igb_ethtool.c revision 4b9ea4626b52c113c367c4776c9bb11b7231393d
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2013 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* ethtool support for igb */
29
30#include <linux/vmalloc.h>
31#include <linux/netdevice.h>
32#include <linux/pci.h>
33#include <linux/delay.h>
34#include <linux/interrupt.h>
35#include <linux/if_ether.h>
36#include <linux/ethtool.h>
37#include <linux/sched.h>
38#include <linux/slab.h>
39#include <linux/pm_runtime.h>
40#include <linux/highmem.h>
41
42#include "igb.h"
43
44struct igb_stats {
45	char stat_string[ETH_GSTRING_LEN];
46	int sizeof_stat;
47	int stat_offset;
48};
49
50#define IGB_STAT(_name, _stat) { \
51	.stat_string = _name, \
52	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
53	.stat_offset = offsetof(struct igb_adapter, _stat) \
54}
55static const struct igb_stats igb_gstrings_stats[] = {
56	IGB_STAT("rx_packets", stats.gprc),
57	IGB_STAT("tx_packets", stats.gptc),
58	IGB_STAT("rx_bytes", stats.gorc),
59	IGB_STAT("tx_bytes", stats.gotc),
60	IGB_STAT("rx_broadcast", stats.bprc),
61	IGB_STAT("tx_broadcast", stats.bptc),
62	IGB_STAT("rx_multicast", stats.mprc),
63	IGB_STAT("tx_multicast", stats.mptc),
64	IGB_STAT("multicast", stats.mprc),
65	IGB_STAT("collisions", stats.colc),
66	IGB_STAT("rx_crc_errors", stats.crcerrs),
67	IGB_STAT("rx_no_buffer_count", stats.rnbc),
68	IGB_STAT("rx_missed_errors", stats.mpc),
69	IGB_STAT("tx_aborted_errors", stats.ecol),
70	IGB_STAT("tx_carrier_errors", stats.tncrs),
71	IGB_STAT("tx_window_errors", stats.latecol),
72	IGB_STAT("tx_abort_late_coll", stats.latecol),
73	IGB_STAT("tx_deferred_ok", stats.dc),
74	IGB_STAT("tx_single_coll_ok", stats.scc),
75	IGB_STAT("tx_multi_coll_ok", stats.mcc),
76	IGB_STAT("tx_timeout_count", tx_timeout_count),
77	IGB_STAT("rx_long_length_errors", stats.roc),
78	IGB_STAT("rx_short_length_errors", stats.ruc),
79	IGB_STAT("rx_align_errors", stats.algnerrc),
80	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
81	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
82	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
83	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
84	IGB_STAT("tx_flow_control_xon", stats.xontxc),
85	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
86	IGB_STAT("rx_long_byte_count", stats.gorc),
87	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
88	IGB_STAT("tx_smbus", stats.mgptc),
89	IGB_STAT("rx_smbus", stats.mgprc),
90	IGB_STAT("dropped_smbus", stats.mgpdc),
91	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
92	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
93	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
94	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
95	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
96	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
97};
98
99#define IGB_NETDEV_STAT(_net_stat) { \
100	.stat_string = __stringify(_net_stat), \
101	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
102	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
103}
104static const struct igb_stats igb_gstrings_net_stats[] = {
105	IGB_NETDEV_STAT(rx_errors),
106	IGB_NETDEV_STAT(tx_errors),
107	IGB_NETDEV_STAT(tx_dropped),
108	IGB_NETDEV_STAT(rx_length_errors),
109	IGB_NETDEV_STAT(rx_over_errors),
110	IGB_NETDEV_STAT(rx_frame_errors),
111	IGB_NETDEV_STAT(rx_fifo_errors),
112	IGB_NETDEV_STAT(tx_fifo_errors),
113	IGB_NETDEV_STAT(tx_heartbeat_errors)
114};
115
116#define IGB_GLOBAL_STATS_LEN	\
117	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
118#define IGB_NETDEV_STATS_LEN	\
119	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
120#define IGB_RX_QUEUE_STATS_LEN \
121	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
122
123#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
124
125#define IGB_QUEUE_STATS_LEN \
126	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
127	  IGB_RX_QUEUE_STATS_LEN) + \
128	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
129	  IGB_TX_QUEUE_STATS_LEN))
130#define IGB_STATS_LEN \
131	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
132
133static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
134	"Register test  (offline)", "Eeprom test    (offline)",
135	"Interrupt test (offline)", "Loopback test  (offline)",
136	"Link test   (on/offline)"
137};
138#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
139
140static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
141{
142	struct igb_adapter *adapter = netdev_priv(netdev);
143	struct e1000_hw *hw = &adapter->hw;
144	u32 status;
145
146	if (hw->phy.media_type == e1000_media_type_copper) {
147
148		ecmd->supported = (SUPPORTED_10baseT_Half |
149				   SUPPORTED_10baseT_Full |
150				   SUPPORTED_100baseT_Half |
151				   SUPPORTED_100baseT_Full |
152				   SUPPORTED_1000baseT_Full|
153				   SUPPORTED_Autoneg |
154				   SUPPORTED_TP |
155				   SUPPORTED_Pause);
156		ecmd->advertising = ADVERTISED_TP;
157
158		if (hw->mac.autoneg == 1) {
159			ecmd->advertising |= ADVERTISED_Autoneg;
160			/* the e1000 autoneg seems to match ethtool nicely */
161			ecmd->advertising |= hw->phy.autoneg_advertised;
162		}
163
164		if (hw->mac.autoneg != 1)
165			ecmd->advertising &= ~(ADVERTISED_Pause |
166					       ADVERTISED_Asym_Pause);
167
168		if (hw->fc.requested_mode == e1000_fc_full)
169			ecmd->advertising |= ADVERTISED_Pause;
170		else if (hw->fc.requested_mode == e1000_fc_rx_pause)
171			ecmd->advertising |= (ADVERTISED_Pause |
172					      ADVERTISED_Asym_Pause);
173		else if (hw->fc.requested_mode == e1000_fc_tx_pause)
174			ecmd->advertising |=  ADVERTISED_Asym_Pause;
175		else
176			ecmd->advertising &= ~(ADVERTISED_Pause |
177					       ADVERTISED_Asym_Pause);
178
179		ecmd->port = PORT_TP;
180		ecmd->phy_address = hw->phy.addr;
181	} else {
182		ecmd->supported   = (SUPPORTED_1000baseT_Full |
183				     SUPPORTED_FIBRE |
184				     SUPPORTED_Autoneg);
185
186		ecmd->advertising = (ADVERTISED_1000baseT_Full |
187				     ADVERTISED_FIBRE |
188				     ADVERTISED_Autoneg |
189				     ADVERTISED_Pause);
190
191		ecmd->port = PORT_FIBRE;
192	}
193
194	ecmd->transceiver = XCVR_INTERNAL;
195
196	status = rd32(E1000_STATUS);
197
198	if (status & E1000_STATUS_LU) {
199
200		if ((status & E1000_STATUS_SPEED_1000) ||
201		    hw->phy.media_type != e1000_media_type_copper)
202			ethtool_cmd_speed_set(ecmd, SPEED_1000);
203		else if (status & E1000_STATUS_SPEED_100)
204			ethtool_cmd_speed_set(ecmd, SPEED_100);
205		else
206			ethtool_cmd_speed_set(ecmd, SPEED_10);
207
208		if ((status & E1000_STATUS_FD) ||
209		    hw->phy.media_type != e1000_media_type_copper)
210			ecmd->duplex = DUPLEX_FULL;
211		else
212			ecmd->duplex = DUPLEX_HALF;
213	} else {
214		ethtool_cmd_speed_set(ecmd, -1);
215		ecmd->duplex = -1;
216	}
217
218	ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
219
220	/* MDI-X => 2; MDI =>1; Invalid =>0 */
221	if (hw->phy.media_type == e1000_media_type_copper)
222		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
223						      ETH_TP_MDI;
224	else
225		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
226
227	if (hw->phy.mdix == AUTO_ALL_MODES)
228		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
229	else
230		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
231
232	return 0;
233}
234
235static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
236{
237	struct igb_adapter *adapter = netdev_priv(netdev);
238	struct e1000_hw *hw = &adapter->hw;
239
240	/* When SoL/IDER sessions are active, autoneg/speed/duplex
241	 * cannot be changed */
242	if (igb_check_reset_block(hw)) {
243		dev_err(&adapter->pdev->dev,
244			"Cannot change link characteristics when SoL/IDER is active.\n");
245		return -EINVAL;
246	}
247
248	/*
249	 * MDI setting is only allowed when autoneg enabled because
250	 * some hardware doesn't allow MDI setting when speed or
251	 * duplex is forced.
252	 */
253	if (ecmd->eth_tp_mdix_ctrl) {
254		if (hw->phy.media_type != e1000_media_type_copper)
255			return -EOPNOTSUPP;
256
257		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
258		    (ecmd->autoneg != AUTONEG_ENABLE)) {
259			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
260			return -EINVAL;
261		}
262	}
263
264	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
265		msleep(1);
266
267	if (ecmd->autoneg == AUTONEG_ENABLE) {
268		hw->mac.autoneg = 1;
269		hw->phy.autoneg_advertised = ecmd->advertising |
270					     ADVERTISED_TP |
271					     ADVERTISED_Autoneg;
272		ecmd->advertising = hw->phy.autoneg_advertised;
273		if (adapter->fc_autoneg)
274			hw->fc.requested_mode = e1000_fc_default;
275	} else {
276		u32 speed = ethtool_cmd_speed(ecmd);
277		/* calling this overrides forced MDI setting */
278		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
279			clear_bit(__IGB_RESETTING, &adapter->state);
280			return -EINVAL;
281		}
282	}
283
284	/* MDI-X => 2; MDI => 1; Auto => 3 */
285	if (ecmd->eth_tp_mdix_ctrl) {
286		/*
287		 * fix up the value for auto (3 => 0) as zero is mapped
288		 * internally to auto
289		 */
290		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
291			hw->phy.mdix = AUTO_ALL_MODES;
292		else
293			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
294	}
295
296	/* reset the link */
297	if (netif_running(adapter->netdev)) {
298		igb_down(adapter);
299		igb_up(adapter);
300	} else
301		igb_reset(adapter);
302
303	clear_bit(__IGB_RESETTING, &adapter->state);
304	return 0;
305}
306
307static u32 igb_get_link(struct net_device *netdev)
308{
309	struct igb_adapter *adapter = netdev_priv(netdev);
310	struct e1000_mac_info *mac = &adapter->hw.mac;
311
312	/*
313	 * If the link is not reported up to netdev, interrupts are disabled,
314	 * and so the physical link state may have changed since we last
315	 * looked. Set get_link_status to make sure that the true link
316	 * state is interrogated, rather than pulling a cached and possibly
317	 * stale link state from the driver.
318	 */
319	if (!netif_carrier_ok(netdev))
320		mac->get_link_status = 1;
321
322	return igb_has_link(adapter);
323}
324
325static void igb_get_pauseparam(struct net_device *netdev,
326			       struct ethtool_pauseparam *pause)
327{
328	struct igb_adapter *adapter = netdev_priv(netdev);
329	struct e1000_hw *hw = &adapter->hw;
330
331	pause->autoneg =
332		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
333
334	if (hw->fc.current_mode == e1000_fc_rx_pause)
335		pause->rx_pause = 1;
336	else if (hw->fc.current_mode == e1000_fc_tx_pause)
337		pause->tx_pause = 1;
338	else if (hw->fc.current_mode == e1000_fc_full) {
339		pause->rx_pause = 1;
340		pause->tx_pause = 1;
341	}
342}
343
344static int igb_set_pauseparam(struct net_device *netdev,
345			      struct ethtool_pauseparam *pause)
346{
347	struct igb_adapter *adapter = netdev_priv(netdev);
348	struct e1000_hw *hw = &adapter->hw;
349	int retval = 0;
350
351	adapter->fc_autoneg = pause->autoneg;
352
353	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
354		msleep(1);
355
356	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
357		hw->fc.requested_mode = e1000_fc_default;
358		if (netif_running(adapter->netdev)) {
359			igb_down(adapter);
360			igb_up(adapter);
361		} else {
362			igb_reset(adapter);
363		}
364	} else {
365		if (pause->rx_pause && pause->tx_pause)
366			hw->fc.requested_mode = e1000_fc_full;
367		else if (pause->rx_pause && !pause->tx_pause)
368			hw->fc.requested_mode = e1000_fc_rx_pause;
369		else if (!pause->rx_pause && pause->tx_pause)
370			hw->fc.requested_mode = e1000_fc_tx_pause;
371		else if (!pause->rx_pause && !pause->tx_pause)
372			hw->fc.requested_mode = e1000_fc_none;
373
374		hw->fc.current_mode = hw->fc.requested_mode;
375
376		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
377			  igb_force_mac_fc(hw) : igb_setup_link(hw));
378	}
379
380	clear_bit(__IGB_RESETTING, &adapter->state);
381	return retval;
382}
383
384static u32 igb_get_msglevel(struct net_device *netdev)
385{
386	struct igb_adapter *adapter = netdev_priv(netdev);
387	return adapter->msg_enable;
388}
389
390static void igb_set_msglevel(struct net_device *netdev, u32 data)
391{
392	struct igb_adapter *adapter = netdev_priv(netdev);
393	adapter->msg_enable = data;
394}
395
396static int igb_get_regs_len(struct net_device *netdev)
397{
398#define IGB_REGS_LEN 739
399	return IGB_REGS_LEN * sizeof(u32);
400}
401
402static void igb_get_regs(struct net_device *netdev,
403			 struct ethtool_regs *regs, void *p)
404{
405	struct igb_adapter *adapter = netdev_priv(netdev);
406	struct e1000_hw *hw = &adapter->hw;
407	u32 *regs_buff = p;
408	u8 i;
409
410	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
411
412	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
413
414	/* General Registers */
415	regs_buff[0] = rd32(E1000_CTRL);
416	regs_buff[1] = rd32(E1000_STATUS);
417	regs_buff[2] = rd32(E1000_CTRL_EXT);
418	regs_buff[3] = rd32(E1000_MDIC);
419	regs_buff[4] = rd32(E1000_SCTL);
420	regs_buff[5] = rd32(E1000_CONNSW);
421	regs_buff[6] = rd32(E1000_VET);
422	regs_buff[7] = rd32(E1000_LEDCTL);
423	regs_buff[8] = rd32(E1000_PBA);
424	regs_buff[9] = rd32(E1000_PBS);
425	regs_buff[10] = rd32(E1000_FRTIMER);
426	regs_buff[11] = rd32(E1000_TCPTIMER);
427
428	/* NVM Register */
429	regs_buff[12] = rd32(E1000_EECD);
430
431	/* Interrupt */
432	/* Reading EICS for EICR because they read the
433	 * same but EICS does not clear on read */
434	regs_buff[13] = rd32(E1000_EICS);
435	regs_buff[14] = rd32(E1000_EICS);
436	regs_buff[15] = rd32(E1000_EIMS);
437	regs_buff[16] = rd32(E1000_EIMC);
438	regs_buff[17] = rd32(E1000_EIAC);
439	regs_buff[18] = rd32(E1000_EIAM);
440	/* Reading ICS for ICR because they read the
441	 * same but ICS does not clear on read */
442	regs_buff[19] = rd32(E1000_ICS);
443	regs_buff[20] = rd32(E1000_ICS);
444	regs_buff[21] = rd32(E1000_IMS);
445	regs_buff[22] = rd32(E1000_IMC);
446	regs_buff[23] = rd32(E1000_IAC);
447	regs_buff[24] = rd32(E1000_IAM);
448	regs_buff[25] = rd32(E1000_IMIRVP);
449
450	/* Flow Control */
451	regs_buff[26] = rd32(E1000_FCAL);
452	regs_buff[27] = rd32(E1000_FCAH);
453	regs_buff[28] = rd32(E1000_FCTTV);
454	regs_buff[29] = rd32(E1000_FCRTL);
455	regs_buff[30] = rd32(E1000_FCRTH);
456	regs_buff[31] = rd32(E1000_FCRTV);
457
458	/* Receive */
459	regs_buff[32] = rd32(E1000_RCTL);
460	regs_buff[33] = rd32(E1000_RXCSUM);
461	regs_buff[34] = rd32(E1000_RLPML);
462	regs_buff[35] = rd32(E1000_RFCTL);
463	regs_buff[36] = rd32(E1000_MRQC);
464	regs_buff[37] = rd32(E1000_VT_CTL);
465
466	/* Transmit */
467	regs_buff[38] = rd32(E1000_TCTL);
468	regs_buff[39] = rd32(E1000_TCTL_EXT);
469	regs_buff[40] = rd32(E1000_TIPG);
470	regs_buff[41] = rd32(E1000_DTXCTL);
471
472	/* Wake Up */
473	regs_buff[42] = rd32(E1000_WUC);
474	regs_buff[43] = rd32(E1000_WUFC);
475	regs_buff[44] = rd32(E1000_WUS);
476	regs_buff[45] = rd32(E1000_IPAV);
477	regs_buff[46] = rd32(E1000_WUPL);
478
479	/* MAC */
480	regs_buff[47] = rd32(E1000_PCS_CFG0);
481	regs_buff[48] = rd32(E1000_PCS_LCTL);
482	regs_buff[49] = rd32(E1000_PCS_LSTAT);
483	regs_buff[50] = rd32(E1000_PCS_ANADV);
484	regs_buff[51] = rd32(E1000_PCS_LPAB);
485	regs_buff[52] = rd32(E1000_PCS_NPTX);
486	regs_buff[53] = rd32(E1000_PCS_LPABNP);
487
488	/* Statistics */
489	regs_buff[54] = adapter->stats.crcerrs;
490	regs_buff[55] = adapter->stats.algnerrc;
491	regs_buff[56] = adapter->stats.symerrs;
492	regs_buff[57] = adapter->stats.rxerrc;
493	regs_buff[58] = adapter->stats.mpc;
494	regs_buff[59] = adapter->stats.scc;
495	regs_buff[60] = adapter->stats.ecol;
496	regs_buff[61] = adapter->stats.mcc;
497	regs_buff[62] = adapter->stats.latecol;
498	regs_buff[63] = adapter->stats.colc;
499	regs_buff[64] = adapter->stats.dc;
500	regs_buff[65] = adapter->stats.tncrs;
501	regs_buff[66] = adapter->stats.sec;
502	regs_buff[67] = adapter->stats.htdpmc;
503	regs_buff[68] = adapter->stats.rlec;
504	regs_buff[69] = adapter->stats.xonrxc;
505	regs_buff[70] = adapter->stats.xontxc;
506	regs_buff[71] = adapter->stats.xoffrxc;
507	regs_buff[72] = adapter->stats.xofftxc;
508	regs_buff[73] = adapter->stats.fcruc;
509	regs_buff[74] = adapter->stats.prc64;
510	regs_buff[75] = adapter->stats.prc127;
511	regs_buff[76] = adapter->stats.prc255;
512	regs_buff[77] = adapter->stats.prc511;
513	regs_buff[78] = adapter->stats.prc1023;
514	regs_buff[79] = adapter->stats.prc1522;
515	regs_buff[80] = adapter->stats.gprc;
516	regs_buff[81] = adapter->stats.bprc;
517	regs_buff[82] = adapter->stats.mprc;
518	regs_buff[83] = adapter->stats.gptc;
519	regs_buff[84] = adapter->stats.gorc;
520	regs_buff[86] = adapter->stats.gotc;
521	regs_buff[88] = adapter->stats.rnbc;
522	regs_buff[89] = adapter->stats.ruc;
523	regs_buff[90] = adapter->stats.rfc;
524	regs_buff[91] = adapter->stats.roc;
525	regs_buff[92] = adapter->stats.rjc;
526	regs_buff[93] = adapter->stats.mgprc;
527	regs_buff[94] = adapter->stats.mgpdc;
528	regs_buff[95] = adapter->stats.mgptc;
529	regs_buff[96] = adapter->stats.tor;
530	regs_buff[98] = adapter->stats.tot;
531	regs_buff[100] = adapter->stats.tpr;
532	regs_buff[101] = adapter->stats.tpt;
533	regs_buff[102] = adapter->stats.ptc64;
534	regs_buff[103] = adapter->stats.ptc127;
535	regs_buff[104] = adapter->stats.ptc255;
536	regs_buff[105] = adapter->stats.ptc511;
537	regs_buff[106] = adapter->stats.ptc1023;
538	regs_buff[107] = adapter->stats.ptc1522;
539	regs_buff[108] = adapter->stats.mptc;
540	regs_buff[109] = adapter->stats.bptc;
541	regs_buff[110] = adapter->stats.tsctc;
542	regs_buff[111] = adapter->stats.iac;
543	regs_buff[112] = adapter->stats.rpthc;
544	regs_buff[113] = adapter->stats.hgptc;
545	regs_buff[114] = adapter->stats.hgorc;
546	regs_buff[116] = adapter->stats.hgotc;
547	regs_buff[118] = adapter->stats.lenerrs;
548	regs_buff[119] = adapter->stats.scvpc;
549	regs_buff[120] = adapter->stats.hrmpc;
550
551	for (i = 0; i < 4; i++)
552		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
553	for (i = 0; i < 4; i++)
554		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
555	for (i = 0; i < 4; i++)
556		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
557	for (i = 0; i < 4; i++)
558		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
559	for (i = 0; i < 4; i++)
560		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
561	for (i = 0; i < 4; i++)
562		regs_buff[141 + i] = rd32(E1000_RDH(i));
563	for (i = 0; i < 4; i++)
564		regs_buff[145 + i] = rd32(E1000_RDT(i));
565	for (i = 0; i < 4; i++)
566		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
567
568	for (i = 0; i < 10; i++)
569		regs_buff[153 + i] = rd32(E1000_EITR(i));
570	for (i = 0; i < 8; i++)
571		regs_buff[163 + i] = rd32(E1000_IMIR(i));
572	for (i = 0; i < 8; i++)
573		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
574	for (i = 0; i < 16; i++)
575		regs_buff[179 + i] = rd32(E1000_RAL(i));
576	for (i = 0; i < 16; i++)
577		regs_buff[195 + i] = rd32(E1000_RAH(i));
578
579	for (i = 0; i < 4; i++)
580		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
581	for (i = 0; i < 4; i++)
582		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
583	for (i = 0; i < 4; i++)
584		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
585	for (i = 0; i < 4; i++)
586		regs_buff[223 + i] = rd32(E1000_TDH(i));
587	for (i = 0; i < 4; i++)
588		regs_buff[227 + i] = rd32(E1000_TDT(i));
589	for (i = 0; i < 4; i++)
590		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
591	for (i = 0; i < 4; i++)
592		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
593	for (i = 0; i < 4; i++)
594		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
595	for (i = 0; i < 4; i++)
596		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
597
598	for (i = 0; i < 4; i++)
599		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
600	for (i = 0; i < 4; i++)
601		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
602	for (i = 0; i < 32; i++)
603		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
604	for (i = 0; i < 128; i++)
605		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
606	for (i = 0; i < 128; i++)
607		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
608	for (i = 0; i < 4; i++)
609		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
610
611	regs_buff[547] = rd32(E1000_TDFH);
612	regs_buff[548] = rd32(E1000_TDFT);
613	regs_buff[549] = rd32(E1000_TDFHS);
614	regs_buff[550] = rd32(E1000_TDFPC);
615
616	if (hw->mac.type > e1000_82580) {
617		regs_buff[551] = adapter->stats.o2bgptc;
618		regs_buff[552] = adapter->stats.b2ospc;
619		regs_buff[553] = adapter->stats.o2bspc;
620		regs_buff[554] = adapter->stats.b2ogprc;
621	}
622
623	if (hw->mac.type != e1000_82576)
624		return;
625	for (i = 0; i < 12; i++)
626		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
627	for (i = 0; i < 4; i++)
628		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
629	for (i = 0; i < 12; i++)
630		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
631	for (i = 0; i < 12; i++)
632		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
633	for (i = 0; i < 12; i++)
634		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
635	for (i = 0; i < 12; i++)
636		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
637	for (i = 0; i < 12; i++)
638		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
639	for (i = 0; i < 12; i++)
640		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
641
642	for (i = 0; i < 12; i++)
643		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
644	for (i = 0; i < 12; i++)
645		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
646	for (i = 0; i < 12; i++)
647		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
648	for (i = 0; i < 12; i++)
649		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
650	for (i = 0; i < 12; i++)
651		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
652	for (i = 0; i < 12; i++)
653		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
654	for (i = 0; i < 12; i++)
655		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
656	for (i = 0; i < 12; i++)
657		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
658}
659
660static int igb_get_eeprom_len(struct net_device *netdev)
661{
662	struct igb_adapter *adapter = netdev_priv(netdev);
663	return adapter->hw.nvm.word_size * 2;
664}
665
666static int igb_get_eeprom(struct net_device *netdev,
667			  struct ethtool_eeprom *eeprom, u8 *bytes)
668{
669	struct igb_adapter *adapter = netdev_priv(netdev);
670	struct e1000_hw *hw = &adapter->hw;
671	u16 *eeprom_buff;
672	int first_word, last_word;
673	int ret_val = 0;
674	u16 i;
675
676	if (eeprom->len == 0)
677		return -EINVAL;
678
679	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
680
681	first_word = eeprom->offset >> 1;
682	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
683
684	eeprom_buff = kmalloc(sizeof(u16) *
685			(last_word - first_word + 1), GFP_KERNEL);
686	if (!eeprom_buff)
687		return -ENOMEM;
688
689	if (hw->nvm.type == e1000_nvm_eeprom_spi)
690		ret_val = hw->nvm.ops.read(hw, first_word,
691					    last_word - first_word + 1,
692					    eeprom_buff);
693	else {
694		for (i = 0; i < last_word - first_word + 1; i++) {
695			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
696						    &eeprom_buff[i]);
697			if (ret_val)
698				break;
699		}
700	}
701
702	/* Device's eeprom is always little-endian, word addressable */
703	for (i = 0; i < last_word - first_word + 1; i++)
704		le16_to_cpus(&eeprom_buff[i]);
705
706	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
707			eeprom->len);
708	kfree(eeprom_buff);
709
710	return ret_val;
711}
712
713static int igb_set_eeprom(struct net_device *netdev,
714			  struct ethtool_eeprom *eeprom, u8 *bytes)
715{
716	struct igb_adapter *adapter = netdev_priv(netdev);
717	struct e1000_hw *hw = &adapter->hw;
718	u16 *eeprom_buff;
719	void *ptr;
720	int max_len, first_word, last_word, ret_val = 0;
721	u16 i;
722
723	if (eeprom->len == 0)
724		return -EOPNOTSUPP;
725
726	if (hw->mac.type == e1000_i211)
727		return -EOPNOTSUPP;
728
729	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
730		return -EFAULT;
731
732	max_len = hw->nvm.word_size * 2;
733
734	first_word = eeprom->offset >> 1;
735	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
736	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
737	if (!eeprom_buff)
738		return -ENOMEM;
739
740	ptr = (void *)eeprom_buff;
741
742	if (eeprom->offset & 1) {
743		/* need read/modify/write of first changed EEPROM word */
744		/* only the second byte of the word is being modified */
745		ret_val = hw->nvm.ops.read(hw, first_word, 1,
746					    &eeprom_buff[0]);
747		ptr++;
748	}
749	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
750		/* need read/modify/write of last changed EEPROM word */
751		/* only the first byte of the word is being modified */
752		ret_val = hw->nvm.ops.read(hw, last_word, 1,
753				   &eeprom_buff[last_word - first_word]);
754	}
755
756	/* Device's eeprom is always little-endian, word addressable */
757	for (i = 0; i < last_word - first_word + 1; i++)
758		le16_to_cpus(&eeprom_buff[i]);
759
760	memcpy(ptr, bytes, eeprom->len);
761
762	for (i = 0; i < last_word - first_word + 1; i++)
763		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
764
765	ret_val = hw->nvm.ops.write(hw, first_word,
766				     last_word - first_word + 1, eeprom_buff);
767
768	/* Update the checksum over the first part of the EEPROM if needed
769	 * and flush shadow RAM for 82573 controllers */
770	if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
771		hw->nvm.ops.update(hw);
772
773	igb_set_fw_version(adapter);
774	kfree(eeprom_buff);
775	return ret_val;
776}
777
778static void igb_get_drvinfo(struct net_device *netdev,
779			    struct ethtool_drvinfo *drvinfo)
780{
781	struct igb_adapter *adapter = netdev_priv(netdev);
782
783	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
784	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
785
786	/*
787	 * EEPROM image version # is reported as firmware version # for
788	 * 82575 controllers
789	 */
790	strlcpy(drvinfo->fw_version, adapter->fw_version,
791		sizeof(drvinfo->fw_version));
792	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
793		sizeof(drvinfo->bus_info));
794	drvinfo->n_stats = IGB_STATS_LEN;
795	drvinfo->testinfo_len = IGB_TEST_LEN;
796	drvinfo->regdump_len = igb_get_regs_len(netdev);
797	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
798}
799
800static void igb_get_ringparam(struct net_device *netdev,
801			      struct ethtool_ringparam *ring)
802{
803	struct igb_adapter *adapter = netdev_priv(netdev);
804
805	ring->rx_max_pending = IGB_MAX_RXD;
806	ring->tx_max_pending = IGB_MAX_TXD;
807	ring->rx_pending = adapter->rx_ring_count;
808	ring->tx_pending = adapter->tx_ring_count;
809}
810
811static int igb_set_ringparam(struct net_device *netdev,
812			     struct ethtool_ringparam *ring)
813{
814	struct igb_adapter *adapter = netdev_priv(netdev);
815	struct igb_ring *temp_ring;
816	int i, err = 0;
817	u16 new_rx_count, new_tx_count;
818
819	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
820		return -EINVAL;
821
822	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
823	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
824	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
825
826	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
827	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
828	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
829
830	if ((new_tx_count == adapter->tx_ring_count) &&
831	    (new_rx_count == adapter->rx_ring_count)) {
832		/* nothing to do */
833		return 0;
834	}
835
836	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
837		msleep(1);
838
839	if (!netif_running(adapter->netdev)) {
840		for (i = 0; i < adapter->num_tx_queues; i++)
841			adapter->tx_ring[i]->count = new_tx_count;
842		for (i = 0; i < adapter->num_rx_queues; i++)
843			adapter->rx_ring[i]->count = new_rx_count;
844		adapter->tx_ring_count = new_tx_count;
845		adapter->rx_ring_count = new_rx_count;
846		goto clear_reset;
847	}
848
849	if (adapter->num_tx_queues > adapter->num_rx_queues)
850		temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
851	else
852		temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
853
854	if (!temp_ring) {
855		err = -ENOMEM;
856		goto clear_reset;
857	}
858
859	igb_down(adapter);
860
861	/*
862	 * We can't just free everything and then setup again,
863	 * because the ISRs in MSI-X mode get passed pointers
864	 * to the tx and rx ring structs.
865	 */
866	if (new_tx_count != adapter->tx_ring_count) {
867		for (i = 0; i < adapter->num_tx_queues; i++) {
868			memcpy(&temp_ring[i], adapter->tx_ring[i],
869			       sizeof(struct igb_ring));
870
871			temp_ring[i].count = new_tx_count;
872			err = igb_setup_tx_resources(&temp_ring[i]);
873			if (err) {
874				while (i) {
875					i--;
876					igb_free_tx_resources(&temp_ring[i]);
877				}
878				goto err_setup;
879			}
880		}
881
882		for (i = 0; i < adapter->num_tx_queues; i++) {
883			igb_free_tx_resources(adapter->tx_ring[i]);
884
885			memcpy(adapter->tx_ring[i], &temp_ring[i],
886			       sizeof(struct igb_ring));
887		}
888
889		adapter->tx_ring_count = new_tx_count;
890	}
891
892	if (new_rx_count != adapter->rx_ring_count) {
893		for (i = 0; i < adapter->num_rx_queues; i++) {
894			memcpy(&temp_ring[i], adapter->rx_ring[i],
895			       sizeof(struct igb_ring));
896
897			temp_ring[i].count = new_rx_count;
898			err = igb_setup_rx_resources(&temp_ring[i]);
899			if (err) {
900				while (i) {
901					i--;
902					igb_free_rx_resources(&temp_ring[i]);
903				}
904				goto err_setup;
905			}
906
907		}
908
909		for (i = 0; i < adapter->num_rx_queues; i++) {
910			igb_free_rx_resources(adapter->rx_ring[i]);
911
912			memcpy(adapter->rx_ring[i], &temp_ring[i],
913			       sizeof(struct igb_ring));
914		}
915
916		adapter->rx_ring_count = new_rx_count;
917	}
918err_setup:
919	igb_up(adapter);
920	vfree(temp_ring);
921clear_reset:
922	clear_bit(__IGB_RESETTING, &adapter->state);
923	return err;
924}
925
926/* ethtool register test data */
927struct igb_reg_test {
928	u16 reg;
929	u16 reg_offset;
930	u16 array_len;
931	u16 test_type;
932	u32 mask;
933	u32 write;
934};
935
936/* In the hardware, registers are laid out either singly, in arrays
937 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
938 * most tests take place on arrays or single registers (handled
939 * as a single-element array) and special-case the tables.
940 * Table tests are always pattern tests.
941 *
942 * We also make provision for some required setup steps by specifying
943 * registers to be written without any read-back testing.
944 */
945
946#define PATTERN_TEST	1
947#define SET_READ_TEST	2
948#define WRITE_NO_TEST	3
949#define TABLE32_TEST	4
950#define TABLE64_TEST_LO	5
951#define TABLE64_TEST_HI	6
952
953/* i210 reg test */
954static struct igb_reg_test reg_test_i210[] = {
955	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
956	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
957	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
958	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
959	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
960	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
961	/* RDH is read-only for i210, only test RDT. */
962	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
963	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
964	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
965	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
966	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
967	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
968	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
969	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
970	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
971	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
972	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
973	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
974	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
975						0xFFFFFFFF, 0xFFFFFFFF },
976	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
977						0x900FFFFF, 0xFFFFFFFF },
978	{ E1000_MTA,	   0, 128, TABLE32_TEST,
979						0xFFFFFFFF, 0xFFFFFFFF },
980	{ 0, 0, 0, 0, 0 }
981};
982
983/* i350 reg test */
984static struct igb_reg_test reg_test_i350[] = {
985	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
986	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
987	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
988	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
989	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
990	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
991	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
992	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
993	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
994	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
995	/* RDH is read-only for i350, only test RDT. */
996	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
997	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
998	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
999	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1000	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1001	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1002	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1003	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1004	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1005	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1006	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1007	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1008	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1009	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1010	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1011	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1012	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1013	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1014						0xFFFFFFFF, 0xFFFFFFFF },
1015	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1016						0xC3FFFFFF, 0xFFFFFFFF },
1017	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1018						0xFFFFFFFF, 0xFFFFFFFF },
1019	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1020						0xC3FFFFFF, 0xFFFFFFFF },
1021	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1022						0xFFFFFFFF, 0xFFFFFFFF },
1023	{ 0, 0, 0, 0 }
1024};
1025
1026/* 82580 reg test */
1027static struct igb_reg_test reg_test_82580[] = {
1028	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1029	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1030	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1031	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1032	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1033	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1034	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1035	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1036	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1037	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1038	/* RDH is read-only for 82580, only test RDT. */
1039	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1040	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1041	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1042	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1043	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1044	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1045	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1046	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1047	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1048	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1049	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1050	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1051	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1052	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1053	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1054	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1055	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1056	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1057						0xFFFFFFFF, 0xFFFFFFFF },
1058	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1059						0x83FFFFFF, 0xFFFFFFFF },
1060	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1061						0xFFFFFFFF, 0xFFFFFFFF },
1062	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1063						0x83FFFFFF, 0xFFFFFFFF },
1064	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1065						0xFFFFFFFF, 0xFFFFFFFF },
1066	{ 0, 0, 0, 0 }
1067};
1068
1069/* 82576 reg test */
1070static struct igb_reg_test reg_test_82576[] = {
1071	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1072	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1073	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1074	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1075	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1076	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1077	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1078	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1079	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1080	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1081	/* Enable all RX queues before testing. */
1082	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1083	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1084	/* RDH is read-only for 82576, only test RDT. */
1085	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1086	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1087	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1088	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1089	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1090	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1091	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1092	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1093	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1094	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1095	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1096	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1097	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1098	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1099	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1100	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1101	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1102	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1103	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1104	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1105	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1106	{ E1000_MTA,	   0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1107	{ 0, 0, 0, 0 }
1108};
1109
1110/* 82575 register test */
1111static struct igb_reg_test reg_test_82575[] = {
1112	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1113	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1114	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1115	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1116	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1117	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1118	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1119	/* Enable all four RX queues before testing. */
1120	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1121	/* RDH is read-only for 82575, only test RDT. */
1122	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1123	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1124	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1125	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1126	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1127	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1128	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1129	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1130	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1131	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1132	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1133	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1134	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1135	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1136	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1137	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1138	{ 0, 0, 0, 0 }
1139};
1140
1141static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1142			     int reg, u32 mask, u32 write)
1143{
1144	struct e1000_hw *hw = &adapter->hw;
1145	u32 pat, val;
1146	static const u32 _test[] =
1147		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1148	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1149		wr32(reg, (_test[pat] & write));
1150		val = rd32(reg) & mask;
1151		if (val != (_test[pat] & write & mask)) {
1152			dev_err(&adapter->pdev->dev,
1153				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1154				reg, val, (_test[pat] & write & mask));
1155			*data = reg;
1156			return 1;
1157		}
1158	}
1159
1160	return 0;
1161}
1162
1163static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1164			      int reg, u32 mask, u32 write)
1165{
1166	struct e1000_hw *hw = &adapter->hw;
1167	u32 val;
1168	wr32(reg, write & mask);
1169	val = rd32(reg);
1170	if ((write & mask) != (val & mask)) {
1171		dev_err(&adapter->pdev->dev,
1172			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1173			(val & mask), (write & mask));
1174		*data = reg;
1175		return 1;
1176	}
1177
1178	return 0;
1179}
1180
1181#define REG_PATTERN_TEST(reg, mask, write) \
1182	do { \
1183		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1184			return 1; \
1185	} while (0)
1186
1187#define REG_SET_AND_CHECK(reg, mask, write) \
1188	do { \
1189		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1190			return 1; \
1191	} while (0)
1192
1193static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1194{
1195	struct e1000_hw *hw = &adapter->hw;
1196	struct igb_reg_test *test;
1197	u32 value, before, after;
1198	u32 i, toggle;
1199
1200	switch (adapter->hw.mac.type) {
1201	case e1000_i350:
1202		test = reg_test_i350;
1203		toggle = 0x7FEFF3FF;
1204		break;
1205	case e1000_i210:
1206	case e1000_i211:
1207		test = reg_test_i210;
1208		toggle = 0x7FEFF3FF;
1209		break;
1210	case e1000_82580:
1211		test = reg_test_82580;
1212		toggle = 0x7FEFF3FF;
1213		break;
1214	case e1000_82576:
1215		test = reg_test_82576;
1216		toggle = 0x7FFFF3FF;
1217		break;
1218	default:
1219		test = reg_test_82575;
1220		toggle = 0x7FFFF3FF;
1221		break;
1222	}
1223
1224	/* Because the status register is such a special case,
1225	 * we handle it separately from the rest of the register
1226	 * tests.  Some bits are read-only, some toggle, and some
1227	 * are writable on newer MACs.
1228	 */
1229	before = rd32(E1000_STATUS);
1230	value = (rd32(E1000_STATUS) & toggle);
1231	wr32(E1000_STATUS, toggle);
1232	after = rd32(E1000_STATUS) & toggle;
1233	if (value != after) {
1234		dev_err(&adapter->pdev->dev,
1235			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1236			after, value);
1237		*data = 1;
1238		return 1;
1239	}
1240	/* restore previous status */
1241	wr32(E1000_STATUS, before);
1242
1243	/* Perform the remainder of the register test, looping through
1244	 * the test table until we either fail or reach the null entry.
1245	 */
1246	while (test->reg) {
1247		for (i = 0; i < test->array_len; i++) {
1248			switch (test->test_type) {
1249			case PATTERN_TEST:
1250				REG_PATTERN_TEST(test->reg +
1251						(i * test->reg_offset),
1252						test->mask,
1253						test->write);
1254				break;
1255			case SET_READ_TEST:
1256				REG_SET_AND_CHECK(test->reg +
1257						(i * test->reg_offset),
1258						test->mask,
1259						test->write);
1260				break;
1261			case WRITE_NO_TEST:
1262				writel(test->write,
1263				    (adapter->hw.hw_addr + test->reg)
1264					+ (i * test->reg_offset));
1265				break;
1266			case TABLE32_TEST:
1267				REG_PATTERN_TEST(test->reg + (i * 4),
1268						test->mask,
1269						test->write);
1270				break;
1271			case TABLE64_TEST_LO:
1272				REG_PATTERN_TEST(test->reg + (i * 8),
1273						test->mask,
1274						test->write);
1275				break;
1276			case TABLE64_TEST_HI:
1277				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1278						test->mask,
1279						test->write);
1280				break;
1281			}
1282		}
1283		test++;
1284	}
1285
1286	*data = 0;
1287	return 0;
1288}
1289
1290static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1291{
1292	*data = 0;
1293
1294	/* Validate eeprom on all parts but i211 */
1295	if (adapter->hw.mac.type != e1000_i211) {
1296		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1297			*data = 2;
1298	}
1299
1300	return *data;
1301}
1302
1303static irqreturn_t igb_test_intr(int irq, void *data)
1304{
1305	struct igb_adapter *adapter = (struct igb_adapter *) data;
1306	struct e1000_hw *hw = &adapter->hw;
1307
1308	adapter->test_icr |= rd32(E1000_ICR);
1309
1310	return IRQ_HANDLED;
1311}
1312
1313static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1314{
1315	struct e1000_hw *hw = &adapter->hw;
1316	struct net_device *netdev = adapter->netdev;
1317	u32 mask, ics_mask, i = 0, shared_int = true;
1318	u32 irq = adapter->pdev->irq;
1319
1320	*data = 0;
1321
1322	/* Hook up test interrupt handler just for this test */
1323	if (adapter->msix_entries) {
1324		if (request_irq(adapter->msix_entries[0].vector,
1325		                igb_test_intr, 0, netdev->name, adapter)) {
1326			*data = 1;
1327			return -1;
1328		}
1329	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1330		shared_int = false;
1331		if (request_irq(irq,
1332		                igb_test_intr, 0, netdev->name, adapter)) {
1333			*data = 1;
1334			return -1;
1335		}
1336	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1337				netdev->name, adapter)) {
1338		shared_int = false;
1339	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1340		 netdev->name, adapter)) {
1341		*data = 1;
1342		return -1;
1343	}
1344	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1345		(shared_int ? "shared" : "unshared"));
1346
1347	/* Disable all the interrupts */
1348	wr32(E1000_IMC, ~0);
1349	wrfl();
1350	msleep(10);
1351
1352	/* Define all writable bits for ICS */
1353	switch (hw->mac.type) {
1354	case e1000_82575:
1355		ics_mask = 0x37F47EDD;
1356		break;
1357	case e1000_82576:
1358		ics_mask = 0x77D4FBFD;
1359		break;
1360	case e1000_82580:
1361		ics_mask = 0x77DCFED5;
1362		break;
1363	case e1000_i350:
1364	case e1000_i210:
1365	case e1000_i211:
1366		ics_mask = 0x77DCFED5;
1367		break;
1368	default:
1369		ics_mask = 0x7FFFFFFF;
1370		break;
1371	}
1372
1373	/* Test each interrupt */
1374	for (; i < 31; i++) {
1375		/* Interrupt to test */
1376		mask = 1 << i;
1377
1378		if (!(mask & ics_mask))
1379			continue;
1380
1381		if (!shared_int) {
1382			/* Disable the interrupt to be reported in
1383			 * the cause register and then force the same
1384			 * interrupt and see if one gets posted.  If
1385			 * an interrupt was posted to the bus, the
1386			 * test failed.
1387			 */
1388			adapter->test_icr = 0;
1389
1390			/* Flush any pending interrupts */
1391			wr32(E1000_ICR, ~0);
1392
1393			wr32(E1000_IMC, mask);
1394			wr32(E1000_ICS, mask);
1395			wrfl();
1396			msleep(10);
1397
1398			if (adapter->test_icr & mask) {
1399				*data = 3;
1400				break;
1401			}
1402		}
1403
1404		/* Enable the interrupt to be reported in
1405		 * the cause register and then force the same
1406		 * interrupt and see if one gets posted.  If
1407		 * an interrupt was not posted to the bus, the
1408		 * test failed.
1409		 */
1410		adapter->test_icr = 0;
1411
1412		/* Flush any pending interrupts */
1413		wr32(E1000_ICR, ~0);
1414
1415		wr32(E1000_IMS, mask);
1416		wr32(E1000_ICS, mask);
1417		wrfl();
1418		msleep(10);
1419
1420		if (!(adapter->test_icr & mask)) {
1421			*data = 4;
1422			break;
1423		}
1424
1425		if (!shared_int) {
1426			/* Disable the other interrupts to be reported in
1427			 * the cause register and then force the other
1428			 * interrupts and see if any get posted.  If
1429			 * an interrupt was posted to the bus, the
1430			 * test failed.
1431			 */
1432			adapter->test_icr = 0;
1433
1434			/* Flush any pending interrupts */
1435			wr32(E1000_ICR, ~0);
1436
1437			wr32(E1000_IMC, ~mask);
1438			wr32(E1000_ICS, ~mask);
1439			wrfl();
1440			msleep(10);
1441
1442			if (adapter->test_icr & mask) {
1443				*data = 5;
1444				break;
1445			}
1446		}
1447	}
1448
1449	/* Disable all the interrupts */
1450	wr32(E1000_IMC, ~0);
1451	wrfl();
1452	msleep(10);
1453
1454	/* Unhook test interrupt handler */
1455	if (adapter->msix_entries)
1456		free_irq(adapter->msix_entries[0].vector, adapter);
1457	else
1458		free_irq(irq, adapter);
1459
1460	return *data;
1461}
1462
1463static void igb_free_desc_rings(struct igb_adapter *adapter)
1464{
1465	igb_free_tx_resources(&adapter->test_tx_ring);
1466	igb_free_rx_resources(&adapter->test_rx_ring);
1467}
1468
1469static int igb_setup_desc_rings(struct igb_adapter *adapter)
1470{
1471	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1472	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1473	struct e1000_hw *hw = &adapter->hw;
1474	int ret_val;
1475
1476	/* Setup Tx descriptor ring and Tx buffers */
1477	tx_ring->count = IGB_DEFAULT_TXD;
1478	tx_ring->dev = &adapter->pdev->dev;
1479	tx_ring->netdev = adapter->netdev;
1480	tx_ring->reg_idx = adapter->vfs_allocated_count;
1481
1482	if (igb_setup_tx_resources(tx_ring)) {
1483		ret_val = 1;
1484		goto err_nomem;
1485	}
1486
1487	igb_setup_tctl(adapter);
1488	igb_configure_tx_ring(adapter, tx_ring);
1489
1490	/* Setup Rx descriptor ring and Rx buffers */
1491	rx_ring->count = IGB_DEFAULT_RXD;
1492	rx_ring->dev = &adapter->pdev->dev;
1493	rx_ring->netdev = adapter->netdev;
1494	rx_ring->reg_idx = adapter->vfs_allocated_count;
1495
1496	if (igb_setup_rx_resources(rx_ring)) {
1497		ret_val = 3;
1498		goto err_nomem;
1499	}
1500
1501	/* set the default queue to queue 0 of PF */
1502	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1503
1504	/* enable receive ring */
1505	igb_setup_rctl(adapter);
1506	igb_configure_rx_ring(adapter, rx_ring);
1507
1508	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1509
1510	return 0;
1511
1512err_nomem:
1513	igb_free_desc_rings(adapter);
1514	return ret_val;
1515}
1516
1517static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1518{
1519	struct e1000_hw *hw = &adapter->hw;
1520
1521	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1522	igb_write_phy_reg(hw, 29, 0x001F);
1523	igb_write_phy_reg(hw, 30, 0x8FFC);
1524	igb_write_phy_reg(hw, 29, 0x001A);
1525	igb_write_phy_reg(hw, 30, 0x8FF0);
1526}
1527
1528static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1529{
1530	struct e1000_hw *hw = &adapter->hw;
1531	u32 ctrl_reg = 0;
1532
1533	hw->mac.autoneg = false;
1534
1535	if (hw->phy.type == e1000_phy_m88) {
1536		if (hw->phy.id != I210_I_PHY_ID) {
1537			/* Auto-MDI/MDIX Off */
1538			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1539			/* reset to update Auto-MDI/MDIX */
1540			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1541			/* autoneg off */
1542			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1543		} else {
1544			/* force 1000, set loopback  */
1545			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1546			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1547		}
1548	}
1549
1550	/* add small delay to avoid loopback test failure */
1551	msleep(50);
1552
1553	/* force 1000, set loopback */
1554	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1555
1556	/* Now set up the MAC to the same speed/duplex as the PHY. */
1557	ctrl_reg = rd32(E1000_CTRL);
1558	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1559	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1560		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1561		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1562		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1563		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1564
1565	if (hw->phy.type == e1000_phy_m88)
1566		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1567
1568	wr32(E1000_CTRL, ctrl_reg);
1569
1570	/* Disable the receiver on the PHY so when a cable is plugged in, the
1571	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1572	 */
1573	if (hw->phy.type == e1000_phy_m88)
1574		igb_phy_disable_receiver(adapter);
1575
1576	mdelay(500);
1577	return 0;
1578}
1579
1580static int igb_set_phy_loopback(struct igb_adapter *adapter)
1581{
1582	return igb_integrated_phy_loopback(adapter);
1583}
1584
1585static int igb_setup_loopback_test(struct igb_adapter *adapter)
1586{
1587	struct e1000_hw *hw = &adapter->hw;
1588	u32 reg;
1589
1590	reg = rd32(E1000_CTRL_EXT);
1591
1592	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1593	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1594		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1595		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1596		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1597		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1598
1599			/* Enable DH89xxCC MPHY for near end loopback */
1600			reg = rd32(E1000_MPHY_ADDR_CTL);
1601			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1602			E1000_MPHY_PCS_CLK_REG_OFFSET;
1603			wr32(E1000_MPHY_ADDR_CTL, reg);
1604
1605			reg = rd32(E1000_MPHY_DATA);
1606			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1607			wr32(E1000_MPHY_DATA, reg);
1608		}
1609
1610		reg = rd32(E1000_RCTL);
1611		reg |= E1000_RCTL_LBM_TCVR;
1612		wr32(E1000_RCTL, reg);
1613
1614		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1615
1616		reg = rd32(E1000_CTRL);
1617		reg &= ~(E1000_CTRL_RFCE |
1618			 E1000_CTRL_TFCE |
1619			 E1000_CTRL_LRST);
1620		reg |= E1000_CTRL_SLU |
1621		       E1000_CTRL_FD;
1622		wr32(E1000_CTRL, reg);
1623
1624		/* Unset switch control to serdes energy detect */
1625		reg = rd32(E1000_CONNSW);
1626		reg &= ~E1000_CONNSW_ENRGSRC;
1627		wr32(E1000_CONNSW, reg);
1628
1629		/* Unset sigdetect for SERDES loopback on
1630		 * 82580 and i350 devices.
1631		 */
1632		switch (hw->mac.type) {
1633		case e1000_82580:
1634		case e1000_i350:
1635			reg = rd32(E1000_PCS_CFG0);
1636			reg |= E1000_PCS_CFG_IGN_SD;
1637			wr32(E1000_PCS_CFG0, reg);
1638			break;
1639		default:
1640			break;
1641		}
1642
1643		/* Set PCS register for forced speed */
1644		reg = rd32(E1000_PCS_LCTL);
1645		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1646		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1647		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1648		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1649		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1650		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1651		wr32(E1000_PCS_LCTL, reg);
1652
1653		return 0;
1654	}
1655
1656	return igb_set_phy_loopback(adapter);
1657}
1658
1659static void igb_loopback_cleanup(struct igb_adapter *adapter)
1660{
1661	struct e1000_hw *hw = &adapter->hw;
1662	u32 rctl;
1663	u16 phy_reg;
1664
1665	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1666	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1667	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1668	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1669		u32 reg;
1670
1671		/* Disable near end loopback on DH89xxCC */
1672		reg = rd32(E1000_MPHY_ADDR_CTL);
1673		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1674		E1000_MPHY_PCS_CLK_REG_OFFSET;
1675		wr32(E1000_MPHY_ADDR_CTL, reg);
1676
1677		reg = rd32(E1000_MPHY_DATA);
1678		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1679		wr32(E1000_MPHY_DATA, reg);
1680	}
1681
1682	rctl = rd32(E1000_RCTL);
1683	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1684	wr32(E1000_RCTL, rctl);
1685
1686	hw->mac.autoneg = true;
1687	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1688	if (phy_reg & MII_CR_LOOPBACK) {
1689		phy_reg &= ~MII_CR_LOOPBACK;
1690		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1691		igb_phy_sw_reset(hw);
1692	}
1693}
1694
1695static void igb_create_lbtest_frame(struct sk_buff *skb,
1696				    unsigned int frame_size)
1697{
1698	memset(skb->data, 0xFF, frame_size);
1699	frame_size /= 2;
1700	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1701	memset(&skb->data[frame_size + 10], 0xBE, 1);
1702	memset(&skb->data[frame_size + 12], 0xAF, 1);
1703}
1704
1705static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1706				  unsigned int frame_size)
1707{
1708	unsigned char *data;
1709	bool match = true;
1710
1711	frame_size >>= 1;
1712
1713	data = kmap(rx_buffer->page);
1714
1715	if (data[3] != 0xFF ||
1716	    data[frame_size + 10] != 0xBE ||
1717	    data[frame_size + 12] != 0xAF)
1718		match = false;
1719
1720	kunmap(rx_buffer->page);
1721
1722	return match;
1723}
1724
1725static int igb_clean_test_rings(struct igb_ring *rx_ring,
1726                                struct igb_ring *tx_ring,
1727                                unsigned int size)
1728{
1729	union e1000_adv_rx_desc *rx_desc;
1730	struct igb_rx_buffer *rx_buffer_info;
1731	struct igb_tx_buffer *tx_buffer_info;
1732	u16 rx_ntc, tx_ntc, count = 0;
1733
1734	/* initialize next to clean and descriptor values */
1735	rx_ntc = rx_ring->next_to_clean;
1736	tx_ntc = tx_ring->next_to_clean;
1737	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1738
1739	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1740		/* check rx buffer */
1741		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1742
1743		/* sync Rx buffer for CPU read */
1744		dma_sync_single_for_cpu(rx_ring->dev,
1745					rx_buffer_info->dma,
1746					IGB_RX_BUFSZ,
1747					DMA_FROM_DEVICE);
1748
1749		/* verify contents of skb */
1750		if (igb_check_lbtest_frame(rx_buffer_info, size))
1751			count++;
1752
1753		/* sync Rx buffer for device write */
1754		dma_sync_single_for_device(rx_ring->dev,
1755					   rx_buffer_info->dma,
1756					   IGB_RX_BUFSZ,
1757					   DMA_FROM_DEVICE);
1758
1759		/* unmap buffer on tx side */
1760		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1761		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1762
1763		/* increment rx/tx next to clean counters */
1764		rx_ntc++;
1765		if (rx_ntc == rx_ring->count)
1766			rx_ntc = 0;
1767		tx_ntc++;
1768		if (tx_ntc == tx_ring->count)
1769			tx_ntc = 0;
1770
1771		/* fetch next descriptor */
1772		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1773	}
1774
1775	netdev_tx_reset_queue(txring_txq(tx_ring));
1776
1777	/* re-map buffers to ring, store next to clean values */
1778	igb_alloc_rx_buffers(rx_ring, count);
1779	rx_ring->next_to_clean = rx_ntc;
1780	tx_ring->next_to_clean = tx_ntc;
1781
1782	return count;
1783}
1784
1785static int igb_run_loopback_test(struct igb_adapter *adapter)
1786{
1787	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1788	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1789	u16 i, j, lc, good_cnt;
1790	int ret_val = 0;
1791	unsigned int size = IGB_RX_HDR_LEN;
1792	netdev_tx_t tx_ret_val;
1793	struct sk_buff *skb;
1794
1795	/* allocate test skb */
1796	skb = alloc_skb(size, GFP_KERNEL);
1797	if (!skb)
1798		return 11;
1799
1800	/* place data into test skb */
1801	igb_create_lbtest_frame(skb, size);
1802	skb_put(skb, size);
1803
1804	/*
1805	 * Calculate the loop count based on the largest descriptor ring
1806	 * The idea is to wrap the largest ring a number of times using 64
1807	 * send/receive pairs during each loop
1808	 */
1809
1810	if (rx_ring->count <= tx_ring->count)
1811		lc = ((tx_ring->count / 64) * 2) + 1;
1812	else
1813		lc = ((rx_ring->count / 64) * 2) + 1;
1814
1815	for (j = 0; j <= lc; j++) { /* loop count loop */
1816		/* reset count of good packets */
1817		good_cnt = 0;
1818
1819		/* place 64 packets on the transmit queue*/
1820		for (i = 0; i < 64; i++) {
1821			skb_get(skb);
1822			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1823			if (tx_ret_val == NETDEV_TX_OK)
1824				good_cnt++;
1825		}
1826
1827		if (good_cnt != 64) {
1828			ret_val = 12;
1829			break;
1830		}
1831
1832		/* allow 200 milliseconds for packets to go from tx to rx */
1833		msleep(200);
1834
1835		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1836		if (good_cnt != 64) {
1837			ret_val = 13;
1838			break;
1839		}
1840	} /* end loop count loop */
1841
1842	/* free the original skb */
1843	kfree_skb(skb);
1844
1845	return ret_val;
1846}
1847
1848static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1849{
1850	/* PHY loopback cannot be performed if SoL/IDER
1851	 * sessions are active */
1852	if (igb_check_reset_block(&adapter->hw)) {
1853		dev_err(&adapter->pdev->dev,
1854			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1855		*data = 0;
1856		goto out;
1857	}
1858	*data = igb_setup_desc_rings(adapter);
1859	if (*data)
1860		goto out;
1861	*data = igb_setup_loopback_test(adapter);
1862	if (*data)
1863		goto err_loopback;
1864	*data = igb_run_loopback_test(adapter);
1865	igb_loopback_cleanup(adapter);
1866
1867err_loopback:
1868	igb_free_desc_rings(adapter);
1869out:
1870	return *data;
1871}
1872
1873static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1874{
1875	struct e1000_hw *hw = &adapter->hw;
1876	*data = 0;
1877	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1878		int i = 0;
1879		hw->mac.serdes_has_link = false;
1880
1881		/* On some blade server designs, link establishment
1882		 * could take as long as 2-3 minutes */
1883		do {
1884			hw->mac.ops.check_for_link(&adapter->hw);
1885			if (hw->mac.serdes_has_link)
1886				return *data;
1887			msleep(20);
1888		} while (i++ < 3750);
1889
1890		*data = 1;
1891	} else {
1892		hw->mac.ops.check_for_link(&adapter->hw);
1893		if (hw->mac.autoneg)
1894			msleep(4000);
1895
1896		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1897			*data = 1;
1898	}
1899	return *data;
1900}
1901
1902static void igb_diag_test(struct net_device *netdev,
1903			  struct ethtool_test *eth_test, u64 *data)
1904{
1905	struct igb_adapter *adapter = netdev_priv(netdev);
1906	u16 autoneg_advertised;
1907	u8 forced_speed_duplex, autoneg;
1908	bool if_running = netif_running(netdev);
1909
1910	set_bit(__IGB_TESTING, &adapter->state);
1911	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1912		/* Offline tests */
1913
1914		/* save speed, duplex, autoneg settings */
1915		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1916		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1917		autoneg = adapter->hw.mac.autoneg;
1918
1919		dev_info(&adapter->pdev->dev, "offline testing starting\n");
1920
1921		/* power up link for link test */
1922		igb_power_up_link(adapter);
1923
1924		/* Link test performed before hardware reset so autoneg doesn't
1925		 * interfere with test result */
1926		if (igb_link_test(adapter, &data[4]))
1927			eth_test->flags |= ETH_TEST_FL_FAILED;
1928
1929		if (if_running)
1930			/* indicate we're in test mode */
1931			dev_close(netdev);
1932		else
1933			igb_reset(adapter);
1934
1935		if (igb_reg_test(adapter, &data[0]))
1936			eth_test->flags |= ETH_TEST_FL_FAILED;
1937
1938		igb_reset(adapter);
1939		if (igb_eeprom_test(adapter, &data[1]))
1940			eth_test->flags |= ETH_TEST_FL_FAILED;
1941
1942		igb_reset(adapter);
1943		if (igb_intr_test(adapter, &data[2]))
1944			eth_test->flags |= ETH_TEST_FL_FAILED;
1945
1946		igb_reset(adapter);
1947		/* power up link for loopback test */
1948		igb_power_up_link(adapter);
1949		if (igb_loopback_test(adapter, &data[3]))
1950			eth_test->flags |= ETH_TEST_FL_FAILED;
1951
1952		/* restore speed, duplex, autoneg settings */
1953		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1954		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1955		adapter->hw.mac.autoneg = autoneg;
1956
1957		/* force this routine to wait until autoneg complete/timeout */
1958		adapter->hw.phy.autoneg_wait_to_complete = true;
1959		igb_reset(adapter);
1960		adapter->hw.phy.autoneg_wait_to_complete = false;
1961
1962		clear_bit(__IGB_TESTING, &adapter->state);
1963		if (if_running)
1964			dev_open(netdev);
1965	} else {
1966		dev_info(&adapter->pdev->dev, "online testing starting\n");
1967
1968		/* PHY is powered down when interface is down */
1969		if (if_running && igb_link_test(adapter, &data[4]))
1970			eth_test->flags |= ETH_TEST_FL_FAILED;
1971		else
1972			data[4] = 0;
1973
1974		/* Online tests aren't run; pass by default */
1975		data[0] = 0;
1976		data[1] = 0;
1977		data[2] = 0;
1978		data[3] = 0;
1979
1980		clear_bit(__IGB_TESTING, &adapter->state);
1981	}
1982	msleep_interruptible(4 * 1000);
1983}
1984
1985static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1986{
1987	struct igb_adapter *adapter = netdev_priv(netdev);
1988
1989	wol->supported = WAKE_UCAST | WAKE_MCAST |
1990	                 WAKE_BCAST | WAKE_MAGIC |
1991	                 WAKE_PHY;
1992	wol->wolopts = 0;
1993
1994	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
1995		return;
1996
1997	/* apply any specific unsupported masks here */
1998	switch (adapter->hw.device_id) {
1999	default:
2000		break;
2001	}
2002
2003	if (adapter->wol & E1000_WUFC_EX)
2004		wol->wolopts |= WAKE_UCAST;
2005	if (adapter->wol & E1000_WUFC_MC)
2006		wol->wolopts |= WAKE_MCAST;
2007	if (adapter->wol & E1000_WUFC_BC)
2008		wol->wolopts |= WAKE_BCAST;
2009	if (adapter->wol & E1000_WUFC_MAG)
2010		wol->wolopts |= WAKE_MAGIC;
2011	if (adapter->wol & E1000_WUFC_LNKC)
2012		wol->wolopts |= WAKE_PHY;
2013}
2014
2015static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2016{
2017	struct igb_adapter *adapter = netdev_priv(netdev);
2018
2019	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2020		return -EOPNOTSUPP;
2021
2022	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2023		return wol->wolopts ? -EOPNOTSUPP : 0;
2024
2025	/* these settings will always override what we currently have */
2026	adapter->wol = 0;
2027
2028	if (wol->wolopts & WAKE_UCAST)
2029		adapter->wol |= E1000_WUFC_EX;
2030	if (wol->wolopts & WAKE_MCAST)
2031		adapter->wol |= E1000_WUFC_MC;
2032	if (wol->wolopts & WAKE_BCAST)
2033		adapter->wol |= E1000_WUFC_BC;
2034	if (wol->wolopts & WAKE_MAGIC)
2035		adapter->wol |= E1000_WUFC_MAG;
2036	if (wol->wolopts & WAKE_PHY)
2037		adapter->wol |= E1000_WUFC_LNKC;
2038	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2039
2040	return 0;
2041}
2042
2043/* bit defines for adapter->led_status */
2044#define IGB_LED_ON		0
2045
2046static int igb_set_phys_id(struct net_device *netdev,
2047			   enum ethtool_phys_id_state state)
2048{
2049	struct igb_adapter *adapter = netdev_priv(netdev);
2050	struct e1000_hw *hw = &adapter->hw;
2051
2052	switch (state) {
2053	case ETHTOOL_ID_ACTIVE:
2054		igb_blink_led(hw);
2055		return 2;
2056	case ETHTOOL_ID_ON:
2057		igb_blink_led(hw);
2058		break;
2059	case ETHTOOL_ID_OFF:
2060		igb_led_off(hw);
2061		break;
2062	case ETHTOOL_ID_INACTIVE:
2063		igb_led_off(hw);
2064		clear_bit(IGB_LED_ON, &adapter->led_status);
2065		igb_cleanup_led(hw);
2066		break;
2067	}
2068
2069	return 0;
2070}
2071
2072static int igb_set_coalesce(struct net_device *netdev,
2073			    struct ethtool_coalesce *ec)
2074{
2075	struct igb_adapter *adapter = netdev_priv(netdev);
2076	int i;
2077
2078	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2079	    ((ec->rx_coalesce_usecs > 3) &&
2080	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2081	    (ec->rx_coalesce_usecs == 2))
2082		return -EINVAL;
2083
2084	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2085	    ((ec->tx_coalesce_usecs > 3) &&
2086	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2087	    (ec->tx_coalesce_usecs == 2))
2088		return -EINVAL;
2089
2090	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2091		return -EINVAL;
2092
2093	/* If ITR is disabled, disable DMAC */
2094	if (ec->rx_coalesce_usecs == 0) {
2095		if (adapter->flags & IGB_FLAG_DMAC)
2096			adapter->flags &= ~IGB_FLAG_DMAC;
2097	}
2098
2099	/* convert to rate of irq's per second */
2100	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2101		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2102	else
2103		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2104
2105	/* convert to rate of irq's per second */
2106	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2107		adapter->tx_itr_setting = adapter->rx_itr_setting;
2108	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2109		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2110	else
2111		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2112
2113	for (i = 0; i < adapter->num_q_vectors; i++) {
2114		struct igb_q_vector *q_vector = adapter->q_vector[i];
2115		q_vector->tx.work_limit = adapter->tx_work_limit;
2116		if (q_vector->rx.ring)
2117			q_vector->itr_val = adapter->rx_itr_setting;
2118		else
2119			q_vector->itr_val = adapter->tx_itr_setting;
2120		if (q_vector->itr_val && q_vector->itr_val <= 3)
2121			q_vector->itr_val = IGB_START_ITR;
2122		q_vector->set_itr = 1;
2123	}
2124
2125	return 0;
2126}
2127
2128static int igb_get_coalesce(struct net_device *netdev,
2129			    struct ethtool_coalesce *ec)
2130{
2131	struct igb_adapter *adapter = netdev_priv(netdev);
2132
2133	if (adapter->rx_itr_setting <= 3)
2134		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2135	else
2136		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2137
2138	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2139		if (adapter->tx_itr_setting <= 3)
2140			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2141		else
2142			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2143	}
2144
2145	return 0;
2146}
2147
2148static int igb_nway_reset(struct net_device *netdev)
2149{
2150	struct igb_adapter *adapter = netdev_priv(netdev);
2151	if (netif_running(netdev))
2152		igb_reinit_locked(adapter);
2153	return 0;
2154}
2155
2156static int igb_get_sset_count(struct net_device *netdev, int sset)
2157{
2158	switch (sset) {
2159	case ETH_SS_STATS:
2160		return IGB_STATS_LEN;
2161	case ETH_SS_TEST:
2162		return IGB_TEST_LEN;
2163	default:
2164		return -ENOTSUPP;
2165	}
2166}
2167
2168static void igb_get_ethtool_stats(struct net_device *netdev,
2169				  struct ethtool_stats *stats, u64 *data)
2170{
2171	struct igb_adapter *adapter = netdev_priv(netdev);
2172	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2173	unsigned int start;
2174	struct igb_ring *ring;
2175	int i, j;
2176	char *p;
2177
2178	spin_lock(&adapter->stats64_lock);
2179	igb_update_stats(adapter, net_stats);
2180
2181	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2182		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2183		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2184			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2185	}
2186	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2187		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2188		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2189			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2190	}
2191	for (j = 0; j < adapter->num_tx_queues; j++) {
2192		u64	restart2;
2193
2194		ring = adapter->tx_ring[j];
2195		do {
2196			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2197			data[i]   = ring->tx_stats.packets;
2198			data[i+1] = ring->tx_stats.bytes;
2199			data[i+2] = ring->tx_stats.restart_queue;
2200		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2201		do {
2202			start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2203			restart2  = ring->tx_stats.restart_queue2;
2204		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2205		data[i+2] += restart2;
2206
2207		i += IGB_TX_QUEUE_STATS_LEN;
2208	}
2209	for (j = 0; j < adapter->num_rx_queues; j++) {
2210		ring = adapter->rx_ring[j];
2211		do {
2212			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2213			data[i]   = ring->rx_stats.packets;
2214			data[i+1] = ring->rx_stats.bytes;
2215			data[i+2] = ring->rx_stats.drops;
2216			data[i+3] = ring->rx_stats.csum_err;
2217			data[i+4] = ring->rx_stats.alloc_failed;
2218		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2219		i += IGB_RX_QUEUE_STATS_LEN;
2220	}
2221	spin_unlock(&adapter->stats64_lock);
2222}
2223
2224static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2225{
2226	struct igb_adapter *adapter = netdev_priv(netdev);
2227	u8 *p = data;
2228	int i;
2229
2230	switch (stringset) {
2231	case ETH_SS_TEST:
2232		memcpy(data, *igb_gstrings_test,
2233			IGB_TEST_LEN*ETH_GSTRING_LEN);
2234		break;
2235	case ETH_SS_STATS:
2236		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2237			memcpy(p, igb_gstrings_stats[i].stat_string,
2238			       ETH_GSTRING_LEN);
2239			p += ETH_GSTRING_LEN;
2240		}
2241		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2242			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2243			       ETH_GSTRING_LEN);
2244			p += ETH_GSTRING_LEN;
2245		}
2246		for (i = 0; i < adapter->num_tx_queues; i++) {
2247			sprintf(p, "tx_queue_%u_packets", i);
2248			p += ETH_GSTRING_LEN;
2249			sprintf(p, "tx_queue_%u_bytes", i);
2250			p += ETH_GSTRING_LEN;
2251			sprintf(p, "tx_queue_%u_restart", i);
2252			p += ETH_GSTRING_LEN;
2253		}
2254		for (i = 0; i < adapter->num_rx_queues; i++) {
2255			sprintf(p, "rx_queue_%u_packets", i);
2256			p += ETH_GSTRING_LEN;
2257			sprintf(p, "rx_queue_%u_bytes", i);
2258			p += ETH_GSTRING_LEN;
2259			sprintf(p, "rx_queue_%u_drops", i);
2260			p += ETH_GSTRING_LEN;
2261			sprintf(p, "rx_queue_%u_csum_err", i);
2262			p += ETH_GSTRING_LEN;
2263			sprintf(p, "rx_queue_%u_alloc_failed", i);
2264			p += ETH_GSTRING_LEN;
2265		}
2266/*		BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2267		break;
2268	}
2269}
2270
2271static int igb_get_ts_info(struct net_device *dev,
2272			   struct ethtool_ts_info *info)
2273{
2274	struct igb_adapter *adapter = netdev_priv(dev);
2275
2276	switch (adapter->hw.mac.type) {
2277	case e1000_82575:
2278		info->so_timestamping =
2279			SOF_TIMESTAMPING_TX_SOFTWARE |
2280			SOF_TIMESTAMPING_RX_SOFTWARE |
2281			SOF_TIMESTAMPING_SOFTWARE;
2282		return 0;
2283	case e1000_82576:
2284	case e1000_82580:
2285	case e1000_i350:
2286	case e1000_i210:
2287	case e1000_i211:
2288		info->so_timestamping =
2289			SOF_TIMESTAMPING_TX_SOFTWARE |
2290			SOF_TIMESTAMPING_RX_SOFTWARE |
2291			SOF_TIMESTAMPING_SOFTWARE |
2292			SOF_TIMESTAMPING_TX_HARDWARE |
2293			SOF_TIMESTAMPING_RX_HARDWARE |
2294			SOF_TIMESTAMPING_RAW_HARDWARE;
2295
2296		if (adapter->ptp_clock)
2297			info->phc_index = ptp_clock_index(adapter->ptp_clock);
2298		else
2299			info->phc_index = -1;
2300
2301		info->tx_types =
2302			(1 << HWTSTAMP_TX_OFF) |
2303			(1 << HWTSTAMP_TX_ON);
2304
2305		info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2306
2307		/* 82576 does not support timestamping all packets. */
2308		if (adapter->hw.mac.type >= e1000_82580)
2309			info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2310		else
2311			info->rx_filters |=
2312				(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2313				(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2314				(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2315				(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2316				(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2317				(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2318				(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2319
2320		return 0;
2321	default:
2322		return -EOPNOTSUPP;
2323	}
2324}
2325
2326static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2327				 struct ethtool_rxnfc *cmd)
2328{
2329	cmd->data = 0;
2330
2331	/* Report default options for RSS on igb */
2332	switch (cmd->flow_type) {
2333	case TCP_V4_FLOW:
2334		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2335	case UDP_V4_FLOW:
2336		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2337			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2338	case SCTP_V4_FLOW:
2339	case AH_ESP_V4_FLOW:
2340	case AH_V4_FLOW:
2341	case ESP_V4_FLOW:
2342	case IPV4_FLOW:
2343		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2344		break;
2345	case TCP_V6_FLOW:
2346		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2347	case UDP_V6_FLOW:
2348		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2349			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2350	case SCTP_V6_FLOW:
2351	case AH_ESP_V6_FLOW:
2352	case AH_V6_FLOW:
2353	case ESP_V6_FLOW:
2354	case IPV6_FLOW:
2355		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2356		break;
2357	default:
2358		return -EINVAL;
2359	}
2360
2361	return 0;
2362}
2363
2364static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2365			   u32 *rule_locs)
2366{
2367	struct igb_adapter *adapter = netdev_priv(dev);
2368	int ret = -EOPNOTSUPP;
2369
2370	switch (cmd->cmd) {
2371	case ETHTOOL_GRXRINGS:
2372		cmd->data = adapter->num_rx_queues;
2373		ret = 0;
2374		break;
2375	case ETHTOOL_GRXFH:
2376		ret = igb_get_rss_hash_opts(adapter, cmd);
2377		break;
2378	default:
2379		break;
2380	}
2381
2382	return ret;
2383}
2384
2385#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2386		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2387static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2388				struct ethtool_rxnfc *nfc)
2389{
2390	u32 flags = adapter->flags;
2391
2392	/* RSS does not support anything other than hashing
2393	 * to queues on src and dst IPs and ports
2394	 */
2395	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2396			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2397		return -EINVAL;
2398
2399	switch (nfc->flow_type) {
2400	case TCP_V4_FLOW:
2401	case TCP_V6_FLOW:
2402		if (!(nfc->data & RXH_IP_SRC) ||
2403		    !(nfc->data & RXH_IP_DST) ||
2404		    !(nfc->data & RXH_L4_B_0_1) ||
2405		    !(nfc->data & RXH_L4_B_2_3))
2406			return -EINVAL;
2407		break;
2408	case UDP_V4_FLOW:
2409		if (!(nfc->data & RXH_IP_SRC) ||
2410		    !(nfc->data & RXH_IP_DST))
2411			return -EINVAL;
2412		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2413		case 0:
2414			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2415			break;
2416		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2417			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2418			break;
2419		default:
2420			return -EINVAL;
2421		}
2422		break;
2423	case UDP_V6_FLOW:
2424		if (!(nfc->data & RXH_IP_SRC) ||
2425		    !(nfc->data & RXH_IP_DST))
2426			return -EINVAL;
2427		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2428		case 0:
2429			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2430			break;
2431		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2432			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2433			break;
2434		default:
2435			return -EINVAL;
2436		}
2437		break;
2438	case AH_ESP_V4_FLOW:
2439	case AH_V4_FLOW:
2440	case ESP_V4_FLOW:
2441	case SCTP_V4_FLOW:
2442	case AH_ESP_V6_FLOW:
2443	case AH_V6_FLOW:
2444	case ESP_V6_FLOW:
2445	case SCTP_V6_FLOW:
2446		if (!(nfc->data & RXH_IP_SRC) ||
2447		    !(nfc->data & RXH_IP_DST) ||
2448		    (nfc->data & RXH_L4_B_0_1) ||
2449		    (nfc->data & RXH_L4_B_2_3))
2450			return -EINVAL;
2451		break;
2452	default:
2453		return -EINVAL;
2454	}
2455
2456	/* if we changed something we need to update flags */
2457	if (flags != adapter->flags) {
2458		struct e1000_hw *hw = &adapter->hw;
2459		u32 mrqc = rd32(E1000_MRQC);
2460
2461		if ((flags & UDP_RSS_FLAGS) &&
2462		    !(adapter->flags & UDP_RSS_FLAGS))
2463			dev_err(&adapter->pdev->dev,
2464				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2465
2466		adapter->flags = flags;
2467
2468		/* Perform hash on these packet types */
2469		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2470			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2471			E1000_MRQC_RSS_FIELD_IPV6 |
2472			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2473
2474		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2475			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2476
2477		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2478			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2479
2480		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2481			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2482
2483		wr32(E1000_MRQC, mrqc);
2484	}
2485
2486	return 0;
2487}
2488
2489static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2490{
2491	struct igb_adapter *adapter = netdev_priv(dev);
2492	int ret = -EOPNOTSUPP;
2493
2494	switch (cmd->cmd) {
2495	case ETHTOOL_SRXFH:
2496		ret = igb_set_rss_hash_opt(adapter, cmd);
2497		break;
2498	default:
2499		break;
2500	}
2501
2502	return ret;
2503}
2504
2505static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2506{
2507	struct igb_adapter *adapter = netdev_priv(netdev);
2508	struct e1000_hw *hw = &adapter->hw;
2509	u32 ipcnfg, eeer;
2510
2511	if ((hw->mac.type < e1000_i350) ||
2512	    (hw->phy.media_type != e1000_media_type_copper))
2513		return -EOPNOTSUPP;
2514
2515	edata->supported = (SUPPORTED_1000baseT_Full |
2516			    SUPPORTED_100baseT_Full);
2517
2518	ipcnfg = rd32(E1000_IPCNFG);
2519	eeer = rd32(E1000_EEER);
2520
2521	/* EEE status on negotiated link */
2522	if (ipcnfg & E1000_IPCNFG_EEE_1G_AN)
2523		edata->advertised = ADVERTISED_1000baseT_Full;
2524
2525	if (ipcnfg & E1000_IPCNFG_EEE_100M_AN)
2526		edata->advertised |= ADVERTISED_100baseT_Full;
2527
2528	if (eeer & E1000_EEER_EEE_NEG)
2529		edata->eee_active = true;
2530
2531	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2532
2533	if (eeer & E1000_EEER_TX_LPI_EN)
2534		edata->tx_lpi_enabled = true;
2535
2536	/* Report correct negotiated EEE status for devices that
2537	 * wrongly report EEE at half-duplex
2538	 */
2539	if (adapter->link_duplex == HALF_DUPLEX) {
2540		edata->eee_enabled = false;
2541		edata->eee_active = false;
2542		edata->tx_lpi_enabled = false;
2543		edata->advertised &= ~edata->advertised;
2544	}
2545
2546	return 0;
2547}
2548
2549static int igb_set_eee(struct net_device *netdev,
2550		       struct ethtool_eee *edata)
2551{
2552	struct igb_adapter *adapter = netdev_priv(netdev);
2553	struct e1000_hw *hw = &adapter->hw;
2554	struct ethtool_eee eee_curr;
2555	s32 ret_val;
2556
2557	if ((hw->mac.type < e1000_i350) ||
2558	    (hw->phy.media_type != e1000_media_type_copper))
2559		return -EOPNOTSUPP;
2560
2561	ret_val = igb_get_eee(netdev, &eee_curr);
2562	if (ret_val)
2563		return ret_val;
2564
2565	if (eee_curr.eee_enabled) {
2566		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2567			dev_err(&adapter->pdev->dev,
2568				"Setting EEE tx-lpi is not supported\n");
2569			return -EINVAL;
2570		}
2571
2572		/* Tx LPI timer is not implemented currently */
2573		if (edata->tx_lpi_timer) {
2574			dev_err(&adapter->pdev->dev,
2575				"Setting EEE Tx LPI timer is not supported\n");
2576			return -EINVAL;
2577		}
2578
2579		if (eee_curr.advertised != edata->advertised) {
2580			dev_err(&adapter->pdev->dev,
2581				"Setting EEE Advertisement is not supported\n");
2582			return -EINVAL;
2583		}
2584
2585	} else if (!edata->eee_enabled) {
2586		dev_err(&adapter->pdev->dev,
2587			"Setting EEE options are not supported with EEE disabled\n");
2588			return -EINVAL;
2589		}
2590
2591	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2592		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2593		igb_set_eee_i350(hw);
2594
2595		/* reset link */
2596		if (!netif_running(netdev))
2597			igb_reset(adapter);
2598	}
2599
2600	return 0;
2601}
2602
2603static int igb_ethtool_begin(struct net_device *netdev)
2604{
2605	struct igb_adapter *adapter = netdev_priv(netdev);
2606	pm_runtime_get_sync(&adapter->pdev->dev);
2607	return 0;
2608}
2609
2610static void igb_ethtool_complete(struct net_device *netdev)
2611{
2612	struct igb_adapter *adapter = netdev_priv(netdev);
2613	pm_runtime_put(&adapter->pdev->dev);
2614}
2615
2616static const struct ethtool_ops igb_ethtool_ops = {
2617	.get_settings           = igb_get_settings,
2618	.set_settings           = igb_set_settings,
2619	.get_drvinfo            = igb_get_drvinfo,
2620	.get_regs_len           = igb_get_regs_len,
2621	.get_regs               = igb_get_regs,
2622	.get_wol                = igb_get_wol,
2623	.set_wol                = igb_set_wol,
2624	.get_msglevel           = igb_get_msglevel,
2625	.set_msglevel           = igb_set_msglevel,
2626	.nway_reset             = igb_nway_reset,
2627	.get_link               = igb_get_link,
2628	.get_eeprom_len         = igb_get_eeprom_len,
2629	.get_eeprom             = igb_get_eeprom,
2630	.set_eeprom             = igb_set_eeprom,
2631	.get_ringparam          = igb_get_ringparam,
2632	.set_ringparam          = igb_set_ringparam,
2633	.get_pauseparam         = igb_get_pauseparam,
2634	.set_pauseparam         = igb_set_pauseparam,
2635	.self_test              = igb_diag_test,
2636	.get_strings            = igb_get_strings,
2637	.set_phys_id            = igb_set_phys_id,
2638	.get_sset_count         = igb_get_sset_count,
2639	.get_ethtool_stats      = igb_get_ethtool_stats,
2640	.get_coalesce           = igb_get_coalesce,
2641	.set_coalesce           = igb_set_coalesce,
2642	.get_ts_info            = igb_get_ts_info,
2643	.get_rxnfc		= igb_get_rxnfc,
2644	.set_rxnfc		= igb_set_rxnfc,
2645	.get_eee		= igb_get_eee,
2646	.set_eee		= igb_set_eee,
2647	.begin			= igb_ethtool_begin,
2648	.complete		= igb_ethtool_complete,
2649};
2650
2651void igb_set_ethtool_ops(struct net_device *netdev)
2652{
2653	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2654}
2655