e1000_82575.c revision 87371b9de5becc32af2f9be84008b8a8a424c58a
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2013 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* e1000_82575
29 * e1000_82576
30 */
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/types.h>
35#include <linux/if_ether.h>
36#include <linux/i2c.h>
37
38#include "e1000_mac.h"
39#include "e1000_82575.h"
40#include "e1000_i210.h"
41
42static s32  igb_get_invariants_82575(struct e1000_hw *);
43static s32  igb_acquire_phy_82575(struct e1000_hw *);
44static void igb_release_phy_82575(struct e1000_hw *);
45static s32  igb_acquire_nvm_82575(struct e1000_hw *);
46static void igb_release_nvm_82575(struct e1000_hw *);
47static s32  igb_check_for_link_82575(struct e1000_hw *);
48static s32  igb_get_cfg_done_82575(struct e1000_hw *);
49static s32  igb_init_hw_82575(struct e1000_hw *);
50static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
51static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
52static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
53static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
54static s32  igb_reset_hw_82575(struct e1000_hw *);
55static s32  igb_reset_hw_82580(struct e1000_hw *);
56static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
57static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
58static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
59static s32  igb_setup_copper_link_82575(struct e1000_hw *);
60static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
61static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
62static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
63static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
64static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
65						 u16 *);
66static s32  igb_get_phy_id_82575(struct e1000_hw *);
67static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
68static bool igb_sgmii_active_82575(struct e1000_hw *);
69static s32  igb_reset_init_script_82575(struct e1000_hw *);
70static s32  igb_read_mac_addr_82575(struct e1000_hw *);
71static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
72static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
73static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
74static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
75static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
76static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
77static const u16 e1000_82580_rxpbs_table[] =
78	{ 36, 72, 144, 1, 2, 4, 8, 16,
79	  35, 70, 140 };
80#define E1000_82580_RXPBS_TABLE_SIZE \
81	(sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
82
83/**
84 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
85 *  @hw: pointer to the HW structure
86 *
87 *  Called to determine if the I2C pins are being used for I2C or as an
88 *  external MDIO interface since the two options are mutually exclusive.
89 **/
90static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
91{
92	u32 reg = 0;
93	bool ext_mdio = false;
94
95	switch (hw->mac.type) {
96	case e1000_82575:
97	case e1000_82576:
98		reg = rd32(E1000_MDIC);
99		ext_mdio = !!(reg & E1000_MDIC_DEST);
100		break;
101	case e1000_82580:
102	case e1000_i350:
103	case e1000_i210:
104	case e1000_i211:
105		reg = rd32(E1000_MDICNFG);
106		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
107		break;
108	default:
109		break;
110	}
111	return ext_mdio;
112}
113
114/**
115 *  igb_init_phy_params_82575 - Init PHY func ptrs.
116 *  @hw: pointer to the HW structure
117 **/
118static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
119{
120	struct e1000_phy_info *phy = &hw->phy;
121	s32 ret_val = 0;
122	u32 ctrl_ext;
123
124	if (hw->phy.media_type != e1000_media_type_copper) {
125		phy->type = e1000_phy_none;
126		goto out;
127	}
128
129	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
130	phy->reset_delay_us	= 100;
131
132	ctrl_ext = rd32(E1000_CTRL_EXT);
133
134	if (igb_sgmii_active_82575(hw)) {
135		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
136		ctrl_ext |= E1000_CTRL_I2C_ENA;
137	} else {
138		phy->ops.reset = igb_phy_hw_reset;
139		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
140	}
141
142	wr32(E1000_CTRL_EXT, ctrl_ext);
143	igb_reset_mdicnfg_82580(hw);
144
145	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
146		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
147		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
148	} else {
149		switch (hw->mac.type) {
150		case e1000_82580:
151		case e1000_i350:
152			phy->ops.read_reg = igb_read_phy_reg_82580;
153			phy->ops.write_reg = igb_write_phy_reg_82580;
154			break;
155		case e1000_i210:
156		case e1000_i211:
157			phy->ops.read_reg = igb_read_phy_reg_gs40g;
158			phy->ops.write_reg = igb_write_phy_reg_gs40g;
159			break;
160		default:
161			phy->ops.read_reg = igb_read_phy_reg_igp;
162			phy->ops.write_reg = igb_write_phy_reg_igp;
163		}
164	}
165
166	/* set lan id */
167	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
168			E1000_STATUS_FUNC_SHIFT;
169
170	/* Set phy->phy_addr and phy->id. */
171	ret_val = igb_get_phy_id_82575(hw);
172	if (ret_val)
173		return ret_val;
174
175	/* Verify phy id and set remaining function pointers */
176	switch (phy->id) {
177	case I347AT4_E_PHY_ID:
178	case M88E1112_E_PHY_ID:
179	case M88E1111_I_PHY_ID:
180		phy->type		= e1000_phy_m88;
181		phy->ops.get_phy_info	= igb_get_phy_info_m88;
182		if (phy->id == I347AT4_E_PHY_ID ||
183		    phy->id == M88E1112_E_PHY_ID)
184			phy->ops.get_cable_length =
185					 igb_get_cable_length_m88_gen2;
186		else
187			phy->ops.get_cable_length = igb_get_cable_length_m88;
188		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
189		break;
190	case IGP03E1000_E_PHY_ID:
191		phy->type = e1000_phy_igp_3;
192		phy->ops.get_phy_info = igb_get_phy_info_igp;
193		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
194		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
195		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
196		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
197		break;
198	case I82580_I_PHY_ID:
199	case I350_I_PHY_ID:
200		phy->type = e1000_phy_82580;
201		phy->ops.force_speed_duplex =
202					 igb_phy_force_speed_duplex_82580;
203		phy->ops.get_cable_length = igb_get_cable_length_82580;
204		phy->ops.get_phy_info = igb_get_phy_info_82580;
205		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
206		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
207		break;
208	case I210_I_PHY_ID:
209		phy->type		= e1000_phy_i210;
210		phy->ops.check_polarity	= igb_check_polarity_m88;
211		phy->ops.get_phy_info	= igb_get_phy_info_m88;
212		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
213		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
214		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
215		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
216		break;
217	default:
218		ret_val = -E1000_ERR_PHY;
219		goto out;
220	}
221
222out:
223	return ret_val;
224}
225
226/**
227 *  igb_init_nvm_params_82575 - Init NVM func ptrs.
228 *  @hw: pointer to the HW structure
229 **/
230static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
231{
232	struct e1000_nvm_info *nvm = &hw->nvm;
233	u32 eecd = rd32(E1000_EECD);
234	u16 size;
235
236	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
237		     E1000_EECD_SIZE_EX_SHIFT);
238	/* Added to a constant, "size" becomes the left-shift value
239	 * for setting word_size.
240	 */
241	size += NVM_WORD_SIZE_BASE_SHIFT;
242
243	/* Just in case size is out of range, cap it to the largest
244	 * EEPROM size supported
245	 */
246	if (size > 15)
247		size = 15;
248
249	nvm->word_size = 1 << size;
250	if (hw->mac.type < e1000_i210) {
251		nvm->opcode_bits = 8;
252		nvm->delay_usec = 1;
253
254		switch (nvm->override) {
255		case e1000_nvm_override_spi_large:
256			nvm->page_size = 32;
257			nvm->address_bits = 16;
258			break;
259		case e1000_nvm_override_spi_small:
260			nvm->page_size = 8;
261			nvm->address_bits = 8;
262			break;
263		default:
264			nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
265			nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
266					    16 : 8;
267			break;
268		}
269		if (nvm->word_size == (1 << 15))
270			nvm->page_size = 128;
271
272		nvm->type = e1000_nvm_eeprom_spi;
273	} else {
274		nvm->type = e1000_nvm_flash_hw;
275	}
276
277	/* NVM Function Pointers */
278	switch (hw->mac.type) {
279	case e1000_82580:
280		nvm->ops.validate = igb_validate_nvm_checksum_82580;
281		nvm->ops.update = igb_update_nvm_checksum_82580;
282		nvm->ops.acquire = igb_acquire_nvm_82575;
283		nvm->ops.release = igb_release_nvm_82575;
284		if (nvm->word_size < (1 << 15))
285			nvm->ops.read = igb_read_nvm_eerd;
286		else
287			nvm->ops.read = igb_read_nvm_spi;
288		nvm->ops.write = igb_write_nvm_spi;
289		break;
290	case e1000_i350:
291		nvm->ops.validate = igb_validate_nvm_checksum_i350;
292		nvm->ops.update = igb_update_nvm_checksum_i350;
293		nvm->ops.acquire = igb_acquire_nvm_82575;
294		nvm->ops.release = igb_release_nvm_82575;
295		if (nvm->word_size < (1 << 15))
296			nvm->ops.read = igb_read_nvm_eerd;
297		else
298			nvm->ops.read = igb_read_nvm_spi;
299		nvm->ops.write = igb_write_nvm_spi;
300		break;
301	case e1000_i210:
302		nvm->ops.validate = igb_validate_nvm_checksum_i210;
303		nvm->ops.update   = igb_update_nvm_checksum_i210;
304		nvm->ops.acquire = igb_acquire_nvm_i210;
305		nvm->ops.release = igb_release_nvm_i210;
306		nvm->ops.read    = igb_read_nvm_srrd_i210;
307		nvm->ops.write   = igb_write_nvm_srwr_i210;
308		nvm->ops.valid_led_default = igb_valid_led_default_i210;
309		break;
310	case e1000_i211:
311		nvm->ops.acquire  = igb_acquire_nvm_i210;
312		nvm->ops.release  = igb_release_nvm_i210;
313		nvm->ops.read     = igb_read_nvm_i211;
314		nvm->ops.valid_led_default = igb_valid_led_default_i210;
315		nvm->ops.validate = NULL;
316		nvm->ops.update   = NULL;
317		nvm->ops.write    = NULL;
318		break;
319	default:
320		nvm->ops.validate = igb_validate_nvm_checksum;
321		nvm->ops.update = igb_update_nvm_checksum;
322		nvm->ops.acquire = igb_acquire_nvm_82575;
323		nvm->ops.release = igb_release_nvm_82575;
324		if (nvm->word_size < (1 << 15))
325			nvm->ops.read = igb_read_nvm_eerd;
326		else
327			nvm->ops.read = igb_read_nvm_spi;
328		nvm->ops.write = igb_write_nvm_spi;
329		break;
330	}
331
332	return 0;
333}
334
335/**
336 *  igb_init_mac_params_82575 - Init MAC func ptrs.
337 *  @hw: pointer to the HW structure
338 **/
339static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
340{
341	struct e1000_mac_info *mac = &hw->mac;
342	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
343
344	/* Set mta register count */
345	mac->mta_reg_count = 128;
346	/* Set rar entry count */
347	switch (mac->type) {
348	case e1000_82576:
349		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
350		break;
351	case e1000_82580:
352		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
353		break;
354	case e1000_i350:
355		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
356		break;
357	default:
358		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
359		break;
360	}
361	/* reset */
362	if (mac->type >= e1000_82580)
363		mac->ops.reset_hw = igb_reset_hw_82580;
364	else
365		mac->ops.reset_hw = igb_reset_hw_82575;
366
367	if (mac->type >= e1000_i210) {
368		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
369		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
370
371	} else {
372		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
373		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
374	}
375
376	/* Set if part includes ASF firmware */
377	mac->asf_firmware_present = true;
378	/* Set if manageability features are enabled. */
379	mac->arc_subsystem_valid =
380		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
381			? true : false;
382	/* enable EEE on i350 parts and later parts */
383	if (mac->type >= e1000_i350)
384		dev_spec->eee_disable = false;
385	else
386		dev_spec->eee_disable = true;
387	/* physical interface link setup */
388	mac->ops.setup_physical_interface =
389		(hw->phy.media_type == e1000_media_type_copper)
390			? igb_setup_copper_link_82575
391			: igb_setup_serdes_link_82575;
392
393	return 0;
394}
395
396static s32 igb_get_invariants_82575(struct e1000_hw *hw)
397{
398	struct e1000_mac_info *mac = &hw->mac;
399	struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
400	s32 ret_val;
401	u32 ctrl_ext = 0;
402
403	switch (hw->device_id) {
404	case E1000_DEV_ID_82575EB_COPPER:
405	case E1000_DEV_ID_82575EB_FIBER_SERDES:
406	case E1000_DEV_ID_82575GB_QUAD_COPPER:
407		mac->type = e1000_82575;
408		break;
409	case E1000_DEV_ID_82576:
410	case E1000_DEV_ID_82576_NS:
411	case E1000_DEV_ID_82576_NS_SERDES:
412	case E1000_DEV_ID_82576_FIBER:
413	case E1000_DEV_ID_82576_SERDES:
414	case E1000_DEV_ID_82576_QUAD_COPPER:
415	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
416	case E1000_DEV_ID_82576_SERDES_QUAD:
417		mac->type = e1000_82576;
418		break;
419	case E1000_DEV_ID_82580_COPPER:
420	case E1000_DEV_ID_82580_FIBER:
421	case E1000_DEV_ID_82580_QUAD_FIBER:
422	case E1000_DEV_ID_82580_SERDES:
423	case E1000_DEV_ID_82580_SGMII:
424	case E1000_DEV_ID_82580_COPPER_DUAL:
425	case E1000_DEV_ID_DH89XXCC_SGMII:
426	case E1000_DEV_ID_DH89XXCC_SERDES:
427	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
428	case E1000_DEV_ID_DH89XXCC_SFP:
429		mac->type = e1000_82580;
430		break;
431	case E1000_DEV_ID_I350_COPPER:
432	case E1000_DEV_ID_I350_FIBER:
433	case E1000_DEV_ID_I350_SERDES:
434	case E1000_DEV_ID_I350_SGMII:
435		mac->type = e1000_i350;
436		break;
437	case E1000_DEV_ID_I210_COPPER:
438	case E1000_DEV_ID_I210_COPPER_OEM1:
439	case E1000_DEV_ID_I210_COPPER_IT:
440	case E1000_DEV_ID_I210_FIBER:
441	case E1000_DEV_ID_I210_SERDES:
442	case E1000_DEV_ID_I210_SGMII:
443		mac->type = e1000_i210;
444		break;
445	case E1000_DEV_ID_I211_COPPER:
446		mac->type = e1000_i211;
447		break;
448	default:
449		return -E1000_ERR_MAC_INIT;
450		break;
451	}
452
453	/* Set media type */
454	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
455	 * based on the EEPROM. We cannot rely upon device ID. There
456	 * is no distinguishable difference between fiber and internal
457	 * SerDes mode on the 82575. There can be an external PHY attached
458	 * on the SGMII interface. For this, we'll set sgmii_active to true.
459	 */
460	hw->phy.media_type = e1000_media_type_copper;
461	dev_spec->sgmii_active = false;
462
463	ctrl_ext = rd32(E1000_CTRL_EXT);
464	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
465	case E1000_CTRL_EXT_LINK_MODE_SGMII:
466		dev_spec->sgmii_active = true;
467		break;
468	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
469	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
470		hw->phy.media_type = e1000_media_type_internal_serdes;
471		break;
472	default:
473		break;
474	}
475
476	/* mac initialization and operations */
477	ret_val = igb_init_mac_params_82575(hw);
478	if (ret_val)
479		goto out;
480
481	/* NVM initialization */
482	ret_val = igb_init_nvm_params_82575(hw);
483	if (ret_val)
484		goto out;
485
486	/* if part supports SR-IOV then initialize mailbox parameters */
487	switch (mac->type) {
488	case e1000_82576:
489	case e1000_i350:
490		igb_init_mbx_params_pf(hw);
491		break;
492	default:
493		break;
494	}
495
496	/* setup PHY parameters */
497	ret_val = igb_init_phy_params_82575(hw);
498
499out:
500	return ret_val;
501}
502
503/**
504 *  igb_acquire_phy_82575 - Acquire rights to access PHY
505 *  @hw: pointer to the HW structure
506 *
507 *  Acquire access rights to the correct PHY.  This is a
508 *  function pointer entry point called by the api module.
509 **/
510static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
511{
512	u16 mask = E1000_SWFW_PHY0_SM;
513
514	if (hw->bus.func == E1000_FUNC_1)
515		mask = E1000_SWFW_PHY1_SM;
516	else if (hw->bus.func == E1000_FUNC_2)
517		mask = E1000_SWFW_PHY2_SM;
518	else if (hw->bus.func == E1000_FUNC_3)
519		mask = E1000_SWFW_PHY3_SM;
520
521	return hw->mac.ops.acquire_swfw_sync(hw, mask);
522}
523
524/**
525 *  igb_release_phy_82575 - Release rights to access PHY
526 *  @hw: pointer to the HW structure
527 *
528 *  A wrapper to release access rights to the correct PHY.  This is a
529 *  function pointer entry point called by the api module.
530 **/
531static void igb_release_phy_82575(struct e1000_hw *hw)
532{
533	u16 mask = E1000_SWFW_PHY0_SM;
534
535	if (hw->bus.func == E1000_FUNC_1)
536		mask = E1000_SWFW_PHY1_SM;
537	else if (hw->bus.func == E1000_FUNC_2)
538		mask = E1000_SWFW_PHY2_SM;
539	else if (hw->bus.func == E1000_FUNC_3)
540		mask = E1000_SWFW_PHY3_SM;
541
542	hw->mac.ops.release_swfw_sync(hw, mask);
543}
544
545/**
546 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
547 *  @hw: pointer to the HW structure
548 *  @offset: register offset to be read
549 *  @data: pointer to the read data
550 *
551 *  Reads the PHY register at offset using the serial gigabit media independent
552 *  interface and stores the retrieved information in data.
553 **/
554static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
555					  u16 *data)
556{
557	s32 ret_val = -E1000_ERR_PARAM;
558
559	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
560		hw_dbg("PHY Address %u is out of range\n", offset);
561		goto out;
562	}
563
564	ret_val = hw->phy.ops.acquire(hw);
565	if (ret_val)
566		goto out;
567
568	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
569
570	hw->phy.ops.release(hw);
571
572out:
573	return ret_val;
574}
575
576/**
577 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
578 *  @hw: pointer to the HW structure
579 *  @offset: register offset to write to
580 *  @data: data to write at register offset
581 *
582 *  Writes the data to PHY register at the offset using the serial gigabit
583 *  media independent interface.
584 **/
585static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
586					   u16 data)
587{
588	s32 ret_val = -E1000_ERR_PARAM;
589
590
591	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
592		hw_dbg("PHY Address %d is out of range\n", offset);
593		goto out;
594	}
595
596	ret_val = hw->phy.ops.acquire(hw);
597	if (ret_val)
598		goto out;
599
600	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
601
602	hw->phy.ops.release(hw);
603
604out:
605	return ret_val;
606}
607
608/**
609 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
610 *  @hw: pointer to the HW structure
611 *
612 *  Retrieves the PHY address and ID for both PHY's which do and do not use
613 *  sgmi interface.
614 **/
615static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
616{
617	struct e1000_phy_info *phy = &hw->phy;
618	s32  ret_val = 0;
619	u16 phy_id;
620	u32 ctrl_ext;
621	u32 mdic;
622
623	/* For SGMII PHYs, we try the list of possible addresses until
624	 * we find one that works.  For non-SGMII PHYs
625	 * (e.g. integrated copper PHYs), an address of 1 should
626	 * work.  The result of this function should mean phy->phy_addr
627	 * and phy->id are set correctly.
628	 */
629	if (!(igb_sgmii_active_82575(hw))) {
630		phy->addr = 1;
631		ret_val = igb_get_phy_id(hw);
632		goto out;
633	}
634
635	if (igb_sgmii_uses_mdio_82575(hw)) {
636		switch (hw->mac.type) {
637		case e1000_82575:
638		case e1000_82576:
639			mdic = rd32(E1000_MDIC);
640			mdic &= E1000_MDIC_PHY_MASK;
641			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
642			break;
643		case e1000_82580:
644		case e1000_i350:
645		case e1000_i210:
646		case e1000_i211:
647			mdic = rd32(E1000_MDICNFG);
648			mdic &= E1000_MDICNFG_PHY_MASK;
649			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
650			break;
651		default:
652			ret_val = -E1000_ERR_PHY;
653			goto out;
654			break;
655		}
656		ret_val = igb_get_phy_id(hw);
657		goto out;
658	}
659
660	/* Power on sgmii phy if it is disabled */
661	ctrl_ext = rd32(E1000_CTRL_EXT);
662	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
663	wrfl();
664	msleep(300);
665
666	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
667	 * Therefore, we need to test 1-7
668	 */
669	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
670		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
671		if (ret_val == 0) {
672			hw_dbg("Vendor ID 0x%08X read at address %u\n",
673			       phy_id, phy->addr);
674			/* At the time of this writing, The M88 part is
675			 * the only supported SGMII PHY product.
676			 */
677			if (phy_id == M88_VENDOR)
678				break;
679		} else {
680			hw_dbg("PHY address %u was unreadable\n", phy->addr);
681		}
682	}
683
684	/* A valid PHY type couldn't be found. */
685	if (phy->addr == 8) {
686		phy->addr = 0;
687		ret_val = -E1000_ERR_PHY;
688		goto out;
689	} else {
690		ret_val = igb_get_phy_id(hw);
691	}
692
693	/* restore previous sfp cage power state */
694	wr32(E1000_CTRL_EXT, ctrl_ext);
695
696out:
697	return ret_val;
698}
699
700/**
701 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
702 *  @hw: pointer to the HW structure
703 *
704 *  Resets the PHY using the serial gigabit media independent interface.
705 **/
706static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
707{
708	s32 ret_val;
709
710	/* This isn't a true "hard" reset, but is the only reset
711	 * available to us at this time.
712	 */
713
714	hw_dbg("Soft resetting SGMII attached PHY...\n");
715
716	/* SFP documentation requires the following to configure the SPF module
717	 * to work on SGMII.  No further documentation is given.
718	 */
719	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
720	if (ret_val)
721		goto out;
722
723	ret_val = igb_phy_sw_reset(hw);
724
725out:
726	return ret_val;
727}
728
729/**
730 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
731 *  @hw: pointer to the HW structure
732 *  @active: true to enable LPLU, false to disable
733 *
734 *  Sets the LPLU D0 state according to the active flag.  When
735 *  activating LPLU this function also disables smart speed
736 *  and vice versa.  LPLU will not be activated unless the
737 *  device autonegotiation advertisement meets standards of
738 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
739 *  This is a function pointer entry point only called by
740 *  PHY setup routines.
741 **/
742static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
743{
744	struct e1000_phy_info *phy = &hw->phy;
745	s32 ret_val;
746	u16 data;
747
748	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
749	if (ret_val)
750		goto out;
751
752	if (active) {
753		data |= IGP02E1000_PM_D0_LPLU;
754		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
755						 data);
756		if (ret_val)
757			goto out;
758
759		/* When LPLU is enabled, we should disable SmartSpeed */
760		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
761						&data);
762		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
763		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
764						 data);
765		if (ret_val)
766			goto out;
767	} else {
768		data &= ~IGP02E1000_PM_D0_LPLU;
769		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
770						 data);
771		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
772		 * during Dx states where the power conservation is most
773		 * important.  During driver activity we should enable
774		 * SmartSpeed, so performance is maintained.
775		 */
776		if (phy->smart_speed == e1000_smart_speed_on) {
777			ret_val = phy->ops.read_reg(hw,
778					IGP01E1000_PHY_PORT_CONFIG, &data);
779			if (ret_val)
780				goto out;
781
782			data |= IGP01E1000_PSCFR_SMART_SPEED;
783			ret_val = phy->ops.write_reg(hw,
784					IGP01E1000_PHY_PORT_CONFIG, data);
785			if (ret_val)
786				goto out;
787		} else if (phy->smart_speed == e1000_smart_speed_off) {
788			ret_val = phy->ops.read_reg(hw,
789					IGP01E1000_PHY_PORT_CONFIG, &data);
790			if (ret_val)
791				goto out;
792
793			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
794			ret_val = phy->ops.write_reg(hw,
795					IGP01E1000_PHY_PORT_CONFIG, data);
796			if (ret_val)
797				goto out;
798		}
799	}
800
801out:
802	return ret_val;
803}
804
805/**
806 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
807 *  @hw: pointer to the HW structure
808 *  @active: true to enable LPLU, false to disable
809 *
810 *  Sets the LPLU D0 state according to the active flag.  When
811 *  activating LPLU this function also disables smart speed
812 *  and vice versa.  LPLU will not be activated unless the
813 *  device autonegotiation advertisement meets standards of
814 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
815 *  This is a function pointer entry point only called by
816 *  PHY setup routines.
817 **/
818static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
819{
820	struct e1000_phy_info *phy = &hw->phy;
821	s32 ret_val = 0;
822	u16 data;
823
824	data = rd32(E1000_82580_PHY_POWER_MGMT);
825
826	if (active) {
827		data |= E1000_82580_PM_D0_LPLU;
828
829		/* When LPLU is enabled, we should disable SmartSpeed */
830		data &= ~E1000_82580_PM_SPD;
831	} else {
832		data &= ~E1000_82580_PM_D0_LPLU;
833
834		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
835		 * during Dx states where the power conservation is most
836		 * important.  During driver activity we should enable
837		 * SmartSpeed, so performance is maintained.
838		 */
839		if (phy->smart_speed == e1000_smart_speed_on)
840			data |= E1000_82580_PM_SPD;
841		else if (phy->smart_speed == e1000_smart_speed_off)
842			data &= ~E1000_82580_PM_SPD; }
843
844	wr32(E1000_82580_PHY_POWER_MGMT, data);
845	return ret_val;
846}
847
848/**
849 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
850 *  @hw: pointer to the HW structure
851 *  @active: boolean used to enable/disable lplu
852 *
853 *  Success returns 0, Failure returns 1
854 *
855 *  The low power link up (lplu) state is set to the power management level D3
856 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
857 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
858 *  is used during Dx states where the power conservation is most important.
859 *  During driver activity, SmartSpeed should be enabled so performance is
860 *  maintained.
861 **/
862static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
863{
864	struct e1000_phy_info *phy = &hw->phy;
865	s32 ret_val = 0;
866	u16 data;
867
868	data = rd32(E1000_82580_PHY_POWER_MGMT);
869
870	if (!active) {
871		data &= ~E1000_82580_PM_D3_LPLU;
872		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
873		 * during Dx states where the power conservation is most
874		 * important.  During driver activity we should enable
875		 * SmartSpeed, so performance is maintained.
876		 */
877		if (phy->smart_speed == e1000_smart_speed_on)
878			data |= E1000_82580_PM_SPD;
879		else if (phy->smart_speed == e1000_smart_speed_off)
880			data &= ~E1000_82580_PM_SPD;
881	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
882		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
883		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
884		data |= E1000_82580_PM_D3_LPLU;
885		/* When LPLU is enabled, we should disable SmartSpeed */
886		data &= ~E1000_82580_PM_SPD;
887	}
888
889	wr32(E1000_82580_PHY_POWER_MGMT, data);
890	return ret_val;
891}
892
893/**
894 *  igb_acquire_nvm_82575 - Request for access to EEPROM
895 *  @hw: pointer to the HW structure
896 *
897 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
898 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
899 *  Return successful if access grant bit set, else clear the request for
900 *  EEPROM access and return -E1000_ERR_NVM (-1).
901 **/
902static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
903{
904	s32 ret_val;
905
906	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
907	if (ret_val)
908		goto out;
909
910	ret_val = igb_acquire_nvm(hw);
911
912	if (ret_val)
913		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
914
915out:
916	return ret_val;
917}
918
919/**
920 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
921 *  @hw: pointer to the HW structure
922 *
923 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
924 *  then release the semaphores acquired.
925 **/
926static void igb_release_nvm_82575(struct e1000_hw *hw)
927{
928	igb_release_nvm(hw);
929	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
930}
931
932/**
933 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
934 *  @hw: pointer to the HW structure
935 *  @mask: specifies which semaphore to acquire
936 *
937 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
938 *  will also specify which port we're acquiring the lock for.
939 **/
940static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
941{
942	u32 swfw_sync;
943	u32 swmask = mask;
944	u32 fwmask = mask << 16;
945	s32 ret_val = 0;
946	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
947
948	while (i < timeout) {
949		if (igb_get_hw_semaphore(hw)) {
950			ret_val = -E1000_ERR_SWFW_SYNC;
951			goto out;
952		}
953
954		swfw_sync = rd32(E1000_SW_FW_SYNC);
955		if (!(swfw_sync & (fwmask | swmask)))
956			break;
957
958		/* Firmware currently using resource (fwmask)
959		 * or other software thread using resource (swmask)
960		 */
961		igb_put_hw_semaphore(hw);
962		mdelay(5);
963		i++;
964	}
965
966	if (i == timeout) {
967		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
968		ret_val = -E1000_ERR_SWFW_SYNC;
969		goto out;
970	}
971
972	swfw_sync |= swmask;
973	wr32(E1000_SW_FW_SYNC, swfw_sync);
974
975	igb_put_hw_semaphore(hw);
976
977out:
978	return ret_val;
979}
980
981/**
982 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
983 *  @hw: pointer to the HW structure
984 *  @mask: specifies which semaphore to acquire
985 *
986 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
987 *  will also specify which port we're releasing the lock for.
988 **/
989static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
990{
991	u32 swfw_sync;
992
993	while (igb_get_hw_semaphore(hw) != 0);
994	/* Empty */
995
996	swfw_sync = rd32(E1000_SW_FW_SYNC);
997	swfw_sync &= ~mask;
998	wr32(E1000_SW_FW_SYNC, swfw_sync);
999
1000	igb_put_hw_semaphore(hw);
1001}
1002
1003/**
1004 *  igb_get_cfg_done_82575 - Read config done bit
1005 *  @hw: pointer to the HW structure
1006 *
1007 *  Read the management control register for the config done bit for
1008 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1009 *  to read the config done bit, so an error is *ONLY* logged and returns
1010 *  0.  If we were to return with error, EEPROM-less silicon
1011 *  would not be able to be reset or change link.
1012 **/
1013static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1014{
1015	s32 timeout = PHY_CFG_TIMEOUT;
1016	s32 ret_val = 0;
1017	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1018
1019	if (hw->bus.func == 1)
1020		mask = E1000_NVM_CFG_DONE_PORT_1;
1021	else if (hw->bus.func == E1000_FUNC_2)
1022		mask = E1000_NVM_CFG_DONE_PORT_2;
1023	else if (hw->bus.func == E1000_FUNC_3)
1024		mask = E1000_NVM_CFG_DONE_PORT_3;
1025
1026	while (timeout) {
1027		if (rd32(E1000_EEMNGCTL) & mask)
1028			break;
1029		msleep(1);
1030		timeout--;
1031	}
1032	if (!timeout)
1033		hw_dbg("MNG configuration cycle has not completed.\n");
1034
1035	/* If EEPROM is not marked present, init the PHY manually */
1036	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1037	    (hw->phy.type == e1000_phy_igp_3))
1038		igb_phy_init_script_igp3(hw);
1039
1040	return ret_val;
1041}
1042
1043/**
1044 *  igb_check_for_link_82575 - Check for link
1045 *  @hw: pointer to the HW structure
1046 *
1047 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1048 *  use the generic interface for determining link.
1049 **/
1050static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1051{
1052	s32 ret_val;
1053	u16 speed, duplex;
1054
1055	if (hw->phy.media_type != e1000_media_type_copper) {
1056		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1057		                                             &duplex);
1058		/* Use this flag to determine if link needs to be checked or
1059		 * not.  If  we have link clear the flag so that we do not
1060		 * continue to check for link.
1061		 */
1062		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1063
1064		/* Configure Flow Control now that Auto-Neg has completed.
1065		 * First, we need to restore the desired flow control
1066		 * settings because we may have had to re-autoneg with a
1067		 * different link partner.
1068		 */
1069		ret_val = igb_config_fc_after_link_up(hw);
1070		if (ret_val)
1071			hw_dbg("Error configuring flow control\n");
1072	} else {
1073		ret_val = igb_check_for_copper_link(hw);
1074	}
1075
1076	return ret_val;
1077}
1078
1079/**
1080 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1081 *  @hw: pointer to the HW structure
1082 **/
1083void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1084{
1085	u32 reg;
1086
1087
1088	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1089	    !igb_sgmii_active_82575(hw))
1090		return;
1091
1092	/* Enable PCS to turn on link */
1093	reg = rd32(E1000_PCS_CFG0);
1094	reg |= E1000_PCS_CFG_PCS_EN;
1095	wr32(E1000_PCS_CFG0, reg);
1096
1097	/* Power up the laser */
1098	reg = rd32(E1000_CTRL_EXT);
1099	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1100	wr32(E1000_CTRL_EXT, reg);
1101
1102	/* flush the write to verify completion */
1103	wrfl();
1104	msleep(1);
1105}
1106
1107/**
1108 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1109 *  @hw: pointer to the HW structure
1110 *  @speed: stores the current speed
1111 *  @duplex: stores the current duplex
1112 *
1113 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1114 *  duplex, then store the values in the pointers provided.
1115 **/
1116static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1117						u16 *duplex)
1118{
1119	struct e1000_mac_info *mac = &hw->mac;
1120	u32 pcs;
1121
1122	/* Set up defaults for the return values of this function */
1123	mac->serdes_has_link = false;
1124	*speed = 0;
1125	*duplex = 0;
1126
1127	/* Read the PCS Status register for link state. For non-copper mode,
1128	 * the status register is not accurate. The PCS status register is
1129	 * used instead.
1130	 */
1131	pcs = rd32(E1000_PCS_LSTAT);
1132
1133	/* The link up bit determines when link is up on autoneg. The sync ok
1134	 * gets set once both sides sync up and agree upon link. Stable link
1135	 * can be determined by checking for both link up and link sync ok
1136	 */
1137	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1138		mac->serdes_has_link = true;
1139
1140		/* Detect and store PCS speed */
1141		if (pcs & E1000_PCS_LSTS_SPEED_1000) {
1142			*speed = SPEED_1000;
1143		} else if (pcs & E1000_PCS_LSTS_SPEED_100) {
1144			*speed = SPEED_100;
1145		} else {
1146			*speed = SPEED_10;
1147		}
1148
1149		/* Detect and store PCS duplex */
1150		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
1151			*duplex = FULL_DUPLEX;
1152		} else {
1153			*duplex = HALF_DUPLEX;
1154		}
1155	}
1156
1157	return 0;
1158}
1159
1160/**
1161 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1162 *  @hw: pointer to the HW structure
1163 *
1164 *  In the case of fiber serdes, shut down optics and PCS on driver unload
1165 *  when management pass thru is not enabled.
1166 **/
1167void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1168{
1169	u32 reg;
1170
1171	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1172	    igb_sgmii_active_82575(hw))
1173		return;
1174
1175	if (!igb_enable_mng_pass_thru(hw)) {
1176		/* Disable PCS to turn off link */
1177		reg = rd32(E1000_PCS_CFG0);
1178		reg &= ~E1000_PCS_CFG_PCS_EN;
1179		wr32(E1000_PCS_CFG0, reg);
1180
1181		/* shutdown the laser */
1182		reg = rd32(E1000_CTRL_EXT);
1183		reg |= E1000_CTRL_EXT_SDP3_DATA;
1184		wr32(E1000_CTRL_EXT, reg);
1185
1186		/* flush the write to verify completion */
1187		wrfl();
1188		msleep(1);
1189	}
1190}
1191
1192/**
1193 *  igb_reset_hw_82575 - Reset hardware
1194 *  @hw: pointer to the HW structure
1195 *
1196 *  This resets the hardware into a known state.  This is a
1197 *  function pointer entry point called by the api module.
1198 **/
1199static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1200{
1201	u32 ctrl, icr;
1202	s32 ret_val;
1203
1204	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1205	 * on the last TLP read/write transaction when MAC is reset.
1206	 */
1207	ret_val = igb_disable_pcie_master(hw);
1208	if (ret_val)
1209		hw_dbg("PCI-E Master disable polling has failed.\n");
1210
1211	/* set the completion timeout for interface */
1212	ret_val = igb_set_pcie_completion_timeout(hw);
1213	if (ret_val) {
1214		hw_dbg("PCI-E Set completion timeout has failed.\n");
1215	}
1216
1217	hw_dbg("Masking off all interrupts\n");
1218	wr32(E1000_IMC, 0xffffffff);
1219
1220	wr32(E1000_RCTL, 0);
1221	wr32(E1000_TCTL, E1000_TCTL_PSP);
1222	wrfl();
1223
1224	msleep(10);
1225
1226	ctrl = rd32(E1000_CTRL);
1227
1228	hw_dbg("Issuing a global reset to MAC\n");
1229	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1230
1231	ret_val = igb_get_auto_rd_done(hw);
1232	if (ret_val) {
1233		/* When auto config read does not complete, do not
1234		 * return with an error. This can happen in situations
1235		 * where there is no eeprom and prevents getting link.
1236		 */
1237		hw_dbg("Auto Read Done did not complete\n");
1238	}
1239
1240	/* If EEPROM is not present, run manual init scripts */
1241	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1242		igb_reset_init_script_82575(hw);
1243
1244	/* Clear any pending interrupt events. */
1245	wr32(E1000_IMC, 0xffffffff);
1246	icr = rd32(E1000_ICR);
1247
1248	/* Install any alternate MAC address into RAR0 */
1249	ret_val = igb_check_alt_mac_addr(hw);
1250
1251	return ret_val;
1252}
1253
1254/**
1255 *  igb_init_hw_82575 - Initialize hardware
1256 *  @hw: pointer to the HW structure
1257 *
1258 *  This inits the hardware readying it for operation.
1259 **/
1260static s32 igb_init_hw_82575(struct e1000_hw *hw)
1261{
1262	struct e1000_mac_info *mac = &hw->mac;
1263	s32 ret_val;
1264	u16 i, rar_count = mac->rar_entry_count;
1265
1266	/* Initialize identification LED */
1267	ret_val = igb_id_led_init(hw);
1268	if (ret_val) {
1269		hw_dbg("Error initializing identification LED\n");
1270		/* This is not fatal and we should not stop init due to this */
1271	}
1272
1273	/* Disabling VLAN filtering */
1274	hw_dbg("Initializing the IEEE VLAN\n");
1275	if (hw->mac.type == e1000_i350)
1276		igb_clear_vfta_i350(hw);
1277	else
1278		igb_clear_vfta(hw);
1279
1280	/* Setup the receive address */
1281	igb_init_rx_addrs(hw, rar_count);
1282
1283	/* Zero out the Multicast HASH table */
1284	hw_dbg("Zeroing the MTA\n");
1285	for (i = 0; i < mac->mta_reg_count; i++)
1286		array_wr32(E1000_MTA, i, 0);
1287
1288	/* Zero out the Unicast HASH table */
1289	hw_dbg("Zeroing the UTA\n");
1290	for (i = 0; i < mac->uta_reg_count; i++)
1291		array_wr32(E1000_UTA, i, 0);
1292
1293	/* Setup link and flow control */
1294	ret_val = igb_setup_link(hw);
1295
1296	/* Clear all of the statistics registers (clear on read).  It is
1297	 * important that we do this after we have tried to establish link
1298	 * because the symbol error count will increment wildly if there
1299	 * is no link.
1300	 */
1301	igb_clear_hw_cntrs_82575(hw);
1302	return ret_val;
1303}
1304
1305/**
1306 *  igb_setup_copper_link_82575 - Configure copper link settings
1307 *  @hw: pointer to the HW structure
1308 *
1309 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1310 *  for link, once link is established calls to configure collision distance
1311 *  and flow control are called.
1312 **/
1313static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1314{
1315	u32 ctrl;
1316	s32  ret_val;
1317	u32 phpm_reg;
1318
1319	ctrl = rd32(E1000_CTRL);
1320	ctrl |= E1000_CTRL_SLU;
1321	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1322	wr32(E1000_CTRL, ctrl);
1323
1324	/* Clear Go Link Disconnect bit */
1325	if (hw->mac.type >= e1000_82580) {
1326		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1327		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1328		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1329	}
1330
1331	ret_val = igb_setup_serdes_link_82575(hw);
1332	if (ret_val)
1333		goto out;
1334
1335	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1336		/* allow time for SFP cage time to power up phy */
1337		msleep(300);
1338
1339		ret_val = hw->phy.ops.reset(hw);
1340		if (ret_val) {
1341			hw_dbg("Error resetting the PHY.\n");
1342			goto out;
1343		}
1344	}
1345	switch (hw->phy.type) {
1346	case e1000_phy_i210:
1347	case e1000_phy_m88:
1348		switch (hw->phy.id) {
1349		case I347AT4_E_PHY_ID:
1350		case M88E1112_E_PHY_ID:
1351		case I210_I_PHY_ID:
1352			ret_val = igb_copper_link_setup_m88_gen2(hw);
1353			break;
1354		default:
1355			ret_val = igb_copper_link_setup_m88(hw);
1356			break;
1357		}
1358		break;
1359	case e1000_phy_igp_3:
1360		ret_val = igb_copper_link_setup_igp(hw);
1361		break;
1362	case e1000_phy_82580:
1363		ret_val = igb_copper_link_setup_82580(hw);
1364		break;
1365	default:
1366		ret_val = -E1000_ERR_PHY;
1367		break;
1368	}
1369
1370	if (ret_val)
1371		goto out;
1372
1373	ret_val = igb_setup_copper_link(hw);
1374out:
1375	return ret_val;
1376}
1377
1378/**
1379 *  igb_setup_serdes_link_82575 - Setup link for serdes
1380 *  @hw: pointer to the HW structure
1381 *
1382 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1383 *  used on copper connections where the serialized gigabit media independent
1384 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1385 *  for auto-negotiation or forces speed/duplex.
1386 **/
1387static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1388{
1389	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1390	bool pcs_autoneg;
1391	s32 ret_val = E1000_SUCCESS;
1392	u16 data;
1393
1394	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1395	    !igb_sgmii_active_82575(hw))
1396		return ret_val;
1397
1398
1399	/* On the 82575, SerDes loopback mode persists until it is
1400	 * explicitly turned off or a power cycle is performed.  A read to
1401	 * the register does not indicate its status.  Therefore, we ensure
1402	 * loopback mode is disabled during initialization.
1403	 */
1404	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1405
1406	/* power on the sfp cage if present and turn on I2C */
1407	ctrl_ext = rd32(E1000_CTRL_EXT);
1408	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1409	ctrl_ext |= E1000_CTRL_I2C_ENA;
1410	wr32(E1000_CTRL_EXT, ctrl_ext);
1411
1412	ctrl_reg = rd32(E1000_CTRL);
1413	ctrl_reg |= E1000_CTRL_SLU;
1414
1415	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1416		/* set both sw defined pins */
1417		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1418
1419		/* Set switch control to serdes energy detect */
1420		reg = rd32(E1000_CONNSW);
1421		reg |= E1000_CONNSW_ENRGSRC;
1422		wr32(E1000_CONNSW, reg);
1423	}
1424
1425	reg = rd32(E1000_PCS_LCTL);
1426
1427	/* default pcs_autoneg to the same setting as mac autoneg */
1428	pcs_autoneg = hw->mac.autoneg;
1429
1430	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1431	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1432		/* sgmii mode lets the phy handle forcing speed/duplex */
1433		pcs_autoneg = true;
1434		/* autoneg time out should be disabled for SGMII mode */
1435		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1436		break;
1437	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1438		/* disable PCS autoneg and support parallel detect only */
1439		pcs_autoneg = false;
1440	default:
1441		if (hw->mac.type == e1000_82575 ||
1442		    hw->mac.type == e1000_82576) {
1443			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1444			if (ret_val) {
1445				printk(KERN_DEBUG "NVM Read Error\n\n");
1446				return ret_val;
1447			}
1448
1449			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1450				pcs_autoneg = false;
1451		}
1452
1453		/* non-SGMII modes only supports a speed of 1000/Full for the
1454		 * link so it is best to just force the MAC and let the pcs
1455		 * link either autoneg or be forced to 1000/Full
1456		 */
1457		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1458		            E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1459
1460		/* set speed of 1000/Full if speed/duplex is forced */
1461		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1462		break;
1463	}
1464
1465	wr32(E1000_CTRL, ctrl_reg);
1466
1467	/* New SerDes mode allows for forcing speed or autonegotiating speed
1468	 * at 1gb. Autoneg should be default set by most drivers. This is the
1469	 * mode that will be compatible with older link partners and switches.
1470	 * However, both are supported by the hardware and some drivers/tools.
1471	 */
1472	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1473		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1474
1475	if (pcs_autoneg) {
1476		/* Set PCS register for autoneg */
1477		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1478		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1479
1480		/* Disable force flow control for autoneg */
1481		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1482
1483		/* Configure flow control advertisement for autoneg */
1484		anadv_reg = rd32(E1000_PCS_ANADV);
1485		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1486		switch (hw->fc.requested_mode) {
1487		case e1000_fc_full:
1488		case e1000_fc_rx_pause:
1489			anadv_reg |= E1000_TXCW_ASM_DIR;
1490			anadv_reg |= E1000_TXCW_PAUSE;
1491			break;
1492		case e1000_fc_tx_pause:
1493			anadv_reg |= E1000_TXCW_ASM_DIR;
1494			break;
1495		default:
1496			break;
1497		}
1498		wr32(E1000_PCS_ANADV, anadv_reg);
1499
1500		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1501	} else {
1502		/* Set PCS register for forced link */
1503		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1504
1505		/* Force flow control for forced link */
1506		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1507
1508		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1509	}
1510
1511	wr32(E1000_PCS_LCTL, reg);
1512
1513	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1514		igb_force_mac_fc(hw);
1515
1516	return ret_val;
1517}
1518
1519/**
1520 *  igb_sgmii_active_82575 - Return sgmii state
1521 *  @hw: pointer to the HW structure
1522 *
1523 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1524 *  which can be enabled for use in the embedded applications.  Simply
1525 *  return the current state of the sgmii interface.
1526 **/
1527static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1528{
1529	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1530	return dev_spec->sgmii_active;
1531}
1532
1533/**
1534 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1535 *  @hw: pointer to the HW structure
1536 *
1537 *  Inits recommended HW defaults after a reset when there is no EEPROM
1538 *  detected. This is only for the 82575.
1539 **/
1540static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1541{
1542	if (hw->mac.type == e1000_82575) {
1543		hw_dbg("Running reset init script for 82575\n");
1544		/* SerDes configuration via SERDESCTRL */
1545		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1546		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1547		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1548		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1549
1550		/* CCM configuration via CCMCTL register */
1551		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1552		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1553
1554		/* PCIe lanes configuration */
1555		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1556		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1557		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1558		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1559
1560		/* PCIe PLL Configuration */
1561		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1562		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1563		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1564	}
1565
1566	return 0;
1567}
1568
1569/**
1570 *  igb_read_mac_addr_82575 - Read device MAC address
1571 *  @hw: pointer to the HW structure
1572 **/
1573static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1574{
1575	s32 ret_val = 0;
1576
1577	/* If there's an alternate MAC address place it in RAR0
1578	 * so that it will override the Si installed default perm
1579	 * address.
1580	 */
1581	ret_val = igb_check_alt_mac_addr(hw);
1582	if (ret_val)
1583		goto out;
1584
1585	ret_val = igb_read_mac_addr(hw);
1586
1587out:
1588	return ret_val;
1589}
1590
1591/**
1592 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1593 * @hw: pointer to the HW structure
1594 *
1595 * In the case of a PHY power down to save power, or to turn off link during a
1596 * driver unload, or wake on lan is not enabled, remove the link.
1597 **/
1598void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1599{
1600	/* If the management interface is not enabled, then power down */
1601	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1602		igb_power_down_phy_copper(hw);
1603}
1604
1605/**
1606 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1607 *  @hw: pointer to the HW structure
1608 *
1609 *  Clears the hardware counters by reading the counter registers.
1610 **/
1611static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1612{
1613	igb_clear_hw_cntrs_base(hw);
1614
1615	rd32(E1000_PRC64);
1616	rd32(E1000_PRC127);
1617	rd32(E1000_PRC255);
1618	rd32(E1000_PRC511);
1619	rd32(E1000_PRC1023);
1620	rd32(E1000_PRC1522);
1621	rd32(E1000_PTC64);
1622	rd32(E1000_PTC127);
1623	rd32(E1000_PTC255);
1624	rd32(E1000_PTC511);
1625	rd32(E1000_PTC1023);
1626	rd32(E1000_PTC1522);
1627
1628	rd32(E1000_ALGNERRC);
1629	rd32(E1000_RXERRC);
1630	rd32(E1000_TNCRS);
1631	rd32(E1000_CEXTERR);
1632	rd32(E1000_TSCTC);
1633	rd32(E1000_TSCTFC);
1634
1635	rd32(E1000_MGTPRC);
1636	rd32(E1000_MGTPDC);
1637	rd32(E1000_MGTPTC);
1638
1639	rd32(E1000_IAC);
1640	rd32(E1000_ICRXOC);
1641
1642	rd32(E1000_ICRXPTC);
1643	rd32(E1000_ICRXATC);
1644	rd32(E1000_ICTXPTC);
1645	rd32(E1000_ICTXATC);
1646	rd32(E1000_ICTXQEC);
1647	rd32(E1000_ICTXQMTC);
1648	rd32(E1000_ICRXDMTC);
1649
1650	rd32(E1000_CBTMPC);
1651	rd32(E1000_HTDPMC);
1652	rd32(E1000_CBRMPC);
1653	rd32(E1000_RPTHC);
1654	rd32(E1000_HGPTC);
1655	rd32(E1000_HTCBDPC);
1656	rd32(E1000_HGORCL);
1657	rd32(E1000_HGORCH);
1658	rd32(E1000_HGOTCL);
1659	rd32(E1000_HGOTCH);
1660	rd32(E1000_LENERRS);
1661
1662	/* This register should not be read in copper configurations */
1663	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1664	    igb_sgmii_active_82575(hw))
1665		rd32(E1000_SCVPC);
1666}
1667
1668/**
1669 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1670 *  @hw: pointer to the HW structure
1671 *
1672 *  After rx enable if managability is enabled then there is likely some
1673 *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1674 *  function clears the fifos and flushes any packets that came in as rx was
1675 *  being enabled.
1676 **/
1677void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1678{
1679	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1680	int i, ms_wait;
1681
1682	if (hw->mac.type != e1000_82575 ||
1683	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1684		return;
1685
1686	/* Disable all RX queues */
1687	for (i = 0; i < 4; i++) {
1688		rxdctl[i] = rd32(E1000_RXDCTL(i));
1689		wr32(E1000_RXDCTL(i),
1690		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1691	}
1692	/* Poll all queues to verify they have shut down */
1693	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1694		msleep(1);
1695		rx_enabled = 0;
1696		for (i = 0; i < 4; i++)
1697			rx_enabled |= rd32(E1000_RXDCTL(i));
1698		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1699			break;
1700	}
1701
1702	if (ms_wait == 10)
1703		hw_dbg("Queue disable timed out after 10ms\n");
1704
1705	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1706	 * incoming packets are rejected.  Set enable and wait 2ms so that
1707	 * any packet that was coming in as RCTL.EN was set is flushed
1708	 */
1709	rfctl = rd32(E1000_RFCTL);
1710	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1711
1712	rlpml = rd32(E1000_RLPML);
1713	wr32(E1000_RLPML, 0);
1714
1715	rctl = rd32(E1000_RCTL);
1716	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1717	temp_rctl |= E1000_RCTL_LPE;
1718
1719	wr32(E1000_RCTL, temp_rctl);
1720	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1721	wrfl();
1722	msleep(2);
1723
1724	/* Enable RX queues that were previously enabled and restore our
1725	 * previous state
1726	 */
1727	for (i = 0; i < 4; i++)
1728		wr32(E1000_RXDCTL(i), rxdctl[i]);
1729	wr32(E1000_RCTL, rctl);
1730	wrfl();
1731
1732	wr32(E1000_RLPML, rlpml);
1733	wr32(E1000_RFCTL, rfctl);
1734
1735	/* Flush receive errors generated by workaround */
1736	rd32(E1000_ROC);
1737	rd32(E1000_RNBC);
1738	rd32(E1000_MPC);
1739}
1740
1741/**
1742 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1743 *  @hw: pointer to the HW structure
1744 *
1745 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1746 *  however the hardware default for these parts is 500us to 1ms which is less
1747 *  than the 10ms recommended by the pci-e spec.  To address this we need to
1748 *  increase the value to either 10ms to 200ms for capability version 1 config,
1749 *  or 16ms to 55ms for version 2.
1750 **/
1751static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1752{
1753	u32 gcr = rd32(E1000_GCR);
1754	s32 ret_val = 0;
1755	u16 pcie_devctl2;
1756
1757	/* only take action if timeout value is defaulted to 0 */
1758	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1759		goto out;
1760
1761	/* if capabilities version is type 1 we can write the
1762	 * timeout of 10ms to 200ms through the GCR register
1763	 */
1764	if (!(gcr & E1000_GCR_CAP_VER2)) {
1765		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1766		goto out;
1767	}
1768
1769	/* for version 2 capabilities we need to write the config space
1770	 * directly in order to set the completion timeout value for
1771	 * 16ms to 55ms
1772	 */
1773	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1774	                                &pcie_devctl2);
1775	if (ret_val)
1776		goto out;
1777
1778	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1779
1780	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1781	                                 &pcie_devctl2);
1782out:
1783	/* disable completion timeout resend */
1784	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1785
1786	wr32(E1000_GCR, gcr);
1787	return ret_val;
1788}
1789
1790/**
1791 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1792 *  @hw: pointer to the hardware struct
1793 *  @enable: state to enter, either enabled or disabled
1794 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
1795 *
1796 *  enables/disables L2 switch anti-spoofing functionality.
1797 **/
1798void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1799{
1800	u32 reg_val, reg_offset;
1801
1802	switch (hw->mac.type) {
1803	case e1000_82576:
1804		reg_offset = E1000_DTXSWC;
1805		break;
1806	case e1000_i350:
1807		reg_offset = E1000_TXSWC;
1808		break;
1809	default:
1810		return;
1811	}
1812
1813	reg_val = rd32(reg_offset);
1814	if (enable) {
1815		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1816			     E1000_DTXSWC_VLAN_SPOOF_MASK);
1817		/* The PF can spoof - it has to in order to
1818		 * support emulation mode NICs
1819		 */
1820		reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1821	} else {
1822		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1823			     E1000_DTXSWC_VLAN_SPOOF_MASK);
1824	}
1825	wr32(reg_offset, reg_val);
1826}
1827
1828/**
1829 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1830 *  @hw: pointer to the hardware struct
1831 *  @enable: state to enter, either enabled or disabled
1832 *
1833 *  enables/disables L2 switch loopback functionality.
1834 **/
1835void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1836{
1837	u32 dtxswc;
1838
1839	switch (hw->mac.type) {
1840	case e1000_82576:
1841		dtxswc = rd32(E1000_DTXSWC);
1842		if (enable)
1843			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1844		else
1845			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1846		wr32(E1000_DTXSWC, dtxswc);
1847		break;
1848	case e1000_i350:
1849		dtxswc = rd32(E1000_TXSWC);
1850		if (enable)
1851			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1852		else
1853			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1854		wr32(E1000_TXSWC, dtxswc);
1855		break;
1856	default:
1857		/* Currently no other hardware supports loopback */
1858		break;
1859	}
1860
1861}
1862
1863/**
1864 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
1865 *  @hw: pointer to the hardware struct
1866 *  @enable: state to enter, either enabled or disabled
1867 *
1868 *  enables/disables replication of packets across multiple pools.
1869 **/
1870void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1871{
1872	u32 vt_ctl = rd32(E1000_VT_CTL);
1873
1874	if (enable)
1875		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1876	else
1877		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1878
1879	wr32(E1000_VT_CTL, vt_ctl);
1880}
1881
1882/**
1883 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
1884 *  @hw: pointer to the HW structure
1885 *  @offset: register offset to be read
1886 *  @data: pointer to the read data
1887 *
1888 *  Reads the MDI control register in the PHY at offset and stores the
1889 *  information read to data.
1890 **/
1891static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1892{
1893	s32 ret_val;
1894
1895	ret_val = hw->phy.ops.acquire(hw);
1896	if (ret_val)
1897		goto out;
1898
1899	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1900
1901	hw->phy.ops.release(hw);
1902
1903out:
1904	return ret_val;
1905}
1906
1907/**
1908 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
1909 *  @hw: pointer to the HW structure
1910 *  @offset: register offset to write to
1911 *  @data: data to write to register at offset
1912 *
1913 *  Writes data to MDI control register in the PHY at offset.
1914 **/
1915static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1916{
1917	s32 ret_val;
1918
1919
1920	ret_val = hw->phy.ops.acquire(hw);
1921	if (ret_val)
1922		goto out;
1923
1924	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1925
1926	hw->phy.ops.release(hw);
1927
1928out:
1929	return ret_val;
1930}
1931
1932/**
1933 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1934 *  @hw: pointer to the HW structure
1935 *
1936 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1937 *  the values found in the EEPROM.  This addresses an issue in which these
1938 *  bits are not restored from EEPROM after reset.
1939 **/
1940static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1941{
1942	s32 ret_val = 0;
1943	u32 mdicnfg;
1944	u16 nvm_data = 0;
1945
1946	if (hw->mac.type != e1000_82580)
1947		goto out;
1948	if (!igb_sgmii_active_82575(hw))
1949		goto out;
1950
1951	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1952				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1953				   &nvm_data);
1954	if (ret_val) {
1955		hw_dbg("NVM Read Error\n");
1956		goto out;
1957	}
1958
1959	mdicnfg = rd32(E1000_MDICNFG);
1960	if (nvm_data & NVM_WORD24_EXT_MDIO)
1961		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1962	if (nvm_data & NVM_WORD24_COM_MDIO)
1963		mdicnfg |= E1000_MDICNFG_COM_MDIO;
1964	wr32(E1000_MDICNFG, mdicnfg);
1965out:
1966	return ret_val;
1967}
1968
1969/**
1970 *  igb_reset_hw_82580 - Reset hardware
1971 *  @hw: pointer to the HW structure
1972 *
1973 *  This resets function or entire device (all ports, etc.)
1974 *  to a known state.
1975 **/
1976static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1977{
1978	s32 ret_val = 0;
1979	/* BH SW mailbox bit in SW_FW_SYNC */
1980	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1981	u32 ctrl, icr;
1982	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1983
1984
1985	hw->dev_spec._82575.global_device_reset = false;
1986
1987	/* due to hw errata, global device reset doesn't always
1988	 * work on 82580
1989	 */
1990	if (hw->mac.type == e1000_82580)
1991		global_device_reset = false;
1992
1993	/* Get current control state. */
1994	ctrl = rd32(E1000_CTRL);
1995
1996	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1997	 * on the last TLP read/write transaction when MAC is reset.
1998	 */
1999	ret_val = igb_disable_pcie_master(hw);
2000	if (ret_val)
2001		hw_dbg("PCI-E Master disable polling has failed.\n");
2002
2003	hw_dbg("Masking off all interrupts\n");
2004	wr32(E1000_IMC, 0xffffffff);
2005	wr32(E1000_RCTL, 0);
2006	wr32(E1000_TCTL, E1000_TCTL_PSP);
2007	wrfl();
2008
2009	msleep(10);
2010
2011	/* Determine whether or not a global dev reset is requested */
2012	if (global_device_reset &&
2013		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2014			global_device_reset = false;
2015
2016	if (global_device_reset &&
2017		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2018		ctrl |= E1000_CTRL_DEV_RST;
2019	else
2020		ctrl |= E1000_CTRL_RST;
2021
2022	wr32(E1000_CTRL, ctrl);
2023	wrfl();
2024
2025	/* Add delay to insure DEV_RST has time to complete */
2026	if (global_device_reset)
2027		msleep(5);
2028
2029	ret_val = igb_get_auto_rd_done(hw);
2030	if (ret_val) {
2031		/* When auto config read does not complete, do not
2032		 * return with an error. This can happen in situations
2033		 * where there is no eeprom and prevents getting link.
2034		 */
2035		hw_dbg("Auto Read Done did not complete\n");
2036	}
2037
2038	/* If EEPROM is not present, run manual init scripts */
2039	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
2040		igb_reset_init_script_82575(hw);
2041
2042	/* clear global device reset status bit */
2043	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2044
2045	/* Clear any pending interrupt events. */
2046	wr32(E1000_IMC, 0xffffffff);
2047	icr = rd32(E1000_ICR);
2048
2049	ret_val = igb_reset_mdicnfg_82580(hw);
2050	if (ret_val)
2051		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2052
2053	/* Install any alternate MAC address into RAR0 */
2054	ret_val = igb_check_alt_mac_addr(hw);
2055
2056	/* Release semaphore */
2057	if (global_device_reset)
2058		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2059
2060	return ret_val;
2061}
2062
2063/**
2064 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2065 *  @data: data received by reading RXPBS register
2066 *
2067 *  The 82580 uses a table based approach for packet buffer allocation sizes.
2068 *  This function converts the retrieved value into the correct table value
2069 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2070 *  0x0 36  72 144   1   2   4   8  16
2071 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2072 */
2073u16 igb_rxpbs_adjust_82580(u32 data)
2074{
2075	u16 ret_val = 0;
2076
2077	if (data < E1000_82580_RXPBS_TABLE_SIZE)
2078		ret_val = e1000_82580_rxpbs_table[data];
2079
2080	return ret_val;
2081}
2082
2083/**
2084 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2085 *  checksum
2086 *  @hw: pointer to the HW structure
2087 *  @offset: offset in words of the checksum protected region
2088 *
2089 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2090 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2091 **/
2092static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2093						 u16 offset)
2094{
2095	s32 ret_val = 0;
2096	u16 checksum = 0;
2097	u16 i, nvm_data;
2098
2099	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2100		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2101		if (ret_val) {
2102			hw_dbg("NVM Read Error\n");
2103			goto out;
2104		}
2105		checksum += nvm_data;
2106	}
2107
2108	if (checksum != (u16) NVM_SUM) {
2109		hw_dbg("NVM Checksum Invalid\n");
2110		ret_val = -E1000_ERR_NVM;
2111		goto out;
2112	}
2113
2114out:
2115	return ret_val;
2116}
2117
2118/**
2119 *  igb_update_nvm_checksum_with_offset - Update EEPROM
2120 *  checksum
2121 *  @hw: pointer to the HW structure
2122 *  @offset: offset in words of the checksum protected region
2123 *
2124 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2125 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2126 *  value to the EEPROM.
2127 **/
2128static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2129{
2130	s32 ret_val;
2131	u16 checksum = 0;
2132	u16 i, nvm_data;
2133
2134	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2135		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2136		if (ret_val) {
2137			hw_dbg("NVM Read Error while updating checksum.\n");
2138			goto out;
2139		}
2140		checksum += nvm_data;
2141	}
2142	checksum = (u16) NVM_SUM - checksum;
2143	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2144				&checksum);
2145	if (ret_val)
2146		hw_dbg("NVM Write Error while updating checksum.\n");
2147
2148out:
2149	return ret_val;
2150}
2151
2152/**
2153 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2154 *  @hw: pointer to the HW structure
2155 *
2156 *  Calculates the EEPROM section checksum by reading/adding each word of
2157 *  the EEPROM and then verifies that the sum of the EEPROM is
2158 *  equal to 0xBABA.
2159 **/
2160static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2161{
2162	s32 ret_val = 0;
2163	u16 eeprom_regions_count = 1;
2164	u16 j, nvm_data;
2165	u16 nvm_offset;
2166
2167	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2168	if (ret_val) {
2169		hw_dbg("NVM Read Error\n");
2170		goto out;
2171	}
2172
2173	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2174		/* if checksums compatibility bit is set validate checksums
2175		 * for all 4 ports.
2176		 */
2177		eeprom_regions_count = 4;
2178	}
2179
2180	for (j = 0; j < eeprom_regions_count; j++) {
2181		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2182		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2183								nvm_offset);
2184		if (ret_val != 0)
2185			goto out;
2186	}
2187
2188out:
2189	return ret_val;
2190}
2191
2192/**
2193 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2194 *  @hw: pointer to the HW structure
2195 *
2196 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2197 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2198 *  checksum and writes the value to the EEPROM.
2199 **/
2200static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2201{
2202	s32 ret_val;
2203	u16 j, nvm_data;
2204	u16 nvm_offset;
2205
2206	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2207	if (ret_val) {
2208		hw_dbg("NVM Read Error while updating checksum"
2209			" compatibility bit.\n");
2210		goto out;
2211	}
2212
2213	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2214		/* set compatibility bit to validate checksums appropriately */
2215		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2216		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2217					&nvm_data);
2218		if (ret_val) {
2219			hw_dbg("NVM Write Error while updating checksum"
2220				" compatibility bit.\n");
2221			goto out;
2222		}
2223	}
2224
2225	for (j = 0; j < 4; j++) {
2226		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2227		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2228		if (ret_val)
2229			goto out;
2230	}
2231
2232out:
2233	return ret_val;
2234}
2235
2236/**
2237 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2238 *  @hw: pointer to the HW structure
2239 *
2240 *  Calculates the EEPROM section checksum by reading/adding each word of
2241 *  the EEPROM and then verifies that the sum of the EEPROM is
2242 *  equal to 0xBABA.
2243 **/
2244static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2245{
2246	s32 ret_val = 0;
2247	u16 j;
2248	u16 nvm_offset;
2249
2250	for (j = 0; j < 4; j++) {
2251		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2252		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2253								nvm_offset);
2254		if (ret_val != 0)
2255			goto out;
2256	}
2257
2258out:
2259	return ret_val;
2260}
2261
2262/**
2263 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2264 *  @hw: pointer to the HW structure
2265 *
2266 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2267 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2268 *  checksum and writes the value to the EEPROM.
2269 **/
2270static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2271{
2272	s32 ret_val = 0;
2273	u16 j;
2274	u16 nvm_offset;
2275
2276	for (j = 0; j < 4; j++) {
2277		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2278		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2279		if (ret_val != 0)
2280			goto out;
2281	}
2282
2283out:
2284	return ret_val;
2285}
2286
2287/**
2288 *  __igb_access_emi_reg - Read/write EMI register
2289 *  @hw: pointer to the HW structure
2290 *  @addr: EMI address to program
2291 *  @data: pointer to value to read/write from/to the EMI address
2292 *  @read: boolean flag to indicate read or write
2293 **/
2294static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2295				  u16 *data, bool read)
2296{
2297	s32 ret_val = E1000_SUCCESS;
2298
2299	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2300	if (ret_val)
2301		return ret_val;
2302
2303	if (read)
2304		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2305	else
2306		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2307
2308	return ret_val;
2309}
2310
2311/**
2312 *  igb_read_emi_reg - Read Extended Management Interface register
2313 *  @hw: pointer to the HW structure
2314 *  @addr: EMI address to program
2315 *  @data: value to be read from the EMI address
2316 **/
2317s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2318{
2319	return __igb_access_emi_reg(hw, addr, data, true);
2320}
2321
2322/**
2323 *  igb_set_eee_i350 - Enable/disable EEE support
2324 *  @hw: pointer to the HW structure
2325 *
2326 *  Enable/disable EEE based on setting in dev_spec structure.
2327 *
2328 **/
2329s32 igb_set_eee_i350(struct e1000_hw *hw)
2330{
2331	s32 ret_val = 0;
2332	u32 ipcnfg, eeer;
2333
2334	if ((hw->mac.type < e1000_i350) ||
2335	    (hw->phy.media_type != e1000_media_type_copper))
2336		goto out;
2337	ipcnfg = rd32(E1000_IPCNFG);
2338	eeer = rd32(E1000_EEER);
2339
2340	/* enable or disable per user setting */
2341	if (!(hw->dev_spec._82575.eee_disable)) {
2342		u32 eee_su = rd32(E1000_EEE_SU);
2343
2344		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
2345		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2346			E1000_EEER_LPI_FC);
2347
2348		/* This bit should not be set in normal operation. */
2349		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2350			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2351
2352	} else {
2353		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2354			E1000_IPCNFG_EEE_100M_AN);
2355		eeer &= ~(E1000_EEER_TX_LPI_EN |
2356			E1000_EEER_RX_LPI_EN |
2357			E1000_EEER_LPI_FC);
2358	}
2359	wr32(E1000_IPCNFG, ipcnfg);
2360	wr32(E1000_EEER, eeer);
2361	rd32(E1000_IPCNFG);
2362	rd32(E1000_EEER);
2363out:
2364
2365	return ret_val;
2366}
2367
2368static const u8 e1000_emc_temp_data[4] = {
2369	E1000_EMC_INTERNAL_DATA,
2370	E1000_EMC_DIODE1_DATA,
2371	E1000_EMC_DIODE2_DATA,
2372	E1000_EMC_DIODE3_DATA
2373};
2374static const u8 e1000_emc_therm_limit[4] = {
2375	E1000_EMC_INTERNAL_THERM_LIMIT,
2376	E1000_EMC_DIODE1_THERM_LIMIT,
2377	E1000_EMC_DIODE2_THERM_LIMIT,
2378	E1000_EMC_DIODE3_THERM_LIMIT
2379};
2380
2381/**
2382 *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2383 *  @hw: pointer to hardware structure
2384 *
2385 *  Updates the temperatures in mac.thermal_sensor_data
2386 **/
2387s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2388{
2389	s32 status = E1000_SUCCESS;
2390	u16 ets_offset;
2391	u16 ets_cfg;
2392	u16 ets_sensor;
2393	u8  num_sensors;
2394	u8  sensor_index;
2395	u8  sensor_location;
2396	u8  i;
2397	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2398
2399	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2400		return E1000_NOT_IMPLEMENTED;
2401
2402	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2403
2404	/* Return the internal sensor only if ETS is unsupported */
2405	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2406	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2407		return status;
2408
2409	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2410	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2411	    != NVM_ETS_TYPE_EMC)
2412		return E1000_NOT_IMPLEMENTED;
2413
2414	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2415	if (num_sensors > E1000_MAX_SENSORS)
2416		num_sensors = E1000_MAX_SENSORS;
2417
2418	for (i = 1; i < num_sensors; i++) {
2419		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2420		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2421				NVM_ETS_DATA_INDEX_SHIFT);
2422		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2423				   NVM_ETS_DATA_LOC_SHIFT);
2424
2425		if (sensor_location != 0)
2426			hw->phy.ops.read_i2c_byte(hw,
2427					e1000_emc_temp_data[sensor_index],
2428					E1000_I2C_THERMAL_SENSOR_ADDR,
2429					&data->sensor[i].temp);
2430	}
2431	return status;
2432}
2433
2434/**
2435 *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2436 *  @hw: pointer to hardware structure
2437 *
2438 *  Sets the thermal sensor thresholds according to the NVM map
2439 *  and save off the threshold and location values into mac.thermal_sensor_data
2440 **/
2441s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2442{
2443	s32 status = E1000_SUCCESS;
2444	u16 ets_offset;
2445	u16 ets_cfg;
2446	u16 ets_sensor;
2447	u8  low_thresh_delta;
2448	u8  num_sensors;
2449	u8  sensor_index;
2450	u8  sensor_location;
2451	u8  therm_limit;
2452	u8  i;
2453	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2454
2455	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2456		return E1000_NOT_IMPLEMENTED;
2457
2458	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2459
2460	data->sensor[0].location = 0x1;
2461	data->sensor[0].caution_thresh =
2462		(rd32(E1000_THHIGHTC) & 0xFF);
2463	data->sensor[0].max_op_thresh =
2464		(rd32(E1000_THLOWTC) & 0xFF);
2465
2466	/* Return the internal sensor only if ETS is unsupported */
2467	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2468	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2469		return status;
2470
2471	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2472	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2473	    != NVM_ETS_TYPE_EMC)
2474		return E1000_NOT_IMPLEMENTED;
2475
2476	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2477			    NVM_ETS_LTHRES_DELTA_SHIFT);
2478	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2479
2480	for (i = 1; i <= num_sensors; i++) {
2481		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2482		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2483				NVM_ETS_DATA_INDEX_SHIFT);
2484		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2485				   NVM_ETS_DATA_LOC_SHIFT);
2486		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2487
2488		hw->phy.ops.write_i2c_byte(hw,
2489			e1000_emc_therm_limit[sensor_index],
2490			E1000_I2C_THERMAL_SENSOR_ADDR,
2491			therm_limit);
2492
2493		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2494			data->sensor[i].location = sensor_location;
2495			data->sensor[i].caution_thresh = therm_limit;
2496			data->sensor[i].max_op_thresh = therm_limit -
2497							low_thresh_delta;
2498		}
2499	}
2500	return status;
2501}
2502
2503static struct e1000_mac_operations e1000_mac_ops_82575 = {
2504	.init_hw              = igb_init_hw_82575,
2505	.check_for_link       = igb_check_for_link_82575,
2506	.rar_set              = igb_rar_set,
2507	.read_mac_addr        = igb_read_mac_addr_82575,
2508	.get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2509#ifdef CONFIG_IGB_HWMON
2510	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2511	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2512#endif
2513};
2514
2515static struct e1000_phy_operations e1000_phy_ops_82575 = {
2516	.acquire              = igb_acquire_phy_82575,
2517	.get_cfg_done         = igb_get_cfg_done_82575,
2518	.release              = igb_release_phy_82575,
2519	.write_i2c_byte       = igb_write_i2c_byte,
2520	.read_i2c_byte        = igb_read_i2c_byte,
2521};
2522
2523static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2524	.acquire              = igb_acquire_nvm_82575,
2525	.read                 = igb_read_nvm_eerd,
2526	.release              = igb_release_nvm_82575,
2527	.write                = igb_write_nvm_spi,
2528};
2529
2530const struct e1000_info e1000_82575_info = {
2531	.get_invariants = igb_get_invariants_82575,
2532	.mac_ops = &e1000_mac_ops_82575,
2533	.phy_ops = &e1000_phy_ops_82575,
2534	.nvm_ops = &e1000_nvm_ops_82575,
2535};
2536
2537