e1000_82575.c revision 82bbcdebbac75bf7636bf63ac0e6e4a49b128978
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2011 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* e1000_82575
29 * e1000_82576
30 */
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/types.h>
35#include <linux/if_ether.h>
36
37#include "e1000_mac.h"
38#include "e1000_82575.h"
39
40static s32  igb_get_invariants_82575(struct e1000_hw *);
41static s32  igb_acquire_phy_82575(struct e1000_hw *);
42static void igb_release_phy_82575(struct e1000_hw *);
43static s32  igb_acquire_nvm_82575(struct e1000_hw *);
44static void igb_release_nvm_82575(struct e1000_hw *);
45static s32  igb_check_for_link_82575(struct e1000_hw *);
46static s32  igb_get_cfg_done_82575(struct e1000_hw *);
47static s32  igb_init_hw_82575(struct e1000_hw *);
48static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
49static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
50static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
51static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
52static s32  igb_reset_hw_82575(struct e1000_hw *);
53static s32  igb_reset_hw_82580(struct e1000_hw *);
54static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
55static s32  igb_setup_copper_link_82575(struct e1000_hw *);
56static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
57static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
58static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
59static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
60static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
61						 u16 *);
62static s32  igb_get_phy_id_82575(struct e1000_hw *);
63static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
64static bool igb_sgmii_active_82575(struct e1000_hw *);
65static s32  igb_reset_init_script_82575(struct e1000_hw *);
66static s32  igb_read_mac_addr_82575(struct e1000_hw *);
67static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
68static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
69static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
70static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
71static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
72static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
73static const u16 e1000_82580_rxpbs_table[] =
74	{ 36, 72, 144, 1, 2, 4, 8, 16,
75	  35, 70, 140 };
76#define E1000_82580_RXPBS_TABLE_SIZE \
77	(sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
78
79/**
80 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
81 *  @hw: pointer to the HW structure
82 *
83 *  Called to determine if the I2C pins are being used for I2C or as an
84 *  external MDIO interface since the two options are mutually exclusive.
85 **/
86static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
87{
88	u32 reg = 0;
89	bool ext_mdio = false;
90
91	switch (hw->mac.type) {
92	case e1000_82575:
93	case e1000_82576:
94		reg = rd32(E1000_MDIC);
95		ext_mdio = !!(reg & E1000_MDIC_DEST);
96		break;
97	case e1000_82580:
98	case e1000_i350:
99		reg = rd32(E1000_MDICNFG);
100		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
101		break;
102	default:
103		break;
104	}
105	return ext_mdio;
106}
107
108static s32 igb_get_invariants_82575(struct e1000_hw *hw)
109{
110	struct e1000_phy_info *phy = &hw->phy;
111	struct e1000_nvm_info *nvm = &hw->nvm;
112	struct e1000_mac_info *mac = &hw->mac;
113	struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
114	u32 eecd;
115	s32 ret_val;
116	u16 size;
117	u32 ctrl_ext = 0;
118
119	switch (hw->device_id) {
120	case E1000_DEV_ID_82575EB_COPPER:
121	case E1000_DEV_ID_82575EB_FIBER_SERDES:
122	case E1000_DEV_ID_82575GB_QUAD_COPPER:
123		mac->type = e1000_82575;
124		break;
125	case E1000_DEV_ID_82576:
126	case E1000_DEV_ID_82576_NS:
127	case E1000_DEV_ID_82576_NS_SERDES:
128	case E1000_DEV_ID_82576_FIBER:
129	case E1000_DEV_ID_82576_SERDES:
130	case E1000_DEV_ID_82576_QUAD_COPPER:
131	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
132	case E1000_DEV_ID_82576_SERDES_QUAD:
133		mac->type = e1000_82576;
134		break;
135	case E1000_DEV_ID_82580_COPPER:
136	case E1000_DEV_ID_82580_FIBER:
137	case E1000_DEV_ID_82580_QUAD_FIBER:
138	case E1000_DEV_ID_82580_SERDES:
139	case E1000_DEV_ID_82580_SGMII:
140	case E1000_DEV_ID_82580_COPPER_DUAL:
141	case E1000_DEV_ID_DH89XXCC_SGMII:
142	case E1000_DEV_ID_DH89XXCC_SERDES:
143	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
144	case E1000_DEV_ID_DH89XXCC_SFP:
145		mac->type = e1000_82580;
146		break;
147	case E1000_DEV_ID_I350_COPPER:
148	case E1000_DEV_ID_I350_FIBER:
149	case E1000_DEV_ID_I350_SERDES:
150	case E1000_DEV_ID_I350_SGMII:
151		mac->type = e1000_i350;
152		break;
153	default:
154		return -E1000_ERR_MAC_INIT;
155		break;
156	}
157
158	/* Set media type */
159	/*
160	 * The 82575 uses bits 22:23 for link mode. The mode can be changed
161	 * based on the EEPROM. We cannot rely upon device ID. There
162	 * is no distinguishable difference between fiber and internal
163	 * SerDes mode on the 82575. There can be an external PHY attached
164	 * on the SGMII interface. For this, we'll set sgmii_active to true.
165	 */
166	phy->media_type = e1000_media_type_copper;
167	dev_spec->sgmii_active = false;
168
169	ctrl_ext = rd32(E1000_CTRL_EXT);
170	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
171	case E1000_CTRL_EXT_LINK_MODE_SGMII:
172		dev_spec->sgmii_active = true;
173		break;
174	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
175	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
176		hw->phy.media_type = e1000_media_type_internal_serdes;
177		break;
178	default:
179		break;
180	}
181
182	/* Set mta register count */
183	mac->mta_reg_count = 128;
184	/* Set rar entry count */
185	mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
186	if (mac->type == e1000_82576)
187		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
188	if (mac->type == e1000_82580)
189		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
190	if (mac->type == e1000_i350)
191		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
192	/* reset */
193	if (mac->type >= e1000_82580)
194		mac->ops.reset_hw = igb_reset_hw_82580;
195	else
196		mac->ops.reset_hw = igb_reset_hw_82575;
197	/* Set if part includes ASF firmware */
198	mac->asf_firmware_present = true;
199	/* Set if manageability features are enabled. */
200	mac->arc_subsystem_valid =
201		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
202			? true : false;
203	/* enable EEE on i350 parts */
204	if (mac->type == e1000_i350)
205		dev_spec->eee_disable = false;
206	else
207		dev_spec->eee_disable = true;
208	/* physical interface link setup */
209	mac->ops.setup_physical_interface =
210		(hw->phy.media_type == e1000_media_type_copper)
211			? igb_setup_copper_link_82575
212			: igb_setup_serdes_link_82575;
213
214	/* NVM initialization */
215	eecd = rd32(E1000_EECD);
216
217	nvm->opcode_bits        = 8;
218	nvm->delay_usec         = 1;
219	switch (nvm->override) {
220	case e1000_nvm_override_spi_large:
221		nvm->page_size    = 32;
222		nvm->address_bits = 16;
223		break;
224	case e1000_nvm_override_spi_small:
225		nvm->page_size    = 8;
226		nvm->address_bits = 8;
227		break;
228	default:
229		nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
230		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
231		break;
232	}
233
234	nvm->type = e1000_nvm_eeprom_spi;
235
236	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
237		     E1000_EECD_SIZE_EX_SHIFT);
238
239	/*
240	 * Added to a constant, "size" becomes the left-shift value
241	 * for setting word_size.
242	 */
243	size += NVM_WORD_SIZE_BASE_SHIFT;
244
245	/*
246	 * Check for invalid size
247	 */
248	if ((hw->mac.type == e1000_82576) && (size > 15)) {
249		pr_notice("The NVM size is not valid, defaulting to 32K\n");
250		size = 15;
251	}
252	nvm->word_size = 1 << size;
253	if (nvm->word_size == (1 << 15))
254		nvm->page_size = 128;
255
256	/* NVM Function Pointers */
257	nvm->ops.acquire = igb_acquire_nvm_82575;
258	if (nvm->word_size < (1 << 15))
259		nvm->ops.read = igb_read_nvm_eerd;
260	else
261		nvm->ops.read = igb_read_nvm_spi;
262
263	nvm->ops.release = igb_release_nvm_82575;
264	switch (hw->mac.type) {
265	case e1000_82580:
266		nvm->ops.validate = igb_validate_nvm_checksum_82580;
267		nvm->ops.update = igb_update_nvm_checksum_82580;
268		break;
269	case e1000_i350:
270		nvm->ops.validate = igb_validate_nvm_checksum_i350;
271		nvm->ops.update = igb_update_nvm_checksum_i350;
272		break;
273	default:
274		nvm->ops.validate = igb_validate_nvm_checksum;
275		nvm->ops.update = igb_update_nvm_checksum;
276	}
277	nvm->ops.write = igb_write_nvm_spi;
278
279	/* if part supports SR-IOV then initialize mailbox parameters */
280	switch (mac->type) {
281	case e1000_82576:
282	case e1000_i350:
283		igb_init_mbx_params_pf(hw);
284		break;
285	default:
286		break;
287	}
288
289	/* setup PHY parameters */
290	if (phy->media_type != e1000_media_type_copper) {
291		phy->type = e1000_phy_none;
292		return 0;
293	}
294
295	phy->autoneg_mask        = AUTONEG_ADVERTISE_SPEED_DEFAULT;
296	phy->reset_delay_us      = 100;
297
298	ctrl_ext = rd32(E1000_CTRL_EXT);
299
300	/* PHY function pointers */
301	if (igb_sgmii_active_82575(hw)) {
302		phy->ops.reset      = igb_phy_hw_reset_sgmii_82575;
303		ctrl_ext |= E1000_CTRL_I2C_ENA;
304	} else {
305		phy->ops.reset      = igb_phy_hw_reset;
306		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
307	}
308
309	wr32(E1000_CTRL_EXT, ctrl_ext);
310	igb_reset_mdicnfg_82580(hw);
311
312	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
313		phy->ops.read_reg   = igb_read_phy_reg_sgmii_82575;
314		phy->ops.write_reg  = igb_write_phy_reg_sgmii_82575;
315	} else if (hw->mac.type >= e1000_82580) {
316		phy->ops.read_reg   = igb_read_phy_reg_82580;
317		phy->ops.write_reg  = igb_write_phy_reg_82580;
318	} else {
319		phy->ops.read_reg   = igb_read_phy_reg_igp;
320		phy->ops.write_reg  = igb_write_phy_reg_igp;
321	}
322
323	/* set lan id */
324	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
325	               E1000_STATUS_FUNC_SHIFT;
326
327	/* Set phy->phy_addr and phy->id. */
328	ret_val = igb_get_phy_id_82575(hw);
329	if (ret_val)
330		return ret_val;
331
332	/* Verify phy id and set remaining function pointers */
333	switch (phy->id) {
334	case I347AT4_E_PHY_ID:
335	case M88E1112_E_PHY_ID:
336	case M88E1111_I_PHY_ID:
337		phy->type                   = e1000_phy_m88;
338		phy->ops.get_phy_info       = igb_get_phy_info_m88;
339
340		if (phy->id == I347AT4_E_PHY_ID ||
341		    phy->id == M88E1112_E_PHY_ID)
342			phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
343		else
344			phy->ops.get_cable_length = igb_get_cable_length_m88;
345
346		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
347		break;
348	case IGP03E1000_E_PHY_ID:
349		phy->type                   = e1000_phy_igp_3;
350		phy->ops.get_phy_info       = igb_get_phy_info_igp;
351		phy->ops.get_cable_length   = igb_get_cable_length_igp_2;
352		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
353		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82575;
354		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state;
355		break;
356	case I82580_I_PHY_ID:
357	case I350_I_PHY_ID:
358		phy->type                   = e1000_phy_82580;
359		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580;
360		phy->ops.get_cable_length   = igb_get_cable_length_82580;
361		phy->ops.get_phy_info       = igb_get_phy_info_82580;
362		break;
363	default:
364		return -E1000_ERR_PHY;
365	}
366
367	return 0;
368}
369
370/**
371 *  igb_acquire_phy_82575 - Acquire rights to access PHY
372 *  @hw: pointer to the HW structure
373 *
374 *  Acquire access rights to the correct PHY.  This is a
375 *  function pointer entry point called by the api module.
376 **/
377static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
378{
379	u16 mask = E1000_SWFW_PHY0_SM;
380
381	if (hw->bus.func == E1000_FUNC_1)
382		mask = E1000_SWFW_PHY1_SM;
383	else if (hw->bus.func == E1000_FUNC_2)
384		mask = E1000_SWFW_PHY2_SM;
385	else if (hw->bus.func == E1000_FUNC_3)
386		mask = E1000_SWFW_PHY3_SM;
387
388	return igb_acquire_swfw_sync_82575(hw, mask);
389}
390
391/**
392 *  igb_release_phy_82575 - Release rights to access PHY
393 *  @hw: pointer to the HW structure
394 *
395 *  A wrapper to release access rights to the correct PHY.  This is a
396 *  function pointer entry point called by the api module.
397 **/
398static void igb_release_phy_82575(struct e1000_hw *hw)
399{
400	u16 mask = E1000_SWFW_PHY0_SM;
401
402	if (hw->bus.func == E1000_FUNC_1)
403		mask = E1000_SWFW_PHY1_SM;
404	else if (hw->bus.func == E1000_FUNC_2)
405		mask = E1000_SWFW_PHY2_SM;
406	else if (hw->bus.func == E1000_FUNC_3)
407		mask = E1000_SWFW_PHY3_SM;
408
409	igb_release_swfw_sync_82575(hw, mask);
410}
411
412/**
413 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
414 *  @hw: pointer to the HW structure
415 *  @offset: register offset to be read
416 *  @data: pointer to the read data
417 *
418 *  Reads the PHY register at offset using the serial gigabit media independent
419 *  interface and stores the retrieved information in data.
420 **/
421static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
422					  u16 *data)
423{
424	s32 ret_val = -E1000_ERR_PARAM;
425
426	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
427		hw_dbg("PHY Address %u is out of range\n", offset);
428		goto out;
429	}
430
431	ret_val = hw->phy.ops.acquire(hw);
432	if (ret_val)
433		goto out;
434
435	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
436
437	hw->phy.ops.release(hw);
438
439out:
440	return ret_val;
441}
442
443/**
444 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
445 *  @hw: pointer to the HW structure
446 *  @offset: register offset to write to
447 *  @data: data to write at register offset
448 *
449 *  Writes the data to PHY register at the offset using the serial gigabit
450 *  media independent interface.
451 **/
452static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
453					   u16 data)
454{
455	s32 ret_val = -E1000_ERR_PARAM;
456
457
458	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
459		hw_dbg("PHY Address %d is out of range\n", offset);
460		goto out;
461	}
462
463	ret_val = hw->phy.ops.acquire(hw);
464	if (ret_val)
465		goto out;
466
467	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
468
469	hw->phy.ops.release(hw);
470
471out:
472	return ret_val;
473}
474
475/**
476 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
477 *  @hw: pointer to the HW structure
478 *
479 *  Retrieves the PHY address and ID for both PHY's which do and do not use
480 *  sgmi interface.
481 **/
482static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
483{
484	struct e1000_phy_info *phy = &hw->phy;
485	s32  ret_val = 0;
486	u16 phy_id;
487	u32 ctrl_ext;
488	u32 mdic;
489
490	/*
491	 * For SGMII PHYs, we try the list of possible addresses until
492	 * we find one that works.  For non-SGMII PHYs
493	 * (e.g. integrated copper PHYs), an address of 1 should
494	 * work.  The result of this function should mean phy->phy_addr
495	 * and phy->id are set correctly.
496	 */
497	if (!(igb_sgmii_active_82575(hw))) {
498		phy->addr = 1;
499		ret_val = igb_get_phy_id(hw);
500		goto out;
501	}
502
503	if (igb_sgmii_uses_mdio_82575(hw)) {
504		switch (hw->mac.type) {
505		case e1000_82575:
506		case e1000_82576:
507			mdic = rd32(E1000_MDIC);
508			mdic &= E1000_MDIC_PHY_MASK;
509			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
510			break;
511		case e1000_82580:
512		case e1000_i350:
513			mdic = rd32(E1000_MDICNFG);
514			mdic &= E1000_MDICNFG_PHY_MASK;
515			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
516			break;
517		default:
518			ret_val = -E1000_ERR_PHY;
519			goto out;
520			break;
521		}
522		ret_val = igb_get_phy_id(hw);
523		goto out;
524	}
525
526	/* Power on sgmii phy if it is disabled */
527	ctrl_ext = rd32(E1000_CTRL_EXT);
528	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
529	wrfl();
530	msleep(300);
531
532	/*
533	 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
534	 * Therefore, we need to test 1-7
535	 */
536	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
537		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
538		if (ret_val == 0) {
539			hw_dbg("Vendor ID 0x%08X read at address %u\n",
540			       phy_id, phy->addr);
541			/*
542			 * At the time of this writing, The M88 part is
543			 * the only supported SGMII PHY product.
544			 */
545			if (phy_id == M88_VENDOR)
546				break;
547		} else {
548			hw_dbg("PHY address %u was unreadable\n", phy->addr);
549		}
550	}
551
552	/* A valid PHY type couldn't be found. */
553	if (phy->addr == 8) {
554		phy->addr = 0;
555		ret_val = -E1000_ERR_PHY;
556		goto out;
557	} else {
558		ret_val = igb_get_phy_id(hw);
559	}
560
561	/* restore previous sfp cage power state */
562	wr32(E1000_CTRL_EXT, ctrl_ext);
563
564out:
565	return ret_val;
566}
567
568/**
569 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
570 *  @hw: pointer to the HW structure
571 *
572 *  Resets the PHY using the serial gigabit media independent interface.
573 **/
574static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
575{
576	s32 ret_val;
577
578	/*
579	 * This isn't a true "hard" reset, but is the only reset
580	 * available to us at this time.
581	 */
582
583	hw_dbg("Soft resetting SGMII attached PHY...\n");
584
585	/*
586	 * SFP documentation requires the following to configure the SPF module
587	 * to work on SGMII.  No further documentation is given.
588	 */
589	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
590	if (ret_val)
591		goto out;
592
593	ret_val = igb_phy_sw_reset(hw);
594
595out:
596	return ret_val;
597}
598
599/**
600 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
601 *  @hw: pointer to the HW structure
602 *  @active: true to enable LPLU, false to disable
603 *
604 *  Sets the LPLU D0 state according to the active flag.  When
605 *  activating LPLU this function also disables smart speed
606 *  and vice versa.  LPLU will not be activated unless the
607 *  device autonegotiation advertisement meets standards of
608 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
609 *  This is a function pointer entry point only called by
610 *  PHY setup routines.
611 **/
612static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
613{
614	struct e1000_phy_info *phy = &hw->phy;
615	s32 ret_val;
616	u16 data;
617
618	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
619	if (ret_val)
620		goto out;
621
622	if (active) {
623		data |= IGP02E1000_PM_D0_LPLU;
624		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
625						 data);
626		if (ret_val)
627			goto out;
628
629		/* When LPLU is enabled, we should disable SmartSpeed */
630		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
631						&data);
632		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
633		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
634						 data);
635		if (ret_val)
636			goto out;
637	} else {
638		data &= ~IGP02E1000_PM_D0_LPLU;
639		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
640						 data);
641		/*
642		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
643		 * during Dx states where the power conservation is most
644		 * important.  During driver activity we should enable
645		 * SmartSpeed, so performance is maintained.
646		 */
647		if (phy->smart_speed == e1000_smart_speed_on) {
648			ret_val = phy->ops.read_reg(hw,
649					IGP01E1000_PHY_PORT_CONFIG, &data);
650			if (ret_val)
651				goto out;
652
653			data |= IGP01E1000_PSCFR_SMART_SPEED;
654			ret_val = phy->ops.write_reg(hw,
655					IGP01E1000_PHY_PORT_CONFIG, data);
656			if (ret_val)
657				goto out;
658		} else if (phy->smart_speed == e1000_smart_speed_off) {
659			ret_val = phy->ops.read_reg(hw,
660					IGP01E1000_PHY_PORT_CONFIG, &data);
661			if (ret_val)
662				goto out;
663
664			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
665			ret_val = phy->ops.write_reg(hw,
666					IGP01E1000_PHY_PORT_CONFIG, data);
667			if (ret_val)
668				goto out;
669		}
670	}
671
672out:
673	return ret_val;
674}
675
676/**
677 *  igb_acquire_nvm_82575 - Request for access to EEPROM
678 *  @hw: pointer to the HW structure
679 *
680 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
681 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
682 *  Return successful if access grant bit set, else clear the request for
683 *  EEPROM access and return -E1000_ERR_NVM (-1).
684 **/
685static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
686{
687	s32 ret_val;
688
689	ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
690	if (ret_val)
691		goto out;
692
693	ret_val = igb_acquire_nvm(hw);
694
695	if (ret_val)
696		igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
697
698out:
699	return ret_val;
700}
701
702/**
703 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
704 *  @hw: pointer to the HW structure
705 *
706 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
707 *  then release the semaphores acquired.
708 **/
709static void igb_release_nvm_82575(struct e1000_hw *hw)
710{
711	igb_release_nvm(hw);
712	igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
713}
714
715/**
716 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
717 *  @hw: pointer to the HW structure
718 *  @mask: specifies which semaphore to acquire
719 *
720 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
721 *  will also specify which port we're acquiring the lock for.
722 **/
723static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
724{
725	u32 swfw_sync;
726	u32 swmask = mask;
727	u32 fwmask = mask << 16;
728	s32 ret_val = 0;
729	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
730
731	while (i < timeout) {
732		if (igb_get_hw_semaphore(hw)) {
733			ret_val = -E1000_ERR_SWFW_SYNC;
734			goto out;
735		}
736
737		swfw_sync = rd32(E1000_SW_FW_SYNC);
738		if (!(swfw_sync & (fwmask | swmask)))
739			break;
740
741		/*
742		 * Firmware currently using resource (fwmask)
743		 * or other software thread using resource (swmask)
744		 */
745		igb_put_hw_semaphore(hw);
746		mdelay(5);
747		i++;
748	}
749
750	if (i == timeout) {
751		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
752		ret_val = -E1000_ERR_SWFW_SYNC;
753		goto out;
754	}
755
756	swfw_sync |= swmask;
757	wr32(E1000_SW_FW_SYNC, swfw_sync);
758
759	igb_put_hw_semaphore(hw);
760
761out:
762	return ret_val;
763}
764
765/**
766 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
767 *  @hw: pointer to the HW structure
768 *  @mask: specifies which semaphore to acquire
769 *
770 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
771 *  will also specify which port we're releasing the lock for.
772 **/
773static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
774{
775	u32 swfw_sync;
776
777	while (igb_get_hw_semaphore(hw) != 0);
778	/* Empty */
779
780	swfw_sync = rd32(E1000_SW_FW_SYNC);
781	swfw_sync &= ~mask;
782	wr32(E1000_SW_FW_SYNC, swfw_sync);
783
784	igb_put_hw_semaphore(hw);
785}
786
787/**
788 *  igb_get_cfg_done_82575 - Read config done bit
789 *  @hw: pointer to the HW structure
790 *
791 *  Read the management control register for the config done bit for
792 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
793 *  to read the config done bit, so an error is *ONLY* logged and returns
794 *  0.  If we were to return with error, EEPROM-less silicon
795 *  would not be able to be reset or change link.
796 **/
797static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
798{
799	s32 timeout = PHY_CFG_TIMEOUT;
800	s32 ret_val = 0;
801	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
802
803	if (hw->bus.func == 1)
804		mask = E1000_NVM_CFG_DONE_PORT_1;
805	else if (hw->bus.func == E1000_FUNC_2)
806		mask = E1000_NVM_CFG_DONE_PORT_2;
807	else if (hw->bus.func == E1000_FUNC_3)
808		mask = E1000_NVM_CFG_DONE_PORT_3;
809
810	while (timeout) {
811		if (rd32(E1000_EEMNGCTL) & mask)
812			break;
813		msleep(1);
814		timeout--;
815	}
816	if (!timeout)
817		hw_dbg("MNG configuration cycle has not completed.\n");
818
819	/* If EEPROM is not marked present, init the PHY manually */
820	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
821	    (hw->phy.type == e1000_phy_igp_3))
822		igb_phy_init_script_igp3(hw);
823
824	return ret_val;
825}
826
827/**
828 *  igb_check_for_link_82575 - Check for link
829 *  @hw: pointer to the HW structure
830 *
831 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
832 *  use the generic interface for determining link.
833 **/
834static s32 igb_check_for_link_82575(struct e1000_hw *hw)
835{
836	s32 ret_val;
837	u16 speed, duplex;
838
839	if (hw->phy.media_type != e1000_media_type_copper) {
840		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
841		                                             &duplex);
842		/*
843		 * Use this flag to determine if link needs to be checked or
844		 * not.  If  we have link clear the flag so that we do not
845		 * continue to check for link.
846		 */
847		hw->mac.get_link_status = !hw->mac.serdes_has_link;
848	} else {
849		ret_val = igb_check_for_copper_link(hw);
850	}
851
852	return ret_val;
853}
854
855/**
856 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
857 *  @hw: pointer to the HW structure
858 **/
859void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
860{
861	u32 reg;
862
863
864	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
865	    !igb_sgmii_active_82575(hw))
866		return;
867
868	/* Enable PCS to turn on link */
869	reg = rd32(E1000_PCS_CFG0);
870	reg |= E1000_PCS_CFG_PCS_EN;
871	wr32(E1000_PCS_CFG0, reg);
872
873	/* Power up the laser */
874	reg = rd32(E1000_CTRL_EXT);
875	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
876	wr32(E1000_CTRL_EXT, reg);
877
878	/* flush the write to verify completion */
879	wrfl();
880	msleep(1);
881}
882
883/**
884 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
885 *  @hw: pointer to the HW structure
886 *  @speed: stores the current speed
887 *  @duplex: stores the current duplex
888 *
889 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
890 *  duplex, then store the values in the pointers provided.
891 **/
892static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
893						u16 *duplex)
894{
895	struct e1000_mac_info *mac = &hw->mac;
896	u32 pcs;
897
898	/* Set up defaults for the return values of this function */
899	mac->serdes_has_link = false;
900	*speed = 0;
901	*duplex = 0;
902
903	/*
904	 * Read the PCS Status register for link state. For non-copper mode,
905	 * the status register is not accurate. The PCS status register is
906	 * used instead.
907	 */
908	pcs = rd32(E1000_PCS_LSTAT);
909
910	/*
911	 * The link up bit determines when link is up on autoneg. The sync ok
912	 * gets set once both sides sync up and agree upon link. Stable link
913	 * can be determined by checking for both link up and link sync ok
914	 */
915	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
916		mac->serdes_has_link = true;
917
918		/* Detect and store PCS speed */
919		if (pcs & E1000_PCS_LSTS_SPEED_1000) {
920			*speed = SPEED_1000;
921		} else if (pcs & E1000_PCS_LSTS_SPEED_100) {
922			*speed = SPEED_100;
923		} else {
924			*speed = SPEED_10;
925		}
926
927		/* Detect and store PCS duplex */
928		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
929			*duplex = FULL_DUPLEX;
930		} else {
931			*duplex = HALF_DUPLEX;
932		}
933	}
934
935	return 0;
936}
937
938/**
939 *  igb_shutdown_serdes_link_82575 - Remove link during power down
940 *  @hw: pointer to the HW structure
941 *
942 *  In the case of fiber serdes, shut down optics and PCS on driver unload
943 *  when management pass thru is not enabled.
944 **/
945void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
946{
947	u32 reg;
948
949	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
950	    igb_sgmii_active_82575(hw))
951		return;
952
953	if (!igb_enable_mng_pass_thru(hw)) {
954		/* Disable PCS to turn off link */
955		reg = rd32(E1000_PCS_CFG0);
956		reg &= ~E1000_PCS_CFG_PCS_EN;
957		wr32(E1000_PCS_CFG0, reg);
958
959		/* shutdown the laser */
960		reg = rd32(E1000_CTRL_EXT);
961		reg |= E1000_CTRL_EXT_SDP3_DATA;
962		wr32(E1000_CTRL_EXT, reg);
963
964		/* flush the write to verify completion */
965		wrfl();
966		msleep(1);
967	}
968}
969
970/**
971 *  igb_reset_hw_82575 - Reset hardware
972 *  @hw: pointer to the HW structure
973 *
974 *  This resets the hardware into a known state.  This is a
975 *  function pointer entry point called by the api module.
976 **/
977static s32 igb_reset_hw_82575(struct e1000_hw *hw)
978{
979	u32 ctrl, icr;
980	s32 ret_val;
981
982	/*
983	 * Prevent the PCI-E bus from sticking if there is no TLP connection
984	 * on the last TLP read/write transaction when MAC is reset.
985	 */
986	ret_val = igb_disable_pcie_master(hw);
987	if (ret_val)
988		hw_dbg("PCI-E Master disable polling has failed.\n");
989
990	/* set the completion timeout for interface */
991	ret_val = igb_set_pcie_completion_timeout(hw);
992	if (ret_val) {
993		hw_dbg("PCI-E Set completion timeout has failed.\n");
994	}
995
996	hw_dbg("Masking off all interrupts\n");
997	wr32(E1000_IMC, 0xffffffff);
998
999	wr32(E1000_RCTL, 0);
1000	wr32(E1000_TCTL, E1000_TCTL_PSP);
1001	wrfl();
1002
1003	msleep(10);
1004
1005	ctrl = rd32(E1000_CTRL);
1006
1007	hw_dbg("Issuing a global reset to MAC\n");
1008	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1009
1010	ret_val = igb_get_auto_rd_done(hw);
1011	if (ret_val) {
1012		/*
1013		 * When auto config read does not complete, do not
1014		 * return with an error. This can happen in situations
1015		 * where there is no eeprom and prevents getting link.
1016		 */
1017		hw_dbg("Auto Read Done did not complete\n");
1018	}
1019
1020	/* If EEPROM is not present, run manual init scripts */
1021	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1022		igb_reset_init_script_82575(hw);
1023
1024	/* Clear any pending interrupt events. */
1025	wr32(E1000_IMC, 0xffffffff);
1026	icr = rd32(E1000_ICR);
1027
1028	/* Install any alternate MAC address into RAR0 */
1029	ret_val = igb_check_alt_mac_addr(hw);
1030
1031	return ret_val;
1032}
1033
1034/**
1035 *  igb_init_hw_82575 - Initialize hardware
1036 *  @hw: pointer to the HW structure
1037 *
1038 *  This inits the hardware readying it for operation.
1039 **/
1040static s32 igb_init_hw_82575(struct e1000_hw *hw)
1041{
1042	struct e1000_mac_info *mac = &hw->mac;
1043	s32 ret_val;
1044	u16 i, rar_count = mac->rar_entry_count;
1045
1046	/* Initialize identification LED */
1047	ret_val = igb_id_led_init(hw);
1048	if (ret_val) {
1049		hw_dbg("Error initializing identification LED\n");
1050		/* This is not fatal and we should not stop init due to this */
1051	}
1052
1053	/* Disabling VLAN filtering */
1054	hw_dbg("Initializing the IEEE VLAN\n");
1055	if (hw->mac.type == e1000_i350)
1056		igb_clear_vfta_i350(hw);
1057	else
1058		igb_clear_vfta(hw);
1059
1060	/* Setup the receive address */
1061	igb_init_rx_addrs(hw, rar_count);
1062
1063	/* Zero out the Multicast HASH table */
1064	hw_dbg("Zeroing the MTA\n");
1065	for (i = 0; i < mac->mta_reg_count; i++)
1066		array_wr32(E1000_MTA, i, 0);
1067
1068	/* Zero out the Unicast HASH table */
1069	hw_dbg("Zeroing the UTA\n");
1070	for (i = 0; i < mac->uta_reg_count; i++)
1071		array_wr32(E1000_UTA, i, 0);
1072
1073	/* Setup link and flow control */
1074	ret_val = igb_setup_link(hw);
1075
1076	/*
1077	 * Clear all of the statistics registers (clear on read).  It is
1078	 * important that we do this after we have tried to establish link
1079	 * because the symbol error count will increment wildly if there
1080	 * is no link.
1081	 */
1082	igb_clear_hw_cntrs_82575(hw);
1083
1084	return ret_val;
1085}
1086
1087/**
1088 *  igb_setup_copper_link_82575 - Configure copper link settings
1089 *  @hw: pointer to the HW structure
1090 *
1091 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1092 *  for link, once link is established calls to configure collision distance
1093 *  and flow control are called.
1094 **/
1095static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1096{
1097	u32 ctrl;
1098	s32  ret_val;
1099
1100	ctrl = rd32(E1000_CTRL);
1101	ctrl |= E1000_CTRL_SLU;
1102	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1103	wr32(E1000_CTRL, ctrl);
1104
1105	ret_val = igb_setup_serdes_link_82575(hw);
1106	if (ret_val)
1107		goto out;
1108
1109	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1110		/* allow time for SFP cage time to power up phy */
1111		msleep(300);
1112
1113		ret_val = hw->phy.ops.reset(hw);
1114		if (ret_val) {
1115			hw_dbg("Error resetting the PHY.\n");
1116			goto out;
1117		}
1118	}
1119	switch (hw->phy.type) {
1120	case e1000_phy_m88:
1121		if (hw->phy.id == I347AT4_E_PHY_ID ||
1122		    hw->phy.id == M88E1112_E_PHY_ID)
1123			ret_val = igb_copper_link_setup_m88_gen2(hw);
1124		else
1125			ret_val = igb_copper_link_setup_m88(hw);
1126		break;
1127	case e1000_phy_igp_3:
1128		ret_val = igb_copper_link_setup_igp(hw);
1129		break;
1130	case e1000_phy_82580:
1131		ret_val = igb_copper_link_setup_82580(hw);
1132		break;
1133	default:
1134		ret_val = -E1000_ERR_PHY;
1135		break;
1136	}
1137
1138	if (ret_val)
1139		goto out;
1140
1141	ret_val = igb_setup_copper_link(hw);
1142out:
1143	return ret_val;
1144}
1145
1146/**
1147 *  igb_setup_serdes_link_82575 - Setup link for serdes
1148 *  @hw: pointer to the HW structure
1149 *
1150 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1151 *  used on copper connections where the serialized gigabit media independent
1152 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1153 *  for auto-negotiation or forces speed/duplex.
1154 **/
1155static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1156{
1157	u32 ctrl_ext, ctrl_reg, reg;
1158	bool pcs_autoneg;
1159	s32 ret_val = E1000_SUCCESS;
1160	u16 data;
1161
1162	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1163	    !igb_sgmii_active_82575(hw))
1164		return ret_val;
1165
1166
1167	/*
1168	 * On the 82575, SerDes loopback mode persists until it is
1169	 * explicitly turned off or a power cycle is performed.  A read to
1170	 * the register does not indicate its status.  Therefore, we ensure
1171	 * loopback mode is disabled during initialization.
1172	 */
1173	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1174
1175	/* power on the sfp cage if present */
1176	ctrl_ext = rd32(E1000_CTRL_EXT);
1177	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1178	wr32(E1000_CTRL_EXT, ctrl_ext);
1179
1180	ctrl_reg = rd32(E1000_CTRL);
1181	ctrl_reg |= E1000_CTRL_SLU;
1182
1183	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1184		/* set both sw defined pins */
1185		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1186
1187		/* Set switch control to serdes energy detect */
1188		reg = rd32(E1000_CONNSW);
1189		reg |= E1000_CONNSW_ENRGSRC;
1190		wr32(E1000_CONNSW, reg);
1191	}
1192
1193	reg = rd32(E1000_PCS_LCTL);
1194
1195	/* default pcs_autoneg to the same setting as mac autoneg */
1196	pcs_autoneg = hw->mac.autoneg;
1197
1198	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1199	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1200		/* sgmii mode lets the phy handle forcing speed/duplex */
1201		pcs_autoneg = true;
1202		/* autoneg time out should be disabled for SGMII mode */
1203		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1204		break;
1205	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1206		/* disable PCS autoneg and support parallel detect only */
1207		pcs_autoneg = false;
1208	default:
1209		if (hw->mac.type == e1000_82575 ||
1210		    hw->mac.type == e1000_82576) {
1211			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1212			if (ret_val) {
1213				printk(KERN_DEBUG "NVM Read Error\n\n");
1214				return ret_val;
1215			}
1216
1217			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1218				pcs_autoneg = false;
1219		}
1220
1221		/*
1222		 * non-SGMII modes only supports a speed of 1000/Full for the
1223		 * link so it is best to just force the MAC and let the pcs
1224		 * link either autoneg or be forced to 1000/Full
1225		 */
1226		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1227		            E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1228
1229		/* set speed of 1000/Full if speed/duplex is forced */
1230		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1231		break;
1232	}
1233
1234	wr32(E1000_CTRL, ctrl_reg);
1235
1236	/*
1237	 * New SerDes mode allows for forcing speed or autonegotiating speed
1238	 * at 1gb. Autoneg should be default set by most drivers. This is the
1239	 * mode that will be compatible with older link partners and switches.
1240	 * However, both are supported by the hardware and some drivers/tools.
1241	 */
1242	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1243		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1244
1245	/*
1246	 * We force flow control to prevent the CTRL register values from being
1247	 * overwritten by the autonegotiated flow control values
1248	 */
1249	reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1250
1251	if (pcs_autoneg) {
1252		/* Set PCS register for autoneg */
1253		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1254		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1255		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1256	} else {
1257		/* Set PCS register for forced link */
1258		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1259
1260		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1261	}
1262
1263	wr32(E1000_PCS_LCTL, reg);
1264
1265	if (!igb_sgmii_active_82575(hw))
1266		igb_force_mac_fc(hw);
1267
1268	return ret_val;
1269}
1270
1271/**
1272 *  igb_sgmii_active_82575 - Return sgmii state
1273 *  @hw: pointer to the HW structure
1274 *
1275 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1276 *  which can be enabled for use in the embedded applications.  Simply
1277 *  return the current state of the sgmii interface.
1278 **/
1279static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1280{
1281	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1282	return dev_spec->sgmii_active;
1283}
1284
1285/**
1286 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1287 *  @hw: pointer to the HW structure
1288 *
1289 *  Inits recommended HW defaults after a reset when there is no EEPROM
1290 *  detected. This is only for the 82575.
1291 **/
1292static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1293{
1294	if (hw->mac.type == e1000_82575) {
1295		hw_dbg("Running reset init script for 82575\n");
1296		/* SerDes configuration via SERDESCTRL */
1297		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1298		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1299		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1300		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1301
1302		/* CCM configuration via CCMCTL register */
1303		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1304		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1305
1306		/* PCIe lanes configuration */
1307		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1308		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1309		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1310		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1311
1312		/* PCIe PLL Configuration */
1313		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1314		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1315		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1316	}
1317
1318	return 0;
1319}
1320
1321/**
1322 *  igb_read_mac_addr_82575 - Read device MAC address
1323 *  @hw: pointer to the HW structure
1324 **/
1325static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1326{
1327	s32 ret_val = 0;
1328
1329	/*
1330	 * If there's an alternate MAC address place it in RAR0
1331	 * so that it will override the Si installed default perm
1332	 * address.
1333	 */
1334	ret_val = igb_check_alt_mac_addr(hw);
1335	if (ret_val)
1336		goto out;
1337
1338	ret_val = igb_read_mac_addr(hw);
1339
1340out:
1341	return ret_val;
1342}
1343
1344/**
1345 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1346 * @hw: pointer to the HW structure
1347 *
1348 * In the case of a PHY power down to save power, or to turn off link during a
1349 * driver unload, or wake on lan is not enabled, remove the link.
1350 **/
1351void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1352{
1353	/* If the management interface is not enabled, then power down */
1354	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1355		igb_power_down_phy_copper(hw);
1356}
1357
1358/**
1359 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1360 *  @hw: pointer to the HW structure
1361 *
1362 *  Clears the hardware counters by reading the counter registers.
1363 **/
1364static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1365{
1366	igb_clear_hw_cntrs_base(hw);
1367
1368	rd32(E1000_PRC64);
1369	rd32(E1000_PRC127);
1370	rd32(E1000_PRC255);
1371	rd32(E1000_PRC511);
1372	rd32(E1000_PRC1023);
1373	rd32(E1000_PRC1522);
1374	rd32(E1000_PTC64);
1375	rd32(E1000_PTC127);
1376	rd32(E1000_PTC255);
1377	rd32(E1000_PTC511);
1378	rd32(E1000_PTC1023);
1379	rd32(E1000_PTC1522);
1380
1381	rd32(E1000_ALGNERRC);
1382	rd32(E1000_RXERRC);
1383	rd32(E1000_TNCRS);
1384	rd32(E1000_CEXTERR);
1385	rd32(E1000_TSCTC);
1386	rd32(E1000_TSCTFC);
1387
1388	rd32(E1000_MGTPRC);
1389	rd32(E1000_MGTPDC);
1390	rd32(E1000_MGTPTC);
1391
1392	rd32(E1000_IAC);
1393	rd32(E1000_ICRXOC);
1394
1395	rd32(E1000_ICRXPTC);
1396	rd32(E1000_ICRXATC);
1397	rd32(E1000_ICTXPTC);
1398	rd32(E1000_ICTXATC);
1399	rd32(E1000_ICTXQEC);
1400	rd32(E1000_ICTXQMTC);
1401	rd32(E1000_ICRXDMTC);
1402
1403	rd32(E1000_CBTMPC);
1404	rd32(E1000_HTDPMC);
1405	rd32(E1000_CBRMPC);
1406	rd32(E1000_RPTHC);
1407	rd32(E1000_HGPTC);
1408	rd32(E1000_HTCBDPC);
1409	rd32(E1000_HGORCL);
1410	rd32(E1000_HGORCH);
1411	rd32(E1000_HGOTCL);
1412	rd32(E1000_HGOTCH);
1413	rd32(E1000_LENERRS);
1414
1415	/* This register should not be read in copper configurations */
1416	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1417	    igb_sgmii_active_82575(hw))
1418		rd32(E1000_SCVPC);
1419}
1420
1421/**
1422 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1423 *  @hw: pointer to the HW structure
1424 *
1425 *  After rx enable if managability is enabled then there is likely some
1426 *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1427 *  function clears the fifos and flushes any packets that came in as rx was
1428 *  being enabled.
1429 **/
1430void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1431{
1432	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1433	int i, ms_wait;
1434
1435	if (hw->mac.type != e1000_82575 ||
1436	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1437		return;
1438
1439	/* Disable all RX queues */
1440	for (i = 0; i < 4; i++) {
1441		rxdctl[i] = rd32(E1000_RXDCTL(i));
1442		wr32(E1000_RXDCTL(i),
1443		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1444	}
1445	/* Poll all queues to verify they have shut down */
1446	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1447		msleep(1);
1448		rx_enabled = 0;
1449		for (i = 0; i < 4; i++)
1450			rx_enabled |= rd32(E1000_RXDCTL(i));
1451		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1452			break;
1453	}
1454
1455	if (ms_wait == 10)
1456		hw_dbg("Queue disable timed out after 10ms\n");
1457
1458	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1459	 * incoming packets are rejected.  Set enable and wait 2ms so that
1460	 * any packet that was coming in as RCTL.EN was set is flushed
1461	 */
1462	rfctl = rd32(E1000_RFCTL);
1463	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1464
1465	rlpml = rd32(E1000_RLPML);
1466	wr32(E1000_RLPML, 0);
1467
1468	rctl = rd32(E1000_RCTL);
1469	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1470	temp_rctl |= E1000_RCTL_LPE;
1471
1472	wr32(E1000_RCTL, temp_rctl);
1473	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1474	wrfl();
1475	msleep(2);
1476
1477	/* Enable RX queues that were previously enabled and restore our
1478	 * previous state
1479	 */
1480	for (i = 0; i < 4; i++)
1481		wr32(E1000_RXDCTL(i), rxdctl[i]);
1482	wr32(E1000_RCTL, rctl);
1483	wrfl();
1484
1485	wr32(E1000_RLPML, rlpml);
1486	wr32(E1000_RFCTL, rfctl);
1487
1488	/* Flush receive errors generated by workaround */
1489	rd32(E1000_ROC);
1490	rd32(E1000_RNBC);
1491	rd32(E1000_MPC);
1492}
1493
1494/**
1495 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1496 *  @hw: pointer to the HW structure
1497 *
1498 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1499 *  however the hardware default for these parts is 500us to 1ms which is less
1500 *  than the 10ms recommended by the pci-e spec.  To address this we need to
1501 *  increase the value to either 10ms to 200ms for capability version 1 config,
1502 *  or 16ms to 55ms for version 2.
1503 **/
1504static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1505{
1506	u32 gcr = rd32(E1000_GCR);
1507	s32 ret_val = 0;
1508	u16 pcie_devctl2;
1509
1510	/* only take action if timeout value is defaulted to 0 */
1511	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1512		goto out;
1513
1514	/*
1515	 * if capababilities version is type 1 we can write the
1516	 * timeout of 10ms to 200ms through the GCR register
1517	 */
1518	if (!(gcr & E1000_GCR_CAP_VER2)) {
1519		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1520		goto out;
1521	}
1522
1523	/*
1524	 * for version 2 capabilities we need to write the config space
1525	 * directly in order to set the completion timeout value for
1526	 * 16ms to 55ms
1527	 */
1528	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1529	                                &pcie_devctl2);
1530	if (ret_val)
1531		goto out;
1532
1533	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1534
1535	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1536	                                 &pcie_devctl2);
1537out:
1538	/* disable completion timeout resend */
1539	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1540
1541	wr32(E1000_GCR, gcr);
1542	return ret_val;
1543}
1544
1545/**
1546 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1547 *  @hw: pointer to the hardware struct
1548 *  @enable: state to enter, either enabled or disabled
1549 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
1550 *
1551 *  enables/disables L2 switch anti-spoofing functionality.
1552 **/
1553void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1554{
1555	u32 dtxswc;
1556
1557	switch (hw->mac.type) {
1558	case e1000_82576:
1559	case e1000_i350:
1560		dtxswc = rd32(E1000_DTXSWC);
1561		if (enable) {
1562			dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1563				   E1000_DTXSWC_VLAN_SPOOF_MASK);
1564			/* The PF can spoof - it has to in order to
1565			 * support emulation mode NICs */
1566			dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1567		} else {
1568			dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1569				    E1000_DTXSWC_VLAN_SPOOF_MASK);
1570		}
1571		wr32(E1000_DTXSWC, dtxswc);
1572		break;
1573	default:
1574		break;
1575	}
1576}
1577
1578/**
1579 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1580 *  @hw: pointer to the hardware struct
1581 *  @enable: state to enter, either enabled or disabled
1582 *
1583 *  enables/disables L2 switch loopback functionality.
1584 **/
1585void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1586{
1587	u32 dtxswc;
1588
1589	switch (hw->mac.type) {
1590	case e1000_82576:
1591		dtxswc = rd32(E1000_DTXSWC);
1592		if (enable)
1593			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1594		else
1595			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1596		wr32(E1000_DTXSWC, dtxswc);
1597		break;
1598	case e1000_i350:
1599		dtxswc = rd32(E1000_TXSWC);
1600		if (enable)
1601			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1602		else
1603			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1604		wr32(E1000_TXSWC, dtxswc);
1605		break;
1606	default:
1607		/* Currently no other hardware supports loopback */
1608		break;
1609	}
1610
1611
1612}
1613
1614/**
1615 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
1616 *  @hw: pointer to the hardware struct
1617 *  @enable: state to enter, either enabled or disabled
1618 *
1619 *  enables/disables replication of packets across multiple pools.
1620 **/
1621void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1622{
1623	u32 vt_ctl = rd32(E1000_VT_CTL);
1624
1625	if (enable)
1626		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1627	else
1628		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1629
1630	wr32(E1000_VT_CTL, vt_ctl);
1631}
1632
1633/**
1634 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
1635 *  @hw: pointer to the HW structure
1636 *  @offset: register offset to be read
1637 *  @data: pointer to the read data
1638 *
1639 *  Reads the MDI control register in the PHY at offset and stores the
1640 *  information read to data.
1641 **/
1642static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1643{
1644	s32 ret_val;
1645
1646
1647	ret_val = hw->phy.ops.acquire(hw);
1648	if (ret_val)
1649		goto out;
1650
1651	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1652
1653	hw->phy.ops.release(hw);
1654
1655out:
1656	return ret_val;
1657}
1658
1659/**
1660 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
1661 *  @hw: pointer to the HW structure
1662 *  @offset: register offset to write to
1663 *  @data: data to write to register at offset
1664 *
1665 *  Writes data to MDI control register in the PHY at offset.
1666 **/
1667static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1668{
1669	s32 ret_val;
1670
1671
1672	ret_val = hw->phy.ops.acquire(hw);
1673	if (ret_val)
1674		goto out;
1675
1676	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1677
1678	hw->phy.ops.release(hw);
1679
1680out:
1681	return ret_val;
1682}
1683
1684/**
1685 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1686 *  @hw: pointer to the HW structure
1687 *
1688 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1689 *  the values found in the EEPROM.  This addresses an issue in which these
1690 *  bits are not restored from EEPROM after reset.
1691 **/
1692static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1693{
1694	s32 ret_val = 0;
1695	u32 mdicnfg;
1696	u16 nvm_data = 0;
1697
1698	if (hw->mac.type != e1000_82580)
1699		goto out;
1700	if (!igb_sgmii_active_82575(hw))
1701		goto out;
1702
1703	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1704				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1705				   &nvm_data);
1706	if (ret_val) {
1707		hw_dbg("NVM Read Error\n");
1708		goto out;
1709	}
1710
1711	mdicnfg = rd32(E1000_MDICNFG);
1712	if (nvm_data & NVM_WORD24_EXT_MDIO)
1713		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1714	if (nvm_data & NVM_WORD24_COM_MDIO)
1715		mdicnfg |= E1000_MDICNFG_COM_MDIO;
1716	wr32(E1000_MDICNFG, mdicnfg);
1717out:
1718	return ret_val;
1719}
1720
1721/**
1722 *  igb_reset_hw_82580 - Reset hardware
1723 *  @hw: pointer to the HW structure
1724 *
1725 *  This resets function or entire device (all ports, etc.)
1726 *  to a known state.
1727 **/
1728static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1729{
1730	s32 ret_val = 0;
1731	/* BH SW mailbox bit in SW_FW_SYNC */
1732	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1733	u32 ctrl, icr;
1734	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1735
1736
1737	hw->dev_spec._82575.global_device_reset = false;
1738
1739	/* Get current control state. */
1740	ctrl = rd32(E1000_CTRL);
1741
1742	/*
1743	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1744	 * on the last TLP read/write transaction when MAC is reset.
1745	 */
1746	ret_val = igb_disable_pcie_master(hw);
1747	if (ret_val)
1748		hw_dbg("PCI-E Master disable polling has failed.\n");
1749
1750	hw_dbg("Masking off all interrupts\n");
1751	wr32(E1000_IMC, 0xffffffff);
1752	wr32(E1000_RCTL, 0);
1753	wr32(E1000_TCTL, E1000_TCTL_PSP);
1754	wrfl();
1755
1756	msleep(10);
1757
1758	/* Determine whether or not a global dev reset is requested */
1759	if (global_device_reset &&
1760		igb_acquire_swfw_sync_82575(hw, swmbsw_mask))
1761			global_device_reset = false;
1762
1763	if (global_device_reset &&
1764		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
1765		ctrl |= E1000_CTRL_DEV_RST;
1766	else
1767		ctrl |= E1000_CTRL_RST;
1768
1769	wr32(E1000_CTRL, ctrl);
1770	wrfl();
1771
1772	/* Add delay to insure DEV_RST has time to complete */
1773	if (global_device_reset)
1774		msleep(5);
1775
1776	ret_val = igb_get_auto_rd_done(hw);
1777	if (ret_val) {
1778		/*
1779		 * When auto config read does not complete, do not
1780		 * return with an error. This can happen in situations
1781		 * where there is no eeprom and prevents getting link.
1782		 */
1783		hw_dbg("Auto Read Done did not complete\n");
1784	}
1785
1786	/* If EEPROM is not present, run manual init scripts */
1787	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1788		igb_reset_init_script_82575(hw);
1789
1790	/* clear global device reset status bit */
1791	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
1792
1793	/* Clear any pending interrupt events. */
1794	wr32(E1000_IMC, 0xffffffff);
1795	icr = rd32(E1000_ICR);
1796
1797	ret_val = igb_reset_mdicnfg_82580(hw);
1798	if (ret_val)
1799		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
1800
1801	/* Install any alternate MAC address into RAR0 */
1802	ret_val = igb_check_alt_mac_addr(hw);
1803
1804	/* Release semaphore */
1805	if (global_device_reset)
1806		igb_release_swfw_sync_82575(hw, swmbsw_mask);
1807
1808	return ret_val;
1809}
1810
1811/**
1812 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1813 *  @data: data received by reading RXPBS register
1814 *
1815 *  The 82580 uses a table based approach for packet buffer allocation sizes.
1816 *  This function converts the retrieved value into the correct table value
1817 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
1818 *  0x0 36  72 144   1   2   4   8  16
1819 *  0x8 35  70 140 rsv rsv rsv rsv rsv
1820 */
1821u16 igb_rxpbs_adjust_82580(u32 data)
1822{
1823	u16 ret_val = 0;
1824
1825	if (data < E1000_82580_RXPBS_TABLE_SIZE)
1826		ret_val = e1000_82580_rxpbs_table[data];
1827
1828	return ret_val;
1829}
1830
1831/**
1832 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
1833 *  checksum
1834 *  @hw: pointer to the HW structure
1835 *  @offset: offset in words of the checksum protected region
1836 *
1837 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
1838 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
1839 **/
1840static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
1841						 u16 offset)
1842{
1843	s32 ret_val = 0;
1844	u16 checksum = 0;
1845	u16 i, nvm_data;
1846
1847	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
1848		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
1849		if (ret_val) {
1850			hw_dbg("NVM Read Error\n");
1851			goto out;
1852		}
1853		checksum += nvm_data;
1854	}
1855
1856	if (checksum != (u16) NVM_SUM) {
1857		hw_dbg("NVM Checksum Invalid\n");
1858		ret_val = -E1000_ERR_NVM;
1859		goto out;
1860	}
1861
1862out:
1863	return ret_val;
1864}
1865
1866/**
1867 *  igb_update_nvm_checksum_with_offset - Update EEPROM
1868 *  checksum
1869 *  @hw: pointer to the HW structure
1870 *  @offset: offset in words of the checksum protected region
1871 *
1872 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
1873 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
1874 *  value to the EEPROM.
1875 **/
1876static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
1877{
1878	s32 ret_val;
1879	u16 checksum = 0;
1880	u16 i, nvm_data;
1881
1882	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
1883		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
1884		if (ret_val) {
1885			hw_dbg("NVM Read Error while updating checksum.\n");
1886			goto out;
1887		}
1888		checksum += nvm_data;
1889	}
1890	checksum = (u16) NVM_SUM - checksum;
1891	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
1892				&checksum);
1893	if (ret_val)
1894		hw_dbg("NVM Write Error while updating checksum.\n");
1895
1896out:
1897	return ret_val;
1898}
1899
1900/**
1901 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
1902 *  @hw: pointer to the HW structure
1903 *
1904 *  Calculates the EEPROM section checksum by reading/adding each word of
1905 *  the EEPROM and then verifies that the sum of the EEPROM is
1906 *  equal to 0xBABA.
1907 **/
1908static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
1909{
1910	s32 ret_val = 0;
1911	u16 eeprom_regions_count = 1;
1912	u16 j, nvm_data;
1913	u16 nvm_offset;
1914
1915	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
1916	if (ret_val) {
1917		hw_dbg("NVM Read Error\n");
1918		goto out;
1919	}
1920
1921	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
1922		/* if checksums compatibility bit is set validate checksums
1923		 * for all 4 ports. */
1924		eeprom_regions_count = 4;
1925	}
1926
1927	for (j = 0; j < eeprom_regions_count; j++) {
1928		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
1929		ret_val = igb_validate_nvm_checksum_with_offset(hw,
1930								nvm_offset);
1931		if (ret_val != 0)
1932			goto out;
1933	}
1934
1935out:
1936	return ret_val;
1937}
1938
1939/**
1940 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
1941 *  @hw: pointer to the HW structure
1942 *
1943 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
1944 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
1945 *  checksum and writes the value to the EEPROM.
1946 **/
1947static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
1948{
1949	s32 ret_val;
1950	u16 j, nvm_data;
1951	u16 nvm_offset;
1952
1953	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
1954	if (ret_val) {
1955		hw_dbg("NVM Read Error while updating checksum"
1956			" compatibility bit.\n");
1957		goto out;
1958	}
1959
1960	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
1961		/* set compatibility bit to validate checksums appropriately */
1962		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
1963		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
1964					&nvm_data);
1965		if (ret_val) {
1966			hw_dbg("NVM Write Error while updating checksum"
1967				" compatibility bit.\n");
1968			goto out;
1969		}
1970	}
1971
1972	for (j = 0; j < 4; j++) {
1973		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
1974		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
1975		if (ret_val)
1976			goto out;
1977	}
1978
1979out:
1980	return ret_val;
1981}
1982
1983/**
1984 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
1985 *  @hw: pointer to the HW structure
1986 *
1987 *  Calculates the EEPROM section checksum by reading/adding each word of
1988 *  the EEPROM and then verifies that the sum of the EEPROM is
1989 *  equal to 0xBABA.
1990 **/
1991static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
1992{
1993	s32 ret_val = 0;
1994	u16 j;
1995	u16 nvm_offset;
1996
1997	for (j = 0; j < 4; j++) {
1998		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
1999		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2000								nvm_offset);
2001		if (ret_val != 0)
2002			goto out;
2003	}
2004
2005out:
2006	return ret_val;
2007}
2008
2009/**
2010 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2011 *  @hw: pointer to the HW structure
2012 *
2013 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2014 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2015 *  checksum and writes the value to the EEPROM.
2016 **/
2017static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2018{
2019	s32 ret_val = 0;
2020	u16 j;
2021	u16 nvm_offset;
2022
2023	for (j = 0; j < 4; j++) {
2024		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2025		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2026		if (ret_val != 0)
2027			goto out;
2028	}
2029
2030out:
2031	return ret_val;
2032}
2033
2034/**
2035 *  igb_set_eee_i350 - Enable/disable EEE support
2036 *  @hw: pointer to the HW structure
2037 *
2038 *  Enable/disable EEE based on setting in dev_spec structure.
2039 *
2040 **/
2041s32 igb_set_eee_i350(struct e1000_hw *hw)
2042{
2043	s32 ret_val = 0;
2044	u32 ipcnfg, eeer, ctrl_ext;
2045
2046	ctrl_ext = rd32(E1000_CTRL_EXT);
2047	if ((hw->mac.type != e1000_i350) ||
2048	    (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK))
2049		goto out;
2050	ipcnfg = rd32(E1000_IPCNFG);
2051	eeer = rd32(E1000_EEER);
2052
2053	/* enable or disable per user setting */
2054	if (!(hw->dev_spec._82575.eee_disable)) {
2055		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN |
2056			E1000_IPCNFG_EEE_100M_AN);
2057		eeer |= (E1000_EEER_TX_LPI_EN |
2058			E1000_EEER_RX_LPI_EN |
2059			E1000_EEER_LPI_FC);
2060
2061	} else {
2062		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2063			E1000_IPCNFG_EEE_100M_AN);
2064		eeer &= ~(E1000_EEER_TX_LPI_EN |
2065			E1000_EEER_RX_LPI_EN |
2066			E1000_EEER_LPI_FC);
2067	}
2068	wr32(E1000_IPCNFG, ipcnfg);
2069	wr32(E1000_EEER, eeer);
2070out:
2071
2072	return ret_val;
2073}
2074
2075static struct e1000_mac_operations e1000_mac_ops_82575 = {
2076	.init_hw              = igb_init_hw_82575,
2077	.check_for_link       = igb_check_for_link_82575,
2078	.rar_set              = igb_rar_set,
2079	.read_mac_addr        = igb_read_mac_addr_82575,
2080	.get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2081};
2082
2083static struct e1000_phy_operations e1000_phy_ops_82575 = {
2084	.acquire              = igb_acquire_phy_82575,
2085	.get_cfg_done         = igb_get_cfg_done_82575,
2086	.release              = igb_release_phy_82575,
2087};
2088
2089static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2090	.acquire              = igb_acquire_nvm_82575,
2091	.read                 = igb_read_nvm_eerd,
2092	.release              = igb_release_nvm_82575,
2093	.write                = igb_write_nvm_spi,
2094};
2095
2096const struct e1000_info e1000_82575_info = {
2097	.get_invariants = igb_get_invariants_82575,
2098	.mac_ops = &e1000_mac_ops_82575,
2099	.phy_ops = &e1000_phy_ops_82575,
2100	.nvm_ops = &e1000_nvm_ops_82575,
2101};
2102
2103