igb_ethtool.c revision d836200a1c239a488cd2ed9867f4792f25f721d5
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2012 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* ethtool support for igb */
29
30#include <linux/vmalloc.h>
31#include <linux/netdevice.h>
32#include <linux/pci.h>
33#include <linux/delay.h>
34#include <linux/interrupt.h>
35#include <linux/if_ether.h>
36#include <linux/ethtool.h>
37#include <linux/sched.h>
38#include <linux/slab.h>
39#include <linux/pm_runtime.h>
40
41#include "igb.h"
42
43struct igb_stats {
44	char stat_string[ETH_GSTRING_LEN];
45	int sizeof_stat;
46	int stat_offset;
47};
48
49#define IGB_STAT(_name, _stat) { \
50	.stat_string = _name, \
51	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
52	.stat_offset = offsetof(struct igb_adapter, _stat) \
53}
54static const struct igb_stats igb_gstrings_stats[] = {
55	IGB_STAT("rx_packets", stats.gprc),
56	IGB_STAT("tx_packets", stats.gptc),
57	IGB_STAT("rx_bytes", stats.gorc),
58	IGB_STAT("tx_bytes", stats.gotc),
59	IGB_STAT("rx_broadcast", stats.bprc),
60	IGB_STAT("tx_broadcast", stats.bptc),
61	IGB_STAT("rx_multicast", stats.mprc),
62	IGB_STAT("tx_multicast", stats.mptc),
63	IGB_STAT("multicast", stats.mprc),
64	IGB_STAT("collisions", stats.colc),
65	IGB_STAT("rx_crc_errors", stats.crcerrs),
66	IGB_STAT("rx_no_buffer_count", stats.rnbc),
67	IGB_STAT("rx_missed_errors", stats.mpc),
68	IGB_STAT("tx_aborted_errors", stats.ecol),
69	IGB_STAT("tx_carrier_errors", stats.tncrs),
70	IGB_STAT("tx_window_errors", stats.latecol),
71	IGB_STAT("tx_abort_late_coll", stats.latecol),
72	IGB_STAT("tx_deferred_ok", stats.dc),
73	IGB_STAT("tx_single_coll_ok", stats.scc),
74	IGB_STAT("tx_multi_coll_ok", stats.mcc),
75	IGB_STAT("tx_timeout_count", tx_timeout_count),
76	IGB_STAT("rx_long_length_errors", stats.roc),
77	IGB_STAT("rx_short_length_errors", stats.ruc),
78	IGB_STAT("rx_align_errors", stats.algnerrc),
79	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
80	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
81	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
82	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
83	IGB_STAT("tx_flow_control_xon", stats.xontxc),
84	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
85	IGB_STAT("rx_long_byte_count", stats.gorc),
86	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
87	IGB_STAT("tx_smbus", stats.mgptc),
88	IGB_STAT("rx_smbus", stats.mgprc),
89	IGB_STAT("dropped_smbus", stats.mgpdc),
90	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
91	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
92	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
93	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
94};
95
96#define IGB_NETDEV_STAT(_net_stat) { \
97	.stat_string = __stringify(_net_stat), \
98	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
99	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
100}
101static const struct igb_stats igb_gstrings_net_stats[] = {
102	IGB_NETDEV_STAT(rx_errors),
103	IGB_NETDEV_STAT(tx_errors),
104	IGB_NETDEV_STAT(tx_dropped),
105	IGB_NETDEV_STAT(rx_length_errors),
106	IGB_NETDEV_STAT(rx_over_errors),
107	IGB_NETDEV_STAT(rx_frame_errors),
108	IGB_NETDEV_STAT(rx_fifo_errors),
109	IGB_NETDEV_STAT(tx_fifo_errors),
110	IGB_NETDEV_STAT(tx_heartbeat_errors)
111};
112
113#define IGB_GLOBAL_STATS_LEN	\
114	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
115#define IGB_NETDEV_STATS_LEN	\
116	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
117#define IGB_RX_QUEUE_STATS_LEN \
118	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
119
120#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
121
122#define IGB_QUEUE_STATS_LEN \
123	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
124	  IGB_RX_QUEUE_STATS_LEN) + \
125	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
126	  IGB_TX_QUEUE_STATS_LEN))
127#define IGB_STATS_LEN \
128	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
129
130static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
131	"Register test  (offline)", "Eeprom test    (offline)",
132	"Interrupt test (offline)", "Loopback test  (offline)",
133	"Link test   (on/offline)"
134};
135#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
136
137static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
138{
139	struct igb_adapter *adapter = netdev_priv(netdev);
140	struct e1000_hw *hw = &adapter->hw;
141	u32 status;
142
143	if (hw->phy.media_type == e1000_media_type_copper) {
144
145		ecmd->supported = (SUPPORTED_10baseT_Half |
146				   SUPPORTED_10baseT_Full |
147				   SUPPORTED_100baseT_Half |
148				   SUPPORTED_100baseT_Full |
149				   SUPPORTED_1000baseT_Full|
150				   SUPPORTED_Autoneg |
151				   SUPPORTED_TP);
152		ecmd->advertising = (ADVERTISED_TP |
153				     ADVERTISED_Pause);
154
155		if (hw->mac.autoneg == 1) {
156			ecmd->advertising |= ADVERTISED_Autoneg;
157			/* the e1000 autoneg seems to match ethtool nicely */
158			ecmd->advertising |= hw->phy.autoneg_advertised;
159		}
160
161		ecmd->port = PORT_TP;
162		ecmd->phy_address = hw->phy.addr;
163	} else {
164		ecmd->supported   = (SUPPORTED_1000baseT_Full |
165				     SUPPORTED_FIBRE |
166				     SUPPORTED_Autoneg);
167
168		ecmd->advertising = (ADVERTISED_1000baseT_Full |
169				     ADVERTISED_FIBRE |
170				     ADVERTISED_Autoneg |
171				     ADVERTISED_Pause);
172
173		ecmd->port = PORT_FIBRE;
174	}
175
176	ecmd->transceiver = XCVR_INTERNAL;
177
178	status = rd32(E1000_STATUS);
179
180	if (status & E1000_STATUS_LU) {
181
182		if ((status & E1000_STATUS_SPEED_1000) ||
183		    hw->phy.media_type != e1000_media_type_copper)
184			ethtool_cmd_speed_set(ecmd, SPEED_1000);
185		else if (status & E1000_STATUS_SPEED_100)
186			ethtool_cmd_speed_set(ecmd, SPEED_100);
187		else
188			ethtool_cmd_speed_set(ecmd, SPEED_10);
189
190		if ((status & E1000_STATUS_FD) ||
191		    hw->phy.media_type != e1000_media_type_copper)
192			ecmd->duplex = DUPLEX_FULL;
193		else
194			ecmd->duplex = DUPLEX_HALF;
195	} else {
196		ethtool_cmd_speed_set(ecmd, -1);
197		ecmd->duplex = -1;
198	}
199
200	ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
201	return 0;
202}
203
204static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
205{
206	struct igb_adapter *adapter = netdev_priv(netdev);
207	struct e1000_hw *hw = &adapter->hw;
208
209	/* When SoL/IDER sessions are active, autoneg/speed/duplex
210	 * cannot be changed */
211	if (igb_check_reset_block(hw)) {
212		dev_err(&adapter->pdev->dev,
213			"Cannot change link characteristics when SoL/IDER is active.\n");
214		return -EINVAL;
215	}
216
217	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
218		msleep(1);
219
220	if (ecmd->autoneg == AUTONEG_ENABLE) {
221		hw->mac.autoneg = 1;
222		hw->phy.autoneg_advertised = ecmd->advertising |
223					     ADVERTISED_TP |
224					     ADVERTISED_Autoneg;
225		ecmd->advertising = hw->phy.autoneg_advertised;
226		if (adapter->fc_autoneg)
227			hw->fc.requested_mode = e1000_fc_default;
228	} else {
229		u32 speed = ethtool_cmd_speed(ecmd);
230		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
231			clear_bit(__IGB_RESETTING, &adapter->state);
232			return -EINVAL;
233		}
234	}
235
236	/* reset the link */
237	if (netif_running(adapter->netdev)) {
238		igb_down(adapter);
239		igb_up(adapter);
240	} else
241		igb_reset(adapter);
242
243	clear_bit(__IGB_RESETTING, &adapter->state);
244	return 0;
245}
246
247static u32 igb_get_link(struct net_device *netdev)
248{
249	struct igb_adapter *adapter = netdev_priv(netdev);
250	struct e1000_mac_info *mac = &adapter->hw.mac;
251
252	/*
253	 * If the link is not reported up to netdev, interrupts are disabled,
254	 * and so the physical link state may have changed since we last
255	 * looked. Set get_link_status to make sure that the true link
256	 * state is interrogated, rather than pulling a cached and possibly
257	 * stale link state from the driver.
258	 */
259	if (!netif_carrier_ok(netdev))
260		mac->get_link_status = 1;
261
262	return igb_has_link(adapter);
263}
264
265static void igb_get_pauseparam(struct net_device *netdev,
266			       struct ethtool_pauseparam *pause)
267{
268	struct igb_adapter *adapter = netdev_priv(netdev);
269	struct e1000_hw *hw = &adapter->hw;
270
271	pause->autoneg =
272		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
273
274	if (hw->fc.current_mode == e1000_fc_rx_pause)
275		pause->rx_pause = 1;
276	else if (hw->fc.current_mode == e1000_fc_tx_pause)
277		pause->tx_pause = 1;
278	else if (hw->fc.current_mode == e1000_fc_full) {
279		pause->rx_pause = 1;
280		pause->tx_pause = 1;
281	}
282}
283
284static int igb_set_pauseparam(struct net_device *netdev,
285			      struct ethtool_pauseparam *pause)
286{
287	struct igb_adapter *adapter = netdev_priv(netdev);
288	struct e1000_hw *hw = &adapter->hw;
289	int retval = 0;
290
291	adapter->fc_autoneg = pause->autoneg;
292
293	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
294		msleep(1);
295
296	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
297		hw->fc.requested_mode = e1000_fc_default;
298		if (netif_running(adapter->netdev)) {
299			igb_down(adapter);
300			igb_up(adapter);
301		} else {
302			igb_reset(adapter);
303		}
304	} else {
305		if (pause->rx_pause && pause->tx_pause)
306			hw->fc.requested_mode = e1000_fc_full;
307		else if (pause->rx_pause && !pause->tx_pause)
308			hw->fc.requested_mode = e1000_fc_rx_pause;
309		else if (!pause->rx_pause && pause->tx_pause)
310			hw->fc.requested_mode = e1000_fc_tx_pause;
311		else if (!pause->rx_pause && !pause->tx_pause)
312			hw->fc.requested_mode = e1000_fc_none;
313
314		hw->fc.current_mode = hw->fc.requested_mode;
315
316		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
317			  igb_force_mac_fc(hw) : igb_setup_link(hw));
318	}
319
320	clear_bit(__IGB_RESETTING, &adapter->state);
321	return retval;
322}
323
324static u32 igb_get_msglevel(struct net_device *netdev)
325{
326	struct igb_adapter *adapter = netdev_priv(netdev);
327	return adapter->msg_enable;
328}
329
330static void igb_set_msglevel(struct net_device *netdev, u32 data)
331{
332	struct igb_adapter *adapter = netdev_priv(netdev);
333	adapter->msg_enable = data;
334}
335
336static int igb_get_regs_len(struct net_device *netdev)
337{
338#define IGB_REGS_LEN 739
339	return IGB_REGS_LEN * sizeof(u32);
340}
341
342static void igb_get_regs(struct net_device *netdev,
343			 struct ethtool_regs *regs, void *p)
344{
345	struct igb_adapter *adapter = netdev_priv(netdev);
346	struct e1000_hw *hw = &adapter->hw;
347	u32 *regs_buff = p;
348	u8 i;
349
350	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
351
352	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
353
354	/* General Registers */
355	regs_buff[0] = rd32(E1000_CTRL);
356	regs_buff[1] = rd32(E1000_STATUS);
357	regs_buff[2] = rd32(E1000_CTRL_EXT);
358	regs_buff[3] = rd32(E1000_MDIC);
359	regs_buff[4] = rd32(E1000_SCTL);
360	regs_buff[5] = rd32(E1000_CONNSW);
361	regs_buff[6] = rd32(E1000_VET);
362	regs_buff[7] = rd32(E1000_LEDCTL);
363	regs_buff[8] = rd32(E1000_PBA);
364	regs_buff[9] = rd32(E1000_PBS);
365	regs_buff[10] = rd32(E1000_FRTIMER);
366	regs_buff[11] = rd32(E1000_TCPTIMER);
367
368	/* NVM Register */
369	regs_buff[12] = rd32(E1000_EECD);
370
371	/* Interrupt */
372	/* Reading EICS for EICR because they read the
373	 * same but EICS does not clear on read */
374	regs_buff[13] = rd32(E1000_EICS);
375	regs_buff[14] = rd32(E1000_EICS);
376	regs_buff[15] = rd32(E1000_EIMS);
377	regs_buff[16] = rd32(E1000_EIMC);
378	regs_buff[17] = rd32(E1000_EIAC);
379	regs_buff[18] = rd32(E1000_EIAM);
380	/* Reading ICS for ICR because they read the
381	 * same but ICS does not clear on read */
382	regs_buff[19] = rd32(E1000_ICS);
383	regs_buff[20] = rd32(E1000_ICS);
384	regs_buff[21] = rd32(E1000_IMS);
385	regs_buff[22] = rd32(E1000_IMC);
386	regs_buff[23] = rd32(E1000_IAC);
387	regs_buff[24] = rd32(E1000_IAM);
388	regs_buff[25] = rd32(E1000_IMIRVP);
389
390	/* Flow Control */
391	regs_buff[26] = rd32(E1000_FCAL);
392	regs_buff[27] = rd32(E1000_FCAH);
393	regs_buff[28] = rd32(E1000_FCTTV);
394	regs_buff[29] = rd32(E1000_FCRTL);
395	regs_buff[30] = rd32(E1000_FCRTH);
396	regs_buff[31] = rd32(E1000_FCRTV);
397
398	/* Receive */
399	regs_buff[32] = rd32(E1000_RCTL);
400	regs_buff[33] = rd32(E1000_RXCSUM);
401	regs_buff[34] = rd32(E1000_RLPML);
402	regs_buff[35] = rd32(E1000_RFCTL);
403	regs_buff[36] = rd32(E1000_MRQC);
404	regs_buff[37] = rd32(E1000_VT_CTL);
405
406	/* Transmit */
407	regs_buff[38] = rd32(E1000_TCTL);
408	regs_buff[39] = rd32(E1000_TCTL_EXT);
409	regs_buff[40] = rd32(E1000_TIPG);
410	regs_buff[41] = rd32(E1000_DTXCTL);
411
412	/* Wake Up */
413	regs_buff[42] = rd32(E1000_WUC);
414	regs_buff[43] = rd32(E1000_WUFC);
415	regs_buff[44] = rd32(E1000_WUS);
416	regs_buff[45] = rd32(E1000_IPAV);
417	regs_buff[46] = rd32(E1000_WUPL);
418
419	/* MAC */
420	regs_buff[47] = rd32(E1000_PCS_CFG0);
421	regs_buff[48] = rd32(E1000_PCS_LCTL);
422	regs_buff[49] = rd32(E1000_PCS_LSTAT);
423	regs_buff[50] = rd32(E1000_PCS_ANADV);
424	regs_buff[51] = rd32(E1000_PCS_LPAB);
425	regs_buff[52] = rd32(E1000_PCS_NPTX);
426	regs_buff[53] = rd32(E1000_PCS_LPABNP);
427
428	/* Statistics */
429	regs_buff[54] = adapter->stats.crcerrs;
430	regs_buff[55] = adapter->stats.algnerrc;
431	regs_buff[56] = adapter->stats.symerrs;
432	regs_buff[57] = adapter->stats.rxerrc;
433	regs_buff[58] = adapter->stats.mpc;
434	regs_buff[59] = adapter->stats.scc;
435	regs_buff[60] = adapter->stats.ecol;
436	regs_buff[61] = adapter->stats.mcc;
437	regs_buff[62] = adapter->stats.latecol;
438	regs_buff[63] = adapter->stats.colc;
439	regs_buff[64] = adapter->stats.dc;
440	regs_buff[65] = adapter->stats.tncrs;
441	regs_buff[66] = adapter->stats.sec;
442	regs_buff[67] = adapter->stats.htdpmc;
443	regs_buff[68] = adapter->stats.rlec;
444	regs_buff[69] = adapter->stats.xonrxc;
445	regs_buff[70] = adapter->stats.xontxc;
446	regs_buff[71] = adapter->stats.xoffrxc;
447	regs_buff[72] = adapter->stats.xofftxc;
448	regs_buff[73] = adapter->stats.fcruc;
449	regs_buff[74] = adapter->stats.prc64;
450	regs_buff[75] = adapter->stats.prc127;
451	regs_buff[76] = adapter->stats.prc255;
452	regs_buff[77] = adapter->stats.prc511;
453	regs_buff[78] = adapter->stats.prc1023;
454	regs_buff[79] = adapter->stats.prc1522;
455	regs_buff[80] = adapter->stats.gprc;
456	regs_buff[81] = adapter->stats.bprc;
457	regs_buff[82] = adapter->stats.mprc;
458	regs_buff[83] = adapter->stats.gptc;
459	regs_buff[84] = adapter->stats.gorc;
460	regs_buff[86] = adapter->stats.gotc;
461	regs_buff[88] = adapter->stats.rnbc;
462	regs_buff[89] = adapter->stats.ruc;
463	regs_buff[90] = adapter->stats.rfc;
464	regs_buff[91] = adapter->stats.roc;
465	regs_buff[92] = adapter->stats.rjc;
466	regs_buff[93] = adapter->stats.mgprc;
467	regs_buff[94] = adapter->stats.mgpdc;
468	regs_buff[95] = adapter->stats.mgptc;
469	regs_buff[96] = adapter->stats.tor;
470	regs_buff[98] = adapter->stats.tot;
471	regs_buff[100] = adapter->stats.tpr;
472	regs_buff[101] = adapter->stats.tpt;
473	regs_buff[102] = adapter->stats.ptc64;
474	regs_buff[103] = adapter->stats.ptc127;
475	regs_buff[104] = adapter->stats.ptc255;
476	regs_buff[105] = adapter->stats.ptc511;
477	regs_buff[106] = adapter->stats.ptc1023;
478	regs_buff[107] = adapter->stats.ptc1522;
479	regs_buff[108] = adapter->stats.mptc;
480	regs_buff[109] = adapter->stats.bptc;
481	regs_buff[110] = adapter->stats.tsctc;
482	regs_buff[111] = adapter->stats.iac;
483	regs_buff[112] = adapter->stats.rpthc;
484	regs_buff[113] = adapter->stats.hgptc;
485	regs_buff[114] = adapter->stats.hgorc;
486	regs_buff[116] = adapter->stats.hgotc;
487	regs_buff[118] = adapter->stats.lenerrs;
488	regs_buff[119] = adapter->stats.scvpc;
489	regs_buff[120] = adapter->stats.hrmpc;
490
491	for (i = 0; i < 4; i++)
492		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
493	for (i = 0; i < 4; i++)
494		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
495	for (i = 0; i < 4; i++)
496		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
497	for (i = 0; i < 4; i++)
498		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
499	for (i = 0; i < 4; i++)
500		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
501	for (i = 0; i < 4; i++)
502		regs_buff[141 + i] = rd32(E1000_RDH(i));
503	for (i = 0; i < 4; i++)
504		regs_buff[145 + i] = rd32(E1000_RDT(i));
505	for (i = 0; i < 4; i++)
506		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
507
508	for (i = 0; i < 10; i++)
509		regs_buff[153 + i] = rd32(E1000_EITR(i));
510	for (i = 0; i < 8; i++)
511		regs_buff[163 + i] = rd32(E1000_IMIR(i));
512	for (i = 0; i < 8; i++)
513		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
514	for (i = 0; i < 16; i++)
515		regs_buff[179 + i] = rd32(E1000_RAL(i));
516	for (i = 0; i < 16; i++)
517		regs_buff[195 + i] = rd32(E1000_RAH(i));
518
519	for (i = 0; i < 4; i++)
520		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
521	for (i = 0; i < 4; i++)
522		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
523	for (i = 0; i < 4; i++)
524		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
525	for (i = 0; i < 4; i++)
526		regs_buff[223 + i] = rd32(E1000_TDH(i));
527	for (i = 0; i < 4; i++)
528		regs_buff[227 + i] = rd32(E1000_TDT(i));
529	for (i = 0; i < 4; i++)
530		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
531	for (i = 0; i < 4; i++)
532		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
533	for (i = 0; i < 4; i++)
534		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
535	for (i = 0; i < 4; i++)
536		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
537
538	for (i = 0; i < 4; i++)
539		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
540	for (i = 0; i < 4; i++)
541		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
542	for (i = 0; i < 32; i++)
543		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
544	for (i = 0; i < 128; i++)
545		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
546	for (i = 0; i < 128; i++)
547		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
548	for (i = 0; i < 4; i++)
549		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
550
551	regs_buff[547] = rd32(E1000_TDFH);
552	regs_buff[548] = rd32(E1000_TDFT);
553	regs_buff[549] = rd32(E1000_TDFHS);
554	regs_buff[550] = rd32(E1000_TDFPC);
555
556	if (hw->mac.type > e1000_82580) {
557		regs_buff[551] = adapter->stats.o2bgptc;
558		regs_buff[552] = adapter->stats.b2ospc;
559		regs_buff[553] = adapter->stats.o2bspc;
560		regs_buff[554] = adapter->stats.b2ogprc;
561	}
562
563	if (hw->mac.type != e1000_82576)
564		return;
565	for (i = 0; i < 12; i++)
566		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
567	for (i = 0; i < 4; i++)
568		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
569	for (i = 0; i < 12; i++)
570		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
571	for (i = 0; i < 12; i++)
572		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
573	for (i = 0; i < 12; i++)
574		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
575	for (i = 0; i < 12; i++)
576		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
577	for (i = 0; i < 12; i++)
578		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
579	for (i = 0; i < 12; i++)
580		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
581
582	for (i = 0; i < 12; i++)
583		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
584	for (i = 0; i < 12; i++)
585		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
586	for (i = 0; i < 12; i++)
587		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
588	for (i = 0; i < 12; i++)
589		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
590	for (i = 0; i < 12; i++)
591		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
592	for (i = 0; i < 12; i++)
593		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
594	for (i = 0; i < 12; i++)
595		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
596	for (i = 0; i < 12; i++)
597		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
598}
599
600static int igb_get_eeprom_len(struct net_device *netdev)
601{
602	struct igb_adapter *adapter = netdev_priv(netdev);
603	return adapter->hw.nvm.word_size * 2;
604}
605
606static int igb_get_eeprom(struct net_device *netdev,
607			  struct ethtool_eeprom *eeprom, u8 *bytes)
608{
609	struct igb_adapter *adapter = netdev_priv(netdev);
610	struct e1000_hw *hw = &adapter->hw;
611	u16 *eeprom_buff;
612	int first_word, last_word;
613	int ret_val = 0;
614	u16 i;
615
616	if (eeprom->len == 0)
617		return -EINVAL;
618
619	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
620
621	first_word = eeprom->offset >> 1;
622	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
623
624	eeprom_buff = kmalloc(sizeof(u16) *
625			(last_word - first_word + 1), GFP_KERNEL);
626	if (!eeprom_buff)
627		return -ENOMEM;
628
629	if (hw->nvm.type == e1000_nvm_eeprom_spi)
630		ret_val = hw->nvm.ops.read(hw, first_word,
631					    last_word - first_word + 1,
632					    eeprom_buff);
633	else {
634		for (i = 0; i < last_word - first_word + 1; i++) {
635			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
636						    &eeprom_buff[i]);
637			if (ret_val)
638				break;
639		}
640	}
641
642	/* Device's eeprom is always little-endian, word addressable */
643	for (i = 0; i < last_word - first_word + 1; i++)
644		le16_to_cpus(&eeprom_buff[i]);
645
646	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
647			eeprom->len);
648	kfree(eeprom_buff);
649
650	return ret_val;
651}
652
653static int igb_set_eeprom(struct net_device *netdev,
654			  struct ethtool_eeprom *eeprom, u8 *bytes)
655{
656	struct igb_adapter *adapter = netdev_priv(netdev);
657	struct e1000_hw *hw = &adapter->hw;
658	u16 *eeprom_buff;
659	void *ptr;
660	int max_len, first_word, last_word, ret_val = 0;
661	u16 i;
662
663	if (eeprom->len == 0)
664		return -EOPNOTSUPP;
665
666	if (hw->mac.type == e1000_i211)
667		return -EOPNOTSUPP;
668
669	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
670		return -EFAULT;
671
672	max_len = hw->nvm.word_size * 2;
673
674	first_word = eeprom->offset >> 1;
675	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
676	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
677	if (!eeprom_buff)
678		return -ENOMEM;
679
680	ptr = (void *)eeprom_buff;
681
682	if (eeprom->offset & 1) {
683		/* need read/modify/write of first changed EEPROM word */
684		/* only the second byte of the word is being modified */
685		ret_val = hw->nvm.ops.read(hw, first_word, 1,
686					    &eeprom_buff[0]);
687		ptr++;
688	}
689	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
690		/* need read/modify/write of last changed EEPROM word */
691		/* only the first byte of the word is being modified */
692		ret_val = hw->nvm.ops.read(hw, last_word, 1,
693				   &eeprom_buff[last_word - first_word]);
694	}
695
696	/* Device's eeprom is always little-endian, word addressable */
697	for (i = 0; i < last_word - first_word + 1; i++)
698		le16_to_cpus(&eeprom_buff[i]);
699
700	memcpy(ptr, bytes, eeprom->len);
701
702	for (i = 0; i < last_word - first_word + 1; i++)
703		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
704
705	ret_val = hw->nvm.ops.write(hw, first_word,
706				     last_word - first_word + 1, eeprom_buff);
707
708	/* Update the checksum over the first part of the EEPROM if needed
709	 * and flush shadow RAM for 82573 controllers */
710	if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
711		hw->nvm.ops.update(hw);
712
713	igb_set_fw_version(adapter);
714	kfree(eeprom_buff);
715	return ret_val;
716}
717
718static void igb_get_drvinfo(struct net_device *netdev,
719			    struct ethtool_drvinfo *drvinfo)
720{
721	struct igb_adapter *adapter = netdev_priv(netdev);
722
723	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
724	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
725
726	/*
727	 * EEPROM image version # is reported as firmware version # for
728	 * 82575 controllers
729	 */
730	strlcpy(drvinfo->fw_version, adapter->fw_version,
731		sizeof(drvinfo->fw_version));
732	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
733		sizeof(drvinfo->bus_info));
734	drvinfo->n_stats = IGB_STATS_LEN;
735	drvinfo->testinfo_len = IGB_TEST_LEN;
736	drvinfo->regdump_len = igb_get_regs_len(netdev);
737	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
738}
739
740static void igb_get_ringparam(struct net_device *netdev,
741			      struct ethtool_ringparam *ring)
742{
743	struct igb_adapter *adapter = netdev_priv(netdev);
744
745	ring->rx_max_pending = IGB_MAX_RXD;
746	ring->tx_max_pending = IGB_MAX_TXD;
747	ring->rx_pending = adapter->rx_ring_count;
748	ring->tx_pending = adapter->tx_ring_count;
749}
750
751static int igb_set_ringparam(struct net_device *netdev,
752			     struct ethtool_ringparam *ring)
753{
754	struct igb_adapter *adapter = netdev_priv(netdev);
755	struct igb_ring *temp_ring;
756	int i, err = 0;
757	u16 new_rx_count, new_tx_count;
758
759	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
760		return -EINVAL;
761
762	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
763	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
764	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
765
766	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
767	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
768	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
769
770	if ((new_tx_count == adapter->tx_ring_count) &&
771	    (new_rx_count == adapter->rx_ring_count)) {
772		/* nothing to do */
773		return 0;
774	}
775
776	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
777		msleep(1);
778
779	if (!netif_running(adapter->netdev)) {
780		for (i = 0; i < adapter->num_tx_queues; i++)
781			adapter->tx_ring[i]->count = new_tx_count;
782		for (i = 0; i < adapter->num_rx_queues; i++)
783			adapter->rx_ring[i]->count = new_rx_count;
784		adapter->tx_ring_count = new_tx_count;
785		adapter->rx_ring_count = new_rx_count;
786		goto clear_reset;
787	}
788
789	if (adapter->num_tx_queues > adapter->num_rx_queues)
790		temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
791	else
792		temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
793
794	if (!temp_ring) {
795		err = -ENOMEM;
796		goto clear_reset;
797	}
798
799	igb_down(adapter);
800
801	/*
802	 * We can't just free everything and then setup again,
803	 * because the ISRs in MSI-X mode get passed pointers
804	 * to the tx and rx ring structs.
805	 */
806	if (new_tx_count != adapter->tx_ring_count) {
807		for (i = 0; i < adapter->num_tx_queues; i++) {
808			memcpy(&temp_ring[i], adapter->tx_ring[i],
809			       sizeof(struct igb_ring));
810
811			temp_ring[i].count = new_tx_count;
812			err = igb_setup_tx_resources(&temp_ring[i]);
813			if (err) {
814				while (i) {
815					i--;
816					igb_free_tx_resources(&temp_ring[i]);
817				}
818				goto err_setup;
819			}
820		}
821
822		for (i = 0; i < adapter->num_tx_queues; i++) {
823			igb_free_tx_resources(adapter->tx_ring[i]);
824
825			memcpy(adapter->tx_ring[i], &temp_ring[i],
826			       sizeof(struct igb_ring));
827		}
828
829		adapter->tx_ring_count = new_tx_count;
830	}
831
832	if (new_rx_count != adapter->rx_ring_count) {
833		for (i = 0; i < adapter->num_rx_queues; i++) {
834			memcpy(&temp_ring[i], adapter->rx_ring[i],
835			       sizeof(struct igb_ring));
836
837			temp_ring[i].count = new_rx_count;
838			err = igb_setup_rx_resources(&temp_ring[i]);
839			if (err) {
840				while (i) {
841					i--;
842					igb_free_rx_resources(&temp_ring[i]);
843				}
844				goto err_setup;
845			}
846
847		}
848
849		for (i = 0; i < adapter->num_rx_queues; i++) {
850			igb_free_rx_resources(adapter->rx_ring[i]);
851
852			memcpy(adapter->rx_ring[i], &temp_ring[i],
853			       sizeof(struct igb_ring));
854		}
855
856		adapter->rx_ring_count = new_rx_count;
857	}
858err_setup:
859	igb_up(adapter);
860	vfree(temp_ring);
861clear_reset:
862	clear_bit(__IGB_RESETTING, &adapter->state);
863	return err;
864}
865
866/* ethtool register test data */
867struct igb_reg_test {
868	u16 reg;
869	u16 reg_offset;
870	u16 array_len;
871	u16 test_type;
872	u32 mask;
873	u32 write;
874};
875
876/* In the hardware, registers are laid out either singly, in arrays
877 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
878 * most tests take place on arrays or single registers (handled
879 * as a single-element array) and special-case the tables.
880 * Table tests are always pattern tests.
881 *
882 * We also make provision for some required setup steps by specifying
883 * registers to be written without any read-back testing.
884 */
885
886#define PATTERN_TEST	1
887#define SET_READ_TEST	2
888#define WRITE_NO_TEST	3
889#define TABLE32_TEST	4
890#define TABLE64_TEST_LO	5
891#define TABLE64_TEST_HI	6
892
893/* i210 reg test */
894static struct igb_reg_test reg_test_i210[] = {
895	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
896	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
897	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
898	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
899	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
900	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
901	/* RDH is read-only for i210, only test RDT. */
902	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
903	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
904	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
905	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
906	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
907	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
908	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
909	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
910	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
911	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
912	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
913	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
914	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
915						0xFFFFFFFF, 0xFFFFFFFF },
916	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
917						0x900FFFFF, 0xFFFFFFFF },
918	{ E1000_MTA,	   0, 128, TABLE32_TEST,
919						0xFFFFFFFF, 0xFFFFFFFF },
920	{ 0, 0, 0, 0, 0 }
921};
922
923/* i350 reg test */
924static struct igb_reg_test reg_test_i350[] = {
925	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
926	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
927	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
928	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
929	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
930	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
931	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
932	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
933	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
934	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
935	/* RDH is read-only for i350, only test RDT. */
936	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
937	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
938	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
939	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
940	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
941	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
942	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
943	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
944	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
945	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
946	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
947	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
948	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
949	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
950	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
951	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
952	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
953	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
954						0xFFFFFFFF, 0xFFFFFFFF },
955	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
956						0xC3FFFFFF, 0xFFFFFFFF },
957	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
958						0xFFFFFFFF, 0xFFFFFFFF },
959	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
960						0xC3FFFFFF, 0xFFFFFFFF },
961	{ E1000_MTA,	   0, 128, TABLE32_TEST,
962						0xFFFFFFFF, 0xFFFFFFFF },
963	{ 0, 0, 0, 0 }
964};
965
966/* 82580 reg test */
967static struct igb_reg_test reg_test_82580[] = {
968	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
969	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
970	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
971	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
972	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
973	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
974	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
975	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
976	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
977	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
978	/* RDH is read-only for 82580, only test RDT. */
979	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
980	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
981	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
982	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
983	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
984	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
985	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
986	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
987	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
988	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
989	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
990	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
991	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
992	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
993	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
994	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
995	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
996	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
997						0xFFFFFFFF, 0xFFFFFFFF },
998	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
999						0x83FFFFFF, 0xFFFFFFFF },
1000	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1001						0xFFFFFFFF, 0xFFFFFFFF },
1002	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1003						0x83FFFFFF, 0xFFFFFFFF },
1004	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1005						0xFFFFFFFF, 0xFFFFFFFF },
1006	{ 0, 0, 0, 0 }
1007};
1008
1009/* 82576 reg test */
1010static struct igb_reg_test reg_test_82576[] = {
1011	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1012	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1013	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1014	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1015	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1016	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1017	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1018	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1019	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1020	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1021	/* Enable all RX queues before testing. */
1022	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1023	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1024	/* RDH is read-only for 82576, only test RDT. */
1025	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1026	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1027	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1028	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1029	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1030	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1031	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1032	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1033	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1034	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1035	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1036	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1037	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1038	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1039	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1040	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1041	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1042	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1043	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1044	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1045	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1046	{ E1000_MTA,	   0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1047	{ 0, 0, 0, 0 }
1048};
1049
1050/* 82575 register test */
1051static struct igb_reg_test reg_test_82575[] = {
1052	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1053	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1054	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1055	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1056	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1057	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1058	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1059	/* Enable all four RX queues before testing. */
1060	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1061	/* RDH is read-only for 82575, only test RDT. */
1062	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1063	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1064	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1065	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1066	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1067	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1068	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1069	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1070	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1071	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1072	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1073	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1074	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1075	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1076	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1077	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1078	{ 0, 0, 0, 0 }
1079};
1080
1081static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1082			     int reg, u32 mask, u32 write)
1083{
1084	struct e1000_hw *hw = &adapter->hw;
1085	u32 pat, val;
1086	static const u32 _test[] =
1087		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1088	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1089		wr32(reg, (_test[pat] & write));
1090		val = rd32(reg) & mask;
1091		if (val != (_test[pat] & write & mask)) {
1092			dev_err(&adapter->pdev->dev,
1093				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1094				reg, val, (_test[pat] & write & mask));
1095			*data = reg;
1096			return 1;
1097		}
1098	}
1099
1100	return 0;
1101}
1102
1103static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1104			      int reg, u32 mask, u32 write)
1105{
1106	struct e1000_hw *hw = &adapter->hw;
1107	u32 val;
1108	wr32(reg, write & mask);
1109	val = rd32(reg);
1110	if ((write & mask) != (val & mask)) {
1111		dev_err(&adapter->pdev->dev,
1112			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1113			(val & mask), (write & mask));
1114		*data = reg;
1115		return 1;
1116	}
1117
1118	return 0;
1119}
1120
1121#define REG_PATTERN_TEST(reg, mask, write) \
1122	do { \
1123		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1124			return 1; \
1125	} while (0)
1126
1127#define REG_SET_AND_CHECK(reg, mask, write) \
1128	do { \
1129		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1130			return 1; \
1131	} while (0)
1132
1133static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1134{
1135	struct e1000_hw *hw = &adapter->hw;
1136	struct igb_reg_test *test;
1137	u32 value, before, after;
1138	u32 i, toggle;
1139
1140	switch (adapter->hw.mac.type) {
1141	case e1000_i350:
1142		test = reg_test_i350;
1143		toggle = 0x7FEFF3FF;
1144		break;
1145	case e1000_i210:
1146	case e1000_i211:
1147		test = reg_test_i210;
1148		toggle = 0x7FEFF3FF;
1149		break;
1150	case e1000_82580:
1151		test = reg_test_82580;
1152		toggle = 0x7FEFF3FF;
1153		break;
1154	case e1000_82576:
1155		test = reg_test_82576;
1156		toggle = 0x7FFFF3FF;
1157		break;
1158	default:
1159		test = reg_test_82575;
1160		toggle = 0x7FFFF3FF;
1161		break;
1162	}
1163
1164	/* Because the status register is such a special case,
1165	 * we handle it separately from the rest of the register
1166	 * tests.  Some bits are read-only, some toggle, and some
1167	 * are writable on newer MACs.
1168	 */
1169	before = rd32(E1000_STATUS);
1170	value = (rd32(E1000_STATUS) & toggle);
1171	wr32(E1000_STATUS, toggle);
1172	after = rd32(E1000_STATUS) & toggle;
1173	if (value != after) {
1174		dev_err(&adapter->pdev->dev,
1175			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1176			after, value);
1177		*data = 1;
1178		return 1;
1179	}
1180	/* restore previous status */
1181	wr32(E1000_STATUS, before);
1182
1183	/* Perform the remainder of the register test, looping through
1184	 * the test table until we either fail or reach the null entry.
1185	 */
1186	while (test->reg) {
1187		for (i = 0; i < test->array_len; i++) {
1188			switch (test->test_type) {
1189			case PATTERN_TEST:
1190				REG_PATTERN_TEST(test->reg +
1191						(i * test->reg_offset),
1192						test->mask,
1193						test->write);
1194				break;
1195			case SET_READ_TEST:
1196				REG_SET_AND_CHECK(test->reg +
1197						(i * test->reg_offset),
1198						test->mask,
1199						test->write);
1200				break;
1201			case WRITE_NO_TEST:
1202				writel(test->write,
1203				    (adapter->hw.hw_addr + test->reg)
1204					+ (i * test->reg_offset));
1205				break;
1206			case TABLE32_TEST:
1207				REG_PATTERN_TEST(test->reg + (i * 4),
1208						test->mask,
1209						test->write);
1210				break;
1211			case TABLE64_TEST_LO:
1212				REG_PATTERN_TEST(test->reg + (i * 8),
1213						test->mask,
1214						test->write);
1215				break;
1216			case TABLE64_TEST_HI:
1217				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1218						test->mask,
1219						test->write);
1220				break;
1221			}
1222		}
1223		test++;
1224	}
1225
1226	*data = 0;
1227	return 0;
1228}
1229
1230static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1231{
1232	*data = 0;
1233
1234	/* Validate eeprom on all parts but i211 */
1235	if (adapter->hw.mac.type != e1000_i211) {
1236		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1237			*data = 2;
1238	}
1239
1240	return *data;
1241}
1242
1243static irqreturn_t igb_test_intr(int irq, void *data)
1244{
1245	struct igb_adapter *adapter = (struct igb_adapter *) data;
1246	struct e1000_hw *hw = &adapter->hw;
1247
1248	adapter->test_icr |= rd32(E1000_ICR);
1249
1250	return IRQ_HANDLED;
1251}
1252
1253static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1254{
1255	struct e1000_hw *hw = &adapter->hw;
1256	struct net_device *netdev = adapter->netdev;
1257	u32 mask, ics_mask, i = 0, shared_int = true;
1258	u32 irq = adapter->pdev->irq;
1259
1260	*data = 0;
1261
1262	/* Hook up test interrupt handler just for this test */
1263	if (adapter->msix_entries) {
1264		if (request_irq(adapter->msix_entries[0].vector,
1265		                igb_test_intr, 0, netdev->name, adapter)) {
1266			*data = 1;
1267			return -1;
1268		}
1269	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1270		shared_int = false;
1271		if (request_irq(irq,
1272		                igb_test_intr, 0, netdev->name, adapter)) {
1273			*data = 1;
1274			return -1;
1275		}
1276	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1277				netdev->name, adapter)) {
1278		shared_int = false;
1279	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1280		 netdev->name, adapter)) {
1281		*data = 1;
1282		return -1;
1283	}
1284	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1285		(shared_int ? "shared" : "unshared"));
1286
1287	/* Disable all the interrupts */
1288	wr32(E1000_IMC, ~0);
1289	wrfl();
1290	msleep(10);
1291
1292	/* Define all writable bits for ICS */
1293	switch (hw->mac.type) {
1294	case e1000_82575:
1295		ics_mask = 0x37F47EDD;
1296		break;
1297	case e1000_82576:
1298		ics_mask = 0x77D4FBFD;
1299		break;
1300	case e1000_82580:
1301		ics_mask = 0x77DCFED5;
1302		break;
1303	case e1000_i350:
1304	case e1000_i210:
1305	case e1000_i211:
1306		ics_mask = 0x77DCFED5;
1307		break;
1308	default:
1309		ics_mask = 0x7FFFFFFF;
1310		break;
1311	}
1312
1313	/* Test each interrupt */
1314	for (; i < 31; i++) {
1315		/* Interrupt to test */
1316		mask = 1 << i;
1317
1318		if (!(mask & ics_mask))
1319			continue;
1320
1321		if (!shared_int) {
1322			/* Disable the interrupt to be reported in
1323			 * the cause register and then force the same
1324			 * interrupt and see if one gets posted.  If
1325			 * an interrupt was posted to the bus, the
1326			 * test failed.
1327			 */
1328			adapter->test_icr = 0;
1329
1330			/* Flush any pending interrupts */
1331			wr32(E1000_ICR, ~0);
1332
1333			wr32(E1000_IMC, mask);
1334			wr32(E1000_ICS, mask);
1335			wrfl();
1336			msleep(10);
1337
1338			if (adapter->test_icr & mask) {
1339				*data = 3;
1340				break;
1341			}
1342		}
1343
1344		/* Enable the interrupt to be reported in
1345		 * the cause register and then force the same
1346		 * interrupt and see if one gets posted.  If
1347		 * an interrupt was not posted to the bus, the
1348		 * test failed.
1349		 */
1350		adapter->test_icr = 0;
1351
1352		/* Flush any pending interrupts */
1353		wr32(E1000_ICR, ~0);
1354
1355		wr32(E1000_IMS, mask);
1356		wr32(E1000_ICS, mask);
1357		wrfl();
1358		msleep(10);
1359
1360		if (!(adapter->test_icr & mask)) {
1361			*data = 4;
1362			break;
1363		}
1364
1365		if (!shared_int) {
1366			/* Disable the other interrupts to be reported in
1367			 * the cause register and then force the other
1368			 * interrupts and see if any get posted.  If
1369			 * an interrupt was posted to the bus, the
1370			 * test failed.
1371			 */
1372			adapter->test_icr = 0;
1373
1374			/* Flush any pending interrupts */
1375			wr32(E1000_ICR, ~0);
1376
1377			wr32(E1000_IMC, ~mask);
1378			wr32(E1000_ICS, ~mask);
1379			wrfl();
1380			msleep(10);
1381
1382			if (adapter->test_icr & mask) {
1383				*data = 5;
1384				break;
1385			}
1386		}
1387	}
1388
1389	/* Disable all the interrupts */
1390	wr32(E1000_IMC, ~0);
1391	wrfl();
1392	msleep(10);
1393
1394	/* Unhook test interrupt handler */
1395	if (adapter->msix_entries)
1396		free_irq(adapter->msix_entries[0].vector, adapter);
1397	else
1398		free_irq(irq, adapter);
1399
1400	return *data;
1401}
1402
1403static void igb_free_desc_rings(struct igb_adapter *adapter)
1404{
1405	igb_free_tx_resources(&adapter->test_tx_ring);
1406	igb_free_rx_resources(&adapter->test_rx_ring);
1407}
1408
1409static int igb_setup_desc_rings(struct igb_adapter *adapter)
1410{
1411	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1412	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1413	struct e1000_hw *hw = &adapter->hw;
1414	int ret_val;
1415
1416	/* Setup Tx descriptor ring and Tx buffers */
1417	tx_ring->count = IGB_DEFAULT_TXD;
1418	tx_ring->dev = &adapter->pdev->dev;
1419	tx_ring->netdev = adapter->netdev;
1420	tx_ring->reg_idx = adapter->vfs_allocated_count;
1421
1422	if (igb_setup_tx_resources(tx_ring)) {
1423		ret_val = 1;
1424		goto err_nomem;
1425	}
1426
1427	igb_setup_tctl(adapter);
1428	igb_configure_tx_ring(adapter, tx_ring);
1429
1430	/* Setup Rx descriptor ring and Rx buffers */
1431	rx_ring->count = IGB_DEFAULT_RXD;
1432	rx_ring->dev = &adapter->pdev->dev;
1433	rx_ring->netdev = adapter->netdev;
1434	rx_ring->reg_idx = adapter->vfs_allocated_count;
1435
1436	if (igb_setup_rx_resources(rx_ring)) {
1437		ret_val = 3;
1438		goto err_nomem;
1439	}
1440
1441	/* set the default queue to queue 0 of PF */
1442	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1443
1444	/* enable receive ring */
1445	igb_setup_rctl(adapter);
1446	igb_configure_rx_ring(adapter, rx_ring);
1447
1448	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1449
1450	return 0;
1451
1452err_nomem:
1453	igb_free_desc_rings(adapter);
1454	return ret_val;
1455}
1456
1457static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1458{
1459	struct e1000_hw *hw = &adapter->hw;
1460
1461	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1462	igb_write_phy_reg(hw, 29, 0x001F);
1463	igb_write_phy_reg(hw, 30, 0x8FFC);
1464	igb_write_phy_reg(hw, 29, 0x001A);
1465	igb_write_phy_reg(hw, 30, 0x8FF0);
1466}
1467
1468static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1469{
1470	struct e1000_hw *hw = &adapter->hw;
1471	u32 ctrl_reg = 0;
1472	u16 phy_reg = 0;
1473
1474	hw->mac.autoneg = false;
1475
1476	switch (hw->phy.type) {
1477	case e1000_phy_m88:
1478		/* Auto-MDI/MDIX Off */
1479		igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1480		/* reset to update Auto-MDI/MDIX */
1481		igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1482		/* autoneg off */
1483		igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1484		break;
1485	case e1000_phy_82580:
1486		/* enable MII loopback */
1487		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1488		break;
1489	case e1000_phy_i210:
1490		/* set loopback speed in PHY */
1491		igb_read_phy_reg(hw, (GS40G_PAGE_SELECT & GS40G_PAGE_2),
1492					&phy_reg);
1493		phy_reg |= GS40G_MAC_SPEED_1G;
1494		igb_write_phy_reg(hw, (GS40G_PAGE_SELECT & GS40G_PAGE_2),
1495					phy_reg);
1496		ctrl_reg = rd32(E1000_CTRL_EXT);
1497	default:
1498		break;
1499	}
1500
1501	/* force 1000, set loopback */
1502	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1503
1504	/* Now set up the MAC to the same speed/duplex as the PHY. */
1505	ctrl_reg = rd32(E1000_CTRL);
1506	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1507	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1508		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1509		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1510		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1511		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1512
1513	if ((hw->phy.type == e1000_phy_m88) || (hw->phy.type == e1000_phy_i210))
1514		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1515
1516	wr32(E1000_CTRL, ctrl_reg);
1517
1518	/* Disable the receiver on the PHY so when a cable is plugged in, the
1519	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1520	 */
1521	if ((hw->phy.type == e1000_phy_m88) || (hw->phy.type == e1000_phy_i210))
1522		igb_phy_disable_receiver(adapter);
1523
1524	udelay(500);
1525
1526	return 0;
1527}
1528
1529static int igb_set_phy_loopback(struct igb_adapter *adapter)
1530{
1531	return igb_integrated_phy_loopback(adapter);
1532}
1533
1534static int igb_setup_loopback_test(struct igb_adapter *adapter)
1535{
1536	struct e1000_hw *hw = &adapter->hw;
1537	u32 reg;
1538
1539	reg = rd32(E1000_CTRL_EXT);
1540
1541	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1542	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1543		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1544		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1545		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1546		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1547
1548			/* Enable DH89xxCC MPHY for near end loopback */
1549			reg = rd32(E1000_MPHY_ADDR_CTL);
1550			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1551			E1000_MPHY_PCS_CLK_REG_OFFSET;
1552			wr32(E1000_MPHY_ADDR_CTL, reg);
1553
1554			reg = rd32(E1000_MPHY_DATA);
1555			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1556			wr32(E1000_MPHY_DATA, reg);
1557		}
1558
1559		reg = rd32(E1000_RCTL);
1560		reg |= E1000_RCTL_LBM_TCVR;
1561		wr32(E1000_RCTL, reg);
1562
1563		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1564
1565		reg = rd32(E1000_CTRL);
1566		reg &= ~(E1000_CTRL_RFCE |
1567			 E1000_CTRL_TFCE |
1568			 E1000_CTRL_LRST);
1569		reg |= E1000_CTRL_SLU |
1570		       E1000_CTRL_FD;
1571		wr32(E1000_CTRL, reg);
1572
1573		/* Unset switch control to serdes energy detect */
1574		reg = rd32(E1000_CONNSW);
1575		reg &= ~E1000_CONNSW_ENRGSRC;
1576		wr32(E1000_CONNSW, reg);
1577
1578		/* Set PCS register for forced speed */
1579		reg = rd32(E1000_PCS_LCTL);
1580		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1581		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1582		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1583		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1584		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1585		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1586		wr32(E1000_PCS_LCTL, reg);
1587
1588		return 0;
1589	}
1590
1591	return igb_set_phy_loopback(adapter);
1592}
1593
1594static void igb_loopback_cleanup(struct igb_adapter *adapter)
1595{
1596	struct e1000_hw *hw = &adapter->hw;
1597	u32 rctl;
1598	u16 phy_reg;
1599
1600	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1601	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1602	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1603	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1604		u32 reg;
1605
1606		/* Disable near end loopback on DH89xxCC */
1607		reg = rd32(E1000_MPHY_ADDR_CTL);
1608		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1609		E1000_MPHY_PCS_CLK_REG_OFFSET;
1610		wr32(E1000_MPHY_ADDR_CTL, reg);
1611
1612		reg = rd32(E1000_MPHY_DATA);
1613		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1614		wr32(E1000_MPHY_DATA, reg);
1615	}
1616
1617	rctl = rd32(E1000_RCTL);
1618	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1619	wr32(E1000_RCTL, rctl);
1620
1621	hw->mac.autoneg = true;
1622	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1623	if (phy_reg & MII_CR_LOOPBACK) {
1624		phy_reg &= ~MII_CR_LOOPBACK;
1625		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1626		igb_phy_sw_reset(hw);
1627	}
1628}
1629
1630static void igb_create_lbtest_frame(struct sk_buff *skb,
1631				    unsigned int frame_size)
1632{
1633	memset(skb->data, 0xFF, frame_size);
1634	frame_size /= 2;
1635	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1636	memset(&skb->data[frame_size + 10], 0xBE, 1);
1637	memset(&skb->data[frame_size + 12], 0xAF, 1);
1638}
1639
1640static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1641{
1642	frame_size /= 2;
1643	if (*(skb->data + 3) == 0xFF) {
1644		if ((*(skb->data + frame_size + 10) == 0xBE) &&
1645		   (*(skb->data + frame_size + 12) == 0xAF)) {
1646			return 0;
1647		}
1648	}
1649	return 13;
1650}
1651
1652static int igb_clean_test_rings(struct igb_ring *rx_ring,
1653                                struct igb_ring *tx_ring,
1654                                unsigned int size)
1655{
1656	union e1000_adv_rx_desc *rx_desc;
1657	struct igb_rx_buffer *rx_buffer_info;
1658	struct igb_tx_buffer *tx_buffer_info;
1659	struct netdev_queue *txq;
1660	u16 rx_ntc, tx_ntc, count = 0;
1661	unsigned int total_bytes = 0, total_packets = 0;
1662
1663	/* initialize next to clean and descriptor values */
1664	rx_ntc = rx_ring->next_to_clean;
1665	tx_ntc = tx_ring->next_to_clean;
1666	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1667
1668	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1669		/* check rx buffer */
1670		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1671
1672		/* unmap rx buffer, will be remapped by alloc_rx_buffers */
1673		dma_unmap_single(rx_ring->dev,
1674				 rx_buffer_info->dma,
1675				 IGB_RX_HDR_LEN,
1676				 DMA_FROM_DEVICE);
1677		rx_buffer_info->dma = 0;
1678
1679		/* verify contents of skb */
1680		if (!igb_check_lbtest_frame(rx_buffer_info->skb, size))
1681			count++;
1682
1683		/* unmap buffer on tx side */
1684		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1685		total_bytes += tx_buffer_info->bytecount;
1686		total_packets += tx_buffer_info->gso_segs;
1687		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1688
1689		/* increment rx/tx next to clean counters */
1690		rx_ntc++;
1691		if (rx_ntc == rx_ring->count)
1692			rx_ntc = 0;
1693		tx_ntc++;
1694		if (tx_ntc == tx_ring->count)
1695			tx_ntc = 0;
1696
1697		/* fetch next descriptor */
1698		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1699	}
1700
1701	txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->queue_index);
1702	netdev_tx_completed_queue(txq, total_packets, total_bytes);
1703
1704	/* re-map buffers to ring, store next to clean values */
1705	igb_alloc_rx_buffers(rx_ring, count);
1706	rx_ring->next_to_clean = rx_ntc;
1707	tx_ring->next_to_clean = tx_ntc;
1708
1709	return count;
1710}
1711
1712static int igb_run_loopback_test(struct igb_adapter *adapter)
1713{
1714	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1715	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1716	u16 i, j, lc, good_cnt;
1717	int ret_val = 0;
1718	unsigned int size = IGB_RX_HDR_LEN;
1719	netdev_tx_t tx_ret_val;
1720	struct sk_buff *skb;
1721
1722	/* allocate test skb */
1723	skb = alloc_skb(size, GFP_KERNEL);
1724	if (!skb)
1725		return 11;
1726
1727	/* place data into test skb */
1728	igb_create_lbtest_frame(skb, size);
1729	skb_put(skb, size);
1730
1731	/*
1732	 * Calculate the loop count based on the largest descriptor ring
1733	 * The idea is to wrap the largest ring a number of times using 64
1734	 * send/receive pairs during each loop
1735	 */
1736
1737	if (rx_ring->count <= tx_ring->count)
1738		lc = ((tx_ring->count / 64) * 2) + 1;
1739	else
1740		lc = ((rx_ring->count / 64) * 2) + 1;
1741
1742	for (j = 0; j <= lc; j++) { /* loop count loop */
1743		/* reset count of good packets */
1744		good_cnt = 0;
1745
1746		/* place 64 packets on the transmit queue*/
1747		for (i = 0; i < 64; i++) {
1748			skb_get(skb);
1749			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1750			if (tx_ret_val == NETDEV_TX_OK)
1751				good_cnt++;
1752		}
1753
1754		if (good_cnt != 64) {
1755			ret_val = 12;
1756			break;
1757		}
1758
1759		/* allow 200 milliseconds for packets to go from tx to rx */
1760		msleep(200);
1761
1762		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1763		if (good_cnt != 64) {
1764			ret_val = 13;
1765			break;
1766		}
1767	} /* end loop count loop */
1768
1769	/* free the original skb */
1770	kfree_skb(skb);
1771
1772	return ret_val;
1773}
1774
1775static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1776{
1777	/* PHY loopback cannot be performed if SoL/IDER
1778	 * sessions are active */
1779	if (igb_check_reset_block(&adapter->hw)) {
1780		dev_err(&adapter->pdev->dev,
1781			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1782		*data = 0;
1783		goto out;
1784	}
1785	if ((adapter->hw.mac.type == e1000_i210)
1786		|| (adapter->hw.mac.type == e1000_i211)) {
1787		dev_err(&adapter->pdev->dev,
1788			"Loopback test not supported on this part at this time.\n");
1789		*data = 0;
1790		goto out;
1791	}
1792	*data = igb_setup_desc_rings(adapter);
1793	if (*data)
1794		goto out;
1795	*data = igb_setup_loopback_test(adapter);
1796	if (*data)
1797		goto err_loopback;
1798	*data = igb_run_loopback_test(adapter);
1799	igb_loopback_cleanup(adapter);
1800
1801err_loopback:
1802	igb_free_desc_rings(adapter);
1803out:
1804	return *data;
1805}
1806
1807static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1808{
1809	struct e1000_hw *hw = &adapter->hw;
1810	*data = 0;
1811	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1812		int i = 0;
1813		hw->mac.serdes_has_link = false;
1814
1815		/* On some blade server designs, link establishment
1816		 * could take as long as 2-3 minutes */
1817		do {
1818			hw->mac.ops.check_for_link(&adapter->hw);
1819			if (hw->mac.serdes_has_link)
1820				return *data;
1821			msleep(20);
1822		} while (i++ < 3750);
1823
1824		*data = 1;
1825	} else {
1826		hw->mac.ops.check_for_link(&adapter->hw);
1827		if (hw->mac.autoneg)
1828			msleep(4000);
1829
1830		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1831			*data = 1;
1832	}
1833	return *data;
1834}
1835
1836static void igb_diag_test(struct net_device *netdev,
1837			  struct ethtool_test *eth_test, u64 *data)
1838{
1839	struct igb_adapter *adapter = netdev_priv(netdev);
1840	u16 autoneg_advertised;
1841	u8 forced_speed_duplex, autoneg;
1842	bool if_running = netif_running(netdev);
1843
1844	set_bit(__IGB_TESTING, &adapter->state);
1845	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1846		/* Offline tests */
1847
1848		/* save speed, duplex, autoneg settings */
1849		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1850		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1851		autoneg = adapter->hw.mac.autoneg;
1852
1853		dev_info(&adapter->pdev->dev, "offline testing starting\n");
1854
1855		/* power up link for link test */
1856		igb_power_up_link(adapter);
1857
1858		/* Link test performed before hardware reset so autoneg doesn't
1859		 * interfere with test result */
1860		if (igb_link_test(adapter, &data[4]))
1861			eth_test->flags |= ETH_TEST_FL_FAILED;
1862
1863		if (if_running)
1864			/* indicate we're in test mode */
1865			dev_close(netdev);
1866		else
1867			igb_reset(adapter);
1868
1869		if (igb_reg_test(adapter, &data[0]))
1870			eth_test->flags |= ETH_TEST_FL_FAILED;
1871
1872		igb_reset(adapter);
1873		if (igb_eeprom_test(adapter, &data[1]))
1874			eth_test->flags |= ETH_TEST_FL_FAILED;
1875
1876		igb_reset(adapter);
1877		if (igb_intr_test(adapter, &data[2]))
1878			eth_test->flags |= ETH_TEST_FL_FAILED;
1879
1880		igb_reset(adapter);
1881		/* power up link for loopback test */
1882		igb_power_up_link(adapter);
1883		if (igb_loopback_test(adapter, &data[3]))
1884			eth_test->flags |= ETH_TEST_FL_FAILED;
1885
1886		/* restore speed, duplex, autoneg settings */
1887		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1888		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1889		adapter->hw.mac.autoneg = autoneg;
1890
1891		/* force this routine to wait until autoneg complete/timeout */
1892		adapter->hw.phy.autoneg_wait_to_complete = true;
1893		igb_reset(adapter);
1894		adapter->hw.phy.autoneg_wait_to_complete = false;
1895
1896		clear_bit(__IGB_TESTING, &adapter->state);
1897		if (if_running)
1898			dev_open(netdev);
1899	} else {
1900		dev_info(&adapter->pdev->dev, "online testing starting\n");
1901
1902		/* PHY is powered down when interface is down */
1903		if (if_running && igb_link_test(adapter, &data[4]))
1904			eth_test->flags |= ETH_TEST_FL_FAILED;
1905		else
1906			data[4] = 0;
1907
1908		/* Online tests aren't run; pass by default */
1909		data[0] = 0;
1910		data[1] = 0;
1911		data[2] = 0;
1912		data[3] = 0;
1913
1914		clear_bit(__IGB_TESTING, &adapter->state);
1915	}
1916	msleep_interruptible(4 * 1000);
1917}
1918
1919static int igb_wol_exclusion(struct igb_adapter *adapter,
1920			     struct ethtool_wolinfo *wol)
1921{
1922	struct e1000_hw *hw = &adapter->hw;
1923	int retval = 1; /* fail by default */
1924
1925	switch (hw->device_id) {
1926	case E1000_DEV_ID_82575GB_QUAD_COPPER:
1927		/* WoL not supported */
1928		wol->supported = 0;
1929		break;
1930	case E1000_DEV_ID_82575EB_FIBER_SERDES:
1931	case E1000_DEV_ID_82576_FIBER:
1932	case E1000_DEV_ID_82576_SERDES:
1933		/* Wake events not supported on port B */
1934		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1935			wol->supported = 0;
1936			break;
1937		}
1938		/* return success for non excluded adapter ports */
1939		retval = 0;
1940		break;
1941	case E1000_DEV_ID_82576_QUAD_COPPER:
1942	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1943		/* quad port adapters only support WoL on port A */
1944		if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1945			wol->supported = 0;
1946			break;
1947		}
1948		/* return success for non excluded adapter ports */
1949		retval = 0;
1950		break;
1951	default:
1952		/* dual port cards only support WoL on port A from now on
1953		 * unless it was enabled in the eeprom for port B
1954		 * so exclude FUNC_1 ports from having WoL enabled */
1955		if ((rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) &&
1956		    !adapter->eeprom_wol) {
1957			wol->supported = 0;
1958			break;
1959		}
1960
1961		retval = 0;
1962	}
1963
1964	return retval;
1965}
1966
1967static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1968{
1969	struct igb_adapter *adapter = netdev_priv(netdev);
1970
1971	wol->supported = WAKE_UCAST | WAKE_MCAST |
1972	                 WAKE_BCAST | WAKE_MAGIC |
1973	                 WAKE_PHY;
1974	wol->wolopts = 0;
1975
1976	/* this function will set ->supported = 0 and return 1 if wol is not
1977	 * supported by this hardware */
1978	if (igb_wol_exclusion(adapter, wol) ||
1979	    !device_can_wakeup(&adapter->pdev->dev))
1980		return;
1981
1982	/* apply any specific unsupported masks here */
1983	switch (adapter->hw.device_id) {
1984	default:
1985		break;
1986	}
1987
1988	if (adapter->wol & E1000_WUFC_EX)
1989		wol->wolopts |= WAKE_UCAST;
1990	if (adapter->wol & E1000_WUFC_MC)
1991		wol->wolopts |= WAKE_MCAST;
1992	if (adapter->wol & E1000_WUFC_BC)
1993		wol->wolopts |= WAKE_BCAST;
1994	if (adapter->wol & E1000_WUFC_MAG)
1995		wol->wolopts |= WAKE_MAGIC;
1996	if (adapter->wol & E1000_WUFC_LNKC)
1997		wol->wolopts |= WAKE_PHY;
1998}
1999
2000static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2001{
2002	struct igb_adapter *adapter = netdev_priv(netdev);
2003
2004	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2005		return -EOPNOTSUPP;
2006
2007	if (igb_wol_exclusion(adapter, wol) ||
2008	    !device_can_wakeup(&adapter->pdev->dev))
2009		return wol->wolopts ? -EOPNOTSUPP : 0;
2010
2011	/* these settings will always override what we currently have */
2012	adapter->wol = 0;
2013
2014	if (wol->wolopts & WAKE_UCAST)
2015		adapter->wol |= E1000_WUFC_EX;
2016	if (wol->wolopts & WAKE_MCAST)
2017		adapter->wol |= E1000_WUFC_MC;
2018	if (wol->wolopts & WAKE_BCAST)
2019		adapter->wol |= E1000_WUFC_BC;
2020	if (wol->wolopts & WAKE_MAGIC)
2021		adapter->wol |= E1000_WUFC_MAG;
2022	if (wol->wolopts & WAKE_PHY)
2023		adapter->wol |= E1000_WUFC_LNKC;
2024	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2025
2026	return 0;
2027}
2028
2029/* bit defines for adapter->led_status */
2030#define IGB_LED_ON		0
2031
2032static int igb_set_phys_id(struct net_device *netdev,
2033			   enum ethtool_phys_id_state state)
2034{
2035	struct igb_adapter *adapter = netdev_priv(netdev);
2036	struct e1000_hw *hw = &adapter->hw;
2037
2038	switch (state) {
2039	case ETHTOOL_ID_ACTIVE:
2040		igb_blink_led(hw);
2041		return 2;
2042	case ETHTOOL_ID_ON:
2043		igb_blink_led(hw);
2044		break;
2045	case ETHTOOL_ID_OFF:
2046		igb_led_off(hw);
2047		break;
2048	case ETHTOOL_ID_INACTIVE:
2049		igb_led_off(hw);
2050		clear_bit(IGB_LED_ON, &adapter->led_status);
2051		igb_cleanup_led(hw);
2052		break;
2053	}
2054
2055	return 0;
2056}
2057
2058static int igb_set_coalesce(struct net_device *netdev,
2059			    struct ethtool_coalesce *ec)
2060{
2061	struct igb_adapter *adapter = netdev_priv(netdev);
2062	int i;
2063
2064	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2065	    ((ec->rx_coalesce_usecs > 3) &&
2066	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2067	    (ec->rx_coalesce_usecs == 2))
2068		return -EINVAL;
2069
2070	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2071	    ((ec->tx_coalesce_usecs > 3) &&
2072	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2073	    (ec->tx_coalesce_usecs == 2))
2074		return -EINVAL;
2075
2076	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2077		return -EINVAL;
2078
2079	/* If ITR is disabled, disable DMAC */
2080	if (ec->rx_coalesce_usecs == 0) {
2081		if (adapter->flags & IGB_FLAG_DMAC)
2082			adapter->flags &= ~IGB_FLAG_DMAC;
2083	}
2084
2085	/* convert to rate of irq's per second */
2086	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2087		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2088	else
2089		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2090
2091	/* convert to rate of irq's per second */
2092	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2093		adapter->tx_itr_setting = adapter->rx_itr_setting;
2094	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2095		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2096	else
2097		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2098
2099	for (i = 0; i < adapter->num_q_vectors; i++) {
2100		struct igb_q_vector *q_vector = adapter->q_vector[i];
2101		q_vector->tx.work_limit = adapter->tx_work_limit;
2102		if (q_vector->rx.ring)
2103			q_vector->itr_val = adapter->rx_itr_setting;
2104		else
2105			q_vector->itr_val = adapter->tx_itr_setting;
2106		if (q_vector->itr_val && q_vector->itr_val <= 3)
2107			q_vector->itr_val = IGB_START_ITR;
2108		q_vector->set_itr = 1;
2109	}
2110
2111	return 0;
2112}
2113
2114static int igb_get_coalesce(struct net_device *netdev,
2115			    struct ethtool_coalesce *ec)
2116{
2117	struct igb_adapter *adapter = netdev_priv(netdev);
2118
2119	if (adapter->rx_itr_setting <= 3)
2120		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2121	else
2122		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2123
2124	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2125		if (adapter->tx_itr_setting <= 3)
2126			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2127		else
2128			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2129	}
2130
2131	return 0;
2132}
2133
2134static int igb_nway_reset(struct net_device *netdev)
2135{
2136	struct igb_adapter *adapter = netdev_priv(netdev);
2137	if (netif_running(netdev))
2138		igb_reinit_locked(adapter);
2139	return 0;
2140}
2141
2142static int igb_get_sset_count(struct net_device *netdev, int sset)
2143{
2144	switch (sset) {
2145	case ETH_SS_STATS:
2146		return IGB_STATS_LEN;
2147	case ETH_SS_TEST:
2148		return IGB_TEST_LEN;
2149	default:
2150		return -ENOTSUPP;
2151	}
2152}
2153
2154static void igb_get_ethtool_stats(struct net_device *netdev,
2155				  struct ethtool_stats *stats, u64 *data)
2156{
2157	struct igb_adapter *adapter = netdev_priv(netdev);
2158	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2159	unsigned int start;
2160	struct igb_ring *ring;
2161	int i, j;
2162	char *p;
2163
2164	spin_lock(&adapter->stats64_lock);
2165	igb_update_stats(adapter, net_stats);
2166
2167	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2168		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2169		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2170			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2171	}
2172	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2173		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2174		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2175			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2176	}
2177	for (j = 0; j < adapter->num_tx_queues; j++) {
2178		u64	restart2;
2179
2180		ring = adapter->tx_ring[j];
2181		do {
2182			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2183			data[i]   = ring->tx_stats.packets;
2184			data[i+1] = ring->tx_stats.bytes;
2185			data[i+2] = ring->tx_stats.restart_queue;
2186		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2187		do {
2188			start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2189			restart2  = ring->tx_stats.restart_queue2;
2190		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2191		data[i+2] += restart2;
2192
2193		i += IGB_TX_QUEUE_STATS_LEN;
2194	}
2195	for (j = 0; j < adapter->num_rx_queues; j++) {
2196		ring = adapter->rx_ring[j];
2197		do {
2198			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2199			data[i]   = ring->rx_stats.packets;
2200			data[i+1] = ring->rx_stats.bytes;
2201			data[i+2] = ring->rx_stats.drops;
2202			data[i+3] = ring->rx_stats.csum_err;
2203			data[i+4] = ring->rx_stats.alloc_failed;
2204		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2205		i += IGB_RX_QUEUE_STATS_LEN;
2206	}
2207	spin_unlock(&adapter->stats64_lock);
2208}
2209
2210static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2211{
2212	struct igb_adapter *adapter = netdev_priv(netdev);
2213	u8 *p = data;
2214	int i;
2215
2216	switch (stringset) {
2217	case ETH_SS_TEST:
2218		memcpy(data, *igb_gstrings_test,
2219			IGB_TEST_LEN*ETH_GSTRING_LEN);
2220		break;
2221	case ETH_SS_STATS:
2222		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2223			memcpy(p, igb_gstrings_stats[i].stat_string,
2224			       ETH_GSTRING_LEN);
2225			p += ETH_GSTRING_LEN;
2226		}
2227		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2228			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2229			       ETH_GSTRING_LEN);
2230			p += ETH_GSTRING_LEN;
2231		}
2232		for (i = 0; i < adapter->num_tx_queues; i++) {
2233			sprintf(p, "tx_queue_%u_packets", i);
2234			p += ETH_GSTRING_LEN;
2235			sprintf(p, "tx_queue_%u_bytes", i);
2236			p += ETH_GSTRING_LEN;
2237			sprintf(p, "tx_queue_%u_restart", i);
2238			p += ETH_GSTRING_LEN;
2239		}
2240		for (i = 0; i < adapter->num_rx_queues; i++) {
2241			sprintf(p, "rx_queue_%u_packets", i);
2242			p += ETH_GSTRING_LEN;
2243			sprintf(p, "rx_queue_%u_bytes", i);
2244			p += ETH_GSTRING_LEN;
2245			sprintf(p, "rx_queue_%u_drops", i);
2246			p += ETH_GSTRING_LEN;
2247			sprintf(p, "rx_queue_%u_csum_err", i);
2248			p += ETH_GSTRING_LEN;
2249			sprintf(p, "rx_queue_%u_alloc_failed", i);
2250			p += ETH_GSTRING_LEN;
2251		}
2252/*		BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2253		break;
2254	}
2255}
2256
2257static int igb_ethtool_begin(struct net_device *netdev)
2258{
2259	struct igb_adapter *adapter = netdev_priv(netdev);
2260	pm_runtime_get_sync(&adapter->pdev->dev);
2261	return 0;
2262}
2263
2264static void igb_ethtool_complete(struct net_device *netdev)
2265{
2266	struct igb_adapter *adapter = netdev_priv(netdev);
2267	pm_runtime_put(&adapter->pdev->dev);
2268}
2269
2270#ifdef CONFIG_IGB_PTP
2271static int igb_ethtool_get_ts_info(struct net_device *dev,
2272				   struct ethtool_ts_info *info)
2273{
2274	struct igb_adapter *adapter = netdev_priv(dev);
2275
2276	info->so_timestamping =
2277		SOF_TIMESTAMPING_TX_HARDWARE |
2278		SOF_TIMESTAMPING_RX_HARDWARE |
2279		SOF_TIMESTAMPING_RAW_HARDWARE;
2280
2281	if (adapter->ptp_clock)
2282		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2283	else
2284		info->phc_index = -1;
2285
2286	info->tx_types =
2287		(1 << HWTSTAMP_TX_OFF) |
2288		(1 << HWTSTAMP_TX_ON);
2289
2290	info->rx_filters =
2291		(1 << HWTSTAMP_FILTER_NONE) |
2292		(1 << HWTSTAMP_FILTER_ALL) |
2293		(1 << HWTSTAMP_FILTER_SOME) |
2294		(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2295		(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2296		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2297
2298	return 0;
2299}
2300
2301#endif
2302static const struct ethtool_ops igb_ethtool_ops = {
2303	.get_settings           = igb_get_settings,
2304	.set_settings           = igb_set_settings,
2305	.get_drvinfo            = igb_get_drvinfo,
2306	.get_regs_len           = igb_get_regs_len,
2307	.get_regs               = igb_get_regs,
2308	.get_wol                = igb_get_wol,
2309	.set_wol                = igb_set_wol,
2310	.get_msglevel           = igb_get_msglevel,
2311	.set_msglevel           = igb_set_msglevel,
2312	.nway_reset             = igb_nway_reset,
2313	.get_link               = igb_get_link,
2314	.get_eeprom_len         = igb_get_eeprom_len,
2315	.get_eeprom             = igb_get_eeprom,
2316	.set_eeprom             = igb_set_eeprom,
2317	.get_ringparam          = igb_get_ringparam,
2318	.set_ringparam          = igb_set_ringparam,
2319	.get_pauseparam         = igb_get_pauseparam,
2320	.set_pauseparam         = igb_set_pauseparam,
2321	.self_test              = igb_diag_test,
2322	.get_strings            = igb_get_strings,
2323	.set_phys_id            = igb_set_phys_id,
2324	.get_sset_count         = igb_get_sset_count,
2325	.get_ethtool_stats      = igb_get_ethtool_stats,
2326	.get_coalesce           = igb_get_coalesce,
2327	.set_coalesce           = igb_set_coalesce,
2328	.begin			= igb_ethtool_begin,
2329	.complete		= igb_ethtool_complete,
2330#ifdef CONFIG_IGB_PTP
2331	.get_ts_info		= igb_ethtool_get_ts_info,
2332#endif
2333};
2334
2335void igb_set_ethtool_ops(struct net_device *netdev)
2336{
2337	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2338}
2339