igb_main.c revision 039454a818b4bfdb530d84b2cdcf014b2f4d2b53
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2012 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
33#include <linux/bitops.h>
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/netdevice.h>
37#include <linux/ipv6.h>
38#include <linux/slab.h>
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
41#include <linux/net_tstamp.h>
42#include <linux/mii.h>
43#include <linux/ethtool.h>
44#include <linux/if.h>
45#include <linux/if_vlan.h>
46#include <linux/pci.h>
47#include <linux/pci-aspm.h>
48#include <linux/delay.h>
49#include <linux/interrupt.h>
50#include <linux/ip.h>
51#include <linux/tcp.h>
52#include <linux/sctp.h>
53#include <linux/if_ether.h>
54#include <linux/aer.h>
55#include <linux/prefetch.h>
56#include <linux/pm_runtime.h>
57#ifdef CONFIG_IGB_DCA
58#include <linux/dca.h>
59#endif
60#include "igb.h"
61
62#define MAJ 4
63#define MIN 0
64#define BUILD 17
65#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66__stringify(BUILD) "-k"
67char igb_driver_name[] = "igb";
68char igb_driver_version[] = DRV_VERSION;
69static const char igb_driver_string[] =
70				"Intel(R) Gigabit Ethernet Network Driver";
71static const char igb_copyright[] = "Copyright (c) 2007-2012 Intel Corporation.";
72
73static const struct e1000_info *igb_info_tbl[] = {
74	[board_82575] = &e1000_82575_info,
75};
76
77static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
78	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
79	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
99	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
104	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
105	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
106	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
107	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
108	/* required last entry */
109	{0, }
110};
111
112MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
113
114void igb_reset(struct igb_adapter *);
115static int igb_setup_all_tx_resources(struct igb_adapter *);
116static int igb_setup_all_rx_resources(struct igb_adapter *);
117static void igb_free_all_tx_resources(struct igb_adapter *);
118static void igb_free_all_rx_resources(struct igb_adapter *);
119static void igb_setup_mrqc(struct igb_adapter *);
120static int igb_probe(struct pci_dev *, const struct pci_device_id *);
121static void __devexit igb_remove(struct pci_dev *pdev);
122static int igb_sw_init(struct igb_adapter *);
123static int igb_open(struct net_device *);
124static int igb_close(struct net_device *);
125static void igb_configure_tx(struct igb_adapter *);
126static void igb_configure_rx(struct igb_adapter *);
127static void igb_clean_all_tx_rings(struct igb_adapter *);
128static void igb_clean_all_rx_rings(struct igb_adapter *);
129static void igb_clean_tx_ring(struct igb_ring *);
130static void igb_clean_rx_ring(struct igb_ring *);
131static void igb_set_rx_mode(struct net_device *);
132static void igb_update_phy_info(unsigned long);
133static void igb_watchdog(unsigned long);
134static void igb_watchdog_task(struct work_struct *);
135static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
136static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
137						 struct rtnl_link_stats64 *stats);
138static int igb_change_mtu(struct net_device *, int);
139static int igb_set_mac(struct net_device *, void *);
140static void igb_set_uta(struct igb_adapter *adapter);
141static irqreturn_t igb_intr(int irq, void *);
142static irqreturn_t igb_intr_msi(int irq, void *);
143static irqreturn_t igb_msix_other(int irq, void *);
144static irqreturn_t igb_msix_ring(int irq, void *);
145#ifdef CONFIG_IGB_DCA
146static void igb_update_dca(struct igb_q_vector *);
147static void igb_setup_dca(struct igb_adapter *);
148#endif /* CONFIG_IGB_DCA */
149static int igb_poll(struct napi_struct *, int);
150static bool igb_clean_tx_irq(struct igb_q_vector *);
151static bool igb_clean_rx_irq(struct igb_q_vector *, int);
152static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
153static void igb_tx_timeout(struct net_device *);
154static void igb_reset_task(struct work_struct *);
155static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
156static int igb_vlan_rx_add_vid(struct net_device *, u16);
157static int igb_vlan_rx_kill_vid(struct net_device *, u16);
158static void igb_restore_vlan(struct igb_adapter *);
159static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
160static void igb_ping_all_vfs(struct igb_adapter *);
161static void igb_msg_task(struct igb_adapter *);
162static void igb_vmm_control(struct igb_adapter *);
163static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
164static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
165static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
166static int igb_ndo_set_vf_vlan(struct net_device *netdev,
167			       int vf, u16 vlan, u8 qos);
168static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
169static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
170				 struct ifla_vf_info *ivi);
171static void igb_check_vf_rate_limit(struct igb_adapter *);
172
173#ifdef CONFIG_PCI_IOV
174static int igb_vf_configure(struct igb_adapter *adapter, int vf);
175static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
176#endif
177
178#ifdef CONFIG_PM
179#ifdef CONFIG_PM_SLEEP
180static int igb_suspend(struct device *);
181#endif
182static int igb_resume(struct device *);
183#ifdef CONFIG_PM_RUNTIME
184static int igb_runtime_suspend(struct device *dev);
185static int igb_runtime_resume(struct device *dev);
186static int igb_runtime_idle(struct device *dev);
187#endif
188static const struct dev_pm_ops igb_pm_ops = {
189	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
191			igb_runtime_idle)
192};
193#endif
194static void igb_shutdown(struct pci_dev *);
195#ifdef CONFIG_IGB_DCA
196static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197static struct notifier_block dca_notifier = {
198	.notifier_call	= igb_notify_dca,
199	.next		= NULL,
200	.priority	= 0
201};
202#endif
203#ifdef CONFIG_NET_POLL_CONTROLLER
204/* for netdump / net console */
205static void igb_netpoll(struct net_device *);
206#endif
207#ifdef CONFIG_PCI_IOV
208static unsigned int max_vfs = 0;
209module_param(max_vfs, uint, 0);
210MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
211                 "per physical function");
212#endif /* CONFIG_PCI_IOV */
213
214static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
215		     pci_channel_state_t);
216static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
217static void igb_io_resume(struct pci_dev *);
218
219static const struct pci_error_handlers igb_err_handler = {
220	.error_detected = igb_io_error_detected,
221	.slot_reset = igb_io_slot_reset,
222	.resume = igb_io_resume,
223};
224
225static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
226
227static struct pci_driver igb_driver = {
228	.name     = igb_driver_name,
229	.id_table = igb_pci_tbl,
230	.probe    = igb_probe,
231	.remove   = __devexit_p(igb_remove),
232#ifdef CONFIG_PM
233	.driver.pm = &igb_pm_ops,
234#endif
235	.shutdown = igb_shutdown,
236	.err_handler = &igb_err_handler
237};
238
239MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
240MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
241MODULE_LICENSE("GPL");
242MODULE_VERSION(DRV_VERSION);
243
244#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
245static int debug = -1;
246module_param(debug, int, 0);
247MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
248
249struct igb_reg_info {
250	u32 ofs;
251	char *name;
252};
253
254static const struct igb_reg_info igb_reg_info_tbl[] = {
255
256	/* General Registers */
257	{E1000_CTRL, "CTRL"},
258	{E1000_STATUS, "STATUS"},
259	{E1000_CTRL_EXT, "CTRL_EXT"},
260
261	/* Interrupt Registers */
262	{E1000_ICR, "ICR"},
263
264	/* RX Registers */
265	{E1000_RCTL, "RCTL"},
266	{E1000_RDLEN(0), "RDLEN"},
267	{E1000_RDH(0), "RDH"},
268	{E1000_RDT(0), "RDT"},
269	{E1000_RXDCTL(0), "RXDCTL"},
270	{E1000_RDBAL(0), "RDBAL"},
271	{E1000_RDBAH(0), "RDBAH"},
272
273	/* TX Registers */
274	{E1000_TCTL, "TCTL"},
275	{E1000_TDBAL(0), "TDBAL"},
276	{E1000_TDBAH(0), "TDBAH"},
277	{E1000_TDLEN(0), "TDLEN"},
278	{E1000_TDH(0), "TDH"},
279	{E1000_TDT(0), "TDT"},
280	{E1000_TXDCTL(0), "TXDCTL"},
281	{E1000_TDFH, "TDFH"},
282	{E1000_TDFT, "TDFT"},
283	{E1000_TDFHS, "TDFHS"},
284	{E1000_TDFPC, "TDFPC"},
285
286	/* List Terminator */
287	{}
288};
289
290/*
291 * igb_regdump - register printout routine
292 */
293static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
294{
295	int n = 0;
296	char rname[16];
297	u32 regs[8];
298
299	switch (reginfo->ofs) {
300	case E1000_RDLEN(0):
301		for (n = 0; n < 4; n++)
302			regs[n] = rd32(E1000_RDLEN(n));
303		break;
304	case E1000_RDH(0):
305		for (n = 0; n < 4; n++)
306			regs[n] = rd32(E1000_RDH(n));
307		break;
308	case E1000_RDT(0):
309		for (n = 0; n < 4; n++)
310			regs[n] = rd32(E1000_RDT(n));
311		break;
312	case E1000_RXDCTL(0):
313		for (n = 0; n < 4; n++)
314			regs[n] = rd32(E1000_RXDCTL(n));
315		break;
316	case E1000_RDBAL(0):
317		for (n = 0; n < 4; n++)
318			regs[n] = rd32(E1000_RDBAL(n));
319		break;
320	case E1000_RDBAH(0):
321		for (n = 0; n < 4; n++)
322			regs[n] = rd32(E1000_RDBAH(n));
323		break;
324	case E1000_TDBAL(0):
325		for (n = 0; n < 4; n++)
326			regs[n] = rd32(E1000_RDBAL(n));
327		break;
328	case E1000_TDBAH(0):
329		for (n = 0; n < 4; n++)
330			regs[n] = rd32(E1000_TDBAH(n));
331		break;
332	case E1000_TDLEN(0):
333		for (n = 0; n < 4; n++)
334			regs[n] = rd32(E1000_TDLEN(n));
335		break;
336	case E1000_TDH(0):
337		for (n = 0; n < 4; n++)
338			regs[n] = rd32(E1000_TDH(n));
339		break;
340	case E1000_TDT(0):
341		for (n = 0; n < 4; n++)
342			regs[n] = rd32(E1000_TDT(n));
343		break;
344	case E1000_TXDCTL(0):
345		for (n = 0; n < 4; n++)
346			regs[n] = rd32(E1000_TXDCTL(n));
347		break;
348	default:
349		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
350		return;
351	}
352
353	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
354	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
355		regs[2], regs[3]);
356}
357
358/*
359 * igb_dump - Print registers, tx-rings and rx-rings
360 */
361static void igb_dump(struct igb_adapter *adapter)
362{
363	struct net_device *netdev = adapter->netdev;
364	struct e1000_hw *hw = &adapter->hw;
365	struct igb_reg_info *reginfo;
366	struct igb_ring *tx_ring;
367	union e1000_adv_tx_desc *tx_desc;
368	struct my_u0 { u64 a; u64 b; } *u0;
369	struct igb_ring *rx_ring;
370	union e1000_adv_rx_desc *rx_desc;
371	u32 staterr;
372	u16 i, n;
373
374	if (!netif_msg_hw(adapter))
375		return;
376
377	/* Print netdevice Info */
378	if (netdev) {
379		dev_info(&adapter->pdev->dev, "Net device Info\n");
380		pr_info("Device Name     state            trans_start      "
381			"last_rx\n");
382		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
383			netdev->state, netdev->trans_start, netdev->last_rx);
384	}
385
386	/* Print Registers */
387	dev_info(&adapter->pdev->dev, "Register Dump\n");
388	pr_info(" Register Name   Value\n");
389	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
390	     reginfo->name; reginfo++) {
391		igb_regdump(hw, reginfo);
392	}
393
394	/* Print TX Ring Summary */
395	if (!netdev || !netif_running(netdev))
396		goto exit;
397
398	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
399	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
400	for (n = 0; n < adapter->num_tx_queues; n++) {
401		struct igb_tx_buffer *buffer_info;
402		tx_ring = adapter->tx_ring[n];
403		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
404		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
405			n, tx_ring->next_to_use, tx_ring->next_to_clean,
406			(u64)dma_unmap_addr(buffer_info, dma),
407			dma_unmap_len(buffer_info, len),
408			buffer_info->next_to_watch,
409			(u64)buffer_info->time_stamp);
410	}
411
412	/* Print TX Rings */
413	if (!netif_msg_tx_done(adapter))
414		goto rx_ring_summary;
415
416	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
417
418	/* Transmit Descriptor Formats
419	 *
420	 * Advanced Transmit Descriptor
421	 *   +--------------------------------------------------------------+
422	 * 0 |         Buffer Address [63:0]                                |
423	 *   +--------------------------------------------------------------+
424	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
425	 *   +--------------------------------------------------------------+
426	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
427	 */
428
429	for (n = 0; n < adapter->num_tx_queues; n++) {
430		tx_ring = adapter->tx_ring[n];
431		pr_info("------------------------------------\n");
432		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
433		pr_info("------------------------------------\n");
434		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
435			"[bi->dma       ] leng  ntw timestamp        "
436			"bi->skb\n");
437
438		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
439			const char *next_desc;
440			struct igb_tx_buffer *buffer_info;
441			tx_desc = IGB_TX_DESC(tx_ring, i);
442			buffer_info = &tx_ring->tx_buffer_info[i];
443			u0 = (struct my_u0 *)tx_desc;
444			if (i == tx_ring->next_to_use &&
445			    i == tx_ring->next_to_clean)
446				next_desc = " NTC/U";
447			else if (i == tx_ring->next_to_use)
448				next_desc = " NTU";
449			else if (i == tx_ring->next_to_clean)
450				next_desc = " NTC";
451			else
452				next_desc = "";
453
454			pr_info("T [0x%03X]    %016llX %016llX %016llX"
455				" %04X  %p %016llX %p%s\n", i,
456				le64_to_cpu(u0->a),
457				le64_to_cpu(u0->b),
458				(u64)dma_unmap_addr(buffer_info, dma),
459				dma_unmap_len(buffer_info, len),
460				buffer_info->next_to_watch,
461				(u64)buffer_info->time_stamp,
462				buffer_info->skb, next_desc);
463
464			if (netif_msg_pktdata(adapter) && buffer_info->skb)
465				print_hex_dump(KERN_INFO, "",
466					DUMP_PREFIX_ADDRESS,
467					16, 1, buffer_info->skb->data,
468					dma_unmap_len(buffer_info, len),
469					true);
470		}
471	}
472
473	/* Print RX Rings Summary */
474rx_ring_summary:
475	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
476	pr_info("Queue [NTU] [NTC]\n");
477	for (n = 0; n < adapter->num_rx_queues; n++) {
478		rx_ring = adapter->rx_ring[n];
479		pr_info(" %5d %5X %5X\n",
480			n, rx_ring->next_to_use, rx_ring->next_to_clean);
481	}
482
483	/* Print RX Rings */
484	if (!netif_msg_rx_status(adapter))
485		goto exit;
486
487	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
488
489	/* Advanced Receive Descriptor (Read) Format
490	 *    63                                           1        0
491	 *    +-----------------------------------------------------+
492	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
493	 *    +----------------------------------------------+------+
494	 *  8 |       Header Buffer Address [63:1]           |  DD  |
495	 *    +-----------------------------------------------------+
496	 *
497	 *
498	 * Advanced Receive Descriptor (Write-Back) Format
499	 *
500	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
501	 *   +------------------------------------------------------+
502	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
503	 *   | Checksum   Ident  |   |           |    | Type | Type |
504	 *   +------------------------------------------------------+
505	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
506	 *   +------------------------------------------------------+
507	 *   63       48 47    32 31            20 19               0
508	 */
509
510	for (n = 0; n < adapter->num_rx_queues; n++) {
511		rx_ring = adapter->rx_ring[n];
512		pr_info("------------------------------------\n");
513		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
514		pr_info("------------------------------------\n");
515		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
516			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
517		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
518			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
519
520		for (i = 0; i < rx_ring->count; i++) {
521			const char *next_desc;
522			struct igb_rx_buffer *buffer_info;
523			buffer_info = &rx_ring->rx_buffer_info[i];
524			rx_desc = IGB_RX_DESC(rx_ring, i);
525			u0 = (struct my_u0 *)rx_desc;
526			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
527
528			if (i == rx_ring->next_to_use)
529				next_desc = " NTU";
530			else if (i == rx_ring->next_to_clean)
531				next_desc = " NTC";
532			else
533				next_desc = "";
534
535			if (staterr & E1000_RXD_STAT_DD) {
536				/* Descriptor Done */
537				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
538					"RWB", i,
539					le64_to_cpu(u0->a),
540					le64_to_cpu(u0->b),
541					next_desc);
542			} else {
543				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
544					"R  ", i,
545					le64_to_cpu(u0->a),
546					le64_to_cpu(u0->b),
547					(u64)buffer_info->dma,
548					next_desc);
549
550				if (netif_msg_pktdata(adapter) &&
551				    buffer_info->dma && buffer_info->page) {
552					print_hex_dump(KERN_INFO, "",
553					  DUMP_PREFIX_ADDRESS,
554					  16, 1,
555					  page_address(buffer_info->page) +
556						      buffer_info->page_offset,
557					  IGB_RX_BUFSZ, true);
558				}
559			}
560		}
561	}
562
563exit:
564	return;
565}
566
567/**
568 * igb_get_hw_dev - return device
569 * used by hardware layer to print debugging information
570 **/
571struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
572{
573	struct igb_adapter *adapter = hw->back;
574	return adapter->netdev;
575}
576
577/**
578 * igb_init_module - Driver Registration Routine
579 *
580 * igb_init_module is the first routine called when the driver is
581 * loaded. All it does is register with the PCI subsystem.
582 **/
583static int __init igb_init_module(void)
584{
585	int ret;
586	pr_info("%s - version %s\n",
587	       igb_driver_string, igb_driver_version);
588
589	pr_info("%s\n", igb_copyright);
590
591#ifdef CONFIG_IGB_DCA
592	dca_register_notify(&dca_notifier);
593#endif
594	ret = pci_register_driver(&igb_driver);
595	return ret;
596}
597
598module_init(igb_init_module);
599
600/**
601 * igb_exit_module - Driver Exit Cleanup Routine
602 *
603 * igb_exit_module is called just before the driver is removed
604 * from memory.
605 **/
606static void __exit igb_exit_module(void)
607{
608#ifdef CONFIG_IGB_DCA
609	dca_unregister_notify(&dca_notifier);
610#endif
611	pci_unregister_driver(&igb_driver);
612}
613
614module_exit(igb_exit_module);
615
616#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
617/**
618 * igb_cache_ring_register - Descriptor ring to register mapping
619 * @adapter: board private structure to initialize
620 *
621 * Once we know the feature-set enabled for the device, we'll cache
622 * the register offset the descriptor ring is assigned to.
623 **/
624static void igb_cache_ring_register(struct igb_adapter *adapter)
625{
626	int i = 0, j = 0;
627	u32 rbase_offset = adapter->vfs_allocated_count;
628
629	switch (adapter->hw.mac.type) {
630	case e1000_82576:
631		/* The queues are allocated for virtualization such that VF 0
632		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
633		 * In order to avoid collision we start at the first free queue
634		 * and continue consuming queues in the same sequence
635		 */
636		if (adapter->vfs_allocated_count) {
637			for (; i < adapter->rss_queues; i++)
638				adapter->rx_ring[i]->reg_idx = rbase_offset +
639				                               Q_IDX_82576(i);
640		}
641	case e1000_82575:
642	case e1000_82580:
643	case e1000_i350:
644	case e1000_i210:
645	case e1000_i211:
646	default:
647		for (; i < adapter->num_rx_queues; i++)
648			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
649		for (; j < adapter->num_tx_queues; j++)
650			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
651		break;
652	}
653}
654
655/**
656 *  igb_write_ivar - configure ivar for given MSI-X vector
657 *  @hw: pointer to the HW structure
658 *  @msix_vector: vector number we are allocating to a given ring
659 *  @index: row index of IVAR register to write within IVAR table
660 *  @offset: column offset of in IVAR, should be multiple of 8
661 *
662 *  This function is intended to handle the writing of the IVAR register
663 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
664 *  each containing an cause allocation for an Rx and Tx ring, and a
665 *  variable number of rows depending on the number of queues supported.
666 **/
667static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
668			   int index, int offset)
669{
670	u32 ivar = array_rd32(E1000_IVAR0, index);
671
672	/* clear any bits that are currently set */
673	ivar &= ~((u32)0xFF << offset);
674
675	/* write vector and valid bit */
676	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
677
678	array_wr32(E1000_IVAR0, index, ivar);
679}
680
681#define IGB_N0_QUEUE -1
682static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
683{
684	struct igb_adapter *adapter = q_vector->adapter;
685	struct e1000_hw *hw = &adapter->hw;
686	int rx_queue = IGB_N0_QUEUE;
687	int tx_queue = IGB_N0_QUEUE;
688	u32 msixbm = 0;
689
690	if (q_vector->rx.ring)
691		rx_queue = q_vector->rx.ring->reg_idx;
692	if (q_vector->tx.ring)
693		tx_queue = q_vector->tx.ring->reg_idx;
694
695	switch (hw->mac.type) {
696	case e1000_82575:
697		/* The 82575 assigns vectors using a bitmask, which matches the
698		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
699		   or more queues to a vector, we write the appropriate bits
700		   into the MSIXBM register for that vector. */
701		if (rx_queue > IGB_N0_QUEUE)
702			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
703		if (tx_queue > IGB_N0_QUEUE)
704			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
705		if (!adapter->msix_entries && msix_vector == 0)
706			msixbm |= E1000_EIMS_OTHER;
707		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
708		q_vector->eims_value = msixbm;
709		break;
710	case e1000_82576:
711		/*
712		 * 82576 uses a table that essentially consists of 2 columns
713		 * with 8 rows.  The ordering is column-major so we use the
714		 * lower 3 bits as the row index, and the 4th bit as the
715		 * column offset.
716		 */
717		if (rx_queue > IGB_N0_QUEUE)
718			igb_write_ivar(hw, msix_vector,
719				       rx_queue & 0x7,
720				       (rx_queue & 0x8) << 1);
721		if (tx_queue > IGB_N0_QUEUE)
722			igb_write_ivar(hw, msix_vector,
723				       tx_queue & 0x7,
724				       ((tx_queue & 0x8) << 1) + 8);
725		q_vector->eims_value = 1 << msix_vector;
726		break;
727	case e1000_82580:
728	case e1000_i350:
729	case e1000_i210:
730	case e1000_i211:
731		/*
732		 * On 82580 and newer adapters the scheme is similar to 82576
733		 * however instead of ordering column-major we have things
734		 * ordered row-major.  So we traverse the table by using
735		 * bit 0 as the column offset, and the remaining bits as the
736		 * row index.
737		 */
738		if (rx_queue > IGB_N0_QUEUE)
739			igb_write_ivar(hw, msix_vector,
740				       rx_queue >> 1,
741				       (rx_queue & 0x1) << 4);
742		if (tx_queue > IGB_N0_QUEUE)
743			igb_write_ivar(hw, msix_vector,
744				       tx_queue >> 1,
745				       ((tx_queue & 0x1) << 4) + 8);
746		q_vector->eims_value = 1 << msix_vector;
747		break;
748	default:
749		BUG();
750		break;
751	}
752
753	/* add q_vector eims value to global eims_enable_mask */
754	adapter->eims_enable_mask |= q_vector->eims_value;
755
756	/* configure q_vector to set itr on first interrupt */
757	q_vector->set_itr = 1;
758}
759
760/**
761 * igb_configure_msix - Configure MSI-X hardware
762 *
763 * igb_configure_msix sets up the hardware to properly
764 * generate MSI-X interrupts.
765 **/
766static void igb_configure_msix(struct igb_adapter *adapter)
767{
768	u32 tmp;
769	int i, vector = 0;
770	struct e1000_hw *hw = &adapter->hw;
771
772	adapter->eims_enable_mask = 0;
773
774	/* set vector for other causes, i.e. link changes */
775	switch (hw->mac.type) {
776	case e1000_82575:
777		tmp = rd32(E1000_CTRL_EXT);
778		/* enable MSI-X PBA support*/
779		tmp |= E1000_CTRL_EXT_PBA_CLR;
780
781		/* Auto-Mask interrupts upon ICR read. */
782		tmp |= E1000_CTRL_EXT_EIAME;
783		tmp |= E1000_CTRL_EXT_IRCA;
784
785		wr32(E1000_CTRL_EXT, tmp);
786
787		/* enable msix_other interrupt */
788		array_wr32(E1000_MSIXBM(0), vector++,
789		                      E1000_EIMS_OTHER);
790		adapter->eims_other = E1000_EIMS_OTHER;
791
792		break;
793
794	case e1000_82576:
795	case e1000_82580:
796	case e1000_i350:
797	case e1000_i210:
798	case e1000_i211:
799		/* Turn on MSI-X capability first, or our settings
800		 * won't stick.  And it will take days to debug. */
801		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
802		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
803		                E1000_GPIE_NSICR);
804
805		/* enable msix_other interrupt */
806		adapter->eims_other = 1 << vector;
807		tmp = (vector++ | E1000_IVAR_VALID) << 8;
808
809		wr32(E1000_IVAR_MISC, tmp);
810		break;
811	default:
812		/* do nothing, since nothing else supports MSI-X */
813		break;
814	} /* switch (hw->mac.type) */
815
816	adapter->eims_enable_mask |= adapter->eims_other;
817
818	for (i = 0; i < adapter->num_q_vectors; i++)
819		igb_assign_vector(adapter->q_vector[i], vector++);
820
821	wrfl();
822}
823
824/**
825 * igb_request_msix - Initialize MSI-X interrupts
826 *
827 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
828 * kernel.
829 **/
830static int igb_request_msix(struct igb_adapter *adapter)
831{
832	struct net_device *netdev = adapter->netdev;
833	struct e1000_hw *hw = &adapter->hw;
834	int i, err = 0, vector = 0;
835
836	err = request_irq(adapter->msix_entries[vector].vector,
837	                  igb_msix_other, 0, netdev->name, adapter);
838	if (err)
839		goto out;
840	vector++;
841
842	for (i = 0; i < adapter->num_q_vectors; i++) {
843		struct igb_q_vector *q_vector = adapter->q_vector[i];
844
845		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
846
847		if (q_vector->rx.ring && q_vector->tx.ring)
848			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
849				q_vector->rx.ring->queue_index);
850		else if (q_vector->tx.ring)
851			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
852				q_vector->tx.ring->queue_index);
853		else if (q_vector->rx.ring)
854			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
855				q_vector->rx.ring->queue_index);
856		else
857			sprintf(q_vector->name, "%s-unused", netdev->name);
858
859		err = request_irq(adapter->msix_entries[vector].vector,
860		                  igb_msix_ring, 0, q_vector->name,
861		                  q_vector);
862		if (err)
863			goto out;
864		vector++;
865	}
866
867	igb_configure_msix(adapter);
868	return 0;
869out:
870	return err;
871}
872
873static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
874{
875	if (adapter->msix_entries) {
876		pci_disable_msix(adapter->pdev);
877		kfree(adapter->msix_entries);
878		adapter->msix_entries = NULL;
879	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
880		pci_disable_msi(adapter->pdev);
881	}
882}
883
884/**
885 * igb_free_q_vector - Free memory allocated for specific interrupt vector
886 * @adapter: board private structure to initialize
887 * @v_idx: Index of vector to be freed
888 *
889 * This function frees the memory allocated to the q_vector.  In addition if
890 * NAPI is enabled it will delete any references to the NAPI struct prior
891 * to freeing the q_vector.
892 **/
893static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
894{
895	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
896
897	if (q_vector->tx.ring)
898		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
899
900	if (q_vector->rx.ring)
901		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
902
903	adapter->q_vector[v_idx] = NULL;
904	netif_napi_del(&q_vector->napi);
905
906	/*
907	 * ixgbe_get_stats64() might access the rings on this vector,
908	 * we must wait a grace period before freeing it.
909	 */
910	kfree_rcu(q_vector, rcu);
911}
912
913/**
914 * igb_free_q_vectors - Free memory allocated for interrupt vectors
915 * @adapter: board private structure to initialize
916 *
917 * This function frees the memory allocated to the q_vectors.  In addition if
918 * NAPI is enabled it will delete any references to the NAPI struct prior
919 * to freeing the q_vector.
920 **/
921static void igb_free_q_vectors(struct igb_adapter *adapter)
922{
923	int v_idx = adapter->num_q_vectors;
924
925	adapter->num_tx_queues = 0;
926	adapter->num_rx_queues = 0;
927	adapter->num_q_vectors = 0;
928
929	while (v_idx--)
930		igb_free_q_vector(adapter, v_idx);
931}
932
933/**
934 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
935 *
936 * This function resets the device so that it has 0 rx queues, tx queues, and
937 * MSI-X interrupts allocated.
938 */
939static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
940{
941	igb_free_q_vectors(adapter);
942	igb_reset_interrupt_capability(adapter);
943}
944
945/**
946 * igb_set_interrupt_capability - set MSI or MSI-X if supported
947 *
948 * Attempt to configure interrupts using the best available
949 * capabilities of the hardware and kernel.
950 **/
951static void igb_set_interrupt_capability(struct igb_adapter *adapter)
952{
953	int err;
954	int numvecs, i;
955
956	/* Number of supported queues. */
957	adapter->num_rx_queues = adapter->rss_queues;
958	if (adapter->vfs_allocated_count)
959		adapter->num_tx_queues = 1;
960	else
961		adapter->num_tx_queues = adapter->rss_queues;
962
963	/* start with one vector for every rx queue */
964	numvecs = adapter->num_rx_queues;
965
966	/* if tx handler is separate add 1 for every tx queue */
967	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
968		numvecs += adapter->num_tx_queues;
969
970	/* store the number of vectors reserved for queues */
971	adapter->num_q_vectors = numvecs;
972
973	/* add 1 vector for link status interrupts */
974	numvecs++;
975	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
976					GFP_KERNEL);
977
978	if (!adapter->msix_entries)
979		goto msi_only;
980
981	for (i = 0; i < numvecs; i++)
982		adapter->msix_entries[i].entry = i;
983
984	err = pci_enable_msix(adapter->pdev,
985			      adapter->msix_entries,
986			      numvecs);
987	if (err == 0)
988		return;
989
990	igb_reset_interrupt_capability(adapter);
991
992	/* If we can't do MSI-X, try MSI */
993msi_only:
994#ifdef CONFIG_PCI_IOV
995	/* disable SR-IOV for non MSI-X configurations */
996	if (adapter->vf_data) {
997		struct e1000_hw *hw = &adapter->hw;
998		/* disable iov and allow time for transactions to clear */
999		pci_disable_sriov(adapter->pdev);
1000		msleep(500);
1001
1002		kfree(adapter->vf_data);
1003		adapter->vf_data = NULL;
1004		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1005		wrfl();
1006		msleep(100);
1007		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1008	}
1009#endif
1010	adapter->vfs_allocated_count = 0;
1011	adapter->rss_queues = 1;
1012	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1013	adapter->num_rx_queues = 1;
1014	adapter->num_tx_queues = 1;
1015	adapter->num_q_vectors = 1;
1016	if (!pci_enable_msi(adapter->pdev))
1017		adapter->flags |= IGB_FLAG_HAS_MSI;
1018}
1019
1020static void igb_add_ring(struct igb_ring *ring,
1021			 struct igb_ring_container *head)
1022{
1023	head->ring = ring;
1024	head->count++;
1025}
1026
1027/**
1028 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1029 * @adapter: board private structure to initialize
1030 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1031 * @v_idx: index of vector in adapter struct
1032 * @txr_count: total number of Tx rings to allocate
1033 * @txr_idx: index of first Tx ring to allocate
1034 * @rxr_count: total number of Rx rings to allocate
1035 * @rxr_idx: index of first Rx ring to allocate
1036 *
1037 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1038 **/
1039static int igb_alloc_q_vector(struct igb_adapter *adapter,
1040			      int v_count, int v_idx,
1041			      int txr_count, int txr_idx,
1042			      int rxr_count, int rxr_idx)
1043{
1044	struct igb_q_vector *q_vector;
1045	struct igb_ring *ring;
1046	int ring_count, size;
1047
1048	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1049	if (txr_count > 1 || rxr_count > 1)
1050		return -ENOMEM;
1051
1052	ring_count = txr_count + rxr_count;
1053	size = sizeof(struct igb_q_vector) +
1054	       (sizeof(struct igb_ring) * ring_count);
1055
1056	/* allocate q_vector and rings */
1057	q_vector = kzalloc(size, GFP_KERNEL);
1058	if (!q_vector)
1059		return -ENOMEM;
1060
1061	/* initialize NAPI */
1062	netif_napi_add(adapter->netdev, &q_vector->napi,
1063		       igb_poll, 64);
1064
1065	/* tie q_vector and adapter together */
1066	adapter->q_vector[v_idx] = q_vector;
1067	q_vector->adapter = adapter;
1068
1069	/* initialize work limits */
1070	q_vector->tx.work_limit = adapter->tx_work_limit;
1071
1072	/* initialize ITR configuration */
1073	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1074	q_vector->itr_val = IGB_START_ITR;
1075
1076	/* initialize pointer to rings */
1077	ring = q_vector->ring;
1078
1079	if (txr_count) {
1080		/* assign generic ring traits */
1081		ring->dev = &adapter->pdev->dev;
1082		ring->netdev = adapter->netdev;
1083
1084		/* configure backlink on ring */
1085		ring->q_vector = q_vector;
1086
1087		/* update q_vector Tx values */
1088		igb_add_ring(ring, &q_vector->tx);
1089
1090		/* For 82575, context index must be unique per ring. */
1091		if (adapter->hw.mac.type == e1000_82575)
1092			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1093
1094		/* apply Tx specific ring traits */
1095		ring->count = adapter->tx_ring_count;
1096		ring->queue_index = txr_idx;
1097
1098		/* assign ring to adapter */
1099		adapter->tx_ring[txr_idx] = ring;
1100
1101		/* push pointer to next ring */
1102		ring++;
1103	}
1104
1105	if (rxr_count) {
1106		/* assign generic ring traits */
1107		ring->dev = &adapter->pdev->dev;
1108		ring->netdev = adapter->netdev;
1109
1110		/* configure backlink on ring */
1111		ring->q_vector = q_vector;
1112
1113		/* update q_vector Rx values */
1114		igb_add_ring(ring, &q_vector->rx);
1115
1116		/* set flag indicating ring supports SCTP checksum offload */
1117		if (adapter->hw.mac.type >= e1000_82576)
1118			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1119
1120		/*
1121		 * On i350, i210, and i211, loopback VLAN packets
1122		 * have the tag byte-swapped.
1123		 * */
1124		if (adapter->hw.mac.type >= e1000_i350)
1125			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1126
1127		/* apply Rx specific ring traits */
1128		ring->count = adapter->rx_ring_count;
1129		ring->queue_index = rxr_idx;
1130
1131		/* assign ring to adapter */
1132		adapter->rx_ring[rxr_idx] = ring;
1133	}
1134
1135	return 0;
1136}
1137
1138
1139/**
1140 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1141 * @adapter: board private structure to initialize
1142 *
1143 * We allocate one q_vector per queue interrupt.  If allocation fails we
1144 * return -ENOMEM.
1145 **/
1146static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1147{
1148	int q_vectors = adapter->num_q_vectors;
1149	int rxr_remaining = adapter->num_rx_queues;
1150	int txr_remaining = adapter->num_tx_queues;
1151	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1152	int err;
1153
1154	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1155		for (; rxr_remaining; v_idx++) {
1156			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1157						 0, 0, 1, rxr_idx);
1158
1159			if (err)
1160				goto err_out;
1161
1162			/* update counts and index */
1163			rxr_remaining--;
1164			rxr_idx++;
1165		}
1166	}
1167
1168	for (; v_idx < q_vectors; v_idx++) {
1169		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1170		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1171		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1172					 tqpv, txr_idx, rqpv, rxr_idx);
1173
1174		if (err)
1175			goto err_out;
1176
1177		/* update counts and index */
1178		rxr_remaining -= rqpv;
1179		txr_remaining -= tqpv;
1180		rxr_idx++;
1181		txr_idx++;
1182	}
1183
1184	return 0;
1185
1186err_out:
1187	adapter->num_tx_queues = 0;
1188	adapter->num_rx_queues = 0;
1189	adapter->num_q_vectors = 0;
1190
1191	while (v_idx--)
1192		igb_free_q_vector(adapter, v_idx);
1193
1194	return -ENOMEM;
1195}
1196
1197/**
1198 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1199 *
1200 * This function initializes the interrupts and allocates all of the queues.
1201 **/
1202static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1203{
1204	struct pci_dev *pdev = adapter->pdev;
1205	int err;
1206
1207	igb_set_interrupt_capability(adapter);
1208
1209	err = igb_alloc_q_vectors(adapter);
1210	if (err) {
1211		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1212		goto err_alloc_q_vectors;
1213	}
1214
1215	igb_cache_ring_register(adapter);
1216
1217	return 0;
1218
1219err_alloc_q_vectors:
1220	igb_reset_interrupt_capability(adapter);
1221	return err;
1222}
1223
1224/**
1225 * igb_request_irq - initialize interrupts
1226 *
1227 * Attempts to configure interrupts using the best available
1228 * capabilities of the hardware and kernel.
1229 **/
1230static int igb_request_irq(struct igb_adapter *adapter)
1231{
1232	struct net_device *netdev = adapter->netdev;
1233	struct pci_dev *pdev = adapter->pdev;
1234	int err = 0;
1235
1236	if (adapter->msix_entries) {
1237		err = igb_request_msix(adapter);
1238		if (!err)
1239			goto request_done;
1240		/* fall back to MSI */
1241		igb_free_all_tx_resources(adapter);
1242		igb_free_all_rx_resources(adapter);
1243		igb_clear_interrupt_scheme(adapter);
1244		if (!pci_enable_msi(pdev))
1245			adapter->flags |= IGB_FLAG_HAS_MSI;
1246		adapter->num_tx_queues = 1;
1247		adapter->num_rx_queues = 1;
1248		adapter->num_q_vectors = 1;
1249		err = igb_alloc_q_vectors(adapter);
1250		if (err) {
1251			dev_err(&pdev->dev,
1252			        "Unable to allocate memory for vectors\n");
1253			goto request_done;
1254		}
1255		igb_setup_all_tx_resources(adapter);
1256		igb_setup_all_rx_resources(adapter);
1257	}
1258
1259	igb_assign_vector(adapter->q_vector[0], 0);
1260
1261	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1262		err = request_irq(pdev->irq, igb_intr_msi, 0,
1263				  netdev->name, adapter);
1264		if (!err)
1265			goto request_done;
1266
1267		/* fall back to legacy interrupts */
1268		igb_reset_interrupt_capability(adapter);
1269		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1270	}
1271
1272	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1273			  netdev->name, adapter);
1274
1275	if (err)
1276		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1277			err);
1278
1279request_done:
1280	return err;
1281}
1282
1283static void igb_free_irq(struct igb_adapter *adapter)
1284{
1285	if (adapter->msix_entries) {
1286		int vector = 0, i;
1287
1288		free_irq(adapter->msix_entries[vector++].vector, adapter);
1289
1290		for (i = 0; i < adapter->num_q_vectors; i++)
1291			free_irq(adapter->msix_entries[vector++].vector,
1292				 adapter->q_vector[i]);
1293	} else {
1294		free_irq(adapter->pdev->irq, adapter);
1295	}
1296}
1297
1298/**
1299 * igb_irq_disable - Mask off interrupt generation on the NIC
1300 * @adapter: board private structure
1301 **/
1302static void igb_irq_disable(struct igb_adapter *adapter)
1303{
1304	struct e1000_hw *hw = &adapter->hw;
1305
1306	/*
1307	 * we need to be careful when disabling interrupts.  The VFs are also
1308	 * mapped into these registers and so clearing the bits can cause
1309	 * issues on the VF drivers so we only need to clear what we set
1310	 */
1311	if (adapter->msix_entries) {
1312		u32 regval = rd32(E1000_EIAM);
1313		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1314		wr32(E1000_EIMC, adapter->eims_enable_mask);
1315		regval = rd32(E1000_EIAC);
1316		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1317	}
1318
1319	wr32(E1000_IAM, 0);
1320	wr32(E1000_IMC, ~0);
1321	wrfl();
1322	if (adapter->msix_entries) {
1323		int i;
1324		for (i = 0; i < adapter->num_q_vectors; i++)
1325			synchronize_irq(adapter->msix_entries[i].vector);
1326	} else {
1327		synchronize_irq(adapter->pdev->irq);
1328	}
1329}
1330
1331/**
1332 * igb_irq_enable - Enable default interrupt generation settings
1333 * @adapter: board private structure
1334 **/
1335static void igb_irq_enable(struct igb_adapter *adapter)
1336{
1337	struct e1000_hw *hw = &adapter->hw;
1338
1339	if (adapter->msix_entries) {
1340		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1341		u32 regval = rd32(E1000_EIAC);
1342		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1343		regval = rd32(E1000_EIAM);
1344		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1345		wr32(E1000_EIMS, adapter->eims_enable_mask);
1346		if (adapter->vfs_allocated_count) {
1347			wr32(E1000_MBVFIMR, 0xFF);
1348			ims |= E1000_IMS_VMMB;
1349		}
1350		wr32(E1000_IMS, ims);
1351	} else {
1352		wr32(E1000_IMS, IMS_ENABLE_MASK |
1353				E1000_IMS_DRSTA);
1354		wr32(E1000_IAM, IMS_ENABLE_MASK |
1355				E1000_IMS_DRSTA);
1356	}
1357}
1358
1359static void igb_update_mng_vlan(struct igb_adapter *adapter)
1360{
1361	struct e1000_hw *hw = &adapter->hw;
1362	u16 vid = adapter->hw.mng_cookie.vlan_id;
1363	u16 old_vid = adapter->mng_vlan_id;
1364
1365	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1366		/* add VID to filter table */
1367		igb_vfta_set(hw, vid, true);
1368		adapter->mng_vlan_id = vid;
1369	} else {
1370		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1371	}
1372
1373	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1374	    (vid != old_vid) &&
1375	    !test_bit(old_vid, adapter->active_vlans)) {
1376		/* remove VID from filter table */
1377		igb_vfta_set(hw, old_vid, false);
1378	}
1379}
1380
1381/**
1382 * igb_release_hw_control - release control of the h/w to f/w
1383 * @adapter: address of board private structure
1384 *
1385 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1386 * For ASF and Pass Through versions of f/w this means that the
1387 * driver is no longer loaded.
1388 *
1389 **/
1390static void igb_release_hw_control(struct igb_adapter *adapter)
1391{
1392	struct e1000_hw *hw = &adapter->hw;
1393	u32 ctrl_ext;
1394
1395	/* Let firmware take over control of h/w */
1396	ctrl_ext = rd32(E1000_CTRL_EXT);
1397	wr32(E1000_CTRL_EXT,
1398			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1399}
1400
1401/**
1402 * igb_get_hw_control - get control of the h/w from f/w
1403 * @adapter: address of board private structure
1404 *
1405 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1406 * For ASF and Pass Through versions of f/w this means that
1407 * the driver is loaded.
1408 *
1409 **/
1410static void igb_get_hw_control(struct igb_adapter *adapter)
1411{
1412	struct e1000_hw *hw = &adapter->hw;
1413	u32 ctrl_ext;
1414
1415	/* Let firmware know the driver has taken over */
1416	ctrl_ext = rd32(E1000_CTRL_EXT);
1417	wr32(E1000_CTRL_EXT,
1418			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1419}
1420
1421/**
1422 * igb_configure - configure the hardware for RX and TX
1423 * @adapter: private board structure
1424 **/
1425static void igb_configure(struct igb_adapter *adapter)
1426{
1427	struct net_device *netdev = adapter->netdev;
1428	int i;
1429
1430	igb_get_hw_control(adapter);
1431	igb_set_rx_mode(netdev);
1432
1433	igb_restore_vlan(adapter);
1434
1435	igb_setup_tctl(adapter);
1436	igb_setup_mrqc(adapter);
1437	igb_setup_rctl(adapter);
1438
1439	igb_configure_tx(adapter);
1440	igb_configure_rx(adapter);
1441
1442	igb_rx_fifo_flush_82575(&adapter->hw);
1443
1444	/* call igb_desc_unused which always leaves
1445	 * at least 1 descriptor unused to make sure
1446	 * next_to_use != next_to_clean */
1447	for (i = 0; i < adapter->num_rx_queues; i++) {
1448		struct igb_ring *ring = adapter->rx_ring[i];
1449		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1450	}
1451}
1452
1453/**
1454 * igb_power_up_link - Power up the phy/serdes link
1455 * @adapter: address of board private structure
1456 **/
1457void igb_power_up_link(struct igb_adapter *adapter)
1458{
1459	igb_reset_phy(&adapter->hw);
1460
1461	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1462		igb_power_up_phy_copper(&adapter->hw);
1463	else
1464		igb_power_up_serdes_link_82575(&adapter->hw);
1465}
1466
1467/**
1468 * igb_power_down_link - Power down the phy/serdes link
1469 * @adapter: address of board private structure
1470 */
1471static void igb_power_down_link(struct igb_adapter *adapter)
1472{
1473	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1474		igb_power_down_phy_copper_82575(&adapter->hw);
1475	else
1476		igb_shutdown_serdes_link_82575(&adapter->hw);
1477}
1478
1479/**
1480 * igb_up - Open the interface and prepare it to handle traffic
1481 * @adapter: board private structure
1482 **/
1483int igb_up(struct igb_adapter *adapter)
1484{
1485	struct e1000_hw *hw = &adapter->hw;
1486	int i;
1487
1488	/* hardware has been reset, we need to reload some things */
1489	igb_configure(adapter);
1490
1491	clear_bit(__IGB_DOWN, &adapter->state);
1492
1493	for (i = 0; i < adapter->num_q_vectors; i++)
1494		napi_enable(&(adapter->q_vector[i]->napi));
1495
1496	if (adapter->msix_entries)
1497		igb_configure_msix(adapter);
1498	else
1499		igb_assign_vector(adapter->q_vector[0], 0);
1500
1501	/* Clear any pending interrupts. */
1502	rd32(E1000_ICR);
1503	igb_irq_enable(adapter);
1504
1505	/* notify VFs that reset has been completed */
1506	if (adapter->vfs_allocated_count) {
1507		u32 reg_data = rd32(E1000_CTRL_EXT);
1508		reg_data |= E1000_CTRL_EXT_PFRSTD;
1509		wr32(E1000_CTRL_EXT, reg_data);
1510	}
1511
1512	netif_tx_start_all_queues(adapter->netdev);
1513
1514	/* start the watchdog. */
1515	hw->mac.get_link_status = 1;
1516	schedule_work(&adapter->watchdog_task);
1517
1518	return 0;
1519}
1520
1521void igb_down(struct igb_adapter *adapter)
1522{
1523	struct net_device *netdev = adapter->netdev;
1524	struct e1000_hw *hw = &adapter->hw;
1525	u32 tctl, rctl;
1526	int i;
1527
1528	/* signal that we're down so the interrupt handler does not
1529	 * reschedule our watchdog timer */
1530	set_bit(__IGB_DOWN, &adapter->state);
1531
1532	/* disable receives in the hardware */
1533	rctl = rd32(E1000_RCTL);
1534	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1535	/* flush and sleep below */
1536
1537	netif_tx_stop_all_queues(netdev);
1538
1539	/* disable transmits in the hardware */
1540	tctl = rd32(E1000_TCTL);
1541	tctl &= ~E1000_TCTL_EN;
1542	wr32(E1000_TCTL, tctl);
1543	/* flush both disables and wait for them to finish */
1544	wrfl();
1545	msleep(10);
1546
1547	for (i = 0; i < adapter->num_q_vectors; i++)
1548		napi_disable(&(adapter->q_vector[i]->napi));
1549
1550	igb_irq_disable(adapter);
1551
1552	del_timer_sync(&adapter->watchdog_timer);
1553	del_timer_sync(&adapter->phy_info_timer);
1554
1555	netif_carrier_off(netdev);
1556
1557	/* record the stats before reset*/
1558	spin_lock(&adapter->stats64_lock);
1559	igb_update_stats(adapter, &adapter->stats64);
1560	spin_unlock(&adapter->stats64_lock);
1561
1562	adapter->link_speed = 0;
1563	adapter->link_duplex = 0;
1564
1565	if (!pci_channel_offline(adapter->pdev))
1566		igb_reset(adapter);
1567	igb_clean_all_tx_rings(adapter);
1568	igb_clean_all_rx_rings(adapter);
1569#ifdef CONFIG_IGB_DCA
1570
1571	/* since we reset the hardware DCA settings were cleared */
1572	igb_setup_dca(adapter);
1573#endif
1574}
1575
1576void igb_reinit_locked(struct igb_adapter *adapter)
1577{
1578	WARN_ON(in_interrupt());
1579	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1580		msleep(1);
1581	igb_down(adapter);
1582	igb_up(adapter);
1583	clear_bit(__IGB_RESETTING, &adapter->state);
1584}
1585
1586void igb_reset(struct igb_adapter *adapter)
1587{
1588	struct pci_dev *pdev = adapter->pdev;
1589	struct e1000_hw *hw = &adapter->hw;
1590	struct e1000_mac_info *mac = &hw->mac;
1591	struct e1000_fc_info *fc = &hw->fc;
1592	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1593	u16 hwm;
1594
1595	/* Repartition Pba for greater than 9k mtu
1596	 * To take effect CTRL.RST is required.
1597	 */
1598	switch (mac->type) {
1599	case e1000_i350:
1600	case e1000_82580:
1601		pba = rd32(E1000_RXPBS);
1602		pba = igb_rxpbs_adjust_82580(pba);
1603		break;
1604	case e1000_82576:
1605		pba = rd32(E1000_RXPBS);
1606		pba &= E1000_RXPBS_SIZE_MASK_82576;
1607		break;
1608	case e1000_82575:
1609	case e1000_i210:
1610	case e1000_i211:
1611	default:
1612		pba = E1000_PBA_34K;
1613		break;
1614	}
1615
1616	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1617	    (mac->type < e1000_82576)) {
1618		/* adjust PBA for jumbo frames */
1619		wr32(E1000_PBA, pba);
1620
1621		/* To maintain wire speed transmits, the Tx FIFO should be
1622		 * large enough to accommodate two full transmit packets,
1623		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1624		 * the Rx FIFO should be large enough to accommodate at least
1625		 * one full receive packet and is similarly rounded up and
1626		 * expressed in KB. */
1627		pba = rd32(E1000_PBA);
1628		/* upper 16 bits has Tx packet buffer allocation size in KB */
1629		tx_space = pba >> 16;
1630		/* lower 16 bits has Rx packet buffer allocation size in KB */
1631		pba &= 0xffff;
1632		/* the tx fifo also stores 16 bytes of information about the tx
1633		 * but don't include ethernet FCS because hardware appends it */
1634		min_tx_space = (adapter->max_frame_size +
1635				sizeof(union e1000_adv_tx_desc) -
1636				ETH_FCS_LEN) * 2;
1637		min_tx_space = ALIGN(min_tx_space, 1024);
1638		min_tx_space >>= 10;
1639		/* software strips receive CRC, so leave room for it */
1640		min_rx_space = adapter->max_frame_size;
1641		min_rx_space = ALIGN(min_rx_space, 1024);
1642		min_rx_space >>= 10;
1643
1644		/* If current Tx allocation is less than the min Tx FIFO size,
1645		 * and the min Tx FIFO size is less than the current Rx FIFO
1646		 * allocation, take space away from current Rx allocation */
1647		if (tx_space < min_tx_space &&
1648		    ((min_tx_space - tx_space) < pba)) {
1649			pba = pba - (min_tx_space - tx_space);
1650
1651			/* if short on rx space, rx wins and must trump tx
1652			 * adjustment */
1653			if (pba < min_rx_space)
1654				pba = min_rx_space;
1655		}
1656		wr32(E1000_PBA, pba);
1657	}
1658
1659	/* flow control settings */
1660	/* The high water mark must be low enough to fit one full frame
1661	 * (or the size used for early receive) above it in the Rx FIFO.
1662	 * Set it to the lower of:
1663	 * - 90% of the Rx FIFO size, or
1664	 * - the full Rx FIFO size minus one full frame */
1665	hwm = min(((pba << 10) * 9 / 10),
1666			((pba << 10) - 2 * adapter->max_frame_size));
1667
1668	fc->high_water = hwm & 0xFFF0;	/* 16-byte granularity */
1669	fc->low_water = fc->high_water - 16;
1670	fc->pause_time = 0xFFFF;
1671	fc->send_xon = 1;
1672	fc->current_mode = fc->requested_mode;
1673
1674	/* disable receive for all VFs and wait one second */
1675	if (adapter->vfs_allocated_count) {
1676		int i;
1677		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1678			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1679
1680		/* ping all the active vfs to let them know we are going down */
1681		igb_ping_all_vfs(adapter);
1682
1683		/* disable transmits and receives */
1684		wr32(E1000_VFRE, 0);
1685		wr32(E1000_VFTE, 0);
1686	}
1687
1688	/* Allow time for pending master requests to run */
1689	hw->mac.ops.reset_hw(hw);
1690	wr32(E1000_WUC, 0);
1691
1692	if (hw->mac.ops.init_hw(hw))
1693		dev_err(&pdev->dev, "Hardware Error\n");
1694
1695	/*
1696	 * Flow control settings reset on hardware reset, so guarantee flow
1697	 * control is off when forcing speed.
1698	 */
1699	if (!hw->mac.autoneg)
1700		igb_force_mac_fc(hw);
1701
1702	igb_init_dmac(adapter, pba);
1703	if (!netif_running(adapter->netdev))
1704		igb_power_down_link(adapter);
1705
1706	igb_update_mng_vlan(adapter);
1707
1708	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1709	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1710
1711	/* Re-enable PTP, where applicable. */
1712	igb_ptp_reset(adapter);
1713
1714	igb_get_phy_info(hw);
1715}
1716
1717static netdev_features_t igb_fix_features(struct net_device *netdev,
1718	netdev_features_t features)
1719{
1720	/*
1721	 * Since there is no support for separate rx/tx vlan accel
1722	 * enable/disable make sure tx flag is always in same state as rx.
1723	 */
1724	if (features & NETIF_F_HW_VLAN_RX)
1725		features |= NETIF_F_HW_VLAN_TX;
1726	else
1727		features &= ~NETIF_F_HW_VLAN_TX;
1728
1729	return features;
1730}
1731
1732static int igb_set_features(struct net_device *netdev,
1733	netdev_features_t features)
1734{
1735	netdev_features_t changed = netdev->features ^ features;
1736	struct igb_adapter *adapter = netdev_priv(netdev);
1737
1738	if (changed & NETIF_F_HW_VLAN_RX)
1739		igb_vlan_mode(netdev, features);
1740
1741	if (!(changed & NETIF_F_RXALL))
1742		return 0;
1743
1744	netdev->features = features;
1745
1746	if (netif_running(netdev))
1747		igb_reinit_locked(adapter);
1748	else
1749		igb_reset(adapter);
1750
1751	return 0;
1752}
1753
1754static const struct net_device_ops igb_netdev_ops = {
1755	.ndo_open		= igb_open,
1756	.ndo_stop		= igb_close,
1757	.ndo_start_xmit		= igb_xmit_frame,
1758	.ndo_get_stats64	= igb_get_stats64,
1759	.ndo_set_rx_mode	= igb_set_rx_mode,
1760	.ndo_set_mac_address	= igb_set_mac,
1761	.ndo_change_mtu		= igb_change_mtu,
1762	.ndo_do_ioctl		= igb_ioctl,
1763	.ndo_tx_timeout		= igb_tx_timeout,
1764	.ndo_validate_addr	= eth_validate_addr,
1765	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
1766	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1767	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
1768	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
1769	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
1770	.ndo_get_vf_config	= igb_ndo_get_vf_config,
1771#ifdef CONFIG_NET_POLL_CONTROLLER
1772	.ndo_poll_controller	= igb_netpoll,
1773#endif
1774	.ndo_fix_features	= igb_fix_features,
1775	.ndo_set_features	= igb_set_features,
1776};
1777
1778/**
1779 * igb_set_fw_version - Configure version string for ethtool
1780 * @adapter: adapter struct
1781 *
1782 **/
1783void igb_set_fw_version(struct igb_adapter *adapter)
1784{
1785	struct e1000_hw *hw = &adapter->hw;
1786	struct e1000_fw_version fw;
1787
1788	igb_get_fw_version(hw, &fw);
1789
1790	switch (hw->mac.type) {
1791	case e1000_i211:
1792		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1793			 "%2d.%2d-%d",
1794			 fw.invm_major, fw.invm_minor, fw.invm_img_type);
1795		break;
1796
1797	default:
1798		/* if option is rom valid, display its version too */
1799		if (fw.or_valid) {
1800			snprintf(adapter->fw_version,
1801				 sizeof(adapter->fw_version),
1802				 "%d.%d, 0x%08x, %d.%d.%d",
1803				 fw.eep_major, fw.eep_minor, fw.etrack_id,
1804				 fw.or_major, fw.or_build, fw.or_patch);
1805		/* no option rom */
1806		} else {
1807			snprintf(adapter->fw_version,
1808				 sizeof(adapter->fw_version),
1809				 "%d.%d, 0x%08x",
1810				 fw.eep_major, fw.eep_minor, fw.etrack_id);
1811		}
1812		break;
1813	}
1814	return;
1815}
1816
1817/**
1818 * igb_probe - Device Initialization Routine
1819 * @pdev: PCI device information struct
1820 * @ent: entry in igb_pci_tbl
1821 *
1822 * Returns 0 on success, negative on failure
1823 *
1824 * igb_probe initializes an adapter identified by a pci_dev structure.
1825 * The OS initialization, configuring of the adapter private structure,
1826 * and a hardware reset occur.
1827 **/
1828static int __devinit igb_probe(struct pci_dev *pdev,
1829			       const struct pci_device_id *ent)
1830{
1831	struct net_device *netdev;
1832	struct igb_adapter *adapter;
1833	struct e1000_hw *hw;
1834	u16 eeprom_data = 0;
1835	s32 ret_val;
1836	static int global_quad_port_a; /* global quad port a indication */
1837	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1838	unsigned long mmio_start, mmio_len;
1839	int err, pci_using_dac;
1840	u16 eeprom_apme_mask = IGB_EEPROM_APME;
1841	u8 part_str[E1000_PBANUM_LENGTH];
1842
1843	/* Catch broken hardware that put the wrong VF device ID in
1844	 * the PCIe SR-IOV capability.
1845	 */
1846	if (pdev->is_virtfn) {
1847		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1848			pci_name(pdev), pdev->vendor, pdev->device);
1849		return -EINVAL;
1850	}
1851
1852	err = pci_enable_device_mem(pdev);
1853	if (err)
1854		return err;
1855
1856	pci_using_dac = 0;
1857	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1858	if (!err) {
1859		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1860		if (!err)
1861			pci_using_dac = 1;
1862	} else {
1863		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1864		if (err) {
1865			err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1866			if (err) {
1867				dev_err(&pdev->dev, "No usable DMA "
1868					"configuration, aborting\n");
1869				goto err_dma;
1870			}
1871		}
1872	}
1873
1874	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1875	                                   IORESOURCE_MEM),
1876	                                   igb_driver_name);
1877	if (err)
1878		goto err_pci_reg;
1879
1880	pci_enable_pcie_error_reporting(pdev);
1881
1882	pci_set_master(pdev);
1883	pci_save_state(pdev);
1884
1885	err = -ENOMEM;
1886	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1887				   IGB_MAX_TX_QUEUES);
1888	if (!netdev)
1889		goto err_alloc_etherdev;
1890
1891	SET_NETDEV_DEV(netdev, &pdev->dev);
1892
1893	pci_set_drvdata(pdev, netdev);
1894	adapter = netdev_priv(netdev);
1895	adapter->netdev = netdev;
1896	adapter->pdev = pdev;
1897	hw = &adapter->hw;
1898	hw->back = adapter;
1899	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
1900
1901	mmio_start = pci_resource_start(pdev, 0);
1902	mmio_len = pci_resource_len(pdev, 0);
1903
1904	err = -EIO;
1905	hw->hw_addr = ioremap(mmio_start, mmio_len);
1906	if (!hw->hw_addr)
1907		goto err_ioremap;
1908
1909	netdev->netdev_ops = &igb_netdev_ops;
1910	igb_set_ethtool_ops(netdev);
1911	netdev->watchdog_timeo = 5 * HZ;
1912
1913	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1914
1915	netdev->mem_start = mmio_start;
1916	netdev->mem_end = mmio_start + mmio_len;
1917
1918	/* PCI config space info */
1919	hw->vendor_id = pdev->vendor;
1920	hw->device_id = pdev->device;
1921	hw->revision_id = pdev->revision;
1922	hw->subsystem_vendor_id = pdev->subsystem_vendor;
1923	hw->subsystem_device_id = pdev->subsystem_device;
1924
1925	/* Copy the default MAC, PHY and NVM function pointers */
1926	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1927	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1928	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1929	/* Initialize skew-specific constants */
1930	err = ei->get_invariants(hw);
1931	if (err)
1932		goto err_sw_init;
1933
1934	/* setup the private structure */
1935	err = igb_sw_init(adapter);
1936	if (err)
1937		goto err_sw_init;
1938
1939	igb_get_bus_info_pcie(hw);
1940
1941	hw->phy.autoneg_wait_to_complete = false;
1942
1943	/* Copper options */
1944	if (hw->phy.media_type == e1000_media_type_copper) {
1945		hw->phy.mdix = AUTO_ALL_MODES;
1946		hw->phy.disable_polarity_correction = false;
1947		hw->phy.ms_type = e1000_ms_hw_default;
1948	}
1949
1950	if (igb_check_reset_block(hw))
1951		dev_info(&pdev->dev,
1952			"PHY reset is blocked due to SOL/IDER session.\n");
1953
1954	/*
1955	 * features is initialized to 0 in allocation, it might have bits
1956	 * set by igb_sw_init so we should use an or instead of an
1957	 * assignment.
1958	 */
1959	netdev->features |= NETIF_F_SG |
1960			    NETIF_F_IP_CSUM |
1961			    NETIF_F_IPV6_CSUM |
1962			    NETIF_F_TSO |
1963			    NETIF_F_TSO6 |
1964			    NETIF_F_RXHASH |
1965			    NETIF_F_RXCSUM |
1966			    NETIF_F_HW_VLAN_RX |
1967			    NETIF_F_HW_VLAN_TX;
1968
1969	/* copy netdev features into list of user selectable features */
1970	netdev->hw_features |= netdev->features;
1971	netdev->hw_features |= NETIF_F_RXALL;
1972
1973	/* set this bit last since it cannot be part of hw_features */
1974	netdev->features |= NETIF_F_HW_VLAN_FILTER;
1975
1976	netdev->vlan_features |= NETIF_F_TSO |
1977				 NETIF_F_TSO6 |
1978				 NETIF_F_IP_CSUM |
1979				 NETIF_F_IPV6_CSUM |
1980				 NETIF_F_SG;
1981
1982	netdev->priv_flags |= IFF_SUPP_NOFCS;
1983
1984	if (pci_using_dac) {
1985		netdev->features |= NETIF_F_HIGHDMA;
1986		netdev->vlan_features |= NETIF_F_HIGHDMA;
1987	}
1988
1989	if (hw->mac.type >= e1000_82576) {
1990		netdev->hw_features |= NETIF_F_SCTP_CSUM;
1991		netdev->features |= NETIF_F_SCTP_CSUM;
1992	}
1993
1994	netdev->priv_flags |= IFF_UNICAST_FLT;
1995
1996	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1997
1998	/* before reading the NVM, reset the controller to put the device in a
1999	 * known good starting state */
2000	hw->mac.ops.reset_hw(hw);
2001
2002	/*
2003	 * make sure the NVM is good , i211 parts have special NVM that
2004	 * doesn't contain a checksum
2005	 */
2006	if (hw->mac.type != e1000_i211) {
2007		if (hw->nvm.ops.validate(hw) < 0) {
2008			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2009			err = -EIO;
2010			goto err_eeprom;
2011		}
2012	}
2013
2014	/* copy the MAC address out of the NVM */
2015	if (hw->mac.ops.read_mac_addr(hw))
2016		dev_err(&pdev->dev, "NVM Read Error\n");
2017
2018	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2019	memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
2020
2021	if (!is_valid_ether_addr(netdev->perm_addr)) {
2022		dev_err(&pdev->dev, "Invalid MAC Address\n");
2023		err = -EIO;
2024		goto err_eeprom;
2025	}
2026
2027	/* get firmware version for ethtool -i */
2028	igb_set_fw_version(adapter);
2029
2030	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2031	            (unsigned long) adapter);
2032	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2033	            (unsigned long) adapter);
2034
2035	INIT_WORK(&adapter->reset_task, igb_reset_task);
2036	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2037
2038	/* Initialize link properties that are user-changeable */
2039	adapter->fc_autoneg = true;
2040	hw->mac.autoneg = true;
2041	hw->phy.autoneg_advertised = 0x2f;
2042
2043	hw->fc.requested_mode = e1000_fc_default;
2044	hw->fc.current_mode = e1000_fc_default;
2045
2046	igb_validate_mdi_setting(hw);
2047
2048	/* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
2049	 * enable the ACPI Magic Packet filter
2050	 */
2051
2052	if (hw->bus.func == 0)
2053		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
2054	else if (hw->mac.type >= e1000_82580)
2055		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2056		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2057		                 &eeprom_data);
2058	else if (hw->bus.func == 1)
2059		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2060
2061	if (eeprom_data & eeprom_apme_mask)
2062		adapter->eeprom_wol |= E1000_WUFC_MAG;
2063
2064	/* now that we have the eeprom settings, apply the special cases where
2065	 * the eeprom may be wrong or the board simply won't support wake on
2066	 * lan on a particular port */
2067	switch (pdev->device) {
2068	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2069		adapter->eeprom_wol = 0;
2070		break;
2071	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2072	case E1000_DEV_ID_82576_FIBER:
2073	case E1000_DEV_ID_82576_SERDES:
2074		/* Wake events only supported on port A for dual fiber
2075		 * regardless of eeprom setting */
2076		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2077			adapter->eeprom_wol = 0;
2078		break;
2079	case E1000_DEV_ID_82576_QUAD_COPPER:
2080	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2081		/* if quad port adapter, disable WoL on all but port A */
2082		if (global_quad_port_a != 0)
2083			adapter->eeprom_wol = 0;
2084		else
2085			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2086		/* Reset for multiple quad port adapters */
2087		if (++global_quad_port_a == 4)
2088			global_quad_port_a = 0;
2089		break;
2090	}
2091
2092	/* initialize the wol settings based on the eeprom settings */
2093	adapter->wol = adapter->eeprom_wol;
2094	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2095
2096	/* reset the hardware with the new settings */
2097	igb_reset(adapter);
2098
2099	/* let the f/w know that the h/w is now under the control of the
2100	 * driver. */
2101	igb_get_hw_control(adapter);
2102
2103	strcpy(netdev->name, "eth%d");
2104	err = register_netdev(netdev);
2105	if (err)
2106		goto err_register;
2107
2108	/* carrier off reporting is important to ethtool even BEFORE open */
2109	netif_carrier_off(netdev);
2110
2111#ifdef CONFIG_IGB_DCA
2112	if (dca_add_requester(&pdev->dev) == 0) {
2113		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2114		dev_info(&pdev->dev, "DCA enabled\n");
2115		igb_setup_dca(adapter);
2116	}
2117
2118#endif
2119
2120	/* do hw tstamp init after resetting */
2121	igb_ptp_init(adapter);
2122
2123	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2124	/* print bus type/speed/width info */
2125	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2126		 netdev->name,
2127		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2128		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2129		                                            "unknown"),
2130		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2131		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2132		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2133		   "unknown"),
2134		 netdev->dev_addr);
2135
2136	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2137	if (ret_val)
2138		strcpy(part_str, "Unknown");
2139	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2140	dev_info(&pdev->dev,
2141		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2142		adapter->msix_entries ? "MSI-X" :
2143		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2144		adapter->num_rx_queues, adapter->num_tx_queues);
2145	switch (hw->mac.type) {
2146	case e1000_i350:
2147	case e1000_i210:
2148	case e1000_i211:
2149		igb_set_eee_i350(hw);
2150		break;
2151	default:
2152		break;
2153	}
2154
2155	pm_runtime_put_noidle(&pdev->dev);
2156	return 0;
2157
2158err_register:
2159	igb_release_hw_control(adapter);
2160err_eeprom:
2161	if (!igb_check_reset_block(hw))
2162		igb_reset_phy(hw);
2163
2164	if (hw->flash_address)
2165		iounmap(hw->flash_address);
2166err_sw_init:
2167	igb_clear_interrupt_scheme(adapter);
2168	iounmap(hw->hw_addr);
2169err_ioremap:
2170	free_netdev(netdev);
2171err_alloc_etherdev:
2172	pci_release_selected_regions(pdev,
2173	                             pci_select_bars(pdev, IORESOURCE_MEM));
2174err_pci_reg:
2175err_dma:
2176	pci_disable_device(pdev);
2177	return err;
2178}
2179
2180/**
2181 * igb_remove - Device Removal Routine
2182 * @pdev: PCI device information struct
2183 *
2184 * igb_remove is called by the PCI subsystem to alert the driver
2185 * that it should release a PCI device.  The could be caused by a
2186 * Hot-Plug event, or because the driver is going to be removed from
2187 * memory.
2188 **/
2189static void __devexit igb_remove(struct pci_dev *pdev)
2190{
2191	struct net_device *netdev = pci_get_drvdata(pdev);
2192	struct igb_adapter *adapter = netdev_priv(netdev);
2193	struct e1000_hw *hw = &adapter->hw;
2194
2195	pm_runtime_get_noresume(&pdev->dev);
2196	igb_ptp_stop(adapter);
2197
2198	/*
2199	 * The watchdog timer may be rescheduled, so explicitly
2200	 * disable watchdog from being rescheduled.
2201	 */
2202	set_bit(__IGB_DOWN, &adapter->state);
2203	del_timer_sync(&adapter->watchdog_timer);
2204	del_timer_sync(&adapter->phy_info_timer);
2205
2206	cancel_work_sync(&adapter->reset_task);
2207	cancel_work_sync(&adapter->watchdog_task);
2208
2209#ifdef CONFIG_IGB_DCA
2210	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2211		dev_info(&pdev->dev, "DCA disabled\n");
2212		dca_remove_requester(&pdev->dev);
2213		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2214		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2215	}
2216#endif
2217
2218	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2219	 * would have already happened in close and is redundant. */
2220	igb_release_hw_control(adapter);
2221
2222	unregister_netdev(netdev);
2223
2224	igb_clear_interrupt_scheme(adapter);
2225
2226#ifdef CONFIG_PCI_IOV
2227	/* reclaim resources allocated to VFs */
2228	if (adapter->vf_data) {
2229		/* disable iov and allow time for transactions to clear */
2230		if (igb_vfs_are_assigned(adapter)) {
2231			dev_info(&pdev->dev, "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2232		} else {
2233			pci_disable_sriov(pdev);
2234			msleep(500);
2235		}
2236
2237		kfree(adapter->vf_data);
2238		adapter->vf_data = NULL;
2239		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2240		wrfl();
2241		msleep(100);
2242		dev_info(&pdev->dev, "IOV Disabled\n");
2243	}
2244#endif
2245
2246	iounmap(hw->hw_addr);
2247	if (hw->flash_address)
2248		iounmap(hw->flash_address);
2249	pci_release_selected_regions(pdev,
2250	                             pci_select_bars(pdev, IORESOURCE_MEM));
2251
2252	kfree(adapter->shadow_vfta);
2253	free_netdev(netdev);
2254
2255	pci_disable_pcie_error_reporting(pdev);
2256
2257	pci_disable_device(pdev);
2258}
2259
2260/**
2261 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2262 * @adapter: board private structure to initialize
2263 *
2264 * This function initializes the vf specific data storage and then attempts to
2265 * allocate the VFs.  The reason for ordering it this way is because it is much
2266 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2267 * the memory for the VFs.
2268 **/
2269static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2270{
2271#ifdef CONFIG_PCI_IOV
2272	struct pci_dev *pdev = adapter->pdev;
2273	struct e1000_hw *hw = &adapter->hw;
2274	int old_vfs = pci_num_vf(adapter->pdev);
2275	int i;
2276
2277	/* Virtualization features not supported on i210 family. */
2278	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2279		return;
2280
2281	if (old_vfs) {
2282		dev_info(&pdev->dev, "%d pre-allocated VFs found - override "
2283			 "max_vfs setting of %d\n", old_vfs, max_vfs);
2284		adapter->vfs_allocated_count = old_vfs;
2285	}
2286
2287	if (!adapter->vfs_allocated_count)
2288		return;
2289
2290	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2291				sizeof(struct vf_data_storage), GFP_KERNEL);
2292
2293	/* if allocation failed then we do not support SR-IOV */
2294	if (!adapter->vf_data) {
2295		adapter->vfs_allocated_count = 0;
2296		dev_err(&pdev->dev, "Unable to allocate memory for VF "
2297			"Data Storage\n");
2298		goto out;
2299	}
2300
2301	if (!old_vfs) {
2302		if (pci_enable_sriov(pdev, adapter->vfs_allocated_count))
2303			goto err_out;
2304	}
2305	dev_info(&pdev->dev, "%d VFs allocated\n",
2306		 adapter->vfs_allocated_count);
2307	for (i = 0; i < adapter->vfs_allocated_count; i++)
2308		igb_vf_configure(adapter, i);
2309
2310	/* DMA Coalescing is not supported in IOV mode. */
2311	adapter->flags &= ~IGB_FLAG_DMAC;
2312	goto out;
2313err_out:
2314	kfree(adapter->vf_data);
2315	adapter->vf_data = NULL;
2316	adapter->vfs_allocated_count = 0;
2317out:
2318	return;
2319#endif /* CONFIG_PCI_IOV */
2320}
2321
2322/**
2323 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2324 * @adapter: board private structure to initialize
2325 *
2326 * igb_sw_init initializes the Adapter private data structure.
2327 * Fields are initialized based on PCI device information and
2328 * OS network device settings (MTU size).
2329 **/
2330static int __devinit igb_sw_init(struct igb_adapter *adapter)
2331{
2332	struct e1000_hw *hw = &adapter->hw;
2333	struct net_device *netdev = adapter->netdev;
2334	struct pci_dev *pdev = adapter->pdev;
2335	u32 max_rss_queues;
2336
2337	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2338
2339	/* set default ring sizes */
2340	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2341	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2342
2343	/* set default ITR values */
2344	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2345	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2346
2347	/* set default work limits */
2348	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2349
2350	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2351				  VLAN_HLEN;
2352	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2353
2354	spin_lock_init(&adapter->stats64_lock);
2355#ifdef CONFIG_PCI_IOV
2356	switch (hw->mac.type) {
2357	case e1000_82576:
2358	case e1000_i350:
2359		if (max_vfs > 7) {
2360			dev_warn(&pdev->dev,
2361				 "Maximum of 7 VFs per PF, using max\n");
2362			adapter->vfs_allocated_count = 7;
2363		} else
2364			adapter->vfs_allocated_count = max_vfs;
2365		break;
2366	default:
2367		break;
2368	}
2369#endif /* CONFIG_PCI_IOV */
2370
2371	/* Determine the maximum number of RSS queues supported. */
2372	switch (hw->mac.type) {
2373	case e1000_i211:
2374		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2375		break;
2376	case e1000_82575:
2377	case e1000_i210:
2378		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2379		break;
2380	case e1000_i350:
2381		/* I350 cannot do RSS and SR-IOV at the same time */
2382		if (!!adapter->vfs_allocated_count) {
2383			max_rss_queues = 1;
2384			break;
2385		}
2386		/* fall through */
2387	case e1000_82576:
2388		if (!!adapter->vfs_allocated_count) {
2389			max_rss_queues = 2;
2390			break;
2391		}
2392		/* fall through */
2393	case e1000_82580:
2394	default:
2395		max_rss_queues = IGB_MAX_RX_QUEUES;
2396		break;
2397	}
2398
2399	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2400
2401	/* Determine if we need to pair queues. */
2402	switch (hw->mac.type) {
2403	case e1000_82575:
2404	case e1000_i211:
2405		/* Device supports enough interrupts without queue pairing. */
2406		break;
2407	case e1000_82576:
2408		/*
2409		 * If VFs are going to be allocated with RSS queues then we
2410		 * should pair the queues in order to conserve interrupts due
2411		 * to limited supply.
2412		 */
2413		if ((adapter->rss_queues > 1) &&
2414		    (adapter->vfs_allocated_count > 6))
2415			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2416		/* fall through */
2417	case e1000_82580:
2418	case e1000_i350:
2419	case e1000_i210:
2420	default:
2421		/*
2422		 * If rss_queues > half of max_rss_queues, pair the queues in
2423		 * order to conserve interrupts due to limited supply.
2424		 */
2425		if (adapter->rss_queues > (max_rss_queues / 2))
2426			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2427		break;
2428	}
2429
2430	/* Setup and initialize a copy of the hw vlan table array */
2431	adapter->shadow_vfta = kzalloc(sizeof(u32) *
2432				E1000_VLAN_FILTER_TBL_SIZE,
2433				GFP_ATOMIC);
2434
2435	/* This call may decrease the number of queues */
2436	if (igb_init_interrupt_scheme(adapter)) {
2437		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2438		return -ENOMEM;
2439	}
2440
2441	igb_probe_vfs(adapter);
2442
2443	/* Explicitly disable IRQ since the NIC can be in any state. */
2444	igb_irq_disable(adapter);
2445
2446	if (hw->mac.type >= e1000_i350)
2447		adapter->flags &= ~IGB_FLAG_DMAC;
2448
2449	set_bit(__IGB_DOWN, &adapter->state);
2450	return 0;
2451}
2452
2453/**
2454 * igb_open - Called when a network interface is made active
2455 * @netdev: network interface device structure
2456 *
2457 * Returns 0 on success, negative value on failure
2458 *
2459 * The open entry point is called when a network interface is made
2460 * active by the system (IFF_UP).  At this point all resources needed
2461 * for transmit and receive operations are allocated, the interrupt
2462 * handler is registered with the OS, the watchdog timer is started,
2463 * and the stack is notified that the interface is ready.
2464 **/
2465static int __igb_open(struct net_device *netdev, bool resuming)
2466{
2467	struct igb_adapter *adapter = netdev_priv(netdev);
2468	struct e1000_hw *hw = &adapter->hw;
2469	struct pci_dev *pdev = adapter->pdev;
2470	int err;
2471	int i;
2472
2473	/* disallow open during test */
2474	if (test_bit(__IGB_TESTING, &adapter->state)) {
2475		WARN_ON(resuming);
2476		return -EBUSY;
2477	}
2478
2479	if (!resuming)
2480		pm_runtime_get_sync(&pdev->dev);
2481
2482	netif_carrier_off(netdev);
2483
2484	/* allocate transmit descriptors */
2485	err = igb_setup_all_tx_resources(adapter);
2486	if (err)
2487		goto err_setup_tx;
2488
2489	/* allocate receive descriptors */
2490	err = igb_setup_all_rx_resources(adapter);
2491	if (err)
2492		goto err_setup_rx;
2493
2494	igb_power_up_link(adapter);
2495
2496	/* before we allocate an interrupt, we must be ready to handle it.
2497	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2498	 * as soon as we call pci_request_irq, so we have to setup our
2499	 * clean_rx handler before we do so.  */
2500	igb_configure(adapter);
2501
2502	err = igb_request_irq(adapter);
2503	if (err)
2504		goto err_req_irq;
2505
2506	/* Notify the stack of the actual queue counts. */
2507	err = netif_set_real_num_tx_queues(adapter->netdev,
2508					   adapter->num_tx_queues);
2509	if (err)
2510		goto err_set_queues;
2511
2512	err = netif_set_real_num_rx_queues(adapter->netdev,
2513					   adapter->num_rx_queues);
2514	if (err)
2515		goto err_set_queues;
2516
2517	/* From here on the code is the same as igb_up() */
2518	clear_bit(__IGB_DOWN, &adapter->state);
2519
2520	for (i = 0; i < adapter->num_q_vectors; i++)
2521		napi_enable(&(adapter->q_vector[i]->napi));
2522
2523	/* Clear any pending interrupts. */
2524	rd32(E1000_ICR);
2525
2526	igb_irq_enable(adapter);
2527
2528	/* notify VFs that reset has been completed */
2529	if (adapter->vfs_allocated_count) {
2530		u32 reg_data = rd32(E1000_CTRL_EXT);
2531		reg_data |= E1000_CTRL_EXT_PFRSTD;
2532		wr32(E1000_CTRL_EXT, reg_data);
2533	}
2534
2535	netif_tx_start_all_queues(netdev);
2536
2537	if (!resuming)
2538		pm_runtime_put(&pdev->dev);
2539
2540	/* start the watchdog. */
2541	hw->mac.get_link_status = 1;
2542	schedule_work(&adapter->watchdog_task);
2543
2544	return 0;
2545
2546err_set_queues:
2547	igb_free_irq(adapter);
2548err_req_irq:
2549	igb_release_hw_control(adapter);
2550	igb_power_down_link(adapter);
2551	igb_free_all_rx_resources(adapter);
2552err_setup_rx:
2553	igb_free_all_tx_resources(adapter);
2554err_setup_tx:
2555	igb_reset(adapter);
2556	if (!resuming)
2557		pm_runtime_put(&pdev->dev);
2558
2559	return err;
2560}
2561
2562static int igb_open(struct net_device *netdev)
2563{
2564	return __igb_open(netdev, false);
2565}
2566
2567/**
2568 * igb_close - Disables a network interface
2569 * @netdev: network interface device structure
2570 *
2571 * Returns 0, this is not allowed to fail
2572 *
2573 * The close entry point is called when an interface is de-activated
2574 * by the OS.  The hardware is still under the driver's control, but
2575 * needs to be disabled.  A global MAC reset is issued to stop the
2576 * hardware, and all transmit and receive resources are freed.
2577 **/
2578static int __igb_close(struct net_device *netdev, bool suspending)
2579{
2580	struct igb_adapter *adapter = netdev_priv(netdev);
2581	struct pci_dev *pdev = adapter->pdev;
2582
2583	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2584
2585	if (!suspending)
2586		pm_runtime_get_sync(&pdev->dev);
2587
2588	igb_down(adapter);
2589	igb_free_irq(adapter);
2590
2591	igb_free_all_tx_resources(adapter);
2592	igb_free_all_rx_resources(adapter);
2593
2594	if (!suspending)
2595		pm_runtime_put_sync(&pdev->dev);
2596	return 0;
2597}
2598
2599static int igb_close(struct net_device *netdev)
2600{
2601	return __igb_close(netdev, false);
2602}
2603
2604/**
2605 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2606 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2607 *
2608 * Return 0 on success, negative on failure
2609 **/
2610int igb_setup_tx_resources(struct igb_ring *tx_ring)
2611{
2612	struct device *dev = tx_ring->dev;
2613	int size;
2614
2615	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2616
2617	tx_ring->tx_buffer_info = vzalloc(size);
2618	if (!tx_ring->tx_buffer_info)
2619		goto err;
2620
2621	/* round up to nearest 4K */
2622	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2623	tx_ring->size = ALIGN(tx_ring->size, 4096);
2624
2625	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2626					   &tx_ring->dma, GFP_KERNEL);
2627	if (!tx_ring->desc)
2628		goto err;
2629
2630	tx_ring->next_to_use = 0;
2631	tx_ring->next_to_clean = 0;
2632
2633	return 0;
2634
2635err:
2636	vfree(tx_ring->tx_buffer_info);
2637	tx_ring->tx_buffer_info = NULL;
2638	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2639	return -ENOMEM;
2640}
2641
2642/**
2643 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2644 *				  (Descriptors) for all queues
2645 * @adapter: board private structure
2646 *
2647 * Return 0 on success, negative on failure
2648 **/
2649static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2650{
2651	struct pci_dev *pdev = adapter->pdev;
2652	int i, err = 0;
2653
2654	for (i = 0; i < adapter->num_tx_queues; i++) {
2655		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2656		if (err) {
2657			dev_err(&pdev->dev,
2658				"Allocation for Tx Queue %u failed\n", i);
2659			for (i--; i >= 0; i--)
2660				igb_free_tx_resources(adapter->tx_ring[i]);
2661			break;
2662		}
2663	}
2664
2665	return err;
2666}
2667
2668/**
2669 * igb_setup_tctl - configure the transmit control registers
2670 * @adapter: Board private structure
2671 **/
2672void igb_setup_tctl(struct igb_adapter *adapter)
2673{
2674	struct e1000_hw *hw = &adapter->hw;
2675	u32 tctl;
2676
2677	/* disable queue 0 which is enabled by default on 82575 and 82576 */
2678	wr32(E1000_TXDCTL(0), 0);
2679
2680	/* Program the Transmit Control Register */
2681	tctl = rd32(E1000_TCTL);
2682	tctl &= ~E1000_TCTL_CT;
2683	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2684		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2685
2686	igb_config_collision_dist(hw);
2687
2688	/* Enable transmits */
2689	tctl |= E1000_TCTL_EN;
2690
2691	wr32(E1000_TCTL, tctl);
2692}
2693
2694/**
2695 * igb_configure_tx_ring - Configure transmit ring after Reset
2696 * @adapter: board private structure
2697 * @ring: tx ring to configure
2698 *
2699 * Configure a transmit ring after a reset.
2700 **/
2701void igb_configure_tx_ring(struct igb_adapter *adapter,
2702                           struct igb_ring *ring)
2703{
2704	struct e1000_hw *hw = &adapter->hw;
2705	u32 txdctl = 0;
2706	u64 tdba = ring->dma;
2707	int reg_idx = ring->reg_idx;
2708
2709	/* disable the queue */
2710	wr32(E1000_TXDCTL(reg_idx), 0);
2711	wrfl();
2712	mdelay(10);
2713
2714	wr32(E1000_TDLEN(reg_idx),
2715	                ring->count * sizeof(union e1000_adv_tx_desc));
2716	wr32(E1000_TDBAL(reg_idx),
2717	                tdba & 0x00000000ffffffffULL);
2718	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2719
2720	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2721	wr32(E1000_TDH(reg_idx), 0);
2722	writel(0, ring->tail);
2723
2724	txdctl |= IGB_TX_PTHRESH;
2725	txdctl |= IGB_TX_HTHRESH << 8;
2726	txdctl |= IGB_TX_WTHRESH << 16;
2727
2728	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2729	wr32(E1000_TXDCTL(reg_idx), txdctl);
2730}
2731
2732/**
2733 * igb_configure_tx - Configure transmit Unit after Reset
2734 * @adapter: board private structure
2735 *
2736 * Configure the Tx unit of the MAC after a reset.
2737 **/
2738static void igb_configure_tx(struct igb_adapter *adapter)
2739{
2740	int i;
2741
2742	for (i = 0; i < adapter->num_tx_queues; i++)
2743		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2744}
2745
2746/**
2747 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2748 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2749 *
2750 * Returns 0 on success, negative on failure
2751 **/
2752int igb_setup_rx_resources(struct igb_ring *rx_ring)
2753{
2754	struct device *dev = rx_ring->dev;
2755	int size;
2756
2757	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
2758
2759	rx_ring->rx_buffer_info = vzalloc(size);
2760	if (!rx_ring->rx_buffer_info)
2761		goto err;
2762
2763	/* Round up to nearest 4K */
2764	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
2765	rx_ring->size = ALIGN(rx_ring->size, 4096);
2766
2767	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
2768					   &rx_ring->dma, GFP_KERNEL);
2769	if (!rx_ring->desc)
2770		goto err;
2771
2772	rx_ring->next_to_alloc = 0;
2773	rx_ring->next_to_clean = 0;
2774	rx_ring->next_to_use = 0;
2775
2776	return 0;
2777
2778err:
2779	vfree(rx_ring->rx_buffer_info);
2780	rx_ring->rx_buffer_info = NULL;
2781	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
2782	return -ENOMEM;
2783}
2784
2785/**
2786 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2787 *				  (Descriptors) for all queues
2788 * @adapter: board private structure
2789 *
2790 * Return 0 on success, negative on failure
2791 **/
2792static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2793{
2794	struct pci_dev *pdev = adapter->pdev;
2795	int i, err = 0;
2796
2797	for (i = 0; i < adapter->num_rx_queues; i++) {
2798		err = igb_setup_rx_resources(adapter->rx_ring[i]);
2799		if (err) {
2800			dev_err(&pdev->dev,
2801				"Allocation for Rx Queue %u failed\n", i);
2802			for (i--; i >= 0; i--)
2803				igb_free_rx_resources(adapter->rx_ring[i]);
2804			break;
2805		}
2806	}
2807
2808	return err;
2809}
2810
2811/**
2812 * igb_setup_mrqc - configure the multiple receive queue control registers
2813 * @adapter: Board private structure
2814 **/
2815static void igb_setup_mrqc(struct igb_adapter *adapter)
2816{
2817	struct e1000_hw *hw = &adapter->hw;
2818	u32 mrqc, rxcsum;
2819	u32 j, num_rx_queues, shift = 0;
2820	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
2821					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
2822					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
2823					0xFA01ACBE };
2824
2825	/* Fill out hash function seeds */
2826	for (j = 0; j < 10; j++)
2827		wr32(E1000_RSSRK(j), rsskey[j]);
2828
2829	num_rx_queues = adapter->rss_queues;
2830
2831	switch (hw->mac.type) {
2832	case e1000_82575:
2833		shift = 6;
2834		break;
2835	case e1000_82576:
2836		/* 82576 supports 2 RSS queues for SR-IOV */
2837		if (adapter->vfs_allocated_count) {
2838			shift = 3;
2839			num_rx_queues = 2;
2840		}
2841		break;
2842	default:
2843		break;
2844	}
2845
2846	/*
2847	 * Populate the indirection table 4 entries at a time.  To do this
2848	 * we are generating the results for n and n+2 and then interleaving
2849	 * those with the results with n+1 and n+3.
2850	 */
2851	for (j = 0; j < 32; j++) {
2852		/* first pass generates n and n+2 */
2853		u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
2854		u32 reta = (base & 0x07800780) >> (7 - shift);
2855
2856		/* second pass generates n+1 and n+3 */
2857		base += 0x00010001 * num_rx_queues;
2858		reta |= (base & 0x07800780) << (1 + shift);
2859
2860		wr32(E1000_RETA(j), reta);
2861	}
2862
2863	/*
2864	 * Disable raw packet checksumming so that RSS hash is placed in
2865	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
2866	 * offloads as they are enabled by default
2867	 */
2868	rxcsum = rd32(E1000_RXCSUM);
2869	rxcsum |= E1000_RXCSUM_PCSD;
2870
2871	if (adapter->hw.mac.type >= e1000_82576)
2872		/* Enable Receive Checksum Offload for SCTP */
2873		rxcsum |= E1000_RXCSUM_CRCOFL;
2874
2875	/* Don't need to set TUOFL or IPOFL, they default to 1 */
2876	wr32(E1000_RXCSUM, rxcsum);
2877
2878	/* Generate RSS hash based on packet types, TCP/UDP
2879	 * port numbers and/or IPv4/v6 src and dst addresses
2880	 */
2881	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
2882	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
2883	       E1000_MRQC_RSS_FIELD_IPV6 |
2884	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
2885	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
2886
2887	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2888		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2889	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2890		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2891
2892	/* If VMDq is enabled then we set the appropriate mode for that, else
2893	 * we default to RSS so that an RSS hash is calculated per packet even
2894	 * if we are only using one queue */
2895	if (adapter->vfs_allocated_count) {
2896		if (hw->mac.type > e1000_82575) {
2897			/* Set the default pool for the PF's first queue */
2898			u32 vtctl = rd32(E1000_VT_CTL);
2899			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2900				   E1000_VT_CTL_DISABLE_DEF_POOL);
2901			vtctl |= adapter->vfs_allocated_count <<
2902				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2903			wr32(E1000_VT_CTL, vtctl);
2904		}
2905		if (adapter->rss_queues > 1)
2906			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2907		else
2908			mrqc |= E1000_MRQC_ENABLE_VMDQ;
2909	} else {
2910		if (hw->mac.type != e1000_i211)
2911			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
2912	}
2913	igb_vmm_control(adapter);
2914
2915	wr32(E1000_MRQC, mrqc);
2916}
2917
2918/**
2919 * igb_setup_rctl - configure the receive control registers
2920 * @adapter: Board private structure
2921 **/
2922void igb_setup_rctl(struct igb_adapter *adapter)
2923{
2924	struct e1000_hw *hw = &adapter->hw;
2925	u32 rctl;
2926
2927	rctl = rd32(E1000_RCTL);
2928
2929	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2930	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2931
2932	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2933		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2934
2935	/*
2936	 * enable stripping of CRC. It's unlikely this will break BMC
2937	 * redirection as it did with e1000. Newer features require
2938	 * that the HW strips the CRC.
2939	 */
2940	rctl |= E1000_RCTL_SECRC;
2941
2942	/* disable store bad packets and clear size bits. */
2943	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2944
2945	/* enable LPE to prevent packets larger than max_frame_size */
2946	rctl |= E1000_RCTL_LPE;
2947
2948	/* disable queue 0 to prevent tail write w/o re-config */
2949	wr32(E1000_RXDCTL(0), 0);
2950
2951	/* Attention!!!  For SR-IOV PF driver operations you must enable
2952	 * queue drop for all VF and PF queues to prevent head of line blocking
2953	 * if an un-trusted VF does not provide descriptors to hardware.
2954	 */
2955	if (adapter->vfs_allocated_count) {
2956		/* set all queue drop enable bits */
2957		wr32(E1000_QDE, ALL_QUEUES);
2958	}
2959
2960	/* This is useful for sniffing bad packets. */
2961	if (adapter->netdev->features & NETIF_F_RXALL) {
2962		/* UPE and MPE will be handled by normal PROMISC logic
2963		 * in e1000e_set_rx_mode */
2964		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
2965			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
2966			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
2967
2968		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
2969			  E1000_RCTL_DPF | /* Allow filtered pause */
2970			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
2971		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
2972		 * and that breaks VLANs.
2973		 */
2974	}
2975
2976	wr32(E1000_RCTL, rctl);
2977}
2978
2979static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2980                                   int vfn)
2981{
2982	struct e1000_hw *hw = &adapter->hw;
2983	u32 vmolr;
2984
2985	/* if it isn't the PF check to see if VFs are enabled and
2986	 * increase the size to support vlan tags */
2987	if (vfn < adapter->vfs_allocated_count &&
2988	    adapter->vf_data[vfn].vlans_enabled)
2989		size += VLAN_TAG_SIZE;
2990
2991	vmolr = rd32(E1000_VMOLR(vfn));
2992	vmolr &= ~E1000_VMOLR_RLPML_MASK;
2993	vmolr |= size | E1000_VMOLR_LPE;
2994	wr32(E1000_VMOLR(vfn), vmolr);
2995
2996	return 0;
2997}
2998
2999/**
3000 * igb_rlpml_set - set maximum receive packet size
3001 * @adapter: board private structure
3002 *
3003 * Configure maximum receivable packet size.
3004 **/
3005static void igb_rlpml_set(struct igb_adapter *adapter)
3006{
3007	u32 max_frame_size = adapter->max_frame_size;
3008	struct e1000_hw *hw = &adapter->hw;
3009	u16 pf_id = adapter->vfs_allocated_count;
3010
3011	if (pf_id) {
3012		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3013		/*
3014		 * If we're in VMDQ or SR-IOV mode, then set global RLPML
3015		 * to our max jumbo frame size, in case we need to enable
3016		 * jumbo frames on one of the rings later.
3017		 * This will not pass over-length frames into the default
3018		 * queue because it's gated by the VMOLR.RLPML.
3019		 */
3020		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3021	}
3022
3023	wr32(E1000_RLPML, max_frame_size);
3024}
3025
3026static inline void igb_set_vmolr(struct igb_adapter *adapter,
3027				 int vfn, bool aupe)
3028{
3029	struct e1000_hw *hw = &adapter->hw;
3030	u32 vmolr;
3031
3032	/*
3033	 * This register exists only on 82576 and newer so if we are older then
3034	 * we should exit and do nothing
3035	 */
3036	if (hw->mac.type < e1000_82576)
3037		return;
3038
3039	vmolr = rd32(E1000_VMOLR(vfn));
3040	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
3041	if (aupe)
3042		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
3043	else
3044		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3045
3046	/* clear all bits that might not be set */
3047	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3048
3049	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3050		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3051	/*
3052	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3053	 * multicast packets
3054	 */
3055	if (vfn <= adapter->vfs_allocated_count)
3056		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */
3057
3058	wr32(E1000_VMOLR(vfn), vmolr);
3059}
3060
3061/**
3062 * igb_configure_rx_ring - Configure a receive ring after Reset
3063 * @adapter: board private structure
3064 * @ring: receive ring to be configured
3065 *
3066 * Configure the Rx unit of the MAC after a reset.
3067 **/
3068void igb_configure_rx_ring(struct igb_adapter *adapter,
3069                           struct igb_ring *ring)
3070{
3071	struct e1000_hw *hw = &adapter->hw;
3072	u64 rdba = ring->dma;
3073	int reg_idx = ring->reg_idx;
3074	u32 srrctl = 0, rxdctl = 0;
3075
3076	/* disable the queue */
3077	wr32(E1000_RXDCTL(reg_idx), 0);
3078
3079	/* Set DMA base address registers */
3080	wr32(E1000_RDBAL(reg_idx),
3081	     rdba & 0x00000000ffffffffULL);
3082	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3083	wr32(E1000_RDLEN(reg_idx),
3084	               ring->count * sizeof(union e1000_adv_rx_desc));
3085
3086	/* initialize head and tail */
3087	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3088	wr32(E1000_RDH(reg_idx), 0);
3089	writel(0, ring->tail);
3090
3091	/* set descriptor configuration */
3092	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3093	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3094	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3095	if (hw->mac.type >= e1000_82580)
3096		srrctl |= E1000_SRRCTL_TIMESTAMP;
3097	/* Only set Drop Enable if we are supporting multiple queues */
3098	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3099		srrctl |= E1000_SRRCTL_DROP_EN;
3100
3101	wr32(E1000_SRRCTL(reg_idx), srrctl);
3102
3103	/* set filtering for VMDQ pools */
3104	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3105
3106	rxdctl |= IGB_RX_PTHRESH;
3107	rxdctl |= IGB_RX_HTHRESH << 8;
3108	rxdctl |= IGB_RX_WTHRESH << 16;
3109
3110	/* enable receive descriptor fetching */
3111	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3112	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3113}
3114
3115/**
3116 * igb_configure_rx - Configure receive Unit after Reset
3117 * @adapter: board private structure
3118 *
3119 * Configure the Rx unit of the MAC after a reset.
3120 **/
3121static void igb_configure_rx(struct igb_adapter *adapter)
3122{
3123	int i;
3124
3125	/* set UTA to appropriate mode */
3126	igb_set_uta(adapter);
3127
3128	/* set the correct pool for the PF default MAC address in entry 0 */
3129	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3130	                 adapter->vfs_allocated_count);
3131
3132	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3133	 * the Base and Length of the Rx Descriptor Ring */
3134	for (i = 0; i < adapter->num_rx_queues; i++)
3135		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3136}
3137
3138/**
3139 * igb_free_tx_resources - Free Tx Resources per Queue
3140 * @tx_ring: Tx descriptor ring for a specific queue
3141 *
3142 * Free all transmit software resources
3143 **/
3144void igb_free_tx_resources(struct igb_ring *tx_ring)
3145{
3146	igb_clean_tx_ring(tx_ring);
3147
3148	vfree(tx_ring->tx_buffer_info);
3149	tx_ring->tx_buffer_info = NULL;
3150
3151	/* if not set, then don't free */
3152	if (!tx_ring->desc)
3153		return;
3154
3155	dma_free_coherent(tx_ring->dev, tx_ring->size,
3156			  tx_ring->desc, tx_ring->dma);
3157
3158	tx_ring->desc = NULL;
3159}
3160
3161/**
3162 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3163 * @adapter: board private structure
3164 *
3165 * Free all transmit software resources
3166 **/
3167static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3168{
3169	int i;
3170
3171	for (i = 0; i < adapter->num_tx_queues; i++)
3172		igb_free_tx_resources(adapter->tx_ring[i]);
3173}
3174
3175void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3176				    struct igb_tx_buffer *tx_buffer)
3177{
3178	if (tx_buffer->skb) {
3179		dev_kfree_skb_any(tx_buffer->skb);
3180		if (dma_unmap_len(tx_buffer, len))
3181			dma_unmap_single(ring->dev,
3182					 dma_unmap_addr(tx_buffer, dma),
3183					 dma_unmap_len(tx_buffer, len),
3184					 DMA_TO_DEVICE);
3185	} else if (dma_unmap_len(tx_buffer, len)) {
3186		dma_unmap_page(ring->dev,
3187			       dma_unmap_addr(tx_buffer, dma),
3188			       dma_unmap_len(tx_buffer, len),
3189			       DMA_TO_DEVICE);
3190	}
3191	tx_buffer->next_to_watch = NULL;
3192	tx_buffer->skb = NULL;
3193	dma_unmap_len_set(tx_buffer, len, 0);
3194	/* buffer_info must be completely set up in the transmit path */
3195}
3196
3197/**
3198 * igb_clean_tx_ring - Free Tx Buffers
3199 * @tx_ring: ring to be cleaned
3200 **/
3201static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3202{
3203	struct igb_tx_buffer *buffer_info;
3204	unsigned long size;
3205	u16 i;
3206
3207	if (!tx_ring->tx_buffer_info)
3208		return;
3209	/* Free all the Tx ring sk_buffs */
3210
3211	for (i = 0; i < tx_ring->count; i++) {
3212		buffer_info = &tx_ring->tx_buffer_info[i];
3213		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3214	}
3215
3216	netdev_tx_reset_queue(txring_txq(tx_ring));
3217
3218	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3219	memset(tx_ring->tx_buffer_info, 0, size);
3220
3221	/* Zero out the descriptor ring */
3222	memset(tx_ring->desc, 0, tx_ring->size);
3223
3224	tx_ring->next_to_use = 0;
3225	tx_ring->next_to_clean = 0;
3226}
3227
3228/**
3229 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3230 * @adapter: board private structure
3231 **/
3232static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3233{
3234	int i;
3235
3236	for (i = 0; i < adapter->num_tx_queues; i++)
3237		igb_clean_tx_ring(adapter->tx_ring[i]);
3238}
3239
3240/**
3241 * igb_free_rx_resources - Free Rx Resources
3242 * @rx_ring: ring to clean the resources from
3243 *
3244 * Free all receive software resources
3245 **/
3246void igb_free_rx_resources(struct igb_ring *rx_ring)
3247{
3248	igb_clean_rx_ring(rx_ring);
3249
3250	vfree(rx_ring->rx_buffer_info);
3251	rx_ring->rx_buffer_info = NULL;
3252
3253	/* if not set, then don't free */
3254	if (!rx_ring->desc)
3255		return;
3256
3257	dma_free_coherent(rx_ring->dev, rx_ring->size,
3258			  rx_ring->desc, rx_ring->dma);
3259
3260	rx_ring->desc = NULL;
3261}
3262
3263/**
3264 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3265 * @adapter: board private structure
3266 *
3267 * Free all receive software resources
3268 **/
3269static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3270{
3271	int i;
3272
3273	for (i = 0; i < adapter->num_rx_queues; i++)
3274		igb_free_rx_resources(adapter->rx_ring[i]);
3275}
3276
3277/**
3278 * igb_clean_rx_ring - Free Rx Buffers per Queue
3279 * @rx_ring: ring to free buffers from
3280 **/
3281static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3282{
3283	unsigned long size;
3284	u16 i;
3285
3286	if (rx_ring->skb)
3287		dev_kfree_skb(rx_ring->skb);
3288	rx_ring->skb = NULL;
3289
3290	if (!rx_ring->rx_buffer_info)
3291		return;
3292
3293	/* Free all the Rx ring sk_buffs */
3294	for (i = 0; i < rx_ring->count; i++) {
3295		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3296
3297		if (!buffer_info->page)
3298			continue;
3299
3300		dma_unmap_page(rx_ring->dev,
3301			       buffer_info->dma,
3302			       PAGE_SIZE,
3303			       DMA_FROM_DEVICE);
3304		__free_page(buffer_info->page);
3305
3306		buffer_info->page = NULL;
3307	}
3308
3309	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3310	memset(rx_ring->rx_buffer_info, 0, size);
3311
3312	/* Zero out the descriptor ring */
3313	memset(rx_ring->desc, 0, rx_ring->size);
3314
3315	rx_ring->next_to_alloc = 0;
3316	rx_ring->next_to_clean = 0;
3317	rx_ring->next_to_use = 0;
3318}
3319
3320/**
3321 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3322 * @adapter: board private structure
3323 **/
3324static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3325{
3326	int i;
3327
3328	for (i = 0; i < adapter->num_rx_queues; i++)
3329		igb_clean_rx_ring(adapter->rx_ring[i]);
3330}
3331
3332/**
3333 * igb_set_mac - Change the Ethernet Address of the NIC
3334 * @netdev: network interface device structure
3335 * @p: pointer to an address structure
3336 *
3337 * Returns 0 on success, negative on failure
3338 **/
3339static int igb_set_mac(struct net_device *netdev, void *p)
3340{
3341	struct igb_adapter *adapter = netdev_priv(netdev);
3342	struct e1000_hw *hw = &adapter->hw;
3343	struct sockaddr *addr = p;
3344
3345	if (!is_valid_ether_addr(addr->sa_data))
3346		return -EADDRNOTAVAIL;
3347
3348	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3349	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3350
3351	/* set the correct pool for the new PF MAC address in entry 0 */
3352	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3353	                 adapter->vfs_allocated_count);
3354
3355	return 0;
3356}
3357
3358/**
3359 * igb_write_mc_addr_list - write multicast addresses to MTA
3360 * @netdev: network interface device structure
3361 *
3362 * Writes multicast address list to the MTA hash table.
3363 * Returns: -ENOMEM on failure
3364 *                0 on no addresses written
3365 *                X on writing X addresses to MTA
3366 **/
3367static int igb_write_mc_addr_list(struct net_device *netdev)
3368{
3369	struct igb_adapter *adapter = netdev_priv(netdev);
3370	struct e1000_hw *hw = &adapter->hw;
3371	struct netdev_hw_addr *ha;
3372	u8  *mta_list;
3373	int i;
3374
3375	if (netdev_mc_empty(netdev)) {
3376		/* nothing to program, so clear mc list */
3377		igb_update_mc_addr_list(hw, NULL, 0);
3378		igb_restore_vf_multicasts(adapter);
3379		return 0;
3380	}
3381
3382	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3383	if (!mta_list)
3384		return -ENOMEM;
3385
3386	/* The shared function expects a packed array of only addresses. */
3387	i = 0;
3388	netdev_for_each_mc_addr(ha, netdev)
3389		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3390
3391	igb_update_mc_addr_list(hw, mta_list, i);
3392	kfree(mta_list);
3393
3394	return netdev_mc_count(netdev);
3395}
3396
3397/**
3398 * igb_write_uc_addr_list - write unicast addresses to RAR table
3399 * @netdev: network interface device structure
3400 *
3401 * Writes unicast address list to the RAR table.
3402 * Returns: -ENOMEM on failure/insufficient address space
3403 *                0 on no addresses written
3404 *                X on writing X addresses to the RAR table
3405 **/
3406static int igb_write_uc_addr_list(struct net_device *netdev)
3407{
3408	struct igb_adapter *adapter = netdev_priv(netdev);
3409	struct e1000_hw *hw = &adapter->hw;
3410	unsigned int vfn = adapter->vfs_allocated_count;
3411	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3412	int count = 0;
3413
3414	/* return ENOMEM indicating insufficient memory for addresses */
3415	if (netdev_uc_count(netdev) > rar_entries)
3416		return -ENOMEM;
3417
3418	if (!netdev_uc_empty(netdev) && rar_entries) {
3419		struct netdev_hw_addr *ha;
3420
3421		netdev_for_each_uc_addr(ha, netdev) {
3422			if (!rar_entries)
3423				break;
3424			igb_rar_set_qsel(adapter, ha->addr,
3425			                 rar_entries--,
3426			                 vfn);
3427			count++;
3428		}
3429	}
3430	/* write the addresses in reverse order to avoid write combining */
3431	for (; rar_entries > 0 ; rar_entries--) {
3432		wr32(E1000_RAH(rar_entries), 0);
3433		wr32(E1000_RAL(rar_entries), 0);
3434	}
3435	wrfl();
3436
3437	return count;
3438}
3439
3440/**
3441 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3442 * @netdev: network interface device structure
3443 *
3444 * The set_rx_mode entry point is called whenever the unicast or multicast
3445 * address lists or the network interface flags are updated.  This routine is
3446 * responsible for configuring the hardware for proper unicast, multicast,
3447 * promiscuous mode, and all-multi behavior.
3448 **/
3449static void igb_set_rx_mode(struct net_device *netdev)
3450{
3451	struct igb_adapter *adapter = netdev_priv(netdev);
3452	struct e1000_hw *hw = &adapter->hw;
3453	unsigned int vfn = adapter->vfs_allocated_count;
3454	u32 rctl, vmolr = 0;
3455	int count;
3456
3457	/* Check for Promiscuous and All Multicast modes */
3458	rctl = rd32(E1000_RCTL);
3459
3460	/* clear the effected bits */
3461	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3462
3463	if (netdev->flags & IFF_PROMISC) {
3464		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3465		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3466	} else {
3467		if (netdev->flags & IFF_ALLMULTI) {
3468			rctl |= E1000_RCTL_MPE;
3469			vmolr |= E1000_VMOLR_MPME;
3470		} else {
3471			/*
3472			 * Write addresses to the MTA, if the attempt fails
3473			 * then we should just turn on promiscuous mode so
3474			 * that we can at least receive multicast traffic
3475			 */
3476			count = igb_write_mc_addr_list(netdev);
3477			if (count < 0) {
3478				rctl |= E1000_RCTL_MPE;
3479				vmolr |= E1000_VMOLR_MPME;
3480			} else if (count) {
3481				vmolr |= E1000_VMOLR_ROMPE;
3482			}
3483		}
3484		/*
3485		 * Write addresses to available RAR registers, if there is not
3486		 * sufficient space to store all the addresses then enable
3487		 * unicast promiscuous mode
3488		 */
3489		count = igb_write_uc_addr_list(netdev);
3490		if (count < 0) {
3491			rctl |= E1000_RCTL_UPE;
3492			vmolr |= E1000_VMOLR_ROPE;
3493		}
3494		rctl |= E1000_RCTL_VFE;
3495	}
3496	wr32(E1000_RCTL, rctl);
3497
3498	/*
3499	 * In order to support SR-IOV and eventually VMDq it is necessary to set
3500	 * the VMOLR to enable the appropriate modes.  Without this workaround
3501	 * we will have issues with VLAN tag stripping not being done for frames
3502	 * that are only arriving because we are the default pool
3503	 */
3504	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3505		return;
3506
3507	vmolr |= rd32(E1000_VMOLR(vfn)) &
3508	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3509	wr32(E1000_VMOLR(vfn), vmolr);
3510	igb_restore_vf_multicasts(adapter);
3511}
3512
3513static void igb_check_wvbr(struct igb_adapter *adapter)
3514{
3515	struct e1000_hw *hw = &adapter->hw;
3516	u32 wvbr = 0;
3517
3518	switch (hw->mac.type) {
3519	case e1000_82576:
3520	case e1000_i350:
3521		if (!(wvbr = rd32(E1000_WVBR)))
3522			return;
3523		break;
3524	default:
3525		break;
3526	}
3527
3528	adapter->wvbr |= wvbr;
3529}
3530
3531#define IGB_STAGGERED_QUEUE_OFFSET 8
3532
3533static void igb_spoof_check(struct igb_adapter *adapter)
3534{
3535	int j;
3536
3537	if (!adapter->wvbr)
3538		return;
3539
3540	for(j = 0; j < adapter->vfs_allocated_count; j++) {
3541		if (adapter->wvbr & (1 << j) ||
3542		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3543			dev_warn(&adapter->pdev->dev,
3544				"Spoof event(s) detected on VF %d\n", j);
3545			adapter->wvbr &=
3546				~((1 << j) |
3547				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3548		}
3549	}
3550}
3551
3552/* Need to wait a few seconds after link up to get diagnostic information from
3553 * the phy */
3554static void igb_update_phy_info(unsigned long data)
3555{
3556	struct igb_adapter *adapter = (struct igb_adapter *) data;
3557	igb_get_phy_info(&adapter->hw);
3558}
3559
3560/**
3561 * igb_has_link - check shared code for link and determine up/down
3562 * @adapter: pointer to driver private info
3563 **/
3564bool igb_has_link(struct igb_adapter *adapter)
3565{
3566	struct e1000_hw *hw = &adapter->hw;
3567	bool link_active = false;
3568	s32 ret_val = 0;
3569
3570	/* get_link_status is set on LSC (link status) interrupt or
3571	 * rx sequence error interrupt.  get_link_status will stay
3572	 * false until the e1000_check_for_link establishes link
3573	 * for copper adapters ONLY
3574	 */
3575	switch (hw->phy.media_type) {
3576	case e1000_media_type_copper:
3577		if (hw->mac.get_link_status) {
3578			ret_val = hw->mac.ops.check_for_link(hw);
3579			link_active = !hw->mac.get_link_status;
3580		} else {
3581			link_active = true;
3582		}
3583		break;
3584	case e1000_media_type_internal_serdes:
3585		ret_val = hw->mac.ops.check_for_link(hw);
3586		link_active = hw->mac.serdes_has_link;
3587		break;
3588	default:
3589	case e1000_media_type_unknown:
3590		break;
3591	}
3592
3593	return link_active;
3594}
3595
3596static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3597{
3598	bool ret = false;
3599	u32 ctrl_ext, thstat;
3600
3601	/* check for thermal sensor event on i350 copper only */
3602	if (hw->mac.type == e1000_i350) {
3603		thstat = rd32(E1000_THSTAT);
3604		ctrl_ext = rd32(E1000_CTRL_EXT);
3605
3606		if ((hw->phy.media_type == e1000_media_type_copper) &&
3607		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3608			ret = !!(thstat & event);
3609		}
3610	}
3611
3612	return ret;
3613}
3614
3615/**
3616 * igb_watchdog - Timer Call-back
3617 * @data: pointer to adapter cast into an unsigned long
3618 **/
3619static void igb_watchdog(unsigned long data)
3620{
3621	struct igb_adapter *adapter = (struct igb_adapter *)data;
3622	/* Do the rest outside of interrupt context */
3623	schedule_work(&adapter->watchdog_task);
3624}
3625
3626static void igb_watchdog_task(struct work_struct *work)
3627{
3628	struct igb_adapter *adapter = container_of(work,
3629	                                           struct igb_adapter,
3630                                                   watchdog_task);
3631	struct e1000_hw *hw = &adapter->hw;
3632	struct net_device *netdev = adapter->netdev;
3633	u32 link;
3634	int i;
3635
3636	link = igb_has_link(adapter);
3637	if (link) {
3638		/* Cancel scheduled suspend requests. */
3639		pm_runtime_resume(netdev->dev.parent);
3640
3641		if (!netif_carrier_ok(netdev)) {
3642			u32 ctrl;
3643			hw->mac.ops.get_speed_and_duplex(hw,
3644			                                 &adapter->link_speed,
3645			                                 &adapter->link_duplex);
3646
3647			ctrl = rd32(E1000_CTRL);
3648			/* Links status message must follow this format */
3649			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3650			       "Duplex, Flow Control: %s\n",
3651			       netdev->name,
3652			       adapter->link_speed,
3653			       adapter->link_duplex == FULL_DUPLEX ?
3654			       "Full" : "Half",
3655			       (ctrl & E1000_CTRL_TFCE) &&
3656			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3657			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
3658			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3659
3660			/* check for thermal sensor event */
3661			if (igb_thermal_sensor_event(hw,
3662			    E1000_THSTAT_LINK_THROTTLE)) {
3663				netdev_info(netdev, "The network adapter link "
3664					    "speed was downshifted because it "
3665					    "overheated\n");
3666			}
3667
3668			/* adjust timeout factor according to speed/duplex */
3669			adapter->tx_timeout_factor = 1;
3670			switch (adapter->link_speed) {
3671			case SPEED_10:
3672				adapter->tx_timeout_factor = 14;
3673				break;
3674			case SPEED_100:
3675				/* maybe add some timeout factor ? */
3676				break;
3677			}
3678
3679			netif_carrier_on(netdev);
3680
3681			igb_ping_all_vfs(adapter);
3682			igb_check_vf_rate_limit(adapter);
3683
3684			/* link state has changed, schedule phy info update */
3685			if (!test_bit(__IGB_DOWN, &adapter->state))
3686				mod_timer(&adapter->phy_info_timer,
3687					  round_jiffies(jiffies + 2 * HZ));
3688		}
3689	} else {
3690		if (netif_carrier_ok(netdev)) {
3691			adapter->link_speed = 0;
3692			adapter->link_duplex = 0;
3693
3694			/* check for thermal sensor event */
3695			if (igb_thermal_sensor_event(hw,
3696			    E1000_THSTAT_PWR_DOWN)) {
3697				netdev_err(netdev, "The network adapter was "
3698					   "stopped because it overheated\n");
3699			}
3700
3701			/* Links status message must follow this format */
3702			printk(KERN_INFO "igb: %s NIC Link is Down\n",
3703			       netdev->name);
3704			netif_carrier_off(netdev);
3705
3706			igb_ping_all_vfs(adapter);
3707
3708			/* link state has changed, schedule phy info update */
3709			if (!test_bit(__IGB_DOWN, &adapter->state))
3710				mod_timer(&adapter->phy_info_timer,
3711					  round_jiffies(jiffies + 2 * HZ));
3712
3713			pm_schedule_suspend(netdev->dev.parent,
3714					    MSEC_PER_SEC * 5);
3715		}
3716	}
3717
3718	spin_lock(&adapter->stats64_lock);
3719	igb_update_stats(adapter, &adapter->stats64);
3720	spin_unlock(&adapter->stats64_lock);
3721
3722	for (i = 0; i < adapter->num_tx_queues; i++) {
3723		struct igb_ring *tx_ring = adapter->tx_ring[i];
3724		if (!netif_carrier_ok(netdev)) {
3725			/* We've lost link, so the controller stops DMA,
3726			 * but we've got queued Tx work that's never going
3727			 * to get done, so reset controller to flush Tx.
3728			 * (Do the reset outside of interrupt context). */
3729			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3730				adapter->tx_timeout_count++;
3731				schedule_work(&adapter->reset_task);
3732				/* return immediately since reset is imminent */
3733				return;
3734			}
3735		}
3736
3737		/* Force detection of hung controller every watchdog period */
3738		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3739	}
3740
3741	/* Cause software interrupt to ensure rx ring is cleaned */
3742	if (adapter->msix_entries) {
3743		u32 eics = 0;
3744		for (i = 0; i < adapter->num_q_vectors; i++)
3745			eics |= adapter->q_vector[i]->eims_value;
3746		wr32(E1000_EICS, eics);
3747	} else {
3748		wr32(E1000_ICS, E1000_ICS_RXDMT0);
3749	}
3750
3751	igb_spoof_check(adapter);
3752
3753	/* Reset the timer */
3754	if (!test_bit(__IGB_DOWN, &adapter->state))
3755		mod_timer(&adapter->watchdog_timer,
3756			  round_jiffies(jiffies + 2 * HZ));
3757}
3758
3759enum latency_range {
3760	lowest_latency = 0,
3761	low_latency = 1,
3762	bulk_latency = 2,
3763	latency_invalid = 255
3764};
3765
3766/**
3767 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3768 *
3769 *      Stores a new ITR value based on strictly on packet size.  This
3770 *      algorithm is less sophisticated than that used in igb_update_itr,
3771 *      due to the difficulty of synchronizing statistics across multiple
3772 *      receive rings.  The divisors and thresholds used by this function
3773 *      were determined based on theoretical maximum wire speed and testing
3774 *      data, in order to minimize response time while increasing bulk
3775 *      throughput.
3776 *      This functionality is controlled by the InterruptThrottleRate module
3777 *      parameter (see igb_param.c)
3778 *      NOTE:  This function is called only when operating in a multiqueue
3779 *             receive environment.
3780 * @q_vector: pointer to q_vector
3781 **/
3782static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3783{
3784	int new_val = q_vector->itr_val;
3785	int avg_wire_size = 0;
3786	struct igb_adapter *adapter = q_vector->adapter;
3787	unsigned int packets;
3788
3789	/* For non-gigabit speeds, just fix the interrupt rate at 4000
3790	 * ints/sec - ITR timer value of 120 ticks.
3791	 */
3792	if (adapter->link_speed != SPEED_1000) {
3793		new_val = IGB_4K_ITR;
3794		goto set_itr_val;
3795	}
3796
3797	packets = q_vector->rx.total_packets;
3798	if (packets)
3799		avg_wire_size = q_vector->rx.total_bytes / packets;
3800
3801	packets = q_vector->tx.total_packets;
3802	if (packets)
3803		avg_wire_size = max_t(u32, avg_wire_size,
3804				      q_vector->tx.total_bytes / packets);
3805
3806	/* if avg_wire_size isn't set no work was done */
3807	if (!avg_wire_size)
3808		goto clear_counts;
3809
3810	/* Add 24 bytes to size to account for CRC, preamble, and gap */
3811	avg_wire_size += 24;
3812
3813	/* Don't starve jumbo frames */
3814	avg_wire_size = min(avg_wire_size, 3000);
3815
3816	/* Give a little boost to mid-size frames */
3817	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3818		new_val = avg_wire_size / 3;
3819	else
3820		new_val = avg_wire_size / 2;
3821
3822	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3823	if (new_val < IGB_20K_ITR &&
3824	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3825	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3826		new_val = IGB_20K_ITR;
3827
3828set_itr_val:
3829	if (new_val != q_vector->itr_val) {
3830		q_vector->itr_val = new_val;
3831		q_vector->set_itr = 1;
3832	}
3833clear_counts:
3834	q_vector->rx.total_bytes = 0;
3835	q_vector->rx.total_packets = 0;
3836	q_vector->tx.total_bytes = 0;
3837	q_vector->tx.total_packets = 0;
3838}
3839
3840/**
3841 * igb_update_itr - update the dynamic ITR value based on statistics
3842 *      Stores a new ITR value based on packets and byte
3843 *      counts during the last interrupt.  The advantage of per interrupt
3844 *      computation is faster updates and more accurate ITR for the current
3845 *      traffic pattern.  Constants in this function were computed
3846 *      based on theoretical maximum wire speed and thresholds were set based
3847 *      on testing data as well as attempting to minimize response time
3848 *      while increasing bulk throughput.
3849 *      this functionality is controlled by the InterruptThrottleRate module
3850 *      parameter (see igb_param.c)
3851 *      NOTE:  These calculations are only valid when operating in a single-
3852 *             queue environment.
3853 * @q_vector: pointer to q_vector
3854 * @ring_container: ring info to update the itr for
3855 **/
3856static void igb_update_itr(struct igb_q_vector *q_vector,
3857			   struct igb_ring_container *ring_container)
3858{
3859	unsigned int packets = ring_container->total_packets;
3860	unsigned int bytes = ring_container->total_bytes;
3861	u8 itrval = ring_container->itr;
3862
3863	/* no packets, exit with status unchanged */
3864	if (packets == 0)
3865		return;
3866
3867	switch (itrval) {
3868	case lowest_latency:
3869		/* handle TSO and jumbo frames */
3870		if (bytes/packets > 8000)
3871			itrval = bulk_latency;
3872		else if ((packets < 5) && (bytes > 512))
3873			itrval = low_latency;
3874		break;
3875	case low_latency:  /* 50 usec aka 20000 ints/s */
3876		if (bytes > 10000) {
3877			/* this if handles the TSO accounting */
3878			if (bytes/packets > 8000) {
3879				itrval = bulk_latency;
3880			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
3881				itrval = bulk_latency;
3882			} else if ((packets > 35)) {
3883				itrval = lowest_latency;
3884			}
3885		} else if (bytes/packets > 2000) {
3886			itrval = bulk_latency;
3887		} else if (packets <= 2 && bytes < 512) {
3888			itrval = lowest_latency;
3889		}
3890		break;
3891	case bulk_latency: /* 250 usec aka 4000 ints/s */
3892		if (bytes > 25000) {
3893			if (packets > 35)
3894				itrval = low_latency;
3895		} else if (bytes < 1500) {
3896			itrval = low_latency;
3897		}
3898		break;
3899	}
3900
3901	/* clear work counters since we have the values we need */
3902	ring_container->total_bytes = 0;
3903	ring_container->total_packets = 0;
3904
3905	/* write updated itr to ring container */
3906	ring_container->itr = itrval;
3907}
3908
3909static void igb_set_itr(struct igb_q_vector *q_vector)
3910{
3911	struct igb_adapter *adapter = q_vector->adapter;
3912	u32 new_itr = q_vector->itr_val;
3913	u8 current_itr = 0;
3914
3915	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3916	if (adapter->link_speed != SPEED_1000) {
3917		current_itr = 0;
3918		new_itr = IGB_4K_ITR;
3919		goto set_itr_now;
3920	}
3921
3922	igb_update_itr(q_vector, &q_vector->tx);
3923	igb_update_itr(q_vector, &q_vector->rx);
3924
3925	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3926
3927	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3928	if (current_itr == lowest_latency &&
3929	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3930	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3931		current_itr = low_latency;
3932
3933	switch (current_itr) {
3934	/* counts and packets in update_itr are dependent on these numbers */
3935	case lowest_latency:
3936		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
3937		break;
3938	case low_latency:
3939		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
3940		break;
3941	case bulk_latency:
3942		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
3943		break;
3944	default:
3945		break;
3946	}
3947
3948set_itr_now:
3949	if (new_itr != q_vector->itr_val) {
3950		/* this attempts to bias the interrupt rate towards Bulk
3951		 * by adding intermediate steps when interrupt rate is
3952		 * increasing */
3953		new_itr = new_itr > q_vector->itr_val ?
3954		             max((new_itr * q_vector->itr_val) /
3955		                 (new_itr + (q_vector->itr_val >> 2)),
3956				 new_itr) :
3957			     new_itr;
3958		/* Don't write the value here; it resets the adapter's
3959		 * internal timer, and causes us to delay far longer than
3960		 * we should between interrupts.  Instead, we write the ITR
3961		 * value at the beginning of the next interrupt so the timing
3962		 * ends up being correct.
3963		 */
3964		q_vector->itr_val = new_itr;
3965		q_vector->set_itr = 1;
3966	}
3967}
3968
3969static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
3970			    u32 type_tucmd, u32 mss_l4len_idx)
3971{
3972	struct e1000_adv_tx_context_desc *context_desc;
3973	u16 i = tx_ring->next_to_use;
3974
3975	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
3976
3977	i++;
3978	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3979
3980	/* set bits to identify this as an advanced context descriptor */
3981	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
3982
3983	/* For 82575, context index must be unique per ring. */
3984	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
3985		mss_l4len_idx |= tx_ring->reg_idx << 4;
3986
3987	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
3988	context_desc->seqnum_seed	= 0;
3989	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
3990	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
3991}
3992
3993static int igb_tso(struct igb_ring *tx_ring,
3994		   struct igb_tx_buffer *first,
3995		   u8 *hdr_len)
3996{
3997	struct sk_buff *skb = first->skb;
3998	u32 vlan_macip_lens, type_tucmd;
3999	u32 mss_l4len_idx, l4len;
4000
4001	if (!skb_is_gso(skb))
4002		return 0;
4003
4004	if (skb_header_cloned(skb)) {
4005		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4006		if (err)
4007			return err;
4008	}
4009
4010	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4011	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4012
4013	if (first->protocol == __constant_htons(ETH_P_IP)) {
4014		struct iphdr *iph = ip_hdr(skb);
4015		iph->tot_len = 0;
4016		iph->check = 0;
4017		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4018							 iph->daddr, 0,
4019							 IPPROTO_TCP,
4020							 0);
4021		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4022		first->tx_flags |= IGB_TX_FLAGS_TSO |
4023				   IGB_TX_FLAGS_CSUM |
4024				   IGB_TX_FLAGS_IPV4;
4025	} else if (skb_is_gso_v6(skb)) {
4026		ipv6_hdr(skb)->payload_len = 0;
4027		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4028						       &ipv6_hdr(skb)->daddr,
4029						       0, IPPROTO_TCP, 0);
4030		first->tx_flags |= IGB_TX_FLAGS_TSO |
4031				   IGB_TX_FLAGS_CSUM;
4032	}
4033
4034	/* compute header lengths */
4035	l4len = tcp_hdrlen(skb);
4036	*hdr_len = skb_transport_offset(skb) + l4len;
4037
4038	/* update gso size and bytecount with header size */
4039	first->gso_segs = skb_shinfo(skb)->gso_segs;
4040	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4041
4042	/* MSS L4LEN IDX */
4043	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4044	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4045
4046	/* VLAN MACLEN IPLEN */
4047	vlan_macip_lens = skb_network_header_len(skb);
4048	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4049	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4050
4051	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4052
4053	return 1;
4054}
4055
4056static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4057{
4058	struct sk_buff *skb = first->skb;
4059	u32 vlan_macip_lens = 0;
4060	u32 mss_l4len_idx = 0;
4061	u32 type_tucmd = 0;
4062
4063	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4064		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4065			return;
4066	} else {
4067		u8 l4_hdr = 0;
4068		switch (first->protocol) {
4069		case __constant_htons(ETH_P_IP):
4070			vlan_macip_lens |= skb_network_header_len(skb);
4071			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4072			l4_hdr = ip_hdr(skb)->protocol;
4073			break;
4074		case __constant_htons(ETH_P_IPV6):
4075			vlan_macip_lens |= skb_network_header_len(skb);
4076			l4_hdr = ipv6_hdr(skb)->nexthdr;
4077			break;
4078		default:
4079			if (unlikely(net_ratelimit())) {
4080				dev_warn(tx_ring->dev,
4081				 "partial checksum but proto=%x!\n",
4082				 first->protocol);
4083			}
4084			break;
4085		}
4086
4087		switch (l4_hdr) {
4088		case IPPROTO_TCP:
4089			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4090			mss_l4len_idx = tcp_hdrlen(skb) <<
4091					E1000_ADVTXD_L4LEN_SHIFT;
4092			break;
4093		case IPPROTO_SCTP:
4094			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4095			mss_l4len_idx = sizeof(struct sctphdr) <<
4096					E1000_ADVTXD_L4LEN_SHIFT;
4097			break;
4098		case IPPROTO_UDP:
4099			mss_l4len_idx = sizeof(struct udphdr) <<
4100					E1000_ADVTXD_L4LEN_SHIFT;
4101			break;
4102		default:
4103			if (unlikely(net_ratelimit())) {
4104				dev_warn(tx_ring->dev,
4105				 "partial checksum but l4 proto=%x!\n",
4106				 l4_hdr);
4107			}
4108			break;
4109		}
4110
4111		/* update TX checksum flag */
4112		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4113	}
4114
4115	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4116	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4117
4118	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4119}
4120
4121static __le32 igb_tx_cmd_type(u32 tx_flags)
4122{
4123	/* set type for advanced descriptor with frame checksum insertion */
4124	__le32 cmd_type = cpu_to_le32(E1000_ADVTXD_DTYP_DATA |
4125				      E1000_ADVTXD_DCMD_IFCS |
4126				      E1000_ADVTXD_DCMD_DEXT);
4127
4128	/* set HW vlan bit if vlan is present */
4129	if (tx_flags & IGB_TX_FLAGS_VLAN)
4130		cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_VLE);
4131
4132	/* set timestamp bit if present */
4133	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP))
4134		cmd_type |= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP);
4135
4136	/* set segmentation bits for TSO */
4137	if (tx_flags & IGB_TX_FLAGS_TSO)
4138		cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_TSE);
4139
4140	return cmd_type;
4141}
4142
4143static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4144				 union e1000_adv_tx_desc *tx_desc,
4145				 u32 tx_flags, unsigned int paylen)
4146{
4147	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4148
4149	/* 82575 requires a unique index per ring if any offload is enabled */
4150	if ((tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_VLAN)) &&
4151	    test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4152		olinfo_status |= tx_ring->reg_idx << 4;
4153
4154	/* insert L4 checksum */
4155	if (tx_flags & IGB_TX_FLAGS_CSUM) {
4156		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4157
4158		/* insert IPv4 checksum */
4159		if (tx_flags & IGB_TX_FLAGS_IPV4)
4160			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4161	}
4162
4163	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4164}
4165
4166/*
4167 * The largest size we can write to the descriptor is 65535.  In order to
4168 * maintain a power of two alignment we have to limit ourselves to 32K.
4169 */
4170#define IGB_MAX_TXD_PWR	15
4171#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)
4172
4173static void igb_tx_map(struct igb_ring *tx_ring,
4174		       struct igb_tx_buffer *first,
4175		       const u8 hdr_len)
4176{
4177	struct sk_buff *skb = first->skb;
4178	struct igb_tx_buffer *tx_buffer;
4179	union e1000_adv_tx_desc *tx_desc;
4180	dma_addr_t dma;
4181	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
4182	unsigned int data_len = skb->data_len;
4183	unsigned int size = skb_headlen(skb);
4184	unsigned int paylen = skb->len - hdr_len;
4185	__le32 cmd_type;
4186	u32 tx_flags = first->tx_flags;
4187	u16 i = tx_ring->next_to_use;
4188
4189	tx_desc = IGB_TX_DESC(tx_ring, i);
4190
4191	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, paylen);
4192	cmd_type = igb_tx_cmd_type(tx_flags);
4193
4194	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4195	if (dma_mapping_error(tx_ring->dev, dma))
4196		goto dma_error;
4197
4198	/* record length, and DMA address */
4199	dma_unmap_len_set(first, len, size);
4200	dma_unmap_addr_set(first, dma, dma);
4201	tx_desc->read.buffer_addr = cpu_to_le64(dma);
4202
4203	for (;;) {
4204		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4205			tx_desc->read.cmd_type_len =
4206				cmd_type | cpu_to_le32(IGB_MAX_DATA_PER_TXD);
4207
4208			i++;
4209			tx_desc++;
4210			if (i == tx_ring->count) {
4211				tx_desc = IGB_TX_DESC(tx_ring, 0);
4212				i = 0;
4213			}
4214
4215			dma += IGB_MAX_DATA_PER_TXD;
4216			size -= IGB_MAX_DATA_PER_TXD;
4217
4218			tx_desc->read.olinfo_status = 0;
4219			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4220		}
4221
4222		if (likely(!data_len))
4223			break;
4224
4225		tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
4226
4227		i++;
4228		tx_desc++;
4229		if (i == tx_ring->count) {
4230			tx_desc = IGB_TX_DESC(tx_ring, 0);
4231			i = 0;
4232		}
4233
4234		size = skb_frag_size(frag);
4235		data_len -= size;
4236
4237		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4238				   size, DMA_TO_DEVICE);
4239		if (dma_mapping_error(tx_ring->dev, dma))
4240			goto dma_error;
4241
4242		tx_buffer = &tx_ring->tx_buffer_info[i];
4243		dma_unmap_len_set(tx_buffer, len, size);
4244		dma_unmap_addr_set(tx_buffer, dma, dma);
4245
4246		tx_desc->read.olinfo_status = 0;
4247		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4248
4249		frag++;
4250	}
4251
4252	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4253
4254	/* write last descriptor with RS and EOP bits */
4255	cmd_type |= cpu_to_le32(size) | cpu_to_le32(IGB_TXD_DCMD);
4256	if (unlikely(skb->no_fcs))
4257		cmd_type &= ~(cpu_to_le32(E1000_ADVTXD_DCMD_IFCS));
4258	tx_desc->read.cmd_type_len = cmd_type;
4259
4260	/* set the timestamp */
4261	first->time_stamp = jiffies;
4262
4263	/*
4264	 * Force memory writes to complete before letting h/w know there
4265	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4266	 * memory model archs, such as IA-64).
4267	 *
4268	 * We also need this memory barrier to make certain all of the
4269	 * status bits have been updated before next_to_watch is written.
4270	 */
4271	wmb();
4272
4273	/* set next_to_watch value indicating a packet is present */
4274	first->next_to_watch = tx_desc;
4275
4276	i++;
4277	if (i == tx_ring->count)
4278		i = 0;
4279
4280	tx_ring->next_to_use = i;
4281
4282	writel(i, tx_ring->tail);
4283
4284	/* we need this if more than one processor can write to our tail
4285	 * at a time, it syncronizes IO on IA64/Altix systems */
4286	mmiowb();
4287
4288	return;
4289
4290dma_error:
4291	dev_err(tx_ring->dev, "TX DMA map failed\n");
4292
4293	/* clear dma mappings for failed tx_buffer_info map */
4294	for (;;) {
4295		tx_buffer = &tx_ring->tx_buffer_info[i];
4296		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4297		if (tx_buffer == first)
4298			break;
4299		if (i == 0)
4300			i = tx_ring->count;
4301		i--;
4302	}
4303
4304	tx_ring->next_to_use = i;
4305}
4306
4307static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4308{
4309	struct net_device *netdev = tx_ring->netdev;
4310
4311	netif_stop_subqueue(netdev, tx_ring->queue_index);
4312
4313	/* Herbert's original patch had:
4314	 *  smp_mb__after_netif_stop_queue();
4315	 * but since that doesn't exist yet, just open code it. */
4316	smp_mb();
4317
4318	/* We need to check again in a case another CPU has just
4319	 * made room available. */
4320	if (igb_desc_unused(tx_ring) < size)
4321		return -EBUSY;
4322
4323	/* A reprieve! */
4324	netif_wake_subqueue(netdev, tx_ring->queue_index);
4325
4326	u64_stats_update_begin(&tx_ring->tx_syncp2);
4327	tx_ring->tx_stats.restart_queue2++;
4328	u64_stats_update_end(&tx_ring->tx_syncp2);
4329
4330	return 0;
4331}
4332
4333static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4334{
4335	if (igb_desc_unused(tx_ring) >= size)
4336		return 0;
4337	return __igb_maybe_stop_tx(tx_ring, size);
4338}
4339
4340netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4341				struct igb_ring *tx_ring)
4342{
4343	struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4344	struct igb_tx_buffer *first;
4345	int tso;
4346	u32 tx_flags = 0;
4347	__be16 protocol = vlan_get_protocol(skb);
4348	u8 hdr_len = 0;
4349
4350	/* need: 1 descriptor per page,
4351	 *       + 2 desc gap to keep tail from touching head,
4352	 *       + 1 desc for skb->data,
4353	 *       + 1 desc for context descriptor,
4354	 * otherwise try next time */
4355	if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4356		/* this is a hard error */
4357		return NETDEV_TX_BUSY;
4358	}
4359
4360	/* record the location of the first descriptor for this packet */
4361	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4362	first->skb = skb;
4363	first->bytecount = skb->len;
4364	first->gso_segs = 1;
4365
4366	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4367		     !(adapter->ptp_tx_skb))) {
4368		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4369		tx_flags |= IGB_TX_FLAGS_TSTAMP;
4370
4371		adapter->ptp_tx_skb = skb_get(skb);
4372		if (adapter->hw.mac.type == e1000_82576)
4373			schedule_work(&adapter->ptp_tx_work);
4374	}
4375
4376	if (vlan_tx_tag_present(skb)) {
4377		tx_flags |= IGB_TX_FLAGS_VLAN;
4378		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4379	}
4380
4381	/* record initial flags and protocol */
4382	first->tx_flags = tx_flags;
4383	first->protocol = protocol;
4384
4385	tso = igb_tso(tx_ring, first, &hdr_len);
4386	if (tso < 0)
4387		goto out_drop;
4388	else if (!tso)
4389		igb_tx_csum(tx_ring, first);
4390
4391	igb_tx_map(tx_ring, first, hdr_len);
4392
4393	/* Make sure there is space in the ring for the next send. */
4394	igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4395
4396	return NETDEV_TX_OK;
4397
4398out_drop:
4399	igb_unmap_and_free_tx_resource(tx_ring, first);
4400
4401	return NETDEV_TX_OK;
4402}
4403
4404static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4405						    struct sk_buff *skb)
4406{
4407	unsigned int r_idx = skb->queue_mapping;
4408
4409	if (r_idx >= adapter->num_tx_queues)
4410		r_idx = r_idx % adapter->num_tx_queues;
4411
4412	return adapter->tx_ring[r_idx];
4413}
4414
4415static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4416				  struct net_device *netdev)
4417{
4418	struct igb_adapter *adapter = netdev_priv(netdev);
4419
4420	if (test_bit(__IGB_DOWN, &adapter->state)) {
4421		dev_kfree_skb_any(skb);
4422		return NETDEV_TX_OK;
4423	}
4424
4425	if (skb->len <= 0) {
4426		dev_kfree_skb_any(skb);
4427		return NETDEV_TX_OK;
4428	}
4429
4430	/*
4431	 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4432	 * in order to meet this minimum size requirement.
4433	 */
4434	if (unlikely(skb->len < 17)) {
4435		if (skb_pad(skb, 17 - skb->len))
4436			return NETDEV_TX_OK;
4437		skb->len = 17;
4438		skb_set_tail_pointer(skb, 17);
4439	}
4440
4441	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4442}
4443
4444/**
4445 * igb_tx_timeout - Respond to a Tx Hang
4446 * @netdev: network interface device structure
4447 **/
4448static void igb_tx_timeout(struct net_device *netdev)
4449{
4450	struct igb_adapter *adapter = netdev_priv(netdev);
4451	struct e1000_hw *hw = &adapter->hw;
4452
4453	/* Do the reset outside of interrupt context */
4454	adapter->tx_timeout_count++;
4455
4456	if (hw->mac.type >= e1000_82580)
4457		hw->dev_spec._82575.global_device_reset = true;
4458
4459	schedule_work(&adapter->reset_task);
4460	wr32(E1000_EICS,
4461	     (adapter->eims_enable_mask & ~adapter->eims_other));
4462}
4463
4464static void igb_reset_task(struct work_struct *work)
4465{
4466	struct igb_adapter *adapter;
4467	adapter = container_of(work, struct igb_adapter, reset_task);
4468
4469	igb_dump(adapter);
4470	netdev_err(adapter->netdev, "Reset adapter\n");
4471	igb_reinit_locked(adapter);
4472}
4473
4474/**
4475 * igb_get_stats64 - Get System Network Statistics
4476 * @netdev: network interface device structure
4477 * @stats: rtnl_link_stats64 pointer
4478 *
4479 **/
4480static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4481						 struct rtnl_link_stats64 *stats)
4482{
4483	struct igb_adapter *adapter = netdev_priv(netdev);
4484
4485	spin_lock(&adapter->stats64_lock);
4486	igb_update_stats(adapter, &adapter->stats64);
4487	memcpy(stats, &adapter->stats64, sizeof(*stats));
4488	spin_unlock(&adapter->stats64_lock);
4489
4490	return stats;
4491}
4492
4493/**
4494 * igb_change_mtu - Change the Maximum Transfer Unit
4495 * @netdev: network interface device structure
4496 * @new_mtu: new value for maximum frame size
4497 *
4498 * Returns 0 on success, negative on failure
4499 **/
4500static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4501{
4502	struct igb_adapter *adapter = netdev_priv(netdev);
4503	struct pci_dev *pdev = adapter->pdev;
4504	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4505
4506	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4507		dev_err(&pdev->dev, "Invalid MTU setting\n");
4508		return -EINVAL;
4509	}
4510
4511#define MAX_STD_JUMBO_FRAME_SIZE 9238
4512	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4513		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4514		return -EINVAL;
4515	}
4516
4517	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4518		msleep(1);
4519
4520	/* igb_down has a dependency on max_frame_size */
4521	adapter->max_frame_size = max_frame;
4522
4523	if (netif_running(netdev))
4524		igb_down(adapter);
4525
4526	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4527		 netdev->mtu, new_mtu);
4528	netdev->mtu = new_mtu;
4529
4530	if (netif_running(netdev))
4531		igb_up(adapter);
4532	else
4533		igb_reset(adapter);
4534
4535	clear_bit(__IGB_RESETTING, &adapter->state);
4536
4537	return 0;
4538}
4539
4540/**
4541 * igb_update_stats - Update the board statistics counters
4542 * @adapter: board private structure
4543 **/
4544
4545void igb_update_stats(struct igb_adapter *adapter,
4546		      struct rtnl_link_stats64 *net_stats)
4547{
4548	struct e1000_hw *hw = &adapter->hw;
4549	struct pci_dev *pdev = adapter->pdev;
4550	u32 reg, mpc;
4551	u16 phy_tmp;
4552	int i;
4553	u64 bytes, packets;
4554	unsigned int start;
4555	u64 _bytes, _packets;
4556
4557#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4558
4559	/*
4560	 * Prevent stats update while adapter is being reset, or if the pci
4561	 * connection is down.
4562	 */
4563	if (adapter->link_speed == 0)
4564		return;
4565	if (pci_channel_offline(pdev))
4566		return;
4567
4568	bytes = 0;
4569	packets = 0;
4570	for (i = 0; i < adapter->num_rx_queues; i++) {
4571		u32 rqdpc = rd32(E1000_RQDPC(i));
4572		struct igb_ring *ring = adapter->rx_ring[i];
4573
4574		if (rqdpc) {
4575			ring->rx_stats.drops += rqdpc;
4576			net_stats->rx_fifo_errors += rqdpc;
4577		}
4578
4579		do {
4580			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4581			_bytes = ring->rx_stats.bytes;
4582			_packets = ring->rx_stats.packets;
4583		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4584		bytes += _bytes;
4585		packets += _packets;
4586	}
4587
4588	net_stats->rx_bytes = bytes;
4589	net_stats->rx_packets = packets;
4590
4591	bytes = 0;
4592	packets = 0;
4593	for (i = 0; i < adapter->num_tx_queues; i++) {
4594		struct igb_ring *ring = adapter->tx_ring[i];
4595		do {
4596			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4597			_bytes = ring->tx_stats.bytes;
4598			_packets = ring->tx_stats.packets;
4599		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4600		bytes += _bytes;
4601		packets += _packets;
4602	}
4603	net_stats->tx_bytes = bytes;
4604	net_stats->tx_packets = packets;
4605
4606	/* read stats registers */
4607	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4608	adapter->stats.gprc += rd32(E1000_GPRC);
4609	adapter->stats.gorc += rd32(E1000_GORCL);
4610	rd32(E1000_GORCH); /* clear GORCL */
4611	adapter->stats.bprc += rd32(E1000_BPRC);
4612	adapter->stats.mprc += rd32(E1000_MPRC);
4613	adapter->stats.roc += rd32(E1000_ROC);
4614
4615	adapter->stats.prc64 += rd32(E1000_PRC64);
4616	adapter->stats.prc127 += rd32(E1000_PRC127);
4617	adapter->stats.prc255 += rd32(E1000_PRC255);
4618	adapter->stats.prc511 += rd32(E1000_PRC511);
4619	adapter->stats.prc1023 += rd32(E1000_PRC1023);
4620	adapter->stats.prc1522 += rd32(E1000_PRC1522);
4621	adapter->stats.symerrs += rd32(E1000_SYMERRS);
4622	adapter->stats.sec += rd32(E1000_SEC);
4623
4624	mpc = rd32(E1000_MPC);
4625	adapter->stats.mpc += mpc;
4626	net_stats->rx_fifo_errors += mpc;
4627	adapter->stats.scc += rd32(E1000_SCC);
4628	adapter->stats.ecol += rd32(E1000_ECOL);
4629	adapter->stats.mcc += rd32(E1000_MCC);
4630	adapter->stats.latecol += rd32(E1000_LATECOL);
4631	adapter->stats.dc += rd32(E1000_DC);
4632	adapter->stats.rlec += rd32(E1000_RLEC);
4633	adapter->stats.xonrxc += rd32(E1000_XONRXC);
4634	adapter->stats.xontxc += rd32(E1000_XONTXC);
4635	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4636	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4637	adapter->stats.fcruc += rd32(E1000_FCRUC);
4638	adapter->stats.gptc += rd32(E1000_GPTC);
4639	adapter->stats.gotc += rd32(E1000_GOTCL);
4640	rd32(E1000_GOTCH); /* clear GOTCL */
4641	adapter->stats.rnbc += rd32(E1000_RNBC);
4642	adapter->stats.ruc += rd32(E1000_RUC);
4643	adapter->stats.rfc += rd32(E1000_RFC);
4644	adapter->stats.rjc += rd32(E1000_RJC);
4645	adapter->stats.tor += rd32(E1000_TORH);
4646	adapter->stats.tot += rd32(E1000_TOTH);
4647	adapter->stats.tpr += rd32(E1000_TPR);
4648
4649	adapter->stats.ptc64 += rd32(E1000_PTC64);
4650	adapter->stats.ptc127 += rd32(E1000_PTC127);
4651	adapter->stats.ptc255 += rd32(E1000_PTC255);
4652	adapter->stats.ptc511 += rd32(E1000_PTC511);
4653	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4654	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4655
4656	adapter->stats.mptc += rd32(E1000_MPTC);
4657	adapter->stats.bptc += rd32(E1000_BPTC);
4658
4659	adapter->stats.tpt += rd32(E1000_TPT);
4660	adapter->stats.colc += rd32(E1000_COLC);
4661
4662	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4663	/* read internal phy specific stats */
4664	reg = rd32(E1000_CTRL_EXT);
4665	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4666		adapter->stats.rxerrc += rd32(E1000_RXERRC);
4667
4668		/* this stat has invalid values on i210/i211 */
4669		if ((hw->mac.type != e1000_i210) &&
4670		    (hw->mac.type != e1000_i211))
4671			adapter->stats.tncrs += rd32(E1000_TNCRS);
4672	}
4673
4674	adapter->stats.tsctc += rd32(E1000_TSCTC);
4675	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4676
4677	adapter->stats.iac += rd32(E1000_IAC);
4678	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4679	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4680	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4681	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4682	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4683	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4684	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4685	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4686
4687	/* Fill out the OS statistics structure */
4688	net_stats->multicast = adapter->stats.mprc;
4689	net_stats->collisions = adapter->stats.colc;
4690
4691	/* Rx Errors */
4692
4693	/* RLEC on some newer hardware can be incorrect so build
4694	 * our own version based on RUC and ROC */
4695	net_stats->rx_errors = adapter->stats.rxerrc +
4696		adapter->stats.crcerrs + adapter->stats.algnerrc +
4697		adapter->stats.ruc + adapter->stats.roc +
4698		adapter->stats.cexterr;
4699	net_stats->rx_length_errors = adapter->stats.ruc +
4700				      adapter->stats.roc;
4701	net_stats->rx_crc_errors = adapter->stats.crcerrs;
4702	net_stats->rx_frame_errors = adapter->stats.algnerrc;
4703	net_stats->rx_missed_errors = adapter->stats.mpc;
4704
4705	/* Tx Errors */
4706	net_stats->tx_errors = adapter->stats.ecol +
4707			       adapter->stats.latecol;
4708	net_stats->tx_aborted_errors = adapter->stats.ecol;
4709	net_stats->tx_window_errors = adapter->stats.latecol;
4710	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4711
4712	/* Tx Dropped needs to be maintained elsewhere */
4713
4714	/* Phy Stats */
4715	if (hw->phy.media_type == e1000_media_type_copper) {
4716		if ((adapter->link_speed == SPEED_1000) &&
4717		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4718			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4719			adapter->phy_stats.idle_errors += phy_tmp;
4720		}
4721	}
4722
4723	/* Management Stats */
4724	adapter->stats.mgptc += rd32(E1000_MGTPTC);
4725	adapter->stats.mgprc += rd32(E1000_MGTPRC);
4726	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4727
4728	/* OS2BMC Stats */
4729	reg = rd32(E1000_MANC);
4730	if (reg & E1000_MANC_EN_BMC2OS) {
4731		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4732		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4733		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4734		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4735	}
4736}
4737
4738static irqreturn_t igb_msix_other(int irq, void *data)
4739{
4740	struct igb_adapter *adapter = data;
4741	struct e1000_hw *hw = &adapter->hw;
4742	u32 icr = rd32(E1000_ICR);
4743	/* reading ICR causes bit 31 of EICR to be cleared */
4744
4745	if (icr & E1000_ICR_DRSTA)
4746		schedule_work(&adapter->reset_task);
4747
4748	if (icr & E1000_ICR_DOUTSYNC) {
4749		/* HW is reporting DMA is out of sync */
4750		adapter->stats.doosync++;
4751		/* The DMA Out of Sync is also indication of a spoof event
4752		 * in IOV mode. Check the Wrong VM Behavior register to
4753		 * see if it is really a spoof event. */
4754		igb_check_wvbr(adapter);
4755	}
4756
4757	/* Check for a mailbox event */
4758	if (icr & E1000_ICR_VMMB)
4759		igb_msg_task(adapter);
4760
4761	if (icr & E1000_ICR_LSC) {
4762		hw->mac.get_link_status = 1;
4763		/* guard against interrupt when we're going down */
4764		if (!test_bit(__IGB_DOWN, &adapter->state))
4765			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4766	}
4767
4768	if (icr & E1000_ICR_TS) {
4769		u32 tsicr = rd32(E1000_TSICR);
4770
4771		if (tsicr & E1000_TSICR_TXTS) {
4772			/* acknowledge the interrupt */
4773			wr32(E1000_TSICR, E1000_TSICR_TXTS);
4774			/* retrieve hardware timestamp */
4775			schedule_work(&adapter->ptp_tx_work);
4776		}
4777	}
4778
4779	wr32(E1000_EIMS, adapter->eims_other);
4780
4781	return IRQ_HANDLED;
4782}
4783
4784static void igb_write_itr(struct igb_q_vector *q_vector)
4785{
4786	struct igb_adapter *adapter = q_vector->adapter;
4787	u32 itr_val = q_vector->itr_val & 0x7FFC;
4788
4789	if (!q_vector->set_itr)
4790		return;
4791
4792	if (!itr_val)
4793		itr_val = 0x4;
4794
4795	if (adapter->hw.mac.type == e1000_82575)
4796		itr_val |= itr_val << 16;
4797	else
4798		itr_val |= E1000_EITR_CNT_IGNR;
4799
4800	writel(itr_val, q_vector->itr_register);
4801	q_vector->set_itr = 0;
4802}
4803
4804static irqreturn_t igb_msix_ring(int irq, void *data)
4805{
4806	struct igb_q_vector *q_vector = data;
4807
4808	/* Write the ITR value calculated from the previous interrupt. */
4809	igb_write_itr(q_vector);
4810
4811	napi_schedule(&q_vector->napi);
4812
4813	return IRQ_HANDLED;
4814}
4815
4816#ifdef CONFIG_IGB_DCA
4817static void igb_update_tx_dca(struct igb_adapter *adapter,
4818			      struct igb_ring *tx_ring,
4819			      int cpu)
4820{
4821	struct e1000_hw *hw = &adapter->hw;
4822	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
4823
4824	if (hw->mac.type != e1000_82575)
4825		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
4826
4827	/*
4828	 * We can enable relaxed ordering for reads, but not writes when
4829	 * DCA is enabled.  This is due to a known issue in some chipsets
4830	 * which will cause the DCA tag to be cleared.
4831	 */
4832	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
4833		  E1000_DCA_TXCTRL_DATA_RRO_EN |
4834		  E1000_DCA_TXCTRL_DESC_DCA_EN;
4835
4836	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
4837}
4838
4839static void igb_update_rx_dca(struct igb_adapter *adapter,
4840			      struct igb_ring *rx_ring,
4841			      int cpu)
4842{
4843	struct e1000_hw *hw = &adapter->hw;
4844	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
4845
4846	if (hw->mac.type != e1000_82575)
4847		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
4848
4849	/*
4850	 * We can enable relaxed ordering for reads, but not writes when
4851	 * DCA is enabled.  This is due to a known issue in some chipsets
4852	 * which will cause the DCA tag to be cleared.
4853	 */
4854	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
4855		  E1000_DCA_RXCTRL_DESC_DCA_EN;
4856
4857	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
4858}
4859
4860static void igb_update_dca(struct igb_q_vector *q_vector)
4861{
4862	struct igb_adapter *adapter = q_vector->adapter;
4863	int cpu = get_cpu();
4864
4865	if (q_vector->cpu == cpu)
4866		goto out_no_update;
4867
4868	if (q_vector->tx.ring)
4869		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
4870
4871	if (q_vector->rx.ring)
4872		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
4873
4874	q_vector->cpu = cpu;
4875out_no_update:
4876	put_cpu();
4877}
4878
4879static void igb_setup_dca(struct igb_adapter *adapter)
4880{
4881	struct e1000_hw *hw = &adapter->hw;
4882	int i;
4883
4884	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4885		return;
4886
4887	/* Always use CB2 mode, difference is masked in the CB driver. */
4888	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4889
4890	for (i = 0; i < adapter->num_q_vectors; i++) {
4891		adapter->q_vector[i]->cpu = -1;
4892		igb_update_dca(adapter->q_vector[i]);
4893	}
4894}
4895
4896static int __igb_notify_dca(struct device *dev, void *data)
4897{
4898	struct net_device *netdev = dev_get_drvdata(dev);
4899	struct igb_adapter *adapter = netdev_priv(netdev);
4900	struct pci_dev *pdev = adapter->pdev;
4901	struct e1000_hw *hw = &adapter->hw;
4902	unsigned long event = *(unsigned long *)data;
4903
4904	switch (event) {
4905	case DCA_PROVIDER_ADD:
4906		/* if already enabled, don't do it again */
4907		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4908			break;
4909		if (dca_add_requester(dev) == 0) {
4910			adapter->flags |= IGB_FLAG_DCA_ENABLED;
4911			dev_info(&pdev->dev, "DCA enabled\n");
4912			igb_setup_dca(adapter);
4913			break;
4914		}
4915		/* Fall Through since DCA is disabled. */
4916	case DCA_PROVIDER_REMOVE:
4917		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4918			/* without this a class_device is left
4919			 * hanging around in the sysfs model */
4920			dca_remove_requester(dev);
4921			dev_info(&pdev->dev, "DCA disabled\n");
4922			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4923			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4924		}
4925		break;
4926	}
4927
4928	return 0;
4929}
4930
4931static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4932                          void *p)
4933{
4934	int ret_val;
4935
4936	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4937	                                 __igb_notify_dca);
4938
4939	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4940}
4941#endif /* CONFIG_IGB_DCA */
4942
4943#ifdef CONFIG_PCI_IOV
4944static int igb_vf_configure(struct igb_adapter *adapter, int vf)
4945{
4946	unsigned char mac_addr[ETH_ALEN];
4947
4948	eth_random_addr(mac_addr);
4949	igb_set_vf_mac(adapter, vf, mac_addr);
4950
4951	return 0;
4952}
4953
4954static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
4955{
4956	struct pci_dev *pdev = adapter->pdev;
4957	struct pci_dev *vfdev;
4958	int dev_id;
4959
4960	switch (adapter->hw.mac.type) {
4961	case e1000_82576:
4962		dev_id = IGB_82576_VF_DEV_ID;
4963		break;
4964	case e1000_i350:
4965		dev_id = IGB_I350_VF_DEV_ID;
4966		break;
4967	default:
4968		return false;
4969	}
4970
4971	/* loop through all the VFs to see if we own any that are assigned */
4972	vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
4973	while (vfdev) {
4974		/* if we don't own it we don't care */
4975		if (vfdev->is_virtfn && vfdev->physfn == pdev) {
4976			/* if it is assigned we cannot release it */
4977			if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
4978				return true;
4979		}
4980
4981		vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
4982	}
4983
4984	return false;
4985}
4986
4987#endif
4988static void igb_ping_all_vfs(struct igb_adapter *adapter)
4989{
4990	struct e1000_hw *hw = &adapter->hw;
4991	u32 ping;
4992	int i;
4993
4994	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4995		ping = E1000_PF_CONTROL_MSG;
4996		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4997			ping |= E1000_VT_MSGTYPE_CTS;
4998		igb_write_mbx(hw, &ping, 1, i);
4999	}
5000}
5001
5002static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5003{
5004	struct e1000_hw *hw = &adapter->hw;
5005	u32 vmolr = rd32(E1000_VMOLR(vf));
5006	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5007
5008	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5009	                    IGB_VF_FLAG_MULTI_PROMISC);
5010	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5011
5012	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5013		vmolr |= E1000_VMOLR_MPME;
5014		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5015		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5016	} else {
5017		/*
5018		 * if we have hashes and we are clearing a multicast promisc
5019		 * flag we need to write the hashes to the MTA as this step
5020		 * was previously skipped
5021		 */
5022		if (vf_data->num_vf_mc_hashes > 30) {
5023			vmolr |= E1000_VMOLR_MPME;
5024		} else if (vf_data->num_vf_mc_hashes) {
5025			int j;
5026			vmolr |= E1000_VMOLR_ROMPE;
5027			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5028				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5029		}
5030	}
5031
5032	wr32(E1000_VMOLR(vf), vmolr);
5033
5034	/* there are flags left unprocessed, likely not supported */
5035	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5036		return -EINVAL;
5037
5038	return 0;
5039
5040}
5041
5042static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5043				  u32 *msgbuf, u32 vf)
5044{
5045	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5046	u16 *hash_list = (u16 *)&msgbuf[1];
5047	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5048	int i;
5049
5050	/* salt away the number of multicast addresses assigned
5051	 * to this VF for later use to restore when the PF multi cast
5052	 * list changes
5053	 */
5054	vf_data->num_vf_mc_hashes = n;
5055
5056	/* only up to 30 hash values supported */
5057	if (n > 30)
5058		n = 30;
5059
5060	/* store the hashes for later use */
5061	for (i = 0; i < n; i++)
5062		vf_data->vf_mc_hashes[i] = hash_list[i];
5063
5064	/* Flush and reset the mta with the new values */
5065	igb_set_rx_mode(adapter->netdev);
5066
5067	return 0;
5068}
5069
5070static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5071{
5072	struct e1000_hw *hw = &adapter->hw;
5073	struct vf_data_storage *vf_data;
5074	int i, j;
5075
5076	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5077		u32 vmolr = rd32(E1000_VMOLR(i));
5078		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5079
5080		vf_data = &adapter->vf_data[i];
5081
5082		if ((vf_data->num_vf_mc_hashes > 30) ||
5083		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5084			vmolr |= E1000_VMOLR_MPME;
5085		} else if (vf_data->num_vf_mc_hashes) {
5086			vmolr |= E1000_VMOLR_ROMPE;
5087			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5088				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5089		}
5090		wr32(E1000_VMOLR(i), vmolr);
5091	}
5092}
5093
5094static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5095{
5096	struct e1000_hw *hw = &adapter->hw;
5097	u32 pool_mask, reg, vid;
5098	int i;
5099
5100	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5101
5102	/* Find the vlan filter for this id */
5103	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5104		reg = rd32(E1000_VLVF(i));
5105
5106		/* remove the vf from the pool */
5107		reg &= ~pool_mask;
5108
5109		/* if pool is empty then remove entry from vfta */
5110		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5111		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5112			reg = 0;
5113			vid = reg & E1000_VLVF_VLANID_MASK;
5114			igb_vfta_set(hw, vid, false);
5115		}
5116
5117		wr32(E1000_VLVF(i), reg);
5118	}
5119
5120	adapter->vf_data[vf].vlans_enabled = 0;
5121}
5122
5123static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5124{
5125	struct e1000_hw *hw = &adapter->hw;
5126	u32 reg, i;
5127
5128	/* The vlvf table only exists on 82576 hardware and newer */
5129	if (hw->mac.type < e1000_82576)
5130		return -1;
5131
5132	/* we only need to do this if VMDq is enabled */
5133	if (!adapter->vfs_allocated_count)
5134		return -1;
5135
5136	/* Find the vlan filter for this id */
5137	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5138		reg = rd32(E1000_VLVF(i));
5139		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5140		    vid == (reg & E1000_VLVF_VLANID_MASK))
5141			break;
5142	}
5143
5144	if (add) {
5145		if (i == E1000_VLVF_ARRAY_SIZE) {
5146			/* Did not find a matching VLAN ID entry that was
5147			 * enabled.  Search for a free filter entry, i.e.
5148			 * one without the enable bit set
5149			 */
5150			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5151				reg = rd32(E1000_VLVF(i));
5152				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5153					break;
5154			}
5155		}
5156		if (i < E1000_VLVF_ARRAY_SIZE) {
5157			/* Found an enabled/available entry */
5158			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5159
5160			/* if !enabled we need to set this up in vfta */
5161			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5162				/* add VID to filter table */
5163				igb_vfta_set(hw, vid, true);
5164				reg |= E1000_VLVF_VLANID_ENABLE;
5165			}
5166			reg &= ~E1000_VLVF_VLANID_MASK;
5167			reg |= vid;
5168			wr32(E1000_VLVF(i), reg);
5169
5170			/* do not modify RLPML for PF devices */
5171			if (vf >= adapter->vfs_allocated_count)
5172				return 0;
5173
5174			if (!adapter->vf_data[vf].vlans_enabled) {
5175				u32 size;
5176				reg = rd32(E1000_VMOLR(vf));
5177				size = reg & E1000_VMOLR_RLPML_MASK;
5178				size += 4;
5179				reg &= ~E1000_VMOLR_RLPML_MASK;
5180				reg |= size;
5181				wr32(E1000_VMOLR(vf), reg);
5182			}
5183
5184			adapter->vf_data[vf].vlans_enabled++;
5185		}
5186	} else {
5187		if (i < E1000_VLVF_ARRAY_SIZE) {
5188			/* remove vf from the pool */
5189			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5190			/* if pool is empty then remove entry from vfta */
5191			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5192				reg = 0;
5193				igb_vfta_set(hw, vid, false);
5194			}
5195			wr32(E1000_VLVF(i), reg);
5196
5197			/* do not modify RLPML for PF devices */
5198			if (vf >= adapter->vfs_allocated_count)
5199				return 0;
5200
5201			adapter->vf_data[vf].vlans_enabled--;
5202			if (!adapter->vf_data[vf].vlans_enabled) {
5203				u32 size;
5204				reg = rd32(E1000_VMOLR(vf));
5205				size = reg & E1000_VMOLR_RLPML_MASK;
5206				size -= 4;
5207				reg &= ~E1000_VMOLR_RLPML_MASK;
5208				reg |= size;
5209				wr32(E1000_VMOLR(vf), reg);
5210			}
5211		}
5212	}
5213	return 0;
5214}
5215
5216static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5217{
5218	struct e1000_hw *hw = &adapter->hw;
5219
5220	if (vid)
5221		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5222	else
5223		wr32(E1000_VMVIR(vf), 0);
5224}
5225
5226static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5227			       int vf, u16 vlan, u8 qos)
5228{
5229	int err = 0;
5230	struct igb_adapter *adapter = netdev_priv(netdev);
5231
5232	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5233		return -EINVAL;
5234	if (vlan || qos) {
5235		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5236		if (err)
5237			goto out;
5238		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5239		igb_set_vmolr(adapter, vf, !vlan);
5240		adapter->vf_data[vf].pf_vlan = vlan;
5241		adapter->vf_data[vf].pf_qos = qos;
5242		dev_info(&adapter->pdev->dev,
5243			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5244		if (test_bit(__IGB_DOWN, &adapter->state)) {
5245			dev_warn(&adapter->pdev->dev,
5246				 "The VF VLAN has been set,"
5247				 " but the PF device is not up.\n");
5248			dev_warn(&adapter->pdev->dev,
5249				 "Bring the PF device up before"
5250				 " attempting to use the VF device.\n");
5251		}
5252	} else {
5253		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5254				   false, vf);
5255		igb_set_vmvir(adapter, vlan, vf);
5256		igb_set_vmolr(adapter, vf, true);
5257		adapter->vf_data[vf].pf_vlan = 0;
5258		adapter->vf_data[vf].pf_qos = 0;
5259       }
5260out:
5261       return err;
5262}
5263
5264static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5265{
5266	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5267	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5268
5269	return igb_vlvf_set(adapter, vid, add, vf);
5270}
5271
5272static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5273{
5274	/* clear flags - except flag that indicates PF has set the MAC */
5275	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5276	adapter->vf_data[vf].last_nack = jiffies;
5277
5278	/* reset offloads to defaults */
5279	igb_set_vmolr(adapter, vf, true);
5280
5281	/* reset vlans for device */
5282	igb_clear_vf_vfta(adapter, vf);
5283	if (adapter->vf_data[vf].pf_vlan)
5284		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5285				    adapter->vf_data[vf].pf_vlan,
5286				    adapter->vf_data[vf].pf_qos);
5287	else
5288		igb_clear_vf_vfta(adapter, vf);
5289
5290	/* reset multicast table array for vf */
5291	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5292
5293	/* Flush and reset the mta with the new values */
5294	igb_set_rx_mode(adapter->netdev);
5295}
5296
5297static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5298{
5299	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5300
5301	/* generate a new mac address as we were hotplug removed/added */
5302	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5303		eth_random_addr(vf_mac);
5304
5305	/* process remaining reset events */
5306	igb_vf_reset(adapter, vf);
5307}
5308
5309static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5310{
5311	struct e1000_hw *hw = &adapter->hw;
5312	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5313	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5314	u32 reg, msgbuf[3];
5315	u8 *addr = (u8 *)(&msgbuf[1]);
5316
5317	/* process all the same items cleared in a function level reset */
5318	igb_vf_reset(adapter, vf);
5319
5320	/* set vf mac address */
5321	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5322
5323	/* enable transmit and receive for vf */
5324	reg = rd32(E1000_VFTE);
5325	wr32(E1000_VFTE, reg | (1 << vf));
5326	reg = rd32(E1000_VFRE);
5327	wr32(E1000_VFRE, reg | (1 << vf));
5328
5329	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5330
5331	/* reply to reset with ack and vf mac address */
5332	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5333	memcpy(addr, vf_mac, 6);
5334	igb_write_mbx(hw, msgbuf, 3, vf);
5335}
5336
5337static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5338{
5339	/*
5340	 * The VF MAC Address is stored in a packed array of bytes
5341	 * starting at the second 32 bit word of the msg array
5342	 */
5343	unsigned char *addr = (char *)&msg[1];
5344	int err = -1;
5345
5346	if (is_valid_ether_addr(addr))
5347		err = igb_set_vf_mac(adapter, vf, addr);
5348
5349	return err;
5350}
5351
5352static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5353{
5354	struct e1000_hw *hw = &adapter->hw;
5355	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5356	u32 msg = E1000_VT_MSGTYPE_NACK;
5357
5358	/* if device isn't clear to send it shouldn't be reading either */
5359	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5360	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5361		igb_write_mbx(hw, &msg, 1, vf);
5362		vf_data->last_nack = jiffies;
5363	}
5364}
5365
5366static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5367{
5368	struct pci_dev *pdev = adapter->pdev;
5369	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5370	struct e1000_hw *hw = &adapter->hw;
5371	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5372	s32 retval;
5373
5374	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5375
5376	if (retval) {
5377		/* if receive failed revoke VF CTS stats and restart init */
5378		dev_err(&pdev->dev, "Error receiving message from VF\n");
5379		vf_data->flags &= ~IGB_VF_FLAG_CTS;
5380		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5381			return;
5382		goto out;
5383	}
5384
5385	/* this is a message we already processed, do nothing */
5386	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5387		return;
5388
5389	/*
5390	 * until the vf completes a reset it should not be
5391	 * allowed to start any configuration.
5392	 */
5393
5394	if (msgbuf[0] == E1000_VF_RESET) {
5395		igb_vf_reset_msg(adapter, vf);
5396		return;
5397	}
5398
5399	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5400		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5401			return;
5402		retval = -1;
5403		goto out;
5404	}
5405
5406	switch ((msgbuf[0] & 0xFFFF)) {
5407	case E1000_VF_SET_MAC_ADDR:
5408		retval = -EINVAL;
5409		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5410			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5411		else
5412			dev_warn(&pdev->dev,
5413				 "VF %d attempted to override administratively "
5414				 "set MAC address\nReload the VF driver to "
5415				 "resume operations\n", vf);
5416		break;
5417	case E1000_VF_SET_PROMISC:
5418		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5419		break;
5420	case E1000_VF_SET_MULTICAST:
5421		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5422		break;
5423	case E1000_VF_SET_LPE:
5424		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5425		break;
5426	case E1000_VF_SET_VLAN:
5427		retval = -1;
5428		if (vf_data->pf_vlan)
5429			dev_warn(&pdev->dev,
5430				 "VF %d attempted to override administratively "
5431				 "set VLAN tag\nReload the VF driver to "
5432				 "resume operations\n", vf);
5433		else
5434			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5435		break;
5436	default:
5437		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5438		retval = -1;
5439		break;
5440	}
5441
5442	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5443out:
5444	/* notify the VF of the results of what it sent us */
5445	if (retval)
5446		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5447	else
5448		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5449
5450	igb_write_mbx(hw, msgbuf, 1, vf);
5451}
5452
5453static void igb_msg_task(struct igb_adapter *adapter)
5454{
5455	struct e1000_hw *hw = &adapter->hw;
5456	u32 vf;
5457
5458	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5459		/* process any reset requests */
5460		if (!igb_check_for_rst(hw, vf))
5461			igb_vf_reset_event(adapter, vf);
5462
5463		/* process any messages pending */
5464		if (!igb_check_for_msg(hw, vf))
5465			igb_rcv_msg_from_vf(adapter, vf);
5466
5467		/* process any acks */
5468		if (!igb_check_for_ack(hw, vf))
5469			igb_rcv_ack_from_vf(adapter, vf);
5470	}
5471}
5472
5473/**
5474 *  igb_set_uta - Set unicast filter table address
5475 *  @adapter: board private structure
5476 *
5477 *  The unicast table address is a register array of 32-bit registers.
5478 *  The table is meant to be used in a way similar to how the MTA is used
5479 *  however due to certain limitations in the hardware it is necessary to
5480 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5481 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5482 **/
5483static void igb_set_uta(struct igb_adapter *adapter)
5484{
5485	struct e1000_hw *hw = &adapter->hw;
5486	int i;
5487
5488	/* The UTA table only exists on 82576 hardware and newer */
5489	if (hw->mac.type < e1000_82576)
5490		return;
5491
5492	/* we only need to do this if VMDq is enabled */
5493	if (!adapter->vfs_allocated_count)
5494		return;
5495
5496	for (i = 0; i < hw->mac.uta_reg_count; i++)
5497		array_wr32(E1000_UTA, i, ~0);
5498}
5499
5500/**
5501 * igb_intr_msi - Interrupt Handler
5502 * @irq: interrupt number
5503 * @data: pointer to a network interface device structure
5504 **/
5505static irqreturn_t igb_intr_msi(int irq, void *data)
5506{
5507	struct igb_adapter *adapter = data;
5508	struct igb_q_vector *q_vector = adapter->q_vector[0];
5509	struct e1000_hw *hw = &adapter->hw;
5510	/* read ICR disables interrupts using IAM */
5511	u32 icr = rd32(E1000_ICR);
5512
5513	igb_write_itr(q_vector);
5514
5515	if (icr & E1000_ICR_DRSTA)
5516		schedule_work(&adapter->reset_task);
5517
5518	if (icr & E1000_ICR_DOUTSYNC) {
5519		/* HW is reporting DMA is out of sync */
5520		adapter->stats.doosync++;
5521	}
5522
5523	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5524		hw->mac.get_link_status = 1;
5525		if (!test_bit(__IGB_DOWN, &adapter->state))
5526			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5527	}
5528
5529	if (icr & E1000_ICR_TS) {
5530		u32 tsicr = rd32(E1000_TSICR);
5531
5532		if (tsicr & E1000_TSICR_TXTS) {
5533			/* acknowledge the interrupt */
5534			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5535			/* retrieve hardware timestamp */
5536			schedule_work(&adapter->ptp_tx_work);
5537		}
5538	}
5539
5540	napi_schedule(&q_vector->napi);
5541
5542	return IRQ_HANDLED;
5543}
5544
5545/**
5546 * igb_intr - Legacy Interrupt Handler
5547 * @irq: interrupt number
5548 * @data: pointer to a network interface device structure
5549 **/
5550static irqreturn_t igb_intr(int irq, void *data)
5551{
5552	struct igb_adapter *adapter = data;
5553	struct igb_q_vector *q_vector = adapter->q_vector[0];
5554	struct e1000_hw *hw = &adapter->hw;
5555	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5556	 * need for the IMC write */
5557	u32 icr = rd32(E1000_ICR);
5558
5559	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5560	 * not set, then the adapter didn't send an interrupt */
5561	if (!(icr & E1000_ICR_INT_ASSERTED))
5562		return IRQ_NONE;
5563
5564	igb_write_itr(q_vector);
5565
5566	if (icr & E1000_ICR_DRSTA)
5567		schedule_work(&adapter->reset_task);
5568
5569	if (icr & E1000_ICR_DOUTSYNC) {
5570		/* HW is reporting DMA is out of sync */
5571		adapter->stats.doosync++;
5572	}
5573
5574	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5575		hw->mac.get_link_status = 1;
5576		/* guard against interrupt when we're going down */
5577		if (!test_bit(__IGB_DOWN, &adapter->state))
5578			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5579	}
5580
5581	if (icr & E1000_ICR_TS) {
5582		u32 tsicr = rd32(E1000_TSICR);
5583
5584		if (tsicr & E1000_TSICR_TXTS) {
5585			/* acknowledge the interrupt */
5586			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5587			/* retrieve hardware timestamp */
5588			schedule_work(&adapter->ptp_tx_work);
5589		}
5590	}
5591
5592	napi_schedule(&q_vector->napi);
5593
5594	return IRQ_HANDLED;
5595}
5596
5597static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5598{
5599	struct igb_adapter *adapter = q_vector->adapter;
5600	struct e1000_hw *hw = &adapter->hw;
5601
5602	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5603	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5604		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5605			igb_set_itr(q_vector);
5606		else
5607			igb_update_ring_itr(q_vector);
5608	}
5609
5610	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5611		if (adapter->msix_entries)
5612			wr32(E1000_EIMS, q_vector->eims_value);
5613		else
5614			igb_irq_enable(adapter);
5615	}
5616}
5617
5618/**
5619 * igb_poll - NAPI Rx polling callback
5620 * @napi: napi polling structure
5621 * @budget: count of how many packets we should handle
5622 **/
5623static int igb_poll(struct napi_struct *napi, int budget)
5624{
5625	struct igb_q_vector *q_vector = container_of(napi,
5626	                                             struct igb_q_vector,
5627	                                             napi);
5628	bool clean_complete = true;
5629
5630#ifdef CONFIG_IGB_DCA
5631	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5632		igb_update_dca(q_vector);
5633#endif
5634	if (q_vector->tx.ring)
5635		clean_complete = igb_clean_tx_irq(q_vector);
5636
5637	if (q_vector->rx.ring)
5638		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5639
5640	/* If all work not completed, return budget and keep polling */
5641	if (!clean_complete)
5642		return budget;
5643
5644	/* If not enough Rx work done, exit the polling mode */
5645	napi_complete(napi);
5646	igb_ring_irq_enable(q_vector);
5647
5648	return 0;
5649}
5650
5651/**
5652 * igb_clean_tx_irq - Reclaim resources after transmit completes
5653 * @q_vector: pointer to q_vector containing needed info
5654 *
5655 * returns true if ring is completely cleaned
5656 **/
5657static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5658{
5659	struct igb_adapter *adapter = q_vector->adapter;
5660	struct igb_ring *tx_ring = q_vector->tx.ring;
5661	struct igb_tx_buffer *tx_buffer;
5662	union e1000_adv_tx_desc *tx_desc;
5663	unsigned int total_bytes = 0, total_packets = 0;
5664	unsigned int budget = q_vector->tx.work_limit;
5665	unsigned int i = tx_ring->next_to_clean;
5666
5667	if (test_bit(__IGB_DOWN, &adapter->state))
5668		return true;
5669
5670	tx_buffer = &tx_ring->tx_buffer_info[i];
5671	tx_desc = IGB_TX_DESC(tx_ring, i);
5672	i -= tx_ring->count;
5673
5674	do {
5675		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5676
5677		/* if next_to_watch is not set then there is no work pending */
5678		if (!eop_desc)
5679			break;
5680
5681		/* prevent any other reads prior to eop_desc */
5682		rmb();
5683
5684		/* if DD is not set pending work has not been completed */
5685		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5686			break;
5687
5688		/* clear next_to_watch to prevent false hangs */
5689		tx_buffer->next_to_watch = NULL;
5690
5691		/* update the statistics for this packet */
5692		total_bytes += tx_buffer->bytecount;
5693		total_packets += tx_buffer->gso_segs;
5694
5695		/* free the skb */
5696		dev_kfree_skb_any(tx_buffer->skb);
5697
5698		/* unmap skb header data */
5699		dma_unmap_single(tx_ring->dev,
5700				 dma_unmap_addr(tx_buffer, dma),
5701				 dma_unmap_len(tx_buffer, len),
5702				 DMA_TO_DEVICE);
5703
5704		/* clear tx_buffer data */
5705		tx_buffer->skb = NULL;
5706		dma_unmap_len_set(tx_buffer, len, 0);
5707
5708		/* clear last DMA location and unmap remaining buffers */
5709		while (tx_desc != eop_desc) {
5710			tx_buffer++;
5711			tx_desc++;
5712			i++;
5713			if (unlikely(!i)) {
5714				i -= tx_ring->count;
5715				tx_buffer = tx_ring->tx_buffer_info;
5716				tx_desc = IGB_TX_DESC(tx_ring, 0);
5717			}
5718
5719			/* unmap any remaining paged data */
5720			if (dma_unmap_len(tx_buffer, len)) {
5721				dma_unmap_page(tx_ring->dev,
5722					       dma_unmap_addr(tx_buffer, dma),
5723					       dma_unmap_len(tx_buffer, len),
5724					       DMA_TO_DEVICE);
5725				dma_unmap_len_set(tx_buffer, len, 0);
5726			}
5727		}
5728
5729		/* move us one more past the eop_desc for start of next pkt */
5730		tx_buffer++;
5731		tx_desc++;
5732		i++;
5733		if (unlikely(!i)) {
5734			i -= tx_ring->count;
5735			tx_buffer = tx_ring->tx_buffer_info;
5736			tx_desc = IGB_TX_DESC(tx_ring, 0);
5737		}
5738
5739		/* issue prefetch for next Tx descriptor */
5740		prefetch(tx_desc);
5741
5742		/* update budget accounting */
5743		budget--;
5744	} while (likely(budget));
5745
5746	netdev_tx_completed_queue(txring_txq(tx_ring),
5747				  total_packets, total_bytes);
5748	i += tx_ring->count;
5749	tx_ring->next_to_clean = i;
5750	u64_stats_update_begin(&tx_ring->tx_syncp);
5751	tx_ring->tx_stats.bytes += total_bytes;
5752	tx_ring->tx_stats.packets += total_packets;
5753	u64_stats_update_end(&tx_ring->tx_syncp);
5754	q_vector->tx.total_bytes += total_bytes;
5755	q_vector->tx.total_packets += total_packets;
5756
5757	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
5758		struct e1000_hw *hw = &adapter->hw;
5759
5760		/* Detect a transmit hang in hardware, this serializes the
5761		 * check with the clearing of time_stamp and movement of i */
5762		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5763		if (tx_buffer->next_to_watch &&
5764		    time_after(jiffies, tx_buffer->time_stamp +
5765			       (adapter->tx_timeout_factor * HZ)) &&
5766		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5767
5768			/* detected Tx unit hang */
5769			dev_err(tx_ring->dev,
5770				"Detected Tx Unit Hang\n"
5771				"  Tx Queue             <%d>\n"
5772				"  TDH                  <%x>\n"
5773				"  TDT                  <%x>\n"
5774				"  next_to_use          <%x>\n"
5775				"  next_to_clean        <%x>\n"
5776				"buffer_info[next_to_clean]\n"
5777				"  time_stamp           <%lx>\n"
5778				"  next_to_watch        <%p>\n"
5779				"  jiffies              <%lx>\n"
5780				"  desc.status          <%x>\n",
5781				tx_ring->queue_index,
5782				rd32(E1000_TDH(tx_ring->reg_idx)),
5783				readl(tx_ring->tail),
5784				tx_ring->next_to_use,
5785				tx_ring->next_to_clean,
5786				tx_buffer->time_stamp,
5787				tx_buffer->next_to_watch,
5788				jiffies,
5789				tx_buffer->next_to_watch->wb.status);
5790			netif_stop_subqueue(tx_ring->netdev,
5791					    tx_ring->queue_index);
5792
5793			/* we are about to reset, no point in enabling stuff */
5794			return true;
5795		}
5796	}
5797
5798	if (unlikely(total_packets &&
5799		     netif_carrier_ok(tx_ring->netdev) &&
5800		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5801		/* Make sure that anybody stopping the queue after this
5802		 * sees the new next_to_clean.
5803		 */
5804		smp_mb();
5805		if (__netif_subqueue_stopped(tx_ring->netdev,
5806					     tx_ring->queue_index) &&
5807		    !(test_bit(__IGB_DOWN, &adapter->state))) {
5808			netif_wake_subqueue(tx_ring->netdev,
5809					    tx_ring->queue_index);
5810
5811			u64_stats_update_begin(&tx_ring->tx_syncp);
5812			tx_ring->tx_stats.restart_queue++;
5813			u64_stats_update_end(&tx_ring->tx_syncp);
5814		}
5815	}
5816
5817	return !!budget;
5818}
5819
5820/**
5821 * igb_reuse_rx_page - page flip buffer and store it back on the ring
5822 * @rx_ring: rx descriptor ring to store buffers on
5823 * @old_buff: donor buffer to have page reused
5824 *
5825 * Synchronizes page for reuse by the adapter
5826 **/
5827static void igb_reuse_rx_page(struct igb_ring *rx_ring,
5828			      struct igb_rx_buffer *old_buff)
5829{
5830	struct igb_rx_buffer *new_buff;
5831	u16 nta = rx_ring->next_to_alloc;
5832
5833	new_buff = &rx_ring->rx_buffer_info[nta];
5834
5835	/* update, and store next to alloc */
5836	nta++;
5837	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
5838
5839	/* transfer page from old buffer to new buffer */
5840	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
5841
5842	/* sync the buffer for use by the device */
5843	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
5844					 old_buff->page_offset,
5845					 IGB_RX_BUFSZ,
5846					 DMA_FROM_DEVICE);
5847}
5848
5849/**
5850 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
5851 * @rx_ring: rx descriptor ring to transact packets on
5852 * @rx_buffer: buffer containing page to add
5853 * @rx_desc: descriptor containing length of buffer written by hardware
5854 * @skb: sk_buff to place the data into
5855 *
5856 * This function will add the data contained in rx_buffer->page to the skb.
5857 * This is done either through a direct copy if the data in the buffer is
5858 * less than the skb header size, otherwise it will just attach the page as
5859 * a frag to the skb.
5860 *
5861 * The function will then update the page offset if necessary and return
5862 * true if the buffer can be reused by the adapter.
5863 **/
5864static bool igb_add_rx_frag(struct igb_ring *rx_ring,
5865			    struct igb_rx_buffer *rx_buffer,
5866			    union e1000_adv_rx_desc *rx_desc,
5867			    struct sk_buff *skb)
5868{
5869	struct page *page = rx_buffer->page;
5870	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
5871
5872	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
5873		unsigned char *va = page_address(page) + rx_buffer->page_offset;
5874
5875		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
5876			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
5877			va += IGB_TS_HDR_LEN;
5878			size -= IGB_TS_HDR_LEN;
5879		}
5880
5881		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
5882
5883		/* we can reuse buffer as-is, just make sure it is local */
5884		if (likely(page_to_nid(page) == numa_node_id()))
5885			return true;
5886
5887		/* this page cannot be reused so discard it */
5888		put_page(page);
5889		return false;
5890	}
5891
5892	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
5893			rx_buffer->page_offset, size, IGB_RX_BUFSZ);
5894
5895	/* avoid re-using remote pages */
5896	if (unlikely(page_to_nid(page) != numa_node_id()))
5897		return false;
5898
5899#if (PAGE_SIZE < 8192)
5900	/* if we are only owner of page we can reuse it */
5901	if (unlikely(page_count(page) != 1))
5902		return false;
5903
5904	/* flip page offset to other buffer */
5905	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
5906
5907	/*
5908	 * since we are the only owner of the page and we need to
5909	 * increment it, just set the value to 2 in order to avoid
5910	 * an unnecessary locked operation
5911	 */
5912	atomic_set(&page->_count, 2);
5913#else
5914	/* move offset up to the next cache line */
5915	rx_buffer->page_offset += SKB_DATA_ALIGN(size);
5916
5917	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
5918		return false;
5919
5920	/* bump ref count on page before it is given to the stack */
5921	get_page(page);
5922#endif
5923
5924	return true;
5925}
5926
5927static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
5928					   union e1000_adv_rx_desc *rx_desc,
5929					   struct sk_buff *skb)
5930{
5931	struct igb_rx_buffer *rx_buffer;
5932	struct page *page;
5933
5934	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
5935
5936	/*
5937	 * This memory barrier is needed to keep us from reading
5938	 * any other fields out of the rx_desc until we know the
5939	 * RXD_STAT_DD bit is set
5940	 */
5941	rmb();
5942
5943	page = rx_buffer->page;
5944	prefetchw(page);
5945
5946	if (likely(!skb)) {
5947		void *page_addr = page_address(page) +
5948				  rx_buffer->page_offset;
5949
5950		/* prefetch first cache line of first page */
5951		prefetch(page_addr);
5952#if L1_CACHE_BYTES < 128
5953		prefetch(page_addr + L1_CACHE_BYTES);
5954#endif
5955
5956		/* allocate a skb to store the frags */
5957		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
5958						IGB_RX_HDR_LEN);
5959		if (unlikely(!skb)) {
5960			rx_ring->rx_stats.alloc_failed++;
5961			return NULL;
5962		}
5963
5964		/*
5965		 * we will be copying header into skb->data in
5966		 * pskb_may_pull so it is in our interest to prefetch
5967		 * it now to avoid a possible cache miss
5968		 */
5969		prefetchw(skb->data);
5970	}
5971
5972	/* we are reusing so sync this buffer for CPU use */
5973	dma_sync_single_range_for_cpu(rx_ring->dev,
5974				      rx_buffer->dma,
5975				      rx_buffer->page_offset,
5976				      IGB_RX_BUFSZ,
5977				      DMA_FROM_DEVICE);
5978
5979	/* pull page into skb */
5980	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
5981		/* hand second half of page back to the ring */
5982		igb_reuse_rx_page(rx_ring, rx_buffer);
5983	} else {
5984		/* we are not reusing the buffer so unmap it */
5985		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
5986			       PAGE_SIZE, DMA_FROM_DEVICE);
5987	}
5988
5989	/* clear contents of rx_buffer */
5990	rx_buffer->page = NULL;
5991
5992	return skb;
5993}
5994
5995static inline void igb_rx_checksum(struct igb_ring *ring,
5996				   union e1000_adv_rx_desc *rx_desc,
5997				   struct sk_buff *skb)
5998{
5999	skb_checksum_none_assert(skb);
6000
6001	/* Ignore Checksum bit is set */
6002	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6003		return;
6004
6005	/* Rx checksum disabled via ethtool */
6006	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6007		return;
6008
6009	/* TCP/UDP checksum error bit is set */
6010	if (igb_test_staterr(rx_desc,
6011			     E1000_RXDEXT_STATERR_TCPE |
6012			     E1000_RXDEXT_STATERR_IPE)) {
6013		/*
6014		 * work around errata with sctp packets where the TCPE aka
6015		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6016		 * packets, (aka let the stack check the crc32c)
6017		 */
6018		if (!((skb->len == 60) &&
6019		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6020			u64_stats_update_begin(&ring->rx_syncp);
6021			ring->rx_stats.csum_err++;
6022			u64_stats_update_end(&ring->rx_syncp);
6023		}
6024		/* let the stack verify checksum errors */
6025		return;
6026	}
6027	/* It must be a TCP or UDP packet with a valid checksum */
6028	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6029				      E1000_RXD_STAT_UDPCS))
6030		skb->ip_summed = CHECKSUM_UNNECESSARY;
6031
6032	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6033		le32_to_cpu(rx_desc->wb.upper.status_error));
6034}
6035
6036static inline void igb_rx_hash(struct igb_ring *ring,
6037			       union e1000_adv_rx_desc *rx_desc,
6038			       struct sk_buff *skb)
6039{
6040	if (ring->netdev->features & NETIF_F_RXHASH)
6041		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6042}
6043
6044/**
6045 * igb_is_non_eop - process handling of non-EOP buffers
6046 * @rx_ring: Rx ring being processed
6047 * @rx_desc: Rx descriptor for current buffer
6048 * @skb: current socket buffer containing buffer in progress
6049 *
6050 * This function updates next to clean.  If the buffer is an EOP buffer
6051 * this function exits returning false, otherwise it will place the
6052 * sk_buff in the next buffer to be chained and return true indicating
6053 * that this is in fact a non-EOP buffer.
6054 **/
6055static bool igb_is_non_eop(struct igb_ring *rx_ring,
6056			   union e1000_adv_rx_desc *rx_desc)
6057{
6058	u32 ntc = rx_ring->next_to_clean + 1;
6059
6060	/* fetch, update, and store next to clean */
6061	ntc = (ntc < rx_ring->count) ? ntc : 0;
6062	rx_ring->next_to_clean = ntc;
6063
6064	prefetch(IGB_RX_DESC(rx_ring, ntc));
6065
6066	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6067		return false;
6068
6069	return true;
6070}
6071
6072/**
6073 * igb_get_headlen - determine size of header for LRO/GRO
6074 * @data: pointer to the start of the headers
6075 * @max_len: total length of section to find headers in
6076 *
6077 * This function is meant to determine the length of headers that will
6078 * be recognized by hardware for LRO, and GRO offloads.  The main
6079 * motivation of doing this is to only perform one pull for IPv4 TCP
6080 * packets so that we can do basic things like calculating the gso_size
6081 * based on the average data per packet.
6082 **/
6083static unsigned int igb_get_headlen(unsigned char *data,
6084				    unsigned int max_len)
6085{
6086	union {
6087		unsigned char *network;
6088		/* l2 headers */
6089		struct ethhdr *eth;
6090		struct vlan_hdr *vlan;
6091		/* l3 headers */
6092		struct iphdr *ipv4;
6093		struct ipv6hdr *ipv6;
6094	} hdr;
6095	__be16 protocol;
6096	u8 nexthdr = 0;	/* default to not TCP */
6097	u8 hlen;
6098
6099	/* this should never happen, but better safe than sorry */
6100	if (max_len < ETH_HLEN)
6101		return max_len;
6102
6103	/* initialize network frame pointer */
6104	hdr.network = data;
6105
6106	/* set first protocol and move network header forward */
6107	protocol = hdr.eth->h_proto;
6108	hdr.network += ETH_HLEN;
6109
6110	/* handle any vlan tag if present */
6111	if (protocol == __constant_htons(ETH_P_8021Q)) {
6112		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6113			return max_len;
6114
6115		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6116		hdr.network += VLAN_HLEN;
6117	}
6118
6119	/* handle L3 protocols */
6120	if (protocol == __constant_htons(ETH_P_IP)) {
6121		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6122			return max_len;
6123
6124		/* access ihl as a u8 to avoid unaligned access on ia64 */
6125		hlen = (hdr.network[0] & 0x0F) << 2;
6126
6127		/* verify hlen meets minimum size requirements */
6128		if (hlen < sizeof(struct iphdr))
6129			return hdr.network - data;
6130
6131		/* record next protocol */
6132		nexthdr = hdr.ipv4->protocol;
6133		hdr.network += hlen;
6134	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
6135		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6136			return max_len;
6137
6138		/* record next protocol */
6139		nexthdr = hdr.ipv6->nexthdr;
6140		hdr.network += sizeof(struct ipv6hdr);
6141	} else {
6142		return hdr.network - data;
6143	}
6144
6145	/* finally sort out TCP */
6146	if (nexthdr == IPPROTO_TCP) {
6147		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6148			return max_len;
6149
6150		/* access doff as a u8 to avoid unaligned access on ia64 */
6151		hlen = (hdr.network[12] & 0xF0) >> 2;
6152
6153		/* verify hlen meets minimum size requirements */
6154		if (hlen < sizeof(struct tcphdr))
6155			return hdr.network - data;
6156
6157		hdr.network += hlen;
6158	} else if (nexthdr == IPPROTO_UDP) {
6159		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6160			return max_len;
6161
6162		hdr.network += sizeof(struct udphdr);
6163	}
6164
6165	/*
6166	 * If everything has gone correctly hdr.network should be the
6167	 * data section of the packet and will be the end of the header.
6168	 * If not then it probably represents the end of the last recognized
6169	 * header.
6170	 */
6171	if ((hdr.network - data) < max_len)
6172		return hdr.network - data;
6173	else
6174		return max_len;
6175}
6176
6177/**
6178 * igb_pull_tail - igb specific version of skb_pull_tail
6179 * @rx_ring: rx descriptor ring packet is being transacted on
6180 * @rx_desc: pointer to the EOP Rx descriptor
6181 * @skb: pointer to current skb being adjusted
6182 *
6183 * This function is an igb specific version of __pskb_pull_tail.  The
6184 * main difference between this version and the original function is that
6185 * this function can make several assumptions about the state of things
6186 * that allow for significant optimizations versus the standard function.
6187 * As a result we can do things like drop a frag and maintain an accurate
6188 * truesize for the skb.
6189 */
6190static void igb_pull_tail(struct igb_ring *rx_ring,
6191			  union e1000_adv_rx_desc *rx_desc,
6192			  struct sk_buff *skb)
6193{
6194	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6195	unsigned char *va;
6196	unsigned int pull_len;
6197
6198	/*
6199	 * it is valid to use page_address instead of kmap since we are
6200	 * working with pages allocated out of the lomem pool per
6201	 * alloc_page(GFP_ATOMIC)
6202	 */
6203	va = skb_frag_address(frag);
6204
6205	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6206		/* retrieve timestamp from buffer */
6207		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6208
6209		/* update pointers to remove timestamp header */
6210		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6211		frag->page_offset += IGB_TS_HDR_LEN;
6212		skb->data_len -= IGB_TS_HDR_LEN;
6213		skb->len -= IGB_TS_HDR_LEN;
6214
6215		/* move va to start of packet data */
6216		va += IGB_TS_HDR_LEN;
6217	}
6218
6219	/*
6220	 * we need the header to contain the greater of either ETH_HLEN or
6221	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6222	 */
6223	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6224
6225	/* align pull length to size of long to optimize memcpy performance */
6226	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6227
6228	/* update all of the pointers */
6229	skb_frag_size_sub(frag, pull_len);
6230	frag->page_offset += pull_len;
6231	skb->data_len -= pull_len;
6232	skb->tail += pull_len;
6233}
6234
6235/**
6236 * igb_cleanup_headers - Correct corrupted or empty headers
6237 * @rx_ring: rx descriptor ring packet is being transacted on
6238 * @rx_desc: pointer to the EOP Rx descriptor
6239 * @skb: pointer to current skb being fixed
6240 *
6241 * Address the case where we are pulling data in on pages only
6242 * and as such no data is present in the skb header.
6243 *
6244 * In addition if skb is not at least 60 bytes we need to pad it so that
6245 * it is large enough to qualify as a valid Ethernet frame.
6246 *
6247 * Returns true if an error was encountered and skb was freed.
6248 **/
6249static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6250				union e1000_adv_rx_desc *rx_desc,
6251				struct sk_buff *skb)
6252{
6253
6254	if (unlikely((igb_test_staterr(rx_desc,
6255				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6256		struct net_device *netdev = rx_ring->netdev;
6257		if (!(netdev->features & NETIF_F_RXALL)) {
6258			dev_kfree_skb_any(skb);
6259			return true;
6260		}
6261	}
6262
6263	/* place header in linear portion of buffer */
6264	if (skb_is_nonlinear(skb))
6265		igb_pull_tail(rx_ring, rx_desc, skb);
6266
6267	/* if skb_pad returns an error the skb was freed */
6268	if (unlikely(skb->len < 60)) {
6269		int pad_len = 60 - skb->len;
6270
6271		if (skb_pad(skb, pad_len))
6272			return true;
6273		__skb_put(skb, pad_len);
6274	}
6275
6276	return false;
6277}
6278
6279/**
6280 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6281 * @rx_ring: rx descriptor ring packet is being transacted on
6282 * @rx_desc: pointer to the EOP Rx descriptor
6283 * @skb: pointer to current skb being populated
6284 *
6285 * This function checks the ring, descriptor, and packet information in
6286 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6287 * other fields within the skb.
6288 **/
6289static void igb_process_skb_fields(struct igb_ring *rx_ring,
6290				   union e1000_adv_rx_desc *rx_desc,
6291				   struct sk_buff *skb)
6292{
6293	struct net_device *dev = rx_ring->netdev;
6294
6295	igb_rx_hash(rx_ring, rx_desc, skb);
6296
6297	igb_rx_checksum(rx_ring, rx_desc, skb);
6298
6299	igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);
6300
6301	if ((dev->features & NETIF_F_HW_VLAN_RX) &&
6302	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6303		u16 vid;
6304		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6305		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6306			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6307		else
6308			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6309
6310		__vlan_hwaccel_put_tag(skb, vid);
6311	}
6312
6313	skb_record_rx_queue(skb, rx_ring->queue_index);
6314
6315	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6316}
6317
6318static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6319{
6320	struct igb_ring *rx_ring = q_vector->rx.ring;
6321	struct sk_buff *skb = rx_ring->skb;
6322	unsigned int total_bytes = 0, total_packets = 0;
6323	u16 cleaned_count = igb_desc_unused(rx_ring);
6324
6325	do {
6326		union e1000_adv_rx_desc *rx_desc;
6327
6328		/* return some buffers to hardware, one at a time is too slow */
6329		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6330			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6331			cleaned_count = 0;
6332		}
6333
6334		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6335
6336		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6337			break;
6338
6339		/* retrieve a buffer from the ring */
6340		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6341
6342		/* exit if we failed to retrieve a buffer */
6343		if (!skb)
6344			break;
6345
6346		cleaned_count++;
6347
6348		/* fetch next buffer in frame if non-eop */
6349		if (igb_is_non_eop(rx_ring, rx_desc))
6350			continue;
6351
6352		/* verify the packet layout is correct */
6353		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6354			skb = NULL;
6355			continue;
6356		}
6357
6358		/* probably a little skewed due to removing CRC */
6359		total_bytes += skb->len;
6360
6361		/* populate checksum, timestamp, VLAN, and protocol */
6362		igb_process_skb_fields(rx_ring, rx_desc, skb);
6363
6364		napi_gro_receive(&q_vector->napi, skb);
6365
6366		/* reset skb pointer */
6367		skb = NULL;
6368
6369		/* update budget accounting */
6370		total_packets++;
6371	} while (likely(total_packets < budget));
6372
6373	/* place incomplete frames back on ring for completion */
6374	rx_ring->skb = skb;
6375
6376	u64_stats_update_begin(&rx_ring->rx_syncp);
6377	rx_ring->rx_stats.packets += total_packets;
6378	rx_ring->rx_stats.bytes += total_bytes;
6379	u64_stats_update_end(&rx_ring->rx_syncp);
6380	q_vector->rx.total_packets += total_packets;
6381	q_vector->rx.total_bytes += total_bytes;
6382
6383	if (cleaned_count)
6384		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6385
6386	return (total_packets < budget);
6387}
6388
6389static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6390				  struct igb_rx_buffer *bi)
6391{
6392	struct page *page = bi->page;
6393	dma_addr_t dma;
6394
6395	/* since we are recycling buffers we should seldom need to alloc */
6396	if (likely(page))
6397		return true;
6398
6399	/* alloc new page for storage */
6400	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6401	if (unlikely(!page)) {
6402		rx_ring->rx_stats.alloc_failed++;
6403		return false;
6404	}
6405
6406	/* map page for use */
6407	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6408
6409	/*
6410	 * if mapping failed free memory back to system since
6411	 * there isn't much point in holding memory we can't use
6412	 */
6413	if (dma_mapping_error(rx_ring->dev, dma)) {
6414		__free_page(page);
6415
6416		rx_ring->rx_stats.alloc_failed++;
6417		return false;
6418	}
6419
6420	bi->dma = dma;
6421	bi->page = page;
6422	bi->page_offset = 0;
6423
6424	return true;
6425}
6426
6427/**
6428 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6429 * @adapter: address of board private structure
6430 **/
6431void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6432{
6433	union e1000_adv_rx_desc *rx_desc;
6434	struct igb_rx_buffer *bi;
6435	u16 i = rx_ring->next_to_use;
6436
6437	/* nothing to do */
6438	if (!cleaned_count)
6439		return;
6440
6441	rx_desc = IGB_RX_DESC(rx_ring, i);
6442	bi = &rx_ring->rx_buffer_info[i];
6443	i -= rx_ring->count;
6444
6445	do {
6446		if (!igb_alloc_mapped_page(rx_ring, bi))
6447			break;
6448
6449		/*
6450		 * Refresh the desc even if buffer_addrs didn't change
6451		 * because each write-back erases this info.
6452		 */
6453		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6454
6455		rx_desc++;
6456		bi++;
6457		i++;
6458		if (unlikely(!i)) {
6459			rx_desc = IGB_RX_DESC(rx_ring, 0);
6460			bi = rx_ring->rx_buffer_info;
6461			i -= rx_ring->count;
6462		}
6463
6464		/* clear the hdr_addr for the next_to_use descriptor */
6465		rx_desc->read.hdr_addr = 0;
6466
6467		cleaned_count--;
6468	} while (cleaned_count);
6469
6470	i += rx_ring->count;
6471
6472	if (rx_ring->next_to_use != i) {
6473		/* record the next descriptor to use */
6474		rx_ring->next_to_use = i;
6475
6476		/* update next to alloc since we have filled the ring */
6477		rx_ring->next_to_alloc = i;
6478
6479		/*
6480		 * Force memory writes to complete before letting h/w
6481		 * know there are new descriptors to fetch.  (Only
6482		 * applicable for weak-ordered memory model archs,
6483		 * such as IA-64).
6484		 */
6485		wmb();
6486		writel(i, rx_ring->tail);
6487	}
6488}
6489
6490/**
6491 * igb_mii_ioctl -
6492 * @netdev:
6493 * @ifreq:
6494 * @cmd:
6495 **/
6496static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6497{
6498	struct igb_adapter *adapter = netdev_priv(netdev);
6499	struct mii_ioctl_data *data = if_mii(ifr);
6500
6501	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6502		return -EOPNOTSUPP;
6503
6504	switch (cmd) {
6505	case SIOCGMIIPHY:
6506		data->phy_id = adapter->hw.phy.addr;
6507		break;
6508	case SIOCGMIIREG:
6509		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6510		                     &data->val_out))
6511			return -EIO;
6512		break;
6513	case SIOCSMIIREG:
6514	default:
6515		return -EOPNOTSUPP;
6516	}
6517	return 0;
6518}
6519
6520/**
6521 * igb_ioctl -
6522 * @netdev:
6523 * @ifreq:
6524 * @cmd:
6525 **/
6526static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6527{
6528	switch (cmd) {
6529	case SIOCGMIIPHY:
6530	case SIOCGMIIREG:
6531	case SIOCSMIIREG:
6532		return igb_mii_ioctl(netdev, ifr, cmd);
6533	case SIOCSHWTSTAMP:
6534		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6535	default:
6536		return -EOPNOTSUPP;
6537	}
6538}
6539
6540s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6541{
6542	struct igb_adapter *adapter = hw->back;
6543
6544	if (pcie_capability_read_word(adapter->pdev, reg, value))
6545		return -E1000_ERR_CONFIG;
6546
6547	return 0;
6548}
6549
6550s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6551{
6552	struct igb_adapter *adapter = hw->back;
6553
6554	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6555		return -E1000_ERR_CONFIG;
6556
6557	return 0;
6558}
6559
6560static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6561{
6562	struct igb_adapter *adapter = netdev_priv(netdev);
6563	struct e1000_hw *hw = &adapter->hw;
6564	u32 ctrl, rctl;
6565	bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6566
6567	if (enable) {
6568		/* enable VLAN tag insert/strip */
6569		ctrl = rd32(E1000_CTRL);
6570		ctrl |= E1000_CTRL_VME;
6571		wr32(E1000_CTRL, ctrl);
6572
6573		/* Disable CFI check */
6574		rctl = rd32(E1000_RCTL);
6575		rctl &= ~E1000_RCTL_CFIEN;
6576		wr32(E1000_RCTL, rctl);
6577	} else {
6578		/* disable VLAN tag insert/strip */
6579		ctrl = rd32(E1000_CTRL);
6580		ctrl &= ~E1000_CTRL_VME;
6581		wr32(E1000_CTRL, ctrl);
6582	}
6583
6584	igb_rlpml_set(adapter);
6585}
6586
6587static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6588{
6589	struct igb_adapter *adapter = netdev_priv(netdev);
6590	struct e1000_hw *hw = &adapter->hw;
6591	int pf_id = adapter->vfs_allocated_count;
6592
6593	/* attempt to add filter to vlvf array */
6594	igb_vlvf_set(adapter, vid, true, pf_id);
6595
6596	/* add the filter since PF can receive vlans w/o entry in vlvf */
6597	igb_vfta_set(hw, vid, true);
6598
6599	set_bit(vid, adapter->active_vlans);
6600
6601	return 0;
6602}
6603
6604static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6605{
6606	struct igb_adapter *adapter = netdev_priv(netdev);
6607	struct e1000_hw *hw = &adapter->hw;
6608	int pf_id = adapter->vfs_allocated_count;
6609	s32 err;
6610
6611	/* remove vlan from VLVF table array */
6612	err = igb_vlvf_set(adapter, vid, false, pf_id);
6613
6614	/* if vid was not present in VLVF just remove it from table */
6615	if (err)
6616		igb_vfta_set(hw, vid, false);
6617
6618	clear_bit(vid, adapter->active_vlans);
6619
6620	return 0;
6621}
6622
6623static void igb_restore_vlan(struct igb_adapter *adapter)
6624{
6625	u16 vid;
6626
6627	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6628
6629	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6630		igb_vlan_rx_add_vid(adapter->netdev, vid);
6631}
6632
6633int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6634{
6635	struct pci_dev *pdev = adapter->pdev;
6636	struct e1000_mac_info *mac = &adapter->hw.mac;
6637
6638	mac->autoneg = 0;
6639
6640	/* Make sure dplx is at most 1 bit and lsb of speed is not set
6641	 * for the switch() below to work */
6642	if ((spd & 1) || (dplx & ~1))
6643		goto err_inval;
6644
6645	/* Fiber NIC's only allow 1000 Gbps Full duplex */
6646	if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6647	    spd != SPEED_1000 &&
6648	    dplx != DUPLEX_FULL)
6649		goto err_inval;
6650
6651	switch (spd + dplx) {
6652	case SPEED_10 + DUPLEX_HALF:
6653		mac->forced_speed_duplex = ADVERTISE_10_HALF;
6654		break;
6655	case SPEED_10 + DUPLEX_FULL:
6656		mac->forced_speed_duplex = ADVERTISE_10_FULL;
6657		break;
6658	case SPEED_100 + DUPLEX_HALF:
6659		mac->forced_speed_duplex = ADVERTISE_100_HALF;
6660		break;
6661	case SPEED_100 + DUPLEX_FULL:
6662		mac->forced_speed_duplex = ADVERTISE_100_FULL;
6663		break;
6664	case SPEED_1000 + DUPLEX_FULL:
6665		mac->autoneg = 1;
6666		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6667		break;
6668	case SPEED_1000 + DUPLEX_HALF: /* not supported */
6669	default:
6670		goto err_inval;
6671	}
6672
6673	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
6674	adapter->hw.phy.mdix = AUTO_ALL_MODES;
6675
6676	return 0;
6677
6678err_inval:
6679	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6680	return -EINVAL;
6681}
6682
6683static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
6684			  bool runtime)
6685{
6686	struct net_device *netdev = pci_get_drvdata(pdev);
6687	struct igb_adapter *adapter = netdev_priv(netdev);
6688	struct e1000_hw *hw = &adapter->hw;
6689	u32 ctrl, rctl, status;
6690	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6691#ifdef CONFIG_PM
6692	int retval = 0;
6693#endif
6694
6695	netif_device_detach(netdev);
6696
6697	if (netif_running(netdev))
6698		__igb_close(netdev, true);
6699
6700	igb_clear_interrupt_scheme(adapter);
6701
6702#ifdef CONFIG_PM
6703	retval = pci_save_state(pdev);
6704	if (retval)
6705		return retval;
6706#endif
6707
6708	status = rd32(E1000_STATUS);
6709	if (status & E1000_STATUS_LU)
6710		wufc &= ~E1000_WUFC_LNKC;
6711
6712	if (wufc) {
6713		igb_setup_rctl(adapter);
6714		igb_set_rx_mode(netdev);
6715
6716		/* turn on all-multi mode if wake on multicast is enabled */
6717		if (wufc & E1000_WUFC_MC) {
6718			rctl = rd32(E1000_RCTL);
6719			rctl |= E1000_RCTL_MPE;
6720			wr32(E1000_RCTL, rctl);
6721		}
6722
6723		ctrl = rd32(E1000_CTRL);
6724		/* advertise wake from D3Cold */
6725		#define E1000_CTRL_ADVD3WUC 0x00100000
6726		/* phy power management enable */
6727		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6728		ctrl |= E1000_CTRL_ADVD3WUC;
6729		wr32(E1000_CTRL, ctrl);
6730
6731		/* Allow time for pending master requests to run */
6732		igb_disable_pcie_master(hw);
6733
6734		wr32(E1000_WUC, E1000_WUC_PME_EN);
6735		wr32(E1000_WUFC, wufc);
6736	} else {
6737		wr32(E1000_WUC, 0);
6738		wr32(E1000_WUFC, 0);
6739	}
6740
6741	*enable_wake = wufc || adapter->en_mng_pt;
6742	if (!*enable_wake)
6743		igb_power_down_link(adapter);
6744	else
6745		igb_power_up_link(adapter);
6746
6747	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6748	 * would have already happened in close and is redundant. */
6749	igb_release_hw_control(adapter);
6750
6751	pci_disable_device(pdev);
6752
6753	return 0;
6754}
6755
6756#ifdef CONFIG_PM
6757#ifdef CONFIG_PM_SLEEP
6758static int igb_suspend(struct device *dev)
6759{
6760	int retval;
6761	bool wake;
6762	struct pci_dev *pdev = to_pci_dev(dev);
6763
6764	retval = __igb_shutdown(pdev, &wake, 0);
6765	if (retval)
6766		return retval;
6767
6768	if (wake) {
6769		pci_prepare_to_sleep(pdev);
6770	} else {
6771		pci_wake_from_d3(pdev, false);
6772		pci_set_power_state(pdev, PCI_D3hot);
6773	}
6774
6775	return 0;
6776}
6777#endif /* CONFIG_PM_SLEEP */
6778
6779static int igb_resume(struct device *dev)
6780{
6781	struct pci_dev *pdev = to_pci_dev(dev);
6782	struct net_device *netdev = pci_get_drvdata(pdev);
6783	struct igb_adapter *adapter = netdev_priv(netdev);
6784	struct e1000_hw *hw = &adapter->hw;
6785	u32 err;
6786
6787	pci_set_power_state(pdev, PCI_D0);
6788	pci_restore_state(pdev);
6789	pci_save_state(pdev);
6790
6791	err = pci_enable_device_mem(pdev);
6792	if (err) {
6793		dev_err(&pdev->dev,
6794			"igb: Cannot enable PCI device from suspend\n");
6795		return err;
6796	}
6797	pci_set_master(pdev);
6798
6799	pci_enable_wake(pdev, PCI_D3hot, 0);
6800	pci_enable_wake(pdev, PCI_D3cold, 0);
6801
6802	if (igb_init_interrupt_scheme(adapter)) {
6803		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6804		return -ENOMEM;
6805	}
6806
6807	igb_reset(adapter);
6808
6809	/* let the f/w know that the h/w is now under the control of the
6810	 * driver. */
6811	igb_get_hw_control(adapter);
6812
6813	wr32(E1000_WUS, ~0);
6814
6815	if (netdev->flags & IFF_UP) {
6816		rtnl_lock();
6817		err = __igb_open(netdev, true);
6818		rtnl_unlock();
6819		if (err)
6820			return err;
6821	}
6822
6823	netif_device_attach(netdev);
6824	return 0;
6825}
6826
6827#ifdef CONFIG_PM_RUNTIME
6828static int igb_runtime_idle(struct device *dev)
6829{
6830	struct pci_dev *pdev = to_pci_dev(dev);
6831	struct net_device *netdev = pci_get_drvdata(pdev);
6832	struct igb_adapter *adapter = netdev_priv(netdev);
6833
6834	if (!igb_has_link(adapter))
6835		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6836
6837	return -EBUSY;
6838}
6839
6840static int igb_runtime_suspend(struct device *dev)
6841{
6842	struct pci_dev *pdev = to_pci_dev(dev);
6843	int retval;
6844	bool wake;
6845
6846	retval = __igb_shutdown(pdev, &wake, 1);
6847	if (retval)
6848		return retval;
6849
6850	if (wake) {
6851		pci_prepare_to_sleep(pdev);
6852	} else {
6853		pci_wake_from_d3(pdev, false);
6854		pci_set_power_state(pdev, PCI_D3hot);
6855	}
6856
6857	return 0;
6858}
6859
6860static int igb_runtime_resume(struct device *dev)
6861{
6862	return igb_resume(dev);
6863}
6864#endif /* CONFIG_PM_RUNTIME */
6865#endif
6866
6867static void igb_shutdown(struct pci_dev *pdev)
6868{
6869	bool wake;
6870
6871	__igb_shutdown(pdev, &wake, 0);
6872
6873	if (system_state == SYSTEM_POWER_OFF) {
6874		pci_wake_from_d3(pdev, wake);
6875		pci_set_power_state(pdev, PCI_D3hot);
6876	}
6877}
6878
6879#ifdef CONFIG_NET_POLL_CONTROLLER
6880/*
6881 * Polling 'interrupt' - used by things like netconsole to send skbs
6882 * without having to re-enable interrupts. It's not called while
6883 * the interrupt routine is executing.
6884 */
6885static void igb_netpoll(struct net_device *netdev)
6886{
6887	struct igb_adapter *adapter = netdev_priv(netdev);
6888	struct e1000_hw *hw = &adapter->hw;
6889	struct igb_q_vector *q_vector;
6890	int i;
6891
6892	for (i = 0; i < adapter->num_q_vectors; i++) {
6893		q_vector = adapter->q_vector[i];
6894		if (adapter->msix_entries)
6895			wr32(E1000_EIMC, q_vector->eims_value);
6896		else
6897			igb_irq_disable(adapter);
6898		napi_schedule(&q_vector->napi);
6899	}
6900}
6901#endif /* CONFIG_NET_POLL_CONTROLLER */
6902
6903/**
6904 * igb_io_error_detected - called when PCI error is detected
6905 * @pdev: Pointer to PCI device
6906 * @state: The current pci connection state
6907 *
6908 * This function is called after a PCI bus error affecting
6909 * this device has been detected.
6910 */
6911static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6912					      pci_channel_state_t state)
6913{
6914	struct net_device *netdev = pci_get_drvdata(pdev);
6915	struct igb_adapter *adapter = netdev_priv(netdev);
6916
6917	netif_device_detach(netdev);
6918
6919	if (state == pci_channel_io_perm_failure)
6920		return PCI_ERS_RESULT_DISCONNECT;
6921
6922	if (netif_running(netdev))
6923		igb_down(adapter);
6924	pci_disable_device(pdev);
6925
6926	/* Request a slot slot reset. */
6927	return PCI_ERS_RESULT_NEED_RESET;
6928}
6929
6930/**
6931 * igb_io_slot_reset - called after the pci bus has been reset.
6932 * @pdev: Pointer to PCI device
6933 *
6934 * Restart the card from scratch, as if from a cold-boot. Implementation
6935 * resembles the first-half of the igb_resume routine.
6936 */
6937static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6938{
6939	struct net_device *netdev = pci_get_drvdata(pdev);
6940	struct igb_adapter *adapter = netdev_priv(netdev);
6941	struct e1000_hw *hw = &adapter->hw;
6942	pci_ers_result_t result;
6943	int err;
6944
6945	if (pci_enable_device_mem(pdev)) {
6946		dev_err(&pdev->dev,
6947			"Cannot re-enable PCI device after reset.\n");
6948		result = PCI_ERS_RESULT_DISCONNECT;
6949	} else {
6950		pci_set_master(pdev);
6951		pci_restore_state(pdev);
6952		pci_save_state(pdev);
6953
6954		pci_enable_wake(pdev, PCI_D3hot, 0);
6955		pci_enable_wake(pdev, PCI_D3cold, 0);
6956
6957		igb_reset(adapter);
6958		wr32(E1000_WUS, ~0);
6959		result = PCI_ERS_RESULT_RECOVERED;
6960	}
6961
6962	err = pci_cleanup_aer_uncorrect_error_status(pdev);
6963	if (err) {
6964		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6965		        "failed 0x%0x\n", err);
6966		/* non-fatal, continue */
6967	}
6968
6969	return result;
6970}
6971
6972/**
6973 * igb_io_resume - called when traffic can start flowing again.
6974 * @pdev: Pointer to PCI device
6975 *
6976 * This callback is called when the error recovery driver tells us that
6977 * its OK to resume normal operation. Implementation resembles the
6978 * second-half of the igb_resume routine.
6979 */
6980static void igb_io_resume(struct pci_dev *pdev)
6981{
6982	struct net_device *netdev = pci_get_drvdata(pdev);
6983	struct igb_adapter *adapter = netdev_priv(netdev);
6984
6985	if (netif_running(netdev)) {
6986		if (igb_up(adapter)) {
6987			dev_err(&pdev->dev, "igb_up failed after reset\n");
6988			return;
6989		}
6990	}
6991
6992	netif_device_attach(netdev);
6993
6994	/* let the f/w know that the h/w is now under the control of the
6995	 * driver. */
6996	igb_get_hw_control(adapter);
6997}
6998
6999static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7000                             u8 qsel)
7001{
7002	u32 rar_low, rar_high;
7003	struct e1000_hw *hw = &adapter->hw;
7004
7005	/* HW expects these in little endian so we reverse the byte order
7006	 * from network order (big endian) to little endian
7007	 */
7008	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7009	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7010	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7011
7012	/* Indicate to hardware the Address is Valid. */
7013	rar_high |= E1000_RAH_AV;
7014
7015	if (hw->mac.type == e1000_82575)
7016		rar_high |= E1000_RAH_POOL_1 * qsel;
7017	else
7018		rar_high |= E1000_RAH_POOL_1 << qsel;
7019
7020	wr32(E1000_RAL(index), rar_low);
7021	wrfl();
7022	wr32(E1000_RAH(index), rar_high);
7023	wrfl();
7024}
7025
7026static int igb_set_vf_mac(struct igb_adapter *adapter,
7027                          int vf, unsigned char *mac_addr)
7028{
7029	struct e1000_hw *hw = &adapter->hw;
7030	/* VF MAC addresses start at end of receive addresses and moves
7031	 * torwards the first, as a result a collision should not be possible */
7032	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7033
7034	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7035
7036	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7037
7038	return 0;
7039}
7040
7041static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7042{
7043	struct igb_adapter *adapter = netdev_priv(netdev);
7044	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7045		return -EINVAL;
7046	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7047	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7048	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
7049				      " change effective.");
7050	if (test_bit(__IGB_DOWN, &adapter->state)) {
7051		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
7052			 " but the PF device is not up.\n");
7053		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
7054			 " attempting to use the VF device.\n");
7055	}
7056	return igb_set_vf_mac(adapter, vf, mac);
7057}
7058
7059static int igb_link_mbps(int internal_link_speed)
7060{
7061	switch (internal_link_speed) {
7062	case SPEED_100:
7063		return 100;
7064	case SPEED_1000:
7065		return 1000;
7066	default:
7067		return 0;
7068	}
7069}
7070
7071static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7072				  int link_speed)
7073{
7074	int rf_dec, rf_int;
7075	u32 bcnrc_val;
7076
7077	if (tx_rate != 0) {
7078		/* Calculate the rate factor values to set */
7079		rf_int = link_speed / tx_rate;
7080		rf_dec = (link_speed - (rf_int * tx_rate));
7081		rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
7082
7083		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7084		bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
7085		               E1000_RTTBCNRC_RF_INT_MASK);
7086		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7087	} else {
7088		bcnrc_val = 0;
7089	}
7090
7091	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7092	/*
7093	 * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7094	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7095	 */
7096	wr32(E1000_RTTBCNRM, 0x14);
7097	wr32(E1000_RTTBCNRC, bcnrc_val);
7098}
7099
7100static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7101{
7102	int actual_link_speed, i;
7103	bool reset_rate = false;
7104
7105	/* VF TX rate limit was not set or not supported */
7106	if ((adapter->vf_rate_link_speed == 0) ||
7107	    (adapter->hw.mac.type != e1000_82576))
7108		return;
7109
7110	actual_link_speed = igb_link_mbps(adapter->link_speed);
7111	if (actual_link_speed != adapter->vf_rate_link_speed) {
7112		reset_rate = true;
7113		adapter->vf_rate_link_speed = 0;
7114		dev_info(&adapter->pdev->dev,
7115		         "Link speed has been changed. VF Transmit "
7116		         "rate is disabled\n");
7117	}
7118
7119	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7120		if (reset_rate)
7121			adapter->vf_data[i].tx_rate = 0;
7122
7123		igb_set_vf_rate_limit(&adapter->hw, i,
7124		                      adapter->vf_data[i].tx_rate,
7125		                      actual_link_speed);
7126	}
7127}
7128
7129static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7130{
7131	struct igb_adapter *adapter = netdev_priv(netdev);
7132	struct e1000_hw *hw = &adapter->hw;
7133	int actual_link_speed;
7134
7135	if (hw->mac.type != e1000_82576)
7136		return -EOPNOTSUPP;
7137
7138	actual_link_speed = igb_link_mbps(adapter->link_speed);
7139	if ((vf >= adapter->vfs_allocated_count) ||
7140	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7141	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7142		return -EINVAL;
7143
7144	adapter->vf_rate_link_speed = actual_link_speed;
7145	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7146	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7147
7148	return 0;
7149}
7150
7151static int igb_ndo_get_vf_config(struct net_device *netdev,
7152				 int vf, struct ifla_vf_info *ivi)
7153{
7154	struct igb_adapter *adapter = netdev_priv(netdev);
7155	if (vf >= adapter->vfs_allocated_count)
7156		return -EINVAL;
7157	ivi->vf = vf;
7158	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7159	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7160	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7161	ivi->qos = adapter->vf_data[vf].pf_qos;
7162	return 0;
7163}
7164
7165static void igb_vmm_control(struct igb_adapter *adapter)
7166{
7167	struct e1000_hw *hw = &adapter->hw;
7168	u32 reg;
7169
7170	switch (hw->mac.type) {
7171	case e1000_82575:
7172	case e1000_i210:
7173	case e1000_i211:
7174	default:
7175		/* replication is not supported for 82575 */
7176		return;
7177	case e1000_82576:
7178		/* notify HW that the MAC is adding vlan tags */
7179		reg = rd32(E1000_DTXCTL);
7180		reg |= E1000_DTXCTL_VLAN_ADDED;
7181		wr32(E1000_DTXCTL, reg);
7182	case e1000_82580:
7183		/* enable replication vlan tag stripping */
7184		reg = rd32(E1000_RPLOLR);
7185		reg |= E1000_RPLOLR_STRVLAN;
7186		wr32(E1000_RPLOLR, reg);
7187	case e1000_i350:
7188		/* none of the above registers are supported by i350 */
7189		break;
7190	}
7191
7192	if (adapter->vfs_allocated_count) {
7193		igb_vmdq_set_loopback_pf(hw, true);
7194		igb_vmdq_set_replication_pf(hw, true);
7195		igb_vmdq_set_anti_spoofing_pf(hw, true,
7196						adapter->vfs_allocated_count);
7197	} else {
7198		igb_vmdq_set_loopback_pf(hw, false);
7199		igb_vmdq_set_replication_pf(hw, false);
7200	}
7201}
7202
7203static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7204{
7205	struct e1000_hw *hw = &adapter->hw;
7206	u32 dmac_thr;
7207	u16 hwm;
7208
7209	if (hw->mac.type > e1000_82580) {
7210		if (adapter->flags & IGB_FLAG_DMAC) {
7211			u32 reg;
7212
7213			/* force threshold to 0. */
7214			wr32(E1000_DMCTXTH, 0);
7215
7216			/*
7217			 * DMA Coalescing high water mark needs to be greater
7218			 * than the Rx threshold. Set hwm to PBA - max frame
7219			 * size in 16B units, capping it at PBA - 6KB.
7220			 */
7221			hwm = 64 * pba - adapter->max_frame_size / 16;
7222			if (hwm < 64 * (pba - 6))
7223				hwm = 64 * (pba - 6);
7224			reg = rd32(E1000_FCRTC);
7225			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7226			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7227				& E1000_FCRTC_RTH_COAL_MASK);
7228			wr32(E1000_FCRTC, reg);
7229
7230			/*
7231			 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
7232			 * frame size, capping it at PBA - 10KB.
7233			 */
7234			dmac_thr = pba - adapter->max_frame_size / 512;
7235			if (dmac_thr < pba - 10)
7236				dmac_thr = pba - 10;
7237			reg = rd32(E1000_DMACR);
7238			reg &= ~E1000_DMACR_DMACTHR_MASK;
7239			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7240				& E1000_DMACR_DMACTHR_MASK);
7241
7242			/* transition to L0x or L1 if available..*/
7243			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7244
7245			/* watchdog timer= +-1000 usec in 32usec intervals */
7246			reg |= (1000 >> 5);
7247
7248			/* Disable BMC-to-OS Watchdog Enable */
7249			reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7250			wr32(E1000_DMACR, reg);
7251
7252			/*
7253			 * no lower threshold to disable
7254			 * coalescing(smart fifb)-UTRESH=0
7255			 */
7256			wr32(E1000_DMCRTRH, 0);
7257
7258			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7259
7260			wr32(E1000_DMCTLX, reg);
7261
7262			/*
7263			 * free space in tx packet buffer to wake from
7264			 * DMA coal
7265			 */
7266			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7267			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7268
7269			/*
7270			 * make low power state decision controlled
7271			 * by DMA coal
7272			 */
7273			reg = rd32(E1000_PCIEMISC);
7274			reg &= ~E1000_PCIEMISC_LX_DECISION;
7275			wr32(E1000_PCIEMISC, reg);
7276		} /* endif adapter->dmac is not disabled */
7277	} else if (hw->mac.type == e1000_82580) {
7278		u32 reg = rd32(E1000_PCIEMISC);
7279		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7280		wr32(E1000_DMACR, 0);
7281	}
7282}
7283
7284/* igb_main.c */
7285