igb_main.c revision 22a8b2915998a5f35f659c1d419bd4bcbb1b6f41
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2014 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, see <http://www.gnu.org/licenses/>.
17
18  The full GNU General Public License is included in this distribution in
19  the file called "COPYING".
20
21  Contact Information:
22  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25*******************************************************************************/
26
27#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28
29#include <linux/module.h>
30#include <linux/types.h>
31#include <linux/init.h>
32#include <linux/bitops.h>
33#include <linux/vmalloc.h>
34#include <linux/pagemap.h>
35#include <linux/netdevice.h>
36#include <linux/ipv6.h>
37#include <linux/slab.h>
38#include <net/checksum.h>
39#include <net/ip6_checksum.h>
40#include <linux/net_tstamp.h>
41#include <linux/mii.h>
42#include <linux/ethtool.h>
43#include <linux/if.h>
44#include <linux/if_vlan.h>
45#include <linux/pci.h>
46#include <linux/pci-aspm.h>
47#include <linux/delay.h>
48#include <linux/interrupt.h>
49#include <linux/ip.h>
50#include <linux/tcp.h>
51#include <linux/sctp.h>
52#include <linux/if_ether.h>
53#include <linux/aer.h>
54#include <linux/prefetch.h>
55#include <linux/pm_runtime.h>
56#ifdef CONFIG_IGB_DCA
57#include <linux/dca.h>
58#endif
59#include <linux/i2c.h>
60#include "igb.h"
61
62#define MAJ 5
63#define MIN 0
64#define BUILD 5
65#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66__stringify(BUILD) "-k"
67char igb_driver_name[] = "igb";
68char igb_driver_version[] = DRV_VERSION;
69static const char igb_driver_string[] =
70				"Intel(R) Gigabit Ethernet Network Driver";
71static const char igb_copyright[] =
72				"Copyright (c) 2007-2014 Intel Corporation.";
73
74static const struct e1000_info *igb_info_tbl[] = {
75	[board_82575] = &e1000_82575_info,
76};
77
78static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
79	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
99	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
104	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
105	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
106	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
107	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
108	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
109	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
110	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
111	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
112	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
113	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
114	/* required last entry */
115	{0, }
116};
117
118MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
119
120void igb_reset(struct igb_adapter *);
121static int igb_setup_all_tx_resources(struct igb_adapter *);
122static int igb_setup_all_rx_resources(struct igb_adapter *);
123static void igb_free_all_tx_resources(struct igb_adapter *);
124static void igb_free_all_rx_resources(struct igb_adapter *);
125static void igb_setup_mrqc(struct igb_adapter *);
126static int igb_probe(struct pci_dev *, const struct pci_device_id *);
127static void igb_remove(struct pci_dev *pdev);
128static int igb_sw_init(struct igb_adapter *);
129static int igb_open(struct net_device *);
130static int igb_close(struct net_device *);
131static void igb_configure(struct igb_adapter *);
132static void igb_configure_tx(struct igb_adapter *);
133static void igb_configure_rx(struct igb_adapter *);
134static void igb_clean_all_tx_rings(struct igb_adapter *);
135static void igb_clean_all_rx_rings(struct igb_adapter *);
136static void igb_clean_tx_ring(struct igb_ring *);
137static void igb_clean_rx_ring(struct igb_ring *);
138static void igb_set_rx_mode(struct net_device *);
139static void igb_update_phy_info(unsigned long);
140static void igb_watchdog(unsigned long);
141static void igb_watchdog_task(struct work_struct *);
142static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
143static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
144						 struct rtnl_link_stats64 *stats);
145static int igb_change_mtu(struct net_device *, int);
146static int igb_set_mac(struct net_device *, void *);
147static void igb_set_uta(struct igb_adapter *adapter);
148static irqreturn_t igb_intr(int irq, void *);
149static irqreturn_t igb_intr_msi(int irq, void *);
150static irqreturn_t igb_msix_other(int irq, void *);
151static irqreturn_t igb_msix_ring(int irq, void *);
152#ifdef CONFIG_IGB_DCA
153static void igb_update_dca(struct igb_q_vector *);
154static void igb_setup_dca(struct igb_adapter *);
155#endif /* CONFIG_IGB_DCA */
156static int igb_poll(struct napi_struct *, int);
157static bool igb_clean_tx_irq(struct igb_q_vector *);
158static bool igb_clean_rx_irq(struct igb_q_vector *, int);
159static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
160static void igb_tx_timeout(struct net_device *);
161static void igb_reset_task(struct work_struct *);
162static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
163static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
164static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
165static void igb_restore_vlan(struct igb_adapter *);
166static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
167static void igb_ping_all_vfs(struct igb_adapter *);
168static void igb_msg_task(struct igb_adapter *);
169static void igb_vmm_control(struct igb_adapter *);
170static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
171static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
172static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
173static int igb_ndo_set_vf_vlan(struct net_device *netdev,
174			       int vf, u16 vlan, u8 qos);
175static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
176static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
177				   bool setting);
178static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
179				 struct ifla_vf_info *ivi);
180static void igb_check_vf_rate_limit(struct igb_adapter *);
181
182#ifdef CONFIG_PCI_IOV
183static int igb_vf_configure(struct igb_adapter *adapter, int vf);
184static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
185#endif
186
187#ifdef CONFIG_PM
188#ifdef CONFIG_PM_SLEEP
189static int igb_suspend(struct device *);
190#endif
191static int igb_resume(struct device *);
192#ifdef CONFIG_PM_RUNTIME
193static int igb_runtime_suspend(struct device *dev);
194static int igb_runtime_resume(struct device *dev);
195static int igb_runtime_idle(struct device *dev);
196#endif
197static const struct dev_pm_ops igb_pm_ops = {
198	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
199	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
200			igb_runtime_idle)
201};
202#endif
203static void igb_shutdown(struct pci_dev *);
204static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
205#ifdef CONFIG_IGB_DCA
206static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
207static struct notifier_block dca_notifier = {
208	.notifier_call	= igb_notify_dca,
209	.next		= NULL,
210	.priority	= 0
211};
212#endif
213#ifdef CONFIG_NET_POLL_CONTROLLER
214/* for netdump / net console */
215static void igb_netpoll(struct net_device *);
216#endif
217#ifdef CONFIG_PCI_IOV
218static unsigned int max_vfs = 0;
219module_param(max_vfs, uint, 0);
220MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
221                 "per physical function");
222#endif /* CONFIG_PCI_IOV */
223
224static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
225		     pci_channel_state_t);
226static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
227static void igb_io_resume(struct pci_dev *);
228
229static const struct pci_error_handlers igb_err_handler = {
230	.error_detected = igb_io_error_detected,
231	.slot_reset = igb_io_slot_reset,
232	.resume = igb_io_resume,
233};
234
235static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
236
237static struct pci_driver igb_driver = {
238	.name     = igb_driver_name,
239	.id_table = igb_pci_tbl,
240	.probe    = igb_probe,
241	.remove   = igb_remove,
242#ifdef CONFIG_PM
243	.driver.pm = &igb_pm_ops,
244#endif
245	.shutdown = igb_shutdown,
246	.sriov_configure = igb_pci_sriov_configure,
247	.err_handler = &igb_err_handler
248};
249
250MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
251MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
252MODULE_LICENSE("GPL");
253MODULE_VERSION(DRV_VERSION);
254
255#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
256static int debug = -1;
257module_param(debug, int, 0);
258MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
259
260struct igb_reg_info {
261	u32 ofs;
262	char *name;
263};
264
265static const struct igb_reg_info igb_reg_info_tbl[] = {
266
267	/* General Registers */
268	{E1000_CTRL, "CTRL"},
269	{E1000_STATUS, "STATUS"},
270	{E1000_CTRL_EXT, "CTRL_EXT"},
271
272	/* Interrupt Registers */
273	{E1000_ICR, "ICR"},
274
275	/* RX Registers */
276	{E1000_RCTL, "RCTL"},
277	{E1000_RDLEN(0), "RDLEN"},
278	{E1000_RDH(0), "RDH"},
279	{E1000_RDT(0), "RDT"},
280	{E1000_RXDCTL(0), "RXDCTL"},
281	{E1000_RDBAL(0), "RDBAL"},
282	{E1000_RDBAH(0), "RDBAH"},
283
284	/* TX Registers */
285	{E1000_TCTL, "TCTL"},
286	{E1000_TDBAL(0), "TDBAL"},
287	{E1000_TDBAH(0), "TDBAH"},
288	{E1000_TDLEN(0), "TDLEN"},
289	{E1000_TDH(0), "TDH"},
290	{E1000_TDT(0), "TDT"},
291	{E1000_TXDCTL(0), "TXDCTL"},
292	{E1000_TDFH, "TDFH"},
293	{E1000_TDFT, "TDFT"},
294	{E1000_TDFHS, "TDFHS"},
295	{E1000_TDFPC, "TDFPC"},
296
297	/* List Terminator */
298	{}
299};
300
301/* igb_regdump - register printout routine */
302static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
303{
304	int n = 0;
305	char rname[16];
306	u32 regs[8];
307
308	switch (reginfo->ofs) {
309	case E1000_RDLEN(0):
310		for (n = 0; n < 4; n++)
311			regs[n] = rd32(E1000_RDLEN(n));
312		break;
313	case E1000_RDH(0):
314		for (n = 0; n < 4; n++)
315			regs[n] = rd32(E1000_RDH(n));
316		break;
317	case E1000_RDT(0):
318		for (n = 0; n < 4; n++)
319			regs[n] = rd32(E1000_RDT(n));
320		break;
321	case E1000_RXDCTL(0):
322		for (n = 0; n < 4; n++)
323			regs[n] = rd32(E1000_RXDCTL(n));
324		break;
325	case E1000_RDBAL(0):
326		for (n = 0; n < 4; n++)
327			regs[n] = rd32(E1000_RDBAL(n));
328		break;
329	case E1000_RDBAH(0):
330		for (n = 0; n < 4; n++)
331			regs[n] = rd32(E1000_RDBAH(n));
332		break;
333	case E1000_TDBAL(0):
334		for (n = 0; n < 4; n++)
335			regs[n] = rd32(E1000_RDBAL(n));
336		break;
337	case E1000_TDBAH(0):
338		for (n = 0; n < 4; n++)
339			regs[n] = rd32(E1000_TDBAH(n));
340		break;
341	case E1000_TDLEN(0):
342		for (n = 0; n < 4; n++)
343			regs[n] = rd32(E1000_TDLEN(n));
344		break;
345	case E1000_TDH(0):
346		for (n = 0; n < 4; n++)
347			regs[n] = rd32(E1000_TDH(n));
348		break;
349	case E1000_TDT(0):
350		for (n = 0; n < 4; n++)
351			regs[n] = rd32(E1000_TDT(n));
352		break;
353	case E1000_TXDCTL(0):
354		for (n = 0; n < 4; n++)
355			regs[n] = rd32(E1000_TXDCTL(n));
356		break;
357	default:
358		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
359		return;
360	}
361
362	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
363	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
364		regs[2], regs[3]);
365}
366
367/* igb_dump - Print registers, Tx-rings and Rx-rings */
368static void igb_dump(struct igb_adapter *adapter)
369{
370	struct net_device *netdev = adapter->netdev;
371	struct e1000_hw *hw = &adapter->hw;
372	struct igb_reg_info *reginfo;
373	struct igb_ring *tx_ring;
374	union e1000_adv_tx_desc *tx_desc;
375	struct my_u0 { u64 a; u64 b; } *u0;
376	struct igb_ring *rx_ring;
377	union e1000_adv_rx_desc *rx_desc;
378	u32 staterr;
379	u16 i, n;
380
381	if (!netif_msg_hw(adapter))
382		return;
383
384	/* Print netdevice Info */
385	if (netdev) {
386		dev_info(&adapter->pdev->dev, "Net device Info\n");
387		pr_info("Device Name     state            trans_start      "
388			"last_rx\n");
389		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
390			netdev->state, netdev->trans_start, netdev->last_rx);
391	}
392
393	/* Print Registers */
394	dev_info(&adapter->pdev->dev, "Register Dump\n");
395	pr_info(" Register Name   Value\n");
396	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
397	     reginfo->name; reginfo++) {
398		igb_regdump(hw, reginfo);
399	}
400
401	/* Print TX Ring Summary */
402	if (!netdev || !netif_running(netdev))
403		goto exit;
404
405	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
406	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
407	for (n = 0; n < adapter->num_tx_queues; n++) {
408		struct igb_tx_buffer *buffer_info;
409		tx_ring = adapter->tx_ring[n];
410		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
411		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
412			n, tx_ring->next_to_use, tx_ring->next_to_clean,
413			(u64)dma_unmap_addr(buffer_info, dma),
414			dma_unmap_len(buffer_info, len),
415			buffer_info->next_to_watch,
416			(u64)buffer_info->time_stamp);
417	}
418
419	/* Print TX Rings */
420	if (!netif_msg_tx_done(adapter))
421		goto rx_ring_summary;
422
423	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
424
425	/* Transmit Descriptor Formats
426	 *
427	 * Advanced Transmit Descriptor
428	 *   +--------------------------------------------------------------+
429	 * 0 |         Buffer Address [63:0]                                |
430	 *   +--------------------------------------------------------------+
431	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
432	 *   +--------------------------------------------------------------+
433	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
434	 */
435
436	for (n = 0; n < adapter->num_tx_queues; n++) {
437		tx_ring = adapter->tx_ring[n];
438		pr_info("------------------------------------\n");
439		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
440		pr_info("------------------------------------\n");
441		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
442			"[bi->dma       ] leng  ntw timestamp        "
443			"bi->skb\n");
444
445		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
446			const char *next_desc;
447			struct igb_tx_buffer *buffer_info;
448			tx_desc = IGB_TX_DESC(tx_ring, i);
449			buffer_info = &tx_ring->tx_buffer_info[i];
450			u0 = (struct my_u0 *)tx_desc;
451			if (i == tx_ring->next_to_use &&
452			    i == tx_ring->next_to_clean)
453				next_desc = " NTC/U";
454			else if (i == tx_ring->next_to_use)
455				next_desc = " NTU";
456			else if (i == tx_ring->next_to_clean)
457				next_desc = " NTC";
458			else
459				next_desc = "";
460
461			pr_info("T [0x%03X]    %016llX %016llX %016llX"
462				" %04X  %p %016llX %p%s\n", i,
463				le64_to_cpu(u0->a),
464				le64_to_cpu(u0->b),
465				(u64)dma_unmap_addr(buffer_info, dma),
466				dma_unmap_len(buffer_info, len),
467				buffer_info->next_to_watch,
468				(u64)buffer_info->time_stamp,
469				buffer_info->skb, next_desc);
470
471			if (netif_msg_pktdata(adapter) && buffer_info->skb)
472				print_hex_dump(KERN_INFO, "",
473					DUMP_PREFIX_ADDRESS,
474					16, 1, buffer_info->skb->data,
475					dma_unmap_len(buffer_info, len),
476					true);
477		}
478	}
479
480	/* Print RX Rings Summary */
481rx_ring_summary:
482	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
483	pr_info("Queue [NTU] [NTC]\n");
484	for (n = 0; n < adapter->num_rx_queues; n++) {
485		rx_ring = adapter->rx_ring[n];
486		pr_info(" %5d %5X %5X\n",
487			n, rx_ring->next_to_use, rx_ring->next_to_clean);
488	}
489
490	/* Print RX Rings */
491	if (!netif_msg_rx_status(adapter))
492		goto exit;
493
494	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
495
496	/* Advanced Receive Descriptor (Read) Format
497	 *    63                                           1        0
498	 *    +-----------------------------------------------------+
499	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
500	 *    +----------------------------------------------+------+
501	 *  8 |       Header Buffer Address [63:1]           |  DD  |
502	 *    +-----------------------------------------------------+
503	 *
504	 *
505	 * Advanced Receive Descriptor (Write-Back) Format
506	 *
507	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
508	 *   +------------------------------------------------------+
509	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
510	 *   | Checksum   Ident  |   |           |    | Type | Type |
511	 *   +------------------------------------------------------+
512	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
513	 *   +------------------------------------------------------+
514	 *   63       48 47    32 31            20 19               0
515	 */
516
517	for (n = 0; n < adapter->num_rx_queues; n++) {
518		rx_ring = adapter->rx_ring[n];
519		pr_info("------------------------------------\n");
520		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
521		pr_info("------------------------------------\n");
522		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
523			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
524		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
525			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
526
527		for (i = 0; i < rx_ring->count; i++) {
528			const char *next_desc;
529			struct igb_rx_buffer *buffer_info;
530			buffer_info = &rx_ring->rx_buffer_info[i];
531			rx_desc = IGB_RX_DESC(rx_ring, i);
532			u0 = (struct my_u0 *)rx_desc;
533			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
534
535			if (i == rx_ring->next_to_use)
536				next_desc = " NTU";
537			else if (i == rx_ring->next_to_clean)
538				next_desc = " NTC";
539			else
540				next_desc = "";
541
542			if (staterr & E1000_RXD_STAT_DD) {
543				/* Descriptor Done */
544				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
545					"RWB", i,
546					le64_to_cpu(u0->a),
547					le64_to_cpu(u0->b),
548					next_desc);
549			} else {
550				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
551					"R  ", i,
552					le64_to_cpu(u0->a),
553					le64_to_cpu(u0->b),
554					(u64)buffer_info->dma,
555					next_desc);
556
557				if (netif_msg_pktdata(adapter) &&
558				    buffer_info->dma && buffer_info->page) {
559					print_hex_dump(KERN_INFO, "",
560					  DUMP_PREFIX_ADDRESS,
561					  16, 1,
562					  page_address(buffer_info->page) +
563						      buffer_info->page_offset,
564					  IGB_RX_BUFSZ, true);
565				}
566			}
567		}
568	}
569
570exit:
571	return;
572}
573
574/**
575 *  igb_get_i2c_data - Reads the I2C SDA data bit
576 *  @hw: pointer to hardware structure
577 *  @i2cctl: Current value of I2CCTL register
578 *
579 *  Returns the I2C data bit value
580 **/
581static int igb_get_i2c_data(void *data)
582{
583	struct igb_adapter *adapter = (struct igb_adapter *)data;
584	struct e1000_hw *hw = &adapter->hw;
585	s32 i2cctl = rd32(E1000_I2CPARAMS);
586
587	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
588}
589
590/**
591 *  igb_set_i2c_data - Sets the I2C data bit
592 *  @data: pointer to hardware structure
593 *  @state: I2C data value (0 or 1) to set
594 *
595 *  Sets the I2C data bit
596 **/
597static void igb_set_i2c_data(void *data, int state)
598{
599	struct igb_adapter *adapter = (struct igb_adapter *)data;
600	struct e1000_hw *hw = &adapter->hw;
601	s32 i2cctl = rd32(E1000_I2CPARAMS);
602
603	if (state)
604		i2cctl |= E1000_I2C_DATA_OUT;
605	else
606		i2cctl &= ~E1000_I2C_DATA_OUT;
607
608	i2cctl &= ~E1000_I2C_DATA_OE_N;
609	i2cctl |= E1000_I2C_CLK_OE_N;
610	wr32(E1000_I2CPARAMS, i2cctl);
611	wrfl();
612
613}
614
615/**
616 *  igb_set_i2c_clk - Sets the I2C SCL clock
617 *  @data: pointer to hardware structure
618 *  @state: state to set clock
619 *
620 *  Sets the I2C clock line to state
621 **/
622static void igb_set_i2c_clk(void *data, int state)
623{
624	struct igb_adapter *adapter = (struct igb_adapter *)data;
625	struct e1000_hw *hw = &adapter->hw;
626	s32 i2cctl = rd32(E1000_I2CPARAMS);
627
628	if (state) {
629		i2cctl |= E1000_I2C_CLK_OUT;
630		i2cctl &= ~E1000_I2C_CLK_OE_N;
631	} else {
632		i2cctl &= ~E1000_I2C_CLK_OUT;
633		i2cctl &= ~E1000_I2C_CLK_OE_N;
634	}
635	wr32(E1000_I2CPARAMS, i2cctl);
636	wrfl();
637}
638
639/**
640 *  igb_get_i2c_clk - Gets the I2C SCL clock state
641 *  @data: pointer to hardware structure
642 *
643 *  Gets the I2C clock state
644 **/
645static int igb_get_i2c_clk(void *data)
646{
647	struct igb_adapter *adapter = (struct igb_adapter *)data;
648	struct e1000_hw *hw = &adapter->hw;
649	s32 i2cctl = rd32(E1000_I2CPARAMS);
650
651	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
652}
653
654static const struct i2c_algo_bit_data igb_i2c_algo = {
655	.setsda		= igb_set_i2c_data,
656	.setscl		= igb_set_i2c_clk,
657	.getsda		= igb_get_i2c_data,
658	.getscl		= igb_get_i2c_clk,
659	.udelay		= 5,
660	.timeout	= 20,
661};
662
663/**
664 *  igb_get_hw_dev - return device
665 *  @hw: pointer to hardware structure
666 *
667 *  used by hardware layer to print debugging information
668 **/
669struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
670{
671	struct igb_adapter *adapter = hw->back;
672	return adapter->netdev;
673}
674
675/**
676 *  igb_init_module - Driver Registration Routine
677 *
678 *  igb_init_module is the first routine called when the driver is
679 *  loaded. All it does is register with the PCI subsystem.
680 **/
681static int __init igb_init_module(void)
682{
683	int ret;
684	pr_info("%s - version %s\n",
685	       igb_driver_string, igb_driver_version);
686
687	pr_info("%s\n", igb_copyright);
688
689#ifdef CONFIG_IGB_DCA
690	dca_register_notify(&dca_notifier);
691#endif
692	ret = pci_register_driver(&igb_driver);
693	return ret;
694}
695
696module_init(igb_init_module);
697
698/**
699 *  igb_exit_module - Driver Exit Cleanup Routine
700 *
701 *  igb_exit_module is called just before the driver is removed
702 *  from memory.
703 **/
704static void __exit igb_exit_module(void)
705{
706#ifdef CONFIG_IGB_DCA
707	dca_unregister_notify(&dca_notifier);
708#endif
709	pci_unregister_driver(&igb_driver);
710}
711
712module_exit(igb_exit_module);
713
714#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
715/**
716 *  igb_cache_ring_register - Descriptor ring to register mapping
717 *  @adapter: board private structure to initialize
718 *
719 *  Once we know the feature-set enabled for the device, we'll cache
720 *  the register offset the descriptor ring is assigned to.
721 **/
722static void igb_cache_ring_register(struct igb_adapter *adapter)
723{
724	int i = 0, j = 0;
725	u32 rbase_offset = adapter->vfs_allocated_count;
726
727	switch (adapter->hw.mac.type) {
728	case e1000_82576:
729		/* The queues are allocated for virtualization such that VF 0
730		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
731		 * In order to avoid collision we start at the first free queue
732		 * and continue consuming queues in the same sequence
733		 */
734		if (adapter->vfs_allocated_count) {
735			for (; i < adapter->rss_queues; i++)
736				adapter->rx_ring[i]->reg_idx = rbase_offset +
737							       Q_IDX_82576(i);
738		}
739	case e1000_82575:
740	case e1000_82580:
741	case e1000_i350:
742	case e1000_i354:
743	case e1000_i210:
744	case e1000_i211:
745	default:
746		for (; i < adapter->num_rx_queues; i++)
747			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
748		for (; j < adapter->num_tx_queues; j++)
749			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
750		break;
751	}
752}
753
754u32 igb_rd32(struct e1000_hw *hw, u32 reg)
755{
756	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
757	u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
758	u32 value = 0;
759
760	if (E1000_REMOVED(hw_addr))
761		return ~value;
762
763	value = readl(&hw_addr[reg]);
764
765	/* reads should not return all F's */
766	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
767		struct net_device *netdev = igb->netdev;
768		hw->hw_addr = NULL;
769		netif_device_detach(netdev);
770		netdev_err(netdev, "PCIe link lost, device now detached\n");
771	}
772
773	return value;
774}
775
776/**
777 *  igb_write_ivar - configure ivar for given MSI-X vector
778 *  @hw: pointer to the HW structure
779 *  @msix_vector: vector number we are allocating to a given ring
780 *  @index: row index of IVAR register to write within IVAR table
781 *  @offset: column offset of in IVAR, should be multiple of 8
782 *
783 *  This function is intended to handle the writing of the IVAR register
784 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
785 *  each containing an cause allocation for an Rx and Tx ring, and a
786 *  variable number of rows depending on the number of queues supported.
787 **/
788static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
789			   int index, int offset)
790{
791	u32 ivar = array_rd32(E1000_IVAR0, index);
792
793	/* clear any bits that are currently set */
794	ivar &= ~((u32)0xFF << offset);
795
796	/* write vector and valid bit */
797	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
798
799	array_wr32(E1000_IVAR0, index, ivar);
800}
801
802#define IGB_N0_QUEUE -1
803static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
804{
805	struct igb_adapter *adapter = q_vector->adapter;
806	struct e1000_hw *hw = &adapter->hw;
807	int rx_queue = IGB_N0_QUEUE;
808	int tx_queue = IGB_N0_QUEUE;
809	u32 msixbm = 0;
810
811	if (q_vector->rx.ring)
812		rx_queue = q_vector->rx.ring->reg_idx;
813	if (q_vector->tx.ring)
814		tx_queue = q_vector->tx.ring->reg_idx;
815
816	switch (hw->mac.type) {
817	case e1000_82575:
818		/* The 82575 assigns vectors using a bitmask, which matches the
819		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
820		 * or more queues to a vector, we write the appropriate bits
821		 * into the MSIXBM register for that vector.
822		 */
823		if (rx_queue > IGB_N0_QUEUE)
824			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
825		if (tx_queue > IGB_N0_QUEUE)
826			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
827		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
828			msixbm |= E1000_EIMS_OTHER;
829		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
830		q_vector->eims_value = msixbm;
831		break;
832	case e1000_82576:
833		/* 82576 uses a table that essentially consists of 2 columns
834		 * with 8 rows.  The ordering is column-major so we use the
835		 * lower 3 bits as the row index, and the 4th bit as the
836		 * column offset.
837		 */
838		if (rx_queue > IGB_N0_QUEUE)
839			igb_write_ivar(hw, msix_vector,
840				       rx_queue & 0x7,
841				       (rx_queue & 0x8) << 1);
842		if (tx_queue > IGB_N0_QUEUE)
843			igb_write_ivar(hw, msix_vector,
844				       tx_queue & 0x7,
845				       ((tx_queue & 0x8) << 1) + 8);
846		q_vector->eims_value = 1 << msix_vector;
847		break;
848	case e1000_82580:
849	case e1000_i350:
850	case e1000_i354:
851	case e1000_i210:
852	case e1000_i211:
853		/* On 82580 and newer adapters the scheme is similar to 82576
854		 * however instead of ordering column-major we have things
855		 * ordered row-major.  So we traverse the table by using
856		 * bit 0 as the column offset, and the remaining bits as the
857		 * row index.
858		 */
859		if (rx_queue > IGB_N0_QUEUE)
860			igb_write_ivar(hw, msix_vector,
861				       rx_queue >> 1,
862				       (rx_queue & 0x1) << 4);
863		if (tx_queue > IGB_N0_QUEUE)
864			igb_write_ivar(hw, msix_vector,
865				       tx_queue >> 1,
866				       ((tx_queue & 0x1) << 4) + 8);
867		q_vector->eims_value = 1 << msix_vector;
868		break;
869	default:
870		BUG();
871		break;
872	}
873
874	/* add q_vector eims value to global eims_enable_mask */
875	adapter->eims_enable_mask |= q_vector->eims_value;
876
877	/* configure q_vector to set itr on first interrupt */
878	q_vector->set_itr = 1;
879}
880
881/**
882 *  igb_configure_msix - Configure MSI-X hardware
883 *  @adapter: board private structure to initialize
884 *
885 *  igb_configure_msix sets up the hardware to properly
886 *  generate MSI-X interrupts.
887 **/
888static void igb_configure_msix(struct igb_adapter *adapter)
889{
890	u32 tmp;
891	int i, vector = 0;
892	struct e1000_hw *hw = &adapter->hw;
893
894	adapter->eims_enable_mask = 0;
895
896	/* set vector for other causes, i.e. link changes */
897	switch (hw->mac.type) {
898	case e1000_82575:
899		tmp = rd32(E1000_CTRL_EXT);
900		/* enable MSI-X PBA support*/
901		tmp |= E1000_CTRL_EXT_PBA_CLR;
902
903		/* Auto-Mask interrupts upon ICR read. */
904		tmp |= E1000_CTRL_EXT_EIAME;
905		tmp |= E1000_CTRL_EXT_IRCA;
906
907		wr32(E1000_CTRL_EXT, tmp);
908
909		/* enable msix_other interrupt */
910		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
911		adapter->eims_other = E1000_EIMS_OTHER;
912
913		break;
914
915	case e1000_82576:
916	case e1000_82580:
917	case e1000_i350:
918	case e1000_i354:
919	case e1000_i210:
920	case e1000_i211:
921		/* Turn on MSI-X capability first, or our settings
922		 * won't stick.  And it will take days to debug.
923		 */
924		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
925		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
926		     E1000_GPIE_NSICR);
927
928		/* enable msix_other interrupt */
929		adapter->eims_other = 1 << vector;
930		tmp = (vector++ | E1000_IVAR_VALID) << 8;
931
932		wr32(E1000_IVAR_MISC, tmp);
933		break;
934	default:
935		/* do nothing, since nothing else supports MSI-X */
936		break;
937	} /* switch (hw->mac.type) */
938
939	adapter->eims_enable_mask |= adapter->eims_other;
940
941	for (i = 0; i < adapter->num_q_vectors; i++)
942		igb_assign_vector(adapter->q_vector[i], vector++);
943
944	wrfl();
945}
946
947/**
948 *  igb_request_msix - Initialize MSI-X interrupts
949 *  @adapter: board private structure to initialize
950 *
951 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
952 *  kernel.
953 **/
954static int igb_request_msix(struct igb_adapter *adapter)
955{
956	struct net_device *netdev = adapter->netdev;
957	struct e1000_hw *hw = &adapter->hw;
958	int i, err = 0, vector = 0, free_vector = 0;
959
960	err = request_irq(adapter->msix_entries[vector].vector,
961			  igb_msix_other, 0, netdev->name, adapter);
962	if (err)
963		goto err_out;
964
965	for (i = 0; i < adapter->num_q_vectors; i++) {
966		struct igb_q_vector *q_vector = adapter->q_vector[i];
967
968		vector++;
969
970		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
971
972		if (q_vector->rx.ring && q_vector->tx.ring)
973			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
974				q_vector->rx.ring->queue_index);
975		else if (q_vector->tx.ring)
976			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
977				q_vector->tx.ring->queue_index);
978		else if (q_vector->rx.ring)
979			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
980				q_vector->rx.ring->queue_index);
981		else
982			sprintf(q_vector->name, "%s-unused", netdev->name);
983
984		err = request_irq(adapter->msix_entries[vector].vector,
985				  igb_msix_ring, 0, q_vector->name,
986				  q_vector);
987		if (err)
988			goto err_free;
989	}
990
991	igb_configure_msix(adapter);
992	return 0;
993
994err_free:
995	/* free already assigned IRQs */
996	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
997
998	vector--;
999	for (i = 0; i < vector; i++) {
1000		free_irq(adapter->msix_entries[free_vector++].vector,
1001			 adapter->q_vector[i]);
1002	}
1003err_out:
1004	return err;
1005}
1006
1007/**
1008 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1009 *  @adapter: board private structure to initialize
1010 *  @v_idx: Index of vector to be freed
1011 *
1012 *  This function frees the memory allocated to the q_vector.
1013 **/
1014static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1015{
1016	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1017
1018	adapter->q_vector[v_idx] = NULL;
1019
1020	/* igb_get_stats64() might access the rings on this vector,
1021	 * we must wait a grace period before freeing it.
1022	 */
1023	kfree_rcu(q_vector, rcu);
1024}
1025
1026/**
1027 *  igb_reset_q_vector - Reset config for interrupt vector
1028 *  @adapter: board private structure to initialize
1029 *  @v_idx: Index of vector to be reset
1030 *
1031 *  If NAPI is enabled it will delete any references to the
1032 *  NAPI struct. This is preparation for igb_free_q_vector.
1033 **/
1034static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1035{
1036	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1037
1038	if (q_vector->tx.ring)
1039		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1040
1041	if (q_vector->rx.ring)
1042		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1043
1044	netif_napi_del(&q_vector->napi);
1045
1046}
1047
1048static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1049{
1050	int v_idx = adapter->num_q_vectors;
1051
1052	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1053		pci_disable_msix(adapter->pdev);
1054	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1055		pci_disable_msi(adapter->pdev);
1056
1057	while (v_idx--)
1058		igb_reset_q_vector(adapter, v_idx);
1059}
1060
1061/**
1062 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1063 *  @adapter: board private structure to initialize
1064 *
1065 *  This function frees the memory allocated to the q_vectors.  In addition if
1066 *  NAPI is enabled it will delete any references to the NAPI struct prior
1067 *  to freeing the q_vector.
1068 **/
1069static void igb_free_q_vectors(struct igb_adapter *adapter)
1070{
1071	int v_idx = adapter->num_q_vectors;
1072
1073	adapter->num_tx_queues = 0;
1074	adapter->num_rx_queues = 0;
1075	adapter->num_q_vectors = 0;
1076
1077	while (v_idx--) {
1078		igb_reset_q_vector(adapter, v_idx);
1079		igb_free_q_vector(adapter, v_idx);
1080	}
1081}
1082
1083/**
1084 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1085 *  @adapter: board private structure to initialize
1086 *
1087 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1088 *  MSI-X interrupts allocated.
1089 */
1090static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1091{
1092	igb_free_q_vectors(adapter);
1093	igb_reset_interrupt_capability(adapter);
1094}
1095
1096/**
1097 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1098 *  @adapter: board private structure to initialize
1099 *  @msix: boolean value of MSIX capability
1100 *
1101 *  Attempt to configure interrupts using the best available
1102 *  capabilities of the hardware and kernel.
1103 **/
1104static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1105{
1106	int err;
1107	int numvecs, i;
1108
1109	if (!msix)
1110		goto msi_only;
1111	adapter->flags |= IGB_FLAG_HAS_MSIX;
1112
1113	/* Number of supported queues. */
1114	adapter->num_rx_queues = adapter->rss_queues;
1115	if (adapter->vfs_allocated_count)
1116		adapter->num_tx_queues = 1;
1117	else
1118		adapter->num_tx_queues = adapter->rss_queues;
1119
1120	/* start with one vector for every Rx queue */
1121	numvecs = adapter->num_rx_queues;
1122
1123	/* if Tx handler is separate add 1 for every Tx queue */
1124	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1125		numvecs += adapter->num_tx_queues;
1126
1127	/* store the number of vectors reserved for queues */
1128	adapter->num_q_vectors = numvecs;
1129
1130	/* add 1 vector for link status interrupts */
1131	numvecs++;
1132	for (i = 0; i < numvecs; i++)
1133		adapter->msix_entries[i].entry = i;
1134
1135	err = pci_enable_msix_range(adapter->pdev,
1136				    adapter->msix_entries,
1137				    numvecs,
1138				    numvecs);
1139	if (err > 0)
1140		return;
1141
1142	igb_reset_interrupt_capability(adapter);
1143
1144	/* If we can't do MSI-X, try MSI */
1145msi_only:
1146#ifdef CONFIG_PCI_IOV
1147	/* disable SR-IOV for non MSI-X configurations */
1148	if (adapter->vf_data) {
1149		struct e1000_hw *hw = &adapter->hw;
1150		/* disable iov and allow time for transactions to clear */
1151		pci_disable_sriov(adapter->pdev);
1152		msleep(500);
1153
1154		kfree(adapter->vf_data);
1155		adapter->vf_data = NULL;
1156		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1157		wrfl();
1158		msleep(100);
1159		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1160	}
1161#endif
1162	adapter->vfs_allocated_count = 0;
1163	adapter->rss_queues = 1;
1164	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1165	adapter->num_rx_queues = 1;
1166	adapter->num_tx_queues = 1;
1167	adapter->num_q_vectors = 1;
1168	if (!pci_enable_msi(adapter->pdev))
1169		adapter->flags |= IGB_FLAG_HAS_MSI;
1170}
1171
1172static void igb_add_ring(struct igb_ring *ring,
1173			 struct igb_ring_container *head)
1174{
1175	head->ring = ring;
1176	head->count++;
1177}
1178
1179/**
1180 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1181 *  @adapter: board private structure to initialize
1182 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1183 *  @v_idx: index of vector in adapter struct
1184 *  @txr_count: total number of Tx rings to allocate
1185 *  @txr_idx: index of first Tx ring to allocate
1186 *  @rxr_count: total number of Rx rings to allocate
1187 *  @rxr_idx: index of first Rx ring to allocate
1188 *
1189 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1190 **/
1191static int igb_alloc_q_vector(struct igb_adapter *adapter,
1192			      int v_count, int v_idx,
1193			      int txr_count, int txr_idx,
1194			      int rxr_count, int rxr_idx)
1195{
1196	struct igb_q_vector *q_vector;
1197	struct igb_ring *ring;
1198	int ring_count, size;
1199
1200	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1201	if (txr_count > 1 || rxr_count > 1)
1202		return -ENOMEM;
1203
1204	ring_count = txr_count + rxr_count;
1205	size = sizeof(struct igb_q_vector) +
1206	       (sizeof(struct igb_ring) * ring_count);
1207
1208	/* allocate q_vector and rings */
1209	q_vector = adapter->q_vector[v_idx];
1210	if (!q_vector)
1211		q_vector = kzalloc(size, GFP_KERNEL);
1212	if (!q_vector)
1213		return -ENOMEM;
1214
1215	/* initialize NAPI */
1216	netif_napi_add(adapter->netdev, &q_vector->napi,
1217		       igb_poll, 64);
1218
1219	/* tie q_vector and adapter together */
1220	adapter->q_vector[v_idx] = q_vector;
1221	q_vector->adapter = adapter;
1222
1223	/* initialize work limits */
1224	q_vector->tx.work_limit = adapter->tx_work_limit;
1225
1226	/* initialize ITR configuration */
1227	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1228	q_vector->itr_val = IGB_START_ITR;
1229
1230	/* initialize pointer to rings */
1231	ring = q_vector->ring;
1232
1233	/* intialize ITR */
1234	if (rxr_count) {
1235		/* rx or rx/tx vector */
1236		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1237			q_vector->itr_val = adapter->rx_itr_setting;
1238	} else {
1239		/* tx only vector */
1240		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1241			q_vector->itr_val = adapter->tx_itr_setting;
1242	}
1243
1244	if (txr_count) {
1245		/* assign generic ring traits */
1246		ring->dev = &adapter->pdev->dev;
1247		ring->netdev = adapter->netdev;
1248
1249		/* configure backlink on ring */
1250		ring->q_vector = q_vector;
1251
1252		/* update q_vector Tx values */
1253		igb_add_ring(ring, &q_vector->tx);
1254
1255		/* For 82575, context index must be unique per ring. */
1256		if (adapter->hw.mac.type == e1000_82575)
1257			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1258
1259		/* apply Tx specific ring traits */
1260		ring->count = adapter->tx_ring_count;
1261		ring->queue_index = txr_idx;
1262
1263		u64_stats_init(&ring->tx_syncp);
1264		u64_stats_init(&ring->tx_syncp2);
1265
1266		/* assign ring to adapter */
1267		adapter->tx_ring[txr_idx] = ring;
1268
1269		/* push pointer to next ring */
1270		ring++;
1271	}
1272
1273	if (rxr_count) {
1274		/* assign generic ring traits */
1275		ring->dev = &adapter->pdev->dev;
1276		ring->netdev = adapter->netdev;
1277
1278		/* configure backlink on ring */
1279		ring->q_vector = q_vector;
1280
1281		/* update q_vector Rx values */
1282		igb_add_ring(ring, &q_vector->rx);
1283
1284		/* set flag indicating ring supports SCTP checksum offload */
1285		if (adapter->hw.mac.type >= e1000_82576)
1286			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1287
1288		/*
1289		 * On i350, i354, i210, and i211, loopback VLAN packets
1290		 * have the tag byte-swapped.
1291		 */
1292		if (adapter->hw.mac.type >= e1000_i350)
1293			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1294
1295		/* apply Rx specific ring traits */
1296		ring->count = adapter->rx_ring_count;
1297		ring->queue_index = rxr_idx;
1298
1299		u64_stats_init(&ring->rx_syncp);
1300
1301		/* assign ring to adapter */
1302		adapter->rx_ring[rxr_idx] = ring;
1303	}
1304
1305	return 0;
1306}
1307
1308
1309/**
1310 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1311 *  @adapter: board private structure to initialize
1312 *
1313 *  We allocate one q_vector per queue interrupt.  If allocation fails we
1314 *  return -ENOMEM.
1315 **/
1316static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1317{
1318	int q_vectors = adapter->num_q_vectors;
1319	int rxr_remaining = adapter->num_rx_queues;
1320	int txr_remaining = adapter->num_tx_queues;
1321	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1322	int err;
1323
1324	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1325		for (; rxr_remaining; v_idx++) {
1326			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1327						 0, 0, 1, rxr_idx);
1328
1329			if (err)
1330				goto err_out;
1331
1332			/* update counts and index */
1333			rxr_remaining--;
1334			rxr_idx++;
1335		}
1336	}
1337
1338	for (; v_idx < q_vectors; v_idx++) {
1339		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1340		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1341		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1342					 tqpv, txr_idx, rqpv, rxr_idx);
1343
1344		if (err)
1345			goto err_out;
1346
1347		/* update counts and index */
1348		rxr_remaining -= rqpv;
1349		txr_remaining -= tqpv;
1350		rxr_idx++;
1351		txr_idx++;
1352	}
1353
1354	return 0;
1355
1356err_out:
1357	adapter->num_tx_queues = 0;
1358	adapter->num_rx_queues = 0;
1359	adapter->num_q_vectors = 0;
1360
1361	while (v_idx--)
1362		igb_free_q_vector(adapter, v_idx);
1363
1364	return -ENOMEM;
1365}
1366
1367/**
1368 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1369 *  @adapter: board private structure to initialize
1370 *  @msix: boolean value of MSIX capability
1371 *
1372 *  This function initializes the interrupts and allocates all of the queues.
1373 **/
1374static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1375{
1376	struct pci_dev *pdev = adapter->pdev;
1377	int err;
1378
1379	igb_set_interrupt_capability(adapter, msix);
1380
1381	err = igb_alloc_q_vectors(adapter);
1382	if (err) {
1383		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1384		goto err_alloc_q_vectors;
1385	}
1386
1387	igb_cache_ring_register(adapter);
1388
1389	return 0;
1390
1391err_alloc_q_vectors:
1392	igb_reset_interrupt_capability(adapter);
1393	return err;
1394}
1395
1396/**
1397 *  igb_request_irq - initialize interrupts
1398 *  @adapter: board private structure to initialize
1399 *
1400 *  Attempts to configure interrupts using the best available
1401 *  capabilities of the hardware and kernel.
1402 **/
1403static int igb_request_irq(struct igb_adapter *adapter)
1404{
1405	struct net_device *netdev = adapter->netdev;
1406	struct pci_dev *pdev = adapter->pdev;
1407	int err = 0;
1408
1409	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1410		err = igb_request_msix(adapter);
1411		if (!err)
1412			goto request_done;
1413		/* fall back to MSI */
1414		igb_free_all_tx_resources(adapter);
1415		igb_free_all_rx_resources(adapter);
1416
1417		igb_clear_interrupt_scheme(adapter);
1418		err = igb_init_interrupt_scheme(adapter, false);
1419		if (err)
1420			goto request_done;
1421
1422		igb_setup_all_tx_resources(adapter);
1423		igb_setup_all_rx_resources(adapter);
1424		igb_configure(adapter);
1425	}
1426
1427	igb_assign_vector(adapter->q_vector[0], 0);
1428
1429	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1430		err = request_irq(pdev->irq, igb_intr_msi, 0,
1431				  netdev->name, adapter);
1432		if (!err)
1433			goto request_done;
1434
1435		/* fall back to legacy interrupts */
1436		igb_reset_interrupt_capability(adapter);
1437		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1438	}
1439
1440	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1441			  netdev->name, adapter);
1442
1443	if (err)
1444		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1445			err);
1446
1447request_done:
1448	return err;
1449}
1450
1451static void igb_free_irq(struct igb_adapter *adapter)
1452{
1453	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1454		int vector = 0, i;
1455
1456		free_irq(adapter->msix_entries[vector++].vector, adapter);
1457
1458		for (i = 0; i < adapter->num_q_vectors; i++)
1459			free_irq(adapter->msix_entries[vector++].vector,
1460				 adapter->q_vector[i]);
1461	} else {
1462		free_irq(adapter->pdev->irq, adapter);
1463	}
1464}
1465
1466/**
1467 *  igb_irq_disable - Mask off interrupt generation on the NIC
1468 *  @adapter: board private structure
1469 **/
1470static void igb_irq_disable(struct igb_adapter *adapter)
1471{
1472	struct e1000_hw *hw = &adapter->hw;
1473
1474	/* we need to be careful when disabling interrupts.  The VFs are also
1475	 * mapped into these registers and so clearing the bits can cause
1476	 * issues on the VF drivers so we only need to clear what we set
1477	 */
1478	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1479		u32 regval = rd32(E1000_EIAM);
1480		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1481		wr32(E1000_EIMC, adapter->eims_enable_mask);
1482		regval = rd32(E1000_EIAC);
1483		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1484	}
1485
1486	wr32(E1000_IAM, 0);
1487	wr32(E1000_IMC, ~0);
1488	wrfl();
1489	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1490		int i;
1491		for (i = 0; i < adapter->num_q_vectors; i++)
1492			synchronize_irq(adapter->msix_entries[i].vector);
1493	} else {
1494		synchronize_irq(adapter->pdev->irq);
1495	}
1496}
1497
1498/**
1499 *  igb_irq_enable - Enable default interrupt generation settings
1500 *  @adapter: board private structure
1501 **/
1502static void igb_irq_enable(struct igb_adapter *adapter)
1503{
1504	struct e1000_hw *hw = &adapter->hw;
1505
1506	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1507		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1508		u32 regval = rd32(E1000_EIAC);
1509		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1510		regval = rd32(E1000_EIAM);
1511		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1512		wr32(E1000_EIMS, adapter->eims_enable_mask);
1513		if (adapter->vfs_allocated_count) {
1514			wr32(E1000_MBVFIMR, 0xFF);
1515			ims |= E1000_IMS_VMMB;
1516		}
1517		wr32(E1000_IMS, ims);
1518	} else {
1519		wr32(E1000_IMS, IMS_ENABLE_MASK |
1520				E1000_IMS_DRSTA);
1521		wr32(E1000_IAM, IMS_ENABLE_MASK |
1522				E1000_IMS_DRSTA);
1523	}
1524}
1525
1526static void igb_update_mng_vlan(struct igb_adapter *adapter)
1527{
1528	struct e1000_hw *hw = &adapter->hw;
1529	u16 vid = adapter->hw.mng_cookie.vlan_id;
1530	u16 old_vid = adapter->mng_vlan_id;
1531
1532	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1533		/* add VID to filter table */
1534		igb_vfta_set(hw, vid, true);
1535		adapter->mng_vlan_id = vid;
1536	} else {
1537		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1538	}
1539
1540	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1541	    (vid != old_vid) &&
1542	    !test_bit(old_vid, adapter->active_vlans)) {
1543		/* remove VID from filter table */
1544		igb_vfta_set(hw, old_vid, false);
1545	}
1546}
1547
1548/**
1549 *  igb_release_hw_control - release control of the h/w to f/w
1550 *  @adapter: address of board private structure
1551 *
1552 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1553 *  For ASF and Pass Through versions of f/w this means that the
1554 *  driver is no longer loaded.
1555 **/
1556static void igb_release_hw_control(struct igb_adapter *adapter)
1557{
1558	struct e1000_hw *hw = &adapter->hw;
1559	u32 ctrl_ext;
1560
1561	/* Let firmware take over control of h/w */
1562	ctrl_ext = rd32(E1000_CTRL_EXT);
1563	wr32(E1000_CTRL_EXT,
1564			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1565}
1566
1567/**
1568 *  igb_get_hw_control - get control of the h/w from f/w
1569 *  @adapter: address of board private structure
1570 *
1571 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1572 *  For ASF and Pass Through versions of f/w this means that
1573 *  the driver is loaded.
1574 **/
1575static void igb_get_hw_control(struct igb_adapter *adapter)
1576{
1577	struct e1000_hw *hw = &adapter->hw;
1578	u32 ctrl_ext;
1579
1580	/* Let firmware know the driver has taken over */
1581	ctrl_ext = rd32(E1000_CTRL_EXT);
1582	wr32(E1000_CTRL_EXT,
1583			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1584}
1585
1586/**
1587 *  igb_configure - configure the hardware for RX and TX
1588 *  @adapter: private board structure
1589 **/
1590static void igb_configure(struct igb_adapter *adapter)
1591{
1592	struct net_device *netdev = adapter->netdev;
1593	int i;
1594
1595	igb_get_hw_control(adapter);
1596	igb_set_rx_mode(netdev);
1597
1598	igb_restore_vlan(adapter);
1599
1600	igb_setup_tctl(adapter);
1601	igb_setup_mrqc(adapter);
1602	igb_setup_rctl(adapter);
1603
1604	igb_configure_tx(adapter);
1605	igb_configure_rx(adapter);
1606
1607	igb_rx_fifo_flush_82575(&adapter->hw);
1608
1609	/* call igb_desc_unused which always leaves
1610	 * at least 1 descriptor unused to make sure
1611	 * next_to_use != next_to_clean
1612	 */
1613	for (i = 0; i < adapter->num_rx_queues; i++) {
1614		struct igb_ring *ring = adapter->rx_ring[i];
1615		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1616	}
1617}
1618
1619/**
1620 *  igb_power_up_link - Power up the phy/serdes link
1621 *  @adapter: address of board private structure
1622 **/
1623void igb_power_up_link(struct igb_adapter *adapter)
1624{
1625	igb_reset_phy(&adapter->hw);
1626
1627	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1628		igb_power_up_phy_copper(&adapter->hw);
1629	else
1630		igb_power_up_serdes_link_82575(&adapter->hw);
1631}
1632
1633/**
1634 *  igb_power_down_link - Power down the phy/serdes link
1635 *  @adapter: address of board private structure
1636 */
1637static void igb_power_down_link(struct igb_adapter *adapter)
1638{
1639	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1640		igb_power_down_phy_copper_82575(&adapter->hw);
1641	else
1642		igb_shutdown_serdes_link_82575(&adapter->hw);
1643}
1644
1645/**
1646 * Detect and switch function for Media Auto Sense
1647 * @adapter: address of the board private structure
1648 **/
1649static void igb_check_swap_media(struct igb_adapter *adapter)
1650{
1651	struct e1000_hw *hw = &adapter->hw;
1652	u32 ctrl_ext, connsw;
1653	bool swap_now = false;
1654
1655	ctrl_ext = rd32(E1000_CTRL_EXT);
1656	connsw = rd32(E1000_CONNSW);
1657
1658	/* need to live swap if current media is copper and we have fiber/serdes
1659	 * to go to.
1660	 */
1661
1662	if ((hw->phy.media_type == e1000_media_type_copper) &&
1663	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1664		swap_now = true;
1665	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
1666		/* copper signal takes time to appear */
1667		if (adapter->copper_tries < 4) {
1668			adapter->copper_tries++;
1669			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1670			wr32(E1000_CONNSW, connsw);
1671			return;
1672		} else {
1673			adapter->copper_tries = 0;
1674			if ((connsw & E1000_CONNSW_PHYSD) &&
1675			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
1676				swap_now = true;
1677				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1678				wr32(E1000_CONNSW, connsw);
1679			}
1680		}
1681	}
1682
1683	if (!swap_now)
1684		return;
1685
1686	switch (hw->phy.media_type) {
1687	case e1000_media_type_copper:
1688		netdev_info(adapter->netdev,
1689			"MAS: changing media to fiber/serdes\n");
1690		ctrl_ext |=
1691			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1692		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1693		adapter->copper_tries = 0;
1694		break;
1695	case e1000_media_type_internal_serdes:
1696	case e1000_media_type_fiber:
1697		netdev_info(adapter->netdev,
1698			"MAS: changing media to copper\n");
1699		ctrl_ext &=
1700			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1701		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1702		break;
1703	default:
1704		/* shouldn't get here during regular operation */
1705		netdev_err(adapter->netdev,
1706			"AMS: Invalid media type found, returning\n");
1707		break;
1708	}
1709	wr32(E1000_CTRL_EXT, ctrl_ext);
1710}
1711
1712/**
1713 *  igb_up - Open the interface and prepare it to handle traffic
1714 *  @adapter: board private structure
1715 **/
1716int igb_up(struct igb_adapter *adapter)
1717{
1718	struct e1000_hw *hw = &adapter->hw;
1719	int i;
1720
1721	/* hardware has been reset, we need to reload some things */
1722	igb_configure(adapter);
1723
1724	clear_bit(__IGB_DOWN, &adapter->state);
1725
1726	for (i = 0; i < adapter->num_q_vectors; i++)
1727		napi_enable(&(adapter->q_vector[i]->napi));
1728
1729	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1730		igb_configure_msix(adapter);
1731	else
1732		igb_assign_vector(adapter->q_vector[0], 0);
1733
1734	/* Clear any pending interrupts. */
1735	rd32(E1000_ICR);
1736	igb_irq_enable(adapter);
1737
1738	/* notify VFs that reset has been completed */
1739	if (adapter->vfs_allocated_count) {
1740		u32 reg_data = rd32(E1000_CTRL_EXT);
1741		reg_data |= E1000_CTRL_EXT_PFRSTD;
1742		wr32(E1000_CTRL_EXT, reg_data);
1743	}
1744
1745	netif_tx_start_all_queues(adapter->netdev);
1746
1747	/* start the watchdog. */
1748	hw->mac.get_link_status = 1;
1749	schedule_work(&adapter->watchdog_task);
1750
1751	if ((adapter->flags & IGB_FLAG_EEE) &&
1752	    (!hw->dev_spec._82575.eee_disable))
1753		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1754
1755	return 0;
1756}
1757
1758void igb_down(struct igb_adapter *adapter)
1759{
1760	struct net_device *netdev = adapter->netdev;
1761	struct e1000_hw *hw = &adapter->hw;
1762	u32 tctl, rctl;
1763	int i;
1764
1765	/* signal that we're down so the interrupt handler does not
1766	 * reschedule our watchdog timer
1767	 */
1768	set_bit(__IGB_DOWN, &adapter->state);
1769
1770	/* disable receives in the hardware */
1771	rctl = rd32(E1000_RCTL);
1772	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1773	/* flush and sleep below */
1774
1775	netif_tx_stop_all_queues(netdev);
1776
1777	/* disable transmits in the hardware */
1778	tctl = rd32(E1000_TCTL);
1779	tctl &= ~E1000_TCTL_EN;
1780	wr32(E1000_TCTL, tctl);
1781	/* flush both disables and wait for them to finish */
1782	wrfl();
1783	msleep(10);
1784
1785	igb_irq_disable(adapter);
1786
1787	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1788
1789	for (i = 0; i < adapter->num_q_vectors; i++) {
1790		napi_synchronize(&(adapter->q_vector[i]->napi));
1791		napi_disable(&(adapter->q_vector[i]->napi));
1792	}
1793
1794
1795	del_timer_sync(&adapter->watchdog_timer);
1796	del_timer_sync(&adapter->phy_info_timer);
1797
1798	netif_carrier_off(netdev);
1799
1800	/* record the stats before reset*/
1801	spin_lock(&adapter->stats64_lock);
1802	igb_update_stats(adapter, &adapter->stats64);
1803	spin_unlock(&adapter->stats64_lock);
1804
1805	adapter->link_speed = 0;
1806	adapter->link_duplex = 0;
1807
1808	if (!pci_channel_offline(adapter->pdev))
1809		igb_reset(adapter);
1810	igb_clean_all_tx_rings(adapter);
1811	igb_clean_all_rx_rings(adapter);
1812#ifdef CONFIG_IGB_DCA
1813
1814	/* since we reset the hardware DCA settings were cleared */
1815	igb_setup_dca(adapter);
1816#endif
1817}
1818
1819void igb_reinit_locked(struct igb_adapter *adapter)
1820{
1821	WARN_ON(in_interrupt());
1822	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1823		msleep(1);
1824	igb_down(adapter);
1825	igb_up(adapter);
1826	clear_bit(__IGB_RESETTING, &adapter->state);
1827}
1828
1829/** igb_enable_mas - Media Autosense re-enable after swap
1830 *
1831 * @adapter: adapter struct
1832 **/
1833static s32 igb_enable_mas(struct igb_adapter *adapter)
1834{
1835	struct e1000_hw *hw = &adapter->hw;
1836	u32 connsw;
1837	s32 ret_val = 0;
1838
1839	connsw = rd32(E1000_CONNSW);
1840	if (!(hw->phy.media_type == e1000_media_type_copper))
1841		return ret_val;
1842
1843	/* configure for SerDes media detect */
1844	if (!(connsw & E1000_CONNSW_SERDESD)) {
1845		connsw |= E1000_CONNSW_ENRGSRC;
1846		connsw |= E1000_CONNSW_AUTOSENSE_EN;
1847		wr32(E1000_CONNSW, connsw);
1848		wrfl();
1849	} else if (connsw & E1000_CONNSW_SERDESD) {
1850		/* already SerDes, no need to enable anything */
1851		return ret_val;
1852	} else {
1853		netdev_info(adapter->netdev,
1854			"MAS: Unable to configure feature, disabling..\n");
1855		adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1856	}
1857	return ret_val;
1858}
1859
1860void igb_reset(struct igb_adapter *adapter)
1861{
1862	struct pci_dev *pdev = adapter->pdev;
1863	struct e1000_hw *hw = &adapter->hw;
1864	struct e1000_mac_info *mac = &hw->mac;
1865	struct e1000_fc_info *fc = &hw->fc;
1866	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1867
1868	/* Repartition Pba for greater than 9k mtu
1869	 * To take effect CTRL.RST is required.
1870	 */
1871	switch (mac->type) {
1872	case e1000_i350:
1873	case e1000_i354:
1874	case e1000_82580:
1875		pba = rd32(E1000_RXPBS);
1876		pba = igb_rxpbs_adjust_82580(pba);
1877		break;
1878	case e1000_82576:
1879		pba = rd32(E1000_RXPBS);
1880		pba &= E1000_RXPBS_SIZE_MASK_82576;
1881		break;
1882	case e1000_82575:
1883	case e1000_i210:
1884	case e1000_i211:
1885	default:
1886		pba = E1000_PBA_34K;
1887		break;
1888	}
1889
1890	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1891	    (mac->type < e1000_82576)) {
1892		/* adjust PBA for jumbo frames */
1893		wr32(E1000_PBA, pba);
1894
1895		/* To maintain wire speed transmits, the Tx FIFO should be
1896		 * large enough to accommodate two full transmit packets,
1897		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1898		 * the Rx FIFO should be large enough to accommodate at least
1899		 * one full receive packet and is similarly rounded up and
1900		 * expressed in KB.
1901		 */
1902		pba = rd32(E1000_PBA);
1903		/* upper 16 bits has Tx packet buffer allocation size in KB */
1904		tx_space = pba >> 16;
1905		/* lower 16 bits has Rx packet buffer allocation size in KB */
1906		pba &= 0xffff;
1907		/* the Tx fifo also stores 16 bytes of information about the Tx
1908		 * but don't include ethernet FCS because hardware appends it
1909		 */
1910		min_tx_space = (adapter->max_frame_size +
1911				sizeof(union e1000_adv_tx_desc) -
1912				ETH_FCS_LEN) * 2;
1913		min_tx_space = ALIGN(min_tx_space, 1024);
1914		min_tx_space >>= 10;
1915		/* software strips receive CRC, so leave room for it */
1916		min_rx_space = adapter->max_frame_size;
1917		min_rx_space = ALIGN(min_rx_space, 1024);
1918		min_rx_space >>= 10;
1919
1920		/* If current Tx allocation is less than the min Tx FIFO size,
1921		 * and the min Tx FIFO size is less than the current Rx FIFO
1922		 * allocation, take space away from current Rx allocation
1923		 */
1924		if (tx_space < min_tx_space &&
1925		    ((min_tx_space - tx_space) < pba)) {
1926			pba = pba - (min_tx_space - tx_space);
1927
1928			/* if short on Rx space, Rx wins and must trump Tx
1929			 * adjustment
1930			 */
1931			if (pba < min_rx_space)
1932				pba = min_rx_space;
1933		}
1934		wr32(E1000_PBA, pba);
1935	}
1936
1937	/* flow control settings */
1938	/* The high water mark must be low enough to fit one full frame
1939	 * (or the size used for early receive) above it in the Rx FIFO.
1940	 * Set it to the lower of:
1941	 * - 90% of the Rx FIFO size, or
1942	 * - the full Rx FIFO size minus one full frame
1943	 */
1944	hwm = min(((pba << 10) * 9 / 10),
1945			((pba << 10) - 2 * adapter->max_frame_size));
1946
1947	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1948	fc->low_water = fc->high_water - 16;
1949	fc->pause_time = 0xFFFF;
1950	fc->send_xon = 1;
1951	fc->current_mode = fc->requested_mode;
1952
1953	/* disable receive for all VFs and wait one second */
1954	if (adapter->vfs_allocated_count) {
1955		int i;
1956		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1957			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1958
1959		/* ping all the active vfs to let them know we are going down */
1960		igb_ping_all_vfs(adapter);
1961
1962		/* disable transmits and receives */
1963		wr32(E1000_VFRE, 0);
1964		wr32(E1000_VFTE, 0);
1965	}
1966
1967	/* Allow time for pending master requests to run */
1968	hw->mac.ops.reset_hw(hw);
1969	wr32(E1000_WUC, 0);
1970
1971	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1972		/* need to resetup here after media swap */
1973		adapter->ei.get_invariants(hw);
1974		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1975	}
1976	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1977		if (igb_enable_mas(adapter))
1978			dev_err(&pdev->dev,
1979				"Error enabling Media Auto Sense\n");
1980	}
1981	if (hw->mac.ops.init_hw(hw))
1982		dev_err(&pdev->dev, "Hardware Error\n");
1983
1984	/* Flow control settings reset on hardware reset, so guarantee flow
1985	 * control is off when forcing speed.
1986	 */
1987	if (!hw->mac.autoneg)
1988		igb_force_mac_fc(hw);
1989
1990	igb_init_dmac(adapter, pba);
1991#ifdef CONFIG_IGB_HWMON
1992	/* Re-initialize the thermal sensor on i350 devices. */
1993	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1994		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1995			/* If present, re-initialize the external thermal sensor
1996			 * interface.
1997			 */
1998			if (adapter->ets)
1999				mac->ops.init_thermal_sensor_thresh(hw);
2000		}
2001	}
2002#endif
2003	/* Re-establish EEE setting */
2004	if (hw->phy.media_type == e1000_media_type_copper) {
2005		switch (mac->type) {
2006		case e1000_i350:
2007		case e1000_i210:
2008		case e1000_i211:
2009			igb_set_eee_i350(hw);
2010			break;
2011		case e1000_i354:
2012			igb_set_eee_i354(hw);
2013			break;
2014		default:
2015			break;
2016		}
2017	}
2018	if (!netif_running(adapter->netdev))
2019		igb_power_down_link(adapter);
2020
2021	igb_update_mng_vlan(adapter);
2022
2023	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2024	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2025
2026	/* Re-enable PTP, where applicable. */
2027	igb_ptp_reset(adapter);
2028
2029	igb_get_phy_info(hw);
2030}
2031
2032static netdev_features_t igb_fix_features(struct net_device *netdev,
2033	netdev_features_t features)
2034{
2035	/* Since there is no support for separate Rx/Tx vlan accel
2036	 * enable/disable make sure Tx flag is always in same state as Rx.
2037	 */
2038	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2039		features |= NETIF_F_HW_VLAN_CTAG_TX;
2040	else
2041		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2042
2043	return features;
2044}
2045
2046static int igb_set_features(struct net_device *netdev,
2047	netdev_features_t features)
2048{
2049	netdev_features_t changed = netdev->features ^ features;
2050	struct igb_adapter *adapter = netdev_priv(netdev);
2051
2052	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2053		igb_vlan_mode(netdev, features);
2054
2055	if (!(changed & NETIF_F_RXALL))
2056		return 0;
2057
2058	netdev->features = features;
2059
2060	if (netif_running(netdev))
2061		igb_reinit_locked(adapter);
2062	else
2063		igb_reset(adapter);
2064
2065	return 0;
2066}
2067
2068static const struct net_device_ops igb_netdev_ops = {
2069	.ndo_open		= igb_open,
2070	.ndo_stop		= igb_close,
2071	.ndo_start_xmit		= igb_xmit_frame,
2072	.ndo_get_stats64	= igb_get_stats64,
2073	.ndo_set_rx_mode	= igb_set_rx_mode,
2074	.ndo_set_mac_address	= igb_set_mac,
2075	.ndo_change_mtu		= igb_change_mtu,
2076	.ndo_do_ioctl		= igb_ioctl,
2077	.ndo_tx_timeout		= igb_tx_timeout,
2078	.ndo_validate_addr	= eth_validate_addr,
2079	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2080	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2081	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2082	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2083	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
2084	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2085	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2086#ifdef CONFIG_NET_POLL_CONTROLLER
2087	.ndo_poll_controller	= igb_netpoll,
2088#endif
2089	.ndo_fix_features	= igb_fix_features,
2090	.ndo_set_features	= igb_set_features,
2091};
2092
2093/**
2094 * igb_set_fw_version - Configure version string for ethtool
2095 * @adapter: adapter struct
2096 **/
2097void igb_set_fw_version(struct igb_adapter *adapter)
2098{
2099	struct e1000_hw *hw = &adapter->hw;
2100	struct e1000_fw_version fw;
2101
2102	igb_get_fw_version(hw, &fw);
2103
2104	switch (hw->mac.type) {
2105	case e1000_i210:
2106	case e1000_i211:
2107		if (!(igb_get_flash_presence_i210(hw))) {
2108			snprintf(adapter->fw_version,
2109				 sizeof(adapter->fw_version),
2110				 "%2d.%2d-%d",
2111				 fw.invm_major, fw.invm_minor,
2112				 fw.invm_img_type);
2113			break;
2114		}
2115		/* fall through */
2116	default:
2117		/* if option is rom valid, display its version too */
2118		if (fw.or_valid) {
2119			snprintf(adapter->fw_version,
2120				 sizeof(adapter->fw_version),
2121				 "%d.%d, 0x%08x, %d.%d.%d",
2122				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2123				 fw.or_major, fw.or_build, fw.or_patch);
2124		/* no option rom */
2125		} else if (fw.etrack_id != 0X0000) {
2126			snprintf(adapter->fw_version,
2127			    sizeof(adapter->fw_version),
2128			    "%d.%d, 0x%08x",
2129			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2130		} else {
2131		snprintf(adapter->fw_version,
2132		    sizeof(adapter->fw_version),
2133		    "%d.%d.%d",
2134		    fw.eep_major, fw.eep_minor, fw.eep_build);
2135		}
2136		break;
2137	}
2138	return;
2139}
2140
2141/**
2142 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2143 *
2144 * @adapter: adapter struct
2145 **/
2146static void igb_init_mas(struct igb_adapter *adapter)
2147{
2148	struct e1000_hw *hw = &adapter->hw;
2149	u16 eeprom_data;
2150
2151	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2152	switch (hw->bus.func) {
2153	case E1000_FUNC_0:
2154		if (eeprom_data & IGB_MAS_ENABLE_0) {
2155			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2156			netdev_info(adapter->netdev,
2157				"MAS: Enabling Media Autosense for port %d\n",
2158				hw->bus.func);
2159		}
2160		break;
2161	case E1000_FUNC_1:
2162		if (eeprom_data & IGB_MAS_ENABLE_1) {
2163			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2164			netdev_info(adapter->netdev,
2165				"MAS: Enabling Media Autosense for port %d\n",
2166				hw->bus.func);
2167		}
2168		break;
2169	case E1000_FUNC_2:
2170		if (eeprom_data & IGB_MAS_ENABLE_2) {
2171			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2172			netdev_info(adapter->netdev,
2173				"MAS: Enabling Media Autosense for port %d\n",
2174				hw->bus.func);
2175		}
2176		break;
2177	case E1000_FUNC_3:
2178		if (eeprom_data & IGB_MAS_ENABLE_3) {
2179			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2180			netdev_info(adapter->netdev,
2181				"MAS: Enabling Media Autosense for port %d\n",
2182				hw->bus.func);
2183		}
2184		break;
2185	default:
2186		/* Shouldn't get here */
2187		netdev_err(adapter->netdev,
2188			"MAS: Invalid port configuration, returning\n");
2189		break;
2190	}
2191}
2192
2193/**
2194 *  igb_init_i2c - Init I2C interface
2195 *  @adapter: pointer to adapter structure
2196 **/
2197static s32 igb_init_i2c(struct igb_adapter *adapter)
2198{
2199	s32 status = E1000_SUCCESS;
2200
2201	/* I2C interface supported on i350 devices */
2202	if (adapter->hw.mac.type != e1000_i350)
2203		return E1000_SUCCESS;
2204
2205	/* Initialize the i2c bus which is controlled by the registers.
2206	 * This bus will use the i2c_algo_bit structue that implements
2207	 * the protocol through toggling of the 4 bits in the register.
2208	 */
2209	adapter->i2c_adap.owner = THIS_MODULE;
2210	adapter->i2c_algo = igb_i2c_algo;
2211	adapter->i2c_algo.data = adapter;
2212	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2213	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2214	strlcpy(adapter->i2c_adap.name, "igb BB",
2215		sizeof(adapter->i2c_adap.name));
2216	status = i2c_bit_add_bus(&adapter->i2c_adap);
2217	return status;
2218}
2219
2220/**
2221 *  igb_probe - Device Initialization Routine
2222 *  @pdev: PCI device information struct
2223 *  @ent: entry in igb_pci_tbl
2224 *
2225 *  Returns 0 on success, negative on failure
2226 *
2227 *  igb_probe initializes an adapter identified by a pci_dev structure.
2228 *  The OS initialization, configuring of the adapter private structure,
2229 *  and a hardware reset occur.
2230 **/
2231static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2232{
2233	struct net_device *netdev;
2234	struct igb_adapter *adapter;
2235	struct e1000_hw *hw;
2236	u16 eeprom_data = 0;
2237	s32 ret_val;
2238	static int global_quad_port_a; /* global quad port a indication */
2239	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2240	int err, pci_using_dac;
2241	u8 part_str[E1000_PBANUM_LENGTH];
2242
2243	/* Catch broken hardware that put the wrong VF device ID in
2244	 * the PCIe SR-IOV capability.
2245	 */
2246	if (pdev->is_virtfn) {
2247		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2248			pci_name(pdev), pdev->vendor, pdev->device);
2249		return -EINVAL;
2250	}
2251
2252	err = pci_enable_device_mem(pdev);
2253	if (err)
2254		return err;
2255
2256	pci_using_dac = 0;
2257	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2258	if (!err) {
2259		pci_using_dac = 1;
2260	} else {
2261		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2262		if (err) {
2263			dev_err(&pdev->dev,
2264				"No usable DMA configuration, aborting\n");
2265			goto err_dma;
2266		}
2267	}
2268
2269	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2270					   IORESOURCE_MEM),
2271					   igb_driver_name);
2272	if (err)
2273		goto err_pci_reg;
2274
2275	pci_enable_pcie_error_reporting(pdev);
2276
2277	pci_set_master(pdev);
2278	pci_save_state(pdev);
2279
2280	err = -ENOMEM;
2281	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2282				   IGB_MAX_TX_QUEUES);
2283	if (!netdev)
2284		goto err_alloc_etherdev;
2285
2286	SET_NETDEV_DEV(netdev, &pdev->dev);
2287
2288	pci_set_drvdata(pdev, netdev);
2289	adapter = netdev_priv(netdev);
2290	adapter->netdev = netdev;
2291	adapter->pdev = pdev;
2292	hw = &adapter->hw;
2293	hw->back = adapter;
2294	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2295
2296	err = -EIO;
2297	hw->hw_addr = pci_iomap(pdev, 0, 0);
2298	if (!hw->hw_addr)
2299		goto err_ioremap;
2300
2301	netdev->netdev_ops = &igb_netdev_ops;
2302	igb_set_ethtool_ops(netdev);
2303	netdev->watchdog_timeo = 5 * HZ;
2304
2305	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2306
2307	netdev->mem_start = pci_resource_start(pdev, 0);
2308	netdev->mem_end = pci_resource_end(pdev, 0);
2309
2310	/* PCI config space info */
2311	hw->vendor_id = pdev->vendor;
2312	hw->device_id = pdev->device;
2313	hw->revision_id = pdev->revision;
2314	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2315	hw->subsystem_device_id = pdev->subsystem_device;
2316
2317	/* Copy the default MAC, PHY and NVM function pointers */
2318	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2319	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2320	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2321	/* Initialize skew-specific constants */
2322	err = ei->get_invariants(hw);
2323	if (err)
2324		goto err_sw_init;
2325
2326	/* setup the private structure */
2327	err = igb_sw_init(adapter);
2328	if (err)
2329		goto err_sw_init;
2330
2331	igb_get_bus_info_pcie(hw);
2332
2333	hw->phy.autoneg_wait_to_complete = false;
2334
2335	/* Copper options */
2336	if (hw->phy.media_type == e1000_media_type_copper) {
2337		hw->phy.mdix = AUTO_ALL_MODES;
2338		hw->phy.disable_polarity_correction = false;
2339		hw->phy.ms_type = e1000_ms_hw_default;
2340	}
2341
2342	if (igb_check_reset_block(hw))
2343		dev_info(&pdev->dev,
2344			"PHY reset is blocked due to SOL/IDER session.\n");
2345
2346	/* features is initialized to 0 in allocation, it might have bits
2347	 * set by igb_sw_init so we should use an or instead of an
2348	 * assignment.
2349	 */
2350	netdev->features |= NETIF_F_SG |
2351			    NETIF_F_IP_CSUM |
2352			    NETIF_F_IPV6_CSUM |
2353			    NETIF_F_TSO |
2354			    NETIF_F_TSO6 |
2355			    NETIF_F_RXHASH |
2356			    NETIF_F_RXCSUM |
2357			    NETIF_F_HW_VLAN_CTAG_RX |
2358			    NETIF_F_HW_VLAN_CTAG_TX;
2359
2360	/* copy netdev features into list of user selectable features */
2361	netdev->hw_features |= netdev->features;
2362	netdev->hw_features |= NETIF_F_RXALL;
2363
2364	/* set this bit last since it cannot be part of hw_features */
2365	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2366
2367	netdev->vlan_features |= NETIF_F_TSO |
2368				 NETIF_F_TSO6 |
2369				 NETIF_F_IP_CSUM |
2370				 NETIF_F_IPV6_CSUM |
2371				 NETIF_F_SG;
2372
2373	netdev->priv_flags |= IFF_SUPP_NOFCS;
2374
2375	if (pci_using_dac) {
2376		netdev->features |= NETIF_F_HIGHDMA;
2377		netdev->vlan_features |= NETIF_F_HIGHDMA;
2378	}
2379
2380	if (hw->mac.type >= e1000_82576) {
2381		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2382		netdev->features |= NETIF_F_SCTP_CSUM;
2383	}
2384
2385	netdev->priv_flags |= IFF_UNICAST_FLT;
2386
2387	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2388
2389	/* before reading the NVM, reset the controller to put the device in a
2390	 * known good starting state
2391	 */
2392	hw->mac.ops.reset_hw(hw);
2393
2394	/* make sure the NVM is good , i211/i210 parts can have special NVM
2395	 * that doesn't contain a checksum
2396	 */
2397	switch (hw->mac.type) {
2398	case e1000_i210:
2399	case e1000_i211:
2400		if (igb_get_flash_presence_i210(hw)) {
2401			if (hw->nvm.ops.validate(hw) < 0) {
2402				dev_err(&pdev->dev,
2403					"The NVM Checksum Is Not Valid\n");
2404				err = -EIO;
2405				goto err_eeprom;
2406			}
2407		}
2408		break;
2409	default:
2410		if (hw->nvm.ops.validate(hw) < 0) {
2411			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2412			err = -EIO;
2413			goto err_eeprom;
2414		}
2415		break;
2416	}
2417
2418	/* copy the MAC address out of the NVM */
2419	if (hw->mac.ops.read_mac_addr(hw))
2420		dev_err(&pdev->dev, "NVM Read Error\n");
2421
2422	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2423
2424	if (!is_valid_ether_addr(netdev->dev_addr)) {
2425		dev_err(&pdev->dev, "Invalid MAC Address\n");
2426		err = -EIO;
2427		goto err_eeprom;
2428	}
2429
2430	/* get firmware version for ethtool -i */
2431	igb_set_fw_version(adapter);
2432
2433	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2434		    (unsigned long) adapter);
2435	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2436		    (unsigned long) adapter);
2437
2438	INIT_WORK(&adapter->reset_task, igb_reset_task);
2439	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2440
2441	/* Initialize link properties that are user-changeable */
2442	adapter->fc_autoneg = true;
2443	hw->mac.autoneg = true;
2444	hw->phy.autoneg_advertised = 0x2f;
2445
2446	hw->fc.requested_mode = e1000_fc_default;
2447	hw->fc.current_mode = e1000_fc_default;
2448
2449	igb_validate_mdi_setting(hw);
2450
2451	/* By default, support wake on port A */
2452	if (hw->bus.func == 0)
2453		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2454
2455	/* Check the NVM for wake support on non-port A ports */
2456	if (hw->mac.type >= e1000_82580)
2457		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2458				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2459				 &eeprom_data);
2460	else if (hw->bus.func == 1)
2461		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2462
2463	if (eeprom_data & IGB_EEPROM_APME)
2464		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2465
2466	/* now that we have the eeprom settings, apply the special cases where
2467	 * the eeprom may be wrong or the board simply won't support wake on
2468	 * lan on a particular port
2469	 */
2470	switch (pdev->device) {
2471	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2472		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2473		break;
2474	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2475	case E1000_DEV_ID_82576_FIBER:
2476	case E1000_DEV_ID_82576_SERDES:
2477		/* Wake events only supported on port A for dual fiber
2478		 * regardless of eeprom setting
2479		 */
2480		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2481			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2482		break;
2483	case E1000_DEV_ID_82576_QUAD_COPPER:
2484	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2485		/* if quad port adapter, disable WoL on all but port A */
2486		if (global_quad_port_a != 0)
2487			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2488		else
2489			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2490		/* Reset for multiple quad port adapters */
2491		if (++global_quad_port_a == 4)
2492			global_quad_port_a = 0;
2493		break;
2494	default:
2495		/* If the device can't wake, don't set software support */
2496		if (!device_can_wakeup(&adapter->pdev->dev))
2497			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2498	}
2499
2500	/* initialize the wol settings based on the eeprom settings */
2501	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2502		adapter->wol |= E1000_WUFC_MAG;
2503
2504	/* Some vendors want WoL disabled by default, but still supported */
2505	if ((hw->mac.type == e1000_i350) &&
2506	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2507		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2508		adapter->wol = 0;
2509	}
2510
2511	device_set_wakeup_enable(&adapter->pdev->dev,
2512				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2513
2514	/* reset the hardware with the new settings */
2515	igb_reset(adapter);
2516
2517	/* Init the I2C interface */
2518	err = igb_init_i2c(adapter);
2519	if (err) {
2520		dev_err(&pdev->dev, "failed to init i2c interface\n");
2521		goto err_eeprom;
2522	}
2523
2524	/* let the f/w know that the h/w is now under the control of the
2525	 * driver. */
2526	igb_get_hw_control(adapter);
2527
2528	strcpy(netdev->name, "eth%d");
2529	err = register_netdev(netdev);
2530	if (err)
2531		goto err_register;
2532
2533	/* carrier off reporting is important to ethtool even BEFORE open */
2534	netif_carrier_off(netdev);
2535
2536#ifdef CONFIG_IGB_DCA
2537	if (dca_add_requester(&pdev->dev) == 0) {
2538		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2539		dev_info(&pdev->dev, "DCA enabled\n");
2540		igb_setup_dca(adapter);
2541	}
2542
2543#endif
2544#ifdef CONFIG_IGB_HWMON
2545	/* Initialize the thermal sensor on i350 devices. */
2546	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2547		u16 ets_word;
2548
2549		/* Read the NVM to determine if this i350 device supports an
2550		 * external thermal sensor.
2551		 */
2552		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2553		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2554			adapter->ets = true;
2555		else
2556			adapter->ets = false;
2557		if (igb_sysfs_init(adapter))
2558			dev_err(&pdev->dev,
2559				"failed to allocate sysfs resources\n");
2560	} else {
2561		adapter->ets = false;
2562	}
2563#endif
2564	/* Check if Media Autosense is enabled */
2565	adapter->ei = *ei;
2566	if (hw->dev_spec._82575.mas_capable)
2567		igb_init_mas(adapter);
2568
2569	/* do hw tstamp init after resetting */
2570	igb_ptp_init(adapter);
2571
2572	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2573	/* print bus type/speed/width info, not applicable to i354 */
2574	if (hw->mac.type != e1000_i354) {
2575		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2576			 netdev->name,
2577			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2578			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2579			   "unknown"),
2580			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2581			  "Width x4" :
2582			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2583			  "Width x2" :
2584			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2585			  "Width x1" : "unknown"), netdev->dev_addr);
2586	}
2587
2588	if ((hw->mac.type >= e1000_i210 ||
2589	     igb_get_flash_presence_i210(hw))) {
2590		ret_val = igb_read_part_string(hw, part_str,
2591					       E1000_PBANUM_LENGTH);
2592	} else {
2593		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2594	}
2595
2596	if (ret_val)
2597		strcpy(part_str, "Unknown");
2598	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2599	dev_info(&pdev->dev,
2600		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2601		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2602		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2603		adapter->num_rx_queues, adapter->num_tx_queues);
2604	if (hw->phy.media_type == e1000_media_type_copper) {
2605		switch (hw->mac.type) {
2606		case e1000_i350:
2607		case e1000_i210:
2608		case e1000_i211:
2609			/* Enable EEE for internal copper PHY devices */
2610			err = igb_set_eee_i350(hw);
2611			if ((!err) &&
2612			    (!hw->dev_spec._82575.eee_disable)) {
2613				adapter->eee_advert =
2614					MDIO_EEE_100TX | MDIO_EEE_1000T;
2615				adapter->flags |= IGB_FLAG_EEE;
2616			}
2617			break;
2618		case e1000_i354:
2619			if ((rd32(E1000_CTRL_EXT) &
2620			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2621				err = igb_set_eee_i354(hw);
2622				if ((!err) &&
2623					(!hw->dev_spec._82575.eee_disable)) {
2624					adapter->eee_advert =
2625					   MDIO_EEE_100TX | MDIO_EEE_1000T;
2626					adapter->flags |= IGB_FLAG_EEE;
2627				}
2628			}
2629			break;
2630		default:
2631			break;
2632		}
2633	}
2634	pm_runtime_put_noidle(&pdev->dev);
2635	return 0;
2636
2637err_register:
2638	igb_release_hw_control(adapter);
2639	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2640err_eeprom:
2641	if (!igb_check_reset_block(hw))
2642		igb_reset_phy(hw);
2643
2644	if (hw->flash_address)
2645		iounmap(hw->flash_address);
2646err_sw_init:
2647	igb_clear_interrupt_scheme(adapter);
2648	iounmap(hw->hw_addr);
2649err_ioremap:
2650	free_netdev(netdev);
2651err_alloc_etherdev:
2652	pci_release_selected_regions(pdev,
2653				     pci_select_bars(pdev, IORESOURCE_MEM));
2654err_pci_reg:
2655err_dma:
2656	pci_disable_device(pdev);
2657	return err;
2658}
2659
2660#ifdef CONFIG_PCI_IOV
2661static int igb_disable_sriov(struct pci_dev *pdev)
2662{
2663	struct net_device *netdev = pci_get_drvdata(pdev);
2664	struct igb_adapter *adapter = netdev_priv(netdev);
2665	struct e1000_hw *hw = &adapter->hw;
2666
2667	/* reclaim resources allocated to VFs */
2668	if (adapter->vf_data) {
2669		/* disable iov and allow time for transactions to clear */
2670		if (pci_vfs_assigned(pdev)) {
2671			dev_warn(&pdev->dev,
2672				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2673			return -EPERM;
2674		} else {
2675			pci_disable_sriov(pdev);
2676			msleep(500);
2677		}
2678
2679		kfree(adapter->vf_data);
2680		adapter->vf_data = NULL;
2681		adapter->vfs_allocated_count = 0;
2682		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2683		wrfl();
2684		msleep(100);
2685		dev_info(&pdev->dev, "IOV Disabled\n");
2686
2687		/* Re-enable DMA Coalescing flag since IOV is turned off */
2688		adapter->flags |= IGB_FLAG_DMAC;
2689	}
2690
2691	return 0;
2692}
2693
2694static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2695{
2696	struct net_device *netdev = pci_get_drvdata(pdev);
2697	struct igb_adapter *adapter = netdev_priv(netdev);
2698	int old_vfs = pci_num_vf(pdev);
2699	int err = 0;
2700	int i;
2701
2702	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2703		err = -EPERM;
2704		goto out;
2705	}
2706	if (!num_vfs)
2707		goto out;
2708
2709	if (old_vfs) {
2710		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2711			 old_vfs, max_vfs);
2712		adapter->vfs_allocated_count = old_vfs;
2713	} else
2714		adapter->vfs_allocated_count = num_vfs;
2715
2716	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2717				sizeof(struct vf_data_storage), GFP_KERNEL);
2718
2719	/* if allocation failed then we do not support SR-IOV */
2720	if (!adapter->vf_data) {
2721		adapter->vfs_allocated_count = 0;
2722		dev_err(&pdev->dev,
2723			"Unable to allocate memory for VF Data Storage\n");
2724		err = -ENOMEM;
2725		goto out;
2726	}
2727
2728	/* only call pci_enable_sriov() if no VFs are allocated already */
2729	if (!old_vfs) {
2730		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2731		if (err)
2732			goto err_out;
2733	}
2734	dev_info(&pdev->dev, "%d VFs allocated\n",
2735		 adapter->vfs_allocated_count);
2736	for (i = 0; i < adapter->vfs_allocated_count; i++)
2737		igb_vf_configure(adapter, i);
2738
2739	/* DMA Coalescing is not supported in IOV mode. */
2740	adapter->flags &= ~IGB_FLAG_DMAC;
2741	goto out;
2742
2743err_out:
2744	kfree(adapter->vf_data);
2745	adapter->vf_data = NULL;
2746	adapter->vfs_allocated_count = 0;
2747out:
2748	return err;
2749}
2750
2751#endif
2752/**
2753 *  igb_remove_i2c - Cleanup  I2C interface
2754 *  @adapter: pointer to adapter structure
2755 **/
2756static void igb_remove_i2c(struct igb_adapter *adapter)
2757{
2758	/* free the adapter bus structure */
2759	i2c_del_adapter(&adapter->i2c_adap);
2760}
2761
2762/**
2763 *  igb_remove - Device Removal Routine
2764 *  @pdev: PCI device information struct
2765 *
2766 *  igb_remove is called by the PCI subsystem to alert the driver
2767 *  that it should release a PCI device.  The could be caused by a
2768 *  Hot-Plug event, or because the driver is going to be removed from
2769 *  memory.
2770 **/
2771static void igb_remove(struct pci_dev *pdev)
2772{
2773	struct net_device *netdev = pci_get_drvdata(pdev);
2774	struct igb_adapter *adapter = netdev_priv(netdev);
2775	struct e1000_hw *hw = &adapter->hw;
2776
2777	pm_runtime_get_noresume(&pdev->dev);
2778#ifdef CONFIG_IGB_HWMON
2779	igb_sysfs_exit(adapter);
2780#endif
2781	igb_remove_i2c(adapter);
2782	igb_ptp_stop(adapter);
2783	/* The watchdog timer may be rescheduled, so explicitly
2784	 * disable watchdog from being rescheduled.
2785	 */
2786	set_bit(__IGB_DOWN, &adapter->state);
2787	del_timer_sync(&adapter->watchdog_timer);
2788	del_timer_sync(&adapter->phy_info_timer);
2789
2790	cancel_work_sync(&adapter->reset_task);
2791	cancel_work_sync(&adapter->watchdog_task);
2792
2793#ifdef CONFIG_IGB_DCA
2794	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2795		dev_info(&pdev->dev, "DCA disabled\n");
2796		dca_remove_requester(&pdev->dev);
2797		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2798		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2799	}
2800#endif
2801
2802	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2803	 * would have already happened in close and is redundant.
2804	 */
2805	igb_release_hw_control(adapter);
2806
2807	unregister_netdev(netdev);
2808
2809	igb_clear_interrupt_scheme(adapter);
2810
2811#ifdef CONFIG_PCI_IOV
2812	igb_disable_sriov(pdev);
2813#endif
2814
2815	iounmap(hw->hw_addr);
2816	if (hw->flash_address)
2817		iounmap(hw->flash_address);
2818	pci_release_selected_regions(pdev,
2819				     pci_select_bars(pdev, IORESOURCE_MEM));
2820
2821	kfree(adapter->shadow_vfta);
2822	free_netdev(netdev);
2823
2824	pci_disable_pcie_error_reporting(pdev);
2825
2826	pci_disable_device(pdev);
2827}
2828
2829/**
2830 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2831 *  @adapter: board private structure to initialize
2832 *
2833 *  This function initializes the vf specific data storage and then attempts to
2834 *  allocate the VFs.  The reason for ordering it this way is because it is much
2835 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2836 *  the memory for the VFs.
2837 **/
2838static void igb_probe_vfs(struct igb_adapter *adapter)
2839{
2840#ifdef CONFIG_PCI_IOV
2841	struct pci_dev *pdev = adapter->pdev;
2842	struct e1000_hw *hw = &adapter->hw;
2843
2844	/* Virtualization features not supported on i210 family. */
2845	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2846		return;
2847
2848	pci_sriov_set_totalvfs(pdev, 7);
2849	igb_pci_enable_sriov(pdev, max_vfs);
2850
2851#endif /* CONFIG_PCI_IOV */
2852}
2853
2854static void igb_init_queue_configuration(struct igb_adapter *adapter)
2855{
2856	struct e1000_hw *hw = &adapter->hw;
2857	u32 max_rss_queues;
2858
2859	/* Determine the maximum number of RSS queues supported. */
2860	switch (hw->mac.type) {
2861	case e1000_i211:
2862		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2863		break;
2864	case e1000_82575:
2865	case e1000_i210:
2866		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2867		break;
2868	case e1000_i350:
2869		/* I350 cannot do RSS and SR-IOV at the same time */
2870		if (!!adapter->vfs_allocated_count) {
2871			max_rss_queues = 1;
2872			break;
2873		}
2874		/* fall through */
2875	case e1000_82576:
2876		if (!!adapter->vfs_allocated_count) {
2877			max_rss_queues = 2;
2878			break;
2879		}
2880		/* fall through */
2881	case e1000_82580:
2882	case e1000_i354:
2883	default:
2884		max_rss_queues = IGB_MAX_RX_QUEUES;
2885		break;
2886	}
2887
2888	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2889
2890	/* Determine if we need to pair queues. */
2891	switch (hw->mac.type) {
2892	case e1000_82575:
2893	case e1000_i211:
2894		/* Device supports enough interrupts without queue pairing. */
2895		break;
2896	case e1000_82576:
2897		/* If VFs are going to be allocated with RSS queues then we
2898		 * should pair the queues in order to conserve interrupts due
2899		 * to limited supply.
2900		 */
2901		if ((adapter->rss_queues > 1) &&
2902		    (adapter->vfs_allocated_count > 6))
2903			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2904		/* fall through */
2905	case e1000_82580:
2906	case e1000_i350:
2907	case e1000_i354:
2908	case e1000_i210:
2909	default:
2910		/* If rss_queues > half of max_rss_queues, pair the queues in
2911		 * order to conserve interrupts due to limited supply.
2912		 */
2913		if (adapter->rss_queues > (max_rss_queues / 2))
2914			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2915		break;
2916	}
2917}
2918
2919/**
2920 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2921 *  @adapter: board private structure to initialize
2922 *
2923 *  igb_sw_init initializes the Adapter private data structure.
2924 *  Fields are initialized based on PCI device information and
2925 *  OS network device settings (MTU size).
2926 **/
2927static int igb_sw_init(struct igb_adapter *adapter)
2928{
2929	struct e1000_hw *hw = &adapter->hw;
2930	struct net_device *netdev = adapter->netdev;
2931	struct pci_dev *pdev = adapter->pdev;
2932
2933	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2934
2935	/* set default ring sizes */
2936	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2937	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2938
2939	/* set default ITR values */
2940	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2941	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2942
2943	/* set default work limits */
2944	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2945
2946	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2947				  VLAN_HLEN;
2948	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2949
2950	spin_lock_init(&adapter->stats64_lock);
2951#ifdef CONFIG_PCI_IOV
2952	switch (hw->mac.type) {
2953	case e1000_82576:
2954	case e1000_i350:
2955		if (max_vfs > 7) {
2956			dev_warn(&pdev->dev,
2957				 "Maximum of 7 VFs per PF, using max\n");
2958			max_vfs = adapter->vfs_allocated_count = 7;
2959		} else
2960			adapter->vfs_allocated_count = max_vfs;
2961		if (adapter->vfs_allocated_count)
2962			dev_warn(&pdev->dev,
2963				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2964		break;
2965	default:
2966		break;
2967	}
2968#endif /* CONFIG_PCI_IOV */
2969
2970	igb_init_queue_configuration(adapter);
2971
2972	/* Setup and initialize a copy of the hw vlan table array */
2973	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2974				       GFP_ATOMIC);
2975
2976	/* This call may decrease the number of queues */
2977	if (igb_init_interrupt_scheme(adapter, true)) {
2978		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2979		return -ENOMEM;
2980	}
2981
2982	igb_probe_vfs(adapter);
2983
2984	/* Explicitly disable IRQ since the NIC can be in any state. */
2985	igb_irq_disable(adapter);
2986
2987	if (hw->mac.type >= e1000_i350)
2988		adapter->flags &= ~IGB_FLAG_DMAC;
2989
2990	set_bit(__IGB_DOWN, &adapter->state);
2991	return 0;
2992}
2993
2994/**
2995 *  igb_open - Called when a network interface is made active
2996 *  @netdev: network interface device structure
2997 *
2998 *  Returns 0 on success, negative value on failure
2999 *
3000 *  The open entry point is called when a network interface is made
3001 *  active by the system (IFF_UP).  At this point all resources needed
3002 *  for transmit and receive operations are allocated, the interrupt
3003 *  handler is registered with the OS, the watchdog timer is started,
3004 *  and the stack is notified that the interface is ready.
3005 **/
3006static int __igb_open(struct net_device *netdev, bool resuming)
3007{
3008	struct igb_adapter *adapter = netdev_priv(netdev);
3009	struct e1000_hw *hw = &adapter->hw;
3010	struct pci_dev *pdev = adapter->pdev;
3011	int err;
3012	int i;
3013
3014	/* disallow open during test */
3015	if (test_bit(__IGB_TESTING, &adapter->state)) {
3016		WARN_ON(resuming);
3017		return -EBUSY;
3018	}
3019
3020	if (!resuming)
3021		pm_runtime_get_sync(&pdev->dev);
3022
3023	netif_carrier_off(netdev);
3024
3025	/* allocate transmit descriptors */
3026	err = igb_setup_all_tx_resources(adapter);
3027	if (err)
3028		goto err_setup_tx;
3029
3030	/* allocate receive descriptors */
3031	err = igb_setup_all_rx_resources(adapter);
3032	if (err)
3033		goto err_setup_rx;
3034
3035	igb_power_up_link(adapter);
3036
3037	/* before we allocate an interrupt, we must be ready to handle it.
3038	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3039	 * as soon as we call pci_request_irq, so we have to setup our
3040	 * clean_rx handler before we do so.
3041	 */
3042	igb_configure(adapter);
3043
3044	err = igb_request_irq(adapter);
3045	if (err)
3046		goto err_req_irq;
3047
3048	/* Notify the stack of the actual queue counts. */
3049	err = netif_set_real_num_tx_queues(adapter->netdev,
3050					   adapter->num_tx_queues);
3051	if (err)
3052		goto err_set_queues;
3053
3054	err = netif_set_real_num_rx_queues(adapter->netdev,
3055					   adapter->num_rx_queues);
3056	if (err)
3057		goto err_set_queues;
3058
3059	/* From here on the code is the same as igb_up() */
3060	clear_bit(__IGB_DOWN, &adapter->state);
3061
3062	for (i = 0; i < adapter->num_q_vectors; i++)
3063		napi_enable(&(adapter->q_vector[i]->napi));
3064
3065	/* Clear any pending interrupts. */
3066	rd32(E1000_ICR);
3067
3068	igb_irq_enable(adapter);
3069
3070	/* notify VFs that reset has been completed */
3071	if (adapter->vfs_allocated_count) {
3072		u32 reg_data = rd32(E1000_CTRL_EXT);
3073		reg_data |= E1000_CTRL_EXT_PFRSTD;
3074		wr32(E1000_CTRL_EXT, reg_data);
3075	}
3076
3077	netif_tx_start_all_queues(netdev);
3078
3079	if (!resuming)
3080		pm_runtime_put(&pdev->dev);
3081
3082	/* start the watchdog. */
3083	hw->mac.get_link_status = 1;
3084	schedule_work(&adapter->watchdog_task);
3085
3086	return 0;
3087
3088err_set_queues:
3089	igb_free_irq(adapter);
3090err_req_irq:
3091	igb_release_hw_control(adapter);
3092	igb_power_down_link(adapter);
3093	igb_free_all_rx_resources(adapter);
3094err_setup_rx:
3095	igb_free_all_tx_resources(adapter);
3096err_setup_tx:
3097	igb_reset(adapter);
3098	if (!resuming)
3099		pm_runtime_put(&pdev->dev);
3100
3101	return err;
3102}
3103
3104static int igb_open(struct net_device *netdev)
3105{
3106	return __igb_open(netdev, false);
3107}
3108
3109/**
3110 *  igb_close - Disables a network interface
3111 *  @netdev: network interface device structure
3112 *
3113 *  Returns 0, this is not allowed to fail
3114 *
3115 *  The close entry point is called when an interface is de-activated
3116 *  by the OS.  The hardware is still under the driver's control, but
3117 *  needs to be disabled.  A global MAC reset is issued to stop the
3118 *  hardware, and all transmit and receive resources are freed.
3119 **/
3120static int __igb_close(struct net_device *netdev, bool suspending)
3121{
3122	struct igb_adapter *adapter = netdev_priv(netdev);
3123	struct pci_dev *pdev = adapter->pdev;
3124
3125	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3126
3127	if (!suspending)
3128		pm_runtime_get_sync(&pdev->dev);
3129
3130	igb_down(adapter);
3131	igb_free_irq(adapter);
3132
3133	igb_free_all_tx_resources(adapter);
3134	igb_free_all_rx_resources(adapter);
3135
3136	if (!suspending)
3137		pm_runtime_put_sync(&pdev->dev);
3138	return 0;
3139}
3140
3141static int igb_close(struct net_device *netdev)
3142{
3143	return __igb_close(netdev, false);
3144}
3145
3146/**
3147 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3148 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3149 *
3150 *  Return 0 on success, negative on failure
3151 **/
3152int igb_setup_tx_resources(struct igb_ring *tx_ring)
3153{
3154	struct device *dev = tx_ring->dev;
3155	int size;
3156
3157	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3158
3159	tx_ring->tx_buffer_info = vzalloc(size);
3160	if (!tx_ring->tx_buffer_info)
3161		goto err;
3162
3163	/* round up to nearest 4K */
3164	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3165	tx_ring->size = ALIGN(tx_ring->size, 4096);
3166
3167	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3168					   &tx_ring->dma, GFP_KERNEL);
3169	if (!tx_ring->desc)
3170		goto err;
3171
3172	tx_ring->next_to_use = 0;
3173	tx_ring->next_to_clean = 0;
3174
3175	return 0;
3176
3177err:
3178	vfree(tx_ring->tx_buffer_info);
3179	tx_ring->tx_buffer_info = NULL;
3180	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3181	return -ENOMEM;
3182}
3183
3184/**
3185 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3186 *				 (Descriptors) for all queues
3187 *  @adapter: board private structure
3188 *
3189 *  Return 0 on success, negative on failure
3190 **/
3191static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3192{
3193	struct pci_dev *pdev = adapter->pdev;
3194	int i, err = 0;
3195
3196	for (i = 0; i < adapter->num_tx_queues; i++) {
3197		err = igb_setup_tx_resources(adapter->tx_ring[i]);
3198		if (err) {
3199			dev_err(&pdev->dev,
3200				"Allocation for Tx Queue %u failed\n", i);
3201			for (i--; i >= 0; i--)
3202				igb_free_tx_resources(adapter->tx_ring[i]);
3203			break;
3204		}
3205	}
3206
3207	return err;
3208}
3209
3210/**
3211 *  igb_setup_tctl - configure the transmit control registers
3212 *  @adapter: Board private structure
3213 **/
3214void igb_setup_tctl(struct igb_adapter *adapter)
3215{
3216	struct e1000_hw *hw = &adapter->hw;
3217	u32 tctl;
3218
3219	/* disable queue 0 which is enabled by default on 82575 and 82576 */
3220	wr32(E1000_TXDCTL(0), 0);
3221
3222	/* Program the Transmit Control Register */
3223	tctl = rd32(E1000_TCTL);
3224	tctl &= ~E1000_TCTL_CT;
3225	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3226		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3227
3228	igb_config_collision_dist(hw);
3229
3230	/* Enable transmits */
3231	tctl |= E1000_TCTL_EN;
3232
3233	wr32(E1000_TCTL, tctl);
3234}
3235
3236/**
3237 *  igb_configure_tx_ring - Configure transmit ring after Reset
3238 *  @adapter: board private structure
3239 *  @ring: tx ring to configure
3240 *
3241 *  Configure a transmit ring after a reset.
3242 **/
3243void igb_configure_tx_ring(struct igb_adapter *adapter,
3244                           struct igb_ring *ring)
3245{
3246	struct e1000_hw *hw = &adapter->hw;
3247	u32 txdctl = 0;
3248	u64 tdba = ring->dma;
3249	int reg_idx = ring->reg_idx;
3250
3251	/* disable the queue */
3252	wr32(E1000_TXDCTL(reg_idx), 0);
3253	wrfl();
3254	mdelay(10);
3255
3256	wr32(E1000_TDLEN(reg_idx),
3257	     ring->count * sizeof(union e1000_adv_tx_desc));
3258	wr32(E1000_TDBAL(reg_idx),
3259	     tdba & 0x00000000ffffffffULL);
3260	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3261
3262	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3263	wr32(E1000_TDH(reg_idx), 0);
3264	writel(0, ring->tail);
3265
3266	txdctl |= IGB_TX_PTHRESH;
3267	txdctl |= IGB_TX_HTHRESH << 8;
3268	txdctl |= IGB_TX_WTHRESH << 16;
3269
3270	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3271	wr32(E1000_TXDCTL(reg_idx), txdctl);
3272}
3273
3274/**
3275 *  igb_configure_tx - Configure transmit Unit after Reset
3276 *  @adapter: board private structure
3277 *
3278 *  Configure the Tx unit of the MAC after a reset.
3279 **/
3280static void igb_configure_tx(struct igb_adapter *adapter)
3281{
3282	int i;
3283
3284	for (i = 0; i < adapter->num_tx_queues; i++)
3285		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3286}
3287
3288/**
3289 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3290 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3291 *
3292 *  Returns 0 on success, negative on failure
3293 **/
3294int igb_setup_rx_resources(struct igb_ring *rx_ring)
3295{
3296	struct device *dev = rx_ring->dev;
3297	int size;
3298
3299	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3300
3301	rx_ring->rx_buffer_info = vzalloc(size);
3302	if (!rx_ring->rx_buffer_info)
3303		goto err;
3304
3305	/* Round up to nearest 4K */
3306	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3307	rx_ring->size = ALIGN(rx_ring->size, 4096);
3308
3309	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3310					   &rx_ring->dma, GFP_KERNEL);
3311	if (!rx_ring->desc)
3312		goto err;
3313
3314	rx_ring->next_to_alloc = 0;
3315	rx_ring->next_to_clean = 0;
3316	rx_ring->next_to_use = 0;
3317
3318	return 0;
3319
3320err:
3321	vfree(rx_ring->rx_buffer_info);
3322	rx_ring->rx_buffer_info = NULL;
3323	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3324	return -ENOMEM;
3325}
3326
3327/**
3328 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3329 *				 (Descriptors) for all queues
3330 *  @adapter: board private structure
3331 *
3332 *  Return 0 on success, negative on failure
3333 **/
3334static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3335{
3336	struct pci_dev *pdev = adapter->pdev;
3337	int i, err = 0;
3338
3339	for (i = 0; i < adapter->num_rx_queues; i++) {
3340		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3341		if (err) {
3342			dev_err(&pdev->dev,
3343				"Allocation for Rx Queue %u failed\n", i);
3344			for (i--; i >= 0; i--)
3345				igb_free_rx_resources(adapter->rx_ring[i]);
3346			break;
3347		}
3348	}
3349
3350	return err;
3351}
3352
3353/**
3354 *  igb_setup_mrqc - configure the multiple receive queue control registers
3355 *  @adapter: Board private structure
3356 **/
3357static void igb_setup_mrqc(struct igb_adapter *adapter)
3358{
3359	struct e1000_hw *hw = &adapter->hw;
3360	u32 mrqc, rxcsum;
3361	u32 j, num_rx_queues;
3362	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3363					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3364					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3365					0xFA01ACBE };
3366
3367	/* Fill out hash function seeds */
3368	for (j = 0; j < 10; j++)
3369		wr32(E1000_RSSRK(j), rsskey[j]);
3370
3371	num_rx_queues = adapter->rss_queues;
3372
3373	switch (hw->mac.type) {
3374	case e1000_82576:
3375		/* 82576 supports 2 RSS queues for SR-IOV */
3376		if (adapter->vfs_allocated_count)
3377			num_rx_queues = 2;
3378		break;
3379	default:
3380		break;
3381	}
3382
3383	if (adapter->rss_indir_tbl_init != num_rx_queues) {
3384		for (j = 0; j < IGB_RETA_SIZE; j++)
3385			adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
3386		adapter->rss_indir_tbl_init = num_rx_queues;
3387	}
3388	igb_write_rss_indir_tbl(adapter);
3389
3390	/* Disable raw packet checksumming so that RSS hash is placed in
3391	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3392	 * offloads as they are enabled by default
3393	 */
3394	rxcsum = rd32(E1000_RXCSUM);
3395	rxcsum |= E1000_RXCSUM_PCSD;
3396
3397	if (adapter->hw.mac.type >= e1000_82576)
3398		/* Enable Receive Checksum Offload for SCTP */
3399		rxcsum |= E1000_RXCSUM_CRCOFL;
3400
3401	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3402	wr32(E1000_RXCSUM, rxcsum);
3403
3404	/* Generate RSS hash based on packet types, TCP/UDP
3405	 * port numbers and/or IPv4/v6 src and dst addresses
3406	 */
3407	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3408	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3409	       E1000_MRQC_RSS_FIELD_IPV6 |
3410	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3411	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3412
3413	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3414		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3415	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3416		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3417
3418	/* If VMDq is enabled then we set the appropriate mode for that, else
3419	 * we default to RSS so that an RSS hash is calculated per packet even
3420	 * if we are only using one queue
3421	 */
3422	if (adapter->vfs_allocated_count) {
3423		if (hw->mac.type > e1000_82575) {
3424			/* Set the default pool for the PF's first queue */
3425			u32 vtctl = rd32(E1000_VT_CTL);
3426			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3427				   E1000_VT_CTL_DISABLE_DEF_POOL);
3428			vtctl |= adapter->vfs_allocated_count <<
3429				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3430			wr32(E1000_VT_CTL, vtctl);
3431		}
3432		if (adapter->rss_queues > 1)
3433			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3434		else
3435			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3436	} else {
3437		if (hw->mac.type != e1000_i211)
3438			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3439	}
3440	igb_vmm_control(adapter);
3441
3442	wr32(E1000_MRQC, mrqc);
3443}
3444
3445/**
3446 *  igb_setup_rctl - configure the receive control registers
3447 *  @adapter: Board private structure
3448 **/
3449void igb_setup_rctl(struct igb_adapter *adapter)
3450{
3451	struct e1000_hw *hw = &adapter->hw;
3452	u32 rctl;
3453
3454	rctl = rd32(E1000_RCTL);
3455
3456	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3457	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3458
3459	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3460		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3461
3462	/* enable stripping of CRC. It's unlikely this will break BMC
3463	 * redirection as it did with e1000. Newer features require
3464	 * that the HW strips the CRC.
3465	 */
3466	rctl |= E1000_RCTL_SECRC;
3467
3468	/* disable store bad packets and clear size bits. */
3469	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3470
3471	/* enable LPE to prevent packets larger than max_frame_size */
3472	rctl |= E1000_RCTL_LPE;
3473
3474	/* disable queue 0 to prevent tail write w/o re-config */
3475	wr32(E1000_RXDCTL(0), 0);
3476
3477	/* Attention!!!  For SR-IOV PF driver operations you must enable
3478	 * queue drop for all VF and PF queues to prevent head of line blocking
3479	 * if an un-trusted VF does not provide descriptors to hardware.
3480	 */
3481	if (adapter->vfs_allocated_count) {
3482		/* set all queue drop enable bits */
3483		wr32(E1000_QDE, ALL_QUEUES);
3484	}
3485
3486	/* This is useful for sniffing bad packets. */
3487	if (adapter->netdev->features & NETIF_F_RXALL) {
3488		/* UPE and MPE will be handled by normal PROMISC logic
3489		 * in e1000e_set_rx_mode
3490		 */
3491		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3492			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3493			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3494
3495		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3496			  E1000_RCTL_DPF | /* Allow filtered pause */
3497			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3498		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3499		 * and that breaks VLANs.
3500		 */
3501	}
3502
3503	wr32(E1000_RCTL, rctl);
3504}
3505
3506static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3507                                   int vfn)
3508{
3509	struct e1000_hw *hw = &adapter->hw;
3510	u32 vmolr;
3511
3512	/* if it isn't the PF check to see if VFs are enabled and
3513	 * increase the size to support vlan tags
3514	 */
3515	if (vfn < adapter->vfs_allocated_count &&
3516	    adapter->vf_data[vfn].vlans_enabled)
3517		size += VLAN_TAG_SIZE;
3518
3519	vmolr = rd32(E1000_VMOLR(vfn));
3520	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3521	vmolr |= size | E1000_VMOLR_LPE;
3522	wr32(E1000_VMOLR(vfn), vmolr);
3523
3524	return 0;
3525}
3526
3527/**
3528 *  igb_rlpml_set - set maximum receive packet size
3529 *  @adapter: board private structure
3530 *
3531 *  Configure maximum receivable packet size.
3532 **/
3533static void igb_rlpml_set(struct igb_adapter *adapter)
3534{
3535	u32 max_frame_size = adapter->max_frame_size;
3536	struct e1000_hw *hw = &adapter->hw;
3537	u16 pf_id = adapter->vfs_allocated_count;
3538
3539	if (pf_id) {
3540		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3541		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3542		 * to our max jumbo frame size, in case we need to enable
3543		 * jumbo frames on one of the rings later.
3544		 * This will not pass over-length frames into the default
3545		 * queue because it's gated by the VMOLR.RLPML.
3546		 */
3547		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3548	}
3549
3550	wr32(E1000_RLPML, max_frame_size);
3551}
3552
3553static inline void igb_set_vmolr(struct igb_adapter *adapter,
3554				 int vfn, bool aupe)
3555{
3556	struct e1000_hw *hw = &adapter->hw;
3557	u32 vmolr;
3558
3559	/* This register exists only on 82576 and newer so if we are older then
3560	 * we should exit and do nothing
3561	 */
3562	if (hw->mac.type < e1000_82576)
3563		return;
3564
3565	vmolr = rd32(E1000_VMOLR(vfn));
3566	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3567	if (hw->mac.type == e1000_i350) {
3568		u32 dvmolr;
3569
3570		dvmolr = rd32(E1000_DVMOLR(vfn));
3571		dvmolr |= E1000_DVMOLR_STRVLAN;
3572		wr32(E1000_DVMOLR(vfn), dvmolr);
3573	}
3574	if (aupe)
3575		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3576	else
3577		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3578
3579	/* clear all bits that might not be set */
3580	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3581
3582	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3583		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3584	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3585	 * multicast packets
3586	 */
3587	if (vfn <= adapter->vfs_allocated_count)
3588		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3589
3590	wr32(E1000_VMOLR(vfn), vmolr);
3591}
3592
3593/**
3594 *  igb_configure_rx_ring - Configure a receive ring after Reset
3595 *  @adapter: board private structure
3596 *  @ring: receive ring to be configured
3597 *
3598 *  Configure the Rx unit of the MAC after a reset.
3599 **/
3600void igb_configure_rx_ring(struct igb_adapter *adapter,
3601			   struct igb_ring *ring)
3602{
3603	struct e1000_hw *hw = &adapter->hw;
3604	u64 rdba = ring->dma;
3605	int reg_idx = ring->reg_idx;
3606	u32 srrctl = 0, rxdctl = 0;
3607
3608	/* disable the queue */
3609	wr32(E1000_RXDCTL(reg_idx), 0);
3610
3611	/* Set DMA base address registers */
3612	wr32(E1000_RDBAL(reg_idx),
3613	     rdba & 0x00000000ffffffffULL);
3614	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3615	wr32(E1000_RDLEN(reg_idx),
3616	     ring->count * sizeof(union e1000_adv_rx_desc));
3617
3618	/* initialize head and tail */
3619	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3620	wr32(E1000_RDH(reg_idx), 0);
3621	writel(0, ring->tail);
3622
3623	/* set descriptor configuration */
3624	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3625	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3626	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3627	if (hw->mac.type >= e1000_82580)
3628		srrctl |= E1000_SRRCTL_TIMESTAMP;
3629	/* Only set Drop Enable if we are supporting multiple queues */
3630	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3631		srrctl |= E1000_SRRCTL_DROP_EN;
3632
3633	wr32(E1000_SRRCTL(reg_idx), srrctl);
3634
3635	/* set filtering for VMDQ pools */
3636	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3637
3638	rxdctl |= IGB_RX_PTHRESH;
3639	rxdctl |= IGB_RX_HTHRESH << 8;
3640	rxdctl |= IGB_RX_WTHRESH << 16;
3641
3642	/* enable receive descriptor fetching */
3643	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3644	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3645}
3646
3647/**
3648 *  igb_configure_rx - Configure receive Unit after Reset
3649 *  @adapter: board private structure
3650 *
3651 *  Configure the Rx unit of the MAC after a reset.
3652 **/
3653static void igb_configure_rx(struct igb_adapter *adapter)
3654{
3655	int i;
3656
3657	/* set UTA to appropriate mode */
3658	igb_set_uta(adapter);
3659
3660	/* set the correct pool for the PF default MAC address in entry 0 */
3661	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3662			 adapter->vfs_allocated_count);
3663
3664	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3665	 * the Base and Length of the Rx Descriptor Ring
3666	 */
3667	for (i = 0; i < adapter->num_rx_queues; i++)
3668		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3669}
3670
3671/**
3672 *  igb_free_tx_resources - Free Tx Resources per Queue
3673 *  @tx_ring: Tx descriptor ring for a specific queue
3674 *
3675 *  Free all transmit software resources
3676 **/
3677void igb_free_tx_resources(struct igb_ring *tx_ring)
3678{
3679	igb_clean_tx_ring(tx_ring);
3680
3681	vfree(tx_ring->tx_buffer_info);
3682	tx_ring->tx_buffer_info = NULL;
3683
3684	/* if not set, then don't free */
3685	if (!tx_ring->desc)
3686		return;
3687
3688	dma_free_coherent(tx_ring->dev, tx_ring->size,
3689			  tx_ring->desc, tx_ring->dma);
3690
3691	tx_ring->desc = NULL;
3692}
3693
3694/**
3695 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3696 *  @adapter: board private structure
3697 *
3698 *  Free all transmit software resources
3699 **/
3700static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3701{
3702	int i;
3703
3704	for (i = 0; i < adapter->num_tx_queues; i++)
3705		igb_free_tx_resources(adapter->tx_ring[i]);
3706}
3707
3708void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3709				    struct igb_tx_buffer *tx_buffer)
3710{
3711	if (tx_buffer->skb) {
3712		dev_kfree_skb_any(tx_buffer->skb);
3713		if (dma_unmap_len(tx_buffer, len))
3714			dma_unmap_single(ring->dev,
3715					 dma_unmap_addr(tx_buffer, dma),
3716					 dma_unmap_len(tx_buffer, len),
3717					 DMA_TO_DEVICE);
3718	} else if (dma_unmap_len(tx_buffer, len)) {
3719		dma_unmap_page(ring->dev,
3720			       dma_unmap_addr(tx_buffer, dma),
3721			       dma_unmap_len(tx_buffer, len),
3722			       DMA_TO_DEVICE);
3723	}
3724	tx_buffer->next_to_watch = NULL;
3725	tx_buffer->skb = NULL;
3726	dma_unmap_len_set(tx_buffer, len, 0);
3727	/* buffer_info must be completely set up in the transmit path */
3728}
3729
3730/**
3731 *  igb_clean_tx_ring - Free Tx Buffers
3732 *  @tx_ring: ring to be cleaned
3733 **/
3734static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3735{
3736	struct igb_tx_buffer *buffer_info;
3737	unsigned long size;
3738	u16 i;
3739
3740	if (!tx_ring->tx_buffer_info)
3741		return;
3742	/* Free all the Tx ring sk_buffs */
3743
3744	for (i = 0; i < tx_ring->count; i++) {
3745		buffer_info = &tx_ring->tx_buffer_info[i];
3746		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3747	}
3748
3749	netdev_tx_reset_queue(txring_txq(tx_ring));
3750
3751	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3752	memset(tx_ring->tx_buffer_info, 0, size);
3753
3754	/* Zero out the descriptor ring */
3755	memset(tx_ring->desc, 0, tx_ring->size);
3756
3757	tx_ring->next_to_use = 0;
3758	tx_ring->next_to_clean = 0;
3759}
3760
3761/**
3762 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3763 *  @adapter: board private structure
3764 **/
3765static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3766{
3767	int i;
3768
3769	for (i = 0; i < adapter->num_tx_queues; i++)
3770		igb_clean_tx_ring(adapter->tx_ring[i]);
3771}
3772
3773/**
3774 *  igb_free_rx_resources - Free Rx Resources
3775 *  @rx_ring: ring to clean the resources from
3776 *
3777 *  Free all receive software resources
3778 **/
3779void igb_free_rx_resources(struct igb_ring *rx_ring)
3780{
3781	igb_clean_rx_ring(rx_ring);
3782
3783	vfree(rx_ring->rx_buffer_info);
3784	rx_ring->rx_buffer_info = NULL;
3785
3786	/* if not set, then don't free */
3787	if (!rx_ring->desc)
3788		return;
3789
3790	dma_free_coherent(rx_ring->dev, rx_ring->size,
3791			  rx_ring->desc, rx_ring->dma);
3792
3793	rx_ring->desc = NULL;
3794}
3795
3796/**
3797 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3798 *  @adapter: board private structure
3799 *
3800 *  Free all receive software resources
3801 **/
3802static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3803{
3804	int i;
3805
3806	for (i = 0; i < adapter->num_rx_queues; i++)
3807		igb_free_rx_resources(adapter->rx_ring[i]);
3808}
3809
3810/**
3811 *  igb_clean_rx_ring - Free Rx Buffers per Queue
3812 *  @rx_ring: ring to free buffers from
3813 **/
3814static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3815{
3816	unsigned long size;
3817	u16 i;
3818
3819	if (rx_ring->skb)
3820		dev_kfree_skb(rx_ring->skb);
3821	rx_ring->skb = NULL;
3822
3823	if (!rx_ring->rx_buffer_info)
3824		return;
3825
3826	/* Free all the Rx ring sk_buffs */
3827	for (i = 0; i < rx_ring->count; i++) {
3828		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3829
3830		if (!buffer_info->page)
3831			continue;
3832
3833		dma_unmap_page(rx_ring->dev,
3834			       buffer_info->dma,
3835			       PAGE_SIZE,
3836			       DMA_FROM_DEVICE);
3837		__free_page(buffer_info->page);
3838
3839		buffer_info->page = NULL;
3840	}
3841
3842	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3843	memset(rx_ring->rx_buffer_info, 0, size);
3844
3845	/* Zero out the descriptor ring */
3846	memset(rx_ring->desc, 0, rx_ring->size);
3847
3848	rx_ring->next_to_alloc = 0;
3849	rx_ring->next_to_clean = 0;
3850	rx_ring->next_to_use = 0;
3851}
3852
3853/**
3854 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3855 *  @adapter: board private structure
3856 **/
3857static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3858{
3859	int i;
3860
3861	for (i = 0; i < adapter->num_rx_queues; i++)
3862		igb_clean_rx_ring(adapter->rx_ring[i]);
3863}
3864
3865/**
3866 *  igb_set_mac - Change the Ethernet Address of the NIC
3867 *  @netdev: network interface device structure
3868 *  @p: pointer to an address structure
3869 *
3870 *  Returns 0 on success, negative on failure
3871 **/
3872static int igb_set_mac(struct net_device *netdev, void *p)
3873{
3874	struct igb_adapter *adapter = netdev_priv(netdev);
3875	struct e1000_hw *hw = &adapter->hw;
3876	struct sockaddr *addr = p;
3877
3878	if (!is_valid_ether_addr(addr->sa_data))
3879		return -EADDRNOTAVAIL;
3880
3881	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3882	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3883
3884	/* set the correct pool for the new PF MAC address in entry 0 */
3885	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3886			 adapter->vfs_allocated_count);
3887
3888	return 0;
3889}
3890
3891/**
3892 *  igb_write_mc_addr_list - write multicast addresses to MTA
3893 *  @netdev: network interface device structure
3894 *
3895 *  Writes multicast address list to the MTA hash table.
3896 *  Returns: -ENOMEM on failure
3897 *           0 on no addresses written
3898 *           X on writing X addresses to MTA
3899 **/
3900static int igb_write_mc_addr_list(struct net_device *netdev)
3901{
3902	struct igb_adapter *adapter = netdev_priv(netdev);
3903	struct e1000_hw *hw = &adapter->hw;
3904	struct netdev_hw_addr *ha;
3905	u8  *mta_list;
3906	int i;
3907
3908	if (netdev_mc_empty(netdev)) {
3909		/* nothing to program, so clear mc list */
3910		igb_update_mc_addr_list(hw, NULL, 0);
3911		igb_restore_vf_multicasts(adapter);
3912		return 0;
3913	}
3914
3915	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3916	if (!mta_list)
3917		return -ENOMEM;
3918
3919	/* The shared function expects a packed array of only addresses. */
3920	i = 0;
3921	netdev_for_each_mc_addr(ha, netdev)
3922		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3923
3924	igb_update_mc_addr_list(hw, mta_list, i);
3925	kfree(mta_list);
3926
3927	return netdev_mc_count(netdev);
3928}
3929
3930/**
3931 *  igb_write_uc_addr_list - write unicast addresses to RAR table
3932 *  @netdev: network interface device structure
3933 *
3934 *  Writes unicast address list to the RAR table.
3935 *  Returns: -ENOMEM on failure/insufficient address space
3936 *           0 on no addresses written
3937 *           X on writing X addresses to the RAR table
3938 **/
3939static int igb_write_uc_addr_list(struct net_device *netdev)
3940{
3941	struct igb_adapter *adapter = netdev_priv(netdev);
3942	struct e1000_hw *hw = &adapter->hw;
3943	unsigned int vfn = adapter->vfs_allocated_count;
3944	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3945	int count = 0;
3946
3947	/* return ENOMEM indicating insufficient memory for addresses */
3948	if (netdev_uc_count(netdev) > rar_entries)
3949		return -ENOMEM;
3950
3951	if (!netdev_uc_empty(netdev) && rar_entries) {
3952		struct netdev_hw_addr *ha;
3953
3954		netdev_for_each_uc_addr(ha, netdev) {
3955			if (!rar_entries)
3956				break;
3957			igb_rar_set_qsel(adapter, ha->addr,
3958					 rar_entries--,
3959					 vfn);
3960			count++;
3961		}
3962	}
3963	/* write the addresses in reverse order to avoid write combining */
3964	for (; rar_entries > 0 ; rar_entries--) {
3965		wr32(E1000_RAH(rar_entries), 0);
3966		wr32(E1000_RAL(rar_entries), 0);
3967	}
3968	wrfl();
3969
3970	return count;
3971}
3972
3973/**
3974 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3975 *  @netdev: network interface device structure
3976 *
3977 *  The set_rx_mode entry point is called whenever the unicast or multicast
3978 *  address lists or the network interface flags are updated.  This routine is
3979 *  responsible for configuring the hardware for proper unicast, multicast,
3980 *  promiscuous mode, and all-multi behavior.
3981 **/
3982static void igb_set_rx_mode(struct net_device *netdev)
3983{
3984	struct igb_adapter *adapter = netdev_priv(netdev);
3985	struct e1000_hw *hw = &adapter->hw;
3986	unsigned int vfn = adapter->vfs_allocated_count;
3987	u32 rctl, vmolr = 0;
3988	int count;
3989
3990	/* Check for Promiscuous and All Multicast modes */
3991	rctl = rd32(E1000_RCTL);
3992
3993	/* clear the effected bits */
3994	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3995
3996	if (netdev->flags & IFF_PROMISC) {
3997		/* retain VLAN HW filtering if in VT mode */
3998		if (adapter->vfs_allocated_count)
3999			rctl |= E1000_RCTL_VFE;
4000		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4001		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4002	} else {
4003		if (netdev->flags & IFF_ALLMULTI) {
4004			rctl |= E1000_RCTL_MPE;
4005			vmolr |= E1000_VMOLR_MPME;
4006		} else {
4007			/* Write addresses to the MTA, if the attempt fails
4008			 * then we should just turn on promiscuous mode so
4009			 * that we can at least receive multicast traffic
4010			 */
4011			count = igb_write_mc_addr_list(netdev);
4012			if (count < 0) {
4013				rctl |= E1000_RCTL_MPE;
4014				vmolr |= E1000_VMOLR_MPME;
4015			} else if (count) {
4016				vmolr |= E1000_VMOLR_ROMPE;
4017			}
4018		}
4019		/* Write addresses to available RAR registers, if there is not
4020		 * sufficient space to store all the addresses then enable
4021		 * unicast promiscuous mode
4022		 */
4023		count = igb_write_uc_addr_list(netdev);
4024		if (count < 0) {
4025			rctl |= E1000_RCTL_UPE;
4026			vmolr |= E1000_VMOLR_ROPE;
4027		}
4028		rctl |= E1000_RCTL_VFE;
4029	}
4030	wr32(E1000_RCTL, rctl);
4031
4032	/* In order to support SR-IOV and eventually VMDq it is necessary to set
4033	 * the VMOLR to enable the appropriate modes.  Without this workaround
4034	 * we will have issues with VLAN tag stripping not being done for frames
4035	 * that are only arriving because we are the default pool
4036	 */
4037	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4038		return;
4039
4040	vmolr |= rd32(E1000_VMOLR(vfn)) &
4041		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4042	wr32(E1000_VMOLR(vfn), vmolr);
4043	igb_restore_vf_multicasts(adapter);
4044}
4045
4046static void igb_check_wvbr(struct igb_adapter *adapter)
4047{
4048	struct e1000_hw *hw = &adapter->hw;
4049	u32 wvbr = 0;
4050
4051	switch (hw->mac.type) {
4052	case e1000_82576:
4053	case e1000_i350:
4054		if (!(wvbr = rd32(E1000_WVBR)))
4055			return;
4056		break;
4057	default:
4058		break;
4059	}
4060
4061	adapter->wvbr |= wvbr;
4062}
4063
4064#define IGB_STAGGERED_QUEUE_OFFSET 8
4065
4066static void igb_spoof_check(struct igb_adapter *adapter)
4067{
4068	int j;
4069
4070	if (!adapter->wvbr)
4071		return;
4072
4073	for(j = 0; j < adapter->vfs_allocated_count; j++) {
4074		if (adapter->wvbr & (1 << j) ||
4075		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4076			dev_warn(&adapter->pdev->dev,
4077				"Spoof event(s) detected on VF %d\n", j);
4078			adapter->wvbr &=
4079				~((1 << j) |
4080				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4081		}
4082	}
4083}
4084
4085/* Need to wait a few seconds after link up to get diagnostic information from
4086 * the phy
4087 */
4088static void igb_update_phy_info(unsigned long data)
4089{
4090	struct igb_adapter *adapter = (struct igb_adapter *) data;
4091	igb_get_phy_info(&adapter->hw);
4092}
4093
4094/**
4095 *  igb_has_link - check shared code for link and determine up/down
4096 *  @adapter: pointer to driver private info
4097 **/
4098bool igb_has_link(struct igb_adapter *adapter)
4099{
4100	struct e1000_hw *hw = &adapter->hw;
4101	bool link_active = false;
4102
4103	/* get_link_status is set on LSC (link status) interrupt or
4104	 * rx sequence error interrupt.  get_link_status will stay
4105	 * false until the e1000_check_for_link establishes link
4106	 * for copper adapters ONLY
4107	 */
4108	switch (hw->phy.media_type) {
4109	case e1000_media_type_copper:
4110		if (!hw->mac.get_link_status)
4111			return true;
4112	case e1000_media_type_internal_serdes:
4113		hw->mac.ops.check_for_link(hw);
4114		link_active = !hw->mac.get_link_status;
4115		break;
4116	default:
4117	case e1000_media_type_unknown:
4118		break;
4119	}
4120
4121	if (((hw->mac.type == e1000_i210) ||
4122	     (hw->mac.type == e1000_i211)) &&
4123	     (hw->phy.id == I210_I_PHY_ID)) {
4124		if (!netif_carrier_ok(adapter->netdev)) {
4125			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4126		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4127			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4128			adapter->link_check_timeout = jiffies;
4129		}
4130	}
4131
4132	return link_active;
4133}
4134
4135static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4136{
4137	bool ret = false;
4138	u32 ctrl_ext, thstat;
4139
4140	/* check for thermal sensor event on i350 copper only */
4141	if (hw->mac.type == e1000_i350) {
4142		thstat = rd32(E1000_THSTAT);
4143		ctrl_ext = rd32(E1000_CTRL_EXT);
4144
4145		if ((hw->phy.media_type == e1000_media_type_copper) &&
4146		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4147			ret = !!(thstat & event);
4148	}
4149
4150	return ret;
4151}
4152
4153/**
4154 *  igb_watchdog - Timer Call-back
4155 *  @data: pointer to adapter cast into an unsigned long
4156 **/
4157static void igb_watchdog(unsigned long data)
4158{
4159	struct igb_adapter *adapter = (struct igb_adapter *)data;
4160	/* Do the rest outside of interrupt context */
4161	schedule_work(&adapter->watchdog_task);
4162}
4163
4164static void igb_watchdog_task(struct work_struct *work)
4165{
4166	struct igb_adapter *adapter = container_of(work,
4167						   struct igb_adapter,
4168						   watchdog_task);
4169	struct e1000_hw *hw = &adapter->hw;
4170	struct e1000_phy_info *phy = &hw->phy;
4171	struct net_device *netdev = adapter->netdev;
4172	u32 link;
4173	int i;
4174	u32 connsw;
4175
4176	link = igb_has_link(adapter);
4177
4178	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4179		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4180			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4181		else
4182			link = false;
4183	}
4184
4185	/* Force link down if we have fiber to swap to */
4186	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4187		if (hw->phy.media_type == e1000_media_type_copper) {
4188			connsw = rd32(E1000_CONNSW);
4189			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4190				link = 0;
4191		}
4192	}
4193	if (link) {
4194		/* Perform a reset if the media type changed. */
4195		if (hw->dev_spec._82575.media_changed) {
4196			hw->dev_spec._82575.media_changed = false;
4197			adapter->flags |= IGB_FLAG_MEDIA_RESET;
4198			igb_reset(adapter);
4199		}
4200		/* Cancel scheduled suspend requests. */
4201		pm_runtime_resume(netdev->dev.parent);
4202
4203		if (!netif_carrier_ok(netdev)) {
4204			u32 ctrl;
4205			hw->mac.ops.get_speed_and_duplex(hw,
4206							 &adapter->link_speed,
4207							 &adapter->link_duplex);
4208
4209			ctrl = rd32(E1000_CTRL);
4210			/* Links status message must follow this format */
4211			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
4212			       "Duplex, Flow Control: %s\n",
4213			       netdev->name,
4214			       adapter->link_speed,
4215			       adapter->link_duplex == FULL_DUPLEX ?
4216			       "Full" : "Half",
4217			       (ctrl & E1000_CTRL_TFCE) &&
4218			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4219			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4220			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4221
4222			/* disable EEE if enabled */
4223			if ((adapter->flags & IGB_FLAG_EEE) &&
4224				(adapter->link_duplex == HALF_DUPLEX)) {
4225				dev_info(&adapter->pdev->dev,
4226				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4227				adapter->hw.dev_spec._82575.eee_disable = true;
4228				adapter->flags &= ~IGB_FLAG_EEE;
4229			}
4230
4231			/* check if SmartSpeed worked */
4232			igb_check_downshift(hw);
4233			if (phy->speed_downgraded)
4234				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4235
4236			/* check for thermal sensor event */
4237			if (igb_thermal_sensor_event(hw,
4238			    E1000_THSTAT_LINK_THROTTLE)) {
4239				netdev_info(netdev, "The network adapter link "
4240					    "speed was downshifted because it "
4241					    "overheated\n");
4242			}
4243
4244			/* adjust timeout factor according to speed/duplex */
4245			adapter->tx_timeout_factor = 1;
4246			switch (adapter->link_speed) {
4247			case SPEED_10:
4248				adapter->tx_timeout_factor = 14;
4249				break;
4250			case SPEED_100:
4251				/* maybe add some timeout factor ? */
4252				break;
4253			}
4254
4255			netif_carrier_on(netdev);
4256
4257			igb_ping_all_vfs(adapter);
4258			igb_check_vf_rate_limit(adapter);
4259
4260			/* link state has changed, schedule phy info update */
4261			if (!test_bit(__IGB_DOWN, &adapter->state))
4262				mod_timer(&adapter->phy_info_timer,
4263					  round_jiffies(jiffies + 2 * HZ));
4264		}
4265	} else {
4266		if (netif_carrier_ok(netdev)) {
4267			adapter->link_speed = 0;
4268			adapter->link_duplex = 0;
4269
4270			/* check for thermal sensor event */
4271			if (igb_thermal_sensor_event(hw,
4272			    E1000_THSTAT_PWR_DOWN)) {
4273				netdev_err(netdev, "The network adapter was "
4274					   "stopped because it overheated\n");
4275			}
4276
4277			/* Links status message must follow this format */
4278			printk(KERN_INFO "igb: %s NIC Link is Down\n",
4279			       netdev->name);
4280			netif_carrier_off(netdev);
4281
4282			igb_ping_all_vfs(adapter);
4283
4284			/* link state has changed, schedule phy info update */
4285			if (!test_bit(__IGB_DOWN, &adapter->state))
4286				mod_timer(&adapter->phy_info_timer,
4287					  round_jiffies(jiffies + 2 * HZ));
4288
4289			/* link is down, time to check for alternate media */
4290			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4291				igb_check_swap_media(adapter);
4292				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4293					schedule_work(&adapter->reset_task);
4294					/* return immediately */
4295					return;
4296				}
4297			}
4298			pm_schedule_suspend(netdev->dev.parent,
4299					    MSEC_PER_SEC * 5);
4300
4301		/* also check for alternate media here */
4302		} else if (!netif_carrier_ok(netdev) &&
4303			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4304			igb_check_swap_media(adapter);
4305			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4306				schedule_work(&adapter->reset_task);
4307				/* return immediately */
4308				return;
4309			}
4310		}
4311	}
4312
4313	spin_lock(&adapter->stats64_lock);
4314	igb_update_stats(adapter, &adapter->stats64);
4315	spin_unlock(&adapter->stats64_lock);
4316
4317	for (i = 0; i < adapter->num_tx_queues; i++) {
4318		struct igb_ring *tx_ring = adapter->tx_ring[i];
4319		if (!netif_carrier_ok(netdev)) {
4320			/* We've lost link, so the controller stops DMA,
4321			 * but we've got queued Tx work that's never going
4322			 * to get done, so reset controller to flush Tx.
4323			 * (Do the reset outside of interrupt context).
4324			 */
4325			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4326				adapter->tx_timeout_count++;
4327				schedule_work(&adapter->reset_task);
4328				/* return immediately since reset is imminent */
4329				return;
4330			}
4331		}
4332
4333		/* Force detection of hung controller every watchdog period */
4334		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4335	}
4336
4337	/* Cause software interrupt to ensure Rx ring is cleaned */
4338	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4339		u32 eics = 0;
4340		for (i = 0; i < adapter->num_q_vectors; i++)
4341			eics |= adapter->q_vector[i]->eims_value;
4342		wr32(E1000_EICS, eics);
4343	} else {
4344		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4345	}
4346
4347	igb_spoof_check(adapter);
4348	igb_ptp_rx_hang(adapter);
4349
4350	/* Reset the timer */
4351	if (!test_bit(__IGB_DOWN, &adapter->state)) {
4352		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4353			mod_timer(&adapter->watchdog_timer,
4354				  round_jiffies(jiffies +  HZ));
4355		else
4356			mod_timer(&adapter->watchdog_timer,
4357				  round_jiffies(jiffies + 2 * HZ));
4358	}
4359}
4360
4361enum latency_range {
4362	lowest_latency = 0,
4363	low_latency = 1,
4364	bulk_latency = 2,
4365	latency_invalid = 255
4366};
4367
4368/**
4369 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4370 *  @q_vector: pointer to q_vector
4371 *
4372 *  Stores a new ITR value based on strictly on packet size.  This
4373 *  algorithm is less sophisticated than that used in igb_update_itr,
4374 *  due to the difficulty of synchronizing statistics across multiple
4375 *  receive rings.  The divisors and thresholds used by this function
4376 *  were determined based on theoretical maximum wire speed and testing
4377 *  data, in order to minimize response time while increasing bulk
4378 *  throughput.
4379 *  This functionality is controlled by ethtool's coalescing settings.
4380 *  NOTE:  This function is called only when operating in a multiqueue
4381 *         receive environment.
4382 **/
4383static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4384{
4385	int new_val = q_vector->itr_val;
4386	int avg_wire_size = 0;
4387	struct igb_adapter *adapter = q_vector->adapter;
4388	unsigned int packets;
4389
4390	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4391	 * ints/sec - ITR timer value of 120 ticks.
4392	 */
4393	if (adapter->link_speed != SPEED_1000) {
4394		new_val = IGB_4K_ITR;
4395		goto set_itr_val;
4396	}
4397
4398	packets = q_vector->rx.total_packets;
4399	if (packets)
4400		avg_wire_size = q_vector->rx.total_bytes / packets;
4401
4402	packets = q_vector->tx.total_packets;
4403	if (packets)
4404		avg_wire_size = max_t(u32, avg_wire_size,
4405				      q_vector->tx.total_bytes / packets);
4406
4407	/* if avg_wire_size isn't set no work was done */
4408	if (!avg_wire_size)
4409		goto clear_counts;
4410
4411	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4412	avg_wire_size += 24;
4413
4414	/* Don't starve jumbo frames */
4415	avg_wire_size = min(avg_wire_size, 3000);
4416
4417	/* Give a little boost to mid-size frames */
4418	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4419		new_val = avg_wire_size / 3;
4420	else
4421		new_val = avg_wire_size / 2;
4422
4423	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4424	if (new_val < IGB_20K_ITR &&
4425	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4426	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4427		new_val = IGB_20K_ITR;
4428
4429set_itr_val:
4430	if (new_val != q_vector->itr_val) {
4431		q_vector->itr_val = new_val;
4432		q_vector->set_itr = 1;
4433	}
4434clear_counts:
4435	q_vector->rx.total_bytes = 0;
4436	q_vector->rx.total_packets = 0;
4437	q_vector->tx.total_bytes = 0;
4438	q_vector->tx.total_packets = 0;
4439}
4440
4441/**
4442 *  igb_update_itr - update the dynamic ITR value based on statistics
4443 *  @q_vector: pointer to q_vector
4444 *  @ring_container: ring info to update the itr for
4445 *
4446 *  Stores a new ITR value based on packets and byte
4447 *  counts during the last interrupt.  The advantage of per interrupt
4448 *  computation is faster updates and more accurate ITR for the current
4449 *  traffic pattern.  Constants in this function were computed
4450 *  based on theoretical maximum wire speed and thresholds were set based
4451 *  on testing data as well as attempting to minimize response time
4452 *  while increasing bulk throughput.
4453 *  This functionality is controlled by ethtool's coalescing settings.
4454 *  NOTE:  These calculations are only valid when operating in a single-
4455 *         queue environment.
4456 **/
4457static void igb_update_itr(struct igb_q_vector *q_vector,
4458			   struct igb_ring_container *ring_container)
4459{
4460	unsigned int packets = ring_container->total_packets;
4461	unsigned int bytes = ring_container->total_bytes;
4462	u8 itrval = ring_container->itr;
4463
4464	/* no packets, exit with status unchanged */
4465	if (packets == 0)
4466		return;
4467
4468	switch (itrval) {
4469	case lowest_latency:
4470		/* handle TSO and jumbo frames */
4471		if (bytes/packets > 8000)
4472			itrval = bulk_latency;
4473		else if ((packets < 5) && (bytes > 512))
4474			itrval = low_latency;
4475		break;
4476	case low_latency:  /* 50 usec aka 20000 ints/s */
4477		if (bytes > 10000) {
4478			/* this if handles the TSO accounting */
4479			if (bytes/packets > 8000) {
4480				itrval = bulk_latency;
4481			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4482				itrval = bulk_latency;
4483			} else if ((packets > 35)) {
4484				itrval = lowest_latency;
4485			}
4486		} else if (bytes/packets > 2000) {
4487			itrval = bulk_latency;
4488		} else if (packets <= 2 && bytes < 512) {
4489			itrval = lowest_latency;
4490		}
4491		break;
4492	case bulk_latency: /* 250 usec aka 4000 ints/s */
4493		if (bytes > 25000) {
4494			if (packets > 35)
4495				itrval = low_latency;
4496		} else if (bytes < 1500) {
4497			itrval = low_latency;
4498		}
4499		break;
4500	}
4501
4502	/* clear work counters since we have the values we need */
4503	ring_container->total_bytes = 0;
4504	ring_container->total_packets = 0;
4505
4506	/* write updated itr to ring container */
4507	ring_container->itr = itrval;
4508}
4509
4510static void igb_set_itr(struct igb_q_vector *q_vector)
4511{
4512	struct igb_adapter *adapter = q_vector->adapter;
4513	u32 new_itr = q_vector->itr_val;
4514	u8 current_itr = 0;
4515
4516	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4517	if (adapter->link_speed != SPEED_1000) {
4518		current_itr = 0;
4519		new_itr = IGB_4K_ITR;
4520		goto set_itr_now;
4521	}
4522
4523	igb_update_itr(q_vector, &q_vector->tx);
4524	igb_update_itr(q_vector, &q_vector->rx);
4525
4526	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4527
4528	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4529	if (current_itr == lowest_latency &&
4530	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4531	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4532		current_itr = low_latency;
4533
4534	switch (current_itr) {
4535	/* counts and packets in update_itr are dependent on these numbers */
4536	case lowest_latency:
4537		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4538		break;
4539	case low_latency:
4540		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4541		break;
4542	case bulk_latency:
4543		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4544		break;
4545	default:
4546		break;
4547	}
4548
4549set_itr_now:
4550	if (new_itr != q_vector->itr_val) {
4551		/* this attempts to bias the interrupt rate towards Bulk
4552		 * by adding intermediate steps when interrupt rate is
4553		 * increasing
4554		 */
4555		new_itr = new_itr > q_vector->itr_val ?
4556			  max((new_itr * q_vector->itr_val) /
4557			  (new_itr + (q_vector->itr_val >> 2)),
4558			  new_itr) : new_itr;
4559		/* Don't write the value here; it resets the adapter's
4560		 * internal timer, and causes us to delay far longer than
4561		 * we should between interrupts.  Instead, we write the ITR
4562		 * value at the beginning of the next interrupt so the timing
4563		 * ends up being correct.
4564		 */
4565		q_vector->itr_val = new_itr;
4566		q_vector->set_itr = 1;
4567	}
4568}
4569
4570static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4571			    u32 type_tucmd, u32 mss_l4len_idx)
4572{
4573	struct e1000_adv_tx_context_desc *context_desc;
4574	u16 i = tx_ring->next_to_use;
4575
4576	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4577
4578	i++;
4579	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4580
4581	/* set bits to identify this as an advanced context descriptor */
4582	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4583
4584	/* For 82575, context index must be unique per ring. */
4585	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4586		mss_l4len_idx |= tx_ring->reg_idx << 4;
4587
4588	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4589	context_desc->seqnum_seed	= 0;
4590	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4591	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4592}
4593
4594static int igb_tso(struct igb_ring *tx_ring,
4595		   struct igb_tx_buffer *first,
4596		   u8 *hdr_len)
4597{
4598	struct sk_buff *skb = first->skb;
4599	u32 vlan_macip_lens, type_tucmd;
4600	u32 mss_l4len_idx, l4len;
4601
4602	if (skb->ip_summed != CHECKSUM_PARTIAL)
4603		return 0;
4604
4605	if (!skb_is_gso(skb))
4606		return 0;
4607
4608	if (skb_header_cloned(skb)) {
4609		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4610		if (err)
4611			return err;
4612	}
4613
4614	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4615	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4616
4617	if (first->protocol == htons(ETH_P_IP)) {
4618		struct iphdr *iph = ip_hdr(skb);
4619		iph->tot_len = 0;
4620		iph->check = 0;
4621		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4622							 iph->daddr, 0,
4623							 IPPROTO_TCP,
4624							 0);
4625		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4626		first->tx_flags |= IGB_TX_FLAGS_TSO |
4627				   IGB_TX_FLAGS_CSUM |
4628				   IGB_TX_FLAGS_IPV4;
4629	} else if (skb_is_gso_v6(skb)) {
4630		ipv6_hdr(skb)->payload_len = 0;
4631		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4632						       &ipv6_hdr(skb)->daddr,
4633						       0, IPPROTO_TCP, 0);
4634		first->tx_flags |= IGB_TX_FLAGS_TSO |
4635				   IGB_TX_FLAGS_CSUM;
4636	}
4637
4638	/* compute header lengths */
4639	l4len = tcp_hdrlen(skb);
4640	*hdr_len = skb_transport_offset(skb) + l4len;
4641
4642	/* update gso size and bytecount with header size */
4643	first->gso_segs = skb_shinfo(skb)->gso_segs;
4644	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4645
4646	/* MSS L4LEN IDX */
4647	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4648	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4649
4650	/* VLAN MACLEN IPLEN */
4651	vlan_macip_lens = skb_network_header_len(skb);
4652	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4653	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4654
4655	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4656
4657	return 1;
4658}
4659
4660static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4661{
4662	struct sk_buff *skb = first->skb;
4663	u32 vlan_macip_lens = 0;
4664	u32 mss_l4len_idx = 0;
4665	u32 type_tucmd = 0;
4666
4667	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4668		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4669			return;
4670	} else {
4671		u8 l4_hdr = 0;
4672		switch (first->protocol) {
4673		case htons(ETH_P_IP):
4674			vlan_macip_lens |= skb_network_header_len(skb);
4675			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4676			l4_hdr = ip_hdr(skb)->protocol;
4677			break;
4678		case htons(ETH_P_IPV6):
4679			vlan_macip_lens |= skb_network_header_len(skb);
4680			l4_hdr = ipv6_hdr(skb)->nexthdr;
4681			break;
4682		default:
4683			if (unlikely(net_ratelimit())) {
4684				dev_warn(tx_ring->dev,
4685					 "partial checksum but proto=%x!\n",
4686					 first->protocol);
4687			}
4688			break;
4689		}
4690
4691		switch (l4_hdr) {
4692		case IPPROTO_TCP:
4693			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4694			mss_l4len_idx = tcp_hdrlen(skb) <<
4695					E1000_ADVTXD_L4LEN_SHIFT;
4696			break;
4697		case IPPROTO_SCTP:
4698			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4699			mss_l4len_idx = sizeof(struct sctphdr) <<
4700					E1000_ADVTXD_L4LEN_SHIFT;
4701			break;
4702		case IPPROTO_UDP:
4703			mss_l4len_idx = sizeof(struct udphdr) <<
4704					E1000_ADVTXD_L4LEN_SHIFT;
4705			break;
4706		default:
4707			if (unlikely(net_ratelimit())) {
4708				dev_warn(tx_ring->dev,
4709					 "partial checksum but l4 proto=%x!\n",
4710					 l4_hdr);
4711			}
4712			break;
4713		}
4714
4715		/* update TX checksum flag */
4716		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4717	}
4718
4719	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4720	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4721
4722	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4723}
4724
4725#define IGB_SET_FLAG(_input, _flag, _result) \
4726	((_flag <= _result) ? \
4727	 ((u32)(_input & _flag) * (_result / _flag)) : \
4728	 ((u32)(_input & _flag) / (_flag / _result)))
4729
4730static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4731{
4732	/* set type for advanced descriptor with frame checksum insertion */
4733	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4734		       E1000_ADVTXD_DCMD_DEXT |
4735		       E1000_ADVTXD_DCMD_IFCS;
4736
4737	/* set HW vlan bit if vlan is present */
4738	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4739				 (E1000_ADVTXD_DCMD_VLE));
4740
4741	/* set segmentation bits for TSO */
4742	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4743				 (E1000_ADVTXD_DCMD_TSE));
4744
4745	/* set timestamp bit if present */
4746	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4747				 (E1000_ADVTXD_MAC_TSTAMP));
4748
4749	/* insert frame checksum */
4750	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4751
4752	return cmd_type;
4753}
4754
4755static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4756				 union e1000_adv_tx_desc *tx_desc,
4757				 u32 tx_flags, unsigned int paylen)
4758{
4759	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4760
4761	/* 82575 requires a unique index per ring */
4762	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4763		olinfo_status |= tx_ring->reg_idx << 4;
4764
4765	/* insert L4 checksum */
4766	olinfo_status |= IGB_SET_FLAG(tx_flags,
4767				      IGB_TX_FLAGS_CSUM,
4768				      (E1000_TXD_POPTS_TXSM << 8));
4769
4770	/* insert IPv4 checksum */
4771	olinfo_status |= IGB_SET_FLAG(tx_flags,
4772				      IGB_TX_FLAGS_IPV4,
4773				      (E1000_TXD_POPTS_IXSM << 8));
4774
4775	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4776}
4777
4778static void igb_tx_map(struct igb_ring *tx_ring,
4779		       struct igb_tx_buffer *first,
4780		       const u8 hdr_len)
4781{
4782	struct sk_buff *skb = first->skb;
4783	struct igb_tx_buffer *tx_buffer;
4784	union e1000_adv_tx_desc *tx_desc;
4785	struct skb_frag_struct *frag;
4786	dma_addr_t dma;
4787	unsigned int data_len, size;
4788	u32 tx_flags = first->tx_flags;
4789	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4790	u16 i = tx_ring->next_to_use;
4791
4792	tx_desc = IGB_TX_DESC(tx_ring, i);
4793
4794	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4795
4796	size = skb_headlen(skb);
4797	data_len = skb->data_len;
4798
4799	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4800
4801	tx_buffer = first;
4802
4803	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4804		if (dma_mapping_error(tx_ring->dev, dma))
4805			goto dma_error;
4806
4807		/* record length, and DMA address */
4808		dma_unmap_len_set(tx_buffer, len, size);
4809		dma_unmap_addr_set(tx_buffer, dma, dma);
4810
4811		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4812
4813		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4814			tx_desc->read.cmd_type_len =
4815				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4816
4817			i++;
4818			tx_desc++;
4819			if (i == tx_ring->count) {
4820				tx_desc = IGB_TX_DESC(tx_ring, 0);
4821				i = 0;
4822			}
4823			tx_desc->read.olinfo_status = 0;
4824
4825			dma += IGB_MAX_DATA_PER_TXD;
4826			size -= IGB_MAX_DATA_PER_TXD;
4827
4828			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4829		}
4830
4831		if (likely(!data_len))
4832			break;
4833
4834		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4835
4836		i++;
4837		tx_desc++;
4838		if (i == tx_ring->count) {
4839			tx_desc = IGB_TX_DESC(tx_ring, 0);
4840			i = 0;
4841		}
4842		tx_desc->read.olinfo_status = 0;
4843
4844		size = skb_frag_size(frag);
4845		data_len -= size;
4846
4847		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4848				       size, DMA_TO_DEVICE);
4849
4850		tx_buffer = &tx_ring->tx_buffer_info[i];
4851	}
4852
4853	/* write last descriptor with RS and EOP bits */
4854	cmd_type |= size | IGB_TXD_DCMD;
4855	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4856
4857	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4858
4859	/* set the timestamp */
4860	first->time_stamp = jiffies;
4861
4862	/* Force memory writes to complete before letting h/w know there
4863	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4864	 * memory model archs, such as IA-64).
4865	 *
4866	 * We also need this memory barrier to make certain all of the
4867	 * status bits have been updated before next_to_watch is written.
4868	 */
4869	wmb();
4870
4871	/* set next_to_watch value indicating a packet is present */
4872	first->next_to_watch = tx_desc;
4873
4874	i++;
4875	if (i == tx_ring->count)
4876		i = 0;
4877
4878	tx_ring->next_to_use = i;
4879
4880	writel(i, tx_ring->tail);
4881
4882	/* we need this if more than one processor can write to our tail
4883	 * at a time, it synchronizes IO on IA64/Altix systems
4884	 */
4885	mmiowb();
4886
4887	return;
4888
4889dma_error:
4890	dev_err(tx_ring->dev, "TX DMA map failed\n");
4891
4892	/* clear dma mappings for failed tx_buffer_info map */
4893	for (;;) {
4894		tx_buffer = &tx_ring->tx_buffer_info[i];
4895		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4896		if (tx_buffer == first)
4897			break;
4898		if (i == 0)
4899			i = tx_ring->count;
4900		i--;
4901	}
4902
4903	tx_ring->next_to_use = i;
4904}
4905
4906static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4907{
4908	struct net_device *netdev = tx_ring->netdev;
4909
4910	netif_stop_subqueue(netdev, tx_ring->queue_index);
4911
4912	/* Herbert's original patch had:
4913	 *  smp_mb__after_netif_stop_queue();
4914	 * but since that doesn't exist yet, just open code it.
4915	 */
4916	smp_mb();
4917
4918	/* We need to check again in a case another CPU has just
4919	 * made room available.
4920	 */
4921	if (igb_desc_unused(tx_ring) < size)
4922		return -EBUSY;
4923
4924	/* A reprieve! */
4925	netif_wake_subqueue(netdev, tx_ring->queue_index);
4926
4927	u64_stats_update_begin(&tx_ring->tx_syncp2);
4928	tx_ring->tx_stats.restart_queue2++;
4929	u64_stats_update_end(&tx_ring->tx_syncp2);
4930
4931	return 0;
4932}
4933
4934static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4935{
4936	if (igb_desc_unused(tx_ring) >= size)
4937		return 0;
4938	return __igb_maybe_stop_tx(tx_ring, size);
4939}
4940
4941netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4942				struct igb_ring *tx_ring)
4943{
4944	struct igb_tx_buffer *first;
4945	int tso;
4946	u32 tx_flags = 0;
4947	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4948	__be16 protocol = vlan_get_protocol(skb);
4949	u8 hdr_len = 0;
4950
4951	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4952	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4953	 *       + 2 desc gap to keep tail from touching head,
4954	 *       + 1 desc for context descriptor,
4955	 * otherwise try next time
4956	 */
4957	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4958		unsigned short f;
4959		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4960			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4961	} else {
4962		count += skb_shinfo(skb)->nr_frags;
4963	}
4964
4965	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4966		/* this is a hard error */
4967		return NETDEV_TX_BUSY;
4968	}
4969
4970	/* record the location of the first descriptor for this packet */
4971	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4972	first->skb = skb;
4973	first->bytecount = skb->len;
4974	first->gso_segs = 1;
4975
4976	skb_tx_timestamp(skb);
4977
4978	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4979		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4980
4981		if (!(adapter->ptp_tx_skb)) {
4982			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4983			tx_flags |= IGB_TX_FLAGS_TSTAMP;
4984
4985			adapter->ptp_tx_skb = skb_get(skb);
4986			adapter->ptp_tx_start = jiffies;
4987			if (adapter->hw.mac.type == e1000_82576)
4988				schedule_work(&adapter->ptp_tx_work);
4989		}
4990	}
4991
4992	if (vlan_tx_tag_present(skb)) {
4993		tx_flags |= IGB_TX_FLAGS_VLAN;
4994		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4995	}
4996
4997	/* record initial flags and protocol */
4998	first->tx_flags = tx_flags;
4999	first->protocol = protocol;
5000
5001	tso = igb_tso(tx_ring, first, &hdr_len);
5002	if (tso < 0)
5003		goto out_drop;
5004	else if (!tso)
5005		igb_tx_csum(tx_ring, first);
5006
5007	igb_tx_map(tx_ring, first, hdr_len);
5008
5009	/* Make sure there is space in the ring for the next send. */
5010	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5011
5012	return NETDEV_TX_OK;
5013
5014out_drop:
5015	igb_unmap_and_free_tx_resource(tx_ring, first);
5016
5017	return NETDEV_TX_OK;
5018}
5019
5020static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5021						    struct sk_buff *skb)
5022{
5023	unsigned int r_idx = skb->queue_mapping;
5024
5025	if (r_idx >= adapter->num_tx_queues)
5026		r_idx = r_idx % adapter->num_tx_queues;
5027
5028	return adapter->tx_ring[r_idx];
5029}
5030
5031static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5032				  struct net_device *netdev)
5033{
5034	struct igb_adapter *adapter = netdev_priv(netdev);
5035
5036	if (test_bit(__IGB_DOWN, &adapter->state)) {
5037		dev_kfree_skb_any(skb);
5038		return NETDEV_TX_OK;
5039	}
5040
5041	if (skb->len <= 0) {
5042		dev_kfree_skb_any(skb);
5043		return NETDEV_TX_OK;
5044	}
5045
5046	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5047	 * in order to meet this minimum size requirement.
5048	 */
5049	if (unlikely(skb->len < 17)) {
5050		if (skb_pad(skb, 17 - skb->len))
5051			return NETDEV_TX_OK;
5052		skb->len = 17;
5053		skb_set_tail_pointer(skb, 17);
5054	}
5055
5056	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5057}
5058
5059/**
5060 *  igb_tx_timeout - Respond to a Tx Hang
5061 *  @netdev: network interface device structure
5062 **/
5063static void igb_tx_timeout(struct net_device *netdev)
5064{
5065	struct igb_adapter *adapter = netdev_priv(netdev);
5066	struct e1000_hw *hw = &adapter->hw;
5067
5068	/* Do the reset outside of interrupt context */
5069	adapter->tx_timeout_count++;
5070
5071	if (hw->mac.type >= e1000_82580)
5072		hw->dev_spec._82575.global_device_reset = true;
5073
5074	schedule_work(&adapter->reset_task);
5075	wr32(E1000_EICS,
5076	     (adapter->eims_enable_mask & ~adapter->eims_other));
5077}
5078
5079static void igb_reset_task(struct work_struct *work)
5080{
5081	struct igb_adapter *adapter;
5082	adapter = container_of(work, struct igb_adapter, reset_task);
5083
5084	igb_dump(adapter);
5085	netdev_err(adapter->netdev, "Reset adapter\n");
5086	igb_reinit_locked(adapter);
5087}
5088
5089/**
5090 *  igb_get_stats64 - Get System Network Statistics
5091 *  @netdev: network interface device structure
5092 *  @stats: rtnl_link_stats64 pointer
5093 **/
5094static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5095						struct rtnl_link_stats64 *stats)
5096{
5097	struct igb_adapter *adapter = netdev_priv(netdev);
5098
5099	spin_lock(&adapter->stats64_lock);
5100	igb_update_stats(adapter, &adapter->stats64);
5101	memcpy(stats, &adapter->stats64, sizeof(*stats));
5102	spin_unlock(&adapter->stats64_lock);
5103
5104	return stats;
5105}
5106
5107/**
5108 *  igb_change_mtu - Change the Maximum Transfer Unit
5109 *  @netdev: network interface device structure
5110 *  @new_mtu: new value for maximum frame size
5111 *
5112 *  Returns 0 on success, negative on failure
5113 **/
5114static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5115{
5116	struct igb_adapter *adapter = netdev_priv(netdev);
5117	struct pci_dev *pdev = adapter->pdev;
5118	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5119
5120	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5121		dev_err(&pdev->dev, "Invalid MTU setting\n");
5122		return -EINVAL;
5123	}
5124
5125#define MAX_STD_JUMBO_FRAME_SIZE 9238
5126	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5127		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5128		return -EINVAL;
5129	}
5130
5131	/* adjust max frame to be at least the size of a standard frame */
5132	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5133		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5134
5135	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5136		msleep(1);
5137
5138	/* igb_down has a dependency on max_frame_size */
5139	adapter->max_frame_size = max_frame;
5140
5141	if (netif_running(netdev))
5142		igb_down(adapter);
5143
5144	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5145		 netdev->mtu, new_mtu);
5146	netdev->mtu = new_mtu;
5147
5148	if (netif_running(netdev))
5149		igb_up(adapter);
5150	else
5151		igb_reset(adapter);
5152
5153	clear_bit(__IGB_RESETTING, &adapter->state);
5154
5155	return 0;
5156}
5157
5158/**
5159 *  igb_update_stats - Update the board statistics counters
5160 *  @adapter: board private structure
5161 **/
5162void igb_update_stats(struct igb_adapter *adapter,
5163		      struct rtnl_link_stats64 *net_stats)
5164{
5165	struct e1000_hw *hw = &adapter->hw;
5166	struct pci_dev *pdev = adapter->pdev;
5167	u32 reg, mpc;
5168	u16 phy_tmp;
5169	int i;
5170	u64 bytes, packets;
5171	unsigned int start;
5172	u64 _bytes, _packets;
5173
5174#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
5175
5176	/* Prevent stats update while adapter is being reset, or if the pci
5177	 * connection is down.
5178	 */
5179	if (adapter->link_speed == 0)
5180		return;
5181	if (pci_channel_offline(pdev))
5182		return;
5183
5184	bytes = 0;
5185	packets = 0;
5186
5187	rcu_read_lock();
5188	for (i = 0; i < adapter->num_rx_queues; i++) {
5189		u32 rqdpc = rd32(E1000_RQDPC(i));
5190		struct igb_ring *ring = adapter->rx_ring[i];
5191
5192		if (rqdpc) {
5193			ring->rx_stats.drops += rqdpc;
5194			net_stats->rx_fifo_errors += rqdpc;
5195		}
5196
5197		do {
5198			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5199			_bytes = ring->rx_stats.bytes;
5200			_packets = ring->rx_stats.packets;
5201		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5202		bytes += _bytes;
5203		packets += _packets;
5204	}
5205
5206	net_stats->rx_bytes = bytes;
5207	net_stats->rx_packets = packets;
5208
5209	bytes = 0;
5210	packets = 0;
5211	for (i = 0; i < adapter->num_tx_queues; i++) {
5212		struct igb_ring *ring = adapter->tx_ring[i];
5213		do {
5214			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5215			_bytes = ring->tx_stats.bytes;
5216			_packets = ring->tx_stats.packets;
5217		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5218		bytes += _bytes;
5219		packets += _packets;
5220	}
5221	net_stats->tx_bytes = bytes;
5222	net_stats->tx_packets = packets;
5223	rcu_read_unlock();
5224
5225	/* read stats registers */
5226	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5227	adapter->stats.gprc += rd32(E1000_GPRC);
5228	adapter->stats.gorc += rd32(E1000_GORCL);
5229	rd32(E1000_GORCH); /* clear GORCL */
5230	adapter->stats.bprc += rd32(E1000_BPRC);
5231	adapter->stats.mprc += rd32(E1000_MPRC);
5232	adapter->stats.roc += rd32(E1000_ROC);
5233
5234	adapter->stats.prc64 += rd32(E1000_PRC64);
5235	adapter->stats.prc127 += rd32(E1000_PRC127);
5236	adapter->stats.prc255 += rd32(E1000_PRC255);
5237	adapter->stats.prc511 += rd32(E1000_PRC511);
5238	adapter->stats.prc1023 += rd32(E1000_PRC1023);
5239	adapter->stats.prc1522 += rd32(E1000_PRC1522);
5240	adapter->stats.symerrs += rd32(E1000_SYMERRS);
5241	adapter->stats.sec += rd32(E1000_SEC);
5242
5243	mpc = rd32(E1000_MPC);
5244	adapter->stats.mpc += mpc;
5245	net_stats->rx_fifo_errors += mpc;
5246	adapter->stats.scc += rd32(E1000_SCC);
5247	adapter->stats.ecol += rd32(E1000_ECOL);
5248	adapter->stats.mcc += rd32(E1000_MCC);
5249	adapter->stats.latecol += rd32(E1000_LATECOL);
5250	adapter->stats.dc += rd32(E1000_DC);
5251	adapter->stats.rlec += rd32(E1000_RLEC);
5252	adapter->stats.xonrxc += rd32(E1000_XONRXC);
5253	adapter->stats.xontxc += rd32(E1000_XONTXC);
5254	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5255	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5256	adapter->stats.fcruc += rd32(E1000_FCRUC);
5257	adapter->stats.gptc += rd32(E1000_GPTC);
5258	adapter->stats.gotc += rd32(E1000_GOTCL);
5259	rd32(E1000_GOTCH); /* clear GOTCL */
5260	adapter->stats.rnbc += rd32(E1000_RNBC);
5261	adapter->stats.ruc += rd32(E1000_RUC);
5262	adapter->stats.rfc += rd32(E1000_RFC);
5263	adapter->stats.rjc += rd32(E1000_RJC);
5264	adapter->stats.tor += rd32(E1000_TORH);
5265	adapter->stats.tot += rd32(E1000_TOTH);
5266	adapter->stats.tpr += rd32(E1000_TPR);
5267
5268	adapter->stats.ptc64 += rd32(E1000_PTC64);
5269	adapter->stats.ptc127 += rd32(E1000_PTC127);
5270	adapter->stats.ptc255 += rd32(E1000_PTC255);
5271	adapter->stats.ptc511 += rd32(E1000_PTC511);
5272	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5273	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5274
5275	adapter->stats.mptc += rd32(E1000_MPTC);
5276	adapter->stats.bptc += rd32(E1000_BPTC);
5277
5278	adapter->stats.tpt += rd32(E1000_TPT);
5279	adapter->stats.colc += rd32(E1000_COLC);
5280
5281	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5282	/* read internal phy specific stats */
5283	reg = rd32(E1000_CTRL_EXT);
5284	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5285		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5286
5287		/* this stat has invalid values on i210/i211 */
5288		if ((hw->mac.type != e1000_i210) &&
5289		    (hw->mac.type != e1000_i211))
5290			adapter->stats.tncrs += rd32(E1000_TNCRS);
5291	}
5292
5293	adapter->stats.tsctc += rd32(E1000_TSCTC);
5294	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5295
5296	adapter->stats.iac += rd32(E1000_IAC);
5297	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5298	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5299	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5300	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5301	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5302	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5303	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5304	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5305
5306	/* Fill out the OS statistics structure */
5307	net_stats->multicast = adapter->stats.mprc;
5308	net_stats->collisions = adapter->stats.colc;
5309
5310	/* Rx Errors */
5311
5312	/* RLEC on some newer hardware can be incorrect so build
5313	 * our own version based on RUC and ROC
5314	 */
5315	net_stats->rx_errors = adapter->stats.rxerrc +
5316		adapter->stats.crcerrs + adapter->stats.algnerrc +
5317		adapter->stats.ruc + adapter->stats.roc +
5318		adapter->stats.cexterr;
5319	net_stats->rx_length_errors = adapter->stats.ruc +
5320				      adapter->stats.roc;
5321	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5322	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5323	net_stats->rx_missed_errors = adapter->stats.mpc;
5324
5325	/* Tx Errors */
5326	net_stats->tx_errors = adapter->stats.ecol +
5327			       adapter->stats.latecol;
5328	net_stats->tx_aborted_errors = adapter->stats.ecol;
5329	net_stats->tx_window_errors = adapter->stats.latecol;
5330	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5331
5332	/* Tx Dropped needs to be maintained elsewhere */
5333
5334	/* Phy Stats */
5335	if (hw->phy.media_type == e1000_media_type_copper) {
5336		if ((adapter->link_speed == SPEED_1000) &&
5337		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5338			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5339			adapter->phy_stats.idle_errors += phy_tmp;
5340		}
5341	}
5342
5343	/* Management Stats */
5344	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5345	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5346	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5347
5348	/* OS2BMC Stats */
5349	reg = rd32(E1000_MANC);
5350	if (reg & E1000_MANC_EN_BMC2OS) {
5351		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5352		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5353		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5354		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5355	}
5356}
5357
5358static irqreturn_t igb_msix_other(int irq, void *data)
5359{
5360	struct igb_adapter *adapter = data;
5361	struct e1000_hw *hw = &adapter->hw;
5362	u32 icr = rd32(E1000_ICR);
5363	/* reading ICR causes bit 31 of EICR to be cleared */
5364
5365	if (icr & E1000_ICR_DRSTA)
5366		schedule_work(&adapter->reset_task);
5367
5368	if (icr & E1000_ICR_DOUTSYNC) {
5369		/* HW is reporting DMA is out of sync */
5370		adapter->stats.doosync++;
5371		/* The DMA Out of Sync is also indication of a spoof event
5372		 * in IOV mode. Check the Wrong VM Behavior register to
5373		 * see if it is really a spoof event.
5374		 */
5375		igb_check_wvbr(adapter);
5376	}
5377
5378	/* Check for a mailbox event */
5379	if (icr & E1000_ICR_VMMB)
5380		igb_msg_task(adapter);
5381
5382	if (icr & E1000_ICR_LSC) {
5383		hw->mac.get_link_status = 1;
5384		/* guard against interrupt when we're going down */
5385		if (!test_bit(__IGB_DOWN, &adapter->state))
5386			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5387	}
5388
5389	if (icr & E1000_ICR_TS) {
5390		u32 tsicr = rd32(E1000_TSICR);
5391
5392		if (tsicr & E1000_TSICR_TXTS) {
5393			/* acknowledge the interrupt */
5394			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5395			/* retrieve hardware timestamp */
5396			schedule_work(&adapter->ptp_tx_work);
5397		}
5398	}
5399
5400	wr32(E1000_EIMS, adapter->eims_other);
5401
5402	return IRQ_HANDLED;
5403}
5404
5405static void igb_write_itr(struct igb_q_vector *q_vector)
5406{
5407	struct igb_adapter *adapter = q_vector->adapter;
5408	u32 itr_val = q_vector->itr_val & 0x7FFC;
5409
5410	if (!q_vector->set_itr)
5411		return;
5412
5413	if (!itr_val)
5414		itr_val = 0x4;
5415
5416	if (adapter->hw.mac.type == e1000_82575)
5417		itr_val |= itr_val << 16;
5418	else
5419		itr_val |= E1000_EITR_CNT_IGNR;
5420
5421	writel(itr_val, q_vector->itr_register);
5422	q_vector->set_itr = 0;
5423}
5424
5425static irqreturn_t igb_msix_ring(int irq, void *data)
5426{
5427	struct igb_q_vector *q_vector = data;
5428
5429	/* Write the ITR value calculated from the previous interrupt. */
5430	igb_write_itr(q_vector);
5431
5432	napi_schedule(&q_vector->napi);
5433
5434	return IRQ_HANDLED;
5435}
5436
5437#ifdef CONFIG_IGB_DCA
5438static void igb_update_tx_dca(struct igb_adapter *adapter,
5439			      struct igb_ring *tx_ring,
5440			      int cpu)
5441{
5442	struct e1000_hw *hw = &adapter->hw;
5443	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5444
5445	if (hw->mac.type != e1000_82575)
5446		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5447
5448	/* We can enable relaxed ordering for reads, but not writes when
5449	 * DCA is enabled.  This is due to a known issue in some chipsets
5450	 * which will cause the DCA tag to be cleared.
5451	 */
5452	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5453		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5454		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5455
5456	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5457}
5458
5459static void igb_update_rx_dca(struct igb_adapter *adapter,
5460			      struct igb_ring *rx_ring,
5461			      int cpu)
5462{
5463	struct e1000_hw *hw = &adapter->hw;
5464	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5465
5466	if (hw->mac.type != e1000_82575)
5467		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5468
5469	/* We can enable relaxed ordering for reads, but not writes when
5470	 * DCA is enabled.  This is due to a known issue in some chipsets
5471	 * which will cause the DCA tag to be cleared.
5472	 */
5473	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5474		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5475
5476	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5477}
5478
5479static void igb_update_dca(struct igb_q_vector *q_vector)
5480{
5481	struct igb_adapter *adapter = q_vector->adapter;
5482	int cpu = get_cpu();
5483
5484	if (q_vector->cpu == cpu)
5485		goto out_no_update;
5486
5487	if (q_vector->tx.ring)
5488		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5489
5490	if (q_vector->rx.ring)
5491		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5492
5493	q_vector->cpu = cpu;
5494out_no_update:
5495	put_cpu();
5496}
5497
5498static void igb_setup_dca(struct igb_adapter *adapter)
5499{
5500	struct e1000_hw *hw = &adapter->hw;
5501	int i;
5502
5503	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5504		return;
5505
5506	/* Always use CB2 mode, difference is masked in the CB driver. */
5507	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5508
5509	for (i = 0; i < adapter->num_q_vectors; i++) {
5510		adapter->q_vector[i]->cpu = -1;
5511		igb_update_dca(adapter->q_vector[i]);
5512	}
5513}
5514
5515static int __igb_notify_dca(struct device *dev, void *data)
5516{
5517	struct net_device *netdev = dev_get_drvdata(dev);
5518	struct igb_adapter *adapter = netdev_priv(netdev);
5519	struct pci_dev *pdev = adapter->pdev;
5520	struct e1000_hw *hw = &adapter->hw;
5521	unsigned long event = *(unsigned long *)data;
5522
5523	switch (event) {
5524	case DCA_PROVIDER_ADD:
5525		/* if already enabled, don't do it again */
5526		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5527			break;
5528		if (dca_add_requester(dev) == 0) {
5529			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5530			dev_info(&pdev->dev, "DCA enabled\n");
5531			igb_setup_dca(adapter);
5532			break;
5533		}
5534		/* Fall Through since DCA is disabled. */
5535	case DCA_PROVIDER_REMOVE:
5536		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5537			/* without this a class_device is left
5538			 * hanging around in the sysfs model
5539			 */
5540			dca_remove_requester(dev);
5541			dev_info(&pdev->dev, "DCA disabled\n");
5542			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5543			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5544		}
5545		break;
5546	}
5547
5548	return 0;
5549}
5550
5551static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5552			  void *p)
5553{
5554	int ret_val;
5555
5556	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5557					 __igb_notify_dca);
5558
5559	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5560}
5561#endif /* CONFIG_IGB_DCA */
5562
5563#ifdef CONFIG_PCI_IOV
5564static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5565{
5566	unsigned char mac_addr[ETH_ALEN];
5567
5568	eth_zero_addr(mac_addr);
5569	igb_set_vf_mac(adapter, vf, mac_addr);
5570
5571	/* By default spoof check is enabled for all VFs */
5572	adapter->vf_data[vf].spoofchk_enabled = true;
5573
5574	return 0;
5575}
5576
5577#endif
5578static void igb_ping_all_vfs(struct igb_adapter *adapter)
5579{
5580	struct e1000_hw *hw = &adapter->hw;
5581	u32 ping;
5582	int i;
5583
5584	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5585		ping = E1000_PF_CONTROL_MSG;
5586		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5587			ping |= E1000_VT_MSGTYPE_CTS;
5588		igb_write_mbx(hw, &ping, 1, i);
5589	}
5590}
5591
5592static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5593{
5594	struct e1000_hw *hw = &adapter->hw;
5595	u32 vmolr = rd32(E1000_VMOLR(vf));
5596	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5597
5598	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5599			    IGB_VF_FLAG_MULTI_PROMISC);
5600	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5601
5602	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5603		vmolr |= E1000_VMOLR_MPME;
5604		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5605		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5606	} else {
5607		/* if we have hashes and we are clearing a multicast promisc
5608		 * flag we need to write the hashes to the MTA as this step
5609		 * was previously skipped
5610		 */
5611		if (vf_data->num_vf_mc_hashes > 30) {
5612			vmolr |= E1000_VMOLR_MPME;
5613		} else if (vf_data->num_vf_mc_hashes) {
5614			int j;
5615			vmolr |= E1000_VMOLR_ROMPE;
5616			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5617				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5618		}
5619	}
5620
5621	wr32(E1000_VMOLR(vf), vmolr);
5622
5623	/* there are flags left unprocessed, likely not supported */
5624	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5625		return -EINVAL;
5626
5627	return 0;
5628}
5629
5630static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5631				  u32 *msgbuf, u32 vf)
5632{
5633	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5634	u16 *hash_list = (u16 *)&msgbuf[1];
5635	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5636	int i;
5637
5638	/* salt away the number of multicast addresses assigned
5639	 * to this VF for later use to restore when the PF multi cast
5640	 * list changes
5641	 */
5642	vf_data->num_vf_mc_hashes = n;
5643
5644	/* only up to 30 hash values supported */
5645	if (n > 30)
5646		n = 30;
5647
5648	/* store the hashes for later use */
5649	for (i = 0; i < n; i++)
5650		vf_data->vf_mc_hashes[i] = hash_list[i];
5651
5652	/* Flush and reset the mta with the new values */
5653	igb_set_rx_mode(adapter->netdev);
5654
5655	return 0;
5656}
5657
5658static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5659{
5660	struct e1000_hw *hw = &adapter->hw;
5661	struct vf_data_storage *vf_data;
5662	int i, j;
5663
5664	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5665		u32 vmolr = rd32(E1000_VMOLR(i));
5666		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5667
5668		vf_data = &adapter->vf_data[i];
5669
5670		if ((vf_data->num_vf_mc_hashes > 30) ||
5671		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5672			vmolr |= E1000_VMOLR_MPME;
5673		} else if (vf_data->num_vf_mc_hashes) {
5674			vmolr |= E1000_VMOLR_ROMPE;
5675			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5676				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5677		}
5678		wr32(E1000_VMOLR(i), vmolr);
5679	}
5680}
5681
5682static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5683{
5684	struct e1000_hw *hw = &adapter->hw;
5685	u32 pool_mask, reg, vid;
5686	int i;
5687
5688	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5689
5690	/* Find the vlan filter for this id */
5691	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5692		reg = rd32(E1000_VLVF(i));
5693
5694		/* remove the vf from the pool */
5695		reg &= ~pool_mask;
5696
5697		/* if pool is empty then remove entry from vfta */
5698		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5699		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5700			reg = 0;
5701			vid = reg & E1000_VLVF_VLANID_MASK;
5702			igb_vfta_set(hw, vid, false);
5703		}
5704
5705		wr32(E1000_VLVF(i), reg);
5706	}
5707
5708	adapter->vf_data[vf].vlans_enabled = 0;
5709}
5710
5711static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5712{
5713	struct e1000_hw *hw = &adapter->hw;
5714	u32 reg, i;
5715
5716	/* The vlvf table only exists on 82576 hardware and newer */
5717	if (hw->mac.type < e1000_82576)
5718		return -1;
5719
5720	/* we only need to do this if VMDq is enabled */
5721	if (!adapter->vfs_allocated_count)
5722		return -1;
5723
5724	/* Find the vlan filter for this id */
5725	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5726		reg = rd32(E1000_VLVF(i));
5727		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5728		    vid == (reg & E1000_VLVF_VLANID_MASK))
5729			break;
5730	}
5731
5732	if (add) {
5733		if (i == E1000_VLVF_ARRAY_SIZE) {
5734			/* Did not find a matching VLAN ID entry that was
5735			 * enabled.  Search for a free filter entry, i.e.
5736			 * one without the enable bit set
5737			 */
5738			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5739				reg = rd32(E1000_VLVF(i));
5740				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5741					break;
5742			}
5743		}
5744		if (i < E1000_VLVF_ARRAY_SIZE) {
5745			/* Found an enabled/available entry */
5746			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5747
5748			/* if !enabled we need to set this up in vfta */
5749			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5750				/* add VID to filter table */
5751				igb_vfta_set(hw, vid, true);
5752				reg |= E1000_VLVF_VLANID_ENABLE;
5753			}
5754			reg &= ~E1000_VLVF_VLANID_MASK;
5755			reg |= vid;
5756			wr32(E1000_VLVF(i), reg);
5757
5758			/* do not modify RLPML for PF devices */
5759			if (vf >= adapter->vfs_allocated_count)
5760				return 0;
5761
5762			if (!adapter->vf_data[vf].vlans_enabled) {
5763				u32 size;
5764				reg = rd32(E1000_VMOLR(vf));
5765				size = reg & E1000_VMOLR_RLPML_MASK;
5766				size += 4;
5767				reg &= ~E1000_VMOLR_RLPML_MASK;
5768				reg |= size;
5769				wr32(E1000_VMOLR(vf), reg);
5770			}
5771
5772			adapter->vf_data[vf].vlans_enabled++;
5773		}
5774	} else {
5775		if (i < E1000_VLVF_ARRAY_SIZE) {
5776			/* remove vf from the pool */
5777			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5778			/* if pool is empty then remove entry from vfta */
5779			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5780				reg = 0;
5781				igb_vfta_set(hw, vid, false);
5782			}
5783			wr32(E1000_VLVF(i), reg);
5784
5785			/* do not modify RLPML for PF devices */
5786			if (vf >= adapter->vfs_allocated_count)
5787				return 0;
5788
5789			adapter->vf_data[vf].vlans_enabled--;
5790			if (!adapter->vf_data[vf].vlans_enabled) {
5791				u32 size;
5792				reg = rd32(E1000_VMOLR(vf));
5793				size = reg & E1000_VMOLR_RLPML_MASK;
5794				size -= 4;
5795				reg &= ~E1000_VMOLR_RLPML_MASK;
5796				reg |= size;
5797				wr32(E1000_VMOLR(vf), reg);
5798			}
5799		}
5800	}
5801	return 0;
5802}
5803
5804static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5805{
5806	struct e1000_hw *hw = &adapter->hw;
5807
5808	if (vid)
5809		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5810	else
5811		wr32(E1000_VMVIR(vf), 0);
5812}
5813
5814static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5815			       int vf, u16 vlan, u8 qos)
5816{
5817	int err = 0;
5818	struct igb_adapter *adapter = netdev_priv(netdev);
5819
5820	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5821		return -EINVAL;
5822	if (vlan || qos) {
5823		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5824		if (err)
5825			goto out;
5826		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5827		igb_set_vmolr(adapter, vf, !vlan);
5828		adapter->vf_data[vf].pf_vlan = vlan;
5829		adapter->vf_data[vf].pf_qos = qos;
5830		dev_info(&adapter->pdev->dev,
5831			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5832		if (test_bit(__IGB_DOWN, &adapter->state)) {
5833			dev_warn(&adapter->pdev->dev,
5834				 "The VF VLAN has been set, but the PF device is not up.\n");
5835			dev_warn(&adapter->pdev->dev,
5836				 "Bring the PF device up before attempting to use the VF device.\n");
5837		}
5838	} else {
5839		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5840			     false, vf);
5841		igb_set_vmvir(adapter, vlan, vf);
5842		igb_set_vmolr(adapter, vf, true);
5843		adapter->vf_data[vf].pf_vlan = 0;
5844		adapter->vf_data[vf].pf_qos = 0;
5845	}
5846out:
5847	return err;
5848}
5849
5850static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5851{
5852	struct e1000_hw *hw = &adapter->hw;
5853	int i;
5854	u32 reg;
5855
5856	/* Find the vlan filter for this id */
5857	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5858		reg = rd32(E1000_VLVF(i));
5859		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5860		    vid == (reg & E1000_VLVF_VLANID_MASK))
5861			break;
5862	}
5863
5864	if (i >= E1000_VLVF_ARRAY_SIZE)
5865		i = -1;
5866
5867	return i;
5868}
5869
5870static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5871{
5872	struct e1000_hw *hw = &adapter->hw;
5873	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5874	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5875	int err = 0;
5876
5877	/* If in promiscuous mode we need to make sure the PF also has
5878	 * the VLAN filter set.
5879	 */
5880	if (add && (adapter->netdev->flags & IFF_PROMISC))
5881		err = igb_vlvf_set(adapter, vid, add,
5882				   adapter->vfs_allocated_count);
5883	if (err)
5884		goto out;
5885
5886	err = igb_vlvf_set(adapter, vid, add, vf);
5887
5888	if (err)
5889		goto out;
5890
5891	/* Go through all the checks to see if the VLAN filter should
5892	 * be wiped completely.
5893	 */
5894	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5895		u32 vlvf, bits;
5896
5897		int regndx = igb_find_vlvf_entry(adapter, vid);
5898		if (regndx < 0)
5899			goto out;
5900		/* See if any other pools are set for this VLAN filter
5901		 * entry other than the PF.
5902		 */
5903		vlvf = bits = rd32(E1000_VLVF(regndx));
5904		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5905			      adapter->vfs_allocated_count);
5906		/* If the filter was removed then ensure PF pool bit
5907		 * is cleared if the PF only added itself to the pool
5908		 * because the PF is in promiscuous mode.
5909		 */
5910		if ((vlvf & VLAN_VID_MASK) == vid &&
5911		    !test_bit(vid, adapter->active_vlans) &&
5912		    !bits)
5913			igb_vlvf_set(adapter, vid, add,
5914				     adapter->vfs_allocated_count);
5915	}
5916
5917out:
5918	return err;
5919}
5920
5921static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5922{
5923	/* clear flags - except flag that indicates PF has set the MAC */
5924	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5925	adapter->vf_data[vf].last_nack = jiffies;
5926
5927	/* reset offloads to defaults */
5928	igb_set_vmolr(adapter, vf, true);
5929
5930	/* reset vlans for device */
5931	igb_clear_vf_vfta(adapter, vf);
5932	if (adapter->vf_data[vf].pf_vlan)
5933		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5934				    adapter->vf_data[vf].pf_vlan,
5935				    adapter->vf_data[vf].pf_qos);
5936	else
5937		igb_clear_vf_vfta(adapter, vf);
5938
5939	/* reset multicast table array for vf */
5940	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5941
5942	/* Flush and reset the mta with the new values */
5943	igb_set_rx_mode(adapter->netdev);
5944}
5945
5946static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5947{
5948	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5949
5950	/* clear mac address as we were hotplug removed/added */
5951	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5952		eth_zero_addr(vf_mac);
5953
5954	/* process remaining reset events */
5955	igb_vf_reset(adapter, vf);
5956}
5957
5958static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5959{
5960	struct e1000_hw *hw = &adapter->hw;
5961	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5962	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5963	u32 reg, msgbuf[3];
5964	u8 *addr = (u8 *)(&msgbuf[1]);
5965
5966	/* process all the same items cleared in a function level reset */
5967	igb_vf_reset(adapter, vf);
5968
5969	/* set vf mac address */
5970	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5971
5972	/* enable transmit and receive for vf */
5973	reg = rd32(E1000_VFTE);
5974	wr32(E1000_VFTE, reg | (1 << vf));
5975	reg = rd32(E1000_VFRE);
5976	wr32(E1000_VFRE, reg | (1 << vf));
5977
5978	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5979
5980	/* reply to reset with ack and vf mac address */
5981	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5982	memcpy(addr, vf_mac, ETH_ALEN);
5983	igb_write_mbx(hw, msgbuf, 3, vf);
5984}
5985
5986static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5987{
5988	/* The VF MAC Address is stored in a packed array of bytes
5989	 * starting at the second 32 bit word of the msg array
5990	 */
5991	unsigned char *addr = (char *)&msg[1];
5992	int err = -1;
5993
5994	if (is_valid_ether_addr(addr))
5995		err = igb_set_vf_mac(adapter, vf, addr);
5996
5997	return err;
5998}
5999
6000static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6001{
6002	struct e1000_hw *hw = &adapter->hw;
6003	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6004	u32 msg = E1000_VT_MSGTYPE_NACK;
6005
6006	/* if device isn't clear to send it shouldn't be reading either */
6007	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6008	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6009		igb_write_mbx(hw, &msg, 1, vf);
6010		vf_data->last_nack = jiffies;
6011	}
6012}
6013
6014static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6015{
6016	struct pci_dev *pdev = adapter->pdev;
6017	u32 msgbuf[E1000_VFMAILBOX_SIZE];
6018	struct e1000_hw *hw = &adapter->hw;
6019	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6020	s32 retval;
6021
6022	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6023
6024	if (retval) {
6025		/* if receive failed revoke VF CTS stats and restart init */
6026		dev_err(&pdev->dev, "Error receiving message from VF\n");
6027		vf_data->flags &= ~IGB_VF_FLAG_CTS;
6028		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6029			return;
6030		goto out;
6031	}
6032
6033	/* this is a message we already processed, do nothing */
6034	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6035		return;
6036
6037	/* until the vf completes a reset it should not be
6038	 * allowed to start any configuration.
6039	 */
6040	if (msgbuf[0] == E1000_VF_RESET) {
6041		igb_vf_reset_msg(adapter, vf);
6042		return;
6043	}
6044
6045	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6046		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6047			return;
6048		retval = -1;
6049		goto out;
6050	}
6051
6052	switch ((msgbuf[0] & 0xFFFF)) {
6053	case E1000_VF_SET_MAC_ADDR:
6054		retval = -EINVAL;
6055		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6056			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6057		else
6058			dev_warn(&pdev->dev,
6059				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6060				 vf);
6061		break;
6062	case E1000_VF_SET_PROMISC:
6063		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6064		break;
6065	case E1000_VF_SET_MULTICAST:
6066		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6067		break;
6068	case E1000_VF_SET_LPE:
6069		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6070		break;
6071	case E1000_VF_SET_VLAN:
6072		retval = -1;
6073		if (vf_data->pf_vlan)
6074			dev_warn(&pdev->dev,
6075				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6076				 vf);
6077		else
6078			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6079		break;
6080	default:
6081		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6082		retval = -1;
6083		break;
6084	}
6085
6086	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6087out:
6088	/* notify the VF of the results of what it sent us */
6089	if (retval)
6090		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6091	else
6092		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6093
6094	igb_write_mbx(hw, msgbuf, 1, vf);
6095}
6096
6097static void igb_msg_task(struct igb_adapter *adapter)
6098{
6099	struct e1000_hw *hw = &adapter->hw;
6100	u32 vf;
6101
6102	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6103		/* process any reset requests */
6104		if (!igb_check_for_rst(hw, vf))
6105			igb_vf_reset_event(adapter, vf);
6106
6107		/* process any messages pending */
6108		if (!igb_check_for_msg(hw, vf))
6109			igb_rcv_msg_from_vf(adapter, vf);
6110
6111		/* process any acks */
6112		if (!igb_check_for_ack(hw, vf))
6113			igb_rcv_ack_from_vf(adapter, vf);
6114	}
6115}
6116
6117/**
6118 *  igb_set_uta - Set unicast filter table address
6119 *  @adapter: board private structure
6120 *
6121 *  The unicast table address is a register array of 32-bit registers.
6122 *  The table is meant to be used in a way similar to how the MTA is used
6123 *  however due to certain limitations in the hardware it is necessary to
6124 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6125 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6126 **/
6127static void igb_set_uta(struct igb_adapter *adapter)
6128{
6129	struct e1000_hw *hw = &adapter->hw;
6130	int i;
6131
6132	/* The UTA table only exists on 82576 hardware and newer */
6133	if (hw->mac.type < e1000_82576)
6134		return;
6135
6136	/* we only need to do this if VMDq is enabled */
6137	if (!adapter->vfs_allocated_count)
6138		return;
6139
6140	for (i = 0; i < hw->mac.uta_reg_count; i++)
6141		array_wr32(E1000_UTA, i, ~0);
6142}
6143
6144/**
6145 *  igb_intr_msi - Interrupt Handler
6146 *  @irq: interrupt number
6147 *  @data: pointer to a network interface device structure
6148 **/
6149static irqreturn_t igb_intr_msi(int irq, void *data)
6150{
6151	struct igb_adapter *adapter = data;
6152	struct igb_q_vector *q_vector = adapter->q_vector[0];
6153	struct e1000_hw *hw = &adapter->hw;
6154	/* read ICR disables interrupts using IAM */
6155	u32 icr = rd32(E1000_ICR);
6156
6157	igb_write_itr(q_vector);
6158
6159	if (icr & E1000_ICR_DRSTA)
6160		schedule_work(&adapter->reset_task);
6161
6162	if (icr & E1000_ICR_DOUTSYNC) {
6163		/* HW is reporting DMA is out of sync */
6164		adapter->stats.doosync++;
6165	}
6166
6167	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6168		hw->mac.get_link_status = 1;
6169		if (!test_bit(__IGB_DOWN, &adapter->state))
6170			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6171	}
6172
6173	if (icr & E1000_ICR_TS) {
6174		u32 tsicr = rd32(E1000_TSICR);
6175
6176		if (tsicr & E1000_TSICR_TXTS) {
6177			/* acknowledge the interrupt */
6178			wr32(E1000_TSICR, E1000_TSICR_TXTS);
6179			/* retrieve hardware timestamp */
6180			schedule_work(&adapter->ptp_tx_work);
6181		}
6182	}
6183
6184	napi_schedule(&q_vector->napi);
6185
6186	return IRQ_HANDLED;
6187}
6188
6189/**
6190 *  igb_intr - Legacy Interrupt Handler
6191 *  @irq: interrupt number
6192 *  @data: pointer to a network interface device structure
6193 **/
6194static irqreturn_t igb_intr(int irq, void *data)
6195{
6196	struct igb_adapter *adapter = data;
6197	struct igb_q_vector *q_vector = adapter->q_vector[0];
6198	struct e1000_hw *hw = &adapter->hw;
6199	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6200	 * need for the IMC write
6201	 */
6202	u32 icr = rd32(E1000_ICR);
6203
6204	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6205	 * not set, then the adapter didn't send an interrupt
6206	 */
6207	if (!(icr & E1000_ICR_INT_ASSERTED))
6208		return IRQ_NONE;
6209
6210	igb_write_itr(q_vector);
6211
6212	if (icr & E1000_ICR_DRSTA)
6213		schedule_work(&adapter->reset_task);
6214
6215	if (icr & E1000_ICR_DOUTSYNC) {
6216		/* HW is reporting DMA is out of sync */
6217		adapter->stats.doosync++;
6218	}
6219
6220	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6221		hw->mac.get_link_status = 1;
6222		/* guard against interrupt when we're going down */
6223		if (!test_bit(__IGB_DOWN, &adapter->state))
6224			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6225	}
6226
6227	if (icr & E1000_ICR_TS) {
6228		u32 tsicr = rd32(E1000_TSICR);
6229
6230		if (tsicr & E1000_TSICR_TXTS) {
6231			/* acknowledge the interrupt */
6232			wr32(E1000_TSICR, E1000_TSICR_TXTS);
6233			/* retrieve hardware timestamp */
6234			schedule_work(&adapter->ptp_tx_work);
6235		}
6236	}
6237
6238	napi_schedule(&q_vector->napi);
6239
6240	return IRQ_HANDLED;
6241}
6242
6243static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6244{
6245	struct igb_adapter *adapter = q_vector->adapter;
6246	struct e1000_hw *hw = &adapter->hw;
6247
6248	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6249	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6250		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6251			igb_set_itr(q_vector);
6252		else
6253			igb_update_ring_itr(q_vector);
6254	}
6255
6256	if (!test_bit(__IGB_DOWN, &adapter->state)) {
6257		if (adapter->flags & IGB_FLAG_HAS_MSIX)
6258			wr32(E1000_EIMS, q_vector->eims_value);
6259		else
6260			igb_irq_enable(adapter);
6261	}
6262}
6263
6264/**
6265 *  igb_poll - NAPI Rx polling callback
6266 *  @napi: napi polling structure
6267 *  @budget: count of how many packets we should handle
6268 **/
6269static int igb_poll(struct napi_struct *napi, int budget)
6270{
6271	struct igb_q_vector *q_vector = container_of(napi,
6272						     struct igb_q_vector,
6273						     napi);
6274	bool clean_complete = true;
6275
6276#ifdef CONFIG_IGB_DCA
6277	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6278		igb_update_dca(q_vector);
6279#endif
6280	if (q_vector->tx.ring)
6281		clean_complete = igb_clean_tx_irq(q_vector);
6282
6283	if (q_vector->rx.ring)
6284		clean_complete &= igb_clean_rx_irq(q_vector, budget);
6285
6286	/* If all work not completed, return budget and keep polling */
6287	if (!clean_complete)
6288		return budget;
6289
6290	/* If not enough Rx work done, exit the polling mode */
6291	napi_complete(napi);
6292	igb_ring_irq_enable(q_vector);
6293
6294	return 0;
6295}
6296
6297/**
6298 *  igb_clean_tx_irq - Reclaim resources after transmit completes
6299 *  @q_vector: pointer to q_vector containing needed info
6300 *
6301 *  returns true if ring is completely cleaned
6302 **/
6303static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6304{
6305	struct igb_adapter *adapter = q_vector->adapter;
6306	struct igb_ring *tx_ring = q_vector->tx.ring;
6307	struct igb_tx_buffer *tx_buffer;
6308	union e1000_adv_tx_desc *tx_desc;
6309	unsigned int total_bytes = 0, total_packets = 0;
6310	unsigned int budget = q_vector->tx.work_limit;
6311	unsigned int i = tx_ring->next_to_clean;
6312
6313	if (test_bit(__IGB_DOWN, &adapter->state))
6314		return true;
6315
6316	tx_buffer = &tx_ring->tx_buffer_info[i];
6317	tx_desc = IGB_TX_DESC(tx_ring, i);
6318	i -= tx_ring->count;
6319
6320	do {
6321		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6322
6323		/* if next_to_watch is not set then there is no work pending */
6324		if (!eop_desc)
6325			break;
6326
6327		/* prevent any other reads prior to eop_desc */
6328		read_barrier_depends();
6329
6330		/* if DD is not set pending work has not been completed */
6331		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6332			break;
6333
6334		/* clear next_to_watch to prevent false hangs */
6335		tx_buffer->next_to_watch = NULL;
6336
6337		/* update the statistics for this packet */
6338		total_bytes += tx_buffer->bytecount;
6339		total_packets += tx_buffer->gso_segs;
6340
6341		/* free the skb */
6342		dev_kfree_skb_any(tx_buffer->skb);
6343
6344		/* unmap skb header data */
6345		dma_unmap_single(tx_ring->dev,
6346				 dma_unmap_addr(tx_buffer, dma),
6347				 dma_unmap_len(tx_buffer, len),
6348				 DMA_TO_DEVICE);
6349
6350		/* clear tx_buffer data */
6351		tx_buffer->skb = NULL;
6352		dma_unmap_len_set(tx_buffer, len, 0);
6353
6354		/* clear last DMA location and unmap remaining buffers */
6355		while (tx_desc != eop_desc) {
6356			tx_buffer++;
6357			tx_desc++;
6358			i++;
6359			if (unlikely(!i)) {
6360				i -= tx_ring->count;
6361				tx_buffer = tx_ring->tx_buffer_info;
6362				tx_desc = IGB_TX_DESC(tx_ring, 0);
6363			}
6364
6365			/* unmap any remaining paged data */
6366			if (dma_unmap_len(tx_buffer, len)) {
6367				dma_unmap_page(tx_ring->dev,
6368					       dma_unmap_addr(tx_buffer, dma),
6369					       dma_unmap_len(tx_buffer, len),
6370					       DMA_TO_DEVICE);
6371				dma_unmap_len_set(tx_buffer, len, 0);
6372			}
6373		}
6374
6375		/* move us one more past the eop_desc for start of next pkt */
6376		tx_buffer++;
6377		tx_desc++;
6378		i++;
6379		if (unlikely(!i)) {
6380			i -= tx_ring->count;
6381			tx_buffer = tx_ring->tx_buffer_info;
6382			tx_desc = IGB_TX_DESC(tx_ring, 0);
6383		}
6384
6385		/* issue prefetch for next Tx descriptor */
6386		prefetch(tx_desc);
6387
6388		/* update budget accounting */
6389		budget--;
6390	} while (likely(budget));
6391
6392	netdev_tx_completed_queue(txring_txq(tx_ring),
6393				  total_packets, total_bytes);
6394	i += tx_ring->count;
6395	tx_ring->next_to_clean = i;
6396	u64_stats_update_begin(&tx_ring->tx_syncp);
6397	tx_ring->tx_stats.bytes += total_bytes;
6398	tx_ring->tx_stats.packets += total_packets;
6399	u64_stats_update_end(&tx_ring->tx_syncp);
6400	q_vector->tx.total_bytes += total_bytes;
6401	q_vector->tx.total_packets += total_packets;
6402
6403	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6404		struct e1000_hw *hw = &adapter->hw;
6405
6406		/* Detect a transmit hang in hardware, this serializes the
6407		 * check with the clearing of time_stamp and movement of i
6408		 */
6409		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6410		if (tx_buffer->next_to_watch &&
6411		    time_after(jiffies, tx_buffer->time_stamp +
6412			       (adapter->tx_timeout_factor * HZ)) &&
6413		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6414
6415			/* detected Tx unit hang */
6416			dev_err(tx_ring->dev,
6417				"Detected Tx Unit Hang\n"
6418				"  Tx Queue             <%d>\n"
6419				"  TDH                  <%x>\n"
6420				"  TDT                  <%x>\n"
6421				"  next_to_use          <%x>\n"
6422				"  next_to_clean        <%x>\n"
6423				"buffer_info[next_to_clean]\n"
6424				"  time_stamp           <%lx>\n"
6425				"  next_to_watch        <%p>\n"
6426				"  jiffies              <%lx>\n"
6427				"  desc.status          <%x>\n",
6428				tx_ring->queue_index,
6429				rd32(E1000_TDH(tx_ring->reg_idx)),
6430				readl(tx_ring->tail),
6431				tx_ring->next_to_use,
6432				tx_ring->next_to_clean,
6433				tx_buffer->time_stamp,
6434				tx_buffer->next_to_watch,
6435				jiffies,
6436				tx_buffer->next_to_watch->wb.status);
6437			netif_stop_subqueue(tx_ring->netdev,
6438					    tx_ring->queue_index);
6439
6440			/* we are about to reset, no point in enabling stuff */
6441			return true;
6442		}
6443	}
6444
6445#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6446	if (unlikely(total_packets &&
6447	    netif_carrier_ok(tx_ring->netdev) &&
6448	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6449		/* Make sure that anybody stopping the queue after this
6450		 * sees the new next_to_clean.
6451		 */
6452		smp_mb();
6453		if (__netif_subqueue_stopped(tx_ring->netdev,
6454					     tx_ring->queue_index) &&
6455		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6456			netif_wake_subqueue(tx_ring->netdev,
6457					    tx_ring->queue_index);
6458
6459			u64_stats_update_begin(&tx_ring->tx_syncp);
6460			tx_ring->tx_stats.restart_queue++;
6461			u64_stats_update_end(&tx_ring->tx_syncp);
6462		}
6463	}
6464
6465	return !!budget;
6466}
6467
6468/**
6469 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6470 *  @rx_ring: rx descriptor ring to store buffers on
6471 *  @old_buff: donor buffer to have page reused
6472 *
6473 *  Synchronizes page for reuse by the adapter
6474 **/
6475static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6476			      struct igb_rx_buffer *old_buff)
6477{
6478	struct igb_rx_buffer *new_buff;
6479	u16 nta = rx_ring->next_to_alloc;
6480
6481	new_buff = &rx_ring->rx_buffer_info[nta];
6482
6483	/* update, and store next to alloc */
6484	nta++;
6485	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6486
6487	/* transfer page from old buffer to new buffer */
6488	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6489
6490	/* sync the buffer for use by the device */
6491	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6492					 old_buff->page_offset,
6493					 IGB_RX_BUFSZ,
6494					 DMA_FROM_DEVICE);
6495}
6496
6497static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6498				  struct page *page,
6499				  unsigned int truesize)
6500{
6501	/* avoid re-using remote pages */
6502	if (unlikely(page_to_nid(page) != numa_node_id()))
6503		return false;
6504
6505#if (PAGE_SIZE < 8192)
6506	/* if we are only owner of page we can reuse it */
6507	if (unlikely(page_count(page) != 1))
6508		return false;
6509
6510	/* flip page offset to other buffer */
6511	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6512
6513	/* since we are the only owner of the page and we need to
6514	 * increment it, just set the value to 2 in order to avoid
6515	 * an unnecessary locked operation
6516	 */
6517	atomic_set(&page->_count, 2);
6518#else
6519	/* move offset up to the next cache line */
6520	rx_buffer->page_offset += truesize;
6521
6522	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6523		return false;
6524
6525	/* bump ref count on page before it is given to the stack */
6526	get_page(page);
6527#endif
6528
6529	return true;
6530}
6531
6532/**
6533 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6534 *  @rx_ring: rx descriptor ring to transact packets on
6535 *  @rx_buffer: buffer containing page to add
6536 *  @rx_desc: descriptor containing length of buffer written by hardware
6537 *  @skb: sk_buff to place the data into
6538 *
6539 *  This function will add the data contained in rx_buffer->page to the skb.
6540 *  This is done either through a direct copy if the data in the buffer is
6541 *  less than the skb header size, otherwise it will just attach the page as
6542 *  a frag to the skb.
6543 *
6544 *  The function will then update the page offset if necessary and return
6545 *  true if the buffer can be reused by the adapter.
6546 **/
6547static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6548			    struct igb_rx_buffer *rx_buffer,
6549			    union e1000_adv_rx_desc *rx_desc,
6550			    struct sk_buff *skb)
6551{
6552	struct page *page = rx_buffer->page;
6553	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6554#if (PAGE_SIZE < 8192)
6555	unsigned int truesize = IGB_RX_BUFSZ;
6556#else
6557	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6558#endif
6559
6560	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6561		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6562
6563		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6564			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6565			va += IGB_TS_HDR_LEN;
6566			size -= IGB_TS_HDR_LEN;
6567		}
6568
6569		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6570
6571		/* we can reuse buffer as-is, just make sure it is local */
6572		if (likely(page_to_nid(page) == numa_node_id()))
6573			return true;
6574
6575		/* this page cannot be reused so discard it */
6576		put_page(page);
6577		return false;
6578	}
6579
6580	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6581			rx_buffer->page_offset, size, truesize);
6582
6583	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6584}
6585
6586static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6587					   union e1000_adv_rx_desc *rx_desc,
6588					   struct sk_buff *skb)
6589{
6590	struct igb_rx_buffer *rx_buffer;
6591	struct page *page;
6592
6593	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6594
6595	page = rx_buffer->page;
6596	prefetchw(page);
6597
6598	if (likely(!skb)) {
6599		void *page_addr = page_address(page) +
6600				  rx_buffer->page_offset;
6601
6602		/* prefetch first cache line of first page */
6603		prefetch(page_addr);
6604#if L1_CACHE_BYTES < 128
6605		prefetch(page_addr + L1_CACHE_BYTES);
6606#endif
6607
6608		/* allocate a skb to store the frags */
6609		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6610						IGB_RX_HDR_LEN);
6611		if (unlikely(!skb)) {
6612			rx_ring->rx_stats.alloc_failed++;
6613			return NULL;
6614		}
6615
6616		/* we will be copying header into skb->data in
6617		 * pskb_may_pull so it is in our interest to prefetch
6618		 * it now to avoid a possible cache miss
6619		 */
6620		prefetchw(skb->data);
6621	}
6622
6623	/* we are reusing so sync this buffer for CPU use */
6624	dma_sync_single_range_for_cpu(rx_ring->dev,
6625				      rx_buffer->dma,
6626				      rx_buffer->page_offset,
6627				      IGB_RX_BUFSZ,
6628				      DMA_FROM_DEVICE);
6629
6630	/* pull page into skb */
6631	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6632		/* hand second half of page back to the ring */
6633		igb_reuse_rx_page(rx_ring, rx_buffer);
6634	} else {
6635		/* we are not reusing the buffer so unmap it */
6636		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6637			       PAGE_SIZE, DMA_FROM_DEVICE);
6638	}
6639
6640	/* clear contents of rx_buffer */
6641	rx_buffer->page = NULL;
6642
6643	return skb;
6644}
6645
6646static inline void igb_rx_checksum(struct igb_ring *ring,
6647				   union e1000_adv_rx_desc *rx_desc,
6648				   struct sk_buff *skb)
6649{
6650	skb_checksum_none_assert(skb);
6651
6652	/* Ignore Checksum bit is set */
6653	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6654		return;
6655
6656	/* Rx checksum disabled via ethtool */
6657	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6658		return;
6659
6660	/* TCP/UDP checksum error bit is set */
6661	if (igb_test_staterr(rx_desc,
6662			     E1000_RXDEXT_STATERR_TCPE |
6663			     E1000_RXDEXT_STATERR_IPE)) {
6664		/* work around errata with sctp packets where the TCPE aka
6665		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6666		 * packets, (aka let the stack check the crc32c)
6667		 */
6668		if (!((skb->len == 60) &&
6669		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6670			u64_stats_update_begin(&ring->rx_syncp);
6671			ring->rx_stats.csum_err++;
6672			u64_stats_update_end(&ring->rx_syncp);
6673		}
6674		/* let the stack verify checksum errors */
6675		return;
6676	}
6677	/* It must be a TCP or UDP packet with a valid checksum */
6678	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6679				      E1000_RXD_STAT_UDPCS))
6680		skb->ip_summed = CHECKSUM_UNNECESSARY;
6681
6682	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6683		le32_to_cpu(rx_desc->wb.upper.status_error));
6684}
6685
6686static inline void igb_rx_hash(struct igb_ring *ring,
6687			       union e1000_adv_rx_desc *rx_desc,
6688			       struct sk_buff *skb)
6689{
6690	if (ring->netdev->features & NETIF_F_RXHASH)
6691		skb_set_hash(skb,
6692			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6693			     PKT_HASH_TYPE_L3);
6694}
6695
6696/**
6697 *  igb_is_non_eop - process handling of non-EOP buffers
6698 *  @rx_ring: Rx ring being processed
6699 *  @rx_desc: Rx descriptor for current buffer
6700 *  @skb: current socket buffer containing buffer in progress
6701 *
6702 *  This function updates next to clean.  If the buffer is an EOP buffer
6703 *  this function exits returning false, otherwise it will place the
6704 *  sk_buff in the next buffer to be chained and return true indicating
6705 *  that this is in fact a non-EOP buffer.
6706 **/
6707static bool igb_is_non_eop(struct igb_ring *rx_ring,
6708			   union e1000_adv_rx_desc *rx_desc)
6709{
6710	u32 ntc = rx_ring->next_to_clean + 1;
6711
6712	/* fetch, update, and store next to clean */
6713	ntc = (ntc < rx_ring->count) ? ntc : 0;
6714	rx_ring->next_to_clean = ntc;
6715
6716	prefetch(IGB_RX_DESC(rx_ring, ntc));
6717
6718	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6719		return false;
6720
6721	return true;
6722}
6723
6724/**
6725 *  igb_get_headlen - determine size of header for LRO/GRO
6726 *  @data: pointer to the start of the headers
6727 *  @max_len: total length of section to find headers in
6728 *
6729 *  This function is meant to determine the length of headers that will
6730 *  be recognized by hardware for LRO, and GRO offloads.  The main
6731 *  motivation of doing this is to only perform one pull for IPv4 TCP
6732 *  packets so that we can do basic things like calculating the gso_size
6733 *  based on the average data per packet.
6734 **/
6735static unsigned int igb_get_headlen(unsigned char *data,
6736				    unsigned int max_len)
6737{
6738	union {
6739		unsigned char *network;
6740		/* l2 headers */
6741		struct ethhdr *eth;
6742		struct vlan_hdr *vlan;
6743		/* l3 headers */
6744		struct iphdr *ipv4;
6745		struct ipv6hdr *ipv6;
6746	} hdr;
6747	__be16 protocol;
6748	u8 nexthdr = 0;	/* default to not TCP */
6749	u8 hlen;
6750
6751	/* this should never happen, but better safe than sorry */
6752	if (max_len < ETH_HLEN)
6753		return max_len;
6754
6755	/* initialize network frame pointer */
6756	hdr.network = data;
6757
6758	/* set first protocol and move network header forward */
6759	protocol = hdr.eth->h_proto;
6760	hdr.network += ETH_HLEN;
6761
6762	/* handle any vlan tag if present */
6763	if (protocol == htons(ETH_P_8021Q)) {
6764		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6765			return max_len;
6766
6767		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6768		hdr.network += VLAN_HLEN;
6769	}
6770
6771	/* handle L3 protocols */
6772	if (protocol == htons(ETH_P_IP)) {
6773		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6774			return max_len;
6775
6776		/* access ihl as a u8 to avoid unaligned access on ia64 */
6777		hlen = (hdr.network[0] & 0x0F) << 2;
6778
6779		/* verify hlen meets minimum size requirements */
6780		if (hlen < sizeof(struct iphdr))
6781			return hdr.network - data;
6782
6783		/* record next protocol if header is present */
6784		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6785			nexthdr = hdr.ipv4->protocol;
6786	} else if (protocol == htons(ETH_P_IPV6)) {
6787		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6788			return max_len;
6789
6790		/* record next protocol */
6791		nexthdr = hdr.ipv6->nexthdr;
6792		hlen = sizeof(struct ipv6hdr);
6793	} else {
6794		return hdr.network - data;
6795	}
6796
6797	/* relocate pointer to start of L4 header */
6798	hdr.network += hlen;
6799
6800	/* finally sort out TCP */
6801	if (nexthdr == IPPROTO_TCP) {
6802		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6803			return max_len;
6804
6805		/* access doff as a u8 to avoid unaligned access on ia64 */
6806		hlen = (hdr.network[12] & 0xF0) >> 2;
6807
6808		/* verify hlen meets minimum size requirements */
6809		if (hlen < sizeof(struct tcphdr))
6810			return hdr.network - data;
6811
6812		hdr.network += hlen;
6813	} else if (nexthdr == IPPROTO_UDP) {
6814		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6815			return max_len;
6816
6817		hdr.network += sizeof(struct udphdr);
6818	}
6819
6820	/* If everything has gone correctly hdr.network should be the
6821	 * data section of the packet and will be the end of the header.
6822	 * If not then it probably represents the end of the last recognized
6823	 * header.
6824	 */
6825	if ((hdr.network - data) < max_len)
6826		return hdr.network - data;
6827	else
6828		return max_len;
6829}
6830
6831/**
6832 *  igb_pull_tail - igb specific version of skb_pull_tail
6833 *  @rx_ring: rx descriptor ring packet is being transacted on
6834 *  @rx_desc: pointer to the EOP Rx descriptor
6835 *  @skb: pointer to current skb being adjusted
6836 *
6837 *  This function is an igb specific version of __pskb_pull_tail.  The
6838 *  main difference between this version and the original function is that
6839 *  this function can make several assumptions about the state of things
6840 *  that allow for significant optimizations versus the standard function.
6841 *  As a result we can do things like drop a frag and maintain an accurate
6842 *  truesize for the skb.
6843 */
6844static void igb_pull_tail(struct igb_ring *rx_ring,
6845			  union e1000_adv_rx_desc *rx_desc,
6846			  struct sk_buff *skb)
6847{
6848	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6849	unsigned char *va;
6850	unsigned int pull_len;
6851
6852	/* it is valid to use page_address instead of kmap since we are
6853	 * working with pages allocated out of the lomem pool per
6854	 * alloc_page(GFP_ATOMIC)
6855	 */
6856	va = skb_frag_address(frag);
6857
6858	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6859		/* retrieve timestamp from buffer */
6860		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6861
6862		/* update pointers to remove timestamp header */
6863		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6864		frag->page_offset += IGB_TS_HDR_LEN;
6865		skb->data_len -= IGB_TS_HDR_LEN;
6866		skb->len -= IGB_TS_HDR_LEN;
6867
6868		/* move va to start of packet data */
6869		va += IGB_TS_HDR_LEN;
6870	}
6871
6872	/* we need the header to contain the greater of either ETH_HLEN or
6873	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6874	 */
6875	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6876
6877	/* align pull length to size of long to optimize memcpy performance */
6878	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6879
6880	/* update all of the pointers */
6881	skb_frag_size_sub(frag, pull_len);
6882	frag->page_offset += pull_len;
6883	skb->data_len -= pull_len;
6884	skb->tail += pull_len;
6885}
6886
6887/**
6888 *  igb_cleanup_headers - Correct corrupted or empty headers
6889 *  @rx_ring: rx descriptor ring packet is being transacted on
6890 *  @rx_desc: pointer to the EOP Rx descriptor
6891 *  @skb: pointer to current skb being fixed
6892 *
6893 *  Address the case where we are pulling data in on pages only
6894 *  and as such no data is present in the skb header.
6895 *
6896 *  In addition if skb is not at least 60 bytes we need to pad it so that
6897 *  it is large enough to qualify as a valid Ethernet frame.
6898 *
6899 *  Returns true if an error was encountered and skb was freed.
6900 **/
6901static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6902				union e1000_adv_rx_desc *rx_desc,
6903				struct sk_buff *skb)
6904{
6905	if (unlikely((igb_test_staterr(rx_desc,
6906				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6907		struct net_device *netdev = rx_ring->netdev;
6908		if (!(netdev->features & NETIF_F_RXALL)) {
6909			dev_kfree_skb_any(skb);
6910			return true;
6911		}
6912	}
6913
6914	/* place header in linear portion of buffer */
6915	if (skb_is_nonlinear(skb))
6916		igb_pull_tail(rx_ring, rx_desc, skb);
6917
6918	/* if skb_pad returns an error the skb was freed */
6919	if (unlikely(skb->len < 60)) {
6920		int pad_len = 60 - skb->len;
6921
6922		if (skb_pad(skb, pad_len))
6923			return true;
6924		__skb_put(skb, pad_len);
6925	}
6926
6927	return false;
6928}
6929
6930/**
6931 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6932 *  @rx_ring: rx descriptor ring packet is being transacted on
6933 *  @rx_desc: pointer to the EOP Rx descriptor
6934 *  @skb: pointer to current skb being populated
6935 *
6936 *  This function checks the ring, descriptor, and packet information in
6937 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6938 *  other fields within the skb.
6939 **/
6940static void igb_process_skb_fields(struct igb_ring *rx_ring,
6941				   union e1000_adv_rx_desc *rx_desc,
6942				   struct sk_buff *skb)
6943{
6944	struct net_device *dev = rx_ring->netdev;
6945
6946	igb_rx_hash(rx_ring, rx_desc, skb);
6947
6948	igb_rx_checksum(rx_ring, rx_desc, skb);
6949
6950	igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
6951
6952	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6953	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6954		u16 vid;
6955		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6956		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6957			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6958		else
6959			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6960
6961		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6962	}
6963
6964	skb_record_rx_queue(skb, rx_ring->queue_index);
6965
6966	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6967}
6968
6969static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6970{
6971	struct igb_ring *rx_ring = q_vector->rx.ring;
6972	struct sk_buff *skb = rx_ring->skb;
6973	unsigned int total_bytes = 0, total_packets = 0;
6974	u16 cleaned_count = igb_desc_unused(rx_ring);
6975
6976	while (likely(total_packets < budget)) {
6977		union e1000_adv_rx_desc *rx_desc;
6978
6979		/* return some buffers to hardware, one at a time is too slow */
6980		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6981			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6982			cleaned_count = 0;
6983		}
6984
6985		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6986
6987		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6988			break;
6989
6990		/* This memory barrier is needed to keep us from reading
6991		 * any other fields out of the rx_desc until we know the
6992		 * RXD_STAT_DD bit is set
6993		 */
6994		rmb();
6995
6996		/* retrieve a buffer from the ring */
6997		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6998
6999		/* exit if we failed to retrieve a buffer */
7000		if (!skb)
7001			break;
7002
7003		cleaned_count++;
7004
7005		/* fetch next buffer in frame if non-eop */
7006		if (igb_is_non_eop(rx_ring, rx_desc))
7007			continue;
7008
7009		/* verify the packet layout is correct */
7010		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7011			skb = NULL;
7012			continue;
7013		}
7014
7015		/* probably a little skewed due to removing CRC */
7016		total_bytes += skb->len;
7017
7018		/* populate checksum, timestamp, VLAN, and protocol */
7019		igb_process_skb_fields(rx_ring, rx_desc, skb);
7020
7021		napi_gro_receive(&q_vector->napi, skb);
7022
7023		/* reset skb pointer */
7024		skb = NULL;
7025
7026		/* update budget accounting */
7027		total_packets++;
7028	}
7029
7030	/* place incomplete frames back on ring for completion */
7031	rx_ring->skb = skb;
7032
7033	u64_stats_update_begin(&rx_ring->rx_syncp);
7034	rx_ring->rx_stats.packets += total_packets;
7035	rx_ring->rx_stats.bytes += total_bytes;
7036	u64_stats_update_end(&rx_ring->rx_syncp);
7037	q_vector->rx.total_packets += total_packets;
7038	q_vector->rx.total_bytes += total_bytes;
7039
7040	if (cleaned_count)
7041		igb_alloc_rx_buffers(rx_ring, cleaned_count);
7042
7043	return (total_packets < budget);
7044}
7045
7046static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7047				  struct igb_rx_buffer *bi)
7048{
7049	struct page *page = bi->page;
7050	dma_addr_t dma;
7051
7052	/* since we are recycling buffers we should seldom need to alloc */
7053	if (likely(page))
7054		return true;
7055
7056	/* alloc new page for storage */
7057	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
7058	if (unlikely(!page)) {
7059		rx_ring->rx_stats.alloc_failed++;
7060		return false;
7061	}
7062
7063	/* map page for use */
7064	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7065
7066	/* if mapping failed free memory back to system since
7067	 * there isn't much point in holding memory we can't use
7068	 */
7069	if (dma_mapping_error(rx_ring->dev, dma)) {
7070		__free_page(page);
7071
7072		rx_ring->rx_stats.alloc_failed++;
7073		return false;
7074	}
7075
7076	bi->dma = dma;
7077	bi->page = page;
7078	bi->page_offset = 0;
7079
7080	return true;
7081}
7082
7083/**
7084 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7085 *  @adapter: address of board private structure
7086 **/
7087void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7088{
7089	union e1000_adv_rx_desc *rx_desc;
7090	struct igb_rx_buffer *bi;
7091	u16 i = rx_ring->next_to_use;
7092
7093	/* nothing to do */
7094	if (!cleaned_count)
7095		return;
7096
7097	rx_desc = IGB_RX_DESC(rx_ring, i);
7098	bi = &rx_ring->rx_buffer_info[i];
7099	i -= rx_ring->count;
7100
7101	do {
7102		if (!igb_alloc_mapped_page(rx_ring, bi))
7103			break;
7104
7105		/* Refresh the desc even if buffer_addrs didn't change
7106		 * because each write-back erases this info.
7107		 */
7108		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7109
7110		rx_desc++;
7111		bi++;
7112		i++;
7113		if (unlikely(!i)) {
7114			rx_desc = IGB_RX_DESC(rx_ring, 0);
7115			bi = rx_ring->rx_buffer_info;
7116			i -= rx_ring->count;
7117		}
7118
7119		/* clear the hdr_addr for the next_to_use descriptor */
7120		rx_desc->read.hdr_addr = 0;
7121
7122		cleaned_count--;
7123	} while (cleaned_count);
7124
7125	i += rx_ring->count;
7126
7127	if (rx_ring->next_to_use != i) {
7128		/* record the next descriptor to use */
7129		rx_ring->next_to_use = i;
7130
7131		/* update next to alloc since we have filled the ring */
7132		rx_ring->next_to_alloc = i;
7133
7134		/* Force memory writes to complete before letting h/w
7135		 * know there are new descriptors to fetch.  (Only
7136		 * applicable for weak-ordered memory model archs,
7137		 * such as IA-64).
7138		 */
7139		wmb();
7140		writel(i, rx_ring->tail);
7141	}
7142}
7143
7144/**
7145 * igb_mii_ioctl -
7146 * @netdev:
7147 * @ifreq:
7148 * @cmd:
7149 **/
7150static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7151{
7152	struct igb_adapter *adapter = netdev_priv(netdev);
7153	struct mii_ioctl_data *data = if_mii(ifr);
7154
7155	if (adapter->hw.phy.media_type != e1000_media_type_copper)
7156		return -EOPNOTSUPP;
7157
7158	switch (cmd) {
7159	case SIOCGMIIPHY:
7160		data->phy_id = adapter->hw.phy.addr;
7161		break;
7162	case SIOCGMIIREG:
7163		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7164		                     &data->val_out))
7165			return -EIO;
7166		break;
7167	case SIOCSMIIREG:
7168	default:
7169		return -EOPNOTSUPP;
7170	}
7171	return 0;
7172}
7173
7174/**
7175 * igb_ioctl -
7176 * @netdev:
7177 * @ifreq:
7178 * @cmd:
7179 **/
7180static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7181{
7182	switch (cmd) {
7183	case SIOCGMIIPHY:
7184	case SIOCGMIIREG:
7185	case SIOCSMIIREG:
7186		return igb_mii_ioctl(netdev, ifr, cmd);
7187	case SIOCGHWTSTAMP:
7188		return igb_ptp_get_ts_config(netdev, ifr);
7189	case SIOCSHWTSTAMP:
7190		return igb_ptp_set_ts_config(netdev, ifr);
7191	default:
7192		return -EOPNOTSUPP;
7193	}
7194}
7195
7196s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7197{
7198	struct igb_adapter *adapter = hw->back;
7199
7200	if (pcie_capability_read_word(adapter->pdev, reg, value))
7201		return -E1000_ERR_CONFIG;
7202
7203	return 0;
7204}
7205
7206s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7207{
7208	struct igb_adapter *adapter = hw->back;
7209
7210	if (pcie_capability_write_word(adapter->pdev, reg, *value))
7211		return -E1000_ERR_CONFIG;
7212
7213	return 0;
7214}
7215
7216static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7217{
7218	struct igb_adapter *adapter = netdev_priv(netdev);
7219	struct e1000_hw *hw = &adapter->hw;
7220	u32 ctrl, rctl;
7221	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7222
7223	if (enable) {
7224		/* enable VLAN tag insert/strip */
7225		ctrl = rd32(E1000_CTRL);
7226		ctrl |= E1000_CTRL_VME;
7227		wr32(E1000_CTRL, ctrl);
7228
7229		/* Disable CFI check */
7230		rctl = rd32(E1000_RCTL);
7231		rctl &= ~E1000_RCTL_CFIEN;
7232		wr32(E1000_RCTL, rctl);
7233	} else {
7234		/* disable VLAN tag insert/strip */
7235		ctrl = rd32(E1000_CTRL);
7236		ctrl &= ~E1000_CTRL_VME;
7237		wr32(E1000_CTRL, ctrl);
7238	}
7239
7240	igb_rlpml_set(adapter);
7241}
7242
7243static int igb_vlan_rx_add_vid(struct net_device *netdev,
7244			       __be16 proto, u16 vid)
7245{
7246	struct igb_adapter *adapter = netdev_priv(netdev);
7247	struct e1000_hw *hw = &adapter->hw;
7248	int pf_id = adapter->vfs_allocated_count;
7249
7250	/* attempt to add filter to vlvf array */
7251	igb_vlvf_set(adapter, vid, true, pf_id);
7252
7253	/* add the filter since PF can receive vlans w/o entry in vlvf */
7254	igb_vfta_set(hw, vid, true);
7255
7256	set_bit(vid, adapter->active_vlans);
7257
7258	return 0;
7259}
7260
7261static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7262				__be16 proto, u16 vid)
7263{
7264	struct igb_adapter *adapter = netdev_priv(netdev);
7265	struct e1000_hw *hw = &adapter->hw;
7266	int pf_id = adapter->vfs_allocated_count;
7267	s32 err;
7268
7269	/* remove vlan from VLVF table array */
7270	err = igb_vlvf_set(adapter, vid, false, pf_id);
7271
7272	/* if vid was not present in VLVF just remove it from table */
7273	if (err)
7274		igb_vfta_set(hw, vid, false);
7275
7276	clear_bit(vid, adapter->active_vlans);
7277
7278	return 0;
7279}
7280
7281static void igb_restore_vlan(struct igb_adapter *adapter)
7282{
7283	u16 vid;
7284
7285	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7286
7287	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7288		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7289}
7290
7291int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7292{
7293	struct pci_dev *pdev = adapter->pdev;
7294	struct e1000_mac_info *mac = &adapter->hw.mac;
7295
7296	mac->autoneg = 0;
7297
7298	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7299	 * for the switch() below to work
7300	 */
7301	if ((spd & 1) || (dplx & ~1))
7302		goto err_inval;
7303
7304	/* Fiber NIC's only allow 1000 gbps Full duplex
7305	 * and 100Mbps Full duplex for 100baseFx sfp
7306	 */
7307	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7308		switch (spd + dplx) {
7309		case SPEED_10 + DUPLEX_HALF:
7310		case SPEED_10 + DUPLEX_FULL:
7311		case SPEED_100 + DUPLEX_HALF:
7312			goto err_inval;
7313		default:
7314			break;
7315		}
7316	}
7317
7318	switch (spd + dplx) {
7319	case SPEED_10 + DUPLEX_HALF:
7320		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7321		break;
7322	case SPEED_10 + DUPLEX_FULL:
7323		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7324		break;
7325	case SPEED_100 + DUPLEX_HALF:
7326		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7327		break;
7328	case SPEED_100 + DUPLEX_FULL:
7329		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7330		break;
7331	case SPEED_1000 + DUPLEX_FULL:
7332		mac->autoneg = 1;
7333		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7334		break;
7335	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7336	default:
7337		goto err_inval;
7338	}
7339
7340	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7341	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7342
7343	return 0;
7344
7345err_inval:
7346	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7347	return -EINVAL;
7348}
7349
7350static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7351			  bool runtime)
7352{
7353	struct net_device *netdev = pci_get_drvdata(pdev);
7354	struct igb_adapter *adapter = netdev_priv(netdev);
7355	struct e1000_hw *hw = &adapter->hw;
7356	u32 ctrl, rctl, status;
7357	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7358#ifdef CONFIG_PM
7359	int retval = 0;
7360#endif
7361
7362	netif_device_detach(netdev);
7363
7364	if (netif_running(netdev))
7365		__igb_close(netdev, true);
7366
7367	igb_clear_interrupt_scheme(adapter);
7368
7369#ifdef CONFIG_PM
7370	retval = pci_save_state(pdev);
7371	if (retval)
7372		return retval;
7373#endif
7374
7375	status = rd32(E1000_STATUS);
7376	if (status & E1000_STATUS_LU)
7377		wufc &= ~E1000_WUFC_LNKC;
7378
7379	if (wufc) {
7380		igb_setup_rctl(adapter);
7381		igb_set_rx_mode(netdev);
7382
7383		/* turn on all-multi mode if wake on multicast is enabled */
7384		if (wufc & E1000_WUFC_MC) {
7385			rctl = rd32(E1000_RCTL);
7386			rctl |= E1000_RCTL_MPE;
7387			wr32(E1000_RCTL, rctl);
7388		}
7389
7390		ctrl = rd32(E1000_CTRL);
7391		/* advertise wake from D3Cold */
7392		#define E1000_CTRL_ADVD3WUC 0x00100000
7393		/* phy power management enable */
7394		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7395		ctrl |= E1000_CTRL_ADVD3WUC;
7396		wr32(E1000_CTRL, ctrl);
7397
7398		/* Allow time for pending master requests to run */
7399		igb_disable_pcie_master(hw);
7400
7401		wr32(E1000_WUC, E1000_WUC_PME_EN);
7402		wr32(E1000_WUFC, wufc);
7403	} else {
7404		wr32(E1000_WUC, 0);
7405		wr32(E1000_WUFC, 0);
7406	}
7407
7408	*enable_wake = wufc || adapter->en_mng_pt;
7409	if (!*enable_wake)
7410		igb_power_down_link(adapter);
7411	else
7412		igb_power_up_link(adapter);
7413
7414	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7415	 * would have already happened in close and is redundant.
7416	 */
7417	igb_release_hw_control(adapter);
7418
7419	pci_disable_device(pdev);
7420
7421	return 0;
7422}
7423
7424#ifdef CONFIG_PM
7425#ifdef CONFIG_PM_SLEEP
7426static int igb_suspend(struct device *dev)
7427{
7428	int retval;
7429	bool wake;
7430	struct pci_dev *pdev = to_pci_dev(dev);
7431
7432	retval = __igb_shutdown(pdev, &wake, 0);
7433	if (retval)
7434		return retval;
7435
7436	if (wake) {
7437		pci_prepare_to_sleep(pdev);
7438	} else {
7439		pci_wake_from_d3(pdev, false);
7440		pci_set_power_state(pdev, PCI_D3hot);
7441	}
7442
7443	return 0;
7444}
7445#endif /* CONFIG_PM_SLEEP */
7446
7447static int igb_resume(struct device *dev)
7448{
7449	struct pci_dev *pdev = to_pci_dev(dev);
7450	struct net_device *netdev = pci_get_drvdata(pdev);
7451	struct igb_adapter *adapter = netdev_priv(netdev);
7452	struct e1000_hw *hw = &adapter->hw;
7453	u32 err;
7454
7455	pci_set_power_state(pdev, PCI_D0);
7456	pci_restore_state(pdev);
7457	pci_save_state(pdev);
7458
7459	err = pci_enable_device_mem(pdev);
7460	if (err) {
7461		dev_err(&pdev->dev,
7462			"igb: Cannot enable PCI device from suspend\n");
7463		return err;
7464	}
7465	pci_set_master(pdev);
7466
7467	pci_enable_wake(pdev, PCI_D3hot, 0);
7468	pci_enable_wake(pdev, PCI_D3cold, 0);
7469
7470	if (igb_init_interrupt_scheme(adapter, true)) {
7471		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7472		return -ENOMEM;
7473	}
7474
7475	igb_reset(adapter);
7476
7477	/* let the f/w know that the h/w is now under the control of the
7478	 * driver.
7479	 */
7480	igb_get_hw_control(adapter);
7481
7482	wr32(E1000_WUS, ~0);
7483
7484	if (netdev->flags & IFF_UP) {
7485		rtnl_lock();
7486		err = __igb_open(netdev, true);
7487		rtnl_unlock();
7488		if (err)
7489			return err;
7490	}
7491
7492	netif_device_attach(netdev);
7493	return 0;
7494}
7495
7496#ifdef CONFIG_PM_RUNTIME
7497static int igb_runtime_idle(struct device *dev)
7498{
7499	struct pci_dev *pdev = to_pci_dev(dev);
7500	struct net_device *netdev = pci_get_drvdata(pdev);
7501	struct igb_adapter *adapter = netdev_priv(netdev);
7502
7503	if (!igb_has_link(adapter))
7504		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7505
7506	return -EBUSY;
7507}
7508
7509static int igb_runtime_suspend(struct device *dev)
7510{
7511	struct pci_dev *pdev = to_pci_dev(dev);
7512	int retval;
7513	bool wake;
7514
7515	retval = __igb_shutdown(pdev, &wake, 1);
7516	if (retval)
7517		return retval;
7518
7519	if (wake) {
7520		pci_prepare_to_sleep(pdev);
7521	} else {
7522		pci_wake_from_d3(pdev, false);
7523		pci_set_power_state(pdev, PCI_D3hot);
7524	}
7525
7526	return 0;
7527}
7528
7529static int igb_runtime_resume(struct device *dev)
7530{
7531	return igb_resume(dev);
7532}
7533#endif /* CONFIG_PM_RUNTIME */
7534#endif
7535
7536static void igb_shutdown(struct pci_dev *pdev)
7537{
7538	bool wake;
7539
7540	__igb_shutdown(pdev, &wake, 0);
7541
7542	if (system_state == SYSTEM_POWER_OFF) {
7543		pci_wake_from_d3(pdev, wake);
7544		pci_set_power_state(pdev, PCI_D3hot);
7545	}
7546}
7547
7548#ifdef CONFIG_PCI_IOV
7549static int igb_sriov_reinit(struct pci_dev *dev)
7550{
7551	struct net_device *netdev = pci_get_drvdata(dev);
7552	struct igb_adapter *adapter = netdev_priv(netdev);
7553	struct pci_dev *pdev = adapter->pdev;
7554
7555	rtnl_lock();
7556
7557	if (netif_running(netdev))
7558		igb_close(netdev);
7559
7560	igb_clear_interrupt_scheme(adapter);
7561
7562	igb_init_queue_configuration(adapter);
7563
7564	if (igb_init_interrupt_scheme(adapter, true)) {
7565		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7566		return -ENOMEM;
7567	}
7568
7569	if (netif_running(netdev))
7570		igb_open(netdev);
7571
7572	rtnl_unlock();
7573
7574	return 0;
7575}
7576
7577static int igb_pci_disable_sriov(struct pci_dev *dev)
7578{
7579	int err = igb_disable_sriov(dev);
7580
7581	if (!err)
7582		err = igb_sriov_reinit(dev);
7583
7584	return err;
7585}
7586
7587static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7588{
7589	int err = igb_enable_sriov(dev, num_vfs);
7590
7591	if (err)
7592		goto out;
7593
7594	err = igb_sriov_reinit(dev);
7595	if (!err)
7596		return num_vfs;
7597
7598out:
7599	return err;
7600}
7601
7602#endif
7603static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7604{
7605#ifdef CONFIG_PCI_IOV
7606	if (num_vfs == 0)
7607		return igb_pci_disable_sriov(dev);
7608	else
7609		return igb_pci_enable_sriov(dev, num_vfs);
7610#endif
7611	return 0;
7612}
7613
7614#ifdef CONFIG_NET_POLL_CONTROLLER
7615/* Polling 'interrupt' - used by things like netconsole to send skbs
7616 * without having to re-enable interrupts. It's not called while
7617 * the interrupt routine is executing.
7618 */
7619static void igb_netpoll(struct net_device *netdev)
7620{
7621	struct igb_adapter *adapter = netdev_priv(netdev);
7622	struct e1000_hw *hw = &adapter->hw;
7623	struct igb_q_vector *q_vector;
7624	int i;
7625
7626	for (i = 0; i < adapter->num_q_vectors; i++) {
7627		q_vector = adapter->q_vector[i];
7628		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7629			wr32(E1000_EIMC, q_vector->eims_value);
7630		else
7631			igb_irq_disable(adapter);
7632		napi_schedule(&q_vector->napi);
7633	}
7634}
7635#endif /* CONFIG_NET_POLL_CONTROLLER */
7636
7637/**
7638 *  igb_io_error_detected - called when PCI error is detected
7639 *  @pdev: Pointer to PCI device
7640 *  @state: The current pci connection state
7641 *
7642 *  This function is called after a PCI bus error affecting
7643 *  this device has been detected.
7644 **/
7645static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7646					      pci_channel_state_t state)
7647{
7648	struct net_device *netdev = pci_get_drvdata(pdev);
7649	struct igb_adapter *adapter = netdev_priv(netdev);
7650
7651	netif_device_detach(netdev);
7652
7653	if (state == pci_channel_io_perm_failure)
7654		return PCI_ERS_RESULT_DISCONNECT;
7655
7656	if (netif_running(netdev))
7657		igb_down(adapter);
7658	pci_disable_device(pdev);
7659
7660	/* Request a slot slot reset. */
7661	return PCI_ERS_RESULT_NEED_RESET;
7662}
7663
7664/**
7665 *  igb_io_slot_reset - called after the pci bus has been reset.
7666 *  @pdev: Pointer to PCI device
7667 *
7668 *  Restart the card from scratch, as if from a cold-boot. Implementation
7669 *  resembles the first-half of the igb_resume routine.
7670 **/
7671static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7672{
7673	struct net_device *netdev = pci_get_drvdata(pdev);
7674	struct igb_adapter *adapter = netdev_priv(netdev);
7675	struct e1000_hw *hw = &adapter->hw;
7676	pci_ers_result_t result;
7677	int err;
7678
7679	if (pci_enable_device_mem(pdev)) {
7680		dev_err(&pdev->dev,
7681			"Cannot re-enable PCI device after reset.\n");
7682		result = PCI_ERS_RESULT_DISCONNECT;
7683	} else {
7684		pci_set_master(pdev);
7685		pci_restore_state(pdev);
7686		pci_save_state(pdev);
7687
7688		pci_enable_wake(pdev, PCI_D3hot, 0);
7689		pci_enable_wake(pdev, PCI_D3cold, 0);
7690
7691		igb_reset(adapter);
7692		wr32(E1000_WUS, ~0);
7693		result = PCI_ERS_RESULT_RECOVERED;
7694	}
7695
7696	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7697	if (err) {
7698		dev_err(&pdev->dev,
7699			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7700			err);
7701		/* non-fatal, continue */
7702	}
7703
7704	return result;
7705}
7706
7707/**
7708 *  igb_io_resume - called when traffic can start flowing again.
7709 *  @pdev: Pointer to PCI device
7710 *
7711 *  This callback is called when the error recovery driver tells us that
7712 *  its OK to resume normal operation. Implementation resembles the
7713 *  second-half of the igb_resume routine.
7714 */
7715static void igb_io_resume(struct pci_dev *pdev)
7716{
7717	struct net_device *netdev = pci_get_drvdata(pdev);
7718	struct igb_adapter *adapter = netdev_priv(netdev);
7719
7720	if (netif_running(netdev)) {
7721		if (igb_up(adapter)) {
7722			dev_err(&pdev->dev, "igb_up failed after reset\n");
7723			return;
7724		}
7725	}
7726
7727	netif_device_attach(netdev);
7728
7729	/* let the f/w know that the h/w is now under the control of the
7730	 * driver.
7731	 */
7732	igb_get_hw_control(adapter);
7733}
7734
7735static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7736			     u8 qsel)
7737{
7738	u32 rar_low, rar_high;
7739	struct e1000_hw *hw = &adapter->hw;
7740
7741	/* HW expects these in little endian so we reverse the byte order
7742	 * from network order (big endian) to little endian
7743	 */
7744	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7745		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7746	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7747
7748	/* Indicate to hardware the Address is Valid. */
7749	rar_high |= E1000_RAH_AV;
7750
7751	if (hw->mac.type == e1000_82575)
7752		rar_high |= E1000_RAH_POOL_1 * qsel;
7753	else
7754		rar_high |= E1000_RAH_POOL_1 << qsel;
7755
7756	wr32(E1000_RAL(index), rar_low);
7757	wrfl();
7758	wr32(E1000_RAH(index), rar_high);
7759	wrfl();
7760}
7761
7762static int igb_set_vf_mac(struct igb_adapter *adapter,
7763			  int vf, unsigned char *mac_addr)
7764{
7765	struct e1000_hw *hw = &adapter->hw;
7766	/* VF MAC addresses start at end of receive addresses and moves
7767	 * towards the first, as a result a collision should not be possible
7768	 */
7769	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7770
7771	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7772
7773	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7774
7775	return 0;
7776}
7777
7778static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7779{
7780	struct igb_adapter *adapter = netdev_priv(netdev);
7781	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7782		return -EINVAL;
7783	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7784	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7785	dev_info(&adapter->pdev->dev,
7786		 "Reload the VF driver to make this change effective.");
7787	if (test_bit(__IGB_DOWN, &adapter->state)) {
7788		dev_warn(&adapter->pdev->dev,
7789			 "The VF MAC address has been set, but the PF device is not up.\n");
7790		dev_warn(&adapter->pdev->dev,
7791			 "Bring the PF device up before attempting to use the VF device.\n");
7792	}
7793	return igb_set_vf_mac(adapter, vf, mac);
7794}
7795
7796static int igb_link_mbps(int internal_link_speed)
7797{
7798	switch (internal_link_speed) {
7799	case SPEED_100:
7800		return 100;
7801	case SPEED_1000:
7802		return 1000;
7803	default:
7804		return 0;
7805	}
7806}
7807
7808static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7809				  int link_speed)
7810{
7811	int rf_dec, rf_int;
7812	u32 bcnrc_val;
7813
7814	if (tx_rate != 0) {
7815		/* Calculate the rate factor values to set */
7816		rf_int = link_speed / tx_rate;
7817		rf_dec = (link_speed - (rf_int * tx_rate));
7818		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7819			 tx_rate;
7820
7821		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7822		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7823			      E1000_RTTBCNRC_RF_INT_MASK);
7824		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7825	} else {
7826		bcnrc_val = 0;
7827	}
7828
7829	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7830	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7831	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7832	 */
7833	wr32(E1000_RTTBCNRM, 0x14);
7834	wr32(E1000_RTTBCNRC, bcnrc_val);
7835}
7836
7837static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7838{
7839	int actual_link_speed, i;
7840	bool reset_rate = false;
7841
7842	/* VF TX rate limit was not set or not supported */
7843	if ((adapter->vf_rate_link_speed == 0) ||
7844	    (adapter->hw.mac.type != e1000_82576))
7845		return;
7846
7847	actual_link_speed = igb_link_mbps(adapter->link_speed);
7848	if (actual_link_speed != adapter->vf_rate_link_speed) {
7849		reset_rate = true;
7850		adapter->vf_rate_link_speed = 0;
7851		dev_info(&adapter->pdev->dev,
7852			 "Link speed has been changed. VF Transmit rate is disabled\n");
7853	}
7854
7855	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7856		if (reset_rate)
7857			adapter->vf_data[i].tx_rate = 0;
7858
7859		igb_set_vf_rate_limit(&adapter->hw, i,
7860				      adapter->vf_data[i].tx_rate,
7861				      actual_link_speed);
7862	}
7863}
7864
7865static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7866{
7867	struct igb_adapter *adapter = netdev_priv(netdev);
7868	struct e1000_hw *hw = &adapter->hw;
7869	int actual_link_speed;
7870
7871	if (hw->mac.type != e1000_82576)
7872		return -EOPNOTSUPP;
7873
7874	actual_link_speed = igb_link_mbps(adapter->link_speed);
7875	if ((vf >= adapter->vfs_allocated_count) ||
7876	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7877	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7878		return -EINVAL;
7879
7880	adapter->vf_rate_link_speed = actual_link_speed;
7881	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7882	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7883
7884	return 0;
7885}
7886
7887static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7888				   bool setting)
7889{
7890	struct igb_adapter *adapter = netdev_priv(netdev);
7891	struct e1000_hw *hw = &adapter->hw;
7892	u32 reg_val, reg_offset;
7893
7894	if (!adapter->vfs_allocated_count)
7895		return -EOPNOTSUPP;
7896
7897	if (vf >= adapter->vfs_allocated_count)
7898		return -EINVAL;
7899
7900	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7901	reg_val = rd32(reg_offset);
7902	if (setting)
7903		reg_val |= ((1 << vf) |
7904			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7905	else
7906		reg_val &= ~((1 << vf) |
7907			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7908	wr32(reg_offset, reg_val);
7909
7910	adapter->vf_data[vf].spoofchk_enabled = setting;
7911	return E1000_SUCCESS;
7912}
7913
7914static int igb_ndo_get_vf_config(struct net_device *netdev,
7915				 int vf, struct ifla_vf_info *ivi)
7916{
7917	struct igb_adapter *adapter = netdev_priv(netdev);
7918	if (vf >= adapter->vfs_allocated_count)
7919		return -EINVAL;
7920	ivi->vf = vf;
7921	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7922	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7923	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7924	ivi->qos = adapter->vf_data[vf].pf_qos;
7925	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7926	return 0;
7927}
7928
7929static void igb_vmm_control(struct igb_adapter *adapter)
7930{
7931	struct e1000_hw *hw = &adapter->hw;
7932	u32 reg;
7933
7934	switch (hw->mac.type) {
7935	case e1000_82575:
7936	case e1000_i210:
7937	case e1000_i211:
7938	case e1000_i354:
7939	default:
7940		/* replication is not supported for 82575 */
7941		return;
7942	case e1000_82576:
7943		/* notify HW that the MAC is adding vlan tags */
7944		reg = rd32(E1000_DTXCTL);
7945		reg |= E1000_DTXCTL_VLAN_ADDED;
7946		wr32(E1000_DTXCTL, reg);
7947	case e1000_82580:
7948		/* enable replication vlan tag stripping */
7949		reg = rd32(E1000_RPLOLR);
7950		reg |= E1000_RPLOLR_STRVLAN;
7951		wr32(E1000_RPLOLR, reg);
7952	case e1000_i350:
7953		/* none of the above registers are supported by i350 */
7954		break;
7955	}
7956
7957	if (adapter->vfs_allocated_count) {
7958		igb_vmdq_set_loopback_pf(hw, true);
7959		igb_vmdq_set_replication_pf(hw, true);
7960		igb_vmdq_set_anti_spoofing_pf(hw, true,
7961					      adapter->vfs_allocated_count);
7962	} else {
7963		igb_vmdq_set_loopback_pf(hw, false);
7964		igb_vmdq_set_replication_pf(hw, false);
7965	}
7966}
7967
7968static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7969{
7970	struct e1000_hw *hw = &adapter->hw;
7971	u32 dmac_thr;
7972	u16 hwm;
7973
7974	if (hw->mac.type > e1000_82580) {
7975		if (adapter->flags & IGB_FLAG_DMAC) {
7976			u32 reg;
7977
7978			/* force threshold to 0. */
7979			wr32(E1000_DMCTXTH, 0);
7980
7981			/* DMA Coalescing high water mark needs to be greater
7982			 * than the Rx threshold. Set hwm to PBA - max frame
7983			 * size in 16B units, capping it at PBA - 6KB.
7984			 */
7985			hwm = 64 * pba - adapter->max_frame_size / 16;
7986			if (hwm < 64 * (pba - 6))
7987				hwm = 64 * (pba - 6);
7988			reg = rd32(E1000_FCRTC);
7989			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7990			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7991				& E1000_FCRTC_RTH_COAL_MASK);
7992			wr32(E1000_FCRTC, reg);
7993
7994			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7995			 * frame size, capping it at PBA - 10KB.
7996			 */
7997			dmac_thr = pba - adapter->max_frame_size / 512;
7998			if (dmac_thr < pba - 10)
7999				dmac_thr = pba - 10;
8000			reg = rd32(E1000_DMACR);
8001			reg &= ~E1000_DMACR_DMACTHR_MASK;
8002			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8003				& E1000_DMACR_DMACTHR_MASK);
8004
8005			/* transition to L0x or L1 if available..*/
8006			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8007
8008			/* watchdog timer= +-1000 usec in 32usec intervals */
8009			reg |= (1000 >> 5);
8010
8011			/* Disable BMC-to-OS Watchdog Enable */
8012			if (hw->mac.type != e1000_i354)
8013				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8014
8015			wr32(E1000_DMACR, reg);
8016
8017			/* no lower threshold to disable
8018			 * coalescing(smart fifb)-UTRESH=0
8019			 */
8020			wr32(E1000_DMCRTRH, 0);
8021
8022			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8023
8024			wr32(E1000_DMCTLX, reg);
8025
8026			/* free space in tx packet buffer to wake from
8027			 * DMA coal
8028			 */
8029			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8030			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8031
8032			/* make low power state decision controlled
8033			 * by DMA coal
8034			 */
8035			reg = rd32(E1000_PCIEMISC);
8036			reg &= ~E1000_PCIEMISC_LX_DECISION;
8037			wr32(E1000_PCIEMISC, reg);
8038		} /* endif adapter->dmac is not disabled */
8039	} else if (hw->mac.type == e1000_82580) {
8040		u32 reg = rd32(E1000_PCIEMISC);
8041		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8042		wr32(E1000_DMACR, 0);
8043	}
8044}
8045
8046/**
8047 *  igb_read_i2c_byte - Reads 8 bit word over I2C
8048 *  @hw: pointer to hardware structure
8049 *  @byte_offset: byte offset to read
8050 *  @dev_addr: device address
8051 *  @data: value read
8052 *
8053 *  Performs byte read operation over I2C interface at
8054 *  a specified device address.
8055 **/
8056s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8057		      u8 dev_addr, u8 *data)
8058{
8059	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8060	struct i2c_client *this_client = adapter->i2c_client;
8061	s32 status;
8062	u16 swfw_mask = 0;
8063
8064	if (!this_client)
8065		return E1000_ERR_I2C;
8066
8067	swfw_mask = E1000_SWFW_PHY0_SM;
8068
8069	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
8070	    != E1000_SUCCESS)
8071		return E1000_ERR_SWFW_SYNC;
8072
8073	status = i2c_smbus_read_byte_data(this_client, byte_offset);
8074	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8075
8076	if (status < 0)
8077		return E1000_ERR_I2C;
8078	else {
8079		*data = status;
8080		return E1000_SUCCESS;
8081	}
8082}
8083
8084/**
8085 *  igb_write_i2c_byte - Writes 8 bit word over I2C
8086 *  @hw: pointer to hardware structure
8087 *  @byte_offset: byte offset to write
8088 *  @dev_addr: device address
8089 *  @data: value to write
8090 *
8091 *  Performs byte write operation over I2C interface at
8092 *  a specified device address.
8093 **/
8094s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8095		       u8 dev_addr, u8 data)
8096{
8097	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8098	struct i2c_client *this_client = adapter->i2c_client;
8099	s32 status;
8100	u16 swfw_mask = E1000_SWFW_PHY0_SM;
8101
8102	if (!this_client)
8103		return E1000_ERR_I2C;
8104
8105	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
8106		return E1000_ERR_SWFW_SYNC;
8107	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8108	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8109
8110	if (status)
8111		return E1000_ERR_I2C;
8112	else
8113		return E1000_SUCCESS;
8114
8115}
8116
8117int igb_reinit_queues(struct igb_adapter *adapter)
8118{
8119	struct net_device *netdev = adapter->netdev;
8120	struct pci_dev *pdev = adapter->pdev;
8121	int err = 0;
8122
8123	if (netif_running(netdev))
8124		igb_close(netdev);
8125
8126	igb_reset_interrupt_capability(adapter);
8127
8128	if (igb_init_interrupt_scheme(adapter, true)) {
8129		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8130		return -ENOMEM;
8131	}
8132
8133	if (netif_running(netdev))
8134		err = igb_open(netdev);
8135
8136	return err;
8137}
8138/* igb_main.c */
8139