
307	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
308	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
309	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
310	 */
311	switch (hw->mac.mc_filter_type) {
312	default:
313	case 0:
314		break;
315	case 1:
316		bit_shift += 1;
317		break;
318	case 2:
319		bit_shift += 2;
320		break;
321	case 3:
322		bit_shift += 4;
323		break;
324	}
325
326	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
327				   (((u16)mc_addr[5]) << bit_shift)));
328
329	return hash_value;
330}
331
332/**
333 *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
334 *  @hw: pointer to the HW structure
335 *  @mc_addr_list: array of multicast addresses to program
336 *  @mc_addr_count: number of multicast addresses to program
337 *
338 *  Updates entire Multicast Table Array.
339 *  The caller must have a packed mc_addr_list of multicast addresses.
340 **/
341void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
342					u8 *mc_addr_list, u32 mc_addr_count)
343{
344	u32 hash_value, hash_bit, hash_reg;
345	int i;
346
347	/* clear mta_shadow */
348	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
349
350	/* update mta_shadow from mc_addr_list */
351	for (i = 0; (u32)i < mc_addr_count; i++) {
352		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
353
354		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
355		hash_bit = hash_value & 0x1F;
356
357		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
358		mc_addr_list += (ETH_ALEN);
359	}
360
361	/* replace the entire MTA table */
362	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
363		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
364	e1e_flush();
365}
366
367/**
368 *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
369 *  @hw: pointer to the HW structure
370 *
371 *  Clears the base hardware counters by reading the counter registers.
372 **/
373void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
374{
375	er32(CRCERRS);
376	er32(SYMERRS);
377	er32(MPC);
378	er32(SCC);
379	er32(ECOL);
380	er32(MCC);
381	er32(LATECOL);
382	er32(COLC);
383	er32(DC);
384	er32(SEC);
385	er32(RLEC);
386	er32(XONRXC);
387	er32(XONTXC);
388	er32(XOFFRXC);
389	er32(XOFFTXC);
390	er32(FCRUC);
391	er32(GPRC);
392	er32(BPRC);
393	er32(MPRC);
394	er32(GPTC);
395	er32(GORCL);
396	er32(GORCH);
397	er32(GOTCL);
398	er32(GOTCH);
399	er32(RNBC);
400	er32(RUC);
401	er32(RFC);
402	er32(ROC);
403	er32(RJC);
404	er32(TORL);
405	er32(TORH);
406	er32(TOTL);
407	er32(TOTH);
408	er32(TPR);
409	er32(TPT);
410	er32(MPTC);
411	er32(BPTC);
412}
413
414/**
415 *  e1000e_check_for_copper_link - Check for link (Copper)
416 *  @hw: pointer to the HW structure
417 *
418 *  Checks to see of the link status of the hardware has changed.  If a
419 *  change in link status has been detected, then we read the PHY registers
420 *  to get the current speed/duplex if link exists.
421 **/
422s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
423{
424	struct e1000_mac_info *mac = &hw->mac;
425	s32 ret_val;
426	bool link;
427
428	/*
429	 * We only want to go out to the PHY registers to see if Auto-Neg
430	 * has completed and/or if our link status has changed.  The
431	 * get_link_status flag is set upon receiving a Link Status
432	 * Change or Rx Sequence Error interrupt.
433	 */
434	if (!mac->get_link_status)
435		return 0;
436
437	/*
438	 * First we want to see if the MII Status Register reports
439	 * link.  If so, then we want to get the current speed/duplex
440	 * of the PHY.
441	 */
442	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
443	if (ret_val)
444		return ret_val;
445
446	if (!link)
447		return ret_val;	/* No link detected */
448
449	mac->get_link_status = false;
450
451	/*
452	 * Check if there was DownShift, must be checked
453	 * immediately after link-up
454	 */
455	e1000e_check_downshift(hw);
456
457	/*
458	 * If we are forcing speed/duplex, then we simply return since
459	 * we have already determined whether we have link or not.
460	 */
461	if (!mac->autoneg)
462		return -E1000_ERR_CONFIG;
463
464	/*
465	 * Auto-Neg is enabled.  Auto Speed Detection takes care
466	 * of MAC speed/duplex configuration.  So we only need to
467	 * configure Collision Distance in the MAC.
468	 */
469	e1000e_config_collision_dist(hw);
470
471	/*
472	 * Configure Flow Control now that Auto-Neg has completed.
473	 * First, we need to restore the desired flow control
474	 * settings because we may have had to re-autoneg with a
475	 * different link partner.
476	 */
477	ret_val = e1000e_config_fc_after_link_up(hw);
478	if (ret_val)
479		e_dbg("Error configuring flow control\n");
480
481	return ret_val;
482}
483
484/**
485 *  e1000e_check_for_fiber_link - Check for link (Fiber)
486 *  @hw: pointer to the HW structure
487 *
488 *  Checks for link up on the hardware.  If link is not up and we have
489 *  a signal, then we need to force link up.
490 **/
491s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
492{
493	struct e1000_mac_info *mac = &hw->mac;
494	u32 rxcw;
495	u32 ctrl;
496	u32 status;
497	s32 ret_val;
498
499	ctrl = er32(CTRL);
500	status = er32(STATUS);
501	rxcw = er32(RXCW);
502
503	/*
504	 * If we don't have link (auto-negotiation failed or link partner
505	 * cannot auto-negotiate), the cable is plugged in (we have signal),
506	 * and our link partner is not trying to auto-negotiate with us (we
507	 * are receiving idles or data), we need to force link up. We also
508	 * need to give auto-negotiation time to complete, in case the cable
509	 * was just plugged in. The autoneg_failed flag does this.
510	 */
511	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
512	if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
513	    !(rxcw & E1000_RXCW_C)) {
514		if (!mac->autoneg_failed) {
515			mac->autoneg_failed = true;
516			return 0;
517		}
518		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
519
520		/* Disable auto-negotiation in the TXCW register */
521		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
522
523		/* Force link-up and also force full-duplex. */
524		ctrl = er32(CTRL);
525		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
526		ew32(CTRL, ctrl);
527
528		/* Configure Flow Control after forcing link up. */
529		ret_val = e1000e_config_fc_after_link_up(hw);
530		if (ret_val) {
531			e_dbg("Error configuring flow control\n");
532			return ret_val;
533		}
534	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
535		/*
536		 * If we are forcing link and we are receiving /C/ ordered
537		 * sets, re-enable auto-negotiation in the TXCW register
538		 * and disable forced link in the Device Control register
539		 * in an attempt to auto-negotiate with our link partner.
540		 */
541		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
542		ew32(TXCW, mac->txcw);
543		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
544
545		mac->serdes_has_link = true;
546	}
547
548	return 0;
549}
550
551/**
552 *  e1000e_check_for_serdes_link - Check for link (Serdes)
553 *  @hw: pointer to the HW structure
554 *
555 *  Checks for link up on the hardware.  If link is not up and we have
556 *  a signal, then we need to force link up.
557 **/
558s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
559{
560	struct e1000_mac_info *mac = &hw->mac;
561	u32 rxcw;
562	u32 ctrl;
563	u32 status;
564	s32 ret_val;
565
566	ctrl = er32(CTRL);
567	status = er32(STATUS);
568	rxcw = er32(RXCW);
569
570	/*
571	 * If we don't have link (auto-negotiation failed or link partner
572	 * cannot auto-negotiate), and our link partner is not trying to
573	 * auto-negotiate with us (we are receiving idles or data),
574	 * we need to force link up. We also need to give auto-negotiation
575	 * time to complete.
576	 */
577	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
578	if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
579		if (!mac->autoneg_failed) {
580			mac->autoneg_failed = true;
581			return 0;
582		}
583		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
584
585		/* Disable auto-negotiation in the TXCW register */
586		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
587
588		/* Force link-up and also force full-duplex. */
589		ctrl = er32(CTRL);
590		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
591		ew32(CTRL, ctrl);
592
593		/* Configure Flow Control after forcing link up. */
594		ret_val = e1000e_config_fc_after_link_up(hw);
595		if (ret_val) {
596			e_dbg("Error configuring flow control\n");
597			return ret_val;
598		}
599	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
600		/*
601		 * If we are forcing link and we are receiving /C/ ordered
602		 * sets, re-enable auto-negotiation in the TXCW register
603		 * and disable forced link in the Device Control register
604		 * in an attempt to auto-negotiate with our link partner.
605		 */
606		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
607		ew32(TXCW, mac->txcw);
608		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
609
610		mac->serdes_has_link = true;
611	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
612		/*
613		 * If we force link for non-auto-negotiation switch, check
614		 * link status based on MAC synchronization for internal
615		 * serdes media type.
616		 */
617		/* SYNCH bit and IV bit are sticky. */
618		udelay(10);
619		rxcw = er32(RXCW);
620		if (rxcw & E1000_RXCW_SYNCH) {
621			if (!(rxcw & E1000_RXCW_IV)) {
622				mac->serdes_has_link = true;
623				e_dbg("SERDES: Link up - forced.\n");
624			}
625		} else {
626			mac->serdes_has_link = false;
627			e_dbg("SERDES: Link down - force failed.\n");
628		}
629	}
630
631	if (E1000_TXCW_ANE & er32(TXCW)) {
632		status = er32(STATUS);
633		if (status & E1000_STATUS_LU) {
634			/* SYNCH bit and IV bit are sticky, so reread rxcw.  */
635			udelay(10);
636			rxcw = er32(RXCW);
637			if (rxcw & E1000_RXCW_SYNCH) {
638				if (!(rxcw & E1000_RXCW_IV)) {
639					mac->serdes_has_link = true;
640					e_dbg("SERDES: Link up - autoneg completed successfully.\n");
641				} else {
642					mac->serdes_has_link = false;
643					e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
644				}
645			} else {
646				mac->serdes_has_link = false;
647				e_dbg("SERDES: Link down - no sync.\n");
648			}
649		} else {
650			mac->serdes_has_link = false;
651			e_dbg("SERDES: Link down - autoneg failed\n");
652		}
653	}
654
655	return 0;
656}
657
658/**
659 *  e1000_set_default_fc_generic - Set flow control default values
660 *  @hw: pointer to the HW structure
661 *
662 *  Read the EEPROM for the default values for flow control and store the
663 *  values.
664 **/
665static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
666{
667	s32 ret_val;
668	u16 nvm_data;
669
670	/*
671	 * Read and store word 0x0F of the EEPROM. This word contains bits
672	 * that determine the hardware's default PAUSE (flow control) mode,
673	 * a bit that determines whether the HW defaults to enabling or
674	 * disabling auto-negotiation, and the direction of the
675	 * SW defined pins. If there is no SW over-ride of the flow
676	 * control setting, then the variable hw->fc will
677	 * be initialized based on a value in the EEPROM.
678	 */
679	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
680
681	if (ret_val) {
682		e_dbg("NVM Read Error\n");
683		return ret_val;
684	}
685
686	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
687		hw->fc.requested_mode = e1000_fc_none;
688	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
689		hw->fc.requested_mode = e1000_fc_tx_pause;
690	else
691		hw->fc.requested_mode = e1000_fc_full;
692
693	return 0;
694}
695
696/**
697 *  e1000e_setup_link - Setup flow control and link settings
698 *  @hw: pointer to the HW structure
699 *
700 *  Determines which flow control settings to use, then configures flow
701 *  control.  Calls the appropriate media-specific link configuration
702 *  function.  Assuming the adapter has a valid link partner, a valid link
703 *  should be established.  Assumes the hardware has previously been reset
704 *  and the transmitter and receiver are not enabled.
705 **/
706s32 e1000e_setup_link(struct e1000_hw *hw)
707{
708	struct e1000_mac_info *mac = &hw->mac;
709	s32 ret_val;
710
711	/*
712	 * In the case of the phy reset being blocked, we already have a link.
713	 * We do not need to set it up again.
714	 */
715	if (e1000_check_reset_block(hw))
716		return 0;
717
718	/*
719	 * If requested flow control is set to default, set flow control
720	 * based on the EEPROM flow control settings.
721	 */
722	if (hw->fc.requested_mode == e1000_fc_default) {
723		ret_val = e1000_set_default_fc_generic(hw);
724		if (ret_val)
725			return ret_val;
726	}
727
728	/*
729	 * Save off the requested flow control mode for use later.  Depending
730	 * on the link partner's capabilities, we may or may not use this mode.
731	 */
732	hw->fc.current_mode = hw->fc.requested_mode;
733
734	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
735
736	/* Call the necessary media_type subroutine to configure the link. */
737	ret_val = mac->ops.setup_physical_interface(hw);
738	if (ret_val)
739		return ret_val;
740
741	/*
742	 * Initialize the flow control address, type, and PAUSE timer
743	 * registers to their default values.  This is done even if flow
744	 * control is disabled, because it does not hurt anything to
745	 * initialize these registers.
746	 */
747	e_dbg("Initializing the Flow Control address, type and timer regs\n");
748	ew32(FCT, FLOW_CONTROL_TYPE);
749	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
750	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
751
752	ew32(FCTTV, hw->fc.pause_time);
753
754	return e1000e_set_fc_watermarks(hw);
755}
756
757/**
758 *  e1000_commit_fc_settings_generic - Configure flow control
759 *  @hw: pointer to the HW structure
760 *
761 *  Write the flow control settings to the Transmit Config Word Register (TXCW)
762 *  base on the flow control settings in e1000_mac_info.
763 **/
764static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
765{
766	struct e1000_mac_info *mac = &hw->mac;
767	u32 txcw;
768
769	/*
770	 * Check for a software override of the flow control settings, and
771	 * setup the device accordingly.  If auto-negotiation is enabled, then
772	 * software will have to set the "PAUSE" bits to the correct value in
773	 * the Transmit Config Word Register (TXCW) and re-start auto-
774	 * negotiation.  However, if auto-negotiation is disabled, then
775	 * software will have to manually configure the two flow control enable
776	 * bits in the CTRL register.
777	 *
778	 * The possible values of the "fc" parameter are:
779	 *      0:  Flow control is completely disabled
780	 *      1:  Rx flow control is enabled (we can receive pause frames,
781	 *          but not send pause frames).
782	 *      2:  Tx flow control is enabled (we can send pause frames but we
783	 *          do not support receiving pause frames).
784	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
785	 */
786	switch (hw->fc.current_mode) {
787	case e1000_fc_none:
788		/* Flow control completely disabled by a software over-ride. */
789		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
790		break;
791	case e1000_fc_rx_pause:
792		/*
793		 * Rx Flow control is enabled and Tx Flow control is disabled
794		 * by a software over-ride. Since there really isn't a way to
795		 * advertise that we are capable of Rx Pause ONLY, we will
796		 * advertise that we support both symmetric and asymmetric Rx
797		 * PAUSE.  Later, we will disable the adapter's ability to send
798		 * PAUSE frames.
799		 */
800		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
801		break;
802	case e1000_fc_tx_pause:
803		/*
804		 * Tx Flow control is enabled, and Rx Flow control is disabled,
805		 * by a software over-ride.
806		 */
807		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
808		break;
809	case e1000_fc_full:
810		/*
811		 * Flow control (both Rx and Tx) is enabled by a software
812		 * over-ride.
813		 */
814		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
815		break;
816	default:
817		e_dbg("Flow control param set incorrectly\n");
818		return -E1000_ERR_CONFIG;
819		break;
820	}
821
822	ew32(TXCW, txcw);
823	mac->txcw = txcw;
824
825	return 0;
826}
827
828/**
829 *  e1000_poll_fiber_serdes_link_generic - Poll for link up
830 *  @hw: pointer to the HW structure
831 *
832 *  Polls for link up by reading the status register, if link fails to come
833 *  up with auto-negotiation, then the link is forced if a signal is detected.
834 **/
835static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
836{
837	struct e1000_mac_info *mac = &hw->mac;
838	u32 i, status;
839	s32 ret_val;
840
841	/*
842	 * If we have a signal (the cable is plugged in, or assumed true for
843	 * serdes media) then poll for a "Link-Up" indication in the Device
844	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
845	 * seconds (Auto-negotiation should complete in less than 500
846	 * milliseconds even if the other end is doing it in SW).
847	 */
848	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
849		usleep_range(10000, 20000);
850		status = er32(STATUS);
851		if (status & E1000_STATUS_LU)
852			break;
853	}
854	if (i == FIBER_LINK_UP_LIMIT) {
855		e_dbg("Never got a valid link from auto-neg!!!\n");
856		mac->autoneg_failed = true;
857		/*
858		 * AutoNeg failed to achieve a link, so we'll call
859		 * mac->check_for_link. This routine will force the
860		 * link up if we detect a signal. This will allow us to
861		 * communicate with non-autonegotiating link partners.
862		 */
863		ret_val = mac->ops.check_for_link(hw);
864		if (ret_val) {
865			e_dbg("Error while checking for link\n");
866			return ret_val;
867		}
868		mac->autoneg_failed = false;
869	} else {
870		mac->autoneg_failed = false;
871		e_dbg("Valid Link Found\n");
872	}
873
874	return 0;
875}
876
877/**
878 *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
879 *  @hw: pointer to the HW structure
880 *
881 *  Configures collision distance and flow control for fiber and serdes
882 *  links.  Upon successful setup, poll for link.
883 **/
884s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
885{
886	u32 ctrl;
887	s32 ret_val;
888
889	ctrl = er32(CTRL);
890
891	/* Take the link out of reset */
892	ctrl &= ~E1000_CTRL_LRST;
893
894	e1000e_config_collision_dist(hw);
895
896	ret_val = e1000_commit_fc_settings_generic(hw);
897	if (ret_val)
898		return ret_val;
899
900	/*
901	 * Since auto-negotiation is enabled, take the link out of reset (the
902	 * link will be in reset, because we previously reset the chip). This
903	 * will restart auto-negotiation.  If auto-negotiation is successful
904	 * then the link-up status bit will be set and the flow control enable
905	 * bits (RFCE and TFCE) will be set according to their negotiated value.
906	 */
907	e_dbg("Auto-negotiation enabled\n");
908
909	ew32(CTRL, ctrl);
910	e1e_flush();
911	usleep_range(1000, 2000);
912
913	/*
914	 * For these adapters, the SW definable pin 1 is set when the optics
915	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
916	 * indication.
917	 */
918	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
919	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
920		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
921	} else {
922		e_dbg("No signal detected\n");
923	}
924
925	return 0;
926}
927
928/**
929 *  e1000e_config_collision_dist - Configure collision distance
930 *  @hw: pointer to the HW structure
931 *
932 *  Configures the collision distance to the default value and is used
933 *  during link setup. Currently no func pointer exists and all
934 *  implementations are handled in the generic version of this function.
935 **/
936void e1000e_config_collision_dist(struct e1000_hw *hw)
937{
938	u32 tctl;
939
940	tctl = er32(TCTL);
941
942	tctl &= ~E1000_TCTL_COLD;
943	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
944
945	ew32(TCTL, tctl);
946	e1e_flush();
947}
948
949/**
950 *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
951 *  @hw: pointer to the HW structure
952 *
953 *  Sets the flow control high/low threshold (watermark) registers.  If
954 *  flow control XON frame transmission is enabled, then set XON frame
955 *  transmission as well.
956 **/
957s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
958{
959	u32 fcrtl = 0, fcrth = 0;
960
961	/*
962	 * Set the flow control receive threshold registers.  Normally,
963	 * these registers will be set to a default threshold that may be
964	 * adjusted later by the driver's runtime code.  However, if the
965	 * ability to transmit pause frames is not enabled, then these
966	 * registers will be set to 0.
967	 */
968	if (hw->fc.current_mode & e1000_fc_tx_pause) {
969		/*
970		 * We need to set up the Receive Threshold high and low water
971		 * marks as well as (optionally) enabling the transmission of
972		 * XON frames.
973		 */
974		fcrtl = hw->fc.low_water;
975		fcrtl |= E1000_FCRTL_XONE;
976		fcrth = hw->fc.high_water;
977	}
978	ew32(FCRTL, fcrtl);
979	ew32(FCRTH, fcrth);
980
981	return 0;
982}
983
984/**
985 *  e1000e_force_mac_fc - Force the MAC's flow control settings
986 *  @hw: pointer to the HW structure
987 *
988 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
989 *  device control register to reflect the adapter settings.  TFCE and RFCE
990 *  need to be explicitly set by software when a copper PHY is used because
991 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
992 *  also configure these bits when link is forced on a fiber connection.
993 **/
994s32 e1000e_force_mac_fc(struct e1000_hw *hw)
995{
996	u32 ctrl;
997
998	ctrl = er32(CTRL);
999
1000	/*
1001	 * Because we didn't get link via the internal auto-negotiation
1002	 * mechanism (we either forced link or we got link via PHY
1003	 * auto-neg), we have to manually enable/disable transmit an
1004	 * receive flow control.
1005	 *
1006	 * The "Case" statement below enables/disable flow control
1007	 * according to the "hw->fc.current_mode" parameter.
1008	 *
1009	 * The possible values of the "fc" parameter are:
1010	 *      0:  Flow control is completely disabled
1011	 *      1:  Rx flow control is enabled (we can receive pause
1012	 *          frames but not send pause frames).
1013	 *      2:  Tx flow control is enabled (we can send pause frames
1014	 *          frames but we do not receive pause frames).
1015	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
1016	 *  other:  No other values should be possible at this point.
1017	 */
1018	e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
1019
1020	switch (hw->fc.current_mode) {
1021	case e1000_fc_none:
1022		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1023		break;
1024	case e1000_fc_rx_pause:
1025		ctrl &= (~E1000_CTRL_TFCE);
1026		ctrl |= E1000_CTRL_RFCE;
1027		break;
1028	case e1000_fc_tx_pause:
1029		ctrl &= (~E1000_CTRL_RFCE);
1030		ctrl |= E1000_CTRL_TFCE;
1031		break;
1032	case e1000_fc_full:
1033		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1034		break;
1035	default:
1036		e_dbg("Flow control param set incorrectly\n");
1037		return -E1000_ERR_CONFIG;
1038	}
1039
1040	ew32(CTRL, ctrl);
1041
1042	return 0;
1043}
1044
1045/**
1046 *  e1000e_config_fc_after_link_up - Configures flow control after link
1047 *  @hw: pointer to the HW structure
1048 *
1049 *  Checks the status of auto-negotiation after link up to ensure that the
1050 *  speed and duplex were not forced.  If the link needed to be forced, then
1051 *  flow control needs to be forced also.  If auto-negotiation is enabled
1052 *  and did not fail, then we configure flow control based on our link
1053 *  partner.
1054 **/
1055s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1056{
1057	struct e1000_mac_info *mac = &hw->mac;
1058	s32 ret_val = 0;
1059	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1060	u16 speed, duplex;
1061
1062	/*
1063	 * Check for the case where we have fiber media and auto-neg failed
1064	 * so we had to force link.  In this case, we need to force the
1065	 * configuration of the MAC to match the "fc" parameter.
1066	 */
1067	if (mac->autoneg_failed) {
1068		if (hw->phy.media_type == e1000_media_type_fiber ||
1069		    hw->phy.media_type == e1000_media_type_internal_serdes)
1070			ret_val = e1000e_force_mac_fc(hw);
1071	} else {
1072		if (hw->phy.media_type == e1000_media_type_copper)
1073			ret_val = e1000e_force_mac_fc(hw);
1074	}
1075
1076	if (ret_val) {
1077		e_dbg("Error forcing flow control settings\n");
1078		return ret_val;
1079	}
1080
1081	/*
1082	 * Check for the case where we have copper media and auto-neg is
1083	 * enabled.  In this case, we need to check and see if Auto-Neg
1084	 * has completed, and if so, how the PHY and link partner has
1085	 * flow control configured.
1086	 */
1087	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1088		/*
1089		 * Read the MII Status Register and check to see if AutoNeg
1090		 * has completed.  We read this twice because this reg has
1091		 * some "sticky" (latched) bits.
1092		 */
1093		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1094		if (ret_val)
1095			return ret_val;
1096		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1097		if (ret_val)
1098			return ret_val;
1099
1100		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
1101			e_dbg("Copper PHY and Auto Neg has not completed.\n");
1102			return ret_val;
1103		}
1104
1105		/*
1106		 * The AutoNeg process has completed, so we now need to
1107		 * read both the Auto Negotiation Advertisement
1108		 * Register (Address 4) and the Auto_Negotiation Base
1109		 * Page Ability Register (Address 5) to determine how
1110		 * flow control was negotiated.
1111		 */
1112		ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
1113		if (ret_val)
1114			return ret_val;
1115		ret_val =
1116		    e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
1117		if (ret_val)
1118			return ret_val;
1119
1120		/*
1121		 * Two bits in the Auto Negotiation Advertisement Register
1122		 * (Address 4) and two bits in the Auto Negotiation Base
1123		 * Page Ability Register (Address 5) determine flow control
1124		 * for both the PHY and the link partner.  The following
1125		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1126		 * 1999, describes these PAUSE resolution bits and how flow
1127		 * control is determined based upon these settings.
1128		 * NOTE:  DC = Don't Care
1129		 *
1130		 *   LOCAL DEVICE  |   LINK PARTNER
1131		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1132		 *-------|---------|-------|---------|--------------------
1133		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1134		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1135		 *   0   |    1    |   1   |    0    | e1000_fc_none
1136		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1137		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1138		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1139		 *   1   |    1    |   0   |    0    | e1000_fc_none
1140		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1141		 *
1142		 * Are both PAUSE bits set to 1?  If so, this implies
1143		 * Symmetric Flow Control is enabled at both ends.  The
1144		 * ASM_DIR bits are irrelevant per the spec.
1145		 *
1146		 * For Symmetric Flow Control:
1147		 *
1148		 *   LOCAL DEVICE  |   LINK PARTNER
1149		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1150		 *-------|---------|-------|---------|--------------------
1151		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
1152		 *
1153		 */
1154		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1155		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1156			/*
1157			 * Now we need to check if the user selected Rx ONLY
1158			 * of pause frames.  In this case, we had to advertise
1159			 * FULL flow control because we could not advertise Rx
1160			 * ONLY. Hence, we must now check to see if we need to
1161			 * turn OFF the TRANSMISSION of PAUSE frames.
1162			 */
1163			if (hw->fc.requested_mode == e1000_fc_full) {
1164				hw->fc.current_mode = e1000_fc_full;
1165				e_dbg("Flow Control = FULL.\n");
1166			} else {
1167				hw->fc.current_mode = e1000_fc_rx_pause;
1168				e_dbg("Flow Control = Rx PAUSE frames only.\n");
1169			}
1170		}
1171		/*
1172		 * For receiving PAUSE frames ONLY.
1173		 *
1174		 *   LOCAL DEVICE  |   LINK PARTNER
1175		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1176		 *-------|---------|-------|---------|--------------------
1177		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1178		 */
1179		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1180			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1181			 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1182			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1183			hw->fc.current_mode = e1000_fc_tx_pause;
1184			e_dbg("Flow Control = Tx PAUSE frames only.\n");
1185		}
1186		/*
1187		 * For transmitting PAUSE frames ONLY.
1188		 *
1189		 *   LOCAL DEVICE  |   LINK PARTNER
1190		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1191		 *-------|---------|-------|---------|--------------------
1192		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1193		 */
1194		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1195			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1196			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1197			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1198			hw->fc.current_mode = e1000_fc_rx_pause;
1199			e_dbg("Flow Control = Rx PAUSE frames only.\n");
1200		} else {
1201			/*
1202			 * Per the IEEE spec, at this point flow control
1203			 * should be disabled.
1204			 */
1205			hw->fc.current_mode = e1000_fc_none;
1206			e_dbg("Flow Control = NONE.\n");
1207		}
1208
1209		/*
1210		 * Now we need to do one last check...  If we auto-
1211		 * negotiated to HALF DUPLEX, flow control should not be
1212		 * enabled per IEEE 802.3 spec.
1213		 */
1214		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1215		if (ret_val) {
1216			e_dbg("Error getting link speed and duplex\n");
1217			return ret_val;
1218		}
1219
1220		if (duplex == HALF_DUPLEX)
1221			hw->fc.current_mode = e1000_fc_none;
1222
1223		/*
1224		 * Now we call a subroutine to actually force the MAC
1225		 * controller to use the correct flow control settings.
1226		 */
1227		ret_val = e1000e_force_mac_fc(hw);
1228		if (ret_val) {
1229			e_dbg("Error forcing flow control settings\n");
1230			return ret_val;
1231		}
1232	}
1233
1234	return 0;
1235}
1236
1237/**
1238 *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1239 *  @hw: pointer to the HW structure
1240 *  @speed: stores the current speed
1241 *  @duplex: stores the current duplex
1242 *
1243 *  Read the status register for the current speed/duplex and store the current
1244 *  speed and duplex for copper connections.
1245 **/
1246s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1247				       u16 *duplex)
1248{
1249	u32 status;
1250
1251	status = er32(STATUS);
1252	if (status & E1000_STATUS_SPEED_1000)
1253		*speed = SPEED_1000;
1254	else if (status & E1000_STATUS_SPEED_100)
1255		*speed = SPEED_100;
1256	else
1257		*speed = SPEED_10;
1258
1259	if (status & E1000_STATUS_FD)
1260		*duplex = FULL_DUPLEX;
1261	else
1262		*duplex = HALF_DUPLEX;
1263
1264	e_dbg("%u Mbps, %s Duplex\n",
1265	      *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1266	      *duplex == FULL_DUPLEX ? "Full" : "Half");
1267
1268	return 0;
1269}
1270
1271/**
1272 *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1273 *  @hw: pointer to the HW structure
1274 *  @speed: stores the current speed
1275 *  @duplex: stores the current duplex
1276 *
1277 *  Sets the speed and duplex to gigabit full duplex (the only possible option)
1278 *  for fiber/serdes links.
1279 **/
1280s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed,
1281					     u16 *duplex)
1282{
1283	*speed = SPEED_1000;
1284	*duplex = FULL_DUPLEX;
1285
1286	return 0;
1287}
1288
1289/**
1290 *  e1000e_get_hw_semaphore - Acquire hardware semaphore
1291 *  @hw: pointer to the HW structure
1292 *
1293 *  Acquire the HW semaphore to access the PHY or NVM
1294 **/
1295s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1296{
1297	u32 swsm;
1298	s32 timeout = hw->nvm.word_size + 1;
1299	s32 i = 0;
1300
1301	/* Get the SW semaphore */
1302	while (i < timeout) {
1303		swsm = er32(SWSM);
1304		if (!(swsm & E1000_SWSM_SMBI))
1305			break;
1306
1307		udelay(50);
1308		i++;
1309	}
1310
1311	if (i == timeout) {
1312		e_dbg("Driver can't access device - SMBI bit is set.\n");
1313		return -E1000_ERR_NVM;
1314	}
1315
1316	/* Get the FW semaphore. */
1317	for (i = 0; i < timeout; i++) {
1318		swsm = er32(SWSM);
1319		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1320
1321		/* Semaphore acquired if bit latched */
1322		if (er32(SWSM) & E1000_SWSM_SWESMBI)
1323			break;
1324
1325		udelay(50);
1326	}
1327
1328	if (i == timeout) {
1329		/* Release semaphores */
1330		e1000e_put_hw_semaphore(hw);
1331		e_dbg("Driver can't access the NVM\n");
1332		return -E1000_ERR_NVM;
1333	}
1334
1335	return 0;
1336}
1337
1338/**
1339 *  e1000e_put_hw_semaphore - Release hardware semaphore
1340 *  @hw: pointer to the HW structure
1341 *
1342 *  Release hardware semaphore used to access the PHY or NVM
1343 **/
1344void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1345{
1346	u32 swsm;
1347
1348	swsm = er32(SWSM);
1349	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1350	ew32(SWSM, swsm);
1351}
1352
1353/**
1354 *  e1000e_get_auto_rd_done - Check for auto read completion
1355 *  @hw: pointer to the HW structure
1356 *
1357 *  Check EEPROM for Auto Read done bit.
1358 **/
1359s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1360{
1361	s32 i = 0;
1362
1363	while (i < AUTO_READ_DONE_TIMEOUT) {
1364		if (er32(EECD) & E1000_EECD_AUTO_RD)
1365			break;
1366		usleep_range(1000, 2000);
1367		i++;
1368	}
1369
1370	if (i == AUTO_READ_DONE_TIMEOUT) {
1371		e_dbg("Auto read by HW from NVM has not completed.\n");
1372		return -E1000_ERR_RESET;
1373	}
1374
1375	return 0;
1376}
1377
1378/**
1379 *  e1000e_valid_led_default - Verify a valid default LED config
1380 *  @hw: pointer to the HW structure
1381 *  @data: pointer to the NVM (EEPROM)
1382 *
1383 *  Read the EEPROM for the current default LED configuration.  If the
1384 *  LED configuration is not valid, set to a valid LED configuration.
1385 **/
1386s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1387{
1388	s32 ret_val;
1389
1390	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1391	if (ret_val) {
1392		e_dbg("NVM Read Error\n");
1393		return ret_val;
1394	}
1395
1396	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1397		*data = ID_LED_DEFAULT;
1398
1399	return 0;
1400}
1401
1402/**
1403 *  e1000e_id_led_init -
1404 *  @hw: pointer to the HW structure
1405 *
1406 **/
1407s32 e1000e_id_led_init(struct e1000_hw *hw)
1408{
1409	struct e1000_mac_info *mac = &hw->mac;
1410	s32 ret_val;
1411	const u32 ledctl_mask = 0x000000FF;
1412	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1413	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1414	u16 data, i, temp;
1415	const u16 led_mask = 0x0F;
1416
1417	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1418	if (ret_val)
1419		return ret_val;
1420
1421	mac->ledctl_default = er32(LEDCTL);
1422	mac->ledctl_mode1 = mac->ledctl_default;
1423	mac->ledctl_mode2 = mac->ledctl_default;
1424
1425	for (i = 0; i < 4; i++) {
1426		temp = (data >> (i << 2)) & led_mask;
1427		switch (temp) {
1428		case ID_LED_ON1_DEF2:
1429		case ID_LED_ON1_ON2:
1430		case ID_LED_ON1_OFF2:
1431			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1432			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1433			break;
1434		case ID_LED_OFF1_DEF2:
1435		case ID_LED_OFF1_ON2:
1436		case ID_LED_OFF1_OFF2:
1437			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1438			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1439			break;
1440		default:
1441			/* Do nothing */
1442			break;
1443		}
1444		switch (temp) {
1445		case ID_LED_DEF1_ON2:
1446		case ID_LED_ON1_ON2:
1447		case ID_LED_OFF1_ON2:
1448			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1449			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1450			break;
1451		case ID_LED_DEF1_OFF2:
1452		case ID_LED_ON1_OFF2:
1453		case ID_LED_OFF1_OFF2:
1454			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1455			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1456			break;
1457		default:
1458			/* Do nothing */
1459			break;
1460		}
1461	}
1462
1463	return 0;
1464}
1465
1466/**
1467 *  e1000e_setup_led_generic - Configures SW controllable LED
1468 *  @hw: pointer to the HW structure
1469 *
1470 *  This prepares the SW controllable LED for use and saves the current state
1471 *  of the LED so it can be later restored.
1472 **/
1473s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1474{
1475	u32 ledctl;
1476
1477	if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1478		return -E1000_ERR_CONFIG;
1479
1480	if (hw->phy.media_type == e1000_media_type_fiber) {
1481		ledctl = er32(LEDCTL);
1482		hw->mac.ledctl_default = ledctl;
1483		/* Turn off LED0 */
1484		ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1485			    E1000_LEDCTL_LED0_MODE_MASK);
1486		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1487			   E1000_LEDCTL_LED0_MODE_SHIFT);
1488		ew32(LEDCTL, ledctl);
1489	} else if (hw->phy.media_type == e1000_media_type_copper) {
1490		ew32(LEDCTL, hw->mac.ledctl_mode1);
1491	}
1492
1493	return 0;
1494}
1495
1496/**
1497 *  e1000e_cleanup_led_generic - Set LED config to default operation
1498 *  @hw: pointer to the HW structure
1499 *
1500 *  Remove the current LED configuration and set the LED configuration
1501 *  to the default value, saved from the EEPROM.
1502 **/
1503s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1504{
1505	ew32(LEDCTL, hw->mac.ledctl_default);
1506	return 0;
1507}
1508
1509/**
1510 *  e1000e_blink_led_generic - Blink LED
1511 *  @hw: pointer to the HW structure
1512 *
1513 *  Blink the LEDs which are set to be on.
1514 **/
1515s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1516{
1517	u32 ledctl_blink = 0;
1518	u32 i;
1519
1520	if (hw->phy.media_type == e1000_media_type_fiber) {
1521		/* always blink LED0 for PCI-E fiber */
1522		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1523		    (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1524	} else {
1525		/*
1526		 * set the blink bit for each LED that's "on" (0x0E)
1527		 * in ledctl_mode2
1528		 */
1529		ledctl_blink = hw->mac.ledctl_mode2;
1530		for (i = 0; i < 4; i++)
1531			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1532			    E1000_LEDCTL_MODE_LED_ON)
1533				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1534						 (i * 8));
1535	}
1536
1537	ew32(LEDCTL, ledctl_blink);
1538
1539	return 0;
1540}
1541
1542/**
1543 *  e1000e_led_on_generic - Turn LED on
1544 *  @hw: pointer to the HW structure
1545 *
1546 *  Turn LED on.
1547 **/
1548s32 e1000e_led_on_generic(struct e1000_hw *hw)
1549{
1550	u32 ctrl;
1551
1552	switch (hw->phy.media_type) {
1553	case e1000_media_type_fiber:
1554		ctrl = er32(CTRL);
1555		ctrl &= ~E1000_CTRL_SWDPIN0;
1556		ctrl |= E1000_CTRL_SWDPIO0;
1557		ew32(CTRL, ctrl);
1558		break;
1559	case e1000_media_type_copper:
1560		ew32(LEDCTL, hw->mac.ledctl_mode2);
1561		break;
1562	default:
1563		break;
1564	}
1565
1566	return 0;
1567}
1568
1569/**
1570 *  e1000e_led_off_generic - Turn LED off
1571 *  @hw: pointer to the HW structure
1572 *
1573 *  Turn LED off.
1574 **/
1575s32 e1000e_led_off_generic(struct e1000_hw *hw)
1576{
1577	u32 ctrl;
1578
1579	switch (hw->phy.media_type) {
1580	case e1000_media_type_fiber:
1581		ctrl = er32(CTRL);
1582		ctrl |= E1000_CTRL_SWDPIN0;
1583		ctrl |= E1000_CTRL_SWDPIO0;
1584		ew32(CTRL, ctrl);
1585		break;
1586	case e1000_media_type_copper:
1587		ew32(LEDCTL, hw->mac.ledctl_mode1);
1588		break;
1589	default:
1590		break;
1591	}
1592
1593	return 0;
1594}
1595
1596/**
1597 *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1598 *  @hw: pointer to the HW structure
1599 *  @no_snoop: bitmap of snoop events
1600 *
1601 *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1602 **/
1603void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1604{
1605	u32 gcr;
1606
1607	if (no_snoop) {
1608		gcr = er32(GCR);
1609		gcr &= ~(PCIE_NO_SNOOP_ALL);
1610		gcr |= no_snoop;
1611		ew32(GCR, gcr);
1612	}
1613}
1614
1615/**
1616 *  e1000e_disable_pcie_master - Disables PCI-express master access
1617 *  @hw: pointer to the HW structure
1618 *
1619 *  Returns 0 if successful, else returns -10
1620 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1621 *  the master requests to be disabled.
1622 *
1623 *  Disables PCI-Express master access and verifies there are no pending
1624 *  requests.
1625 **/
1626s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1627{
1628	u32 ctrl;
1629	s32 timeout = MASTER_DISABLE_TIMEOUT;
1630
1631	ctrl = er32(CTRL);
1632	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1633	ew32(CTRL, ctrl);
1634
1635	while (timeout) {
1636		if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1637			break;
1638		udelay(100);
1639		timeout--;
1640	}
1641
1642	if (!timeout) {
1643		e_dbg("Master requests are pending.\n");
1644		return -E1000_ERR_MASTER_REQUESTS_PENDING;
1645	}
1646
1647	return 0;
1648}
1649
1650/**
1651 *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1652 *  @hw: pointer to the HW structure
1653 *
1654 *  Reset the Adaptive Interframe Spacing throttle to default values.
1655 **/
1656void e1000e_reset_adaptive(struct e1000_hw *hw)
1657{
1658	struct e1000_mac_info *mac = &hw->mac;
1659
1660	if (!mac->adaptive_ifs) {
1661		e_dbg("Not in Adaptive IFS mode!\n");
1662		return;
1663	}
1664
1665	mac->current_ifs_val = 0;
1666	mac->ifs_min_val = IFS_MIN;
1667	mac->ifs_max_val = IFS_MAX;
1668	mac->ifs_step_size = IFS_STEP;
1669	mac->ifs_ratio = IFS_RATIO;
1670
1671	mac->in_ifs_mode = false;
1672	ew32(AIT, 0);
1673}
1674
1675/**
1676 *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
1677 *  @hw: pointer to the HW structure
1678 *
1679 *  Update the Adaptive Interframe Spacing Throttle value based on the
1680 *  time between transmitted packets and time between collisions.
1681 **/
1682void e1000e_update_adaptive(struct e1000_hw *hw)
1683{
1684	struct e1000_mac_info *mac = &hw->mac;
1685
1686	if (!mac->adaptive_ifs) {
1687		e_dbg("Not in Adaptive IFS mode!\n");
1688		return;
1689	}
1690
1691	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1692		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1693			mac->in_ifs_mode = true;
1694			if (mac->current_ifs_val < mac->ifs_max_val) {
1695				if (!mac->current_ifs_val)
1696					mac->current_ifs_val = mac->ifs_min_val;
1697				else
1698					mac->current_ifs_val +=
1699					    mac->ifs_step_size;
1700				ew32(AIT, mac->current_ifs_val);
1701			}
1702		}
1703	} else {
1704		if (mac->in_ifs_mode &&
1705		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1706			mac->current_ifs_val = 0;
1707			mac->in_ifs_mode = false;
1708			ew32(AIT, 0);
1709		}
1710	}
1711}
1712