e1000_82575.c revision 6cb7674bf2bc05c6219e33115ec76b7b401cd082
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2013 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* e1000_82575
29 * e1000_82576
30 */
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/types.h>
35#include <linux/if_ether.h>
36#include <linux/i2c.h>
37
38#include "e1000_mac.h"
39#include "e1000_82575.h"
40#include "e1000_i210.h"
41
42static s32  igb_get_invariants_82575(struct e1000_hw *);
43static s32  igb_acquire_phy_82575(struct e1000_hw *);
44static void igb_release_phy_82575(struct e1000_hw *);
45static s32  igb_acquire_nvm_82575(struct e1000_hw *);
46static void igb_release_nvm_82575(struct e1000_hw *);
47static s32  igb_check_for_link_82575(struct e1000_hw *);
48static s32  igb_get_cfg_done_82575(struct e1000_hw *);
49static s32  igb_init_hw_82575(struct e1000_hw *);
50static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
51static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
52static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
53static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
54static s32  igb_reset_hw_82575(struct e1000_hw *);
55static s32  igb_reset_hw_82580(struct e1000_hw *);
56static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
57static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
58static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
59static s32  igb_setup_copper_link_82575(struct e1000_hw *);
60static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
61static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
62static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
63static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
64static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
65						 u16 *);
66static s32  igb_get_phy_id_82575(struct e1000_hw *);
67static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
68static bool igb_sgmii_active_82575(struct e1000_hw *);
69static s32  igb_reset_init_script_82575(struct e1000_hw *);
70static s32  igb_read_mac_addr_82575(struct e1000_hw *);
71static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
72static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
73static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
74static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
75static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
76static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
77static const u16 e1000_82580_rxpbs_table[] =
78	{ 36, 72, 144, 1, 2, 4, 8, 16,
79	  35, 70, 140 };
80#define E1000_82580_RXPBS_TABLE_SIZE \
81	(sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
82
83/**
84 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
85 *  @hw: pointer to the HW structure
86 *
87 *  Called to determine if the I2C pins are being used for I2C or as an
88 *  external MDIO interface since the two options are mutually exclusive.
89 **/
90static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
91{
92	u32 reg = 0;
93	bool ext_mdio = false;
94
95	switch (hw->mac.type) {
96	case e1000_82575:
97	case e1000_82576:
98		reg = rd32(E1000_MDIC);
99		ext_mdio = !!(reg & E1000_MDIC_DEST);
100		break;
101	case e1000_82580:
102	case e1000_i350:
103	case e1000_i354:
104	case e1000_i210:
105	case e1000_i211:
106		reg = rd32(E1000_MDICNFG);
107		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
108		break;
109	default:
110		break;
111	}
112	return ext_mdio;
113}
114
115/**
116 *  igb_init_phy_params_82575 - Init PHY func ptrs.
117 *  @hw: pointer to the HW structure
118 **/
119static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
120{
121	struct e1000_phy_info *phy = &hw->phy;
122	s32 ret_val = 0;
123	u32 ctrl_ext;
124
125	if (hw->phy.media_type != e1000_media_type_copper) {
126		phy->type = e1000_phy_none;
127		goto out;
128	}
129
130	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
131	phy->reset_delay_us	= 100;
132
133	ctrl_ext = rd32(E1000_CTRL_EXT);
134
135	if (igb_sgmii_active_82575(hw)) {
136		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
137		ctrl_ext |= E1000_CTRL_I2C_ENA;
138	} else {
139		phy->ops.reset = igb_phy_hw_reset;
140		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
141	}
142
143	wr32(E1000_CTRL_EXT, ctrl_ext);
144	igb_reset_mdicnfg_82580(hw);
145
146	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
147		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
148		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
149	} else {
150		switch (hw->mac.type) {
151		case e1000_82580:
152		case e1000_i350:
153		case e1000_i354:
154			phy->ops.read_reg = igb_read_phy_reg_82580;
155			phy->ops.write_reg = igb_write_phy_reg_82580;
156			break;
157		case e1000_i210:
158		case e1000_i211:
159			phy->ops.read_reg = igb_read_phy_reg_gs40g;
160			phy->ops.write_reg = igb_write_phy_reg_gs40g;
161			break;
162		default:
163			phy->ops.read_reg = igb_read_phy_reg_igp;
164			phy->ops.write_reg = igb_write_phy_reg_igp;
165		}
166	}
167
168	/* set lan id */
169	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
170			E1000_STATUS_FUNC_SHIFT;
171
172	/* Set phy->phy_addr and phy->id. */
173	ret_val = igb_get_phy_id_82575(hw);
174	if (ret_val)
175		return ret_val;
176
177	/* Verify phy id and set remaining function pointers */
178	switch (phy->id) {
179	case M88E1545_E_PHY_ID:
180	case I347AT4_E_PHY_ID:
181	case M88E1112_E_PHY_ID:
182	case M88E1111_I_PHY_ID:
183		phy->type		= e1000_phy_m88;
184		phy->ops.check_polarity	= igb_check_polarity_m88;
185		phy->ops.get_phy_info	= igb_get_phy_info_m88;
186		if (phy->id != M88E1111_I_PHY_ID)
187			phy->ops.get_cable_length =
188					 igb_get_cable_length_m88_gen2;
189		else
190			phy->ops.get_cable_length = igb_get_cable_length_m88;
191		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
192		break;
193	case IGP03E1000_E_PHY_ID:
194		phy->type = e1000_phy_igp_3;
195		phy->ops.get_phy_info = igb_get_phy_info_igp;
196		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
197		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
198		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
199		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
200		break;
201	case I82580_I_PHY_ID:
202	case I350_I_PHY_ID:
203		phy->type = e1000_phy_82580;
204		phy->ops.force_speed_duplex =
205					 igb_phy_force_speed_duplex_82580;
206		phy->ops.get_cable_length = igb_get_cable_length_82580;
207		phy->ops.get_phy_info = igb_get_phy_info_82580;
208		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
209		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
210		break;
211	case I210_I_PHY_ID:
212		phy->type		= e1000_phy_i210;
213		phy->ops.check_polarity	= igb_check_polarity_m88;
214		phy->ops.get_phy_info	= igb_get_phy_info_m88;
215		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
216		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
217		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
218		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
219		break;
220	default:
221		ret_val = -E1000_ERR_PHY;
222		goto out;
223	}
224
225out:
226	return ret_val;
227}
228
229/**
230 *  igb_init_nvm_params_82575 - Init NVM func ptrs.
231 *  @hw: pointer to the HW structure
232 **/
233static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
234{
235	struct e1000_nvm_info *nvm = &hw->nvm;
236	u32 eecd = rd32(E1000_EECD);
237	u16 size;
238
239	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
240		     E1000_EECD_SIZE_EX_SHIFT);
241	/* Added to a constant, "size" becomes the left-shift value
242	 * for setting word_size.
243	 */
244	size += NVM_WORD_SIZE_BASE_SHIFT;
245
246	/* Just in case size is out of range, cap it to the largest
247	 * EEPROM size supported
248	 */
249	if (size > 15)
250		size = 15;
251
252	nvm->word_size = 1 << size;
253	if (hw->mac.type < e1000_i210) {
254		nvm->opcode_bits = 8;
255		nvm->delay_usec = 1;
256
257		switch (nvm->override) {
258		case e1000_nvm_override_spi_large:
259			nvm->page_size = 32;
260			nvm->address_bits = 16;
261			break;
262		case e1000_nvm_override_spi_small:
263			nvm->page_size = 8;
264			nvm->address_bits = 8;
265			break;
266		default:
267			nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
268			nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
269					    16 : 8;
270			break;
271		}
272		if (nvm->word_size == (1 << 15))
273			nvm->page_size = 128;
274
275		nvm->type = e1000_nvm_eeprom_spi;
276	} else {
277		nvm->type = e1000_nvm_flash_hw;
278	}
279
280	/* NVM Function Pointers */
281	switch (hw->mac.type) {
282	case e1000_82580:
283		nvm->ops.validate = igb_validate_nvm_checksum_82580;
284		nvm->ops.update = igb_update_nvm_checksum_82580;
285		nvm->ops.acquire = igb_acquire_nvm_82575;
286		nvm->ops.release = igb_release_nvm_82575;
287		if (nvm->word_size < (1 << 15))
288			nvm->ops.read = igb_read_nvm_eerd;
289		else
290			nvm->ops.read = igb_read_nvm_spi;
291		nvm->ops.write = igb_write_nvm_spi;
292		break;
293	case e1000_i354:
294	case e1000_i350:
295		nvm->ops.validate = igb_validate_nvm_checksum_i350;
296		nvm->ops.update = igb_update_nvm_checksum_i350;
297		nvm->ops.acquire = igb_acquire_nvm_82575;
298		nvm->ops.release = igb_release_nvm_82575;
299		if (nvm->word_size < (1 << 15))
300			nvm->ops.read = igb_read_nvm_eerd;
301		else
302			nvm->ops.read = igb_read_nvm_spi;
303		nvm->ops.write = igb_write_nvm_spi;
304		break;
305	case e1000_i210:
306		nvm->ops.validate = igb_validate_nvm_checksum_i210;
307		nvm->ops.update   = igb_update_nvm_checksum_i210;
308		nvm->ops.acquire = igb_acquire_nvm_i210;
309		nvm->ops.release = igb_release_nvm_i210;
310		nvm->ops.read    = igb_read_nvm_srrd_i210;
311		nvm->ops.write   = igb_write_nvm_srwr_i210;
312		nvm->ops.valid_led_default = igb_valid_led_default_i210;
313		break;
314	case e1000_i211:
315		nvm->ops.acquire  = igb_acquire_nvm_i210;
316		nvm->ops.release  = igb_release_nvm_i210;
317		nvm->ops.read     = igb_read_nvm_i211;
318		nvm->ops.valid_led_default = igb_valid_led_default_i210;
319		nvm->ops.validate = NULL;
320		nvm->ops.update   = NULL;
321		nvm->ops.write    = NULL;
322		break;
323	default:
324		nvm->ops.validate = igb_validate_nvm_checksum;
325		nvm->ops.update = igb_update_nvm_checksum;
326		nvm->ops.acquire = igb_acquire_nvm_82575;
327		nvm->ops.release = igb_release_nvm_82575;
328		if (nvm->word_size < (1 << 15))
329			nvm->ops.read = igb_read_nvm_eerd;
330		else
331			nvm->ops.read = igb_read_nvm_spi;
332		nvm->ops.write = igb_write_nvm_spi;
333		break;
334	}
335
336	return 0;
337}
338
339/**
340 *  igb_init_mac_params_82575 - Init MAC func ptrs.
341 *  @hw: pointer to the HW structure
342 **/
343static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
344{
345	struct e1000_mac_info *mac = &hw->mac;
346	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
347
348	/* Set mta register count */
349	mac->mta_reg_count = 128;
350	/* Set rar entry count */
351	switch (mac->type) {
352	case e1000_82576:
353		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
354		break;
355	case e1000_82580:
356		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
357		break;
358	case e1000_i350:
359	case e1000_i354:
360		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
361		break;
362	default:
363		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
364		break;
365	}
366	/* reset */
367	if (mac->type >= e1000_82580)
368		mac->ops.reset_hw = igb_reset_hw_82580;
369	else
370		mac->ops.reset_hw = igb_reset_hw_82575;
371
372	if (mac->type >= e1000_i210) {
373		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
374		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
375
376	} else {
377		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
378		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
379	}
380
381	/* Set if part includes ASF firmware */
382	mac->asf_firmware_present = true;
383	/* Set if manageability features are enabled. */
384	mac->arc_subsystem_valid =
385		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
386			? true : false;
387	/* enable EEE on i350 parts and later parts */
388	if (mac->type >= e1000_i350)
389		dev_spec->eee_disable = false;
390	else
391		dev_spec->eee_disable = true;
392	/* Allow a single clear of the SW semaphore on I210 and newer */
393	if (mac->type >= e1000_i210)
394		dev_spec->clear_semaphore_once = true;
395	/* physical interface link setup */
396	mac->ops.setup_physical_interface =
397		(hw->phy.media_type == e1000_media_type_copper)
398			? igb_setup_copper_link_82575
399			: igb_setup_serdes_link_82575;
400
401	return 0;
402}
403
404static s32 igb_get_invariants_82575(struct e1000_hw *hw)
405{
406	struct e1000_mac_info *mac = &hw->mac;
407	struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
408	s32 ret_val;
409	u32 ctrl_ext = 0;
410
411	switch (hw->device_id) {
412	case E1000_DEV_ID_82575EB_COPPER:
413	case E1000_DEV_ID_82575EB_FIBER_SERDES:
414	case E1000_DEV_ID_82575GB_QUAD_COPPER:
415		mac->type = e1000_82575;
416		break;
417	case E1000_DEV_ID_82576:
418	case E1000_DEV_ID_82576_NS:
419	case E1000_DEV_ID_82576_NS_SERDES:
420	case E1000_DEV_ID_82576_FIBER:
421	case E1000_DEV_ID_82576_SERDES:
422	case E1000_DEV_ID_82576_QUAD_COPPER:
423	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
424	case E1000_DEV_ID_82576_SERDES_QUAD:
425		mac->type = e1000_82576;
426		break;
427	case E1000_DEV_ID_82580_COPPER:
428	case E1000_DEV_ID_82580_FIBER:
429	case E1000_DEV_ID_82580_QUAD_FIBER:
430	case E1000_DEV_ID_82580_SERDES:
431	case E1000_DEV_ID_82580_SGMII:
432	case E1000_DEV_ID_82580_COPPER_DUAL:
433	case E1000_DEV_ID_DH89XXCC_SGMII:
434	case E1000_DEV_ID_DH89XXCC_SERDES:
435	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
436	case E1000_DEV_ID_DH89XXCC_SFP:
437		mac->type = e1000_82580;
438		break;
439	case E1000_DEV_ID_I350_COPPER:
440	case E1000_DEV_ID_I350_FIBER:
441	case E1000_DEV_ID_I350_SERDES:
442	case E1000_DEV_ID_I350_SGMII:
443		mac->type = e1000_i350;
444		break;
445	case E1000_DEV_ID_I210_COPPER:
446	case E1000_DEV_ID_I210_COPPER_OEM1:
447	case E1000_DEV_ID_I210_COPPER_IT:
448	case E1000_DEV_ID_I210_FIBER:
449	case E1000_DEV_ID_I210_SERDES:
450	case E1000_DEV_ID_I210_SGMII:
451		mac->type = e1000_i210;
452		break;
453	case E1000_DEV_ID_I211_COPPER:
454		mac->type = e1000_i211;
455		break;
456	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
457	case E1000_DEV_ID_I354_SGMII:
458	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
459		mac->type = e1000_i354;
460		break;
461	default:
462		return -E1000_ERR_MAC_INIT;
463		break;
464	}
465
466	/* Set media type */
467	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
468	 * based on the EEPROM. We cannot rely upon device ID. There
469	 * is no distinguishable difference between fiber and internal
470	 * SerDes mode on the 82575. There can be an external PHY attached
471	 * on the SGMII interface. For this, we'll set sgmii_active to true.
472	 */
473	hw->phy.media_type = e1000_media_type_copper;
474	dev_spec->sgmii_active = false;
475
476	ctrl_ext = rd32(E1000_CTRL_EXT);
477	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
478	case E1000_CTRL_EXT_LINK_MODE_SGMII:
479		dev_spec->sgmii_active = true;
480		break;
481	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
482	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
483		hw->phy.media_type = e1000_media_type_internal_serdes;
484		break;
485	default:
486		break;
487	}
488
489	/* mac initialization and operations */
490	ret_val = igb_init_mac_params_82575(hw);
491	if (ret_val)
492		goto out;
493
494	/* NVM initialization */
495	ret_val = igb_init_nvm_params_82575(hw);
496	if (ret_val)
497		goto out;
498
499	/* if part supports SR-IOV then initialize mailbox parameters */
500	switch (mac->type) {
501	case e1000_82576:
502	case e1000_i350:
503		igb_init_mbx_params_pf(hw);
504		break;
505	default:
506		break;
507	}
508
509	/* setup PHY parameters */
510	ret_val = igb_init_phy_params_82575(hw);
511
512out:
513	return ret_val;
514}
515
516/**
517 *  igb_acquire_phy_82575 - Acquire rights to access PHY
518 *  @hw: pointer to the HW structure
519 *
520 *  Acquire access rights to the correct PHY.  This is a
521 *  function pointer entry point called by the api module.
522 **/
523static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
524{
525	u16 mask = E1000_SWFW_PHY0_SM;
526
527	if (hw->bus.func == E1000_FUNC_1)
528		mask = E1000_SWFW_PHY1_SM;
529	else if (hw->bus.func == E1000_FUNC_2)
530		mask = E1000_SWFW_PHY2_SM;
531	else if (hw->bus.func == E1000_FUNC_3)
532		mask = E1000_SWFW_PHY3_SM;
533
534	return hw->mac.ops.acquire_swfw_sync(hw, mask);
535}
536
537/**
538 *  igb_release_phy_82575 - Release rights to access PHY
539 *  @hw: pointer to the HW structure
540 *
541 *  A wrapper to release access rights to the correct PHY.  This is a
542 *  function pointer entry point called by the api module.
543 **/
544static void igb_release_phy_82575(struct e1000_hw *hw)
545{
546	u16 mask = E1000_SWFW_PHY0_SM;
547
548	if (hw->bus.func == E1000_FUNC_1)
549		mask = E1000_SWFW_PHY1_SM;
550	else if (hw->bus.func == E1000_FUNC_2)
551		mask = E1000_SWFW_PHY2_SM;
552	else if (hw->bus.func == E1000_FUNC_3)
553		mask = E1000_SWFW_PHY3_SM;
554
555	hw->mac.ops.release_swfw_sync(hw, mask);
556}
557
558/**
559 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
560 *  @hw: pointer to the HW structure
561 *  @offset: register offset to be read
562 *  @data: pointer to the read data
563 *
564 *  Reads the PHY register at offset using the serial gigabit media independent
565 *  interface and stores the retrieved information in data.
566 **/
567static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
568					  u16 *data)
569{
570	s32 ret_val = -E1000_ERR_PARAM;
571
572	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
573		hw_dbg("PHY Address %u is out of range\n", offset);
574		goto out;
575	}
576
577	ret_val = hw->phy.ops.acquire(hw);
578	if (ret_val)
579		goto out;
580
581	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
582
583	hw->phy.ops.release(hw);
584
585out:
586	return ret_val;
587}
588
589/**
590 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
591 *  @hw: pointer to the HW structure
592 *  @offset: register offset to write to
593 *  @data: data to write at register offset
594 *
595 *  Writes the data to PHY register at the offset using the serial gigabit
596 *  media independent interface.
597 **/
598static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
599					   u16 data)
600{
601	s32 ret_val = -E1000_ERR_PARAM;
602
603
604	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
605		hw_dbg("PHY Address %d is out of range\n", offset);
606		goto out;
607	}
608
609	ret_val = hw->phy.ops.acquire(hw);
610	if (ret_val)
611		goto out;
612
613	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
614
615	hw->phy.ops.release(hw);
616
617out:
618	return ret_val;
619}
620
621/**
622 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
623 *  @hw: pointer to the HW structure
624 *
625 *  Retrieves the PHY address and ID for both PHY's which do and do not use
626 *  sgmi interface.
627 **/
628static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
629{
630	struct e1000_phy_info *phy = &hw->phy;
631	s32  ret_val = 0;
632	u16 phy_id;
633	u32 ctrl_ext;
634	u32 mdic;
635
636	/* For SGMII PHYs, we try the list of possible addresses until
637	 * we find one that works.  For non-SGMII PHYs
638	 * (e.g. integrated copper PHYs), an address of 1 should
639	 * work.  The result of this function should mean phy->phy_addr
640	 * and phy->id are set correctly.
641	 */
642	if (!(igb_sgmii_active_82575(hw))) {
643		phy->addr = 1;
644		ret_val = igb_get_phy_id(hw);
645		goto out;
646	}
647
648	if (igb_sgmii_uses_mdio_82575(hw)) {
649		switch (hw->mac.type) {
650		case e1000_82575:
651		case e1000_82576:
652			mdic = rd32(E1000_MDIC);
653			mdic &= E1000_MDIC_PHY_MASK;
654			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
655			break;
656		case e1000_82580:
657		case e1000_i350:
658		case e1000_i354:
659		case e1000_i210:
660		case e1000_i211:
661			mdic = rd32(E1000_MDICNFG);
662			mdic &= E1000_MDICNFG_PHY_MASK;
663			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
664			break;
665		default:
666			ret_val = -E1000_ERR_PHY;
667			goto out;
668			break;
669		}
670		ret_val = igb_get_phy_id(hw);
671		goto out;
672	}
673
674	/* Power on sgmii phy if it is disabled */
675	ctrl_ext = rd32(E1000_CTRL_EXT);
676	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
677	wrfl();
678	msleep(300);
679
680	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
681	 * Therefore, we need to test 1-7
682	 */
683	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
684		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
685		if (ret_val == 0) {
686			hw_dbg("Vendor ID 0x%08X read at address %u\n",
687			       phy_id, phy->addr);
688			/* At the time of this writing, The M88 part is
689			 * the only supported SGMII PHY product.
690			 */
691			if (phy_id == M88_VENDOR)
692				break;
693		} else {
694			hw_dbg("PHY address %u was unreadable\n", phy->addr);
695		}
696	}
697
698	/* A valid PHY type couldn't be found. */
699	if (phy->addr == 8) {
700		phy->addr = 0;
701		ret_val = -E1000_ERR_PHY;
702		goto out;
703	} else {
704		ret_val = igb_get_phy_id(hw);
705	}
706
707	/* restore previous sfp cage power state */
708	wr32(E1000_CTRL_EXT, ctrl_ext);
709
710out:
711	return ret_val;
712}
713
714/**
715 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
716 *  @hw: pointer to the HW structure
717 *
718 *  Resets the PHY using the serial gigabit media independent interface.
719 **/
720static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
721{
722	s32 ret_val;
723
724	/* This isn't a true "hard" reset, but is the only reset
725	 * available to us at this time.
726	 */
727
728	hw_dbg("Soft resetting SGMII attached PHY...\n");
729
730	/* SFP documentation requires the following to configure the SPF module
731	 * to work on SGMII.  No further documentation is given.
732	 */
733	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
734	if (ret_val)
735		goto out;
736
737	ret_val = igb_phy_sw_reset(hw);
738
739out:
740	return ret_val;
741}
742
743/**
744 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
745 *  @hw: pointer to the HW structure
746 *  @active: true to enable LPLU, false to disable
747 *
748 *  Sets the LPLU D0 state according to the active flag.  When
749 *  activating LPLU this function also disables smart speed
750 *  and vice versa.  LPLU will not be activated unless the
751 *  device autonegotiation advertisement meets standards of
752 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
753 *  This is a function pointer entry point only called by
754 *  PHY setup routines.
755 **/
756static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
757{
758	struct e1000_phy_info *phy = &hw->phy;
759	s32 ret_val;
760	u16 data;
761
762	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
763	if (ret_val)
764		goto out;
765
766	if (active) {
767		data |= IGP02E1000_PM_D0_LPLU;
768		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
769						 data);
770		if (ret_val)
771			goto out;
772
773		/* When LPLU is enabled, we should disable SmartSpeed */
774		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
775						&data);
776		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
777		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
778						 data);
779		if (ret_val)
780			goto out;
781	} else {
782		data &= ~IGP02E1000_PM_D0_LPLU;
783		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
784						 data);
785		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
786		 * during Dx states where the power conservation is most
787		 * important.  During driver activity we should enable
788		 * SmartSpeed, so performance is maintained.
789		 */
790		if (phy->smart_speed == e1000_smart_speed_on) {
791			ret_val = phy->ops.read_reg(hw,
792					IGP01E1000_PHY_PORT_CONFIG, &data);
793			if (ret_val)
794				goto out;
795
796			data |= IGP01E1000_PSCFR_SMART_SPEED;
797			ret_val = phy->ops.write_reg(hw,
798					IGP01E1000_PHY_PORT_CONFIG, data);
799			if (ret_val)
800				goto out;
801		} else if (phy->smart_speed == e1000_smart_speed_off) {
802			ret_val = phy->ops.read_reg(hw,
803					IGP01E1000_PHY_PORT_CONFIG, &data);
804			if (ret_val)
805				goto out;
806
807			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
808			ret_val = phy->ops.write_reg(hw,
809					IGP01E1000_PHY_PORT_CONFIG, data);
810			if (ret_val)
811				goto out;
812		}
813	}
814
815out:
816	return ret_val;
817}
818
819/**
820 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
821 *  @hw: pointer to the HW structure
822 *  @active: true to enable LPLU, false to disable
823 *
824 *  Sets the LPLU D0 state according to the active flag.  When
825 *  activating LPLU this function also disables smart speed
826 *  and vice versa.  LPLU will not be activated unless the
827 *  device autonegotiation advertisement meets standards of
828 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
829 *  This is a function pointer entry point only called by
830 *  PHY setup routines.
831 **/
832static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
833{
834	struct e1000_phy_info *phy = &hw->phy;
835	s32 ret_val = 0;
836	u16 data;
837
838	data = rd32(E1000_82580_PHY_POWER_MGMT);
839
840	if (active) {
841		data |= E1000_82580_PM_D0_LPLU;
842
843		/* When LPLU is enabled, we should disable SmartSpeed */
844		data &= ~E1000_82580_PM_SPD;
845	} else {
846		data &= ~E1000_82580_PM_D0_LPLU;
847
848		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
849		 * during Dx states where the power conservation is most
850		 * important.  During driver activity we should enable
851		 * SmartSpeed, so performance is maintained.
852		 */
853		if (phy->smart_speed == e1000_smart_speed_on)
854			data |= E1000_82580_PM_SPD;
855		else if (phy->smart_speed == e1000_smart_speed_off)
856			data &= ~E1000_82580_PM_SPD; }
857
858	wr32(E1000_82580_PHY_POWER_MGMT, data);
859	return ret_val;
860}
861
862/**
863 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
864 *  @hw: pointer to the HW structure
865 *  @active: boolean used to enable/disable lplu
866 *
867 *  Success returns 0, Failure returns 1
868 *
869 *  The low power link up (lplu) state is set to the power management level D3
870 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
871 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
872 *  is used during Dx states where the power conservation is most important.
873 *  During driver activity, SmartSpeed should be enabled so performance is
874 *  maintained.
875 **/
876static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
877{
878	struct e1000_phy_info *phy = &hw->phy;
879	s32 ret_val = 0;
880	u16 data;
881
882	data = rd32(E1000_82580_PHY_POWER_MGMT);
883
884	if (!active) {
885		data &= ~E1000_82580_PM_D3_LPLU;
886		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
887		 * during Dx states where the power conservation is most
888		 * important.  During driver activity we should enable
889		 * SmartSpeed, so performance is maintained.
890		 */
891		if (phy->smart_speed == e1000_smart_speed_on)
892			data |= E1000_82580_PM_SPD;
893		else if (phy->smart_speed == e1000_smart_speed_off)
894			data &= ~E1000_82580_PM_SPD;
895	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
896		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
897		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
898		data |= E1000_82580_PM_D3_LPLU;
899		/* When LPLU is enabled, we should disable SmartSpeed */
900		data &= ~E1000_82580_PM_SPD;
901	}
902
903	wr32(E1000_82580_PHY_POWER_MGMT, data);
904	return ret_val;
905}
906
907/**
908 *  igb_acquire_nvm_82575 - Request for access to EEPROM
909 *  @hw: pointer to the HW structure
910 *
911 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
912 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
913 *  Return successful if access grant bit set, else clear the request for
914 *  EEPROM access and return -E1000_ERR_NVM (-1).
915 **/
916static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
917{
918	s32 ret_val;
919
920	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
921	if (ret_val)
922		goto out;
923
924	ret_val = igb_acquire_nvm(hw);
925
926	if (ret_val)
927		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
928
929out:
930	return ret_val;
931}
932
933/**
934 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
935 *  @hw: pointer to the HW structure
936 *
937 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
938 *  then release the semaphores acquired.
939 **/
940static void igb_release_nvm_82575(struct e1000_hw *hw)
941{
942	igb_release_nvm(hw);
943	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
944}
945
946/**
947 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
948 *  @hw: pointer to the HW structure
949 *  @mask: specifies which semaphore to acquire
950 *
951 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
952 *  will also specify which port we're acquiring the lock for.
953 **/
954static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
955{
956	u32 swfw_sync;
957	u32 swmask = mask;
958	u32 fwmask = mask << 16;
959	s32 ret_val = 0;
960	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
961
962	while (i < timeout) {
963		if (igb_get_hw_semaphore(hw)) {
964			ret_val = -E1000_ERR_SWFW_SYNC;
965			goto out;
966		}
967
968		swfw_sync = rd32(E1000_SW_FW_SYNC);
969		if (!(swfw_sync & (fwmask | swmask)))
970			break;
971
972		/* Firmware currently using resource (fwmask)
973		 * or other software thread using resource (swmask)
974		 */
975		igb_put_hw_semaphore(hw);
976		mdelay(5);
977		i++;
978	}
979
980	if (i == timeout) {
981		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
982		ret_val = -E1000_ERR_SWFW_SYNC;
983		goto out;
984	}
985
986	swfw_sync |= swmask;
987	wr32(E1000_SW_FW_SYNC, swfw_sync);
988
989	igb_put_hw_semaphore(hw);
990
991out:
992	return ret_val;
993}
994
995/**
996 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
997 *  @hw: pointer to the HW structure
998 *  @mask: specifies which semaphore to acquire
999 *
1000 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1001 *  will also specify which port we're releasing the lock for.
1002 **/
1003static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1004{
1005	u32 swfw_sync;
1006
1007	while (igb_get_hw_semaphore(hw) != 0);
1008	/* Empty */
1009
1010	swfw_sync = rd32(E1000_SW_FW_SYNC);
1011	swfw_sync &= ~mask;
1012	wr32(E1000_SW_FW_SYNC, swfw_sync);
1013
1014	igb_put_hw_semaphore(hw);
1015}
1016
1017/**
1018 *  igb_get_cfg_done_82575 - Read config done bit
1019 *  @hw: pointer to the HW structure
1020 *
1021 *  Read the management control register for the config done bit for
1022 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1023 *  to read the config done bit, so an error is *ONLY* logged and returns
1024 *  0.  If we were to return with error, EEPROM-less silicon
1025 *  would not be able to be reset or change link.
1026 **/
1027static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1028{
1029	s32 timeout = PHY_CFG_TIMEOUT;
1030	s32 ret_val = 0;
1031	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1032
1033	if (hw->bus.func == 1)
1034		mask = E1000_NVM_CFG_DONE_PORT_1;
1035	else if (hw->bus.func == E1000_FUNC_2)
1036		mask = E1000_NVM_CFG_DONE_PORT_2;
1037	else if (hw->bus.func == E1000_FUNC_3)
1038		mask = E1000_NVM_CFG_DONE_PORT_3;
1039
1040	while (timeout) {
1041		if (rd32(E1000_EEMNGCTL) & mask)
1042			break;
1043		msleep(1);
1044		timeout--;
1045	}
1046	if (!timeout)
1047		hw_dbg("MNG configuration cycle has not completed.\n");
1048
1049	/* If EEPROM is not marked present, init the PHY manually */
1050	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1051	    (hw->phy.type == e1000_phy_igp_3))
1052		igb_phy_init_script_igp3(hw);
1053
1054	return ret_val;
1055}
1056
1057/**
1058 *  igb_check_for_link_82575 - Check for link
1059 *  @hw: pointer to the HW structure
1060 *
1061 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1062 *  use the generic interface for determining link.
1063 **/
1064static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1065{
1066	s32 ret_val;
1067	u16 speed, duplex;
1068
1069	if (hw->phy.media_type != e1000_media_type_copper) {
1070		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1071		                                             &duplex);
1072		/* Use this flag to determine if link needs to be checked or
1073		 * not.  If  we have link clear the flag so that we do not
1074		 * continue to check for link.
1075		 */
1076		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1077
1078		/* Configure Flow Control now that Auto-Neg has completed.
1079		 * First, we need to restore the desired flow control
1080		 * settings because we may have had to re-autoneg with a
1081		 * different link partner.
1082		 */
1083		ret_val = igb_config_fc_after_link_up(hw);
1084		if (ret_val)
1085			hw_dbg("Error configuring flow control\n");
1086	} else {
1087		ret_val = igb_check_for_copper_link(hw);
1088	}
1089
1090	return ret_val;
1091}
1092
1093/**
1094 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1095 *  @hw: pointer to the HW structure
1096 **/
1097void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1098{
1099	u32 reg;
1100
1101
1102	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1103	    !igb_sgmii_active_82575(hw))
1104		return;
1105
1106	/* Enable PCS to turn on link */
1107	reg = rd32(E1000_PCS_CFG0);
1108	reg |= E1000_PCS_CFG_PCS_EN;
1109	wr32(E1000_PCS_CFG0, reg);
1110
1111	/* Power up the laser */
1112	reg = rd32(E1000_CTRL_EXT);
1113	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1114	wr32(E1000_CTRL_EXT, reg);
1115
1116	/* flush the write to verify completion */
1117	wrfl();
1118	msleep(1);
1119}
1120
1121/**
1122 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1123 *  @hw: pointer to the HW structure
1124 *  @speed: stores the current speed
1125 *  @duplex: stores the current duplex
1126 *
1127 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1128 *  duplex, then store the values in the pointers provided.
1129 **/
1130static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1131						u16 *duplex)
1132{
1133	struct e1000_mac_info *mac = &hw->mac;
1134	u32 pcs;
1135
1136	/* Set up defaults for the return values of this function */
1137	mac->serdes_has_link = false;
1138	*speed = 0;
1139	*duplex = 0;
1140
1141	/* Read the PCS Status register for link state. For non-copper mode,
1142	 * the status register is not accurate. The PCS status register is
1143	 * used instead.
1144	 */
1145	pcs = rd32(E1000_PCS_LSTAT);
1146
1147	/* The link up bit determines when link is up on autoneg. The sync ok
1148	 * gets set once both sides sync up and agree upon link. Stable link
1149	 * can be determined by checking for both link up and link sync ok
1150	 */
1151	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1152		mac->serdes_has_link = true;
1153
1154		/* Detect and store PCS speed */
1155		if (pcs & E1000_PCS_LSTS_SPEED_1000) {
1156			*speed = SPEED_1000;
1157		} else if (pcs & E1000_PCS_LSTS_SPEED_100) {
1158			*speed = SPEED_100;
1159		} else {
1160			*speed = SPEED_10;
1161		}
1162
1163		/* Detect and store PCS duplex */
1164		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
1165			*duplex = FULL_DUPLEX;
1166		} else {
1167			*duplex = HALF_DUPLEX;
1168		}
1169	}
1170
1171	return 0;
1172}
1173
1174/**
1175 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1176 *  @hw: pointer to the HW structure
1177 *
1178 *  In the case of fiber serdes, shut down optics and PCS on driver unload
1179 *  when management pass thru is not enabled.
1180 **/
1181void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1182{
1183	u32 reg;
1184
1185	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1186	    igb_sgmii_active_82575(hw))
1187		return;
1188
1189	if (!igb_enable_mng_pass_thru(hw)) {
1190		/* Disable PCS to turn off link */
1191		reg = rd32(E1000_PCS_CFG0);
1192		reg &= ~E1000_PCS_CFG_PCS_EN;
1193		wr32(E1000_PCS_CFG0, reg);
1194
1195		/* shutdown the laser */
1196		reg = rd32(E1000_CTRL_EXT);
1197		reg |= E1000_CTRL_EXT_SDP3_DATA;
1198		wr32(E1000_CTRL_EXT, reg);
1199
1200		/* flush the write to verify completion */
1201		wrfl();
1202		msleep(1);
1203	}
1204}
1205
1206/**
1207 *  igb_reset_hw_82575 - Reset hardware
1208 *  @hw: pointer to the HW structure
1209 *
1210 *  This resets the hardware into a known state.  This is a
1211 *  function pointer entry point called by the api module.
1212 **/
1213static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1214{
1215	u32 ctrl, icr;
1216	s32 ret_val;
1217
1218	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1219	 * on the last TLP read/write transaction when MAC is reset.
1220	 */
1221	ret_val = igb_disable_pcie_master(hw);
1222	if (ret_val)
1223		hw_dbg("PCI-E Master disable polling has failed.\n");
1224
1225	/* set the completion timeout for interface */
1226	ret_val = igb_set_pcie_completion_timeout(hw);
1227	if (ret_val) {
1228		hw_dbg("PCI-E Set completion timeout has failed.\n");
1229	}
1230
1231	hw_dbg("Masking off all interrupts\n");
1232	wr32(E1000_IMC, 0xffffffff);
1233
1234	wr32(E1000_RCTL, 0);
1235	wr32(E1000_TCTL, E1000_TCTL_PSP);
1236	wrfl();
1237
1238	msleep(10);
1239
1240	ctrl = rd32(E1000_CTRL);
1241
1242	hw_dbg("Issuing a global reset to MAC\n");
1243	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1244
1245	ret_val = igb_get_auto_rd_done(hw);
1246	if (ret_val) {
1247		/* When auto config read does not complete, do not
1248		 * return with an error. This can happen in situations
1249		 * where there is no eeprom and prevents getting link.
1250		 */
1251		hw_dbg("Auto Read Done did not complete\n");
1252	}
1253
1254	/* If EEPROM is not present, run manual init scripts */
1255	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1256		igb_reset_init_script_82575(hw);
1257
1258	/* Clear any pending interrupt events. */
1259	wr32(E1000_IMC, 0xffffffff);
1260	icr = rd32(E1000_ICR);
1261
1262	/* Install any alternate MAC address into RAR0 */
1263	ret_val = igb_check_alt_mac_addr(hw);
1264
1265	return ret_val;
1266}
1267
1268/**
1269 *  igb_init_hw_82575 - Initialize hardware
1270 *  @hw: pointer to the HW structure
1271 *
1272 *  This inits the hardware readying it for operation.
1273 **/
1274static s32 igb_init_hw_82575(struct e1000_hw *hw)
1275{
1276	struct e1000_mac_info *mac = &hw->mac;
1277	s32 ret_val;
1278	u16 i, rar_count = mac->rar_entry_count;
1279
1280	/* Initialize identification LED */
1281	ret_val = igb_id_led_init(hw);
1282	if (ret_val) {
1283		hw_dbg("Error initializing identification LED\n");
1284		/* This is not fatal and we should not stop init due to this */
1285	}
1286
1287	/* Disabling VLAN filtering */
1288	hw_dbg("Initializing the IEEE VLAN\n");
1289	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1290		igb_clear_vfta_i350(hw);
1291	else
1292		igb_clear_vfta(hw);
1293
1294	/* Setup the receive address */
1295	igb_init_rx_addrs(hw, rar_count);
1296
1297	/* Zero out the Multicast HASH table */
1298	hw_dbg("Zeroing the MTA\n");
1299	for (i = 0; i < mac->mta_reg_count; i++)
1300		array_wr32(E1000_MTA, i, 0);
1301
1302	/* Zero out the Unicast HASH table */
1303	hw_dbg("Zeroing the UTA\n");
1304	for (i = 0; i < mac->uta_reg_count; i++)
1305		array_wr32(E1000_UTA, i, 0);
1306
1307	/* Setup link and flow control */
1308	ret_val = igb_setup_link(hw);
1309
1310	/* Clear all of the statistics registers (clear on read).  It is
1311	 * important that we do this after we have tried to establish link
1312	 * because the symbol error count will increment wildly if there
1313	 * is no link.
1314	 */
1315	igb_clear_hw_cntrs_82575(hw);
1316	return ret_val;
1317}
1318
1319/**
1320 *  igb_setup_copper_link_82575 - Configure copper link settings
1321 *  @hw: pointer to the HW structure
1322 *
1323 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1324 *  for link, once link is established calls to configure collision distance
1325 *  and flow control are called.
1326 **/
1327static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1328{
1329	u32 ctrl;
1330	s32  ret_val;
1331	u32 phpm_reg;
1332
1333	ctrl = rd32(E1000_CTRL);
1334	ctrl |= E1000_CTRL_SLU;
1335	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1336	wr32(E1000_CTRL, ctrl);
1337
1338	/* Clear Go Link Disconnect bit */
1339	if (hw->mac.type >= e1000_82580) {
1340		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1341		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1342		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1343	}
1344
1345	ret_val = igb_setup_serdes_link_82575(hw);
1346	if (ret_val)
1347		goto out;
1348
1349	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1350		/* allow time for SFP cage time to power up phy */
1351		msleep(300);
1352
1353		ret_val = hw->phy.ops.reset(hw);
1354		if (ret_val) {
1355			hw_dbg("Error resetting the PHY.\n");
1356			goto out;
1357		}
1358	}
1359	switch (hw->phy.type) {
1360	case e1000_phy_i210:
1361	case e1000_phy_m88:
1362		switch (hw->phy.id) {
1363		case I347AT4_E_PHY_ID:
1364		case M88E1112_E_PHY_ID:
1365		case M88E1545_E_PHY_ID:
1366		case I210_I_PHY_ID:
1367			ret_val = igb_copper_link_setup_m88_gen2(hw);
1368			break;
1369		default:
1370			ret_val = igb_copper_link_setup_m88(hw);
1371			break;
1372		}
1373		break;
1374	case e1000_phy_igp_3:
1375		ret_val = igb_copper_link_setup_igp(hw);
1376		break;
1377	case e1000_phy_82580:
1378		ret_val = igb_copper_link_setup_82580(hw);
1379		break;
1380	default:
1381		ret_val = -E1000_ERR_PHY;
1382		break;
1383	}
1384
1385	if (ret_val)
1386		goto out;
1387
1388	ret_val = igb_setup_copper_link(hw);
1389out:
1390	return ret_val;
1391}
1392
1393/**
1394 *  igb_setup_serdes_link_82575 - Setup link for serdes
1395 *  @hw: pointer to the HW structure
1396 *
1397 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1398 *  used on copper connections where the serialized gigabit media independent
1399 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1400 *  for auto-negotiation or forces speed/duplex.
1401 **/
1402static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1403{
1404	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1405	bool pcs_autoneg;
1406	s32 ret_val = E1000_SUCCESS;
1407	u16 data;
1408
1409	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1410	    !igb_sgmii_active_82575(hw))
1411		return ret_val;
1412
1413
1414	/* On the 82575, SerDes loopback mode persists until it is
1415	 * explicitly turned off or a power cycle is performed.  A read to
1416	 * the register does not indicate its status.  Therefore, we ensure
1417	 * loopback mode is disabled during initialization.
1418	 */
1419	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1420
1421	/* power on the sfp cage if present and turn on I2C */
1422	ctrl_ext = rd32(E1000_CTRL_EXT);
1423	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1424	ctrl_ext |= E1000_CTRL_I2C_ENA;
1425	wr32(E1000_CTRL_EXT, ctrl_ext);
1426
1427	ctrl_reg = rd32(E1000_CTRL);
1428	ctrl_reg |= E1000_CTRL_SLU;
1429
1430	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1431		/* set both sw defined pins */
1432		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1433
1434		/* Set switch control to serdes energy detect */
1435		reg = rd32(E1000_CONNSW);
1436		reg |= E1000_CONNSW_ENRGSRC;
1437		wr32(E1000_CONNSW, reg);
1438	}
1439
1440	reg = rd32(E1000_PCS_LCTL);
1441
1442	/* default pcs_autoneg to the same setting as mac autoneg */
1443	pcs_autoneg = hw->mac.autoneg;
1444
1445	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1446	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1447		/* sgmii mode lets the phy handle forcing speed/duplex */
1448		pcs_autoneg = true;
1449		/* autoneg time out should be disabled for SGMII mode */
1450		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1451		break;
1452	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1453		/* disable PCS autoneg and support parallel detect only */
1454		pcs_autoneg = false;
1455	default:
1456		if (hw->mac.type == e1000_82575 ||
1457		    hw->mac.type == e1000_82576) {
1458			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1459			if (ret_val) {
1460				printk(KERN_DEBUG "NVM Read Error\n\n");
1461				return ret_val;
1462			}
1463
1464			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1465				pcs_autoneg = false;
1466		}
1467
1468		/* non-SGMII modes only supports a speed of 1000/Full for the
1469		 * link so it is best to just force the MAC and let the pcs
1470		 * link either autoneg or be forced to 1000/Full
1471		 */
1472		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1473		            E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1474
1475		/* set speed of 1000/Full if speed/duplex is forced */
1476		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1477		break;
1478	}
1479
1480	wr32(E1000_CTRL, ctrl_reg);
1481
1482	/* New SerDes mode allows for forcing speed or autonegotiating speed
1483	 * at 1gb. Autoneg should be default set by most drivers. This is the
1484	 * mode that will be compatible with older link partners and switches.
1485	 * However, both are supported by the hardware and some drivers/tools.
1486	 */
1487	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1488		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1489
1490	if (pcs_autoneg) {
1491		/* Set PCS register for autoneg */
1492		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1493		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1494
1495		/* Disable force flow control for autoneg */
1496		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1497
1498		/* Configure flow control advertisement for autoneg */
1499		anadv_reg = rd32(E1000_PCS_ANADV);
1500		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1501		switch (hw->fc.requested_mode) {
1502		case e1000_fc_full:
1503		case e1000_fc_rx_pause:
1504			anadv_reg |= E1000_TXCW_ASM_DIR;
1505			anadv_reg |= E1000_TXCW_PAUSE;
1506			break;
1507		case e1000_fc_tx_pause:
1508			anadv_reg |= E1000_TXCW_ASM_DIR;
1509			break;
1510		default:
1511			break;
1512		}
1513		wr32(E1000_PCS_ANADV, anadv_reg);
1514
1515		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1516	} else {
1517		/* Set PCS register for forced link */
1518		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1519
1520		/* Force flow control for forced link */
1521		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1522
1523		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1524	}
1525
1526	wr32(E1000_PCS_LCTL, reg);
1527
1528	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1529		igb_force_mac_fc(hw);
1530
1531	return ret_val;
1532}
1533
1534/**
1535 *  igb_sgmii_active_82575 - Return sgmii state
1536 *  @hw: pointer to the HW structure
1537 *
1538 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1539 *  which can be enabled for use in the embedded applications.  Simply
1540 *  return the current state of the sgmii interface.
1541 **/
1542static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1543{
1544	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1545	return dev_spec->sgmii_active;
1546}
1547
1548/**
1549 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1550 *  @hw: pointer to the HW structure
1551 *
1552 *  Inits recommended HW defaults after a reset when there is no EEPROM
1553 *  detected. This is only for the 82575.
1554 **/
1555static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1556{
1557	if (hw->mac.type == e1000_82575) {
1558		hw_dbg("Running reset init script for 82575\n");
1559		/* SerDes configuration via SERDESCTRL */
1560		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1561		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1562		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1563		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1564
1565		/* CCM configuration via CCMCTL register */
1566		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1567		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1568
1569		/* PCIe lanes configuration */
1570		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1571		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1572		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1573		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1574
1575		/* PCIe PLL Configuration */
1576		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1577		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1578		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1579	}
1580
1581	return 0;
1582}
1583
1584/**
1585 *  igb_read_mac_addr_82575 - Read device MAC address
1586 *  @hw: pointer to the HW structure
1587 **/
1588static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1589{
1590	s32 ret_val = 0;
1591
1592	/* If there's an alternate MAC address place it in RAR0
1593	 * so that it will override the Si installed default perm
1594	 * address.
1595	 */
1596	ret_val = igb_check_alt_mac_addr(hw);
1597	if (ret_val)
1598		goto out;
1599
1600	ret_val = igb_read_mac_addr(hw);
1601
1602out:
1603	return ret_val;
1604}
1605
1606/**
1607 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1608 * @hw: pointer to the HW structure
1609 *
1610 * In the case of a PHY power down to save power, or to turn off link during a
1611 * driver unload, or wake on lan is not enabled, remove the link.
1612 **/
1613void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1614{
1615	/* If the management interface is not enabled, then power down */
1616	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1617		igb_power_down_phy_copper(hw);
1618}
1619
1620/**
1621 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1622 *  @hw: pointer to the HW structure
1623 *
1624 *  Clears the hardware counters by reading the counter registers.
1625 **/
1626static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1627{
1628	igb_clear_hw_cntrs_base(hw);
1629
1630	rd32(E1000_PRC64);
1631	rd32(E1000_PRC127);
1632	rd32(E1000_PRC255);
1633	rd32(E1000_PRC511);
1634	rd32(E1000_PRC1023);
1635	rd32(E1000_PRC1522);
1636	rd32(E1000_PTC64);
1637	rd32(E1000_PTC127);
1638	rd32(E1000_PTC255);
1639	rd32(E1000_PTC511);
1640	rd32(E1000_PTC1023);
1641	rd32(E1000_PTC1522);
1642
1643	rd32(E1000_ALGNERRC);
1644	rd32(E1000_RXERRC);
1645	rd32(E1000_TNCRS);
1646	rd32(E1000_CEXTERR);
1647	rd32(E1000_TSCTC);
1648	rd32(E1000_TSCTFC);
1649
1650	rd32(E1000_MGTPRC);
1651	rd32(E1000_MGTPDC);
1652	rd32(E1000_MGTPTC);
1653
1654	rd32(E1000_IAC);
1655	rd32(E1000_ICRXOC);
1656
1657	rd32(E1000_ICRXPTC);
1658	rd32(E1000_ICRXATC);
1659	rd32(E1000_ICTXPTC);
1660	rd32(E1000_ICTXATC);
1661	rd32(E1000_ICTXQEC);
1662	rd32(E1000_ICTXQMTC);
1663	rd32(E1000_ICRXDMTC);
1664
1665	rd32(E1000_CBTMPC);
1666	rd32(E1000_HTDPMC);
1667	rd32(E1000_CBRMPC);
1668	rd32(E1000_RPTHC);
1669	rd32(E1000_HGPTC);
1670	rd32(E1000_HTCBDPC);
1671	rd32(E1000_HGORCL);
1672	rd32(E1000_HGORCH);
1673	rd32(E1000_HGOTCL);
1674	rd32(E1000_HGOTCH);
1675	rd32(E1000_LENERRS);
1676
1677	/* This register should not be read in copper configurations */
1678	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1679	    igb_sgmii_active_82575(hw))
1680		rd32(E1000_SCVPC);
1681}
1682
1683/**
1684 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1685 *  @hw: pointer to the HW structure
1686 *
1687 *  After rx enable if managability is enabled then there is likely some
1688 *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1689 *  function clears the fifos and flushes any packets that came in as rx was
1690 *  being enabled.
1691 **/
1692void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1693{
1694	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1695	int i, ms_wait;
1696
1697	if (hw->mac.type != e1000_82575 ||
1698	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1699		return;
1700
1701	/* Disable all RX queues */
1702	for (i = 0; i < 4; i++) {
1703		rxdctl[i] = rd32(E1000_RXDCTL(i));
1704		wr32(E1000_RXDCTL(i),
1705		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1706	}
1707	/* Poll all queues to verify they have shut down */
1708	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1709		msleep(1);
1710		rx_enabled = 0;
1711		for (i = 0; i < 4; i++)
1712			rx_enabled |= rd32(E1000_RXDCTL(i));
1713		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1714			break;
1715	}
1716
1717	if (ms_wait == 10)
1718		hw_dbg("Queue disable timed out after 10ms\n");
1719
1720	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1721	 * incoming packets are rejected.  Set enable and wait 2ms so that
1722	 * any packet that was coming in as RCTL.EN was set is flushed
1723	 */
1724	rfctl = rd32(E1000_RFCTL);
1725	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1726
1727	rlpml = rd32(E1000_RLPML);
1728	wr32(E1000_RLPML, 0);
1729
1730	rctl = rd32(E1000_RCTL);
1731	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1732	temp_rctl |= E1000_RCTL_LPE;
1733
1734	wr32(E1000_RCTL, temp_rctl);
1735	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1736	wrfl();
1737	msleep(2);
1738
1739	/* Enable RX queues that were previously enabled and restore our
1740	 * previous state
1741	 */
1742	for (i = 0; i < 4; i++)
1743		wr32(E1000_RXDCTL(i), rxdctl[i]);
1744	wr32(E1000_RCTL, rctl);
1745	wrfl();
1746
1747	wr32(E1000_RLPML, rlpml);
1748	wr32(E1000_RFCTL, rfctl);
1749
1750	/* Flush receive errors generated by workaround */
1751	rd32(E1000_ROC);
1752	rd32(E1000_RNBC);
1753	rd32(E1000_MPC);
1754}
1755
1756/**
1757 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1758 *  @hw: pointer to the HW structure
1759 *
1760 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1761 *  however the hardware default for these parts is 500us to 1ms which is less
1762 *  than the 10ms recommended by the pci-e spec.  To address this we need to
1763 *  increase the value to either 10ms to 200ms for capability version 1 config,
1764 *  or 16ms to 55ms for version 2.
1765 **/
1766static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1767{
1768	u32 gcr = rd32(E1000_GCR);
1769	s32 ret_val = 0;
1770	u16 pcie_devctl2;
1771
1772	/* only take action if timeout value is defaulted to 0 */
1773	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1774		goto out;
1775
1776	/* if capabilities version is type 1 we can write the
1777	 * timeout of 10ms to 200ms through the GCR register
1778	 */
1779	if (!(gcr & E1000_GCR_CAP_VER2)) {
1780		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1781		goto out;
1782	}
1783
1784	/* for version 2 capabilities we need to write the config space
1785	 * directly in order to set the completion timeout value for
1786	 * 16ms to 55ms
1787	 */
1788	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1789	                                &pcie_devctl2);
1790	if (ret_val)
1791		goto out;
1792
1793	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1794
1795	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1796	                                 &pcie_devctl2);
1797out:
1798	/* disable completion timeout resend */
1799	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1800
1801	wr32(E1000_GCR, gcr);
1802	return ret_val;
1803}
1804
1805/**
1806 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1807 *  @hw: pointer to the hardware struct
1808 *  @enable: state to enter, either enabled or disabled
1809 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
1810 *
1811 *  enables/disables L2 switch anti-spoofing functionality.
1812 **/
1813void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1814{
1815	u32 reg_val, reg_offset;
1816
1817	switch (hw->mac.type) {
1818	case e1000_82576:
1819		reg_offset = E1000_DTXSWC;
1820		break;
1821	case e1000_i350:
1822	case e1000_i354:
1823		reg_offset = E1000_TXSWC;
1824		break;
1825	default:
1826		return;
1827	}
1828
1829	reg_val = rd32(reg_offset);
1830	if (enable) {
1831		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1832			     E1000_DTXSWC_VLAN_SPOOF_MASK);
1833		/* The PF can spoof - it has to in order to
1834		 * support emulation mode NICs
1835		 */
1836		reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1837	} else {
1838		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1839			     E1000_DTXSWC_VLAN_SPOOF_MASK);
1840	}
1841	wr32(reg_offset, reg_val);
1842}
1843
1844/**
1845 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1846 *  @hw: pointer to the hardware struct
1847 *  @enable: state to enter, either enabled or disabled
1848 *
1849 *  enables/disables L2 switch loopback functionality.
1850 **/
1851void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1852{
1853	u32 dtxswc;
1854
1855	switch (hw->mac.type) {
1856	case e1000_82576:
1857		dtxswc = rd32(E1000_DTXSWC);
1858		if (enable)
1859			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1860		else
1861			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1862		wr32(E1000_DTXSWC, dtxswc);
1863		break;
1864	case e1000_i354:
1865	case e1000_i350:
1866		dtxswc = rd32(E1000_TXSWC);
1867		if (enable)
1868			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1869		else
1870			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1871		wr32(E1000_TXSWC, dtxswc);
1872		break;
1873	default:
1874		/* Currently no other hardware supports loopback */
1875		break;
1876	}
1877
1878}
1879
1880/**
1881 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
1882 *  @hw: pointer to the hardware struct
1883 *  @enable: state to enter, either enabled or disabled
1884 *
1885 *  enables/disables replication of packets across multiple pools.
1886 **/
1887void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1888{
1889	u32 vt_ctl = rd32(E1000_VT_CTL);
1890
1891	if (enable)
1892		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1893	else
1894		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1895
1896	wr32(E1000_VT_CTL, vt_ctl);
1897}
1898
1899/**
1900 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
1901 *  @hw: pointer to the HW structure
1902 *  @offset: register offset to be read
1903 *  @data: pointer to the read data
1904 *
1905 *  Reads the MDI control register in the PHY at offset and stores the
1906 *  information read to data.
1907 **/
1908static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1909{
1910	s32 ret_val;
1911
1912	ret_val = hw->phy.ops.acquire(hw);
1913	if (ret_val)
1914		goto out;
1915
1916	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1917
1918	hw->phy.ops.release(hw);
1919
1920out:
1921	return ret_val;
1922}
1923
1924/**
1925 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
1926 *  @hw: pointer to the HW structure
1927 *  @offset: register offset to write to
1928 *  @data: data to write to register at offset
1929 *
1930 *  Writes data to MDI control register in the PHY at offset.
1931 **/
1932static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1933{
1934	s32 ret_val;
1935
1936
1937	ret_val = hw->phy.ops.acquire(hw);
1938	if (ret_val)
1939		goto out;
1940
1941	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1942
1943	hw->phy.ops.release(hw);
1944
1945out:
1946	return ret_val;
1947}
1948
1949/**
1950 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1951 *  @hw: pointer to the HW structure
1952 *
1953 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1954 *  the values found in the EEPROM.  This addresses an issue in which these
1955 *  bits are not restored from EEPROM after reset.
1956 **/
1957static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1958{
1959	s32 ret_val = 0;
1960	u32 mdicnfg;
1961	u16 nvm_data = 0;
1962
1963	if (hw->mac.type != e1000_82580)
1964		goto out;
1965	if (!igb_sgmii_active_82575(hw))
1966		goto out;
1967
1968	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1969				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1970				   &nvm_data);
1971	if (ret_val) {
1972		hw_dbg("NVM Read Error\n");
1973		goto out;
1974	}
1975
1976	mdicnfg = rd32(E1000_MDICNFG);
1977	if (nvm_data & NVM_WORD24_EXT_MDIO)
1978		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1979	if (nvm_data & NVM_WORD24_COM_MDIO)
1980		mdicnfg |= E1000_MDICNFG_COM_MDIO;
1981	wr32(E1000_MDICNFG, mdicnfg);
1982out:
1983	return ret_val;
1984}
1985
1986/**
1987 *  igb_reset_hw_82580 - Reset hardware
1988 *  @hw: pointer to the HW structure
1989 *
1990 *  This resets function or entire device (all ports, etc.)
1991 *  to a known state.
1992 **/
1993static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1994{
1995	s32 ret_val = 0;
1996	/* BH SW mailbox bit in SW_FW_SYNC */
1997	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1998	u32 ctrl, icr;
1999	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2000
2001
2002	hw->dev_spec._82575.global_device_reset = false;
2003
2004	/* due to hw errata, global device reset doesn't always
2005	 * work on 82580
2006	 */
2007	if (hw->mac.type == e1000_82580)
2008		global_device_reset = false;
2009
2010	/* Get current control state. */
2011	ctrl = rd32(E1000_CTRL);
2012
2013	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2014	 * on the last TLP read/write transaction when MAC is reset.
2015	 */
2016	ret_val = igb_disable_pcie_master(hw);
2017	if (ret_val)
2018		hw_dbg("PCI-E Master disable polling has failed.\n");
2019
2020	hw_dbg("Masking off all interrupts\n");
2021	wr32(E1000_IMC, 0xffffffff);
2022	wr32(E1000_RCTL, 0);
2023	wr32(E1000_TCTL, E1000_TCTL_PSP);
2024	wrfl();
2025
2026	msleep(10);
2027
2028	/* Determine whether or not a global dev reset is requested */
2029	if (global_device_reset &&
2030		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2031			global_device_reset = false;
2032
2033	if (global_device_reset &&
2034		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2035		ctrl |= E1000_CTRL_DEV_RST;
2036	else
2037		ctrl |= E1000_CTRL_RST;
2038
2039	wr32(E1000_CTRL, ctrl);
2040	wrfl();
2041
2042	/* Add delay to insure DEV_RST has time to complete */
2043	if (global_device_reset)
2044		msleep(5);
2045
2046	ret_val = igb_get_auto_rd_done(hw);
2047	if (ret_val) {
2048		/* When auto config read does not complete, do not
2049		 * return with an error. This can happen in situations
2050		 * where there is no eeprom and prevents getting link.
2051		 */
2052		hw_dbg("Auto Read Done did not complete\n");
2053	}
2054
2055	/* clear global device reset status bit */
2056	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2057
2058	/* Clear any pending interrupt events. */
2059	wr32(E1000_IMC, 0xffffffff);
2060	icr = rd32(E1000_ICR);
2061
2062	ret_val = igb_reset_mdicnfg_82580(hw);
2063	if (ret_val)
2064		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2065
2066	/* Install any alternate MAC address into RAR0 */
2067	ret_val = igb_check_alt_mac_addr(hw);
2068
2069	/* Release semaphore */
2070	if (global_device_reset)
2071		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2072
2073	return ret_val;
2074}
2075
2076/**
2077 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2078 *  @data: data received by reading RXPBS register
2079 *
2080 *  The 82580 uses a table based approach for packet buffer allocation sizes.
2081 *  This function converts the retrieved value into the correct table value
2082 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2083 *  0x0 36  72 144   1   2   4   8  16
2084 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2085 */
2086u16 igb_rxpbs_adjust_82580(u32 data)
2087{
2088	u16 ret_val = 0;
2089
2090	if (data < E1000_82580_RXPBS_TABLE_SIZE)
2091		ret_val = e1000_82580_rxpbs_table[data];
2092
2093	return ret_val;
2094}
2095
2096/**
2097 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2098 *  checksum
2099 *  @hw: pointer to the HW structure
2100 *  @offset: offset in words of the checksum protected region
2101 *
2102 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2103 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2104 **/
2105static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2106						 u16 offset)
2107{
2108	s32 ret_val = 0;
2109	u16 checksum = 0;
2110	u16 i, nvm_data;
2111
2112	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2113		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2114		if (ret_val) {
2115			hw_dbg("NVM Read Error\n");
2116			goto out;
2117		}
2118		checksum += nvm_data;
2119	}
2120
2121	if (checksum != (u16) NVM_SUM) {
2122		hw_dbg("NVM Checksum Invalid\n");
2123		ret_val = -E1000_ERR_NVM;
2124		goto out;
2125	}
2126
2127out:
2128	return ret_val;
2129}
2130
2131/**
2132 *  igb_update_nvm_checksum_with_offset - Update EEPROM
2133 *  checksum
2134 *  @hw: pointer to the HW structure
2135 *  @offset: offset in words of the checksum protected region
2136 *
2137 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2138 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2139 *  value to the EEPROM.
2140 **/
2141static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2142{
2143	s32 ret_val;
2144	u16 checksum = 0;
2145	u16 i, nvm_data;
2146
2147	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2148		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2149		if (ret_val) {
2150			hw_dbg("NVM Read Error while updating checksum.\n");
2151			goto out;
2152		}
2153		checksum += nvm_data;
2154	}
2155	checksum = (u16) NVM_SUM - checksum;
2156	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2157				&checksum);
2158	if (ret_val)
2159		hw_dbg("NVM Write Error while updating checksum.\n");
2160
2161out:
2162	return ret_val;
2163}
2164
2165/**
2166 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2167 *  @hw: pointer to the HW structure
2168 *
2169 *  Calculates the EEPROM section checksum by reading/adding each word of
2170 *  the EEPROM and then verifies that the sum of the EEPROM is
2171 *  equal to 0xBABA.
2172 **/
2173static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2174{
2175	s32 ret_val = 0;
2176	u16 eeprom_regions_count = 1;
2177	u16 j, nvm_data;
2178	u16 nvm_offset;
2179
2180	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2181	if (ret_val) {
2182		hw_dbg("NVM Read Error\n");
2183		goto out;
2184	}
2185
2186	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2187		/* if checksums compatibility bit is set validate checksums
2188		 * for all 4 ports.
2189		 */
2190		eeprom_regions_count = 4;
2191	}
2192
2193	for (j = 0; j < eeprom_regions_count; j++) {
2194		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2195		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2196								nvm_offset);
2197		if (ret_val != 0)
2198			goto out;
2199	}
2200
2201out:
2202	return ret_val;
2203}
2204
2205/**
2206 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2207 *  @hw: pointer to the HW structure
2208 *
2209 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2210 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2211 *  checksum and writes the value to the EEPROM.
2212 **/
2213static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2214{
2215	s32 ret_val;
2216	u16 j, nvm_data;
2217	u16 nvm_offset;
2218
2219	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2220	if (ret_val) {
2221		hw_dbg("NVM Read Error while updating checksum"
2222			" compatibility bit.\n");
2223		goto out;
2224	}
2225
2226	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2227		/* set compatibility bit to validate checksums appropriately */
2228		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2229		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2230					&nvm_data);
2231		if (ret_val) {
2232			hw_dbg("NVM Write Error while updating checksum"
2233				" compatibility bit.\n");
2234			goto out;
2235		}
2236	}
2237
2238	for (j = 0; j < 4; j++) {
2239		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2240		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2241		if (ret_val)
2242			goto out;
2243	}
2244
2245out:
2246	return ret_val;
2247}
2248
2249/**
2250 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2251 *  @hw: pointer to the HW structure
2252 *
2253 *  Calculates the EEPROM section checksum by reading/adding each word of
2254 *  the EEPROM and then verifies that the sum of the EEPROM is
2255 *  equal to 0xBABA.
2256 **/
2257static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2258{
2259	s32 ret_val = 0;
2260	u16 j;
2261	u16 nvm_offset;
2262
2263	for (j = 0; j < 4; j++) {
2264		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2265		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2266								nvm_offset);
2267		if (ret_val != 0)
2268			goto out;
2269	}
2270
2271out:
2272	return ret_val;
2273}
2274
2275/**
2276 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2277 *  @hw: pointer to the HW structure
2278 *
2279 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2280 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2281 *  checksum and writes the value to the EEPROM.
2282 **/
2283static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2284{
2285	s32 ret_val = 0;
2286	u16 j;
2287	u16 nvm_offset;
2288
2289	for (j = 0; j < 4; j++) {
2290		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2291		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2292		if (ret_val != 0)
2293			goto out;
2294	}
2295
2296out:
2297	return ret_val;
2298}
2299
2300/**
2301 *  __igb_access_emi_reg - Read/write EMI register
2302 *  @hw: pointer to the HW structure
2303 *  @addr: EMI address to program
2304 *  @data: pointer to value to read/write from/to the EMI address
2305 *  @read: boolean flag to indicate read or write
2306 **/
2307static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2308				  u16 *data, bool read)
2309{
2310	s32 ret_val = E1000_SUCCESS;
2311
2312	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2313	if (ret_val)
2314		return ret_val;
2315
2316	if (read)
2317		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2318	else
2319		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2320
2321	return ret_val;
2322}
2323
2324/**
2325 *  igb_read_emi_reg - Read Extended Management Interface register
2326 *  @hw: pointer to the HW structure
2327 *  @addr: EMI address to program
2328 *  @data: value to be read from the EMI address
2329 **/
2330s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2331{
2332	return __igb_access_emi_reg(hw, addr, data, true);
2333}
2334
2335/**
2336 *  igb_set_eee_i350 - Enable/disable EEE support
2337 *  @hw: pointer to the HW structure
2338 *
2339 *  Enable/disable EEE based on setting in dev_spec structure.
2340 *
2341 **/
2342s32 igb_set_eee_i350(struct e1000_hw *hw)
2343{
2344	s32 ret_val = 0;
2345	u32 ipcnfg, eeer;
2346
2347	if ((hw->mac.type < e1000_i350) ||
2348	    (hw->phy.media_type != e1000_media_type_copper))
2349		goto out;
2350	ipcnfg = rd32(E1000_IPCNFG);
2351	eeer = rd32(E1000_EEER);
2352
2353	/* enable or disable per user setting */
2354	if (!(hw->dev_spec._82575.eee_disable)) {
2355		u32 eee_su = rd32(E1000_EEE_SU);
2356
2357		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
2358		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2359			E1000_EEER_LPI_FC);
2360
2361		/* This bit should not be set in normal operation. */
2362		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2363			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2364
2365	} else {
2366		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2367			E1000_IPCNFG_EEE_100M_AN);
2368		eeer &= ~(E1000_EEER_TX_LPI_EN |
2369			E1000_EEER_RX_LPI_EN |
2370			E1000_EEER_LPI_FC);
2371	}
2372	wr32(E1000_IPCNFG, ipcnfg);
2373	wr32(E1000_EEER, eeer);
2374	rd32(E1000_IPCNFG);
2375	rd32(E1000_EEER);
2376out:
2377
2378	return ret_val;
2379}
2380
2381/**
2382 *  igb_set_eee_i354 - Enable/disable EEE support
2383 *  @hw: pointer to the HW structure
2384 *
2385 *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2386 *
2387 **/
2388s32 igb_set_eee_i354(struct e1000_hw *hw)
2389{
2390	struct e1000_phy_info *phy = &hw->phy;
2391	s32 ret_val = 0;
2392	u16 phy_data;
2393
2394	if ((hw->phy.media_type != e1000_media_type_copper) ||
2395	    (phy->id != M88E1545_E_PHY_ID))
2396		goto out;
2397
2398	if (!hw->dev_spec._82575.eee_disable) {
2399		/* Switch to PHY page 18. */
2400		ret_val = phy->ops.write_reg(hw, E1000_M88E1545_PAGE_ADDR, 18);
2401		if (ret_val)
2402			goto out;
2403
2404		ret_val = phy->ops.read_reg(hw, E1000_M88E1545_EEE_CTRL_1,
2405					    &phy_data);
2406		if (ret_val)
2407			goto out;
2408
2409		phy_data |= E1000_M88E1545_EEE_CTRL_1_MS;
2410		ret_val = phy->ops.write_reg(hw, E1000_M88E1545_EEE_CTRL_1,
2411					     phy_data);
2412		if (ret_val)
2413			goto out;
2414
2415		/* Return the PHY to page 0. */
2416		ret_val = phy->ops.write_reg(hw, E1000_M88E1545_PAGE_ADDR, 0);
2417		if (ret_val)
2418			goto out;
2419
2420		/* Turn on EEE advertisement. */
2421		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2422					     E1000_EEE_ADV_DEV_I354,
2423					     &phy_data);
2424		if (ret_val)
2425			goto out;
2426
2427		phy_data |= E1000_EEE_ADV_100_SUPPORTED |
2428			    E1000_EEE_ADV_1000_SUPPORTED;
2429		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2430						E1000_EEE_ADV_DEV_I354,
2431						phy_data);
2432	} else {
2433		/* Turn off EEE advertisement. */
2434		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2435					     E1000_EEE_ADV_DEV_I354,
2436					     &phy_data);
2437		if (ret_val)
2438			goto out;
2439
2440		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2441			      E1000_EEE_ADV_1000_SUPPORTED);
2442		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2443					      E1000_EEE_ADV_DEV_I354,
2444					      phy_data);
2445	}
2446
2447out:
2448	return ret_val;
2449}
2450
2451/**
2452 *  igb_get_eee_status_i354 - Get EEE status
2453 *  @hw: pointer to the HW structure
2454 *  @status: EEE status
2455 *
2456 *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2457 *  been received.
2458 **/
2459s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2460{
2461	struct e1000_phy_info *phy = &hw->phy;
2462	s32 ret_val = 0;
2463	u16 phy_data;
2464
2465	/* Check if EEE is supported on this device. */
2466	if ((hw->phy.media_type != e1000_media_type_copper) ||
2467	    (phy->id != M88E1545_E_PHY_ID))
2468		goto out;
2469
2470	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2471				     E1000_PCS_STATUS_DEV_I354,
2472				     &phy_data);
2473	if (ret_val)
2474		goto out;
2475
2476	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2477			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2478
2479out:
2480	return ret_val;
2481}
2482
2483static const u8 e1000_emc_temp_data[4] = {
2484	E1000_EMC_INTERNAL_DATA,
2485	E1000_EMC_DIODE1_DATA,
2486	E1000_EMC_DIODE2_DATA,
2487	E1000_EMC_DIODE3_DATA
2488};
2489static const u8 e1000_emc_therm_limit[4] = {
2490	E1000_EMC_INTERNAL_THERM_LIMIT,
2491	E1000_EMC_DIODE1_THERM_LIMIT,
2492	E1000_EMC_DIODE2_THERM_LIMIT,
2493	E1000_EMC_DIODE3_THERM_LIMIT
2494};
2495
2496/**
2497 *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2498 *  @hw: pointer to hardware structure
2499 *
2500 *  Updates the temperatures in mac.thermal_sensor_data
2501 **/
2502s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2503{
2504	s32 status = E1000_SUCCESS;
2505	u16 ets_offset;
2506	u16 ets_cfg;
2507	u16 ets_sensor;
2508	u8  num_sensors;
2509	u8  sensor_index;
2510	u8  sensor_location;
2511	u8  i;
2512	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2513
2514	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2515		return E1000_NOT_IMPLEMENTED;
2516
2517	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2518
2519	/* Return the internal sensor only if ETS is unsupported */
2520	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2521	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2522		return status;
2523
2524	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2525	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2526	    != NVM_ETS_TYPE_EMC)
2527		return E1000_NOT_IMPLEMENTED;
2528
2529	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2530	if (num_sensors > E1000_MAX_SENSORS)
2531		num_sensors = E1000_MAX_SENSORS;
2532
2533	for (i = 1; i < num_sensors; i++) {
2534		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2535		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2536				NVM_ETS_DATA_INDEX_SHIFT);
2537		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2538				   NVM_ETS_DATA_LOC_SHIFT);
2539
2540		if (sensor_location != 0)
2541			hw->phy.ops.read_i2c_byte(hw,
2542					e1000_emc_temp_data[sensor_index],
2543					E1000_I2C_THERMAL_SENSOR_ADDR,
2544					&data->sensor[i].temp);
2545	}
2546	return status;
2547}
2548
2549/**
2550 *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2551 *  @hw: pointer to hardware structure
2552 *
2553 *  Sets the thermal sensor thresholds according to the NVM map
2554 *  and save off the threshold and location values into mac.thermal_sensor_data
2555 **/
2556s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2557{
2558	s32 status = E1000_SUCCESS;
2559	u16 ets_offset;
2560	u16 ets_cfg;
2561	u16 ets_sensor;
2562	u8  low_thresh_delta;
2563	u8  num_sensors;
2564	u8  sensor_index;
2565	u8  sensor_location;
2566	u8  therm_limit;
2567	u8  i;
2568	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2569
2570	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2571		return E1000_NOT_IMPLEMENTED;
2572
2573	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2574
2575	data->sensor[0].location = 0x1;
2576	data->sensor[0].caution_thresh =
2577		(rd32(E1000_THHIGHTC) & 0xFF);
2578	data->sensor[0].max_op_thresh =
2579		(rd32(E1000_THLOWTC) & 0xFF);
2580
2581	/* Return the internal sensor only if ETS is unsupported */
2582	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2583	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2584		return status;
2585
2586	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2587	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2588	    != NVM_ETS_TYPE_EMC)
2589		return E1000_NOT_IMPLEMENTED;
2590
2591	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2592			    NVM_ETS_LTHRES_DELTA_SHIFT);
2593	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2594
2595	for (i = 1; i <= num_sensors; i++) {
2596		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2597		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2598				NVM_ETS_DATA_INDEX_SHIFT);
2599		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2600				   NVM_ETS_DATA_LOC_SHIFT);
2601		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2602
2603		hw->phy.ops.write_i2c_byte(hw,
2604			e1000_emc_therm_limit[sensor_index],
2605			E1000_I2C_THERMAL_SENSOR_ADDR,
2606			therm_limit);
2607
2608		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2609			data->sensor[i].location = sensor_location;
2610			data->sensor[i].caution_thresh = therm_limit;
2611			data->sensor[i].max_op_thresh = therm_limit -
2612							low_thresh_delta;
2613		}
2614	}
2615	return status;
2616}
2617
2618static struct e1000_mac_operations e1000_mac_ops_82575 = {
2619	.init_hw              = igb_init_hw_82575,
2620	.check_for_link       = igb_check_for_link_82575,
2621	.rar_set              = igb_rar_set,
2622	.read_mac_addr        = igb_read_mac_addr_82575,
2623	.get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2624#ifdef CONFIG_IGB_HWMON
2625	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2626	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2627#endif
2628};
2629
2630static struct e1000_phy_operations e1000_phy_ops_82575 = {
2631	.acquire              = igb_acquire_phy_82575,
2632	.get_cfg_done         = igb_get_cfg_done_82575,
2633	.release              = igb_release_phy_82575,
2634	.write_i2c_byte       = igb_write_i2c_byte,
2635	.read_i2c_byte        = igb_read_i2c_byte,
2636};
2637
2638static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2639	.acquire              = igb_acquire_nvm_82575,
2640	.read                 = igb_read_nvm_eerd,
2641	.release              = igb_release_nvm_82575,
2642	.write                = igb_write_nvm_spi,
2643};
2644
2645const struct e1000_info e1000_82575_info = {
2646	.get_invariants = igb_get_invariants_82575,
2647	.mac_ops = &e1000_mac_ops_82575,
2648	.phy_ops = &e1000_phy_ops_82575,
2649	.nvm_ops = &e1000_nvm_ops_82575,
2650};
2651
2652