e1000_82575.c revision f96a8a0b78548c0ec06b0b4b438db6ee895d67e9
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2012 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* e1000_82575
29 * e1000_82576
30 */
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/types.h>
35#include <linux/if_ether.h>
36
37#include "e1000_mac.h"
38#include "e1000_82575.h"
39#include "e1000_i210.h"
40
41static s32  igb_get_invariants_82575(struct e1000_hw *);
42static s32  igb_acquire_phy_82575(struct e1000_hw *);
43static void igb_release_phy_82575(struct e1000_hw *);
44static s32  igb_acquire_nvm_82575(struct e1000_hw *);
45static void igb_release_nvm_82575(struct e1000_hw *);
46static s32  igb_check_for_link_82575(struct e1000_hw *);
47static s32  igb_get_cfg_done_82575(struct e1000_hw *);
48static s32  igb_init_hw_82575(struct e1000_hw *);
49static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
50static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
51static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
52static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
53static s32  igb_reset_hw_82575(struct e1000_hw *);
54static s32  igb_reset_hw_82580(struct e1000_hw *);
55static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
56static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
57static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
58static s32  igb_setup_copper_link_82575(struct e1000_hw *);
59static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
60static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
61static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
62static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
63static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
64						 u16 *);
65static s32  igb_get_phy_id_82575(struct e1000_hw *);
66static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
67static bool igb_sgmii_active_82575(struct e1000_hw *);
68static s32  igb_reset_init_script_82575(struct e1000_hw *);
69static s32  igb_read_mac_addr_82575(struct e1000_hw *);
70static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
71static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
72static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
73static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
74static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
75static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
76static const u16 e1000_82580_rxpbs_table[] =
77	{ 36, 72, 144, 1, 2, 4, 8, 16,
78	  35, 70, 140 };
79#define E1000_82580_RXPBS_TABLE_SIZE \
80	(sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
81
82/**
83 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
84 *  @hw: pointer to the HW structure
85 *
86 *  Called to determine if the I2C pins are being used for I2C or as an
87 *  external MDIO interface since the two options are mutually exclusive.
88 **/
89static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
90{
91	u32 reg = 0;
92	bool ext_mdio = false;
93
94	switch (hw->mac.type) {
95	case e1000_82575:
96	case e1000_82576:
97		reg = rd32(E1000_MDIC);
98		ext_mdio = !!(reg & E1000_MDIC_DEST);
99		break;
100	case e1000_82580:
101	case e1000_i350:
102	case e1000_i210:
103	case e1000_i211:
104		reg = rd32(E1000_MDICNFG);
105		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
106		break;
107	default:
108		break;
109	}
110	return ext_mdio;
111}
112
113static s32 igb_get_invariants_82575(struct e1000_hw *hw)
114{
115	struct e1000_phy_info *phy = &hw->phy;
116	struct e1000_nvm_info *nvm = &hw->nvm;
117	struct e1000_mac_info *mac = &hw->mac;
118	struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
119	u32 eecd;
120	s32 ret_val;
121	u16 size;
122	u32 ctrl_ext = 0;
123
124	switch (hw->device_id) {
125	case E1000_DEV_ID_82575EB_COPPER:
126	case E1000_DEV_ID_82575EB_FIBER_SERDES:
127	case E1000_DEV_ID_82575GB_QUAD_COPPER:
128		mac->type = e1000_82575;
129		break;
130	case E1000_DEV_ID_82576:
131	case E1000_DEV_ID_82576_NS:
132	case E1000_DEV_ID_82576_NS_SERDES:
133	case E1000_DEV_ID_82576_FIBER:
134	case E1000_DEV_ID_82576_SERDES:
135	case E1000_DEV_ID_82576_QUAD_COPPER:
136	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
137	case E1000_DEV_ID_82576_SERDES_QUAD:
138		mac->type = e1000_82576;
139		break;
140	case E1000_DEV_ID_82580_COPPER:
141	case E1000_DEV_ID_82580_FIBER:
142	case E1000_DEV_ID_82580_QUAD_FIBER:
143	case E1000_DEV_ID_82580_SERDES:
144	case E1000_DEV_ID_82580_SGMII:
145	case E1000_DEV_ID_82580_COPPER_DUAL:
146	case E1000_DEV_ID_DH89XXCC_SGMII:
147	case E1000_DEV_ID_DH89XXCC_SERDES:
148	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
149	case E1000_DEV_ID_DH89XXCC_SFP:
150		mac->type = e1000_82580;
151		break;
152	case E1000_DEV_ID_I350_COPPER:
153	case E1000_DEV_ID_I350_FIBER:
154	case E1000_DEV_ID_I350_SERDES:
155	case E1000_DEV_ID_I350_SGMII:
156		mac->type = e1000_i350;
157		break;
158	case E1000_DEV_ID_I210_COPPER:
159	case E1000_DEV_ID_I210_COPPER_OEM1:
160	case E1000_DEV_ID_I210_COPPER_IT:
161	case E1000_DEV_ID_I210_FIBER:
162	case E1000_DEV_ID_I210_SERDES:
163	case E1000_DEV_ID_I210_SGMII:
164		mac->type = e1000_i210;
165		break;
166	case E1000_DEV_ID_I211_COPPER:
167		mac->type = e1000_i211;
168		break;
169	default:
170		return -E1000_ERR_MAC_INIT;
171		break;
172	}
173
174	/* Set media type */
175	/*
176	 * The 82575 uses bits 22:23 for link mode. The mode can be changed
177	 * based on the EEPROM. We cannot rely upon device ID. There
178	 * is no distinguishable difference between fiber and internal
179	 * SerDes mode on the 82575. There can be an external PHY attached
180	 * on the SGMII interface. For this, we'll set sgmii_active to true.
181	 */
182	phy->media_type = e1000_media_type_copper;
183	dev_spec->sgmii_active = false;
184
185	ctrl_ext = rd32(E1000_CTRL_EXT);
186	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
187	case E1000_CTRL_EXT_LINK_MODE_SGMII:
188		dev_spec->sgmii_active = true;
189		break;
190	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
191	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
192		hw->phy.media_type = e1000_media_type_internal_serdes;
193		break;
194	default:
195		break;
196	}
197
198	/* Set mta register count */
199	mac->mta_reg_count = 128;
200	/* Set rar entry count */
201	switch (mac->type) {
202	case e1000_82576:
203		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
204		break;
205	case e1000_82580:
206		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
207		break;
208	case e1000_i350:
209	case e1000_i210:
210	case e1000_i211:
211		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
212		break;
213	default:
214		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
215		break;
216	}
217	/* reset */
218	if (mac->type >= e1000_82580)
219		mac->ops.reset_hw = igb_reset_hw_82580;
220	else
221		mac->ops.reset_hw = igb_reset_hw_82575;
222
223	if (mac->type >= e1000_i210) {
224		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
225		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
226	} else {
227		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
228		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
229	}
230
231	/* Set if part includes ASF firmware */
232	mac->asf_firmware_present = true;
233	/* Set if manageability features are enabled. */
234	mac->arc_subsystem_valid =
235		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
236			? true : false;
237	/* enable EEE on i350 parts and later parts */
238	if (mac->type >= e1000_i350)
239		dev_spec->eee_disable = false;
240	else
241		dev_spec->eee_disable = true;
242	/* physical interface link setup */
243	mac->ops.setup_physical_interface =
244		(hw->phy.media_type == e1000_media_type_copper)
245			? igb_setup_copper_link_82575
246			: igb_setup_serdes_link_82575;
247
248	/* NVM initialization */
249	eecd = rd32(E1000_EECD);
250	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
251		     E1000_EECD_SIZE_EX_SHIFT);
252
253	/*
254	 * Added to a constant, "size" becomes the left-shift value
255	 * for setting word_size.
256	 */
257	size += NVM_WORD_SIZE_BASE_SHIFT;
258
259	nvm->word_size = 1 << size;
260	if (hw->mac.type < e1000_i210) {
261		nvm->opcode_bits        = 8;
262		nvm->delay_usec         = 1;
263		switch (nvm->override) {
264		case e1000_nvm_override_spi_large:
265			nvm->page_size    = 32;
266			nvm->address_bits = 16;
267			break;
268		case e1000_nvm_override_spi_small:
269			nvm->page_size    = 8;
270			nvm->address_bits = 8;
271			break;
272		default:
273			nvm->page_size    = eecd
274				& E1000_EECD_ADDR_BITS ? 32 : 8;
275			nvm->address_bits = eecd
276				& E1000_EECD_ADDR_BITS ? 16 : 8;
277			break;
278		}
279		if (nvm->word_size == (1 << 15))
280			nvm->page_size = 128;
281
282		nvm->type = e1000_nvm_eeprom_spi;
283	} else
284		nvm->type = e1000_nvm_flash_hw;
285
286	/*
287	 * Check for invalid size
288	 */
289	if ((hw->mac.type == e1000_82576) && (size > 15)) {
290		pr_notice("The NVM size is not valid, defaulting to 32K\n");
291		size = 15;
292	}
293
294	/* NVM Function Pointers */
295	switch (hw->mac.type) {
296	case e1000_82580:
297		nvm->ops.validate = igb_validate_nvm_checksum_82580;
298		nvm->ops.update = igb_update_nvm_checksum_82580;
299		nvm->ops.acquire = igb_acquire_nvm_82575;
300		nvm->ops.release = igb_release_nvm_82575;
301		if (nvm->word_size < (1 << 15))
302			nvm->ops.read = igb_read_nvm_eerd;
303		else
304			nvm->ops.read = igb_read_nvm_spi;
305		nvm->ops.write = igb_write_nvm_spi;
306		break;
307	case e1000_i350:
308		nvm->ops.validate = igb_validate_nvm_checksum_i350;
309		nvm->ops.update = igb_update_nvm_checksum_i350;
310		nvm->ops.acquire = igb_acquire_nvm_82575;
311		nvm->ops.release = igb_release_nvm_82575;
312		if (nvm->word_size < (1 << 15))
313			nvm->ops.read = igb_read_nvm_eerd;
314		else
315			nvm->ops.read = igb_read_nvm_spi;
316		nvm->ops.write = igb_write_nvm_spi;
317		break;
318	case e1000_i210:
319		nvm->ops.validate = igb_validate_nvm_checksum_i210;
320		nvm->ops.update   = igb_update_nvm_checksum_i210;
321		nvm->ops.acquire = igb_acquire_nvm_i210;
322		nvm->ops.release = igb_release_nvm_i210;
323		nvm->ops.read    = igb_read_nvm_srrd_i210;
324		nvm->ops.valid_led_default = igb_valid_led_default_i210;
325		break;
326	case e1000_i211:
327		nvm->ops.acquire  = igb_acquire_nvm_i210;
328		nvm->ops.release  = igb_release_nvm_i210;
329		nvm->ops.read     = igb_read_nvm_i211;
330		nvm->ops.valid_led_default = igb_valid_led_default_i210;
331		nvm->ops.validate = NULL;
332		nvm->ops.update   = NULL;
333		nvm->ops.write    = NULL;
334		break;
335	default:
336		nvm->ops.validate = igb_validate_nvm_checksum;
337		nvm->ops.update = igb_update_nvm_checksum;
338		nvm->ops.acquire = igb_acquire_nvm_82575;
339		nvm->ops.release = igb_release_nvm_82575;
340		if (nvm->word_size < (1 << 15))
341			nvm->ops.read = igb_read_nvm_eerd;
342		else
343			nvm->ops.read = igb_read_nvm_spi;
344		nvm->ops.write = igb_write_nvm_spi;
345		break;
346	}
347
348	/* if part supports SR-IOV then initialize mailbox parameters */
349	switch (mac->type) {
350	case e1000_82576:
351	case e1000_i350:
352		igb_init_mbx_params_pf(hw);
353		break;
354	default:
355		break;
356	}
357
358	/* setup PHY parameters */
359	if (phy->media_type != e1000_media_type_copper) {
360		phy->type = e1000_phy_none;
361		return 0;
362	}
363
364	phy->autoneg_mask        = AUTONEG_ADVERTISE_SPEED_DEFAULT;
365	phy->reset_delay_us      = 100;
366
367	ctrl_ext = rd32(E1000_CTRL_EXT);
368
369	/* PHY function pointers */
370	if (igb_sgmii_active_82575(hw)) {
371		phy->ops.reset      = igb_phy_hw_reset_sgmii_82575;
372		ctrl_ext |= E1000_CTRL_I2C_ENA;
373	} else {
374		phy->ops.reset      = igb_phy_hw_reset;
375		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
376	}
377
378	wr32(E1000_CTRL_EXT, ctrl_ext);
379	igb_reset_mdicnfg_82580(hw);
380
381	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
382		phy->ops.read_reg   = igb_read_phy_reg_sgmii_82575;
383		phy->ops.write_reg  = igb_write_phy_reg_sgmii_82575;
384	} else if ((hw->mac.type == e1000_82580)
385		|| (hw->mac.type == e1000_i350)) {
386		phy->ops.read_reg   = igb_read_phy_reg_82580;
387		phy->ops.write_reg  = igb_write_phy_reg_82580;
388	} else if (hw->phy.type >= e1000_phy_i210) {
389		phy->ops.read_reg   = igb_read_phy_reg_gs40g;
390		phy->ops.write_reg  = igb_write_phy_reg_gs40g;
391	} else {
392		phy->ops.read_reg   = igb_read_phy_reg_igp;
393		phy->ops.write_reg  = igb_write_phy_reg_igp;
394	}
395
396	/* set lan id */
397	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
398	               E1000_STATUS_FUNC_SHIFT;
399
400	/* Set phy->phy_addr and phy->id. */
401	ret_val = igb_get_phy_id_82575(hw);
402	if (ret_val)
403		return ret_val;
404
405	/* Verify phy id and set remaining function pointers */
406	switch (phy->id) {
407	case I347AT4_E_PHY_ID:
408	case M88E1112_E_PHY_ID:
409	case M88E1111_I_PHY_ID:
410		phy->type                   = e1000_phy_m88;
411		phy->ops.get_phy_info       = igb_get_phy_info_m88;
412
413		if (phy->id == I347AT4_E_PHY_ID ||
414		    phy->id == M88E1112_E_PHY_ID)
415			phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
416		else
417			phy->ops.get_cable_length = igb_get_cable_length_m88;
418
419		if (phy->id == I210_I_PHY_ID) {
420			phy->ops.get_cable_length =
421					 igb_get_cable_length_m88_gen2;
422			phy->ops.set_d0_lplu_state =
423					igb_set_d0_lplu_state_82580;
424			phy->ops.set_d3_lplu_state =
425					igb_set_d3_lplu_state_82580;
426		}
427		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
428		break;
429	case IGP03E1000_E_PHY_ID:
430		phy->type                   = e1000_phy_igp_3;
431		phy->ops.get_phy_info       = igb_get_phy_info_igp;
432		phy->ops.get_cable_length   = igb_get_cable_length_igp_2;
433		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
434		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82575;
435		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state;
436		break;
437	case I82580_I_PHY_ID:
438	case I350_I_PHY_ID:
439		phy->type                   = e1000_phy_82580;
440		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580;
441		phy->ops.get_cable_length   = igb_get_cable_length_82580;
442		phy->ops.get_phy_info       = igb_get_phy_info_82580;
443		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82580;
444		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state_82580;
445		break;
446	case I210_I_PHY_ID:
447		phy->type                   = e1000_phy_i210;
448		phy->ops.get_phy_info       = igb_get_phy_info_m88;
449		phy->ops.check_polarity     = igb_check_polarity_m88;
450		phy->ops.get_cable_length   = igb_get_cable_length_m88_gen2;
451		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82580;
452		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state_82580;
453		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
454		break;
455	default:
456		return -E1000_ERR_PHY;
457	}
458
459	return 0;
460}
461
462/**
463 *  igb_acquire_phy_82575 - Acquire rights to access PHY
464 *  @hw: pointer to the HW structure
465 *
466 *  Acquire access rights to the correct PHY.  This is a
467 *  function pointer entry point called by the api module.
468 **/
469static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
470{
471	u16 mask = E1000_SWFW_PHY0_SM;
472
473	if (hw->bus.func == E1000_FUNC_1)
474		mask = E1000_SWFW_PHY1_SM;
475	else if (hw->bus.func == E1000_FUNC_2)
476		mask = E1000_SWFW_PHY2_SM;
477	else if (hw->bus.func == E1000_FUNC_3)
478		mask = E1000_SWFW_PHY3_SM;
479
480	return hw->mac.ops.acquire_swfw_sync(hw, mask);
481}
482
483/**
484 *  igb_release_phy_82575 - Release rights to access PHY
485 *  @hw: pointer to the HW structure
486 *
487 *  A wrapper to release access rights to the correct PHY.  This is a
488 *  function pointer entry point called by the api module.
489 **/
490static void igb_release_phy_82575(struct e1000_hw *hw)
491{
492	u16 mask = E1000_SWFW_PHY0_SM;
493
494	if (hw->bus.func == E1000_FUNC_1)
495		mask = E1000_SWFW_PHY1_SM;
496	else if (hw->bus.func == E1000_FUNC_2)
497		mask = E1000_SWFW_PHY2_SM;
498	else if (hw->bus.func == E1000_FUNC_3)
499		mask = E1000_SWFW_PHY3_SM;
500
501	hw->mac.ops.release_swfw_sync(hw, mask);
502}
503
504/**
505 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
506 *  @hw: pointer to the HW structure
507 *  @offset: register offset to be read
508 *  @data: pointer to the read data
509 *
510 *  Reads the PHY register at offset using the serial gigabit media independent
511 *  interface and stores the retrieved information in data.
512 **/
513static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
514					  u16 *data)
515{
516	s32 ret_val = -E1000_ERR_PARAM;
517
518	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
519		hw_dbg("PHY Address %u is out of range\n", offset);
520		goto out;
521	}
522
523	ret_val = hw->phy.ops.acquire(hw);
524	if (ret_val)
525		goto out;
526
527	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
528
529	hw->phy.ops.release(hw);
530
531out:
532	return ret_val;
533}
534
535/**
536 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
537 *  @hw: pointer to the HW structure
538 *  @offset: register offset to write to
539 *  @data: data to write at register offset
540 *
541 *  Writes the data to PHY register at the offset using the serial gigabit
542 *  media independent interface.
543 **/
544static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
545					   u16 data)
546{
547	s32 ret_val = -E1000_ERR_PARAM;
548
549
550	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
551		hw_dbg("PHY Address %d is out of range\n", offset);
552		goto out;
553	}
554
555	ret_val = hw->phy.ops.acquire(hw);
556	if (ret_val)
557		goto out;
558
559	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
560
561	hw->phy.ops.release(hw);
562
563out:
564	return ret_val;
565}
566
567/**
568 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
569 *  @hw: pointer to the HW structure
570 *
571 *  Retrieves the PHY address and ID for both PHY's which do and do not use
572 *  sgmi interface.
573 **/
574static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
575{
576	struct e1000_phy_info *phy = &hw->phy;
577	s32  ret_val = 0;
578	u16 phy_id;
579	u32 ctrl_ext;
580	u32 mdic;
581
582	/*
583	 * For SGMII PHYs, we try the list of possible addresses until
584	 * we find one that works.  For non-SGMII PHYs
585	 * (e.g. integrated copper PHYs), an address of 1 should
586	 * work.  The result of this function should mean phy->phy_addr
587	 * and phy->id are set correctly.
588	 */
589	if (!(igb_sgmii_active_82575(hw))) {
590		phy->addr = 1;
591		ret_val = igb_get_phy_id(hw);
592		goto out;
593	}
594
595	if (igb_sgmii_uses_mdio_82575(hw)) {
596		switch (hw->mac.type) {
597		case e1000_82575:
598		case e1000_82576:
599			mdic = rd32(E1000_MDIC);
600			mdic &= E1000_MDIC_PHY_MASK;
601			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
602			break;
603		case e1000_82580:
604		case e1000_i350:
605		case e1000_i210:
606		case e1000_i211:
607			mdic = rd32(E1000_MDICNFG);
608			mdic &= E1000_MDICNFG_PHY_MASK;
609			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
610			break;
611		default:
612			ret_val = -E1000_ERR_PHY;
613			goto out;
614			break;
615		}
616		ret_val = igb_get_phy_id(hw);
617		goto out;
618	}
619
620	/* Power on sgmii phy if it is disabled */
621	ctrl_ext = rd32(E1000_CTRL_EXT);
622	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
623	wrfl();
624	msleep(300);
625
626	/*
627	 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
628	 * Therefore, we need to test 1-7
629	 */
630	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
631		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
632		if (ret_val == 0) {
633			hw_dbg("Vendor ID 0x%08X read at address %u\n",
634			       phy_id, phy->addr);
635			/*
636			 * At the time of this writing, The M88 part is
637			 * the only supported SGMII PHY product.
638			 */
639			if (phy_id == M88_VENDOR)
640				break;
641		} else {
642			hw_dbg("PHY address %u was unreadable\n", phy->addr);
643		}
644	}
645
646	/* A valid PHY type couldn't be found. */
647	if (phy->addr == 8) {
648		phy->addr = 0;
649		ret_val = -E1000_ERR_PHY;
650		goto out;
651	} else {
652		ret_val = igb_get_phy_id(hw);
653	}
654
655	/* restore previous sfp cage power state */
656	wr32(E1000_CTRL_EXT, ctrl_ext);
657
658out:
659	return ret_val;
660}
661
662/**
663 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
664 *  @hw: pointer to the HW structure
665 *
666 *  Resets the PHY using the serial gigabit media independent interface.
667 **/
668static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
669{
670	s32 ret_val;
671
672	/*
673	 * This isn't a true "hard" reset, but is the only reset
674	 * available to us at this time.
675	 */
676
677	hw_dbg("Soft resetting SGMII attached PHY...\n");
678
679	/*
680	 * SFP documentation requires the following to configure the SPF module
681	 * to work on SGMII.  No further documentation is given.
682	 */
683	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
684	if (ret_val)
685		goto out;
686
687	ret_val = igb_phy_sw_reset(hw);
688
689out:
690	return ret_val;
691}
692
693/**
694 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
695 *  @hw: pointer to the HW structure
696 *  @active: true to enable LPLU, false to disable
697 *
698 *  Sets the LPLU D0 state according to the active flag.  When
699 *  activating LPLU this function also disables smart speed
700 *  and vice versa.  LPLU will not be activated unless the
701 *  device autonegotiation advertisement meets standards of
702 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
703 *  This is a function pointer entry point only called by
704 *  PHY setup routines.
705 **/
706static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
707{
708	struct e1000_phy_info *phy = &hw->phy;
709	s32 ret_val;
710	u16 data;
711
712	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
713	if (ret_val)
714		goto out;
715
716	if (active) {
717		data |= IGP02E1000_PM_D0_LPLU;
718		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
719						 data);
720		if (ret_val)
721			goto out;
722
723		/* When LPLU is enabled, we should disable SmartSpeed */
724		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
725						&data);
726		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
727		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
728						 data);
729		if (ret_val)
730			goto out;
731	} else {
732		data &= ~IGP02E1000_PM_D0_LPLU;
733		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
734						 data);
735		/*
736		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
737		 * during Dx states where the power conservation is most
738		 * important.  During driver activity we should enable
739		 * SmartSpeed, so performance is maintained.
740		 */
741		if (phy->smart_speed == e1000_smart_speed_on) {
742			ret_val = phy->ops.read_reg(hw,
743					IGP01E1000_PHY_PORT_CONFIG, &data);
744			if (ret_val)
745				goto out;
746
747			data |= IGP01E1000_PSCFR_SMART_SPEED;
748			ret_val = phy->ops.write_reg(hw,
749					IGP01E1000_PHY_PORT_CONFIG, data);
750			if (ret_val)
751				goto out;
752		} else if (phy->smart_speed == e1000_smart_speed_off) {
753			ret_val = phy->ops.read_reg(hw,
754					IGP01E1000_PHY_PORT_CONFIG, &data);
755			if (ret_val)
756				goto out;
757
758			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
759			ret_val = phy->ops.write_reg(hw,
760					IGP01E1000_PHY_PORT_CONFIG, data);
761			if (ret_val)
762				goto out;
763		}
764	}
765
766out:
767	return ret_val;
768}
769
770/**
771 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
772 *  @hw: pointer to the HW structure
773 *  @active: true to enable LPLU, false to disable
774 *
775 *  Sets the LPLU D0 state according to the active flag.  When
776 *  activating LPLU this function also disables smart speed
777 *  and vice versa.  LPLU will not be activated unless the
778 *  device autonegotiation advertisement meets standards of
779 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
780 *  This is a function pointer entry point only called by
781 *  PHY setup routines.
782 **/
783static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
784{
785	struct e1000_phy_info *phy = &hw->phy;
786	s32 ret_val = 0;
787	u16 data;
788
789	data = rd32(E1000_82580_PHY_POWER_MGMT);
790
791	if (active) {
792		data |= E1000_82580_PM_D0_LPLU;
793
794		/* When LPLU is enabled, we should disable SmartSpeed */
795		data &= ~E1000_82580_PM_SPD;
796	} else {
797		data &= ~E1000_82580_PM_D0_LPLU;
798
799		/*
800		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
801		 * during Dx states where the power conservation is most
802		 * important.  During driver activity we should enable
803		 * SmartSpeed, so performance is maintained.
804		 */
805		if (phy->smart_speed == e1000_smart_speed_on)
806			data |= E1000_82580_PM_SPD;
807		else if (phy->smart_speed == e1000_smart_speed_off)
808			data &= ~E1000_82580_PM_SPD; }
809
810	wr32(E1000_82580_PHY_POWER_MGMT, data);
811	return ret_val;
812}
813
814/**
815 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
816 *  @hw: pointer to the HW structure
817 *  @active: boolean used to enable/disable lplu
818 *
819 *  Success returns 0, Failure returns 1
820 *
821 *  The low power link up (lplu) state is set to the power management level D3
822 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
823 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
824 *  is used during Dx states where the power conservation is most important.
825 *  During driver activity, SmartSpeed should be enabled so performance is
826 *  maintained.
827 **/
828s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
829{
830	struct e1000_phy_info *phy = &hw->phy;
831	s32 ret_val = 0;
832	u16 data;
833
834	data = rd32(E1000_82580_PHY_POWER_MGMT);
835
836	if (!active) {
837		data &= ~E1000_82580_PM_D3_LPLU;
838		/*
839		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
840		 * during Dx states where the power conservation is most
841		 * important.  During driver activity we should enable
842		 * SmartSpeed, so performance is maintained.
843		 */
844		if (phy->smart_speed == e1000_smart_speed_on)
845			data |= E1000_82580_PM_SPD;
846		else if (phy->smart_speed == e1000_smart_speed_off)
847			data &= ~E1000_82580_PM_SPD;
848	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
849		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
850		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
851		data |= E1000_82580_PM_D3_LPLU;
852		/* When LPLU is enabled, we should disable SmartSpeed */
853		data &= ~E1000_82580_PM_SPD;
854	}
855
856	wr32(E1000_82580_PHY_POWER_MGMT, data);
857	return ret_val;
858}
859
860/**
861 *  igb_acquire_nvm_82575 - Request for access to EEPROM
862 *  @hw: pointer to the HW structure
863 *
864 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
865 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
866 *  Return successful if access grant bit set, else clear the request for
867 *  EEPROM access and return -E1000_ERR_NVM (-1).
868 **/
869static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
870{
871	s32 ret_val;
872
873	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
874	if (ret_val)
875		goto out;
876
877	ret_val = igb_acquire_nvm(hw);
878
879	if (ret_val)
880		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
881
882out:
883	return ret_val;
884}
885
886/**
887 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
888 *  @hw: pointer to the HW structure
889 *
890 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
891 *  then release the semaphores acquired.
892 **/
893static void igb_release_nvm_82575(struct e1000_hw *hw)
894{
895	igb_release_nvm(hw);
896	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
897}
898
899/**
900 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
901 *  @hw: pointer to the HW structure
902 *  @mask: specifies which semaphore to acquire
903 *
904 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
905 *  will also specify which port we're acquiring the lock for.
906 **/
907static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
908{
909	u32 swfw_sync;
910	u32 swmask = mask;
911	u32 fwmask = mask << 16;
912	s32 ret_val = 0;
913	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
914
915	while (i < timeout) {
916		if (igb_get_hw_semaphore(hw)) {
917			ret_val = -E1000_ERR_SWFW_SYNC;
918			goto out;
919		}
920
921		swfw_sync = rd32(E1000_SW_FW_SYNC);
922		if (!(swfw_sync & (fwmask | swmask)))
923			break;
924
925		/*
926		 * Firmware currently using resource (fwmask)
927		 * or other software thread using resource (swmask)
928		 */
929		igb_put_hw_semaphore(hw);
930		mdelay(5);
931		i++;
932	}
933
934	if (i == timeout) {
935		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
936		ret_val = -E1000_ERR_SWFW_SYNC;
937		goto out;
938	}
939
940	swfw_sync |= swmask;
941	wr32(E1000_SW_FW_SYNC, swfw_sync);
942
943	igb_put_hw_semaphore(hw);
944
945out:
946	return ret_val;
947}
948
949/**
950 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
951 *  @hw: pointer to the HW structure
952 *  @mask: specifies which semaphore to acquire
953 *
954 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
955 *  will also specify which port we're releasing the lock for.
956 **/
957static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
958{
959	u32 swfw_sync;
960
961	while (igb_get_hw_semaphore(hw) != 0);
962	/* Empty */
963
964	swfw_sync = rd32(E1000_SW_FW_SYNC);
965	swfw_sync &= ~mask;
966	wr32(E1000_SW_FW_SYNC, swfw_sync);
967
968	igb_put_hw_semaphore(hw);
969}
970
971/**
972 *  igb_get_cfg_done_82575 - Read config done bit
973 *  @hw: pointer to the HW structure
974 *
975 *  Read the management control register for the config done bit for
976 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
977 *  to read the config done bit, so an error is *ONLY* logged and returns
978 *  0.  If we were to return with error, EEPROM-less silicon
979 *  would not be able to be reset or change link.
980 **/
981static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
982{
983	s32 timeout = PHY_CFG_TIMEOUT;
984	s32 ret_val = 0;
985	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
986
987	if (hw->bus.func == 1)
988		mask = E1000_NVM_CFG_DONE_PORT_1;
989	else if (hw->bus.func == E1000_FUNC_2)
990		mask = E1000_NVM_CFG_DONE_PORT_2;
991	else if (hw->bus.func == E1000_FUNC_3)
992		mask = E1000_NVM_CFG_DONE_PORT_3;
993
994	while (timeout) {
995		if (rd32(E1000_EEMNGCTL) & mask)
996			break;
997		msleep(1);
998		timeout--;
999	}
1000	if (!timeout)
1001		hw_dbg("MNG configuration cycle has not completed.\n");
1002
1003	/* If EEPROM is not marked present, init the PHY manually */
1004	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1005	    (hw->phy.type == e1000_phy_igp_3))
1006		igb_phy_init_script_igp3(hw);
1007
1008	return ret_val;
1009}
1010
1011/**
1012 *  igb_check_for_link_82575 - Check for link
1013 *  @hw: pointer to the HW structure
1014 *
1015 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1016 *  use the generic interface for determining link.
1017 **/
1018static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1019{
1020	s32 ret_val;
1021	u16 speed, duplex;
1022
1023	if (hw->phy.media_type != e1000_media_type_copper) {
1024		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1025		                                             &duplex);
1026		/*
1027		 * Use this flag to determine if link needs to be checked or
1028		 * not.  If  we have link clear the flag so that we do not
1029		 * continue to check for link.
1030		 */
1031		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1032	} else {
1033		ret_val = igb_check_for_copper_link(hw);
1034	}
1035
1036	return ret_val;
1037}
1038
1039/**
1040 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1041 *  @hw: pointer to the HW structure
1042 **/
1043void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1044{
1045	u32 reg;
1046
1047
1048	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1049	    !igb_sgmii_active_82575(hw))
1050		return;
1051
1052	/* Enable PCS to turn on link */
1053	reg = rd32(E1000_PCS_CFG0);
1054	reg |= E1000_PCS_CFG_PCS_EN;
1055	wr32(E1000_PCS_CFG0, reg);
1056
1057	/* Power up the laser */
1058	reg = rd32(E1000_CTRL_EXT);
1059	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1060	wr32(E1000_CTRL_EXT, reg);
1061
1062	/* flush the write to verify completion */
1063	wrfl();
1064	msleep(1);
1065}
1066
1067/**
1068 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1069 *  @hw: pointer to the HW structure
1070 *  @speed: stores the current speed
1071 *  @duplex: stores the current duplex
1072 *
1073 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1074 *  duplex, then store the values in the pointers provided.
1075 **/
1076static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1077						u16 *duplex)
1078{
1079	struct e1000_mac_info *mac = &hw->mac;
1080	u32 pcs;
1081
1082	/* Set up defaults for the return values of this function */
1083	mac->serdes_has_link = false;
1084	*speed = 0;
1085	*duplex = 0;
1086
1087	/*
1088	 * Read the PCS Status register for link state. For non-copper mode,
1089	 * the status register is not accurate. The PCS status register is
1090	 * used instead.
1091	 */
1092	pcs = rd32(E1000_PCS_LSTAT);
1093
1094	/*
1095	 * The link up bit determines when link is up on autoneg. The sync ok
1096	 * gets set once both sides sync up and agree upon link. Stable link
1097	 * can be determined by checking for both link up and link sync ok
1098	 */
1099	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1100		mac->serdes_has_link = true;
1101
1102		/* Detect and store PCS speed */
1103		if (pcs & E1000_PCS_LSTS_SPEED_1000) {
1104			*speed = SPEED_1000;
1105		} else if (pcs & E1000_PCS_LSTS_SPEED_100) {
1106			*speed = SPEED_100;
1107		} else {
1108			*speed = SPEED_10;
1109		}
1110
1111		/* Detect and store PCS duplex */
1112		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
1113			*duplex = FULL_DUPLEX;
1114		} else {
1115			*duplex = HALF_DUPLEX;
1116		}
1117	}
1118
1119	return 0;
1120}
1121
1122/**
1123 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1124 *  @hw: pointer to the HW structure
1125 *
1126 *  In the case of fiber serdes, shut down optics and PCS on driver unload
1127 *  when management pass thru is not enabled.
1128 **/
1129void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1130{
1131	u32 reg;
1132
1133	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1134	    igb_sgmii_active_82575(hw))
1135		return;
1136
1137	if (!igb_enable_mng_pass_thru(hw)) {
1138		/* Disable PCS to turn off link */
1139		reg = rd32(E1000_PCS_CFG0);
1140		reg &= ~E1000_PCS_CFG_PCS_EN;
1141		wr32(E1000_PCS_CFG0, reg);
1142
1143		/* shutdown the laser */
1144		reg = rd32(E1000_CTRL_EXT);
1145		reg |= E1000_CTRL_EXT_SDP3_DATA;
1146		wr32(E1000_CTRL_EXT, reg);
1147
1148		/* flush the write to verify completion */
1149		wrfl();
1150		msleep(1);
1151	}
1152}
1153
1154/**
1155 *  igb_reset_hw_82575 - Reset hardware
1156 *  @hw: pointer to the HW structure
1157 *
1158 *  This resets the hardware into a known state.  This is a
1159 *  function pointer entry point called by the api module.
1160 **/
1161static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1162{
1163	u32 ctrl, icr;
1164	s32 ret_val;
1165
1166	/*
1167	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1168	 * on the last TLP read/write transaction when MAC is reset.
1169	 */
1170	ret_val = igb_disable_pcie_master(hw);
1171	if (ret_val)
1172		hw_dbg("PCI-E Master disable polling has failed.\n");
1173
1174	/* set the completion timeout for interface */
1175	ret_val = igb_set_pcie_completion_timeout(hw);
1176	if (ret_val) {
1177		hw_dbg("PCI-E Set completion timeout has failed.\n");
1178	}
1179
1180	hw_dbg("Masking off all interrupts\n");
1181	wr32(E1000_IMC, 0xffffffff);
1182
1183	wr32(E1000_RCTL, 0);
1184	wr32(E1000_TCTL, E1000_TCTL_PSP);
1185	wrfl();
1186
1187	msleep(10);
1188
1189	ctrl = rd32(E1000_CTRL);
1190
1191	hw_dbg("Issuing a global reset to MAC\n");
1192	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1193
1194	ret_val = igb_get_auto_rd_done(hw);
1195	if (ret_val) {
1196		/*
1197		 * When auto config read does not complete, do not
1198		 * return with an error. This can happen in situations
1199		 * where there is no eeprom and prevents getting link.
1200		 */
1201		hw_dbg("Auto Read Done did not complete\n");
1202	}
1203
1204	/* If EEPROM is not present, run manual init scripts */
1205	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1206		igb_reset_init_script_82575(hw);
1207
1208	/* Clear any pending interrupt events. */
1209	wr32(E1000_IMC, 0xffffffff);
1210	icr = rd32(E1000_ICR);
1211
1212	/* Install any alternate MAC address into RAR0 */
1213	ret_val = igb_check_alt_mac_addr(hw);
1214
1215	return ret_val;
1216}
1217
1218/**
1219 *  igb_init_hw_82575 - Initialize hardware
1220 *  @hw: pointer to the HW structure
1221 *
1222 *  This inits the hardware readying it for operation.
1223 **/
1224static s32 igb_init_hw_82575(struct e1000_hw *hw)
1225{
1226	struct e1000_mac_info *mac = &hw->mac;
1227	s32 ret_val;
1228	u16 i, rar_count = mac->rar_entry_count;
1229
1230	/* Initialize identification LED */
1231	ret_val = igb_id_led_init(hw);
1232	if (ret_val) {
1233		hw_dbg("Error initializing identification LED\n");
1234		/* This is not fatal and we should not stop init due to this */
1235	}
1236
1237	/* Disabling VLAN filtering */
1238	hw_dbg("Initializing the IEEE VLAN\n");
1239	if (hw->mac.type == e1000_i350)
1240		igb_clear_vfta_i350(hw);
1241	else
1242		igb_clear_vfta(hw);
1243
1244	/* Setup the receive address */
1245	igb_init_rx_addrs(hw, rar_count);
1246
1247	/* Zero out the Multicast HASH table */
1248	hw_dbg("Zeroing the MTA\n");
1249	for (i = 0; i < mac->mta_reg_count; i++)
1250		array_wr32(E1000_MTA, i, 0);
1251
1252	/* Zero out the Unicast HASH table */
1253	hw_dbg("Zeroing the UTA\n");
1254	for (i = 0; i < mac->uta_reg_count; i++)
1255		array_wr32(E1000_UTA, i, 0);
1256
1257	/* Setup link and flow control */
1258	ret_val = igb_setup_link(hw);
1259
1260	/*
1261	 * Clear all of the statistics registers (clear on read).  It is
1262	 * important that we do this after we have tried to establish link
1263	 * because the symbol error count will increment wildly if there
1264	 * is no link.
1265	 */
1266	igb_clear_hw_cntrs_82575(hw);
1267	return ret_val;
1268}
1269
1270/**
1271 *  igb_setup_copper_link_82575 - Configure copper link settings
1272 *  @hw: pointer to the HW structure
1273 *
1274 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1275 *  for link, once link is established calls to configure collision distance
1276 *  and flow control are called.
1277 **/
1278static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1279{
1280	u32 ctrl;
1281	s32  ret_val;
1282
1283	ctrl = rd32(E1000_CTRL);
1284	ctrl |= E1000_CTRL_SLU;
1285	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1286	wr32(E1000_CTRL, ctrl);
1287
1288	ret_val = igb_setup_serdes_link_82575(hw);
1289	if (ret_val)
1290		goto out;
1291
1292	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1293		/* allow time for SFP cage time to power up phy */
1294		msleep(300);
1295
1296		ret_val = hw->phy.ops.reset(hw);
1297		if (ret_val) {
1298			hw_dbg("Error resetting the PHY.\n");
1299			goto out;
1300		}
1301	}
1302	switch (hw->phy.type) {
1303	case e1000_phy_i210:
1304	case e1000_phy_m88:
1305		if (hw->phy.id == I347AT4_E_PHY_ID ||
1306		    hw->phy.id == M88E1112_E_PHY_ID)
1307			ret_val = igb_copper_link_setup_m88_gen2(hw);
1308		else
1309			ret_val = igb_copper_link_setup_m88(hw);
1310		break;
1311	case e1000_phy_igp_3:
1312		ret_val = igb_copper_link_setup_igp(hw);
1313		break;
1314	case e1000_phy_82580:
1315		ret_val = igb_copper_link_setup_82580(hw);
1316		break;
1317	default:
1318		ret_val = -E1000_ERR_PHY;
1319		break;
1320	}
1321
1322	if (ret_val)
1323		goto out;
1324
1325	ret_val = igb_setup_copper_link(hw);
1326out:
1327	return ret_val;
1328}
1329
1330/**
1331 *  igb_setup_serdes_link_82575 - Setup link for serdes
1332 *  @hw: pointer to the HW structure
1333 *
1334 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1335 *  used on copper connections where the serialized gigabit media independent
1336 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1337 *  for auto-negotiation or forces speed/duplex.
1338 **/
1339static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1340{
1341	u32 ctrl_ext, ctrl_reg, reg;
1342	bool pcs_autoneg;
1343	s32 ret_val = E1000_SUCCESS;
1344	u16 data;
1345
1346	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1347	    !igb_sgmii_active_82575(hw))
1348		return ret_val;
1349
1350
1351	/*
1352	 * On the 82575, SerDes loopback mode persists until it is
1353	 * explicitly turned off or a power cycle is performed.  A read to
1354	 * the register does not indicate its status.  Therefore, we ensure
1355	 * loopback mode is disabled during initialization.
1356	 */
1357	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1358
1359	/* power on the sfp cage if present */
1360	ctrl_ext = rd32(E1000_CTRL_EXT);
1361	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1362	wr32(E1000_CTRL_EXT, ctrl_ext);
1363
1364	ctrl_reg = rd32(E1000_CTRL);
1365	ctrl_reg |= E1000_CTRL_SLU;
1366
1367	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1368		/* set both sw defined pins */
1369		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1370
1371		/* Set switch control to serdes energy detect */
1372		reg = rd32(E1000_CONNSW);
1373		reg |= E1000_CONNSW_ENRGSRC;
1374		wr32(E1000_CONNSW, reg);
1375	}
1376
1377	reg = rd32(E1000_PCS_LCTL);
1378
1379	/* default pcs_autoneg to the same setting as mac autoneg */
1380	pcs_autoneg = hw->mac.autoneg;
1381
1382	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1383	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1384		/* sgmii mode lets the phy handle forcing speed/duplex */
1385		pcs_autoneg = true;
1386		/* autoneg time out should be disabled for SGMII mode */
1387		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1388		break;
1389	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1390		/* disable PCS autoneg and support parallel detect only */
1391		pcs_autoneg = false;
1392	default:
1393		if (hw->mac.type == e1000_82575 ||
1394		    hw->mac.type == e1000_82576) {
1395			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1396			if (ret_val) {
1397				printk(KERN_DEBUG "NVM Read Error\n\n");
1398				return ret_val;
1399			}
1400
1401			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1402				pcs_autoneg = false;
1403		}
1404
1405		/*
1406		 * non-SGMII modes only supports a speed of 1000/Full for the
1407		 * link so it is best to just force the MAC and let the pcs
1408		 * link either autoneg or be forced to 1000/Full
1409		 */
1410		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1411		            E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1412
1413		/* set speed of 1000/Full if speed/duplex is forced */
1414		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1415		break;
1416	}
1417
1418	wr32(E1000_CTRL, ctrl_reg);
1419
1420	/*
1421	 * New SerDes mode allows for forcing speed or autonegotiating speed
1422	 * at 1gb. Autoneg should be default set by most drivers. This is the
1423	 * mode that will be compatible with older link partners and switches.
1424	 * However, both are supported by the hardware and some drivers/tools.
1425	 */
1426	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1427		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1428
1429	/*
1430	 * We force flow control to prevent the CTRL register values from being
1431	 * overwritten by the autonegotiated flow control values
1432	 */
1433	reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1434
1435	if (pcs_autoneg) {
1436		/* Set PCS register for autoneg */
1437		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1438		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1439		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1440	} else {
1441		/* Set PCS register for forced link */
1442		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1443
1444		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1445	}
1446
1447	wr32(E1000_PCS_LCTL, reg);
1448
1449	if (!igb_sgmii_active_82575(hw))
1450		igb_force_mac_fc(hw);
1451
1452	return ret_val;
1453}
1454
1455/**
1456 *  igb_sgmii_active_82575 - Return sgmii state
1457 *  @hw: pointer to the HW structure
1458 *
1459 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1460 *  which can be enabled for use in the embedded applications.  Simply
1461 *  return the current state of the sgmii interface.
1462 **/
1463static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1464{
1465	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1466	return dev_spec->sgmii_active;
1467}
1468
1469/**
1470 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1471 *  @hw: pointer to the HW structure
1472 *
1473 *  Inits recommended HW defaults after a reset when there is no EEPROM
1474 *  detected. This is only for the 82575.
1475 **/
1476static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1477{
1478	if (hw->mac.type == e1000_82575) {
1479		hw_dbg("Running reset init script for 82575\n");
1480		/* SerDes configuration via SERDESCTRL */
1481		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1482		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1483		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1484		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1485
1486		/* CCM configuration via CCMCTL register */
1487		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1488		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1489
1490		/* PCIe lanes configuration */
1491		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1492		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1493		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1494		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1495
1496		/* PCIe PLL Configuration */
1497		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1498		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1499		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1500	}
1501
1502	return 0;
1503}
1504
1505/**
1506 *  igb_read_mac_addr_82575 - Read device MAC address
1507 *  @hw: pointer to the HW structure
1508 **/
1509static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1510{
1511	s32 ret_val = 0;
1512
1513	/*
1514	 * If there's an alternate MAC address place it in RAR0
1515	 * so that it will override the Si installed default perm
1516	 * address.
1517	 */
1518	ret_val = igb_check_alt_mac_addr(hw);
1519	if (ret_val)
1520		goto out;
1521
1522	ret_val = igb_read_mac_addr(hw);
1523
1524out:
1525	return ret_val;
1526}
1527
1528/**
1529 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1530 * @hw: pointer to the HW structure
1531 *
1532 * In the case of a PHY power down to save power, or to turn off link during a
1533 * driver unload, or wake on lan is not enabled, remove the link.
1534 **/
1535void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1536{
1537	/* If the management interface is not enabled, then power down */
1538	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1539		igb_power_down_phy_copper(hw);
1540}
1541
1542/**
1543 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1544 *  @hw: pointer to the HW structure
1545 *
1546 *  Clears the hardware counters by reading the counter registers.
1547 **/
1548static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1549{
1550	igb_clear_hw_cntrs_base(hw);
1551
1552	rd32(E1000_PRC64);
1553	rd32(E1000_PRC127);
1554	rd32(E1000_PRC255);
1555	rd32(E1000_PRC511);
1556	rd32(E1000_PRC1023);
1557	rd32(E1000_PRC1522);
1558	rd32(E1000_PTC64);
1559	rd32(E1000_PTC127);
1560	rd32(E1000_PTC255);
1561	rd32(E1000_PTC511);
1562	rd32(E1000_PTC1023);
1563	rd32(E1000_PTC1522);
1564
1565	rd32(E1000_ALGNERRC);
1566	rd32(E1000_RXERRC);
1567	rd32(E1000_TNCRS);
1568	rd32(E1000_CEXTERR);
1569	rd32(E1000_TSCTC);
1570	rd32(E1000_TSCTFC);
1571
1572	rd32(E1000_MGTPRC);
1573	rd32(E1000_MGTPDC);
1574	rd32(E1000_MGTPTC);
1575
1576	rd32(E1000_IAC);
1577	rd32(E1000_ICRXOC);
1578
1579	rd32(E1000_ICRXPTC);
1580	rd32(E1000_ICRXATC);
1581	rd32(E1000_ICTXPTC);
1582	rd32(E1000_ICTXATC);
1583	rd32(E1000_ICTXQEC);
1584	rd32(E1000_ICTXQMTC);
1585	rd32(E1000_ICRXDMTC);
1586
1587	rd32(E1000_CBTMPC);
1588	rd32(E1000_HTDPMC);
1589	rd32(E1000_CBRMPC);
1590	rd32(E1000_RPTHC);
1591	rd32(E1000_HGPTC);
1592	rd32(E1000_HTCBDPC);
1593	rd32(E1000_HGORCL);
1594	rd32(E1000_HGORCH);
1595	rd32(E1000_HGOTCL);
1596	rd32(E1000_HGOTCH);
1597	rd32(E1000_LENERRS);
1598
1599	/* This register should not be read in copper configurations */
1600	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1601	    igb_sgmii_active_82575(hw))
1602		rd32(E1000_SCVPC);
1603}
1604
1605/**
1606 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1607 *  @hw: pointer to the HW structure
1608 *
1609 *  After rx enable if managability is enabled then there is likely some
1610 *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1611 *  function clears the fifos and flushes any packets that came in as rx was
1612 *  being enabled.
1613 **/
1614void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1615{
1616	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1617	int i, ms_wait;
1618
1619	if (hw->mac.type != e1000_82575 ||
1620	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1621		return;
1622
1623	/* Disable all RX queues */
1624	for (i = 0; i < 4; i++) {
1625		rxdctl[i] = rd32(E1000_RXDCTL(i));
1626		wr32(E1000_RXDCTL(i),
1627		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1628	}
1629	/* Poll all queues to verify they have shut down */
1630	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1631		msleep(1);
1632		rx_enabled = 0;
1633		for (i = 0; i < 4; i++)
1634			rx_enabled |= rd32(E1000_RXDCTL(i));
1635		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1636			break;
1637	}
1638
1639	if (ms_wait == 10)
1640		hw_dbg("Queue disable timed out after 10ms\n");
1641
1642	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1643	 * incoming packets are rejected.  Set enable and wait 2ms so that
1644	 * any packet that was coming in as RCTL.EN was set is flushed
1645	 */
1646	rfctl = rd32(E1000_RFCTL);
1647	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1648
1649	rlpml = rd32(E1000_RLPML);
1650	wr32(E1000_RLPML, 0);
1651
1652	rctl = rd32(E1000_RCTL);
1653	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1654	temp_rctl |= E1000_RCTL_LPE;
1655
1656	wr32(E1000_RCTL, temp_rctl);
1657	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1658	wrfl();
1659	msleep(2);
1660
1661	/* Enable RX queues that were previously enabled and restore our
1662	 * previous state
1663	 */
1664	for (i = 0; i < 4; i++)
1665		wr32(E1000_RXDCTL(i), rxdctl[i]);
1666	wr32(E1000_RCTL, rctl);
1667	wrfl();
1668
1669	wr32(E1000_RLPML, rlpml);
1670	wr32(E1000_RFCTL, rfctl);
1671
1672	/* Flush receive errors generated by workaround */
1673	rd32(E1000_ROC);
1674	rd32(E1000_RNBC);
1675	rd32(E1000_MPC);
1676}
1677
1678/**
1679 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1680 *  @hw: pointer to the HW structure
1681 *
1682 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1683 *  however the hardware default for these parts is 500us to 1ms which is less
1684 *  than the 10ms recommended by the pci-e spec.  To address this we need to
1685 *  increase the value to either 10ms to 200ms for capability version 1 config,
1686 *  or 16ms to 55ms for version 2.
1687 **/
1688static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1689{
1690	u32 gcr = rd32(E1000_GCR);
1691	s32 ret_val = 0;
1692	u16 pcie_devctl2;
1693
1694	/* only take action if timeout value is defaulted to 0 */
1695	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1696		goto out;
1697
1698	/*
1699	 * if capababilities version is type 1 we can write the
1700	 * timeout of 10ms to 200ms through the GCR register
1701	 */
1702	if (!(gcr & E1000_GCR_CAP_VER2)) {
1703		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1704		goto out;
1705	}
1706
1707	/*
1708	 * for version 2 capabilities we need to write the config space
1709	 * directly in order to set the completion timeout value for
1710	 * 16ms to 55ms
1711	 */
1712	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1713	                                &pcie_devctl2);
1714	if (ret_val)
1715		goto out;
1716
1717	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1718
1719	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1720	                                 &pcie_devctl2);
1721out:
1722	/* disable completion timeout resend */
1723	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1724
1725	wr32(E1000_GCR, gcr);
1726	return ret_val;
1727}
1728
1729/**
1730 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1731 *  @hw: pointer to the hardware struct
1732 *  @enable: state to enter, either enabled or disabled
1733 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
1734 *
1735 *  enables/disables L2 switch anti-spoofing functionality.
1736 **/
1737void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1738{
1739	u32 dtxswc;
1740
1741	switch (hw->mac.type) {
1742	case e1000_82576:
1743	case e1000_i350:
1744		dtxswc = rd32(E1000_DTXSWC);
1745		if (enable) {
1746			dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1747				   E1000_DTXSWC_VLAN_SPOOF_MASK);
1748			/* The PF can spoof - it has to in order to
1749			 * support emulation mode NICs */
1750			dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1751		} else {
1752			dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1753				    E1000_DTXSWC_VLAN_SPOOF_MASK);
1754		}
1755		wr32(E1000_DTXSWC, dtxswc);
1756		break;
1757	default:
1758		break;
1759	}
1760}
1761
1762/**
1763 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1764 *  @hw: pointer to the hardware struct
1765 *  @enable: state to enter, either enabled or disabled
1766 *
1767 *  enables/disables L2 switch loopback functionality.
1768 **/
1769void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1770{
1771	u32 dtxswc;
1772
1773	switch (hw->mac.type) {
1774	case e1000_82576:
1775		dtxswc = rd32(E1000_DTXSWC);
1776		if (enable)
1777			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1778		else
1779			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1780		wr32(E1000_DTXSWC, dtxswc);
1781		break;
1782	case e1000_i350:
1783		dtxswc = rd32(E1000_TXSWC);
1784		if (enable)
1785			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1786		else
1787			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1788		wr32(E1000_TXSWC, dtxswc);
1789		break;
1790	default:
1791		/* Currently no other hardware supports loopback */
1792		break;
1793	}
1794
1795
1796}
1797
1798/**
1799 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
1800 *  @hw: pointer to the hardware struct
1801 *  @enable: state to enter, either enabled or disabled
1802 *
1803 *  enables/disables replication of packets across multiple pools.
1804 **/
1805void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1806{
1807	u32 vt_ctl = rd32(E1000_VT_CTL);
1808
1809	if (enable)
1810		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1811	else
1812		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1813
1814	wr32(E1000_VT_CTL, vt_ctl);
1815}
1816
1817/**
1818 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
1819 *  @hw: pointer to the HW structure
1820 *  @offset: register offset to be read
1821 *  @data: pointer to the read data
1822 *
1823 *  Reads the MDI control register in the PHY at offset and stores the
1824 *  information read to data.
1825 **/
1826static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1827{
1828	s32 ret_val;
1829
1830
1831	ret_val = hw->phy.ops.acquire(hw);
1832	if (ret_val)
1833		goto out;
1834
1835	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1836
1837	hw->phy.ops.release(hw);
1838
1839out:
1840	return ret_val;
1841}
1842
1843/**
1844 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
1845 *  @hw: pointer to the HW structure
1846 *  @offset: register offset to write to
1847 *  @data: data to write to register at offset
1848 *
1849 *  Writes data to MDI control register in the PHY at offset.
1850 **/
1851static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1852{
1853	s32 ret_val;
1854
1855
1856	ret_val = hw->phy.ops.acquire(hw);
1857	if (ret_val)
1858		goto out;
1859
1860	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1861
1862	hw->phy.ops.release(hw);
1863
1864out:
1865	return ret_val;
1866}
1867
1868/**
1869 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1870 *  @hw: pointer to the HW structure
1871 *
1872 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1873 *  the values found in the EEPROM.  This addresses an issue in which these
1874 *  bits are not restored from EEPROM after reset.
1875 **/
1876static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1877{
1878	s32 ret_val = 0;
1879	u32 mdicnfg;
1880	u16 nvm_data = 0;
1881
1882	if (hw->mac.type != e1000_82580)
1883		goto out;
1884	if (!igb_sgmii_active_82575(hw))
1885		goto out;
1886
1887	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1888				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1889				   &nvm_data);
1890	if (ret_val) {
1891		hw_dbg("NVM Read Error\n");
1892		goto out;
1893	}
1894
1895	mdicnfg = rd32(E1000_MDICNFG);
1896	if (nvm_data & NVM_WORD24_EXT_MDIO)
1897		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1898	if (nvm_data & NVM_WORD24_COM_MDIO)
1899		mdicnfg |= E1000_MDICNFG_COM_MDIO;
1900	wr32(E1000_MDICNFG, mdicnfg);
1901out:
1902	return ret_val;
1903}
1904
1905/**
1906 *  igb_reset_hw_82580 - Reset hardware
1907 *  @hw: pointer to the HW structure
1908 *
1909 *  This resets function or entire device (all ports, etc.)
1910 *  to a known state.
1911 **/
1912static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1913{
1914	s32 ret_val = 0;
1915	/* BH SW mailbox bit in SW_FW_SYNC */
1916	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1917	u32 ctrl, icr;
1918	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1919
1920
1921	hw->dev_spec._82575.global_device_reset = false;
1922
1923	/* Get current control state. */
1924	ctrl = rd32(E1000_CTRL);
1925
1926	/*
1927	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1928	 * on the last TLP read/write transaction when MAC is reset.
1929	 */
1930	ret_val = igb_disable_pcie_master(hw);
1931	if (ret_val)
1932		hw_dbg("PCI-E Master disable polling has failed.\n");
1933
1934	hw_dbg("Masking off all interrupts\n");
1935	wr32(E1000_IMC, 0xffffffff);
1936	wr32(E1000_RCTL, 0);
1937	wr32(E1000_TCTL, E1000_TCTL_PSP);
1938	wrfl();
1939
1940	msleep(10);
1941
1942	/* Determine whether or not a global dev reset is requested */
1943	if (global_device_reset &&
1944		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
1945			global_device_reset = false;
1946
1947	if (global_device_reset &&
1948		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
1949		ctrl |= E1000_CTRL_DEV_RST;
1950	else
1951		ctrl |= E1000_CTRL_RST;
1952
1953	wr32(E1000_CTRL, ctrl);
1954	wrfl();
1955
1956	/* Add delay to insure DEV_RST has time to complete */
1957	if (global_device_reset)
1958		msleep(5);
1959
1960	ret_val = igb_get_auto_rd_done(hw);
1961	if (ret_val) {
1962		/*
1963		 * When auto config read does not complete, do not
1964		 * return with an error. This can happen in situations
1965		 * where there is no eeprom and prevents getting link.
1966		 */
1967		hw_dbg("Auto Read Done did not complete\n");
1968	}
1969
1970	/* If EEPROM is not present, run manual init scripts */
1971	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1972		igb_reset_init_script_82575(hw);
1973
1974	/* clear global device reset status bit */
1975	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
1976
1977	/* Clear any pending interrupt events. */
1978	wr32(E1000_IMC, 0xffffffff);
1979	icr = rd32(E1000_ICR);
1980
1981	ret_val = igb_reset_mdicnfg_82580(hw);
1982	if (ret_val)
1983		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
1984
1985	/* Install any alternate MAC address into RAR0 */
1986	ret_val = igb_check_alt_mac_addr(hw);
1987
1988	/* Release semaphore */
1989	if (global_device_reset)
1990		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
1991
1992	return ret_val;
1993}
1994
1995/**
1996 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1997 *  @data: data received by reading RXPBS register
1998 *
1999 *  The 82580 uses a table based approach for packet buffer allocation sizes.
2000 *  This function converts the retrieved value into the correct table value
2001 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2002 *  0x0 36  72 144   1   2   4   8  16
2003 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2004 */
2005u16 igb_rxpbs_adjust_82580(u32 data)
2006{
2007	u16 ret_val = 0;
2008
2009	if (data < E1000_82580_RXPBS_TABLE_SIZE)
2010		ret_val = e1000_82580_rxpbs_table[data];
2011
2012	return ret_val;
2013}
2014
2015/**
2016 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2017 *  checksum
2018 *  @hw: pointer to the HW structure
2019 *  @offset: offset in words of the checksum protected region
2020 *
2021 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2022 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2023 **/
2024static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2025						 u16 offset)
2026{
2027	s32 ret_val = 0;
2028	u16 checksum = 0;
2029	u16 i, nvm_data;
2030
2031	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2032		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2033		if (ret_val) {
2034			hw_dbg("NVM Read Error\n");
2035			goto out;
2036		}
2037		checksum += nvm_data;
2038	}
2039
2040	if (checksum != (u16) NVM_SUM) {
2041		hw_dbg("NVM Checksum Invalid\n");
2042		ret_val = -E1000_ERR_NVM;
2043		goto out;
2044	}
2045
2046out:
2047	return ret_val;
2048}
2049
2050/**
2051 *  igb_update_nvm_checksum_with_offset - Update EEPROM
2052 *  checksum
2053 *  @hw: pointer to the HW structure
2054 *  @offset: offset in words of the checksum protected region
2055 *
2056 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2057 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2058 *  value to the EEPROM.
2059 **/
2060static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2061{
2062	s32 ret_val;
2063	u16 checksum = 0;
2064	u16 i, nvm_data;
2065
2066	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2067		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2068		if (ret_val) {
2069			hw_dbg("NVM Read Error while updating checksum.\n");
2070			goto out;
2071		}
2072		checksum += nvm_data;
2073	}
2074	checksum = (u16) NVM_SUM - checksum;
2075	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2076				&checksum);
2077	if (ret_val)
2078		hw_dbg("NVM Write Error while updating checksum.\n");
2079
2080out:
2081	return ret_val;
2082}
2083
2084/**
2085 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2086 *  @hw: pointer to the HW structure
2087 *
2088 *  Calculates the EEPROM section checksum by reading/adding each word of
2089 *  the EEPROM and then verifies that the sum of the EEPROM is
2090 *  equal to 0xBABA.
2091 **/
2092static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2093{
2094	s32 ret_val = 0;
2095	u16 eeprom_regions_count = 1;
2096	u16 j, nvm_data;
2097	u16 nvm_offset;
2098
2099	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2100	if (ret_val) {
2101		hw_dbg("NVM Read Error\n");
2102		goto out;
2103	}
2104
2105	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2106		/* if checksums compatibility bit is set validate checksums
2107		 * for all 4 ports. */
2108		eeprom_regions_count = 4;
2109	}
2110
2111	for (j = 0; j < eeprom_regions_count; j++) {
2112		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2113		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2114								nvm_offset);
2115		if (ret_val != 0)
2116			goto out;
2117	}
2118
2119out:
2120	return ret_val;
2121}
2122
2123/**
2124 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2125 *  @hw: pointer to the HW structure
2126 *
2127 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2128 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2129 *  checksum and writes the value to the EEPROM.
2130 **/
2131static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2132{
2133	s32 ret_val;
2134	u16 j, nvm_data;
2135	u16 nvm_offset;
2136
2137	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2138	if (ret_val) {
2139		hw_dbg("NVM Read Error while updating checksum"
2140			" compatibility bit.\n");
2141		goto out;
2142	}
2143
2144	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2145		/* set compatibility bit to validate checksums appropriately */
2146		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2147		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2148					&nvm_data);
2149		if (ret_val) {
2150			hw_dbg("NVM Write Error while updating checksum"
2151				" compatibility bit.\n");
2152			goto out;
2153		}
2154	}
2155
2156	for (j = 0; j < 4; j++) {
2157		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2158		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2159		if (ret_val)
2160			goto out;
2161	}
2162
2163out:
2164	return ret_val;
2165}
2166
2167/**
2168 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2169 *  @hw: pointer to the HW structure
2170 *
2171 *  Calculates the EEPROM section checksum by reading/adding each word of
2172 *  the EEPROM and then verifies that the sum of the EEPROM is
2173 *  equal to 0xBABA.
2174 **/
2175static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2176{
2177	s32 ret_val = 0;
2178	u16 j;
2179	u16 nvm_offset;
2180
2181	for (j = 0; j < 4; j++) {
2182		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2183		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2184								nvm_offset);
2185		if (ret_val != 0)
2186			goto out;
2187	}
2188
2189out:
2190	return ret_val;
2191}
2192
2193/**
2194 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2195 *  @hw: pointer to the HW structure
2196 *
2197 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2198 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2199 *  checksum and writes the value to the EEPROM.
2200 **/
2201static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2202{
2203	s32 ret_val = 0;
2204	u16 j;
2205	u16 nvm_offset;
2206
2207	for (j = 0; j < 4; j++) {
2208		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2209		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2210		if (ret_val != 0)
2211			goto out;
2212	}
2213
2214out:
2215	return ret_val;
2216}
2217
2218/**
2219 *  igb_set_eee_i350 - Enable/disable EEE support
2220 *  @hw: pointer to the HW structure
2221 *
2222 *  Enable/disable EEE based on setting in dev_spec structure.
2223 *
2224 **/
2225s32 igb_set_eee_i350(struct e1000_hw *hw)
2226{
2227	s32 ret_val = 0;
2228	u32 ipcnfg, eeer, ctrl_ext;
2229
2230	ctrl_ext = rd32(E1000_CTRL_EXT);
2231	if ((hw->mac.type != e1000_i350) ||
2232	    (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK))
2233		goto out;
2234	ipcnfg = rd32(E1000_IPCNFG);
2235	eeer = rd32(E1000_EEER);
2236
2237	/* enable or disable per user setting */
2238	if (!(hw->dev_spec._82575.eee_disable)) {
2239		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN |
2240			E1000_IPCNFG_EEE_100M_AN);
2241		eeer |= (E1000_EEER_TX_LPI_EN |
2242			E1000_EEER_RX_LPI_EN |
2243			E1000_EEER_LPI_FC);
2244
2245	} else {
2246		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2247			E1000_IPCNFG_EEE_100M_AN);
2248		eeer &= ~(E1000_EEER_TX_LPI_EN |
2249			E1000_EEER_RX_LPI_EN |
2250			E1000_EEER_LPI_FC);
2251	}
2252	wr32(E1000_IPCNFG, ipcnfg);
2253	wr32(E1000_EEER, eeer);
2254out:
2255
2256	return ret_val;
2257}
2258
2259static struct e1000_mac_operations e1000_mac_ops_82575 = {
2260	.init_hw              = igb_init_hw_82575,
2261	.check_for_link       = igb_check_for_link_82575,
2262	.rar_set              = igb_rar_set,
2263	.read_mac_addr        = igb_read_mac_addr_82575,
2264	.get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2265};
2266
2267static struct e1000_phy_operations e1000_phy_ops_82575 = {
2268	.acquire              = igb_acquire_phy_82575,
2269	.get_cfg_done         = igb_get_cfg_done_82575,
2270	.release              = igb_release_phy_82575,
2271};
2272
2273static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2274	.acquire              = igb_acquire_nvm_82575,
2275	.read                 = igb_read_nvm_eerd,
2276	.release              = igb_release_nvm_82575,
2277	.write                = igb_write_nvm_spi,
2278};
2279
2280const struct e1000_info e1000_82575_info = {
2281	.get_invariants = igb_get_invariants_82575,
2282	.mac_ops = &e1000_mac_ops_82575,
2283	.phy_ops = &e1000_phy_ops_82575,
2284	.nvm_ops = &e1000_nvm_ops_82575,
2285};
2286
2287