e1000_82575.c revision adc0fa413917bd973469560388446c52ce43b995
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2012 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* e1000_82575
29 * e1000_82576
30 */
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/types.h>
35#include <linux/if_ether.h>
36
37#include "e1000_mac.h"
38#include "e1000_82575.h"
39#include "e1000_i210.h"
40
41static s32  igb_get_invariants_82575(struct e1000_hw *);
42static s32  igb_acquire_phy_82575(struct e1000_hw *);
43static void igb_release_phy_82575(struct e1000_hw *);
44static s32  igb_acquire_nvm_82575(struct e1000_hw *);
45static void igb_release_nvm_82575(struct e1000_hw *);
46static s32  igb_check_for_link_82575(struct e1000_hw *);
47static s32  igb_get_cfg_done_82575(struct e1000_hw *);
48static s32  igb_init_hw_82575(struct e1000_hw *);
49static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
50static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
51static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
52static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
53static s32  igb_reset_hw_82575(struct e1000_hw *);
54static s32  igb_reset_hw_82580(struct e1000_hw *);
55static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
56static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
57static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
58static s32  igb_setup_copper_link_82575(struct e1000_hw *);
59static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
60static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
61static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
62static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
63static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
64						 u16 *);
65static s32  igb_get_phy_id_82575(struct e1000_hw *);
66static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
67static bool igb_sgmii_active_82575(struct e1000_hw *);
68static s32  igb_reset_init_script_82575(struct e1000_hw *);
69static s32  igb_read_mac_addr_82575(struct e1000_hw *);
70static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
71static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
72static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
73static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
74static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
75static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
76static const u16 e1000_82580_rxpbs_table[] =
77	{ 36, 72, 144, 1, 2, 4, 8, 16,
78	  35, 70, 140 };
79#define E1000_82580_RXPBS_TABLE_SIZE \
80	(sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
81
82/**
83 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
84 *  @hw: pointer to the HW structure
85 *
86 *  Called to determine if the I2C pins are being used for I2C or as an
87 *  external MDIO interface since the two options are mutually exclusive.
88 **/
89static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
90{
91	u32 reg = 0;
92	bool ext_mdio = false;
93
94	switch (hw->mac.type) {
95	case e1000_82575:
96	case e1000_82576:
97		reg = rd32(E1000_MDIC);
98		ext_mdio = !!(reg & E1000_MDIC_DEST);
99		break;
100	case e1000_82580:
101	case e1000_i350:
102	case e1000_i210:
103	case e1000_i211:
104		reg = rd32(E1000_MDICNFG);
105		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
106		break;
107	default:
108		break;
109	}
110	return ext_mdio;
111}
112
113static s32 igb_get_invariants_82575(struct e1000_hw *hw)
114{
115	struct e1000_phy_info *phy = &hw->phy;
116	struct e1000_nvm_info *nvm = &hw->nvm;
117	struct e1000_mac_info *mac = &hw->mac;
118	struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
119	u32 eecd;
120	s32 ret_val;
121	u16 size;
122	u32 ctrl_ext = 0;
123
124	switch (hw->device_id) {
125	case E1000_DEV_ID_82575EB_COPPER:
126	case E1000_DEV_ID_82575EB_FIBER_SERDES:
127	case E1000_DEV_ID_82575GB_QUAD_COPPER:
128		mac->type = e1000_82575;
129		break;
130	case E1000_DEV_ID_82576:
131	case E1000_DEV_ID_82576_NS:
132	case E1000_DEV_ID_82576_NS_SERDES:
133	case E1000_DEV_ID_82576_FIBER:
134	case E1000_DEV_ID_82576_SERDES:
135	case E1000_DEV_ID_82576_QUAD_COPPER:
136	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
137	case E1000_DEV_ID_82576_SERDES_QUAD:
138		mac->type = e1000_82576;
139		break;
140	case E1000_DEV_ID_82580_COPPER:
141	case E1000_DEV_ID_82580_FIBER:
142	case E1000_DEV_ID_82580_QUAD_FIBER:
143	case E1000_DEV_ID_82580_SERDES:
144	case E1000_DEV_ID_82580_SGMII:
145	case E1000_DEV_ID_82580_COPPER_DUAL:
146	case E1000_DEV_ID_DH89XXCC_SGMII:
147	case E1000_DEV_ID_DH89XXCC_SERDES:
148	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
149	case E1000_DEV_ID_DH89XXCC_SFP:
150		mac->type = e1000_82580;
151		break;
152	case E1000_DEV_ID_I350_COPPER:
153	case E1000_DEV_ID_I350_FIBER:
154	case E1000_DEV_ID_I350_SERDES:
155	case E1000_DEV_ID_I350_SGMII:
156		mac->type = e1000_i350;
157		break;
158	case E1000_DEV_ID_I210_COPPER:
159	case E1000_DEV_ID_I210_COPPER_OEM1:
160	case E1000_DEV_ID_I210_COPPER_IT:
161	case E1000_DEV_ID_I210_FIBER:
162	case E1000_DEV_ID_I210_SERDES:
163	case E1000_DEV_ID_I210_SGMII:
164		mac->type = e1000_i210;
165		break;
166	case E1000_DEV_ID_I211_COPPER:
167		mac->type = e1000_i211;
168		break;
169	default:
170		return -E1000_ERR_MAC_INIT;
171		break;
172	}
173
174	/* Set media type */
175	/*
176	 * The 82575 uses bits 22:23 for link mode. The mode can be changed
177	 * based on the EEPROM. We cannot rely upon device ID. There
178	 * is no distinguishable difference between fiber and internal
179	 * SerDes mode on the 82575. There can be an external PHY attached
180	 * on the SGMII interface. For this, we'll set sgmii_active to true.
181	 */
182	phy->media_type = e1000_media_type_copper;
183	dev_spec->sgmii_active = false;
184
185	ctrl_ext = rd32(E1000_CTRL_EXT);
186	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
187	case E1000_CTRL_EXT_LINK_MODE_SGMII:
188		dev_spec->sgmii_active = true;
189		break;
190	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
191	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
192		hw->phy.media_type = e1000_media_type_internal_serdes;
193		break;
194	default:
195		break;
196	}
197
198	/* Set mta register count */
199	mac->mta_reg_count = 128;
200	/* Set rar entry count */
201	switch (mac->type) {
202	case e1000_82576:
203		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
204		break;
205	case e1000_82580:
206		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
207		break;
208	case e1000_i350:
209		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
210		break;
211	default:
212		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
213		break;
214	}
215	/* reset */
216	if (mac->type >= e1000_82580)
217		mac->ops.reset_hw = igb_reset_hw_82580;
218	else
219		mac->ops.reset_hw = igb_reset_hw_82575;
220
221	if (mac->type >= e1000_i210) {
222		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
223		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
224	} else {
225		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
226		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
227	}
228
229	/* Set if part includes ASF firmware */
230	mac->asf_firmware_present = true;
231	/* Set if manageability features are enabled. */
232	mac->arc_subsystem_valid =
233		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
234			? true : false;
235	/* enable EEE on i350 parts and later parts */
236	if (mac->type >= e1000_i350)
237		dev_spec->eee_disable = false;
238	else
239		dev_spec->eee_disable = true;
240	/* physical interface link setup */
241	mac->ops.setup_physical_interface =
242		(hw->phy.media_type == e1000_media_type_copper)
243			? igb_setup_copper_link_82575
244			: igb_setup_serdes_link_82575;
245
246	/* NVM initialization */
247	eecd = rd32(E1000_EECD);
248	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
249		     E1000_EECD_SIZE_EX_SHIFT);
250
251	/*
252	 * Added to a constant, "size" becomes the left-shift value
253	 * for setting word_size.
254	 */
255	size += NVM_WORD_SIZE_BASE_SHIFT;
256
257	nvm->word_size = 1 << size;
258	if (hw->mac.type < e1000_i210) {
259		nvm->opcode_bits        = 8;
260		nvm->delay_usec         = 1;
261		switch (nvm->override) {
262		case e1000_nvm_override_spi_large:
263			nvm->page_size    = 32;
264			nvm->address_bits = 16;
265			break;
266		case e1000_nvm_override_spi_small:
267			nvm->page_size    = 8;
268			nvm->address_bits = 8;
269			break;
270		default:
271			nvm->page_size    = eecd
272				& E1000_EECD_ADDR_BITS ? 32 : 8;
273			nvm->address_bits = eecd
274				& E1000_EECD_ADDR_BITS ? 16 : 8;
275			break;
276		}
277		if (nvm->word_size == (1 << 15))
278			nvm->page_size = 128;
279
280		nvm->type = e1000_nvm_eeprom_spi;
281	} else
282		nvm->type = e1000_nvm_flash_hw;
283
284	/*
285	 * Check for invalid size
286	 */
287	if ((hw->mac.type == e1000_82576) && (size > 15)) {
288		pr_notice("The NVM size is not valid, defaulting to 32K\n");
289		size = 15;
290	}
291
292	/* NVM Function Pointers */
293	switch (hw->mac.type) {
294	case e1000_82580:
295		nvm->ops.validate = igb_validate_nvm_checksum_82580;
296		nvm->ops.update = igb_update_nvm_checksum_82580;
297		nvm->ops.acquire = igb_acquire_nvm_82575;
298		nvm->ops.release = igb_release_nvm_82575;
299		if (nvm->word_size < (1 << 15))
300			nvm->ops.read = igb_read_nvm_eerd;
301		else
302			nvm->ops.read = igb_read_nvm_spi;
303		nvm->ops.write = igb_write_nvm_spi;
304		break;
305	case e1000_i350:
306		nvm->ops.validate = igb_validate_nvm_checksum_i350;
307		nvm->ops.update = igb_update_nvm_checksum_i350;
308		nvm->ops.acquire = igb_acquire_nvm_82575;
309		nvm->ops.release = igb_release_nvm_82575;
310		if (nvm->word_size < (1 << 15))
311			nvm->ops.read = igb_read_nvm_eerd;
312		else
313			nvm->ops.read = igb_read_nvm_spi;
314		nvm->ops.write = igb_write_nvm_spi;
315		break;
316	case e1000_i210:
317		nvm->ops.validate = igb_validate_nvm_checksum_i210;
318		nvm->ops.update   = igb_update_nvm_checksum_i210;
319		nvm->ops.acquire = igb_acquire_nvm_i210;
320		nvm->ops.release = igb_release_nvm_i210;
321		nvm->ops.read    = igb_read_nvm_srrd_i210;
322		nvm->ops.valid_led_default = igb_valid_led_default_i210;
323		break;
324	case e1000_i211:
325		nvm->ops.acquire  = igb_acquire_nvm_i210;
326		nvm->ops.release  = igb_release_nvm_i210;
327		nvm->ops.read     = igb_read_nvm_i211;
328		nvm->ops.valid_led_default = igb_valid_led_default_i210;
329		nvm->ops.validate = NULL;
330		nvm->ops.update   = NULL;
331		nvm->ops.write    = NULL;
332		break;
333	default:
334		nvm->ops.validate = igb_validate_nvm_checksum;
335		nvm->ops.update = igb_update_nvm_checksum;
336		nvm->ops.acquire = igb_acquire_nvm_82575;
337		nvm->ops.release = igb_release_nvm_82575;
338		if (nvm->word_size < (1 << 15))
339			nvm->ops.read = igb_read_nvm_eerd;
340		else
341			nvm->ops.read = igb_read_nvm_spi;
342		nvm->ops.write = igb_write_nvm_spi;
343		break;
344	}
345
346	/* if part supports SR-IOV then initialize mailbox parameters */
347	switch (mac->type) {
348	case e1000_82576:
349	case e1000_i350:
350		igb_init_mbx_params_pf(hw);
351		break;
352	default:
353		break;
354	}
355
356	/* setup PHY parameters */
357	if (phy->media_type != e1000_media_type_copper) {
358		phy->type = e1000_phy_none;
359		return 0;
360	}
361
362	phy->autoneg_mask        = AUTONEG_ADVERTISE_SPEED_DEFAULT;
363	phy->reset_delay_us      = 100;
364
365	ctrl_ext = rd32(E1000_CTRL_EXT);
366
367	/* PHY function pointers */
368	if (igb_sgmii_active_82575(hw)) {
369		phy->ops.reset      = igb_phy_hw_reset_sgmii_82575;
370		ctrl_ext |= E1000_CTRL_I2C_ENA;
371	} else {
372		phy->ops.reset      = igb_phy_hw_reset;
373		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
374	}
375
376	wr32(E1000_CTRL_EXT, ctrl_ext);
377	igb_reset_mdicnfg_82580(hw);
378
379	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
380		phy->ops.read_reg   = igb_read_phy_reg_sgmii_82575;
381		phy->ops.write_reg  = igb_write_phy_reg_sgmii_82575;
382	} else if ((hw->mac.type == e1000_82580)
383		|| (hw->mac.type == e1000_i350)) {
384		phy->ops.read_reg   = igb_read_phy_reg_82580;
385		phy->ops.write_reg  = igb_write_phy_reg_82580;
386	} else if (hw->phy.type >= e1000_phy_i210) {
387		phy->ops.read_reg   = igb_read_phy_reg_gs40g;
388		phy->ops.write_reg  = igb_write_phy_reg_gs40g;
389	} else {
390		phy->ops.read_reg   = igb_read_phy_reg_igp;
391		phy->ops.write_reg  = igb_write_phy_reg_igp;
392	}
393
394	/* set lan id */
395	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
396	               E1000_STATUS_FUNC_SHIFT;
397
398	/* Set phy->phy_addr and phy->id. */
399	ret_val = igb_get_phy_id_82575(hw);
400	if (ret_val)
401		return ret_val;
402
403	/* Verify phy id and set remaining function pointers */
404	switch (phy->id) {
405	case I347AT4_E_PHY_ID:
406	case M88E1112_E_PHY_ID:
407	case M88E1111_I_PHY_ID:
408		phy->type                   = e1000_phy_m88;
409		phy->ops.get_phy_info       = igb_get_phy_info_m88;
410
411		if (phy->id == I347AT4_E_PHY_ID ||
412		    phy->id == M88E1112_E_PHY_ID)
413			phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
414		else
415			phy->ops.get_cable_length = igb_get_cable_length_m88;
416
417		if (phy->id == I210_I_PHY_ID) {
418			phy->ops.get_cable_length =
419					 igb_get_cable_length_m88_gen2;
420			phy->ops.set_d0_lplu_state =
421					igb_set_d0_lplu_state_82580;
422			phy->ops.set_d3_lplu_state =
423					igb_set_d3_lplu_state_82580;
424		}
425		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
426		break;
427	case IGP03E1000_E_PHY_ID:
428		phy->type                   = e1000_phy_igp_3;
429		phy->ops.get_phy_info       = igb_get_phy_info_igp;
430		phy->ops.get_cable_length   = igb_get_cable_length_igp_2;
431		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
432		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82575;
433		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state;
434		break;
435	case I82580_I_PHY_ID:
436	case I350_I_PHY_ID:
437		phy->type                   = e1000_phy_82580;
438		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580;
439		phy->ops.get_cable_length   = igb_get_cable_length_82580;
440		phy->ops.get_phy_info       = igb_get_phy_info_82580;
441		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82580;
442		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state_82580;
443		break;
444	case I210_I_PHY_ID:
445		phy->type                   = e1000_phy_i210;
446		phy->ops.get_phy_info       = igb_get_phy_info_m88;
447		phy->ops.check_polarity     = igb_check_polarity_m88;
448		phy->ops.get_cable_length   = igb_get_cable_length_m88_gen2;
449		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82580;
450		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state_82580;
451		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
452		break;
453	default:
454		return -E1000_ERR_PHY;
455	}
456
457	return 0;
458}
459
460/**
461 *  igb_acquire_phy_82575 - Acquire rights to access PHY
462 *  @hw: pointer to the HW structure
463 *
464 *  Acquire access rights to the correct PHY.  This is a
465 *  function pointer entry point called by the api module.
466 **/
467static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
468{
469	u16 mask = E1000_SWFW_PHY0_SM;
470
471	if (hw->bus.func == E1000_FUNC_1)
472		mask = E1000_SWFW_PHY1_SM;
473	else if (hw->bus.func == E1000_FUNC_2)
474		mask = E1000_SWFW_PHY2_SM;
475	else if (hw->bus.func == E1000_FUNC_3)
476		mask = E1000_SWFW_PHY3_SM;
477
478	return hw->mac.ops.acquire_swfw_sync(hw, mask);
479}
480
481/**
482 *  igb_release_phy_82575 - Release rights to access PHY
483 *  @hw: pointer to the HW structure
484 *
485 *  A wrapper to release access rights to the correct PHY.  This is a
486 *  function pointer entry point called by the api module.
487 **/
488static void igb_release_phy_82575(struct e1000_hw *hw)
489{
490	u16 mask = E1000_SWFW_PHY0_SM;
491
492	if (hw->bus.func == E1000_FUNC_1)
493		mask = E1000_SWFW_PHY1_SM;
494	else if (hw->bus.func == E1000_FUNC_2)
495		mask = E1000_SWFW_PHY2_SM;
496	else if (hw->bus.func == E1000_FUNC_3)
497		mask = E1000_SWFW_PHY3_SM;
498
499	hw->mac.ops.release_swfw_sync(hw, mask);
500}
501
502/**
503 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
504 *  @hw: pointer to the HW structure
505 *  @offset: register offset to be read
506 *  @data: pointer to the read data
507 *
508 *  Reads the PHY register at offset using the serial gigabit media independent
509 *  interface and stores the retrieved information in data.
510 **/
511static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
512					  u16 *data)
513{
514	s32 ret_val = -E1000_ERR_PARAM;
515
516	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
517		hw_dbg("PHY Address %u is out of range\n", offset);
518		goto out;
519	}
520
521	ret_val = hw->phy.ops.acquire(hw);
522	if (ret_val)
523		goto out;
524
525	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
526
527	hw->phy.ops.release(hw);
528
529out:
530	return ret_val;
531}
532
533/**
534 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
535 *  @hw: pointer to the HW structure
536 *  @offset: register offset to write to
537 *  @data: data to write at register offset
538 *
539 *  Writes the data to PHY register at the offset using the serial gigabit
540 *  media independent interface.
541 **/
542static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
543					   u16 data)
544{
545	s32 ret_val = -E1000_ERR_PARAM;
546
547
548	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
549		hw_dbg("PHY Address %d is out of range\n", offset);
550		goto out;
551	}
552
553	ret_val = hw->phy.ops.acquire(hw);
554	if (ret_val)
555		goto out;
556
557	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
558
559	hw->phy.ops.release(hw);
560
561out:
562	return ret_val;
563}
564
565/**
566 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
567 *  @hw: pointer to the HW structure
568 *
569 *  Retrieves the PHY address and ID for both PHY's which do and do not use
570 *  sgmi interface.
571 **/
572static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
573{
574	struct e1000_phy_info *phy = &hw->phy;
575	s32  ret_val = 0;
576	u16 phy_id;
577	u32 ctrl_ext;
578	u32 mdic;
579
580	/*
581	 * For SGMII PHYs, we try the list of possible addresses until
582	 * we find one that works.  For non-SGMII PHYs
583	 * (e.g. integrated copper PHYs), an address of 1 should
584	 * work.  The result of this function should mean phy->phy_addr
585	 * and phy->id are set correctly.
586	 */
587	if (!(igb_sgmii_active_82575(hw))) {
588		phy->addr = 1;
589		ret_val = igb_get_phy_id(hw);
590		goto out;
591	}
592
593	if (igb_sgmii_uses_mdio_82575(hw)) {
594		switch (hw->mac.type) {
595		case e1000_82575:
596		case e1000_82576:
597			mdic = rd32(E1000_MDIC);
598			mdic &= E1000_MDIC_PHY_MASK;
599			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
600			break;
601		case e1000_82580:
602		case e1000_i350:
603		case e1000_i210:
604		case e1000_i211:
605			mdic = rd32(E1000_MDICNFG);
606			mdic &= E1000_MDICNFG_PHY_MASK;
607			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
608			break;
609		default:
610			ret_val = -E1000_ERR_PHY;
611			goto out;
612			break;
613		}
614		ret_val = igb_get_phy_id(hw);
615		goto out;
616	}
617
618	/* Power on sgmii phy if it is disabled */
619	ctrl_ext = rd32(E1000_CTRL_EXT);
620	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
621	wrfl();
622	msleep(300);
623
624	/*
625	 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
626	 * Therefore, we need to test 1-7
627	 */
628	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
629		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
630		if (ret_val == 0) {
631			hw_dbg("Vendor ID 0x%08X read at address %u\n",
632			       phy_id, phy->addr);
633			/*
634			 * At the time of this writing, The M88 part is
635			 * the only supported SGMII PHY product.
636			 */
637			if (phy_id == M88_VENDOR)
638				break;
639		} else {
640			hw_dbg("PHY address %u was unreadable\n", phy->addr);
641		}
642	}
643
644	/* A valid PHY type couldn't be found. */
645	if (phy->addr == 8) {
646		phy->addr = 0;
647		ret_val = -E1000_ERR_PHY;
648		goto out;
649	} else {
650		ret_val = igb_get_phy_id(hw);
651	}
652
653	/* restore previous sfp cage power state */
654	wr32(E1000_CTRL_EXT, ctrl_ext);
655
656out:
657	return ret_val;
658}
659
660/**
661 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
662 *  @hw: pointer to the HW structure
663 *
664 *  Resets the PHY using the serial gigabit media independent interface.
665 **/
666static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
667{
668	s32 ret_val;
669
670	/*
671	 * This isn't a true "hard" reset, but is the only reset
672	 * available to us at this time.
673	 */
674
675	hw_dbg("Soft resetting SGMII attached PHY...\n");
676
677	/*
678	 * SFP documentation requires the following to configure the SPF module
679	 * to work on SGMII.  No further documentation is given.
680	 */
681	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
682	if (ret_val)
683		goto out;
684
685	ret_val = igb_phy_sw_reset(hw);
686
687out:
688	return ret_val;
689}
690
691/**
692 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
693 *  @hw: pointer to the HW structure
694 *  @active: true to enable LPLU, false to disable
695 *
696 *  Sets the LPLU D0 state according to the active flag.  When
697 *  activating LPLU this function also disables smart speed
698 *  and vice versa.  LPLU will not be activated unless the
699 *  device autonegotiation advertisement meets standards of
700 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
701 *  This is a function pointer entry point only called by
702 *  PHY setup routines.
703 **/
704static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
705{
706	struct e1000_phy_info *phy = &hw->phy;
707	s32 ret_val;
708	u16 data;
709
710	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
711	if (ret_val)
712		goto out;
713
714	if (active) {
715		data |= IGP02E1000_PM_D0_LPLU;
716		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
717						 data);
718		if (ret_val)
719			goto out;
720
721		/* When LPLU is enabled, we should disable SmartSpeed */
722		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
723						&data);
724		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
725		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
726						 data);
727		if (ret_val)
728			goto out;
729	} else {
730		data &= ~IGP02E1000_PM_D0_LPLU;
731		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
732						 data);
733		/*
734		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
735		 * during Dx states where the power conservation is most
736		 * important.  During driver activity we should enable
737		 * SmartSpeed, so performance is maintained.
738		 */
739		if (phy->smart_speed == e1000_smart_speed_on) {
740			ret_val = phy->ops.read_reg(hw,
741					IGP01E1000_PHY_PORT_CONFIG, &data);
742			if (ret_val)
743				goto out;
744
745			data |= IGP01E1000_PSCFR_SMART_SPEED;
746			ret_val = phy->ops.write_reg(hw,
747					IGP01E1000_PHY_PORT_CONFIG, data);
748			if (ret_val)
749				goto out;
750		} else if (phy->smart_speed == e1000_smart_speed_off) {
751			ret_val = phy->ops.read_reg(hw,
752					IGP01E1000_PHY_PORT_CONFIG, &data);
753			if (ret_val)
754				goto out;
755
756			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
757			ret_val = phy->ops.write_reg(hw,
758					IGP01E1000_PHY_PORT_CONFIG, data);
759			if (ret_val)
760				goto out;
761		}
762	}
763
764out:
765	return ret_val;
766}
767
768/**
769 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
770 *  @hw: pointer to the HW structure
771 *  @active: true to enable LPLU, false to disable
772 *
773 *  Sets the LPLU D0 state according to the active flag.  When
774 *  activating LPLU this function also disables smart speed
775 *  and vice versa.  LPLU will not be activated unless the
776 *  device autonegotiation advertisement meets standards of
777 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
778 *  This is a function pointer entry point only called by
779 *  PHY setup routines.
780 **/
781static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
782{
783	struct e1000_phy_info *phy = &hw->phy;
784	s32 ret_val = 0;
785	u16 data;
786
787	data = rd32(E1000_82580_PHY_POWER_MGMT);
788
789	if (active) {
790		data |= E1000_82580_PM_D0_LPLU;
791
792		/* When LPLU is enabled, we should disable SmartSpeed */
793		data &= ~E1000_82580_PM_SPD;
794	} else {
795		data &= ~E1000_82580_PM_D0_LPLU;
796
797		/*
798		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
799		 * during Dx states where the power conservation is most
800		 * important.  During driver activity we should enable
801		 * SmartSpeed, so performance is maintained.
802		 */
803		if (phy->smart_speed == e1000_smart_speed_on)
804			data |= E1000_82580_PM_SPD;
805		else if (phy->smart_speed == e1000_smart_speed_off)
806			data &= ~E1000_82580_PM_SPD; }
807
808	wr32(E1000_82580_PHY_POWER_MGMT, data);
809	return ret_val;
810}
811
812/**
813 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
814 *  @hw: pointer to the HW structure
815 *  @active: boolean used to enable/disable lplu
816 *
817 *  Success returns 0, Failure returns 1
818 *
819 *  The low power link up (lplu) state is set to the power management level D3
820 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
821 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
822 *  is used during Dx states where the power conservation is most important.
823 *  During driver activity, SmartSpeed should be enabled so performance is
824 *  maintained.
825 **/
826s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
827{
828	struct e1000_phy_info *phy = &hw->phy;
829	s32 ret_val = 0;
830	u16 data;
831
832	data = rd32(E1000_82580_PHY_POWER_MGMT);
833
834	if (!active) {
835		data &= ~E1000_82580_PM_D3_LPLU;
836		/*
837		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
838		 * during Dx states where the power conservation is most
839		 * important.  During driver activity we should enable
840		 * SmartSpeed, so performance is maintained.
841		 */
842		if (phy->smart_speed == e1000_smart_speed_on)
843			data |= E1000_82580_PM_SPD;
844		else if (phy->smart_speed == e1000_smart_speed_off)
845			data &= ~E1000_82580_PM_SPD;
846	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
847		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
848		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
849		data |= E1000_82580_PM_D3_LPLU;
850		/* When LPLU is enabled, we should disable SmartSpeed */
851		data &= ~E1000_82580_PM_SPD;
852	}
853
854	wr32(E1000_82580_PHY_POWER_MGMT, data);
855	return ret_val;
856}
857
858/**
859 *  igb_acquire_nvm_82575 - Request for access to EEPROM
860 *  @hw: pointer to the HW structure
861 *
862 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
863 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
864 *  Return successful if access grant bit set, else clear the request for
865 *  EEPROM access and return -E1000_ERR_NVM (-1).
866 **/
867static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
868{
869	s32 ret_val;
870
871	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
872	if (ret_val)
873		goto out;
874
875	ret_val = igb_acquire_nvm(hw);
876
877	if (ret_val)
878		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
879
880out:
881	return ret_val;
882}
883
884/**
885 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
886 *  @hw: pointer to the HW structure
887 *
888 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
889 *  then release the semaphores acquired.
890 **/
891static void igb_release_nvm_82575(struct e1000_hw *hw)
892{
893	igb_release_nvm(hw);
894	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
895}
896
897/**
898 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
899 *  @hw: pointer to the HW structure
900 *  @mask: specifies which semaphore to acquire
901 *
902 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
903 *  will also specify which port we're acquiring the lock for.
904 **/
905static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
906{
907	u32 swfw_sync;
908	u32 swmask = mask;
909	u32 fwmask = mask << 16;
910	s32 ret_val = 0;
911	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
912
913	while (i < timeout) {
914		if (igb_get_hw_semaphore(hw)) {
915			ret_val = -E1000_ERR_SWFW_SYNC;
916			goto out;
917		}
918
919		swfw_sync = rd32(E1000_SW_FW_SYNC);
920		if (!(swfw_sync & (fwmask | swmask)))
921			break;
922
923		/*
924		 * Firmware currently using resource (fwmask)
925		 * or other software thread using resource (swmask)
926		 */
927		igb_put_hw_semaphore(hw);
928		mdelay(5);
929		i++;
930	}
931
932	if (i == timeout) {
933		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
934		ret_val = -E1000_ERR_SWFW_SYNC;
935		goto out;
936	}
937
938	swfw_sync |= swmask;
939	wr32(E1000_SW_FW_SYNC, swfw_sync);
940
941	igb_put_hw_semaphore(hw);
942
943out:
944	return ret_val;
945}
946
947/**
948 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
949 *  @hw: pointer to the HW structure
950 *  @mask: specifies which semaphore to acquire
951 *
952 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
953 *  will also specify which port we're releasing the lock for.
954 **/
955static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
956{
957	u32 swfw_sync;
958
959	while (igb_get_hw_semaphore(hw) != 0);
960	/* Empty */
961
962	swfw_sync = rd32(E1000_SW_FW_SYNC);
963	swfw_sync &= ~mask;
964	wr32(E1000_SW_FW_SYNC, swfw_sync);
965
966	igb_put_hw_semaphore(hw);
967}
968
969/**
970 *  igb_get_cfg_done_82575 - Read config done bit
971 *  @hw: pointer to the HW structure
972 *
973 *  Read the management control register for the config done bit for
974 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
975 *  to read the config done bit, so an error is *ONLY* logged and returns
976 *  0.  If we were to return with error, EEPROM-less silicon
977 *  would not be able to be reset or change link.
978 **/
979static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
980{
981	s32 timeout = PHY_CFG_TIMEOUT;
982	s32 ret_val = 0;
983	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
984
985	if (hw->bus.func == 1)
986		mask = E1000_NVM_CFG_DONE_PORT_1;
987	else if (hw->bus.func == E1000_FUNC_2)
988		mask = E1000_NVM_CFG_DONE_PORT_2;
989	else if (hw->bus.func == E1000_FUNC_3)
990		mask = E1000_NVM_CFG_DONE_PORT_3;
991
992	while (timeout) {
993		if (rd32(E1000_EEMNGCTL) & mask)
994			break;
995		msleep(1);
996		timeout--;
997	}
998	if (!timeout)
999		hw_dbg("MNG configuration cycle has not completed.\n");
1000
1001	/* If EEPROM is not marked present, init the PHY manually */
1002	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1003	    (hw->phy.type == e1000_phy_igp_3))
1004		igb_phy_init_script_igp3(hw);
1005
1006	return ret_val;
1007}
1008
1009/**
1010 *  igb_check_for_link_82575 - Check for link
1011 *  @hw: pointer to the HW structure
1012 *
1013 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1014 *  use the generic interface for determining link.
1015 **/
1016static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1017{
1018	s32 ret_val;
1019	u16 speed, duplex;
1020
1021	if (hw->phy.media_type != e1000_media_type_copper) {
1022		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1023		                                             &duplex);
1024		/*
1025		 * Use this flag to determine if link needs to be checked or
1026		 * not.  If  we have link clear the flag so that we do not
1027		 * continue to check for link.
1028		 */
1029		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1030	} else {
1031		ret_val = igb_check_for_copper_link(hw);
1032	}
1033
1034	return ret_val;
1035}
1036
1037/**
1038 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1039 *  @hw: pointer to the HW structure
1040 **/
1041void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1042{
1043	u32 reg;
1044
1045
1046	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1047	    !igb_sgmii_active_82575(hw))
1048		return;
1049
1050	/* Enable PCS to turn on link */
1051	reg = rd32(E1000_PCS_CFG0);
1052	reg |= E1000_PCS_CFG_PCS_EN;
1053	wr32(E1000_PCS_CFG0, reg);
1054
1055	/* Power up the laser */
1056	reg = rd32(E1000_CTRL_EXT);
1057	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1058	wr32(E1000_CTRL_EXT, reg);
1059
1060	/* flush the write to verify completion */
1061	wrfl();
1062	msleep(1);
1063}
1064
1065/**
1066 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1067 *  @hw: pointer to the HW structure
1068 *  @speed: stores the current speed
1069 *  @duplex: stores the current duplex
1070 *
1071 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1072 *  duplex, then store the values in the pointers provided.
1073 **/
1074static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1075						u16 *duplex)
1076{
1077	struct e1000_mac_info *mac = &hw->mac;
1078	u32 pcs;
1079
1080	/* Set up defaults for the return values of this function */
1081	mac->serdes_has_link = false;
1082	*speed = 0;
1083	*duplex = 0;
1084
1085	/*
1086	 * Read the PCS Status register for link state. For non-copper mode,
1087	 * the status register is not accurate. The PCS status register is
1088	 * used instead.
1089	 */
1090	pcs = rd32(E1000_PCS_LSTAT);
1091
1092	/*
1093	 * The link up bit determines when link is up on autoneg. The sync ok
1094	 * gets set once both sides sync up and agree upon link. Stable link
1095	 * can be determined by checking for both link up and link sync ok
1096	 */
1097	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1098		mac->serdes_has_link = true;
1099
1100		/* Detect and store PCS speed */
1101		if (pcs & E1000_PCS_LSTS_SPEED_1000) {
1102			*speed = SPEED_1000;
1103		} else if (pcs & E1000_PCS_LSTS_SPEED_100) {
1104			*speed = SPEED_100;
1105		} else {
1106			*speed = SPEED_10;
1107		}
1108
1109		/* Detect and store PCS duplex */
1110		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
1111			*duplex = FULL_DUPLEX;
1112		} else {
1113			*duplex = HALF_DUPLEX;
1114		}
1115	}
1116
1117	return 0;
1118}
1119
1120/**
1121 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1122 *  @hw: pointer to the HW structure
1123 *
1124 *  In the case of fiber serdes, shut down optics and PCS on driver unload
1125 *  when management pass thru is not enabled.
1126 **/
1127void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1128{
1129	u32 reg;
1130
1131	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1132	    igb_sgmii_active_82575(hw))
1133		return;
1134
1135	if (!igb_enable_mng_pass_thru(hw)) {
1136		/* Disable PCS to turn off link */
1137		reg = rd32(E1000_PCS_CFG0);
1138		reg &= ~E1000_PCS_CFG_PCS_EN;
1139		wr32(E1000_PCS_CFG0, reg);
1140
1141		/* shutdown the laser */
1142		reg = rd32(E1000_CTRL_EXT);
1143		reg |= E1000_CTRL_EXT_SDP3_DATA;
1144		wr32(E1000_CTRL_EXT, reg);
1145
1146		/* flush the write to verify completion */
1147		wrfl();
1148		msleep(1);
1149	}
1150}
1151
1152/**
1153 *  igb_reset_hw_82575 - Reset hardware
1154 *  @hw: pointer to the HW structure
1155 *
1156 *  This resets the hardware into a known state.  This is a
1157 *  function pointer entry point called by the api module.
1158 **/
1159static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1160{
1161	u32 ctrl, icr;
1162	s32 ret_val;
1163
1164	/*
1165	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1166	 * on the last TLP read/write transaction when MAC is reset.
1167	 */
1168	ret_val = igb_disable_pcie_master(hw);
1169	if (ret_val)
1170		hw_dbg("PCI-E Master disable polling has failed.\n");
1171
1172	/* set the completion timeout for interface */
1173	ret_val = igb_set_pcie_completion_timeout(hw);
1174	if (ret_val) {
1175		hw_dbg("PCI-E Set completion timeout has failed.\n");
1176	}
1177
1178	hw_dbg("Masking off all interrupts\n");
1179	wr32(E1000_IMC, 0xffffffff);
1180
1181	wr32(E1000_RCTL, 0);
1182	wr32(E1000_TCTL, E1000_TCTL_PSP);
1183	wrfl();
1184
1185	msleep(10);
1186
1187	ctrl = rd32(E1000_CTRL);
1188
1189	hw_dbg("Issuing a global reset to MAC\n");
1190	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1191
1192	ret_val = igb_get_auto_rd_done(hw);
1193	if (ret_val) {
1194		/*
1195		 * When auto config read does not complete, do not
1196		 * return with an error. This can happen in situations
1197		 * where there is no eeprom and prevents getting link.
1198		 */
1199		hw_dbg("Auto Read Done did not complete\n");
1200	}
1201
1202	/* If EEPROM is not present, run manual init scripts */
1203	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1204		igb_reset_init_script_82575(hw);
1205
1206	/* Clear any pending interrupt events. */
1207	wr32(E1000_IMC, 0xffffffff);
1208	icr = rd32(E1000_ICR);
1209
1210	/* Install any alternate MAC address into RAR0 */
1211	ret_val = igb_check_alt_mac_addr(hw);
1212
1213	return ret_val;
1214}
1215
1216/**
1217 *  igb_init_hw_82575 - Initialize hardware
1218 *  @hw: pointer to the HW structure
1219 *
1220 *  This inits the hardware readying it for operation.
1221 **/
1222static s32 igb_init_hw_82575(struct e1000_hw *hw)
1223{
1224	struct e1000_mac_info *mac = &hw->mac;
1225	s32 ret_val;
1226	u16 i, rar_count = mac->rar_entry_count;
1227
1228	/* Initialize identification LED */
1229	ret_val = igb_id_led_init(hw);
1230	if (ret_val) {
1231		hw_dbg("Error initializing identification LED\n");
1232		/* This is not fatal and we should not stop init due to this */
1233	}
1234
1235	/* Disabling VLAN filtering */
1236	hw_dbg("Initializing the IEEE VLAN\n");
1237	if (hw->mac.type == e1000_i350)
1238		igb_clear_vfta_i350(hw);
1239	else
1240		igb_clear_vfta(hw);
1241
1242	/* Setup the receive address */
1243	igb_init_rx_addrs(hw, rar_count);
1244
1245	/* Zero out the Multicast HASH table */
1246	hw_dbg("Zeroing the MTA\n");
1247	for (i = 0; i < mac->mta_reg_count; i++)
1248		array_wr32(E1000_MTA, i, 0);
1249
1250	/* Zero out the Unicast HASH table */
1251	hw_dbg("Zeroing the UTA\n");
1252	for (i = 0; i < mac->uta_reg_count; i++)
1253		array_wr32(E1000_UTA, i, 0);
1254
1255	/* Setup link and flow control */
1256	ret_val = igb_setup_link(hw);
1257
1258	/*
1259	 * Clear all of the statistics registers (clear on read).  It is
1260	 * important that we do this after we have tried to establish link
1261	 * because the symbol error count will increment wildly if there
1262	 * is no link.
1263	 */
1264	igb_clear_hw_cntrs_82575(hw);
1265	return ret_val;
1266}
1267
1268/**
1269 *  igb_setup_copper_link_82575 - Configure copper link settings
1270 *  @hw: pointer to the HW structure
1271 *
1272 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1273 *  for link, once link is established calls to configure collision distance
1274 *  and flow control are called.
1275 **/
1276static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1277{
1278	u32 ctrl;
1279	s32  ret_val;
1280
1281	ctrl = rd32(E1000_CTRL);
1282	ctrl |= E1000_CTRL_SLU;
1283	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1284	wr32(E1000_CTRL, ctrl);
1285
1286	ret_val = igb_setup_serdes_link_82575(hw);
1287	if (ret_val)
1288		goto out;
1289
1290	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1291		/* allow time for SFP cage time to power up phy */
1292		msleep(300);
1293
1294		ret_val = hw->phy.ops.reset(hw);
1295		if (ret_val) {
1296			hw_dbg("Error resetting the PHY.\n");
1297			goto out;
1298		}
1299	}
1300	switch (hw->phy.type) {
1301	case e1000_phy_i210:
1302	case e1000_phy_m88:
1303		if (hw->phy.id == I347AT4_E_PHY_ID ||
1304		    hw->phy.id == M88E1112_E_PHY_ID)
1305			ret_val = igb_copper_link_setup_m88_gen2(hw);
1306		else
1307			ret_val = igb_copper_link_setup_m88(hw);
1308		break;
1309	case e1000_phy_igp_3:
1310		ret_val = igb_copper_link_setup_igp(hw);
1311		break;
1312	case e1000_phy_82580:
1313		ret_val = igb_copper_link_setup_82580(hw);
1314		break;
1315	default:
1316		ret_val = -E1000_ERR_PHY;
1317		break;
1318	}
1319
1320	if (ret_val)
1321		goto out;
1322
1323	ret_val = igb_setup_copper_link(hw);
1324out:
1325	return ret_val;
1326}
1327
1328/**
1329 *  igb_setup_serdes_link_82575 - Setup link for serdes
1330 *  @hw: pointer to the HW structure
1331 *
1332 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1333 *  used on copper connections where the serialized gigabit media independent
1334 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1335 *  for auto-negotiation or forces speed/duplex.
1336 **/
1337static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1338{
1339	u32 ctrl_ext, ctrl_reg, reg;
1340	bool pcs_autoneg;
1341	s32 ret_val = E1000_SUCCESS;
1342	u16 data;
1343
1344	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1345	    !igb_sgmii_active_82575(hw))
1346		return ret_val;
1347
1348
1349	/*
1350	 * On the 82575, SerDes loopback mode persists until it is
1351	 * explicitly turned off or a power cycle is performed.  A read to
1352	 * the register does not indicate its status.  Therefore, we ensure
1353	 * loopback mode is disabled during initialization.
1354	 */
1355	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1356
1357	/* power on the sfp cage if present */
1358	ctrl_ext = rd32(E1000_CTRL_EXT);
1359	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1360	wr32(E1000_CTRL_EXT, ctrl_ext);
1361
1362	ctrl_reg = rd32(E1000_CTRL);
1363	ctrl_reg |= E1000_CTRL_SLU;
1364
1365	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1366		/* set both sw defined pins */
1367		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1368
1369		/* Set switch control to serdes energy detect */
1370		reg = rd32(E1000_CONNSW);
1371		reg |= E1000_CONNSW_ENRGSRC;
1372		wr32(E1000_CONNSW, reg);
1373	}
1374
1375	reg = rd32(E1000_PCS_LCTL);
1376
1377	/* default pcs_autoneg to the same setting as mac autoneg */
1378	pcs_autoneg = hw->mac.autoneg;
1379
1380	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1381	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1382		/* sgmii mode lets the phy handle forcing speed/duplex */
1383		pcs_autoneg = true;
1384		/* autoneg time out should be disabled for SGMII mode */
1385		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1386		break;
1387	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1388		/* disable PCS autoneg and support parallel detect only */
1389		pcs_autoneg = false;
1390	default:
1391		if (hw->mac.type == e1000_82575 ||
1392		    hw->mac.type == e1000_82576) {
1393			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1394			if (ret_val) {
1395				printk(KERN_DEBUG "NVM Read Error\n\n");
1396				return ret_val;
1397			}
1398
1399			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1400				pcs_autoneg = false;
1401		}
1402
1403		/*
1404		 * non-SGMII modes only supports a speed of 1000/Full for the
1405		 * link so it is best to just force the MAC and let the pcs
1406		 * link either autoneg or be forced to 1000/Full
1407		 */
1408		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1409		            E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1410
1411		/* set speed of 1000/Full if speed/duplex is forced */
1412		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1413		break;
1414	}
1415
1416	wr32(E1000_CTRL, ctrl_reg);
1417
1418	/*
1419	 * New SerDes mode allows for forcing speed or autonegotiating speed
1420	 * at 1gb. Autoneg should be default set by most drivers. This is the
1421	 * mode that will be compatible with older link partners and switches.
1422	 * However, both are supported by the hardware and some drivers/tools.
1423	 */
1424	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1425		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1426
1427	/*
1428	 * We force flow control to prevent the CTRL register values from being
1429	 * overwritten by the autonegotiated flow control values
1430	 */
1431	reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1432
1433	if (pcs_autoneg) {
1434		/* Set PCS register for autoneg */
1435		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1436		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1437		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1438	} else {
1439		/* Set PCS register for forced link */
1440		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1441
1442		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1443	}
1444
1445	wr32(E1000_PCS_LCTL, reg);
1446
1447	if (!igb_sgmii_active_82575(hw))
1448		igb_force_mac_fc(hw);
1449
1450	return ret_val;
1451}
1452
1453/**
1454 *  igb_sgmii_active_82575 - Return sgmii state
1455 *  @hw: pointer to the HW structure
1456 *
1457 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1458 *  which can be enabled for use in the embedded applications.  Simply
1459 *  return the current state of the sgmii interface.
1460 **/
1461static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1462{
1463	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1464	return dev_spec->sgmii_active;
1465}
1466
1467/**
1468 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1469 *  @hw: pointer to the HW structure
1470 *
1471 *  Inits recommended HW defaults after a reset when there is no EEPROM
1472 *  detected. This is only for the 82575.
1473 **/
1474static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1475{
1476	if (hw->mac.type == e1000_82575) {
1477		hw_dbg("Running reset init script for 82575\n");
1478		/* SerDes configuration via SERDESCTRL */
1479		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1480		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1481		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1482		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1483
1484		/* CCM configuration via CCMCTL register */
1485		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1486		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1487
1488		/* PCIe lanes configuration */
1489		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1490		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1491		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1492		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1493
1494		/* PCIe PLL Configuration */
1495		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1496		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1497		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1498	}
1499
1500	return 0;
1501}
1502
1503/**
1504 *  igb_read_mac_addr_82575 - Read device MAC address
1505 *  @hw: pointer to the HW structure
1506 **/
1507static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1508{
1509	s32 ret_val = 0;
1510
1511	/*
1512	 * If there's an alternate MAC address place it in RAR0
1513	 * so that it will override the Si installed default perm
1514	 * address.
1515	 */
1516	ret_val = igb_check_alt_mac_addr(hw);
1517	if (ret_val)
1518		goto out;
1519
1520	ret_val = igb_read_mac_addr(hw);
1521
1522out:
1523	return ret_val;
1524}
1525
1526/**
1527 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1528 * @hw: pointer to the HW structure
1529 *
1530 * In the case of a PHY power down to save power, or to turn off link during a
1531 * driver unload, or wake on lan is not enabled, remove the link.
1532 **/
1533void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1534{
1535	/* If the management interface is not enabled, then power down */
1536	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1537		igb_power_down_phy_copper(hw);
1538}
1539
1540/**
1541 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1542 *  @hw: pointer to the HW structure
1543 *
1544 *  Clears the hardware counters by reading the counter registers.
1545 **/
1546static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1547{
1548	igb_clear_hw_cntrs_base(hw);
1549
1550	rd32(E1000_PRC64);
1551	rd32(E1000_PRC127);
1552	rd32(E1000_PRC255);
1553	rd32(E1000_PRC511);
1554	rd32(E1000_PRC1023);
1555	rd32(E1000_PRC1522);
1556	rd32(E1000_PTC64);
1557	rd32(E1000_PTC127);
1558	rd32(E1000_PTC255);
1559	rd32(E1000_PTC511);
1560	rd32(E1000_PTC1023);
1561	rd32(E1000_PTC1522);
1562
1563	rd32(E1000_ALGNERRC);
1564	rd32(E1000_RXERRC);
1565	rd32(E1000_TNCRS);
1566	rd32(E1000_CEXTERR);
1567	rd32(E1000_TSCTC);
1568	rd32(E1000_TSCTFC);
1569
1570	rd32(E1000_MGTPRC);
1571	rd32(E1000_MGTPDC);
1572	rd32(E1000_MGTPTC);
1573
1574	rd32(E1000_IAC);
1575	rd32(E1000_ICRXOC);
1576
1577	rd32(E1000_ICRXPTC);
1578	rd32(E1000_ICRXATC);
1579	rd32(E1000_ICTXPTC);
1580	rd32(E1000_ICTXATC);
1581	rd32(E1000_ICTXQEC);
1582	rd32(E1000_ICTXQMTC);
1583	rd32(E1000_ICRXDMTC);
1584
1585	rd32(E1000_CBTMPC);
1586	rd32(E1000_HTDPMC);
1587	rd32(E1000_CBRMPC);
1588	rd32(E1000_RPTHC);
1589	rd32(E1000_HGPTC);
1590	rd32(E1000_HTCBDPC);
1591	rd32(E1000_HGORCL);
1592	rd32(E1000_HGORCH);
1593	rd32(E1000_HGOTCL);
1594	rd32(E1000_HGOTCH);
1595	rd32(E1000_LENERRS);
1596
1597	/* This register should not be read in copper configurations */
1598	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1599	    igb_sgmii_active_82575(hw))
1600		rd32(E1000_SCVPC);
1601}
1602
1603/**
1604 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1605 *  @hw: pointer to the HW structure
1606 *
1607 *  After rx enable if managability is enabled then there is likely some
1608 *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1609 *  function clears the fifos and flushes any packets that came in as rx was
1610 *  being enabled.
1611 **/
1612void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1613{
1614	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1615	int i, ms_wait;
1616
1617	if (hw->mac.type != e1000_82575 ||
1618	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1619		return;
1620
1621	/* Disable all RX queues */
1622	for (i = 0; i < 4; i++) {
1623		rxdctl[i] = rd32(E1000_RXDCTL(i));
1624		wr32(E1000_RXDCTL(i),
1625		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1626	}
1627	/* Poll all queues to verify they have shut down */
1628	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1629		msleep(1);
1630		rx_enabled = 0;
1631		for (i = 0; i < 4; i++)
1632			rx_enabled |= rd32(E1000_RXDCTL(i));
1633		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1634			break;
1635	}
1636
1637	if (ms_wait == 10)
1638		hw_dbg("Queue disable timed out after 10ms\n");
1639
1640	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1641	 * incoming packets are rejected.  Set enable and wait 2ms so that
1642	 * any packet that was coming in as RCTL.EN was set is flushed
1643	 */
1644	rfctl = rd32(E1000_RFCTL);
1645	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1646
1647	rlpml = rd32(E1000_RLPML);
1648	wr32(E1000_RLPML, 0);
1649
1650	rctl = rd32(E1000_RCTL);
1651	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1652	temp_rctl |= E1000_RCTL_LPE;
1653
1654	wr32(E1000_RCTL, temp_rctl);
1655	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1656	wrfl();
1657	msleep(2);
1658
1659	/* Enable RX queues that were previously enabled and restore our
1660	 * previous state
1661	 */
1662	for (i = 0; i < 4; i++)
1663		wr32(E1000_RXDCTL(i), rxdctl[i]);
1664	wr32(E1000_RCTL, rctl);
1665	wrfl();
1666
1667	wr32(E1000_RLPML, rlpml);
1668	wr32(E1000_RFCTL, rfctl);
1669
1670	/* Flush receive errors generated by workaround */
1671	rd32(E1000_ROC);
1672	rd32(E1000_RNBC);
1673	rd32(E1000_MPC);
1674}
1675
1676/**
1677 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1678 *  @hw: pointer to the HW structure
1679 *
1680 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1681 *  however the hardware default for these parts is 500us to 1ms which is less
1682 *  than the 10ms recommended by the pci-e spec.  To address this we need to
1683 *  increase the value to either 10ms to 200ms for capability version 1 config,
1684 *  or 16ms to 55ms for version 2.
1685 **/
1686static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1687{
1688	u32 gcr = rd32(E1000_GCR);
1689	s32 ret_val = 0;
1690	u16 pcie_devctl2;
1691
1692	/* only take action if timeout value is defaulted to 0 */
1693	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1694		goto out;
1695
1696	/*
1697	 * if capababilities version is type 1 we can write the
1698	 * timeout of 10ms to 200ms through the GCR register
1699	 */
1700	if (!(gcr & E1000_GCR_CAP_VER2)) {
1701		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1702		goto out;
1703	}
1704
1705	/*
1706	 * for version 2 capabilities we need to write the config space
1707	 * directly in order to set the completion timeout value for
1708	 * 16ms to 55ms
1709	 */
1710	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1711	                                &pcie_devctl2);
1712	if (ret_val)
1713		goto out;
1714
1715	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1716
1717	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1718	                                 &pcie_devctl2);
1719out:
1720	/* disable completion timeout resend */
1721	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1722
1723	wr32(E1000_GCR, gcr);
1724	return ret_val;
1725}
1726
1727/**
1728 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1729 *  @hw: pointer to the hardware struct
1730 *  @enable: state to enter, either enabled or disabled
1731 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
1732 *
1733 *  enables/disables L2 switch anti-spoofing functionality.
1734 **/
1735void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1736{
1737	u32 dtxswc;
1738
1739	switch (hw->mac.type) {
1740	case e1000_82576:
1741	case e1000_i350:
1742		dtxswc = rd32(E1000_DTXSWC);
1743		if (enable) {
1744			dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1745				   E1000_DTXSWC_VLAN_SPOOF_MASK);
1746			/* The PF can spoof - it has to in order to
1747			 * support emulation mode NICs */
1748			dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1749		} else {
1750			dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1751				    E1000_DTXSWC_VLAN_SPOOF_MASK);
1752		}
1753		wr32(E1000_DTXSWC, dtxswc);
1754		break;
1755	default:
1756		break;
1757	}
1758}
1759
1760/**
1761 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1762 *  @hw: pointer to the hardware struct
1763 *  @enable: state to enter, either enabled or disabled
1764 *
1765 *  enables/disables L2 switch loopback functionality.
1766 **/
1767void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1768{
1769	u32 dtxswc;
1770
1771	switch (hw->mac.type) {
1772	case e1000_82576:
1773		dtxswc = rd32(E1000_DTXSWC);
1774		if (enable)
1775			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1776		else
1777			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1778		wr32(E1000_DTXSWC, dtxswc);
1779		break;
1780	case e1000_i350:
1781		dtxswc = rd32(E1000_TXSWC);
1782		if (enable)
1783			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1784		else
1785			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1786		wr32(E1000_TXSWC, dtxswc);
1787		break;
1788	default:
1789		/* Currently no other hardware supports loopback */
1790		break;
1791	}
1792
1793
1794}
1795
1796/**
1797 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
1798 *  @hw: pointer to the hardware struct
1799 *  @enable: state to enter, either enabled or disabled
1800 *
1801 *  enables/disables replication of packets across multiple pools.
1802 **/
1803void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1804{
1805	u32 vt_ctl = rd32(E1000_VT_CTL);
1806
1807	if (enable)
1808		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1809	else
1810		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1811
1812	wr32(E1000_VT_CTL, vt_ctl);
1813}
1814
1815/**
1816 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
1817 *  @hw: pointer to the HW structure
1818 *  @offset: register offset to be read
1819 *  @data: pointer to the read data
1820 *
1821 *  Reads the MDI control register in the PHY at offset and stores the
1822 *  information read to data.
1823 **/
1824static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1825{
1826	s32 ret_val;
1827
1828
1829	ret_val = hw->phy.ops.acquire(hw);
1830	if (ret_val)
1831		goto out;
1832
1833	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1834
1835	hw->phy.ops.release(hw);
1836
1837out:
1838	return ret_val;
1839}
1840
1841/**
1842 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
1843 *  @hw: pointer to the HW structure
1844 *  @offset: register offset to write to
1845 *  @data: data to write to register at offset
1846 *
1847 *  Writes data to MDI control register in the PHY at offset.
1848 **/
1849static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1850{
1851	s32 ret_val;
1852
1853
1854	ret_val = hw->phy.ops.acquire(hw);
1855	if (ret_val)
1856		goto out;
1857
1858	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1859
1860	hw->phy.ops.release(hw);
1861
1862out:
1863	return ret_val;
1864}
1865
1866/**
1867 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1868 *  @hw: pointer to the HW structure
1869 *
1870 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1871 *  the values found in the EEPROM.  This addresses an issue in which these
1872 *  bits are not restored from EEPROM after reset.
1873 **/
1874static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1875{
1876	s32 ret_val = 0;
1877	u32 mdicnfg;
1878	u16 nvm_data = 0;
1879
1880	if (hw->mac.type != e1000_82580)
1881		goto out;
1882	if (!igb_sgmii_active_82575(hw))
1883		goto out;
1884
1885	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1886				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1887				   &nvm_data);
1888	if (ret_val) {
1889		hw_dbg("NVM Read Error\n");
1890		goto out;
1891	}
1892
1893	mdicnfg = rd32(E1000_MDICNFG);
1894	if (nvm_data & NVM_WORD24_EXT_MDIO)
1895		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1896	if (nvm_data & NVM_WORD24_COM_MDIO)
1897		mdicnfg |= E1000_MDICNFG_COM_MDIO;
1898	wr32(E1000_MDICNFG, mdicnfg);
1899out:
1900	return ret_val;
1901}
1902
1903/**
1904 *  igb_reset_hw_82580 - Reset hardware
1905 *  @hw: pointer to the HW structure
1906 *
1907 *  This resets function or entire device (all ports, etc.)
1908 *  to a known state.
1909 **/
1910static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1911{
1912	s32 ret_val = 0;
1913	/* BH SW mailbox bit in SW_FW_SYNC */
1914	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1915	u32 ctrl, icr;
1916	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1917
1918
1919	hw->dev_spec._82575.global_device_reset = false;
1920
1921	/* Get current control state. */
1922	ctrl = rd32(E1000_CTRL);
1923
1924	/*
1925	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1926	 * on the last TLP read/write transaction when MAC is reset.
1927	 */
1928	ret_val = igb_disable_pcie_master(hw);
1929	if (ret_val)
1930		hw_dbg("PCI-E Master disable polling has failed.\n");
1931
1932	hw_dbg("Masking off all interrupts\n");
1933	wr32(E1000_IMC, 0xffffffff);
1934	wr32(E1000_RCTL, 0);
1935	wr32(E1000_TCTL, E1000_TCTL_PSP);
1936	wrfl();
1937
1938	msleep(10);
1939
1940	/* Determine whether or not a global dev reset is requested */
1941	if (global_device_reset &&
1942		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
1943			global_device_reset = false;
1944
1945	if (global_device_reset &&
1946		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
1947		ctrl |= E1000_CTRL_DEV_RST;
1948	else
1949		ctrl |= E1000_CTRL_RST;
1950
1951	wr32(E1000_CTRL, ctrl);
1952	wrfl();
1953
1954	/* Add delay to insure DEV_RST has time to complete */
1955	if (global_device_reset)
1956		msleep(5);
1957
1958	ret_val = igb_get_auto_rd_done(hw);
1959	if (ret_val) {
1960		/*
1961		 * When auto config read does not complete, do not
1962		 * return with an error. This can happen in situations
1963		 * where there is no eeprom and prevents getting link.
1964		 */
1965		hw_dbg("Auto Read Done did not complete\n");
1966	}
1967
1968	/* If EEPROM is not present, run manual init scripts */
1969	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1970		igb_reset_init_script_82575(hw);
1971
1972	/* clear global device reset status bit */
1973	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
1974
1975	/* Clear any pending interrupt events. */
1976	wr32(E1000_IMC, 0xffffffff);
1977	icr = rd32(E1000_ICR);
1978
1979	ret_val = igb_reset_mdicnfg_82580(hw);
1980	if (ret_val)
1981		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
1982
1983	/* Install any alternate MAC address into RAR0 */
1984	ret_val = igb_check_alt_mac_addr(hw);
1985
1986	/* Release semaphore */
1987	if (global_device_reset)
1988		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
1989
1990	return ret_val;
1991}
1992
1993/**
1994 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1995 *  @data: data received by reading RXPBS register
1996 *
1997 *  The 82580 uses a table based approach for packet buffer allocation sizes.
1998 *  This function converts the retrieved value into the correct table value
1999 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2000 *  0x0 36  72 144   1   2   4   8  16
2001 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2002 */
2003u16 igb_rxpbs_adjust_82580(u32 data)
2004{
2005	u16 ret_val = 0;
2006
2007	if (data < E1000_82580_RXPBS_TABLE_SIZE)
2008		ret_val = e1000_82580_rxpbs_table[data];
2009
2010	return ret_val;
2011}
2012
2013/**
2014 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2015 *  checksum
2016 *  @hw: pointer to the HW structure
2017 *  @offset: offset in words of the checksum protected region
2018 *
2019 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2020 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2021 **/
2022static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2023						 u16 offset)
2024{
2025	s32 ret_val = 0;
2026	u16 checksum = 0;
2027	u16 i, nvm_data;
2028
2029	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2030		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2031		if (ret_val) {
2032			hw_dbg("NVM Read Error\n");
2033			goto out;
2034		}
2035		checksum += nvm_data;
2036	}
2037
2038	if (checksum != (u16) NVM_SUM) {
2039		hw_dbg("NVM Checksum Invalid\n");
2040		ret_val = -E1000_ERR_NVM;
2041		goto out;
2042	}
2043
2044out:
2045	return ret_val;
2046}
2047
2048/**
2049 *  igb_update_nvm_checksum_with_offset - Update EEPROM
2050 *  checksum
2051 *  @hw: pointer to the HW structure
2052 *  @offset: offset in words of the checksum protected region
2053 *
2054 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2055 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2056 *  value to the EEPROM.
2057 **/
2058static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2059{
2060	s32 ret_val;
2061	u16 checksum = 0;
2062	u16 i, nvm_data;
2063
2064	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2065		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2066		if (ret_val) {
2067			hw_dbg("NVM Read Error while updating checksum.\n");
2068			goto out;
2069		}
2070		checksum += nvm_data;
2071	}
2072	checksum = (u16) NVM_SUM - checksum;
2073	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2074				&checksum);
2075	if (ret_val)
2076		hw_dbg("NVM Write Error while updating checksum.\n");
2077
2078out:
2079	return ret_val;
2080}
2081
2082/**
2083 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2084 *  @hw: pointer to the HW structure
2085 *
2086 *  Calculates the EEPROM section checksum by reading/adding each word of
2087 *  the EEPROM and then verifies that the sum of the EEPROM is
2088 *  equal to 0xBABA.
2089 **/
2090static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2091{
2092	s32 ret_val = 0;
2093	u16 eeprom_regions_count = 1;
2094	u16 j, nvm_data;
2095	u16 nvm_offset;
2096
2097	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2098	if (ret_val) {
2099		hw_dbg("NVM Read Error\n");
2100		goto out;
2101	}
2102
2103	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2104		/* if checksums compatibility bit is set validate checksums
2105		 * for all 4 ports. */
2106		eeprom_regions_count = 4;
2107	}
2108
2109	for (j = 0; j < eeprom_regions_count; j++) {
2110		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2111		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2112								nvm_offset);
2113		if (ret_val != 0)
2114			goto out;
2115	}
2116
2117out:
2118	return ret_val;
2119}
2120
2121/**
2122 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2123 *  @hw: pointer to the HW structure
2124 *
2125 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2126 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2127 *  checksum and writes the value to the EEPROM.
2128 **/
2129static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2130{
2131	s32 ret_val;
2132	u16 j, nvm_data;
2133	u16 nvm_offset;
2134
2135	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2136	if (ret_val) {
2137		hw_dbg("NVM Read Error while updating checksum"
2138			" compatibility bit.\n");
2139		goto out;
2140	}
2141
2142	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2143		/* set compatibility bit to validate checksums appropriately */
2144		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2145		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2146					&nvm_data);
2147		if (ret_val) {
2148			hw_dbg("NVM Write Error while updating checksum"
2149				" compatibility bit.\n");
2150			goto out;
2151		}
2152	}
2153
2154	for (j = 0; j < 4; j++) {
2155		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2156		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2157		if (ret_val)
2158			goto out;
2159	}
2160
2161out:
2162	return ret_val;
2163}
2164
2165/**
2166 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2167 *  @hw: pointer to the HW structure
2168 *
2169 *  Calculates the EEPROM section checksum by reading/adding each word of
2170 *  the EEPROM and then verifies that the sum of the EEPROM is
2171 *  equal to 0xBABA.
2172 **/
2173static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2174{
2175	s32 ret_val = 0;
2176	u16 j;
2177	u16 nvm_offset;
2178
2179	for (j = 0; j < 4; j++) {
2180		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2181		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2182								nvm_offset);
2183		if (ret_val != 0)
2184			goto out;
2185	}
2186
2187out:
2188	return ret_val;
2189}
2190
2191/**
2192 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2193 *  @hw: pointer to the HW structure
2194 *
2195 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2196 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2197 *  checksum and writes the value to the EEPROM.
2198 **/
2199static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2200{
2201	s32 ret_val = 0;
2202	u16 j;
2203	u16 nvm_offset;
2204
2205	for (j = 0; j < 4; j++) {
2206		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2207		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2208		if (ret_val != 0)
2209			goto out;
2210	}
2211
2212out:
2213	return ret_val;
2214}
2215
2216/**
2217 *  igb_set_eee_i350 - Enable/disable EEE support
2218 *  @hw: pointer to the HW structure
2219 *
2220 *  Enable/disable EEE based on setting in dev_spec structure.
2221 *
2222 **/
2223s32 igb_set_eee_i350(struct e1000_hw *hw)
2224{
2225	s32 ret_val = 0;
2226	u32 ipcnfg, eeer, ctrl_ext;
2227
2228	ctrl_ext = rd32(E1000_CTRL_EXT);
2229	if ((hw->mac.type != e1000_i350) ||
2230	    (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK))
2231		goto out;
2232	ipcnfg = rd32(E1000_IPCNFG);
2233	eeer = rd32(E1000_EEER);
2234
2235	/* enable or disable per user setting */
2236	if (!(hw->dev_spec._82575.eee_disable)) {
2237		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN |
2238			E1000_IPCNFG_EEE_100M_AN);
2239		eeer |= (E1000_EEER_TX_LPI_EN |
2240			E1000_EEER_RX_LPI_EN |
2241			E1000_EEER_LPI_FC);
2242
2243	} else {
2244		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2245			E1000_IPCNFG_EEE_100M_AN);
2246		eeer &= ~(E1000_EEER_TX_LPI_EN |
2247			E1000_EEER_RX_LPI_EN |
2248			E1000_EEER_LPI_FC);
2249	}
2250	wr32(E1000_IPCNFG, ipcnfg);
2251	wr32(E1000_EEER, eeer);
2252out:
2253
2254	return ret_val;
2255}
2256
2257static struct e1000_mac_operations e1000_mac_ops_82575 = {
2258	.init_hw              = igb_init_hw_82575,
2259	.check_for_link       = igb_check_for_link_82575,
2260	.rar_set              = igb_rar_set,
2261	.read_mac_addr        = igb_read_mac_addr_82575,
2262	.get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2263};
2264
2265static struct e1000_phy_operations e1000_phy_ops_82575 = {
2266	.acquire              = igb_acquire_phy_82575,
2267	.get_cfg_done         = igb_get_cfg_done_82575,
2268	.release              = igb_release_phy_82575,
2269};
2270
2271static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2272	.acquire              = igb_acquire_nvm_82575,
2273	.read                 = igb_read_nvm_eerd,
2274	.release              = igb_release_nvm_82575,
2275	.write                = igb_write_nvm_spi,
2276};
2277
2278const struct e1000_info e1000_82575_info = {
2279	.get_invariants = igb_get_invariants_82575,
2280	.mac_ops = &e1000_mac_ops_82575,
2281	.phy_ops = &e1000_phy_ops_82575,
2282	.nvm_ops = &e1000_nvm_ops_82575,
2283};
2284
2285