mac.c revision b20caa80e8c9b0180defb42678209dc0d6c229d2
1/*******************************************************************************
2
3  Intel PRO/1000 Linux driver
4  Copyright(c) 1999 - 2012 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  Linux NICS <linux.nics@intel.com>
24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
30
31/**
32 *  e1000e_get_bus_info_pcie - Get PCIe bus information
33 *  @hw: pointer to the HW structure
34 *
35 *  Determines and stores the system bus information for a particular
36 *  network interface.  The following bus information is determined and stored:
37 *  bus speed, bus width, type (PCIe), and PCIe function.
38 **/
39s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
40{
41	struct e1000_mac_info *mac = &hw->mac;
42	struct e1000_bus_info *bus = &hw->bus;
43	struct e1000_adapter *adapter = hw->adapter;
44	u16 pcie_link_status, cap_offset;
45
46	cap_offset = adapter->pdev->pcie_cap;
47	if (!cap_offset) {
48		bus->width = e1000_bus_width_unknown;
49	} else {
50		pci_read_config_word(adapter->pdev,
51				     cap_offset + PCIE_LINK_STATUS,
52				     &pcie_link_status);
53		bus->width = (enum e1000_bus_width)((pcie_link_status &
54						     PCIE_LINK_WIDTH_MASK) >>
55						    PCIE_LINK_WIDTH_SHIFT);
56	}
57
58	mac->ops.set_lan_id(hw);
59
60	return 0;
61}
62
63/**
64 *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
65 *
66 *  @hw: pointer to the HW structure
67 *
68 *  Determines the LAN function id by reading memory-mapped registers
69 *  and swaps the port value if requested.
70 **/
71void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
72{
73	struct e1000_bus_info *bus = &hw->bus;
74	u32 reg;
75
76	/*
77	 * The status register reports the correct function number
78	 * for the device regardless of function swap state.
79	 */
80	reg = er32(STATUS);
81	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
82}
83
84/**
85 *  e1000_set_lan_id_single_port - Set LAN id for a single port device
86 *  @hw: pointer to the HW structure
87 *
88 *  Sets the LAN function id to zero for a single port device.
89 **/
90void e1000_set_lan_id_single_port(struct e1000_hw *hw)
91{
92	struct e1000_bus_info *bus = &hw->bus;
93
94	bus->func = 0;
95}
96
97/**
98 *  e1000_clear_vfta_generic - Clear VLAN filter table
99 *  @hw: pointer to the HW structure
100 *
101 *  Clears the register array which contains the VLAN filter table by
102 *  setting all the values to 0.
103 **/
104void e1000_clear_vfta_generic(struct e1000_hw *hw)
105{
106	u32 offset;
107
108	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
109		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
110		e1e_flush();
111	}
112}
113
114/**
115 *  e1000_write_vfta_generic - Write value to VLAN filter table
116 *  @hw: pointer to the HW structure
117 *  @offset: register offset in VLAN filter table
118 *  @value: register value written to VLAN filter table
119 *
120 *  Writes value at the given offset in the register array which stores
121 *  the VLAN filter table.
122 **/
123void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
124{
125	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
126	e1e_flush();
127}
128
129/**
130 *  e1000e_init_rx_addrs - Initialize receive address's
131 *  @hw: pointer to the HW structure
132 *  @rar_count: receive address registers
133 *
134 *  Setup the receive address registers by setting the base receive address
135 *  register to the devices MAC address and clearing all the other receive
136 *  address registers to 0.
137 **/
138void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
139{
140	u32 i;
141	u8 mac_addr[ETH_ALEN] = { 0 };
142
143	/* Setup the receive address */
144	e_dbg("Programming MAC Address into RAR[0]\n");
145
146	e1000e_rar_set(hw, hw->mac.addr, 0);
147
148	/* Zero out the other (rar_entry_count - 1) receive addresses */
149	e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
150	for (i = 1; i < rar_count; i++)
151		e1000e_rar_set(hw, mac_addr, i);
152}
153
154/**
155 *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
156 *  @hw: pointer to the HW structure
157 *
158 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
159 *  can be setup by pre-boot software and must be treated like a permanent
160 *  address and must override the actual permanent MAC address. If an
161 *  alternate MAC address is found it is programmed into RAR0, replacing
162 *  the permanent address that was installed into RAR0 by the Si on reset.
163 *  This function will return SUCCESS unless it encounters an error while
164 *  reading the EEPROM.
165 **/
166s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
167{
168	u32 i;
169	s32 ret_val = 0;
170	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
171	u8 alt_mac_addr[ETH_ALEN];
172
173	ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
174	if (ret_val)
175		return ret_val;
176
177	/* not supported on 82573 */
178	if (hw->mac.type == e1000_82573)
179		return 0;
180
181	ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
182				 &nvm_alt_mac_addr_offset);
183	if (ret_val) {
184		e_dbg("NVM Read Error\n");
185		return ret_val;
186	}
187
188	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
189	    (nvm_alt_mac_addr_offset == 0x0000))
190		/* There is no Alternate MAC Address */
191		return 0;
192
193	if (hw->bus.func == E1000_FUNC_1)
194		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
195	for (i = 0; i < ETH_ALEN; i += 2) {
196		offset = nvm_alt_mac_addr_offset + (i >> 1);
197		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
198		if (ret_val) {
199			e_dbg("NVM Read Error\n");
200			return ret_val;
201		}
202
203		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
204		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
205	}
206
207	/* if multicast bit is set, the alternate address will not be used */
208	if (is_multicast_ether_addr(alt_mac_addr)) {
209		e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
210		return 0;
211	}
212
213	/*
214	 * We have a valid alternate MAC address, and we want to treat it the
215	 * same as the normal permanent MAC address stored by the HW into the
216	 * RAR. Do this by mapping this address into RAR0.
217	 */
218	e1000e_rar_set(hw, alt_mac_addr, 0);
219
220	return 0;
221}
222
223/**
224 *  e1000e_rar_set - Set receive address register
225 *  @hw: pointer to the HW structure
226 *  @addr: pointer to the receive address
227 *  @index: receive address array register
228 *
229 *  Sets the receive address array register at index to the address passed
230 *  in by addr.
231 **/
232void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
233{
234	u32 rar_low, rar_high;
235
236	/*
237	 * HW expects these in little endian so we reverse the byte order
238	 * from network order (big endian) to little endian
239	 */
240	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
241		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
242
243	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
244
245	/* If MAC address zero, no need to set the AV bit */
246	if (rar_low || rar_high)
247		rar_high |= E1000_RAH_AV;
248
249	/*
250	 * Some bridges will combine consecutive 32-bit writes into
251	 * a single burst write, which will malfunction on some parts.
252	 * The flushes avoid this.
253	 */
254	ew32(RAL(index), rar_low);
255	e1e_flush();
256	ew32(RAH(index), rar_high);
257	e1e_flush();
258}
259
260/**
261 *  e1000_hash_mc_addr - Generate a multicast hash value
262 *  @hw: pointer to the HW structure
263 *  @mc_addr: pointer to a multicast address
264 *
265 *  Generates a multicast address hash value which is used to determine
266 *  the multicast filter table array address and new table value.
267 **/
268static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
269{
270	u32 hash_value, hash_mask;
271	u8 bit_shift = 0;
272
273	/* Register count multiplied by bits per register */
274	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
275
276	/*
277	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
278	 * where 0xFF would still fall within the hash mask.
279	 */
280	while (hash_mask >> bit_shift != 0xFF)
281		bit_shift++;
282
283	/*
284	 * The portion of the address that is used for the hash table
285	 * is determined by the mc_filter_type setting.
286	 * The algorithm is such that there is a total of 8 bits of shifting.
287	 * The bit_shift for a mc_filter_type of 0 represents the number of
288	 * left-shifts where the MSB of mc_addr[5] would still fall within
289	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
290	 * of 8 bits of shifting, then mc_addr[4] will shift right the
291	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
292	 * cases are a variation of this algorithm...essentially raising the
293	 * number of bits to shift mc_addr[5] left, while still keeping the
294	 * 8-bit shifting total.
295	 *
296	 * For example, given the following Destination MAC Address and an
297	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
298	 * we can see that the bit_shift for case 0 is 4.  These are the hash
299	 * values resulting from each mc_filter_type...
300	 * [0] [1] [2] [3] [4] [5]
301	 * 01  AA  00  12  34  56
302	 * LSB           MSB
303	 *
304	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
305	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
306	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
307	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
308	 */
309	switch (hw->mac.mc_filter_type) {
310	default:
311	case 0:
312		break;
313	case 1:
314		bit_shift += 1;
315		break;
316	case 2:
317		bit_shift += 2;
318		break;
319	case 3:
320		bit_shift += 4;
321		break;
322	}
323
324	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
325				   (((u16)mc_addr[5]) << bit_shift)));
326
327	return hash_value;
328}
329
330/**
331 *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
332 *  @hw: pointer to the HW structure
333 *  @mc_addr_list: array of multicast addresses to program
334 *  @mc_addr_count: number of multicast addresses to program
335 *
336 *  Updates entire Multicast Table Array.
337 *  The caller must have a packed mc_addr_list of multicast addresses.
338 **/
339void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
340					u8 *mc_addr_list, u32 mc_addr_count)
341{
342	u32 hash_value, hash_bit, hash_reg;
343	int i;
344
345	/* clear mta_shadow */
346	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
347
348	/* update mta_shadow from mc_addr_list */
349	for (i = 0; (u32)i < mc_addr_count; i++) {
350		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
351
352		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
353		hash_bit = hash_value & 0x1F;
354
355		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
356		mc_addr_list += (ETH_ALEN);
357	}
358
359	/* replace the entire MTA table */
360	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
361		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
362	e1e_flush();
363}
364
365/**
366 *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
367 *  @hw: pointer to the HW structure
368 *
369 *  Clears the base hardware counters by reading the counter registers.
370 **/
371void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
372{
373	er32(CRCERRS);
374	er32(SYMERRS);
375	er32(MPC);
376	er32(SCC);
377	er32(ECOL);
378	er32(MCC);
379	er32(LATECOL);
380	er32(COLC);
381	er32(DC);
382	er32(SEC);
383	er32(RLEC);
384	er32(XONRXC);
385	er32(XONTXC);
386	er32(XOFFRXC);
387	er32(XOFFTXC);
388	er32(FCRUC);
389	er32(GPRC);
390	er32(BPRC);
391	er32(MPRC);
392	er32(GPTC);
393	er32(GORCL);
394	er32(GORCH);
395	er32(GOTCL);
396	er32(GOTCH);
397	er32(RNBC);
398	er32(RUC);
399	er32(RFC);
400	er32(ROC);
401	er32(RJC);
402	er32(TORL);
403	er32(TORH);
404	er32(TOTL);
405	er32(TOTH);
406	er32(TPR);
407	er32(TPT);
408	er32(MPTC);
409	er32(BPTC);
410}
411
412/**
413 *  e1000e_check_for_copper_link - Check for link (Copper)
414 *  @hw: pointer to the HW structure
415 *
416 *  Checks to see of the link status of the hardware has changed.  If a
417 *  change in link status has been detected, then we read the PHY registers
418 *  to get the current speed/duplex if link exists.
419 **/
420s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
421{
422	struct e1000_mac_info *mac = &hw->mac;
423	s32 ret_val;
424	bool link;
425
426	/*
427	 * We only want to go out to the PHY registers to see if Auto-Neg
428	 * has completed and/or if our link status has changed.  The
429	 * get_link_status flag is set upon receiving a Link Status
430	 * Change or Rx Sequence Error interrupt.
431	 */
432	if (!mac->get_link_status)
433		return 0;
434
435	/*
436	 * First we want to see if the MII Status Register reports
437	 * link.  If so, then we want to get the current speed/duplex
438	 * of the PHY.
439	 */
440	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
441	if (ret_val)
442		return ret_val;
443
444	if (!link)
445		return 0;	/* No link detected */
446
447	mac->get_link_status = false;
448
449	/*
450	 * Check if there was DownShift, must be checked
451	 * immediately after link-up
452	 */
453	e1000e_check_downshift(hw);
454
455	/*
456	 * If we are forcing speed/duplex, then we simply return since
457	 * we have already determined whether we have link or not.
458	 */
459	if (!mac->autoneg)
460		return -E1000_ERR_CONFIG;
461
462	/*
463	 * Auto-Neg is enabled.  Auto Speed Detection takes care
464	 * of MAC speed/duplex configuration.  So we only need to
465	 * configure Collision Distance in the MAC.
466	 */
467	mac->ops.config_collision_dist(hw);
468
469	/*
470	 * Configure Flow Control now that Auto-Neg has completed.
471	 * First, we need to restore the desired flow control
472	 * settings because we may have had to re-autoneg with a
473	 * different link partner.
474	 */
475	ret_val = e1000e_config_fc_after_link_up(hw);
476	if (ret_val)
477		e_dbg("Error configuring flow control\n");
478
479	return ret_val;
480}
481
482/**
483 *  e1000e_check_for_fiber_link - Check for link (Fiber)
484 *  @hw: pointer to the HW structure
485 *
486 *  Checks for link up on the hardware.  If link is not up and we have
487 *  a signal, then we need to force link up.
488 **/
489s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
490{
491	struct e1000_mac_info *mac = &hw->mac;
492	u32 rxcw;
493	u32 ctrl;
494	u32 status;
495	s32 ret_val;
496
497	ctrl = er32(CTRL);
498	status = er32(STATUS);
499	rxcw = er32(RXCW);
500
501	/*
502	 * If we don't have link (auto-negotiation failed or link partner
503	 * cannot auto-negotiate), the cable is plugged in (we have signal),
504	 * and our link partner is not trying to auto-negotiate with us (we
505	 * are receiving idles or data), we need to force link up. We also
506	 * need to give auto-negotiation time to complete, in case the cable
507	 * was just plugged in. The autoneg_failed flag does this.
508	 */
509	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
510	if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
511	    !(rxcw & E1000_RXCW_C)) {
512		if (!mac->autoneg_failed) {
513			mac->autoneg_failed = true;
514			return 0;
515		}
516		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
517
518		/* Disable auto-negotiation in the TXCW register */
519		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
520
521		/* Force link-up and also force full-duplex. */
522		ctrl = er32(CTRL);
523		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
524		ew32(CTRL, ctrl);
525
526		/* Configure Flow Control after forcing link up. */
527		ret_val = e1000e_config_fc_after_link_up(hw);
528		if (ret_val) {
529			e_dbg("Error configuring flow control\n");
530			return ret_val;
531		}
532	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
533		/*
534		 * If we are forcing link and we are receiving /C/ ordered
535		 * sets, re-enable auto-negotiation in the TXCW register
536		 * and disable forced link in the Device Control register
537		 * in an attempt to auto-negotiate with our link partner.
538		 */
539		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
540		ew32(TXCW, mac->txcw);
541		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
542
543		mac->serdes_has_link = true;
544	}
545
546	return 0;
547}
548
549/**
550 *  e1000e_check_for_serdes_link - Check for link (Serdes)
551 *  @hw: pointer to the HW structure
552 *
553 *  Checks for link up on the hardware.  If link is not up and we have
554 *  a signal, then we need to force link up.
555 **/
556s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
557{
558	struct e1000_mac_info *mac = &hw->mac;
559	u32 rxcw;
560	u32 ctrl;
561	u32 status;
562	s32 ret_val;
563
564	ctrl = er32(CTRL);
565	status = er32(STATUS);
566	rxcw = er32(RXCW);
567
568	/*
569	 * If we don't have link (auto-negotiation failed or link partner
570	 * cannot auto-negotiate), and our link partner is not trying to
571	 * auto-negotiate with us (we are receiving idles or data),
572	 * we need to force link up. We also need to give auto-negotiation
573	 * time to complete.
574	 */
575	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
576	if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
577		if (!mac->autoneg_failed) {
578			mac->autoneg_failed = true;
579			return 0;
580		}
581		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
582
583		/* Disable auto-negotiation in the TXCW register */
584		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
585
586		/* Force link-up and also force full-duplex. */
587		ctrl = er32(CTRL);
588		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
589		ew32(CTRL, ctrl);
590
591		/* Configure Flow Control after forcing link up. */
592		ret_val = e1000e_config_fc_after_link_up(hw);
593		if (ret_val) {
594			e_dbg("Error configuring flow control\n");
595			return ret_val;
596		}
597	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
598		/*
599		 * If we are forcing link and we are receiving /C/ ordered
600		 * sets, re-enable auto-negotiation in the TXCW register
601		 * and disable forced link in the Device Control register
602		 * in an attempt to auto-negotiate with our link partner.
603		 */
604		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
605		ew32(TXCW, mac->txcw);
606		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
607
608		mac->serdes_has_link = true;
609	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
610		/*
611		 * If we force link for non-auto-negotiation switch, check
612		 * link status based on MAC synchronization for internal
613		 * serdes media type.
614		 */
615		/* SYNCH bit and IV bit are sticky. */
616		udelay(10);
617		rxcw = er32(RXCW);
618		if (rxcw & E1000_RXCW_SYNCH) {
619			if (!(rxcw & E1000_RXCW_IV)) {
620				mac->serdes_has_link = true;
621				e_dbg("SERDES: Link up - forced.\n");
622			}
623		} else {
624			mac->serdes_has_link = false;
625			e_dbg("SERDES: Link down - force failed.\n");
626		}
627	}
628
629	if (E1000_TXCW_ANE & er32(TXCW)) {
630		status = er32(STATUS);
631		if (status & E1000_STATUS_LU) {
632			/* SYNCH bit and IV bit are sticky, so reread rxcw.  */
633			udelay(10);
634			rxcw = er32(RXCW);
635			if (rxcw & E1000_RXCW_SYNCH) {
636				if (!(rxcw & E1000_RXCW_IV)) {
637					mac->serdes_has_link = true;
638					e_dbg("SERDES: Link up - autoneg completed successfully.\n");
639				} else {
640					mac->serdes_has_link = false;
641					e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
642				}
643			} else {
644				mac->serdes_has_link = false;
645				e_dbg("SERDES: Link down - no sync.\n");
646			}
647		} else {
648			mac->serdes_has_link = false;
649			e_dbg("SERDES: Link down - autoneg failed\n");
650		}
651	}
652
653	return 0;
654}
655
656/**
657 *  e1000_set_default_fc_generic - Set flow control default values
658 *  @hw: pointer to the HW structure
659 *
660 *  Read the EEPROM for the default values for flow control and store the
661 *  values.
662 **/
663static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
664{
665	s32 ret_val;
666	u16 nvm_data;
667
668	/*
669	 * Read and store word 0x0F of the EEPROM. This word contains bits
670	 * that determine the hardware's default PAUSE (flow control) mode,
671	 * a bit that determines whether the HW defaults to enabling or
672	 * disabling auto-negotiation, and the direction of the
673	 * SW defined pins. If there is no SW over-ride of the flow
674	 * control setting, then the variable hw->fc will
675	 * be initialized based on a value in the EEPROM.
676	 */
677	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
678
679	if (ret_val) {
680		e_dbg("NVM Read Error\n");
681		return ret_val;
682	}
683
684	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
685		hw->fc.requested_mode = e1000_fc_none;
686	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
687		hw->fc.requested_mode = e1000_fc_tx_pause;
688	else
689		hw->fc.requested_mode = e1000_fc_full;
690
691	return 0;
692}
693
694/**
695 *  e1000e_setup_link_generic - Setup flow control and link settings
696 *  @hw: pointer to the HW structure
697 *
698 *  Determines which flow control settings to use, then configures flow
699 *  control.  Calls the appropriate media-specific link configuration
700 *  function.  Assuming the adapter has a valid link partner, a valid link
701 *  should be established.  Assumes the hardware has previously been reset
702 *  and the transmitter and receiver are not enabled.
703 **/
704s32 e1000e_setup_link_generic(struct e1000_hw *hw)
705{
706	struct e1000_mac_info *mac = &hw->mac;
707	s32 ret_val;
708
709	/*
710	 * In the case of the phy reset being blocked, we already have a link.
711	 * We do not need to set it up again.
712	 */
713	if (hw->phy.ops.check_reset_block(hw))
714		return 0;
715
716	/*
717	 * If requested flow control is set to default, set flow control
718	 * based on the EEPROM flow control settings.
719	 */
720	if (hw->fc.requested_mode == e1000_fc_default) {
721		ret_val = e1000_set_default_fc_generic(hw);
722		if (ret_val)
723			return ret_val;
724	}
725
726	/*
727	 * Save off the requested flow control mode for use later.  Depending
728	 * on the link partner's capabilities, we may or may not use this mode.
729	 */
730	hw->fc.current_mode = hw->fc.requested_mode;
731
732	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
733
734	/* Call the necessary media_type subroutine to configure the link. */
735	ret_val = mac->ops.setup_physical_interface(hw);
736	if (ret_val)
737		return ret_val;
738
739	/*
740	 * Initialize the flow control address, type, and PAUSE timer
741	 * registers to their default values.  This is done even if flow
742	 * control is disabled, because it does not hurt anything to
743	 * initialize these registers.
744	 */
745	e_dbg("Initializing the Flow Control address, type and timer regs\n");
746	ew32(FCT, FLOW_CONTROL_TYPE);
747	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
748	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
749
750	ew32(FCTTV, hw->fc.pause_time);
751
752	return e1000e_set_fc_watermarks(hw);
753}
754
755/**
756 *  e1000_commit_fc_settings_generic - Configure flow control
757 *  @hw: pointer to the HW structure
758 *
759 *  Write the flow control settings to the Transmit Config Word Register (TXCW)
760 *  base on the flow control settings in e1000_mac_info.
761 **/
762static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
763{
764	struct e1000_mac_info *mac = &hw->mac;
765	u32 txcw;
766
767	/*
768	 * Check for a software override of the flow control settings, and
769	 * setup the device accordingly.  If auto-negotiation is enabled, then
770	 * software will have to set the "PAUSE" bits to the correct value in
771	 * the Transmit Config Word Register (TXCW) and re-start auto-
772	 * negotiation.  However, if auto-negotiation is disabled, then
773	 * software will have to manually configure the two flow control enable
774	 * bits in the CTRL register.
775	 *
776	 * The possible values of the "fc" parameter are:
777	 *      0:  Flow control is completely disabled
778	 *      1:  Rx flow control is enabled (we can receive pause frames,
779	 *          but not send pause frames).
780	 *      2:  Tx flow control is enabled (we can send pause frames but we
781	 *          do not support receiving pause frames).
782	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
783	 */
784	switch (hw->fc.current_mode) {
785	case e1000_fc_none:
786		/* Flow control completely disabled by a software over-ride. */
787		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
788		break;
789	case e1000_fc_rx_pause:
790		/*
791		 * Rx Flow control is enabled and Tx Flow control is disabled
792		 * by a software over-ride. Since there really isn't a way to
793		 * advertise that we are capable of Rx Pause ONLY, we will
794		 * advertise that we support both symmetric and asymmetric Rx
795		 * PAUSE.  Later, we will disable the adapter's ability to send
796		 * PAUSE frames.
797		 */
798		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
799		break;
800	case e1000_fc_tx_pause:
801		/*
802		 * Tx Flow control is enabled, and Rx Flow control is disabled,
803		 * by a software over-ride.
804		 */
805		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
806		break;
807	case e1000_fc_full:
808		/*
809		 * Flow control (both Rx and Tx) is enabled by a software
810		 * over-ride.
811		 */
812		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
813		break;
814	default:
815		e_dbg("Flow control param set incorrectly\n");
816		return -E1000_ERR_CONFIG;
817		break;
818	}
819
820	ew32(TXCW, txcw);
821	mac->txcw = txcw;
822
823	return 0;
824}
825
826/**
827 *  e1000_poll_fiber_serdes_link_generic - Poll for link up
828 *  @hw: pointer to the HW structure
829 *
830 *  Polls for link up by reading the status register, if link fails to come
831 *  up with auto-negotiation, then the link is forced if a signal is detected.
832 **/
833static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
834{
835	struct e1000_mac_info *mac = &hw->mac;
836	u32 i, status;
837	s32 ret_val;
838
839	/*
840	 * If we have a signal (the cable is plugged in, or assumed true for
841	 * serdes media) then poll for a "Link-Up" indication in the Device
842	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
843	 * seconds (Auto-negotiation should complete in less than 500
844	 * milliseconds even if the other end is doing it in SW).
845	 */
846	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
847		usleep_range(10000, 20000);
848		status = er32(STATUS);
849		if (status & E1000_STATUS_LU)
850			break;
851	}
852	if (i == FIBER_LINK_UP_LIMIT) {
853		e_dbg("Never got a valid link from auto-neg!!!\n");
854		mac->autoneg_failed = true;
855		/*
856		 * AutoNeg failed to achieve a link, so we'll call
857		 * mac->check_for_link. This routine will force the
858		 * link up if we detect a signal. This will allow us to
859		 * communicate with non-autonegotiating link partners.
860		 */
861		ret_val = mac->ops.check_for_link(hw);
862		if (ret_val) {
863			e_dbg("Error while checking for link\n");
864			return ret_val;
865		}
866		mac->autoneg_failed = false;
867	} else {
868		mac->autoneg_failed = false;
869		e_dbg("Valid Link Found\n");
870	}
871
872	return 0;
873}
874
875/**
876 *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
877 *  @hw: pointer to the HW structure
878 *
879 *  Configures collision distance and flow control for fiber and serdes
880 *  links.  Upon successful setup, poll for link.
881 **/
882s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
883{
884	u32 ctrl;
885	s32 ret_val;
886
887	ctrl = er32(CTRL);
888
889	/* Take the link out of reset */
890	ctrl &= ~E1000_CTRL_LRST;
891
892	hw->mac.ops.config_collision_dist(hw);
893
894	ret_val = e1000_commit_fc_settings_generic(hw);
895	if (ret_val)
896		return ret_val;
897
898	/*
899	 * Since auto-negotiation is enabled, take the link out of reset (the
900	 * link will be in reset, because we previously reset the chip). This
901	 * will restart auto-negotiation.  If auto-negotiation is successful
902	 * then the link-up status bit will be set and the flow control enable
903	 * bits (RFCE and TFCE) will be set according to their negotiated value.
904	 */
905	e_dbg("Auto-negotiation enabled\n");
906
907	ew32(CTRL, ctrl);
908	e1e_flush();
909	usleep_range(1000, 2000);
910
911	/*
912	 * For these adapters, the SW definable pin 1 is set when the optics
913	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
914	 * indication.
915	 */
916	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
917	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
918		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
919	} else {
920		e_dbg("No signal detected\n");
921	}
922
923	return ret_val;
924}
925
926/**
927 *  e1000e_config_collision_dist_generic - Configure collision distance
928 *  @hw: pointer to the HW structure
929 *
930 *  Configures the collision distance to the default value and is used
931 *  during link setup.
932 **/
933void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
934{
935	u32 tctl;
936
937	tctl = er32(TCTL);
938
939	tctl &= ~E1000_TCTL_COLD;
940	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
941
942	ew32(TCTL, tctl);
943	e1e_flush();
944}
945
946/**
947 *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
948 *  @hw: pointer to the HW structure
949 *
950 *  Sets the flow control high/low threshold (watermark) registers.  If
951 *  flow control XON frame transmission is enabled, then set XON frame
952 *  transmission as well.
953 **/
954s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
955{
956	u32 fcrtl = 0, fcrth = 0;
957
958	/*
959	 * Set the flow control receive threshold registers.  Normally,
960	 * these registers will be set to a default threshold that may be
961	 * adjusted later by the driver's runtime code.  However, if the
962	 * ability to transmit pause frames is not enabled, then these
963	 * registers will be set to 0.
964	 */
965	if (hw->fc.current_mode & e1000_fc_tx_pause) {
966		/*
967		 * We need to set up the Receive Threshold high and low water
968		 * marks as well as (optionally) enabling the transmission of
969		 * XON frames.
970		 */
971		fcrtl = hw->fc.low_water;
972		if (hw->fc.send_xon)
973			fcrtl |= E1000_FCRTL_XONE;
974
975		fcrth = hw->fc.high_water;
976	}
977	ew32(FCRTL, fcrtl);
978	ew32(FCRTH, fcrth);
979
980	return 0;
981}
982
983/**
984 *  e1000e_force_mac_fc - Force the MAC's flow control settings
985 *  @hw: pointer to the HW structure
986 *
987 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
988 *  device control register to reflect the adapter settings.  TFCE and RFCE
989 *  need to be explicitly set by software when a copper PHY is used because
990 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
991 *  also configure these bits when link is forced on a fiber connection.
992 **/
993s32 e1000e_force_mac_fc(struct e1000_hw *hw)
994{
995	u32 ctrl;
996
997	ctrl = er32(CTRL);
998
999	/*
1000	 * Because we didn't get link via the internal auto-negotiation
1001	 * mechanism (we either forced link or we got link via PHY
1002	 * auto-neg), we have to manually enable/disable transmit an
1003	 * receive flow control.
1004	 *
1005	 * The "Case" statement below enables/disable flow control
1006	 * according to the "hw->fc.current_mode" parameter.
1007	 *
1008	 * The possible values of the "fc" parameter are:
1009	 *      0:  Flow control is completely disabled
1010	 *      1:  Rx flow control is enabled (we can receive pause
1011	 *          frames but not send pause frames).
1012	 *      2:  Tx flow control is enabled (we can send pause frames
1013	 *          frames but we do not receive pause frames).
1014	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
1015	 *  other:  No other values should be possible at this point.
1016	 */
1017	e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
1018
1019	switch (hw->fc.current_mode) {
1020	case e1000_fc_none:
1021		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1022		break;
1023	case e1000_fc_rx_pause:
1024		ctrl &= (~E1000_CTRL_TFCE);
1025		ctrl |= E1000_CTRL_RFCE;
1026		break;
1027	case e1000_fc_tx_pause:
1028		ctrl &= (~E1000_CTRL_RFCE);
1029		ctrl |= E1000_CTRL_TFCE;
1030		break;
1031	case e1000_fc_full:
1032		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1033		break;
1034	default:
1035		e_dbg("Flow control param set incorrectly\n");
1036		return -E1000_ERR_CONFIG;
1037	}
1038
1039	ew32(CTRL, ctrl);
1040
1041	return 0;
1042}
1043
1044/**
1045 *  e1000e_config_fc_after_link_up - Configures flow control after link
1046 *  @hw: pointer to the HW structure
1047 *
1048 *  Checks the status of auto-negotiation after link up to ensure that the
1049 *  speed and duplex were not forced.  If the link needed to be forced, then
1050 *  flow control needs to be forced also.  If auto-negotiation is enabled
1051 *  and did not fail, then we configure flow control based on our link
1052 *  partner.
1053 **/
1054s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1055{
1056	struct e1000_mac_info *mac = &hw->mac;
1057	s32 ret_val = 0;
1058	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1059	u16 speed, duplex;
1060
1061	/*
1062	 * Check for the case where we have fiber media and auto-neg failed
1063	 * so we had to force link.  In this case, we need to force the
1064	 * configuration of the MAC to match the "fc" parameter.
1065	 */
1066	if (mac->autoneg_failed) {
1067		if (hw->phy.media_type == e1000_media_type_fiber ||
1068		    hw->phy.media_type == e1000_media_type_internal_serdes)
1069			ret_val = e1000e_force_mac_fc(hw);
1070	} else {
1071		if (hw->phy.media_type == e1000_media_type_copper)
1072			ret_val = e1000e_force_mac_fc(hw);
1073	}
1074
1075	if (ret_val) {
1076		e_dbg("Error forcing flow control settings\n");
1077		return ret_val;
1078	}
1079
1080	/*
1081	 * Check for the case where we have copper media and auto-neg is
1082	 * enabled.  In this case, we need to check and see if Auto-Neg
1083	 * has completed, and if so, how the PHY and link partner has
1084	 * flow control configured.
1085	 */
1086	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1087		/*
1088		 * Read the MII Status Register and check to see if AutoNeg
1089		 * has completed.  We read this twice because this reg has
1090		 * some "sticky" (latched) bits.
1091		 */
1092		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1093		if (ret_val)
1094			return ret_val;
1095		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1096		if (ret_val)
1097			return ret_val;
1098
1099		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
1100			e_dbg("Copper PHY and Auto Neg has not completed.\n");
1101			return ret_val;
1102		}
1103
1104		/*
1105		 * The AutoNeg process has completed, so we now need to
1106		 * read both the Auto Negotiation Advertisement
1107		 * Register (Address 4) and the Auto_Negotiation Base
1108		 * Page Ability Register (Address 5) to determine how
1109		 * flow control was negotiated.
1110		 */
1111		ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
1112		if (ret_val)
1113			return ret_val;
1114		ret_val =
1115		    e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
1116		if (ret_val)
1117			return ret_val;
1118
1119		/*
1120		 * Two bits in the Auto Negotiation Advertisement Register
1121		 * (Address 4) and two bits in the Auto Negotiation Base
1122		 * Page Ability Register (Address 5) determine flow control
1123		 * for both the PHY and the link partner.  The following
1124		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1125		 * 1999, describes these PAUSE resolution bits and how flow
1126		 * control is determined based upon these settings.
1127		 * NOTE:  DC = Don't Care
1128		 *
1129		 *   LOCAL DEVICE  |   LINK PARTNER
1130		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1131		 *-------|---------|-------|---------|--------------------
1132		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1133		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1134		 *   0   |    1    |   1   |    0    | e1000_fc_none
1135		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1136		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1137		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1138		 *   1   |    1    |   0   |    0    | e1000_fc_none
1139		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1140		 *
1141		 * Are both PAUSE bits set to 1?  If so, this implies
1142		 * Symmetric Flow Control is enabled at both ends.  The
1143		 * ASM_DIR bits are irrelevant per the spec.
1144		 *
1145		 * For Symmetric Flow Control:
1146		 *
1147		 *   LOCAL DEVICE  |   LINK PARTNER
1148		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1149		 *-------|---------|-------|---------|--------------------
1150		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
1151		 *
1152		 */
1153		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1154		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1155			/*
1156			 * Now we need to check if the user selected Rx ONLY
1157			 * of pause frames.  In this case, we had to advertise
1158			 * FULL flow control because we could not advertise Rx
1159			 * ONLY. Hence, we must now check to see if we need to
1160			 * turn OFF the TRANSMISSION of PAUSE frames.
1161			 */
1162			if (hw->fc.requested_mode == e1000_fc_full) {
1163				hw->fc.current_mode = e1000_fc_full;
1164				e_dbg("Flow Control = FULL.\n");
1165			} else {
1166				hw->fc.current_mode = e1000_fc_rx_pause;
1167				e_dbg("Flow Control = Rx PAUSE frames only.\n");
1168			}
1169		}
1170		/*
1171		 * For receiving PAUSE frames ONLY.
1172		 *
1173		 *   LOCAL DEVICE  |   LINK PARTNER
1174		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1175		 *-------|---------|-------|---------|--------------------
1176		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1177		 */
1178		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1179			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1180			 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1181			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1182			hw->fc.current_mode = e1000_fc_tx_pause;
1183			e_dbg("Flow Control = Tx PAUSE frames only.\n");
1184		}
1185		/*
1186		 * For transmitting PAUSE frames ONLY.
1187		 *
1188		 *   LOCAL DEVICE  |   LINK PARTNER
1189		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1190		 *-------|---------|-------|---------|--------------------
1191		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1192		 */
1193		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1194			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1195			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1196			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1197			hw->fc.current_mode = e1000_fc_rx_pause;
1198			e_dbg("Flow Control = Rx PAUSE frames only.\n");
1199		} else {
1200			/*
1201			 * Per the IEEE spec, at this point flow control
1202			 * should be disabled.
1203			 */
1204			hw->fc.current_mode = e1000_fc_none;
1205			e_dbg("Flow Control = NONE.\n");
1206		}
1207
1208		/*
1209		 * Now we need to do one last check...  If we auto-
1210		 * negotiated to HALF DUPLEX, flow control should not be
1211		 * enabled per IEEE 802.3 spec.
1212		 */
1213		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1214		if (ret_val) {
1215			e_dbg("Error getting link speed and duplex\n");
1216			return ret_val;
1217		}
1218
1219		if (duplex == HALF_DUPLEX)
1220			hw->fc.current_mode = e1000_fc_none;
1221
1222		/*
1223		 * Now we call a subroutine to actually force the MAC
1224		 * controller to use the correct flow control settings.
1225		 */
1226		ret_val = e1000e_force_mac_fc(hw);
1227		if (ret_val) {
1228			e_dbg("Error forcing flow control settings\n");
1229			return ret_val;
1230		}
1231	}
1232
1233	return 0;
1234}
1235
1236/**
1237 *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1238 *  @hw: pointer to the HW structure
1239 *  @speed: stores the current speed
1240 *  @duplex: stores the current duplex
1241 *
1242 *  Read the status register for the current speed/duplex and store the current
1243 *  speed and duplex for copper connections.
1244 **/
1245s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1246				       u16 *duplex)
1247{
1248	u32 status;
1249
1250	status = er32(STATUS);
1251	if (status & E1000_STATUS_SPEED_1000)
1252		*speed = SPEED_1000;
1253	else if (status & E1000_STATUS_SPEED_100)
1254		*speed = SPEED_100;
1255	else
1256		*speed = SPEED_10;
1257
1258	if (status & E1000_STATUS_FD)
1259		*duplex = FULL_DUPLEX;
1260	else
1261		*duplex = HALF_DUPLEX;
1262
1263	e_dbg("%u Mbps, %s Duplex\n",
1264	      *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1265	      *duplex == FULL_DUPLEX ? "Full" : "Half");
1266
1267	return 0;
1268}
1269
1270/**
1271 *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1272 *  @hw: pointer to the HW structure
1273 *  @speed: stores the current speed
1274 *  @duplex: stores the current duplex
1275 *
1276 *  Sets the speed and duplex to gigabit full duplex (the only possible option)
1277 *  for fiber/serdes links.
1278 **/
1279s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed,
1280					     u16 *duplex)
1281{
1282	*speed = SPEED_1000;
1283	*duplex = FULL_DUPLEX;
1284
1285	return 0;
1286}
1287
1288/**
1289 *  e1000e_get_hw_semaphore - Acquire hardware semaphore
1290 *  @hw: pointer to the HW structure
1291 *
1292 *  Acquire the HW semaphore to access the PHY or NVM
1293 **/
1294s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1295{
1296	u32 swsm;
1297	s32 timeout = hw->nvm.word_size + 1;
1298	s32 i = 0;
1299
1300	/* Get the SW semaphore */
1301	while (i < timeout) {
1302		swsm = er32(SWSM);
1303		if (!(swsm & E1000_SWSM_SMBI))
1304			break;
1305
1306		udelay(50);
1307		i++;
1308	}
1309
1310	if (i == timeout) {
1311		e_dbg("Driver can't access device - SMBI bit is set.\n");
1312		return -E1000_ERR_NVM;
1313	}
1314
1315	/* Get the FW semaphore. */
1316	for (i = 0; i < timeout; i++) {
1317		swsm = er32(SWSM);
1318		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1319
1320		/* Semaphore acquired if bit latched */
1321		if (er32(SWSM) & E1000_SWSM_SWESMBI)
1322			break;
1323
1324		udelay(50);
1325	}
1326
1327	if (i == timeout) {
1328		/* Release semaphores */
1329		e1000e_put_hw_semaphore(hw);
1330		e_dbg("Driver can't access the NVM\n");
1331		return -E1000_ERR_NVM;
1332	}
1333
1334	return 0;
1335}
1336
1337/**
1338 *  e1000e_put_hw_semaphore - Release hardware semaphore
1339 *  @hw: pointer to the HW structure
1340 *
1341 *  Release hardware semaphore used to access the PHY or NVM
1342 **/
1343void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1344{
1345	u32 swsm;
1346
1347	swsm = er32(SWSM);
1348	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1349	ew32(SWSM, swsm);
1350}
1351
1352/**
1353 *  e1000e_get_auto_rd_done - Check for auto read completion
1354 *  @hw: pointer to the HW structure
1355 *
1356 *  Check EEPROM for Auto Read done bit.
1357 **/
1358s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1359{
1360	s32 i = 0;
1361
1362	while (i < AUTO_READ_DONE_TIMEOUT) {
1363		if (er32(EECD) & E1000_EECD_AUTO_RD)
1364			break;
1365		usleep_range(1000, 2000);
1366		i++;
1367	}
1368
1369	if (i == AUTO_READ_DONE_TIMEOUT) {
1370		e_dbg("Auto read by HW from NVM has not completed.\n");
1371		return -E1000_ERR_RESET;
1372	}
1373
1374	return 0;
1375}
1376
1377/**
1378 *  e1000e_valid_led_default - Verify a valid default LED config
1379 *  @hw: pointer to the HW structure
1380 *  @data: pointer to the NVM (EEPROM)
1381 *
1382 *  Read the EEPROM for the current default LED configuration.  If the
1383 *  LED configuration is not valid, set to a valid LED configuration.
1384 **/
1385s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1386{
1387	s32 ret_val;
1388
1389	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1390	if (ret_val) {
1391		e_dbg("NVM Read Error\n");
1392		return ret_val;
1393	}
1394
1395	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1396		*data = ID_LED_DEFAULT;
1397
1398	return 0;
1399}
1400
1401/**
1402 *  e1000e_id_led_init_generic -
1403 *  @hw: pointer to the HW structure
1404 *
1405 **/
1406s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
1407{
1408	struct e1000_mac_info *mac = &hw->mac;
1409	s32 ret_val;
1410	const u32 ledctl_mask = 0x000000FF;
1411	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1412	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1413	u16 data, i, temp;
1414	const u16 led_mask = 0x0F;
1415
1416	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1417	if (ret_val)
1418		return ret_val;
1419
1420	mac->ledctl_default = er32(LEDCTL);
1421	mac->ledctl_mode1 = mac->ledctl_default;
1422	mac->ledctl_mode2 = mac->ledctl_default;
1423
1424	for (i = 0; i < 4; i++) {
1425		temp = (data >> (i << 2)) & led_mask;
1426		switch (temp) {
1427		case ID_LED_ON1_DEF2:
1428		case ID_LED_ON1_ON2:
1429		case ID_LED_ON1_OFF2:
1430			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1431			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1432			break;
1433		case ID_LED_OFF1_DEF2:
1434		case ID_LED_OFF1_ON2:
1435		case ID_LED_OFF1_OFF2:
1436			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1437			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1438			break;
1439		default:
1440			/* Do nothing */
1441			break;
1442		}
1443		switch (temp) {
1444		case ID_LED_DEF1_ON2:
1445		case ID_LED_ON1_ON2:
1446		case ID_LED_OFF1_ON2:
1447			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1448			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1449			break;
1450		case ID_LED_DEF1_OFF2:
1451		case ID_LED_ON1_OFF2:
1452		case ID_LED_OFF1_OFF2:
1453			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1454			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1455			break;
1456		default:
1457			/* Do nothing */
1458			break;
1459		}
1460	}
1461
1462	return 0;
1463}
1464
1465/**
1466 *  e1000e_setup_led_generic - Configures SW controllable LED
1467 *  @hw: pointer to the HW structure
1468 *
1469 *  This prepares the SW controllable LED for use and saves the current state
1470 *  of the LED so it can be later restored.
1471 **/
1472s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1473{
1474	u32 ledctl;
1475
1476	if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1477		return -E1000_ERR_CONFIG;
1478
1479	if (hw->phy.media_type == e1000_media_type_fiber) {
1480		ledctl = er32(LEDCTL);
1481		hw->mac.ledctl_default = ledctl;
1482		/* Turn off LED0 */
1483		ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1484			    E1000_LEDCTL_LED0_MODE_MASK);
1485		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1486			   E1000_LEDCTL_LED0_MODE_SHIFT);
1487		ew32(LEDCTL, ledctl);
1488	} else if (hw->phy.media_type == e1000_media_type_copper) {
1489		ew32(LEDCTL, hw->mac.ledctl_mode1);
1490	}
1491
1492	return 0;
1493}
1494
1495/**
1496 *  e1000e_cleanup_led_generic - Set LED config to default operation
1497 *  @hw: pointer to the HW structure
1498 *
1499 *  Remove the current LED configuration and set the LED configuration
1500 *  to the default value, saved from the EEPROM.
1501 **/
1502s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1503{
1504	ew32(LEDCTL, hw->mac.ledctl_default);
1505	return 0;
1506}
1507
1508/**
1509 *  e1000e_blink_led_generic - Blink LED
1510 *  @hw: pointer to the HW structure
1511 *
1512 *  Blink the LEDs which are set to be on.
1513 **/
1514s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1515{
1516	u32 ledctl_blink = 0;
1517	u32 i;
1518
1519	if (hw->phy.media_type == e1000_media_type_fiber) {
1520		/* always blink LED0 for PCI-E fiber */
1521		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1522		    (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1523	} else {
1524		/*
1525		 * set the blink bit for each LED that's "on" (0x0E)
1526		 * in ledctl_mode2
1527		 */
1528		ledctl_blink = hw->mac.ledctl_mode2;
1529		for (i = 0; i < 4; i++)
1530			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1531			    E1000_LEDCTL_MODE_LED_ON)
1532				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1533						 (i * 8));
1534	}
1535
1536	ew32(LEDCTL, ledctl_blink);
1537
1538	return 0;
1539}
1540
1541/**
1542 *  e1000e_led_on_generic - Turn LED on
1543 *  @hw: pointer to the HW structure
1544 *
1545 *  Turn LED on.
1546 **/
1547s32 e1000e_led_on_generic(struct e1000_hw *hw)
1548{
1549	u32 ctrl;
1550
1551	switch (hw->phy.media_type) {
1552	case e1000_media_type_fiber:
1553		ctrl = er32(CTRL);
1554		ctrl &= ~E1000_CTRL_SWDPIN0;
1555		ctrl |= E1000_CTRL_SWDPIO0;
1556		ew32(CTRL, ctrl);
1557		break;
1558	case e1000_media_type_copper:
1559		ew32(LEDCTL, hw->mac.ledctl_mode2);
1560		break;
1561	default:
1562		break;
1563	}
1564
1565	return 0;
1566}
1567
1568/**
1569 *  e1000e_led_off_generic - Turn LED off
1570 *  @hw: pointer to the HW structure
1571 *
1572 *  Turn LED off.
1573 **/
1574s32 e1000e_led_off_generic(struct e1000_hw *hw)
1575{
1576	u32 ctrl;
1577
1578	switch (hw->phy.media_type) {
1579	case e1000_media_type_fiber:
1580		ctrl = er32(CTRL);
1581		ctrl |= E1000_CTRL_SWDPIN0;
1582		ctrl |= E1000_CTRL_SWDPIO0;
1583		ew32(CTRL, ctrl);
1584		break;
1585	case e1000_media_type_copper:
1586		ew32(LEDCTL, hw->mac.ledctl_mode1);
1587		break;
1588	default:
1589		break;
1590	}
1591
1592	return 0;
1593}
1594
1595/**
1596 *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1597 *  @hw: pointer to the HW structure
1598 *  @no_snoop: bitmap of snoop events
1599 *
1600 *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1601 **/
1602void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1603{
1604	u32 gcr;
1605
1606	if (no_snoop) {
1607		gcr = er32(GCR);
1608		gcr &= ~(PCIE_NO_SNOOP_ALL);
1609		gcr |= no_snoop;
1610		ew32(GCR, gcr);
1611	}
1612}
1613
1614/**
1615 *  e1000e_disable_pcie_master - Disables PCI-express master access
1616 *  @hw: pointer to the HW structure
1617 *
1618 *  Returns 0 if successful, else returns -10
1619 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1620 *  the master requests to be disabled.
1621 *
1622 *  Disables PCI-Express master access and verifies there are no pending
1623 *  requests.
1624 **/
1625s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1626{
1627	u32 ctrl;
1628	s32 timeout = MASTER_DISABLE_TIMEOUT;
1629
1630	ctrl = er32(CTRL);
1631	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1632	ew32(CTRL, ctrl);
1633
1634	while (timeout) {
1635		if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1636			break;
1637		udelay(100);
1638		timeout--;
1639	}
1640
1641	if (!timeout) {
1642		e_dbg("Master requests are pending.\n");
1643		return -E1000_ERR_MASTER_REQUESTS_PENDING;
1644	}
1645
1646	return 0;
1647}
1648
1649/**
1650 *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1651 *  @hw: pointer to the HW structure
1652 *
1653 *  Reset the Adaptive Interframe Spacing throttle to default values.
1654 **/
1655void e1000e_reset_adaptive(struct e1000_hw *hw)
1656{
1657	struct e1000_mac_info *mac = &hw->mac;
1658
1659	if (!mac->adaptive_ifs) {
1660		e_dbg("Not in Adaptive IFS mode!\n");
1661		return;
1662	}
1663
1664	mac->current_ifs_val = 0;
1665	mac->ifs_min_val = IFS_MIN;
1666	mac->ifs_max_val = IFS_MAX;
1667	mac->ifs_step_size = IFS_STEP;
1668	mac->ifs_ratio = IFS_RATIO;
1669
1670	mac->in_ifs_mode = false;
1671	ew32(AIT, 0);
1672}
1673
1674/**
1675 *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
1676 *  @hw: pointer to the HW structure
1677 *
1678 *  Update the Adaptive Interframe Spacing Throttle value based on the
1679 *  time between transmitted packets and time between collisions.
1680 **/
1681void e1000e_update_adaptive(struct e1000_hw *hw)
1682{
1683	struct e1000_mac_info *mac = &hw->mac;
1684
1685	if (!mac->adaptive_ifs) {
1686		e_dbg("Not in Adaptive IFS mode!\n");
1687		return;
1688	}
1689
1690	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1691		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1692			mac->in_ifs_mode = true;
1693			if (mac->current_ifs_val < mac->ifs_max_val) {
1694				if (!mac->current_ifs_val)
1695					mac->current_ifs_val = mac->ifs_min_val;
1696				else
1697					mac->current_ifs_val +=
1698					    mac->ifs_step_size;
1699				ew32(AIT, mac->current_ifs_val);
1700			}
1701		}
1702	} else {
1703		if (mac->in_ifs_mode &&
1704		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1705			mac->current_ifs_val = 0;
1706			mac->in_ifs_mode = false;
1707			ew32(AIT, 0);
1708		}
1709	}
1710}
1711