igb_main.c revision 3db73804cc814579b5ad72a7ee326c2ae2dcd1e0
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2012 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
33#include <linux/bitops.h>
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/netdevice.h>
37#include <linux/ipv6.h>
38#include <linux/slab.h>
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
41#include <linux/net_tstamp.h>
42#include <linux/mii.h>
43#include <linux/ethtool.h>
44#include <linux/if.h>
45#include <linux/if_vlan.h>
46#include <linux/pci.h>
47#include <linux/pci-aspm.h>
48#include <linux/delay.h>
49#include <linux/interrupt.h>
50#include <linux/ip.h>
51#include <linux/tcp.h>
52#include <linux/sctp.h>
53#include <linux/if_ether.h>
54#include <linux/aer.h>
55#include <linux/prefetch.h>
56#include <linux/pm_runtime.h>
57#ifdef CONFIG_IGB_DCA
58#include <linux/dca.h>
59#endif
60#include "igb.h"
61
62#define MAJ 4
63#define MIN 0
64#define BUILD 17
65#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66__stringify(BUILD) "-k"
67char igb_driver_name[] = "igb";
68char igb_driver_version[] = DRV_VERSION;
69static const char igb_driver_string[] =
70				"Intel(R) Gigabit Ethernet Network Driver";
71static const char igb_copyright[] = "Copyright (c) 2007-2012 Intel Corporation.";
72
73static const struct e1000_info *igb_info_tbl[] = {
74	[board_82575] = &e1000_82575_info,
75};
76
77static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
78	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
79	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
99	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
104	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
105	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
106	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
107	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
108	/* required last entry */
109	{0, }
110};
111
112MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
113
114void igb_reset(struct igb_adapter *);
115static int igb_setup_all_tx_resources(struct igb_adapter *);
116static int igb_setup_all_rx_resources(struct igb_adapter *);
117static void igb_free_all_tx_resources(struct igb_adapter *);
118static void igb_free_all_rx_resources(struct igb_adapter *);
119static void igb_setup_mrqc(struct igb_adapter *);
120static int igb_probe(struct pci_dev *, const struct pci_device_id *);
121static void __devexit igb_remove(struct pci_dev *pdev);
122static int igb_sw_init(struct igb_adapter *);
123static int igb_open(struct net_device *);
124static int igb_close(struct net_device *);
125static void igb_configure_tx(struct igb_adapter *);
126static void igb_configure_rx(struct igb_adapter *);
127static void igb_clean_all_tx_rings(struct igb_adapter *);
128static void igb_clean_all_rx_rings(struct igb_adapter *);
129static void igb_clean_tx_ring(struct igb_ring *);
130static void igb_clean_rx_ring(struct igb_ring *);
131static void igb_set_rx_mode(struct net_device *);
132static void igb_update_phy_info(unsigned long);
133static void igb_watchdog(unsigned long);
134static void igb_watchdog_task(struct work_struct *);
135static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
136static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
137						 struct rtnl_link_stats64 *stats);
138static int igb_change_mtu(struct net_device *, int);
139static int igb_set_mac(struct net_device *, void *);
140static void igb_set_uta(struct igb_adapter *adapter);
141static irqreturn_t igb_intr(int irq, void *);
142static irqreturn_t igb_intr_msi(int irq, void *);
143static irqreturn_t igb_msix_other(int irq, void *);
144static irqreturn_t igb_msix_ring(int irq, void *);
145#ifdef CONFIG_IGB_DCA
146static void igb_update_dca(struct igb_q_vector *);
147static void igb_setup_dca(struct igb_adapter *);
148#endif /* CONFIG_IGB_DCA */
149static int igb_poll(struct napi_struct *, int);
150static bool igb_clean_tx_irq(struct igb_q_vector *);
151static bool igb_clean_rx_irq(struct igb_q_vector *, int);
152static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
153static void igb_tx_timeout(struct net_device *);
154static void igb_reset_task(struct work_struct *);
155static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
156static int igb_vlan_rx_add_vid(struct net_device *, u16);
157static int igb_vlan_rx_kill_vid(struct net_device *, u16);
158static void igb_restore_vlan(struct igb_adapter *);
159static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
160static void igb_ping_all_vfs(struct igb_adapter *);
161static void igb_msg_task(struct igb_adapter *);
162static void igb_vmm_control(struct igb_adapter *);
163static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
164static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
165static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
166static int igb_ndo_set_vf_vlan(struct net_device *netdev,
167			       int vf, u16 vlan, u8 qos);
168static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
169static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
170				 struct ifla_vf_info *ivi);
171static void igb_check_vf_rate_limit(struct igb_adapter *);
172
173#ifdef CONFIG_PCI_IOV
174static int igb_vf_configure(struct igb_adapter *adapter, int vf);
175static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
176#endif
177
178#ifdef CONFIG_PM
179#ifdef CONFIG_PM_SLEEP
180static int igb_suspend(struct device *);
181#endif
182static int igb_resume(struct device *);
183#ifdef CONFIG_PM_RUNTIME
184static int igb_runtime_suspend(struct device *dev);
185static int igb_runtime_resume(struct device *dev);
186static int igb_runtime_idle(struct device *dev);
187#endif
188static const struct dev_pm_ops igb_pm_ops = {
189	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
191			igb_runtime_idle)
192};
193#endif
194static void igb_shutdown(struct pci_dev *);
195#ifdef CONFIG_IGB_DCA
196static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197static struct notifier_block dca_notifier = {
198	.notifier_call	= igb_notify_dca,
199	.next		= NULL,
200	.priority	= 0
201};
202#endif
203#ifdef CONFIG_NET_POLL_CONTROLLER
204/* for netdump / net console */
205static void igb_netpoll(struct net_device *);
206#endif
207#ifdef CONFIG_PCI_IOV
208static unsigned int max_vfs = 0;
209module_param(max_vfs, uint, 0);
210MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
211                 "per physical function");
212#endif /* CONFIG_PCI_IOV */
213
214static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
215		     pci_channel_state_t);
216static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
217static void igb_io_resume(struct pci_dev *);
218
219static const struct pci_error_handlers igb_err_handler = {
220	.error_detected = igb_io_error_detected,
221	.slot_reset = igb_io_slot_reset,
222	.resume = igb_io_resume,
223};
224
225static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
226
227static struct pci_driver igb_driver = {
228	.name     = igb_driver_name,
229	.id_table = igb_pci_tbl,
230	.probe    = igb_probe,
231	.remove   = __devexit_p(igb_remove),
232#ifdef CONFIG_PM
233	.driver.pm = &igb_pm_ops,
234#endif
235	.shutdown = igb_shutdown,
236	.err_handler = &igb_err_handler
237};
238
239MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
240MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
241MODULE_LICENSE("GPL");
242MODULE_VERSION(DRV_VERSION);
243
244#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
245static int debug = -1;
246module_param(debug, int, 0);
247MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
248
249struct igb_reg_info {
250	u32 ofs;
251	char *name;
252};
253
254static const struct igb_reg_info igb_reg_info_tbl[] = {
255
256	/* General Registers */
257	{E1000_CTRL, "CTRL"},
258	{E1000_STATUS, "STATUS"},
259	{E1000_CTRL_EXT, "CTRL_EXT"},
260
261	/* Interrupt Registers */
262	{E1000_ICR, "ICR"},
263
264	/* RX Registers */
265	{E1000_RCTL, "RCTL"},
266	{E1000_RDLEN(0), "RDLEN"},
267	{E1000_RDH(0), "RDH"},
268	{E1000_RDT(0), "RDT"},
269	{E1000_RXDCTL(0), "RXDCTL"},
270	{E1000_RDBAL(0), "RDBAL"},
271	{E1000_RDBAH(0), "RDBAH"},
272
273	/* TX Registers */
274	{E1000_TCTL, "TCTL"},
275	{E1000_TDBAL(0), "TDBAL"},
276	{E1000_TDBAH(0), "TDBAH"},
277	{E1000_TDLEN(0), "TDLEN"},
278	{E1000_TDH(0), "TDH"},
279	{E1000_TDT(0), "TDT"},
280	{E1000_TXDCTL(0), "TXDCTL"},
281	{E1000_TDFH, "TDFH"},
282	{E1000_TDFT, "TDFT"},
283	{E1000_TDFHS, "TDFHS"},
284	{E1000_TDFPC, "TDFPC"},
285
286	/* List Terminator */
287	{}
288};
289
290/*
291 * igb_regdump - register printout routine
292 */
293static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
294{
295	int n = 0;
296	char rname[16];
297	u32 regs[8];
298
299	switch (reginfo->ofs) {
300	case E1000_RDLEN(0):
301		for (n = 0; n < 4; n++)
302			regs[n] = rd32(E1000_RDLEN(n));
303		break;
304	case E1000_RDH(0):
305		for (n = 0; n < 4; n++)
306			regs[n] = rd32(E1000_RDH(n));
307		break;
308	case E1000_RDT(0):
309		for (n = 0; n < 4; n++)
310			regs[n] = rd32(E1000_RDT(n));
311		break;
312	case E1000_RXDCTL(0):
313		for (n = 0; n < 4; n++)
314			regs[n] = rd32(E1000_RXDCTL(n));
315		break;
316	case E1000_RDBAL(0):
317		for (n = 0; n < 4; n++)
318			regs[n] = rd32(E1000_RDBAL(n));
319		break;
320	case E1000_RDBAH(0):
321		for (n = 0; n < 4; n++)
322			regs[n] = rd32(E1000_RDBAH(n));
323		break;
324	case E1000_TDBAL(0):
325		for (n = 0; n < 4; n++)
326			regs[n] = rd32(E1000_RDBAL(n));
327		break;
328	case E1000_TDBAH(0):
329		for (n = 0; n < 4; n++)
330			regs[n] = rd32(E1000_TDBAH(n));
331		break;
332	case E1000_TDLEN(0):
333		for (n = 0; n < 4; n++)
334			regs[n] = rd32(E1000_TDLEN(n));
335		break;
336	case E1000_TDH(0):
337		for (n = 0; n < 4; n++)
338			regs[n] = rd32(E1000_TDH(n));
339		break;
340	case E1000_TDT(0):
341		for (n = 0; n < 4; n++)
342			regs[n] = rd32(E1000_TDT(n));
343		break;
344	case E1000_TXDCTL(0):
345		for (n = 0; n < 4; n++)
346			regs[n] = rd32(E1000_TXDCTL(n));
347		break;
348	default:
349		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
350		return;
351	}
352
353	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
354	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
355		regs[2], regs[3]);
356}
357
358/*
359 * igb_dump - Print registers, tx-rings and rx-rings
360 */
361static void igb_dump(struct igb_adapter *adapter)
362{
363	struct net_device *netdev = adapter->netdev;
364	struct e1000_hw *hw = &adapter->hw;
365	struct igb_reg_info *reginfo;
366	struct igb_ring *tx_ring;
367	union e1000_adv_tx_desc *tx_desc;
368	struct my_u0 { u64 a; u64 b; } *u0;
369	struct igb_ring *rx_ring;
370	union e1000_adv_rx_desc *rx_desc;
371	u32 staterr;
372	u16 i, n;
373
374	if (!netif_msg_hw(adapter))
375		return;
376
377	/* Print netdevice Info */
378	if (netdev) {
379		dev_info(&adapter->pdev->dev, "Net device Info\n");
380		pr_info("Device Name     state            trans_start      "
381			"last_rx\n");
382		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
383			netdev->state, netdev->trans_start, netdev->last_rx);
384	}
385
386	/* Print Registers */
387	dev_info(&adapter->pdev->dev, "Register Dump\n");
388	pr_info(" Register Name   Value\n");
389	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
390	     reginfo->name; reginfo++) {
391		igb_regdump(hw, reginfo);
392	}
393
394	/* Print TX Ring Summary */
395	if (!netdev || !netif_running(netdev))
396		goto exit;
397
398	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
399	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
400	for (n = 0; n < adapter->num_tx_queues; n++) {
401		struct igb_tx_buffer *buffer_info;
402		tx_ring = adapter->tx_ring[n];
403		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
404		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
405			n, tx_ring->next_to_use, tx_ring->next_to_clean,
406			(u64)dma_unmap_addr(buffer_info, dma),
407			dma_unmap_len(buffer_info, len),
408			buffer_info->next_to_watch,
409			(u64)buffer_info->time_stamp);
410	}
411
412	/* Print TX Rings */
413	if (!netif_msg_tx_done(adapter))
414		goto rx_ring_summary;
415
416	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
417
418	/* Transmit Descriptor Formats
419	 *
420	 * Advanced Transmit Descriptor
421	 *   +--------------------------------------------------------------+
422	 * 0 |         Buffer Address [63:0]                                |
423	 *   +--------------------------------------------------------------+
424	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
425	 *   +--------------------------------------------------------------+
426	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
427	 */
428
429	for (n = 0; n < adapter->num_tx_queues; n++) {
430		tx_ring = adapter->tx_ring[n];
431		pr_info("------------------------------------\n");
432		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
433		pr_info("------------------------------------\n");
434		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
435			"[bi->dma       ] leng  ntw timestamp        "
436			"bi->skb\n");
437
438		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
439			const char *next_desc;
440			struct igb_tx_buffer *buffer_info;
441			tx_desc = IGB_TX_DESC(tx_ring, i);
442			buffer_info = &tx_ring->tx_buffer_info[i];
443			u0 = (struct my_u0 *)tx_desc;
444			if (i == tx_ring->next_to_use &&
445			    i == tx_ring->next_to_clean)
446				next_desc = " NTC/U";
447			else if (i == tx_ring->next_to_use)
448				next_desc = " NTU";
449			else if (i == tx_ring->next_to_clean)
450				next_desc = " NTC";
451			else
452				next_desc = "";
453
454			pr_info("T [0x%03X]    %016llX %016llX %016llX"
455				" %04X  %p %016llX %p%s\n", i,
456				le64_to_cpu(u0->a),
457				le64_to_cpu(u0->b),
458				(u64)dma_unmap_addr(buffer_info, dma),
459				dma_unmap_len(buffer_info, len),
460				buffer_info->next_to_watch,
461				(u64)buffer_info->time_stamp,
462				buffer_info->skb, next_desc);
463
464			if (netif_msg_pktdata(adapter) && buffer_info->skb)
465				print_hex_dump(KERN_INFO, "",
466					DUMP_PREFIX_ADDRESS,
467					16, 1, buffer_info->skb->data,
468					dma_unmap_len(buffer_info, len),
469					true);
470		}
471	}
472
473	/* Print RX Rings Summary */
474rx_ring_summary:
475	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
476	pr_info("Queue [NTU] [NTC]\n");
477	for (n = 0; n < adapter->num_rx_queues; n++) {
478		rx_ring = adapter->rx_ring[n];
479		pr_info(" %5d %5X %5X\n",
480			n, rx_ring->next_to_use, rx_ring->next_to_clean);
481	}
482
483	/* Print RX Rings */
484	if (!netif_msg_rx_status(adapter))
485		goto exit;
486
487	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
488
489	/* Advanced Receive Descriptor (Read) Format
490	 *    63                                           1        0
491	 *    +-----------------------------------------------------+
492	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
493	 *    +----------------------------------------------+------+
494	 *  8 |       Header Buffer Address [63:1]           |  DD  |
495	 *    +-----------------------------------------------------+
496	 *
497	 *
498	 * Advanced Receive Descriptor (Write-Back) Format
499	 *
500	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
501	 *   +------------------------------------------------------+
502	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
503	 *   | Checksum   Ident  |   |           |    | Type | Type |
504	 *   +------------------------------------------------------+
505	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
506	 *   +------------------------------------------------------+
507	 *   63       48 47    32 31            20 19               0
508	 */
509
510	for (n = 0; n < adapter->num_rx_queues; n++) {
511		rx_ring = adapter->rx_ring[n];
512		pr_info("------------------------------------\n");
513		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
514		pr_info("------------------------------------\n");
515		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
516			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
517		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
518			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
519
520		for (i = 0; i < rx_ring->count; i++) {
521			const char *next_desc;
522			struct igb_rx_buffer *buffer_info;
523			buffer_info = &rx_ring->rx_buffer_info[i];
524			rx_desc = IGB_RX_DESC(rx_ring, i);
525			u0 = (struct my_u0 *)rx_desc;
526			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
527
528			if (i == rx_ring->next_to_use)
529				next_desc = " NTU";
530			else if (i == rx_ring->next_to_clean)
531				next_desc = " NTC";
532			else
533				next_desc = "";
534
535			if (staterr & E1000_RXD_STAT_DD) {
536				/* Descriptor Done */
537				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
538					"RWB", i,
539					le64_to_cpu(u0->a),
540					le64_to_cpu(u0->b),
541					next_desc);
542			} else {
543				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
544					"R  ", i,
545					le64_to_cpu(u0->a),
546					le64_to_cpu(u0->b),
547					(u64)buffer_info->dma,
548					next_desc);
549
550				if (netif_msg_pktdata(adapter) &&
551				    buffer_info->dma && buffer_info->page) {
552					print_hex_dump(KERN_INFO, "",
553					  DUMP_PREFIX_ADDRESS,
554					  16, 1,
555					  page_address(buffer_info->page) +
556						      buffer_info->page_offset,
557					  IGB_RX_BUFSZ, true);
558				}
559			}
560		}
561	}
562
563exit:
564	return;
565}
566
567/**
568 * igb_get_hw_dev - return device
569 * used by hardware layer to print debugging information
570 **/
571struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
572{
573	struct igb_adapter *adapter = hw->back;
574	return adapter->netdev;
575}
576
577/**
578 * igb_init_module - Driver Registration Routine
579 *
580 * igb_init_module is the first routine called when the driver is
581 * loaded. All it does is register with the PCI subsystem.
582 **/
583static int __init igb_init_module(void)
584{
585	int ret;
586	pr_info("%s - version %s\n",
587	       igb_driver_string, igb_driver_version);
588
589	pr_info("%s\n", igb_copyright);
590
591#ifdef CONFIG_IGB_DCA
592	dca_register_notify(&dca_notifier);
593#endif
594	ret = pci_register_driver(&igb_driver);
595	return ret;
596}
597
598module_init(igb_init_module);
599
600/**
601 * igb_exit_module - Driver Exit Cleanup Routine
602 *
603 * igb_exit_module is called just before the driver is removed
604 * from memory.
605 **/
606static void __exit igb_exit_module(void)
607{
608#ifdef CONFIG_IGB_DCA
609	dca_unregister_notify(&dca_notifier);
610#endif
611	pci_unregister_driver(&igb_driver);
612}
613
614module_exit(igb_exit_module);
615
616#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
617/**
618 * igb_cache_ring_register - Descriptor ring to register mapping
619 * @adapter: board private structure to initialize
620 *
621 * Once we know the feature-set enabled for the device, we'll cache
622 * the register offset the descriptor ring is assigned to.
623 **/
624static void igb_cache_ring_register(struct igb_adapter *adapter)
625{
626	int i = 0, j = 0;
627	u32 rbase_offset = adapter->vfs_allocated_count;
628
629	switch (adapter->hw.mac.type) {
630	case e1000_82576:
631		/* The queues are allocated for virtualization such that VF 0
632		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
633		 * In order to avoid collision we start at the first free queue
634		 * and continue consuming queues in the same sequence
635		 */
636		if (adapter->vfs_allocated_count) {
637			for (; i < adapter->rss_queues; i++)
638				adapter->rx_ring[i]->reg_idx = rbase_offset +
639				                               Q_IDX_82576(i);
640		}
641	case e1000_82575:
642	case e1000_82580:
643	case e1000_i350:
644	case e1000_i210:
645	case e1000_i211:
646	default:
647		for (; i < adapter->num_rx_queues; i++)
648			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
649		for (; j < adapter->num_tx_queues; j++)
650			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
651		break;
652	}
653}
654
655/**
656 *  igb_write_ivar - configure ivar for given MSI-X vector
657 *  @hw: pointer to the HW structure
658 *  @msix_vector: vector number we are allocating to a given ring
659 *  @index: row index of IVAR register to write within IVAR table
660 *  @offset: column offset of in IVAR, should be multiple of 8
661 *
662 *  This function is intended to handle the writing of the IVAR register
663 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
664 *  each containing an cause allocation for an Rx and Tx ring, and a
665 *  variable number of rows depending on the number of queues supported.
666 **/
667static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
668			   int index, int offset)
669{
670	u32 ivar = array_rd32(E1000_IVAR0, index);
671
672	/* clear any bits that are currently set */
673	ivar &= ~((u32)0xFF << offset);
674
675	/* write vector and valid bit */
676	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
677
678	array_wr32(E1000_IVAR0, index, ivar);
679}
680
681#define IGB_N0_QUEUE -1
682static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
683{
684	struct igb_adapter *adapter = q_vector->adapter;
685	struct e1000_hw *hw = &adapter->hw;
686	int rx_queue = IGB_N0_QUEUE;
687	int tx_queue = IGB_N0_QUEUE;
688	u32 msixbm = 0;
689
690	if (q_vector->rx.ring)
691		rx_queue = q_vector->rx.ring->reg_idx;
692	if (q_vector->tx.ring)
693		tx_queue = q_vector->tx.ring->reg_idx;
694
695	switch (hw->mac.type) {
696	case e1000_82575:
697		/* The 82575 assigns vectors using a bitmask, which matches the
698		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
699		   or more queues to a vector, we write the appropriate bits
700		   into the MSIXBM register for that vector. */
701		if (rx_queue > IGB_N0_QUEUE)
702			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
703		if (tx_queue > IGB_N0_QUEUE)
704			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
705		if (!adapter->msix_entries && msix_vector == 0)
706			msixbm |= E1000_EIMS_OTHER;
707		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
708		q_vector->eims_value = msixbm;
709		break;
710	case e1000_82576:
711		/*
712		 * 82576 uses a table that essentially consists of 2 columns
713		 * with 8 rows.  The ordering is column-major so we use the
714		 * lower 3 bits as the row index, and the 4th bit as the
715		 * column offset.
716		 */
717		if (rx_queue > IGB_N0_QUEUE)
718			igb_write_ivar(hw, msix_vector,
719				       rx_queue & 0x7,
720				       (rx_queue & 0x8) << 1);
721		if (tx_queue > IGB_N0_QUEUE)
722			igb_write_ivar(hw, msix_vector,
723				       tx_queue & 0x7,
724				       ((tx_queue & 0x8) << 1) + 8);
725		q_vector->eims_value = 1 << msix_vector;
726		break;
727	case e1000_82580:
728	case e1000_i350:
729	case e1000_i210:
730	case e1000_i211:
731		/*
732		 * On 82580 and newer adapters the scheme is similar to 82576
733		 * however instead of ordering column-major we have things
734		 * ordered row-major.  So we traverse the table by using
735		 * bit 0 as the column offset, and the remaining bits as the
736		 * row index.
737		 */
738		if (rx_queue > IGB_N0_QUEUE)
739			igb_write_ivar(hw, msix_vector,
740				       rx_queue >> 1,
741				       (rx_queue & 0x1) << 4);
742		if (tx_queue > IGB_N0_QUEUE)
743			igb_write_ivar(hw, msix_vector,
744				       tx_queue >> 1,
745				       ((tx_queue & 0x1) << 4) + 8);
746		q_vector->eims_value = 1 << msix_vector;
747		break;
748	default:
749		BUG();
750		break;
751	}
752
753	/* add q_vector eims value to global eims_enable_mask */
754	adapter->eims_enable_mask |= q_vector->eims_value;
755
756	/* configure q_vector to set itr on first interrupt */
757	q_vector->set_itr = 1;
758}
759
760/**
761 * igb_configure_msix - Configure MSI-X hardware
762 *
763 * igb_configure_msix sets up the hardware to properly
764 * generate MSI-X interrupts.
765 **/
766static void igb_configure_msix(struct igb_adapter *adapter)
767{
768	u32 tmp;
769	int i, vector = 0;
770	struct e1000_hw *hw = &adapter->hw;
771
772	adapter->eims_enable_mask = 0;
773
774	/* set vector for other causes, i.e. link changes */
775	switch (hw->mac.type) {
776	case e1000_82575:
777		tmp = rd32(E1000_CTRL_EXT);
778		/* enable MSI-X PBA support*/
779		tmp |= E1000_CTRL_EXT_PBA_CLR;
780
781		/* Auto-Mask interrupts upon ICR read. */
782		tmp |= E1000_CTRL_EXT_EIAME;
783		tmp |= E1000_CTRL_EXT_IRCA;
784
785		wr32(E1000_CTRL_EXT, tmp);
786
787		/* enable msix_other interrupt */
788		array_wr32(E1000_MSIXBM(0), vector++,
789		                      E1000_EIMS_OTHER);
790		adapter->eims_other = E1000_EIMS_OTHER;
791
792		break;
793
794	case e1000_82576:
795	case e1000_82580:
796	case e1000_i350:
797	case e1000_i210:
798	case e1000_i211:
799		/* Turn on MSI-X capability first, or our settings
800		 * won't stick.  And it will take days to debug. */
801		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
802		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
803		                E1000_GPIE_NSICR);
804
805		/* enable msix_other interrupt */
806		adapter->eims_other = 1 << vector;
807		tmp = (vector++ | E1000_IVAR_VALID) << 8;
808
809		wr32(E1000_IVAR_MISC, tmp);
810		break;
811	default:
812		/* do nothing, since nothing else supports MSI-X */
813		break;
814	} /* switch (hw->mac.type) */
815
816	adapter->eims_enable_mask |= adapter->eims_other;
817
818	for (i = 0; i < adapter->num_q_vectors; i++)
819		igb_assign_vector(adapter->q_vector[i], vector++);
820
821	wrfl();
822}
823
824/**
825 * igb_request_msix - Initialize MSI-X interrupts
826 *
827 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
828 * kernel.
829 **/
830static int igb_request_msix(struct igb_adapter *adapter)
831{
832	struct net_device *netdev = adapter->netdev;
833	struct e1000_hw *hw = &adapter->hw;
834	int i, err = 0, vector = 0;
835
836	err = request_irq(adapter->msix_entries[vector].vector,
837	                  igb_msix_other, 0, netdev->name, adapter);
838	if (err)
839		goto out;
840	vector++;
841
842	for (i = 0; i < adapter->num_q_vectors; i++) {
843		struct igb_q_vector *q_vector = adapter->q_vector[i];
844
845		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
846
847		if (q_vector->rx.ring && q_vector->tx.ring)
848			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
849				q_vector->rx.ring->queue_index);
850		else if (q_vector->tx.ring)
851			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
852				q_vector->tx.ring->queue_index);
853		else if (q_vector->rx.ring)
854			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
855				q_vector->rx.ring->queue_index);
856		else
857			sprintf(q_vector->name, "%s-unused", netdev->name);
858
859		err = request_irq(adapter->msix_entries[vector].vector,
860		                  igb_msix_ring, 0, q_vector->name,
861		                  q_vector);
862		if (err)
863			goto out;
864		vector++;
865	}
866
867	igb_configure_msix(adapter);
868	return 0;
869out:
870	return err;
871}
872
873static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
874{
875	if (adapter->msix_entries) {
876		pci_disable_msix(adapter->pdev);
877		kfree(adapter->msix_entries);
878		adapter->msix_entries = NULL;
879	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
880		pci_disable_msi(adapter->pdev);
881	}
882}
883
884/**
885 * igb_free_q_vector - Free memory allocated for specific interrupt vector
886 * @adapter: board private structure to initialize
887 * @v_idx: Index of vector to be freed
888 *
889 * This function frees the memory allocated to the q_vector.  In addition if
890 * NAPI is enabled it will delete any references to the NAPI struct prior
891 * to freeing the q_vector.
892 **/
893static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
894{
895	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
896
897	if (q_vector->tx.ring)
898		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
899
900	if (q_vector->rx.ring)
901		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
902
903	adapter->q_vector[v_idx] = NULL;
904	netif_napi_del(&q_vector->napi);
905
906	/*
907	 * ixgbe_get_stats64() might access the rings on this vector,
908	 * we must wait a grace period before freeing it.
909	 */
910	kfree_rcu(q_vector, rcu);
911}
912
913/**
914 * igb_free_q_vectors - Free memory allocated for interrupt vectors
915 * @adapter: board private structure to initialize
916 *
917 * This function frees the memory allocated to the q_vectors.  In addition if
918 * NAPI is enabled it will delete any references to the NAPI struct prior
919 * to freeing the q_vector.
920 **/
921static void igb_free_q_vectors(struct igb_adapter *adapter)
922{
923	int v_idx = adapter->num_q_vectors;
924
925	adapter->num_tx_queues = 0;
926	adapter->num_rx_queues = 0;
927	adapter->num_q_vectors = 0;
928
929	while (v_idx--)
930		igb_free_q_vector(adapter, v_idx);
931}
932
933/**
934 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
935 *
936 * This function resets the device so that it has 0 rx queues, tx queues, and
937 * MSI-X interrupts allocated.
938 */
939static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
940{
941	igb_free_q_vectors(adapter);
942	igb_reset_interrupt_capability(adapter);
943}
944
945/**
946 * igb_set_interrupt_capability - set MSI or MSI-X if supported
947 *
948 * Attempt to configure interrupts using the best available
949 * capabilities of the hardware and kernel.
950 **/
951static void igb_set_interrupt_capability(struct igb_adapter *adapter)
952{
953	int err;
954	int numvecs, i;
955
956	/* Number of supported queues. */
957	adapter->num_rx_queues = adapter->rss_queues;
958	if (adapter->vfs_allocated_count)
959		adapter->num_tx_queues = 1;
960	else
961		adapter->num_tx_queues = adapter->rss_queues;
962
963	/* start with one vector for every rx queue */
964	numvecs = adapter->num_rx_queues;
965
966	/* if tx handler is separate add 1 for every tx queue */
967	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
968		numvecs += adapter->num_tx_queues;
969
970	/* store the number of vectors reserved for queues */
971	adapter->num_q_vectors = numvecs;
972
973	/* add 1 vector for link status interrupts */
974	numvecs++;
975	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
976					GFP_KERNEL);
977
978	if (!adapter->msix_entries)
979		goto msi_only;
980
981	for (i = 0; i < numvecs; i++)
982		adapter->msix_entries[i].entry = i;
983
984	err = pci_enable_msix(adapter->pdev,
985			      adapter->msix_entries,
986			      numvecs);
987	if (err == 0)
988		return;
989
990	igb_reset_interrupt_capability(adapter);
991
992	/* If we can't do MSI-X, try MSI */
993msi_only:
994#ifdef CONFIG_PCI_IOV
995	/* disable SR-IOV for non MSI-X configurations */
996	if (adapter->vf_data) {
997		struct e1000_hw *hw = &adapter->hw;
998		/* disable iov and allow time for transactions to clear */
999		pci_disable_sriov(adapter->pdev);
1000		msleep(500);
1001
1002		kfree(adapter->vf_data);
1003		adapter->vf_data = NULL;
1004		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1005		wrfl();
1006		msleep(100);
1007		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1008	}
1009#endif
1010	adapter->vfs_allocated_count = 0;
1011	adapter->rss_queues = 1;
1012	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1013	adapter->num_rx_queues = 1;
1014	adapter->num_tx_queues = 1;
1015	adapter->num_q_vectors = 1;
1016	if (!pci_enable_msi(adapter->pdev))
1017		adapter->flags |= IGB_FLAG_HAS_MSI;
1018}
1019
1020static void igb_add_ring(struct igb_ring *ring,
1021			 struct igb_ring_container *head)
1022{
1023	head->ring = ring;
1024	head->count++;
1025}
1026
1027/**
1028 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1029 * @adapter: board private structure to initialize
1030 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1031 * @v_idx: index of vector in adapter struct
1032 * @txr_count: total number of Tx rings to allocate
1033 * @txr_idx: index of first Tx ring to allocate
1034 * @rxr_count: total number of Rx rings to allocate
1035 * @rxr_idx: index of first Rx ring to allocate
1036 *
1037 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1038 **/
1039static int igb_alloc_q_vector(struct igb_adapter *adapter,
1040			      int v_count, int v_idx,
1041			      int txr_count, int txr_idx,
1042			      int rxr_count, int rxr_idx)
1043{
1044	struct igb_q_vector *q_vector;
1045	struct igb_ring *ring;
1046	int ring_count, size;
1047
1048	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1049	if (txr_count > 1 || rxr_count > 1)
1050		return -ENOMEM;
1051
1052	ring_count = txr_count + rxr_count;
1053	size = sizeof(struct igb_q_vector) +
1054	       (sizeof(struct igb_ring) * ring_count);
1055
1056	/* allocate q_vector and rings */
1057	q_vector = kzalloc(size, GFP_KERNEL);
1058	if (!q_vector)
1059		return -ENOMEM;
1060
1061	/* initialize NAPI */
1062	netif_napi_add(adapter->netdev, &q_vector->napi,
1063		       igb_poll, 64);
1064
1065	/* tie q_vector and adapter together */
1066	adapter->q_vector[v_idx] = q_vector;
1067	q_vector->adapter = adapter;
1068
1069	/* initialize work limits */
1070	q_vector->tx.work_limit = adapter->tx_work_limit;
1071
1072	/* initialize ITR configuration */
1073	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1074	q_vector->itr_val = IGB_START_ITR;
1075
1076	/* initialize pointer to rings */
1077	ring = q_vector->ring;
1078
1079	if (txr_count) {
1080		/* assign generic ring traits */
1081		ring->dev = &adapter->pdev->dev;
1082		ring->netdev = adapter->netdev;
1083
1084		/* configure backlink on ring */
1085		ring->q_vector = q_vector;
1086
1087		/* update q_vector Tx values */
1088		igb_add_ring(ring, &q_vector->tx);
1089
1090		/* For 82575, context index must be unique per ring. */
1091		if (adapter->hw.mac.type == e1000_82575)
1092			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1093
1094		/* apply Tx specific ring traits */
1095		ring->count = adapter->tx_ring_count;
1096		ring->queue_index = txr_idx;
1097
1098		/* assign ring to adapter */
1099		adapter->tx_ring[txr_idx] = ring;
1100
1101		/* push pointer to next ring */
1102		ring++;
1103	}
1104
1105	if (rxr_count) {
1106		/* assign generic ring traits */
1107		ring->dev = &adapter->pdev->dev;
1108		ring->netdev = adapter->netdev;
1109
1110		/* configure backlink on ring */
1111		ring->q_vector = q_vector;
1112
1113		/* update q_vector Rx values */
1114		igb_add_ring(ring, &q_vector->rx);
1115
1116		/* set flag indicating ring supports SCTP checksum offload */
1117		if (adapter->hw.mac.type >= e1000_82576)
1118			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1119
1120		/*
1121		 * On i350, i210, and i211, loopback VLAN packets
1122		 * have the tag byte-swapped.
1123		 * */
1124		if (adapter->hw.mac.type >= e1000_i350)
1125			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1126
1127		/* apply Rx specific ring traits */
1128		ring->count = adapter->rx_ring_count;
1129		ring->queue_index = rxr_idx;
1130
1131		/* assign ring to adapter */
1132		adapter->rx_ring[rxr_idx] = ring;
1133	}
1134
1135	return 0;
1136}
1137
1138
1139/**
1140 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1141 * @adapter: board private structure to initialize
1142 *
1143 * We allocate one q_vector per queue interrupt.  If allocation fails we
1144 * return -ENOMEM.
1145 **/
1146static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1147{
1148	int q_vectors = adapter->num_q_vectors;
1149	int rxr_remaining = adapter->num_rx_queues;
1150	int txr_remaining = adapter->num_tx_queues;
1151	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1152	int err;
1153
1154	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1155		for (; rxr_remaining; v_idx++) {
1156			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1157						 0, 0, 1, rxr_idx);
1158
1159			if (err)
1160				goto err_out;
1161
1162			/* update counts and index */
1163			rxr_remaining--;
1164			rxr_idx++;
1165		}
1166	}
1167
1168	for (; v_idx < q_vectors; v_idx++) {
1169		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1170		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1171		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1172					 tqpv, txr_idx, rqpv, rxr_idx);
1173
1174		if (err)
1175			goto err_out;
1176
1177		/* update counts and index */
1178		rxr_remaining -= rqpv;
1179		txr_remaining -= tqpv;
1180		rxr_idx++;
1181		txr_idx++;
1182	}
1183
1184	return 0;
1185
1186err_out:
1187	adapter->num_tx_queues = 0;
1188	adapter->num_rx_queues = 0;
1189	adapter->num_q_vectors = 0;
1190
1191	while (v_idx--)
1192		igb_free_q_vector(adapter, v_idx);
1193
1194	return -ENOMEM;
1195}
1196
1197/**
1198 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1199 *
1200 * This function initializes the interrupts and allocates all of the queues.
1201 **/
1202static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1203{
1204	struct pci_dev *pdev = adapter->pdev;
1205	int err;
1206
1207	igb_set_interrupt_capability(adapter);
1208
1209	err = igb_alloc_q_vectors(adapter);
1210	if (err) {
1211		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1212		goto err_alloc_q_vectors;
1213	}
1214
1215	igb_cache_ring_register(adapter);
1216
1217	return 0;
1218
1219err_alloc_q_vectors:
1220	igb_reset_interrupt_capability(adapter);
1221	return err;
1222}
1223
1224/**
1225 * igb_request_irq - initialize interrupts
1226 *
1227 * Attempts to configure interrupts using the best available
1228 * capabilities of the hardware and kernel.
1229 **/
1230static int igb_request_irq(struct igb_adapter *adapter)
1231{
1232	struct net_device *netdev = adapter->netdev;
1233	struct pci_dev *pdev = adapter->pdev;
1234	int err = 0;
1235
1236	if (adapter->msix_entries) {
1237		err = igb_request_msix(adapter);
1238		if (!err)
1239			goto request_done;
1240		/* fall back to MSI */
1241		igb_free_all_tx_resources(adapter);
1242		igb_free_all_rx_resources(adapter);
1243		igb_clear_interrupt_scheme(adapter);
1244		if (!pci_enable_msi(pdev))
1245			adapter->flags |= IGB_FLAG_HAS_MSI;
1246		adapter->num_tx_queues = 1;
1247		adapter->num_rx_queues = 1;
1248		adapter->num_q_vectors = 1;
1249		err = igb_alloc_q_vectors(adapter);
1250		if (err) {
1251			dev_err(&pdev->dev,
1252			        "Unable to allocate memory for vectors\n");
1253			goto request_done;
1254		}
1255		igb_setup_all_tx_resources(adapter);
1256		igb_setup_all_rx_resources(adapter);
1257	}
1258
1259	igb_assign_vector(adapter->q_vector[0], 0);
1260
1261	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1262		err = request_irq(pdev->irq, igb_intr_msi, 0,
1263				  netdev->name, adapter);
1264		if (!err)
1265			goto request_done;
1266
1267		/* fall back to legacy interrupts */
1268		igb_reset_interrupt_capability(adapter);
1269		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1270	}
1271
1272	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1273			  netdev->name, adapter);
1274
1275	if (err)
1276		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1277			err);
1278
1279request_done:
1280	return err;
1281}
1282
1283static void igb_free_irq(struct igb_adapter *adapter)
1284{
1285	if (adapter->msix_entries) {
1286		int vector = 0, i;
1287
1288		free_irq(adapter->msix_entries[vector++].vector, adapter);
1289
1290		for (i = 0; i < adapter->num_q_vectors; i++)
1291			free_irq(adapter->msix_entries[vector++].vector,
1292				 adapter->q_vector[i]);
1293	} else {
1294		free_irq(adapter->pdev->irq, adapter);
1295	}
1296}
1297
1298/**
1299 * igb_irq_disable - Mask off interrupt generation on the NIC
1300 * @adapter: board private structure
1301 **/
1302static void igb_irq_disable(struct igb_adapter *adapter)
1303{
1304	struct e1000_hw *hw = &adapter->hw;
1305
1306	/*
1307	 * we need to be careful when disabling interrupts.  The VFs are also
1308	 * mapped into these registers and so clearing the bits can cause
1309	 * issues on the VF drivers so we only need to clear what we set
1310	 */
1311	if (adapter->msix_entries) {
1312		u32 regval = rd32(E1000_EIAM);
1313		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1314		wr32(E1000_EIMC, adapter->eims_enable_mask);
1315		regval = rd32(E1000_EIAC);
1316		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1317	}
1318
1319	wr32(E1000_IAM, 0);
1320	wr32(E1000_IMC, ~0);
1321	wrfl();
1322	if (adapter->msix_entries) {
1323		int i;
1324		for (i = 0; i < adapter->num_q_vectors; i++)
1325			synchronize_irq(adapter->msix_entries[i].vector);
1326	} else {
1327		synchronize_irq(adapter->pdev->irq);
1328	}
1329}
1330
1331/**
1332 * igb_irq_enable - Enable default interrupt generation settings
1333 * @adapter: board private structure
1334 **/
1335static void igb_irq_enable(struct igb_adapter *adapter)
1336{
1337	struct e1000_hw *hw = &adapter->hw;
1338
1339	if (adapter->msix_entries) {
1340		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1341		u32 regval = rd32(E1000_EIAC);
1342		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1343		regval = rd32(E1000_EIAM);
1344		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1345		wr32(E1000_EIMS, adapter->eims_enable_mask);
1346		if (adapter->vfs_allocated_count) {
1347			wr32(E1000_MBVFIMR, 0xFF);
1348			ims |= E1000_IMS_VMMB;
1349		}
1350		wr32(E1000_IMS, ims);
1351	} else {
1352		wr32(E1000_IMS, IMS_ENABLE_MASK |
1353				E1000_IMS_DRSTA);
1354		wr32(E1000_IAM, IMS_ENABLE_MASK |
1355				E1000_IMS_DRSTA);
1356	}
1357}
1358
1359static void igb_update_mng_vlan(struct igb_adapter *adapter)
1360{
1361	struct e1000_hw *hw = &adapter->hw;
1362	u16 vid = adapter->hw.mng_cookie.vlan_id;
1363	u16 old_vid = adapter->mng_vlan_id;
1364
1365	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1366		/* add VID to filter table */
1367		igb_vfta_set(hw, vid, true);
1368		adapter->mng_vlan_id = vid;
1369	} else {
1370		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1371	}
1372
1373	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1374	    (vid != old_vid) &&
1375	    !test_bit(old_vid, adapter->active_vlans)) {
1376		/* remove VID from filter table */
1377		igb_vfta_set(hw, old_vid, false);
1378	}
1379}
1380
1381/**
1382 * igb_release_hw_control - release control of the h/w to f/w
1383 * @adapter: address of board private structure
1384 *
1385 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1386 * For ASF and Pass Through versions of f/w this means that the
1387 * driver is no longer loaded.
1388 *
1389 **/
1390static void igb_release_hw_control(struct igb_adapter *adapter)
1391{
1392	struct e1000_hw *hw = &adapter->hw;
1393	u32 ctrl_ext;
1394
1395	/* Let firmware take over control of h/w */
1396	ctrl_ext = rd32(E1000_CTRL_EXT);
1397	wr32(E1000_CTRL_EXT,
1398			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1399}
1400
1401/**
1402 * igb_get_hw_control - get control of the h/w from f/w
1403 * @adapter: address of board private structure
1404 *
1405 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1406 * For ASF and Pass Through versions of f/w this means that
1407 * the driver is loaded.
1408 *
1409 **/
1410static void igb_get_hw_control(struct igb_adapter *adapter)
1411{
1412	struct e1000_hw *hw = &adapter->hw;
1413	u32 ctrl_ext;
1414
1415	/* Let firmware know the driver has taken over */
1416	ctrl_ext = rd32(E1000_CTRL_EXT);
1417	wr32(E1000_CTRL_EXT,
1418			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1419}
1420
1421/**
1422 * igb_configure - configure the hardware for RX and TX
1423 * @adapter: private board structure
1424 **/
1425static void igb_configure(struct igb_adapter *adapter)
1426{
1427	struct net_device *netdev = adapter->netdev;
1428	int i;
1429
1430	igb_get_hw_control(adapter);
1431	igb_set_rx_mode(netdev);
1432
1433	igb_restore_vlan(adapter);
1434
1435	igb_setup_tctl(adapter);
1436	igb_setup_mrqc(adapter);
1437	igb_setup_rctl(adapter);
1438
1439	igb_configure_tx(adapter);
1440	igb_configure_rx(adapter);
1441
1442	igb_rx_fifo_flush_82575(&adapter->hw);
1443
1444	/* call igb_desc_unused which always leaves
1445	 * at least 1 descriptor unused to make sure
1446	 * next_to_use != next_to_clean */
1447	for (i = 0; i < adapter->num_rx_queues; i++) {
1448		struct igb_ring *ring = adapter->rx_ring[i];
1449		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1450	}
1451}
1452
1453/**
1454 * igb_power_up_link - Power up the phy/serdes link
1455 * @adapter: address of board private structure
1456 **/
1457void igb_power_up_link(struct igb_adapter *adapter)
1458{
1459	igb_reset_phy(&adapter->hw);
1460
1461	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1462		igb_power_up_phy_copper(&adapter->hw);
1463	else
1464		igb_power_up_serdes_link_82575(&adapter->hw);
1465}
1466
1467/**
1468 * igb_power_down_link - Power down the phy/serdes link
1469 * @adapter: address of board private structure
1470 */
1471static void igb_power_down_link(struct igb_adapter *adapter)
1472{
1473	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1474		igb_power_down_phy_copper_82575(&adapter->hw);
1475	else
1476		igb_shutdown_serdes_link_82575(&adapter->hw);
1477}
1478
1479/**
1480 * igb_up - Open the interface and prepare it to handle traffic
1481 * @adapter: board private structure
1482 **/
1483int igb_up(struct igb_adapter *adapter)
1484{
1485	struct e1000_hw *hw = &adapter->hw;
1486	int i;
1487
1488	/* hardware has been reset, we need to reload some things */
1489	igb_configure(adapter);
1490
1491	clear_bit(__IGB_DOWN, &adapter->state);
1492
1493	for (i = 0; i < adapter->num_q_vectors; i++)
1494		napi_enable(&(adapter->q_vector[i]->napi));
1495
1496	if (adapter->msix_entries)
1497		igb_configure_msix(adapter);
1498	else
1499		igb_assign_vector(adapter->q_vector[0], 0);
1500
1501	/* Clear any pending interrupts. */
1502	rd32(E1000_ICR);
1503	igb_irq_enable(adapter);
1504
1505	/* notify VFs that reset has been completed */
1506	if (adapter->vfs_allocated_count) {
1507		u32 reg_data = rd32(E1000_CTRL_EXT);
1508		reg_data |= E1000_CTRL_EXT_PFRSTD;
1509		wr32(E1000_CTRL_EXT, reg_data);
1510	}
1511
1512	netif_tx_start_all_queues(adapter->netdev);
1513
1514	/* start the watchdog. */
1515	hw->mac.get_link_status = 1;
1516	schedule_work(&adapter->watchdog_task);
1517
1518	return 0;
1519}
1520
1521void igb_down(struct igb_adapter *adapter)
1522{
1523	struct net_device *netdev = adapter->netdev;
1524	struct e1000_hw *hw = &adapter->hw;
1525	u32 tctl, rctl;
1526	int i;
1527
1528	/* signal that we're down so the interrupt handler does not
1529	 * reschedule our watchdog timer */
1530	set_bit(__IGB_DOWN, &adapter->state);
1531
1532	/* disable receives in the hardware */
1533	rctl = rd32(E1000_RCTL);
1534	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1535	/* flush and sleep below */
1536
1537	netif_tx_stop_all_queues(netdev);
1538
1539	/* disable transmits in the hardware */
1540	tctl = rd32(E1000_TCTL);
1541	tctl &= ~E1000_TCTL_EN;
1542	wr32(E1000_TCTL, tctl);
1543	/* flush both disables and wait for them to finish */
1544	wrfl();
1545	msleep(10);
1546
1547	for (i = 0; i < adapter->num_q_vectors; i++)
1548		napi_disable(&(adapter->q_vector[i]->napi));
1549
1550	igb_irq_disable(adapter);
1551
1552	del_timer_sync(&adapter->watchdog_timer);
1553	del_timer_sync(&adapter->phy_info_timer);
1554
1555	netif_carrier_off(netdev);
1556
1557	/* record the stats before reset*/
1558	spin_lock(&adapter->stats64_lock);
1559	igb_update_stats(adapter, &adapter->stats64);
1560	spin_unlock(&adapter->stats64_lock);
1561
1562	adapter->link_speed = 0;
1563	adapter->link_duplex = 0;
1564
1565	if (!pci_channel_offline(adapter->pdev))
1566		igb_reset(adapter);
1567	igb_clean_all_tx_rings(adapter);
1568	igb_clean_all_rx_rings(adapter);
1569#ifdef CONFIG_IGB_DCA
1570
1571	/* since we reset the hardware DCA settings were cleared */
1572	igb_setup_dca(adapter);
1573#endif
1574}
1575
1576void igb_reinit_locked(struct igb_adapter *adapter)
1577{
1578	WARN_ON(in_interrupt());
1579	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1580		msleep(1);
1581	igb_down(adapter);
1582	igb_up(adapter);
1583	clear_bit(__IGB_RESETTING, &adapter->state);
1584}
1585
1586void igb_reset(struct igb_adapter *adapter)
1587{
1588	struct pci_dev *pdev = adapter->pdev;
1589	struct e1000_hw *hw = &adapter->hw;
1590	struct e1000_mac_info *mac = &hw->mac;
1591	struct e1000_fc_info *fc = &hw->fc;
1592	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1593	u16 hwm;
1594
1595	/* Repartition Pba for greater than 9k mtu
1596	 * To take effect CTRL.RST is required.
1597	 */
1598	switch (mac->type) {
1599	case e1000_i350:
1600	case e1000_82580:
1601		pba = rd32(E1000_RXPBS);
1602		pba = igb_rxpbs_adjust_82580(pba);
1603		break;
1604	case e1000_82576:
1605		pba = rd32(E1000_RXPBS);
1606		pba &= E1000_RXPBS_SIZE_MASK_82576;
1607		break;
1608	case e1000_82575:
1609	case e1000_i210:
1610	case e1000_i211:
1611	default:
1612		pba = E1000_PBA_34K;
1613		break;
1614	}
1615
1616	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1617	    (mac->type < e1000_82576)) {
1618		/* adjust PBA for jumbo frames */
1619		wr32(E1000_PBA, pba);
1620
1621		/* To maintain wire speed transmits, the Tx FIFO should be
1622		 * large enough to accommodate two full transmit packets,
1623		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1624		 * the Rx FIFO should be large enough to accommodate at least
1625		 * one full receive packet and is similarly rounded up and
1626		 * expressed in KB. */
1627		pba = rd32(E1000_PBA);
1628		/* upper 16 bits has Tx packet buffer allocation size in KB */
1629		tx_space = pba >> 16;
1630		/* lower 16 bits has Rx packet buffer allocation size in KB */
1631		pba &= 0xffff;
1632		/* the tx fifo also stores 16 bytes of information about the tx
1633		 * but don't include ethernet FCS because hardware appends it */
1634		min_tx_space = (adapter->max_frame_size +
1635				sizeof(union e1000_adv_tx_desc) -
1636				ETH_FCS_LEN) * 2;
1637		min_tx_space = ALIGN(min_tx_space, 1024);
1638		min_tx_space >>= 10;
1639		/* software strips receive CRC, so leave room for it */
1640		min_rx_space = adapter->max_frame_size;
1641		min_rx_space = ALIGN(min_rx_space, 1024);
1642		min_rx_space >>= 10;
1643
1644		/* If current Tx allocation is less than the min Tx FIFO size,
1645		 * and the min Tx FIFO size is less than the current Rx FIFO
1646		 * allocation, take space away from current Rx allocation */
1647		if (tx_space < min_tx_space &&
1648		    ((min_tx_space - tx_space) < pba)) {
1649			pba = pba - (min_tx_space - tx_space);
1650
1651			/* if short on rx space, rx wins and must trump tx
1652			 * adjustment */
1653			if (pba < min_rx_space)
1654				pba = min_rx_space;
1655		}
1656		wr32(E1000_PBA, pba);
1657	}
1658
1659	/* flow control settings */
1660	/* The high water mark must be low enough to fit one full frame
1661	 * (or the size used for early receive) above it in the Rx FIFO.
1662	 * Set it to the lower of:
1663	 * - 90% of the Rx FIFO size, or
1664	 * - the full Rx FIFO size minus one full frame */
1665	hwm = min(((pba << 10) * 9 / 10),
1666			((pba << 10) - 2 * adapter->max_frame_size));
1667
1668	fc->high_water = hwm & 0xFFF0;	/* 16-byte granularity */
1669	fc->low_water = fc->high_water - 16;
1670	fc->pause_time = 0xFFFF;
1671	fc->send_xon = 1;
1672	fc->current_mode = fc->requested_mode;
1673
1674	/* disable receive for all VFs and wait one second */
1675	if (adapter->vfs_allocated_count) {
1676		int i;
1677		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1678			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1679
1680		/* ping all the active vfs to let them know we are going down */
1681		igb_ping_all_vfs(adapter);
1682
1683		/* disable transmits and receives */
1684		wr32(E1000_VFRE, 0);
1685		wr32(E1000_VFTE, 0);
1686	}
1687
1688	/* Allow time for pending master requests to run */
1689	hw->mac.ops.reset_hw(hw);
1690	wr32(E1000_WUC, 0);
1691
1692	if (hw->mac.ops.init_hw(hw))
1693		dev_err(&pdev->dev, "Hardware Error\n");
1694
1695	/*
1696	 * Flow control settings reset on hardware reset, so guarantee flow
1697	 * control is off when forcing speed.
1698	 */
1699	if (!hw->mac.autoneg)
1700		igb_force_mac_fc(hw);
1701
1702	igb_init_dmac(adapter, pba);
1703	if (!netif_running(adapter->netdev))
1704		igb_power_down_link(adapter);
1705
1706	igb_update_mng_vlan(adapter);
1707
1708	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1709	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1710
1711#ifdef CONFIG_IGB_PTP
1712	/* Re-enable PTP, where applicable. */
1713	igb_ptp_reset(adapter);
1714#endif /* CONFIG_IGB_PTP */
1715
1716	igb_get_phy_info(hw);
1717}
1718
1719static netdev_features_t igb_fix_features(struct net_device *netdev,
1720	netdev_features_t features)
1721{
1722	/*
1723	 * Since there is no support for separate rx/tx vlan accel
1724	 * enable/disable make sure tx flag is always in same state as rx.
1725	 */
1726	if (features & NETIF_F_HW_VLAN_RX)
1727		features |= NETIF_F_HW_VLAN_TX;
1728	else
1729		features &= ~NETIF_F_HW_VLAN_TX;
1730
1731	return features;
1732}
1733
1734static int igb_set_features(struct net_device *netdev,
1735	netdev_features_t features)
1736{
1737	netdev_features_t changed = netdev->features ^ features;
1738	struct igb_adapter *adapter = netdev_priv(netdev);
1739
1740	if (changed & NETIF_F_HW_VLAN_RX)
1741		igb_vlan_mode(netdev, features);
1742
1743	if (!(changed & NETIF_F_RXALL))
1744		return 0;
1745
1746	netdev->features = features;
1747
1748	if (netif_running(netdev))
1749		igb_reinit_locked(adapter);
1750	else
1751		igb_reset(adapter);
1752
1753	return 0;
1754}
1755
1756static const struct net_device_ops igb_netdev_ops = {
1757	.ndo_open		= igb_open,
1758	.ndo_stop		= igb_close,
1759	.ndo_start_xmit		= igb_xmit_frame,
1760	.ndo_get_stats64	= igb_get_stats64,
1761	.ndo_set_rx_mode	= igb_set_rx_mode,
1762	.ndo_set_mac_address	= igb_set_mac,
1763	.ndo_change_mtu		= igb_change_mtu,
1764	.ndo_do_ioctl		= igb_ioctl,
1765	.ndo_tx_timeout		= igb_tx_timeout,
1766	.ndo_validate_addr	= eth_validate_addr,
1767	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
1768	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1769	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
1770	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
1771	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
1772	.ndo_get_vf_config	= igb_ndo_get_vf_config,
1773#ifdef CONFIG_NET_POLL_CONTROLLER
1774	.ndo_poll_controller	= igb_netpoll,
1775#endif
1776	.ndo_fix_features	= igb_fix_features,
1777	.ndo_set_features	= igb_set_features,
1778};
1779
1780/**
1781 * igb_set_fw_version - Configure version string for ethtool
1782 * @adapter: adapter struct
1783 *
1784 **/
1785void igb_set_fw_version(struct igb_adapter *adapter)
1786{
1787	struct e1000_hw *hw = &adapter->hw;
1788	u16 eeprom_verh, eeprom_verl, comb_verh, comb_verl, comb_offset;
1789	u16 major, build, patch, fw_version;
1790	u32 etrack_id;
1791
1792	hw->nvm.ops.read(hw, 5, 1, &fw_version);
1793	if (adapter->hw.mac.type != e1000_i211) {
1794		hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verh);
1795		hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verl);
1796		etrack_id = (eeprom_verh << IGB_ETRACK_SHIFT) | eeprom_verl;
1797
1798		/* combo image version needs to be found */
1799		hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
1800		if ((comb_offset != 0x0) &&
1801		    (comb_offset != IGB_NVM_VER_INVALID)) {
1802			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
1803					 + 1), 1, &comb_verh);
1804			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
1805					 1, &comb_verl);
1806
1807			/* Only display Option Rom if it exists and is valid */
1808			if ((comb_verh && comb_verl) &&
1809			    ((comb_verh != IGB_NVM_VER_INVALID) &&
1810			     (comb_verl != IGB_NVM_VER_INVALID))) {
1811				major = comb_verl >> IGB_COMB_VER_SHFT;
1812				build = (comb_verl << IGB_COMB_VER_SHFT) |
1813					(comb_verh >> IGB_COMB_VER_SHFT);
1814				patch = comb_verh & IGB_COMB_VER_MASK;
1815				snprintf(adapter->fw_version,
1816					 sizeof(adapter->fw_version),
1817					 "%d.%d%d, 0x%08x, %d.%d.%d",
1818					 (fw_version & IGB_MAJOR_MASK) >>
1819					 IGB_MAJOR_SHIFT,
1820					 (fw_version & IGB_MINOR_MASK) >>
1821					 IGB_MINOR_SHIFT,
1822					 (fw_version & IGB_BUILD_MASK),
1823					 etrack_id, major, build, patch);
1824				goto out;
1825			}
1826		}
1827		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1828			 "%d.%d%d, 0x%08x",
1829			 (fw_version & IGB_MAJOR_MASK) >> IGB_MAJOR_SHIFT,
1830			 (fw_version & IGB_MINOR_MASK) >> IGB_MINOR_SHIFT,
1831			 (fw_version & IGB_BUILD_MASK), etrack_id);
1832	} else {
1833		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1834			 "%d.%d%d",
1835			 (fw_version & IGB_MAJOR_MASK) >> IGB_MAJOR_SHIFT,
1836			 (fw_version & IGB_MINOR_MASK) >> IGB_MINOR_SHIFT,
1837			 (fw_version & IGB_BUILD_MASK));
1838	}
1839out:
1840	return;
1841}
1842
1843/**
1844 * igb_probe - Device Initialization Routine
1845 * @pdev: PCI device information struct
1846 * @ent: entry in igb_pci_tbl
1847 *
1848 * Returns 0 on success, negative on failure
1849 *
1850 * igb_probe initializes an adapter identified by a pci_dev structure.
1851 * The OS initialization, configuring of the adapter private structure,
1852 * and a hardware reset occur.
1853 **/
1854static int __devinit igb_probe(struct pci_dev *pdev,
1855			       const struct pci_device_id *ent)
1856{
1857	struct net_device *netdev;
1858	struct igb_adapter *adapter;
1859	struct e1000_hw *hw;
1860	u16 eeprom_data = 0;
1861	s32 ret_val;
1862	static int global_quad_port_a; /* global quad port a indication */
1863	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1864	unsigned long mmio_start, mmio_len;
1865	int err, pci_using_dac;
1866	u16 eeprom_apme_mask = IGB_EEPROM_APME;
1867	u8 part_str[E1000_PBANUM_LENGTH];
1868
1869	/* Catch broken hardware that put the wrong VF device ID in
1870	 * the PCIe SR-IOV capability.
1871	 */
1872	if (pdev->is_virtfn) {
1873		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1874			pci_name(pdev), pdev->vendor, pdev->device);
1875		return -EINVAL;
1876	}
1877
1878	err = pci_enable_device_mem(pdev);
1879	if (err)
1880		return err;
1881
1882	pci_using_dac = 0;
1883	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1884	if (!err) {
1885		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1886		if (!err)
1887			pci_using_dac = 1;
1888	} else {
1889		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1890		if (err) {
1891			err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1892			if (err) {
1893				dev_err(&pdev->dev, "No usable DMA "
1894					"configuration, aborting\n");
1895				goto err_dma;
1896			}
1897		}
1898	}
1899
1900	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1901	                                   IORESOURCE_MEM),
1902	                                   igb_driver_name);
1903	if (err)
1904		goto err_pci_reg;
1905
1906	pci_enable_pcie_error_reporting(pdev);
1907
1908	pci_set_master(pdev);
1909	pci_save_state(pdev);
1910
1911	err = -ENOMEM;
1912	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1913				   IGB_MAX_TX_QUEUES);
1914	if (!netdev)
1915		goto err_alloc_etherdev;
1916
1917	SET_NETDEV_DEV(netdev, &pdev->dev);
1918
1919	pci_set_drvdata(pdev, netdev);
1920	adapter = netdev_priv(netdev);
1921	adapter->netdev = netdev;
1922	adapter->pdev = pdev;
1923	hw = &adapter->hw;
1924	hw->back = adapter;
1925	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
1926
1927	mmio_start = pci_resource_start(pdev, 0);
1928	mmio_len = pci_resource_len(pdev, 0);
1929
1930	err = -EIO;
1931	hw->hw_addr = ioremap(mmio_start, mmio_len);
1932	if (!hw->hw_addr)
1933		goto err_ioremap;
1934
1935	netdev->netdev_ops = &igb_netdev_ops;
1936	igb_set_ethtool_ops(netdev);
1937	netdev->watchdog_timeo = 5 * HZ;
1938
1939	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1940
1941	netdev->mem_start = mmio_start;
1942	netdev->mem_end = mmio_start + mmio_len;
1943
1944	/* PCI config space info */
1945	hw->vendor_id = pdev->vendor;
1946	hw->device_id = pdev->device;
1947	hw->revision_id = pdev->revision;
1948	hw->subsystem_vendor_id = pdev->subsystem_vendor;
1949	hw->subsystem_device_id = pdev->subsystem_device;
1950
1951	/* Copy the default MAC, PHY and NVM function pointers */
1952	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1953	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1954	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1955	/* Initialize skew-specific constants */
1956	err = ei->get_invariants(hw);
1957	if (err)
1958		goto err_sw_init;
1959
1960	/* setup the private structure */
1961	err = igb_sw_init(adapter);
1962	if (err)
1963		goto err_sw_init;
1964
1965	igb_get_bus_info_pcie(hw);
1966
1967	hw->phy.autoneg_wait_to_complete = false;
1968
1969	/* Copper options */
1970	if (hw->phy.media_type == e1000_media_type_copper) {
1971		hw->phy.mdix = AUTO_ALL_MODES;
1972		hw->phy.disable_polarity_correction = false;
1973		hw->phy.ms_type = e1000_ms_hw_default;
1974	}
1975
1976	if (igb_check_reset_block(hw))
1977		dev_info(&pdev->dev,
1978			"PHY reset is blocked due to SOL/IDER session.\n");
1979
1980	/*
1981	 * features is initialized to 0 in allocation, it might have bits
1982	 * set by igb_sw_init so we should use an or instead of an
1983	 * assignment.
1984	 */
1985	netdev->features |= NETIF_F_SG |
1986			    NETIF_F_IP_CSUM |
1987			    NETIF_F_IPV6_CSUM |
1988			    NETIF_F_TSO |
1989			    NETIF_F_TSO6 |
1990			    NETIF_F_RXHASH |
1991			    NETIF_F_RXCSUM |
1992			    NETIF_F_HW_VLAN_RX |
1993			    NETIF_F_HW_VLAN_TX;
1994
1995	/* copy netdev features into list of user selectable features */
1996	netdev->hw_features |= netdev->features;
1997	netdev->hw_features |= NETIF_F_RXALL;
1998
1999	/* set this bit last since it cannot be part of hw_features */
2000	netdev->features |= NETIF_F_HW_VLAN_FILTER;
2001
2002	netdev->vlan_features |= NETIF_F_TSO |
2003				 NETIF_F_TSO6 |
2004				 NETIF_F_IP_CSUM |
2005				 NETIF_F_IPV6_CSUM |
2006				 NETIF_F_SG;
2007
2008	netdev->priv_flags |= IFF_SUPP_NOFCS;
2009
2010	if (pci_using_dac) {
2011		netdev->features |= NETIF_F_HIGHDMA;
2012		netdev->vlan_features |= NETIF_F_HIGHDMA;
2013	}
2014
2015	if (hw->mac.type >= e1000_82576) {
2016		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2017		netdev->features |= NETIF_F_SCTP_CSUM;
2018	}
2019
2020	netdev->priv_flags |= IFF_UNICAST_FLT;
2021
2022	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2023
2024	/* before reading the NVM, reset the controller to put the device in a
2025	 * known good starting state */
2026	hw->mac.ops.reset_hw(hw);
2027
2028	/*
2029	 * make sure the NVM is good , i211 parts have special NVM that
2030	 * doesn't contain a checksum
2031	 */
2032	if (hw->mac.type != e1000_i211) {
2033		if (hw->nvm.ops.validate(hw) < 0) {
2034			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2035			err = -EIO;
2036			goto err_eeprom;
2037		}
2038	}
2039
2040	/* copy the MAC address out of the NVM */
2041	if (hw->mac.ops.read_mac_addr(hw))
2042		dev_err(&pdev->dev, "NVM Read Error\n");
2043
2044	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2045	memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
2046
2047	if (!is_valid_ether_addr(netdev->perm_addr)) {
2048		dev_err(&pdev->dev, "Invalid MAC Address\n");
2049		err = -EIO;
2050		goto err_eeprom;
2051	}
2052
2053	/* get firmware version for ethtool -i */
2054	igb_set_fw_version(adapter);
2055
2056	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2057	            (unsigned long) adapter);
2058	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2059	            (unsigned long) adapter);
2060
2061	INIT_WORK(&adapter->reset_task, igb_reset_task);
2062	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2063
2064	/* Initialize link properties that are user-changeable */
2065	adapter->fc_autoneg = true;
2066	hw->mac.autoneg = true;
2067	hw->phy.autoneg_advertised = 0x2f;
2068
2069	hw->fc.requested_mode = e1000_fc_default;
2070	hw->fc.current_mode = e1000_fc_default;
2071
2072	igb_validate_mdi_setting(hw);
2073
2074	/* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
2075	 * enable the ACPI Magic Packet filter
2076	 */
2077
2078	if (hw->bus.func == 0)
2079		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
2080	else if (hw->mac.type >= e1000_82580)
2081		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2082		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2083		                 &eeprom_data);
2084	else if (hw->bus.func == 1)
2085		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2086
2087	if (eeprom_data & eeprom_apme_mask)
2088		adapter->eeprom_wol |= E1000_WUFC_MAG;
2089
2090	/* now that we have the eeprom settings, apply the special cases where
2091	 * the eeprom may be wrong or the board simply won't support wake on
2092	 * lan on a particular port */
2093	switch (pdev->device) {
2094	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2095		adapter->eeprom_wol = 0;
2096		break;
2097	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2098	case E1000_DEV_ID_82576_FIBER:
2099	case E1000_DEV_ID_82576_SERDES:
2100		/* Wake events only supported on port A for dual fiber
2101		 * regardless of eeprom setting */
2102		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2103			adapter->eeprom_wol = 0;
2104		break;
2105	case E1000_DEV_ID_82576_QUAD_COPPER:
2106	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2107		/* if quad port adapter, disable WoL on all but port A */
2108		if (global_quad_port_a != 0)
2109			adapter->eeprom_wol = 0;
2110		else
2111			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2112		/* Reset for multiple quad port adapters */
2113		if (++global_quad_port_a == 4)
2114			global_quad_port_a = 0;
2115		break;
2116	}
2117
2118	/* initialize the wol settings based on the eeprom settings */
2119	adapter->wol = adapter->eeprom_wol;
2120	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2121
2122	/* reset the hardware with the new settings */
2123	igb_reset(adapter);
2124
2125	/* let the f/w know that the h/w is now under the control of the
2126	 * driver. */
2127	igb_get_hw_control(adapter);
2128
2129	strcpy(netdev->name, "eth%d");
2130	err = register_netdev(netdev);
2131	if (err)
2132		goto err_register;
2133
2134	/* carrier off reporting is important to ethtool even BEFORE open */
2135	netif_carrier_off(netdev);
2136
2137#ifdef CONFIG_IGB_DCA
2138	if (dca_add_requester(&pdev->dev) == 0) {
2139		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2140		dev_info(&pdev->dev, "DCA enabled\n");
2141		igb_setup_dca(adapter);
2142	}
2143
2144#endif
2145
2146#ifdef CONFIG_IGB_PTP
2147	/* do hw tstamp init after resetting */
2148	igb_ptp_init(adapter);
2149#endif /* CONFIG_IGB_PTP */
2150
2151	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2152	/* print bus type/speed/width info */
2153	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2154		 netdev->name,
2155		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2156		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2157		                                            "unknown"),
2158		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2159		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2160		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2161		   "unknown"),
2162		 netdev->dev_addr);
2163
2164	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2165	if (ret_val)
2166		strcpy(part_str, "Unknown");
2167	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2168	dev_info(&pdev->dev,
2169		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2170		adapter->msix_entries ? "MSI-X" :
2171		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2172		adapter->num_rx_queues, adapter->num_tx_queues);
2173	switch (hw->mac.type) {
2174	case e1000_i350:
2175	case e1000_i210:
2176	case e1000_i211:
2177		igb_set_eee_i350(hw);
2178		break;
2179	default:
2180		break;
2181	}
2182
2183	pm_runtime_put_noidle(&pdev->dev);
2184	return 0;
2185
2186err_register:
2187	igb_release_hw_control(adapter);
2188err_eeprom:
2189	if (!igb_check_reset_block(hw))
2190		igb_reset_phy(hw);
2191
2192	if (hw->flash_address)
2193		iounmap(hw->flash_address);
2194err_sw_init:
2195	igb_clear_interrupt_scheme(adapter);
2196	iounmap(hw->hw_addr);
2197err_ioremap:
2198	free_netdev(netdev);
2199err_alloc_etherdev:
2200	pci_release_selected_regions(pdev,
2201	                             pci_select_bars(pdev, IORESOURCE_MEM));
2202err_pci_reg:
2203err_dma:
2204	pci_disable_device(pdev);
2205	return err;
2206}
2207
2208/**
2209 * igb_remove - Device Removal Routine
2210 * @pdev: PCI device information struct
2211 *
2212 * igb_remove is called by the PCI subsystem to alert the driver
2213 * that it should release a PCI device.  The could be caused by a
2214 * Hot-Plug event, or because the driver is going to be removed from
2215 * memory.
2216 **/
2217static void __devexit igb_remove(struct pci_dev *pdev)
2218{
2219	struct net_device *netdev = pci_get_drvdata(pdev);
2220	struct igb_adapter *adapter = netdev_priv(netdev);
2221	struct e1000_hw *hw = &adapter->hw;
2222
2223	pm_runtime_get_noresume(&pdev->dev);
2224#ifdef CONFIG_IGB_PTP
2225	igb_ptp_stop(adapter);
2226#endif /* CONFIG_IGB_PTP */
2227
2228	/*
2229	 * The watchdog timer may be rescheduled, so explicitly
2230	 * disable watchdog from being rescheduled.
2231	 */
2232	set_bit(__IGB_DOWN, &adapter->state);
2233	del_timer_sync(&adapter->watchdog_timer);
2234	del_timer_sync(&adapter->phy_info_timer);
2235
2236	cancel_work_sync(&adapter->reset_task);
2237	cancel_work_sync(&adapter->watchdog_task);
2238
2239#ifdef CONFIG_IGB_DCA
2240	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2241		dev_info(&pdev->dev, "DCA disabled\n");
2242		dca_remove_requester(&pdev->dev);
2243		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2244		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2245	}
2246#endif
2247
2248	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2249	 * would have already happened in close and is redundant. */
2250	igb_release_hw_control(adapter);
2251
2252	unregister_netdev(netdev);
2253
2254	igb_clear_interrupt_scheme(adapter);
2255
2256#ifdef CONFIG_PCI_IOV
2257	/* reclaim resources allocated to VFs */
2258	if (adapter->vf_data) {
2259		/* disable iov and allow time for transactions to clear */
2260		if (igb_vfs_are_assigned(adapter)) {
2261			dev_info(&pdev->dev, "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2262		} else {
2263			pci_disable_sriov(pdev);
2264			msleep(500);
2265		}
2266
2267		kfree(adapter->vf_data);
2268		adapter->vf_data = NULL;
2269		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2270		wrfl();
2271		msleep(100);
2272		dev_info(&pdev->dev, "IOV Disabled\n");
2273	}
2274#endif
2275
2276	iounmap(hw->hw_addr);
2277	if (hw->flash_address)
2278		iounmap(hw->flash_address);
2279	pci_release_selected_regions(pdev,
2280	                             pci_select_bars(pdev, IORESOURCE_MEM));
2281
2282	kfree(adapter->shadow_vfta);
2283	free_netdev(netdev);
2284
2285	pci_disable_pcie_error_reporting(pdev);
2286
2287	pci_disable_device(pdev);
2288}
2289
2290/**
2291 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2292 * @adapter: board private structure to initialize
2293 *
2294 * This function initializes the vf specific data storage and then attempts to
2295 * allocate the VFs.  The reason for ordering it this way is because it is much
2296 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2297 * the memory for the VFs.
2298 **/
2299static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2300{
2301#ifdef CONFIG_PCI_IOV
2302	struct pci_dev *pdev = adapter->pdev;
2303	struct e1000_hw *hw = &adapter->hw;
2304	int old_vfs = pci_num_vf(adapter->pdev);
2305	int i;
2306
2307	/* Virtualization features not supported on i210 family. */
2308	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2309		return;
2310
2311	if (old_vfs) {
2312		dev_info(&pdev->dev, "%d pre-allocated VFs found - override "
2313			 "max_vfs setting of %d\n", old_vfs, max_vfs);
2314		adapter->vfs_allocated_count = old_vfs;
2315	}
2316
2317	if (!adapter->vfs_allocated_count)
2318		return;
2319
2320	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2321				sizeof(struct vf_data_storage), GFP_KERNEL);
2322
2323	/* if allocation failed then we do not support SR-IOV */
2324	if (!adapter->vf_data) {
2325		adapter->vfs_allocated_count = 0;
2326		dev_err(&pdev->dev, "Unable to allocate memory for VF "
2327			"Data Storage\n");
2328		goto out;
2329	}
2330
2331	if (!old_vfs) {
2332		if (pci_enable_sriov(pdev, adapter->vfs_allocated_count))
2333			goto err_out;
2334	}
2335	dev_info(&pdev->dev, "%d VFs allocated\n",
2336		 adapter->vfs_allocated_count);
2337	for (i = 0; i < adapter->vfs_allocated_count; i++)
2338		igb_vf_configure(adapter, i);
2339
2340	/* DMA Coalescing is not supported in IOV mode. */
2341	adapter->flags &= ~IGB_FLAG_DMAC;
2342	goto out;
2343err_out:
2344	kfree(adapter->vf_data);
2345	adapter->vf_data = NULL;
2346	adapter->vfs_allocated_count = 0;
2347out:
2348	return;
2349#endif /* CONFIG_PCI_IOV */
2350}
2351
2352/**
2353 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2354 * @adapter: board private structure to initialize
2355 *
2356 * igb_sw_init initializes the Adapter private data structure.
2357 * Fields are initialized based on PCI device information and
2358 * OS network device settings (MTU size).
2359 **/
2360static int __devinit igb_sw_init(struct igb_adapter *adapter)
2361{
2362	struct e1000_hw *hw = &adapter->hw;
2363	struct net_device *netdev = adapter->netdev;
2364	struct pci_dev *pdev = adapter->pdev;
2365	u32 max_rss_queues;
2366
2367	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2368
2369	/* set default ring sizes */
2370	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2371	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2372
2373	/* set default ITR values */
2374	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2375	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2376
2377	/* set default work limits */
2378	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2379
2380	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2381				  VLAN_HLEN;
2382	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2383
2384	spin_lock_init(&adapter->stats64_lock);
2385#ifdef CONFIG_PCI_IOV
2386	switch (hw->mac.type) {
2387	case e1000_82576:
2388	case e1000_i350:
2389		if (max_vfs > 7) {
2390			dev_warn(&pdev->dev,
2391				 "Maximum of 7 VFs per PF, using max\n");
2392			adapter->vfs_allocated_count = 7;
2393		} else
2394			adapter->vfs_allocated_count = max_vfs;
2395		break;
2396	default:
2397		break;
2398	}
2399#endif /* CONFIG_PCI_IOV */
2400
2401	/* Determine the maximum number of RSS queues supported. */
2402	switch (hw->mac.type) {
2403	case e1000_i211:
2404		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2405		break;
2406	case e1000_82575:
2407	case e1000_i210:
2408		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2409		break;
2410	case e1000_i350:
2411		/* I350 cannot do RSS and SR-IOV at the same time */
2412		if (!!adapter->vfs_allocated_count) {
2413			max_rss_queues = 1;
2414			break;
2415		}
2416		/* fall through */
2417	case e1000_82576:
2418		if (!!adapter->vfs_allocated_count) {
2419			max_rss_queues = 2;
2420			break;
2421		}
2422		/* fall through */
2423	case e1000_82580:
2424	default:
2425		max_rss_queues = IGB_MAX_RX_QUEUES;
2426		break;
2427	}
2428
2429	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2430
2431	/* Determine if we need to pair queues. */
2432	switch (hw->mac.type) {
2433	case e1000_82575:
2434	case e1000_i211:
2435		/* Device supports enough interrupts without queue pairing. */
2436		break;
2437	case e1000_82576:
2438		/*
2439		 * If VFs are going to be allocated with RSS queues then we
2440		 * should pair the queues in order to conserve interrupts due
2441		 * to limited supply.
2442		 */
2443		if ((adapter->rss_queues > 1) &&
2444		    (adapter->vfs_allocated_count > 6))
2445			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2446		/* fall through */
2447	case e1000_82580:
2448	case e1000_i350:
2449	case e1000_i210:
2450	default:
2451		/*
2452		 * If rss_queues > half of max_rss_queues, pair the queues in
2453		 * order to conserve interrupts due to limited supply.
2454		 */
2455		if (adapter->rss_queues > (max_rss_queues / 2))
2456			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2457		break;
2458	}
2459
2460	/* Setup and initialize a copy of the hw vlan table array */
2461	adapter->shadow_vfta = kzalloc(sizeof(u32) *
2462				E1000_VLAN_FILTER_TBL_SIZE,
2463				GFP_ATOMIC);
2464
2465	/* This call may decrease the number of queues */
2466	if (igb_init_interrupt_scheme(adapter)) {
2467		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2468		return -ENOMEM;
2469	}
2470
2471	igb_probe_vfs(adapter);
2472
2473	/* Explicitly disable IRQ since the NIC can be in any state. */
2474	igb_irq_disable(adapter);
2475
2476	if (hw->mac.type >= e1000_i350)
2477		adapter->flags &= ~IGB_FLAG_DMAC;
2478
2479	set_bit(__IGB_DOWN, &adapter->state);
2480	return 0;
2481}
2482
2483/**
2484 * igb_open - Called when a network interface is made active
2485 * @netdev: network interface device structure
2486 *
2487 * Returns 0 on success, negative value on failure
2488 *
2489 * The open entry point is called when a network interface is made
2490 * active by the system (IFF_UP).  At this point all resources needed
2491 * for transmit and receive operations are allocated, the interrupt
2492 * handler is registered with the OS, the watchdog timer is started,
2493 * and the stack is notified that the interface is ready.
2494 **/
2495static int __igb_open(struct net_device *netdev, bool resuming)
2496{
2497	struct igb_adapter *adapter = netdev_priv(netdev);
2498	struct e1000_hw *hw = &adapter->hw;
2499	struct pci_dev *pdev = adapter->pdev;
2500	int err;
2501	int i;
2502
2503	/* disallow open during test */
2504	if (test_bit(__IGB_TESTING, &adapter->state)) {
2505		WARN_ON(resuming);
2506		return -EBUSY;
2507	}
2508
2509	if (!resuming)
2510		pm_runtime_get_sync(&pdev->dev);
2511
2512	netif_carrier_off(netdev);
2513
2514	/* allocate transmit descriptors */
2515	err = igb_setup_all_tx_resources(adapter);
2516	if (err)
2517		goto err_setup_tx;
2518
2519	/* allocate receive descriptors */
2520	err = igb_setup_all_rx_resources(adapter);
2521	if (err)
2522		goto err_setup_rx;
2523
2524	igb_power_up_link(adapter);
2525
2526	/* before we allocate an interrupt, we must be ready to handle it.
2527	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2528	 * as soon as we call pci_request_irq, so we have to setup our
2529	 * clean_rx handler before we do so.  */
2530	igb_configure(adapter);
2531
2532	err = igb_request_irq(adapter);
2533	if (err)
2534		goto err_req_irq;
2535
2536	/* Notify the stack of the actual queue counts. */
2537	err = netif_set_real_num_tx_queues(adapter->netdev,
2538					   adapter->num_tx_queues);
2539	if (err)
2540		goto err_set_queues;
2541
2542	err = netif_set_real_num_rx_queues(adapter->netdev,
2543					   adapter->num_rx_queues);
2544	if (err)
2545		goto err_set_queues;
2546
2547	/* From here on the code is the same as igb_up() */
2548	clear_bit(__IGB_DOWN, &adapter->state);
2549
2550	for (i = 0; i < adapter->num_q_vectors; i++)
2551		napi_enable(&(adapter->q_vector[i]->napi));
2552
2553	/* Clear any pending interrupts. */
2554	rd32(E1000_ICR);
2555
2556	igb_irq_enable(adapter);
2557
2558	/* notify VFs that reset has been completed */
2559	if (adapter->vfs_allocated_count) {
2560		u32 reg_data = rd32(E1000_CTRL_EXT);
2561		reg_data |= E1000_CTRL_EXT_PFRSTD;
2562		wr32(E1000_CTRL_EXT, reg_data);
2563	}
2564
2565	netif_tx_start_all_queues(netdev);
2566
2567	if (!resuming)
2568		pm_runtime_put(&pdev->dev);
2569
2570	/* start the watchdog. */
2571	hw->mac.get_link_status = 1;
2572	schedule_work(&adapter->watchdog_task);
2573
2574	return 0;
2575
2576err_set_queues:
2577	igb_free_irq(adapter);
2578err_req_irq:
2579	igb_release_hw_control(adapter);
2580	igb_power_down_link(adapter);
2581	igb_free_all_rx_resources(adapter);
2582err_setup_rx:
2583	igb_free_all_tx_resources(adapter);
2584err_setup_tx:
2585	igb_reset(adapter);
2586	if (!resuming)
2587		pm_runtime_put(&pdev->dev);
2588
2589	return err;
2590}
2591
2592static int igb_open(struct net_device *netdev)
2593{
2594	return __igb_open(netdev, false);
2595}
2596
2597/**
2598 * igb_close - Disables a network interface
2599 * @netdev: network interface device structure
2600 *
2601 * Returns 0, this is not allowed to fail
2602 *
2603 * The close entry point is called when an interface is de-activated
2604 * by the OS.  The hardware is still under the driver's control, but
2605 * needs to be disabled.  A global MAC reset is issued to stop the
2606 * hardware, and all transmit and receive resources are freed.
2607 **/
2608static int __igb_close(struct net_device *netdev, bool suspending)
2609{
2610	struct igb_adapter *adapter = netdev_priv(netdev);
2611	struct pci_dev *pdev = adapter->pdev;
2612
2613	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2614
2615	if (!suspending)
2616		pm_runtime_get_sync(&pdev->dev);
2617
2618	igb_down(adapter);
2619	igb_free_irq(adapter);
2620
2621	igb_free_all_tx_resources(adapter);
2622	igb_free_all_rx_resources(adapter);
2623
2624	if (!suspending)
2625		pm_runtime_put_sync(&pdev->dev);
2626	return 0;
2627}
2628
2629static int igb_close(struct net_device *netdev)
2630{
2631	return __igb_close(netdev, false);
2632}
2633
2634/**
2635 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2636 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2637 *
2638 * Return 0 on success, negative on failure
2639 **/
2640int igb_setup_tx_resources(struct igb_ring *tx_ring)
2641{
2642	struct device *dev = tx_ring->dev;
2643	int size;
2644
2645	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2646
2647	tx_ring->tx_buffer_info = vzalloc(size);
2648	if (!tx_ring->tx_buffer_info)
2649		goto err;
2650
2651	/* round up to nearest 4K */
2652	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2653	tx_ring->size = ALIGN(tx_ring->size, 4096);
2654
2655	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2656					   &tx_ring->dma, GFP_KERNEL);
2657	if (!tx_ring->desc)
2658		goto err;
2659
2660	tx_ring->next_to_use = 0;
2661	tx_ring->next_to_clean = 0;
2662
2663	return 0;
2664
2665err:
2666	vfree(tx_ring->tx_buffer_info);
2667	tx_ring->tx_buffer_info = NULL;
2668	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2669	return -ENOMEM;
2670}
2671
2672/**
2673 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2674 *				  (Descriptors) for all queues
2675 * @adapter: board private structure
2676 *
2677 * Return 0 on success, negative on failure
2678 **/
2679static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2680{
2681	struct pci_dev *pdev = adapter->pdev;
2682	int i, err = 0;
2683
2684	for (i = 0; i < adapter->num_tx_queues; i++) {
2685		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2686		if (err) {
2687			dev_err(&pdev->dev,
2688				"Allocation for Tx Queue %u failed\n", i);
2689			for (i--; i >= 0; i--)
2690				igb_free_tx_resources(adapter->tx_ring[i]);
2691			break;
2692		}
2693	}
2694
2695	return err;
2696}
2697
2698/**
2699 * igb_setup_tctl - configure the transmit control registers
2700 * @adapter: Board private structure
2701 **/
2702void igb_setup_tctl(struct igb_adapter *adapter)
2703{
2704	struct e1000_hw *hw = &adapter->hw;
2705	u32 tctl;
2706
2707	/* disable queue 0 which is enabled by default on 82575 and 82576 */
2708	wr32(E1000_TXDCTL(0), 0);
2709
2710	/* Program the Transmit Control Register */
2711	tctl = rd32(E1000_TCTL);
2712	tctl &= ~E1000_TCTL_CT;
2713	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2714		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2715
2716	igb_config_collision_dist(hw);
2717
2718	/* Enable transmits */
2719	tctl |= E1000_TCTL_EN;
2720
2721	wr32(E1000_TCTL, tctl);
2722}
2723
2724/**
2725 * igb_configure_tx_ring - Configure transmit ring after Reset
2726 * @adapter: board private structure
2727 * @ring: tx ring to configure
2728 *
2729 * Configure a transmit ring after a reset.
2730 **/
2731void igb_configure_tx_ring(struct igb_adapter *adapter,
2732                           struct igb_ring *ring)
2733{
2734	struct e1000_hw *hw = &adapter->hw;
2735	u32 txdctl = 0;
2736	u64 tdba = ring->dma;
2737	int reg_idx = ring->reg_idx;
2738
2739	/* disable the queue */
2740	wr32(E1000_TXDCTL(reg_idx), 0);
2741	wrfl();
2742	mdelay(10);
2743
2744	wr32(E1000_TDLEN(reg_idx),
2745	                ring->count * sizeof(union e1000_adv_tx_desc));
2746	wr32(E1000_TDBAL(reg_idx),
2747	                tdba & 0x00000000ffffffffULL);
2748	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2749
2750	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2751	wr32(E1000_TDH(reg_idx), 0);
2752	writel(0, ring->tail);
2753
2754	txdctl |= IGB_TX_PTHRESH;
2755	txdctl |= IGB_TX_HTHRESH << 8;
2756	txdctl |= IGB_TX_WTHRESH << 16;
2757
2758	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2759	wr32(E1000_TXDCTL(reg_idx), txdctl);
2760}
2761
2762/**
2763 * igb_configure_tx - Configure transmit Unit after Reset
2764 * @adapter: board private structure
2765 *
2766 * Configure the Tx unit of the MAC after a reset.
2767 **/
2768static void igb_configure_tx(struct igb_adapter *adapter)
2769{
2770	int i;
2771
2772	for (i = 0; i < adapter->num_tx_queues; i++)
2773		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2774}
2775
2776/**
2777 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2778 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2779 *
2780 * Returns 0 on success, negative on failure
2781 **/
2782int igb_setup_rx_resources(struct igb_ring *rx_ring)
2783{
2784	struct device *dev = rx_ring->dev;
2785	int size;
2786
2787	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
2788
2789	rx_ring->rx_buffer_info = vzalloc(size);
2790	if (!rx_ring->rx_buffer_info)
2791		goto err;
2792
2793	/* Round up to nearest 4K */
2794	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
2795	rx_ring->size = ALIGN(rx_ring->size, 4096);
2796
2797	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
2798					   &rx_ring->dma, GFP_KERNEL);
2799	if (!rx_ring->desc)
2800		goto err;
2801
2802	rx_ring->next_to_alloc = 0;
2803	rx_ring->next_to_clean = 0;
2804	rx_ring->next_to_use = 0;
2805
2806	return 0;
2807
2808err:
2809	vfree(rx_ring->rx_buffer_info);
2810	rx_ring->rx_buffer_info = NULL;
2811	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
2812	return -ENOMEM;
2813}
2814
2815/**
2816 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2817 *				  (Descriptors) for all queues
2818 * @adapter: board private structure
2819 *
2820 * Return 0 on success, negative on failure
2821 **/
2822static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2823{
2824	struct pci_dev *pdev = adapter->pdev;
2825	int i, err = 0;
2826
2827	for (i = 0; i < adapter->num_rx_queues; i++) {
2828		err = igb_setup_rx_resources(adapter->rx_ring[i]);
2829		if (err) {
2830			dev_err(&pdev->dev,
2831				"Allocation for Rx Queue %u failed\n", i);
2832			for (i--; i >= 0; i--)
2833				igb_free_rx_resources(adapter->rx_ring[i]);
2834			break;
2835		}
2836	}
2837
2838	return err;
2839}
2840
2841/**
2842 * igb_setup_mrqc - configure the multiple receive queue control registers
2843 * @adapter: Board private structure
2844 **/
2845static void igb_setup_mrqc(struct igb_adapter *adapter)
2846{
2847	struct e1000_hw *hw = &adapter->hw;
2848	u32 mrqc, rxcsum;
2849	u32 j, num_rx_queues, shift = 0;
2850	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
2851					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
2852					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
2853					0xFA01ACBE };
2854
2855	/* Fill out hash function seeds */
2856	for (j = 0; j < 10; j++)
2857		wr32(E1000_RSSRK(j), rsskey[j]);
2858
2859	num_rx_queues = adapter->rss_queues;
2860
2861	switch (hw->mac.type) {
2862	case e1000_82575:
2863		shift = 6;
2864		break;
2865	case e1000_82576:
2866		/* 82576 supports 2 RSS queues for SR-IOV */
2867		if (adapter->vfs_allocated_count) {
2868			shift = 3;
2869			num_rx_queues = 2;
2870		}
2871		break;
2872	default:
2873		break;
2874	}
2875
2876	/*
2877	 * Populate the indirection table 4 entries at a time.  To do this
2878	 * we are generating the results for n and n+2 and then interleaving
2879	 * those with the results with n+1 and n+3.
2880	 */
2881	for (j = 0; j < 32; j++) {
2882		/* first pass generates n and n+2 */
2883		u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
2884		u32 reta = (base & 0x07800780) >> (7 - shift);
2885
2886		/* second pass generates n+1 and n+3 */
2887		base += 0x00010001 * num_rx_queues;
2888		reta |= (base & 0x07800780) << (1 + shift);
2889
2890		wr32(E1000_RETA(j), reta);
2891	}
2892
2893	/*
2894	 * Disable raw packet checksumming so that RSS hash is placed in
2895	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
2896	 * offloads as they are enabled by default
2897	 */
2898	rxcsum = rd32(E1000_RXCSUM);
2899	rxcsum |= E1000_RXCSUM_PCSD;
2900
2901	if (adapter->hw.mac.type >= e1000_82576)
2902		/* Enable Receive Checksum Offload for SCTP */
2903		rxcsum |= E1000_RXCSUM_CRCOFL;
2904
2905	/* Don't need to set TUOFL or IPOFL, they default to 1 */
2906	wr32(E1000_RXCSUM, rxcsum);
2907	/*
2908	 * Generate RSS hash based on TCP port numbers and/or
2909	 * IPv4/v6 src and dst addresses since UDP cannot be
2910	 * hashed reliably due to IP fragmentation
2911	 */
2912
2913	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
2914	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
2915	       E1000_MRQC_RSS_FIELD_IPV6 |
2916	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
2917	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
2918
2919	/* If VMDq is enabled then we set the appropriate mode for that, else
2920	 * we default to RSS so that an RSS hash is calculated per packet even
2921	 * if we are only using one queue */
2922	if (adapter->vfs_allocated_count) {
2923		if (hw->mac.type > e1000_82575) {
2924			/* Set the default pool for the PF's first queue */
2925			u32 vtctl = rd32(E1000_VT_CTL);
2926			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2927				   E1000_VT_CTL_DISABLE_DEF_POOL);
2928			vtctl |= adapter->vfs_allocated_count <<
2929				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2930			wr32(E1000_VT_CTL, vtctl);
2931		}
2932		if (adapter->rss_queues > 1)
2933			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2934		else
2935			mrqc |= E1000_MRQC_ENABLE_VMDQ;
2936	} else {
2937		if (hw->mac.type != e1000_i211)
2938			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
2939	}
2940	igb_vmm_control(adapter);
2941
2942	wr32(E1000_MRQC, mrqc);
2943}
2944
2945/**
2946 * igb_setup_rctl - configure the receive control registers
2947 * @adapter: Board private structure
2948 **/
2949void igb_setup_rctl(struct igb_adapter *adapter)
2950{
2951	struct e1000_hw *hw = &adapter->hw;
2952	u32 rctl;
2953
2954	rctl = rd32(E1000_RCTL);
2955
2956	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2957	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2958
2959	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2960		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2961
2962	/*
2963	 * enable stripping of CRC. It's unlikely this will break BMC
2964	 * redirection as it did with e1000. Newer features require
2965	 * that the HW strips the CRC.
2966	 */
2967	rctl |= E1000_RCTL_SECRC;
2968
2969	/* disable store bad packets and clear size bits. */
2970	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2971
2972	/* enable LPE to prevent packets larger than max_frame_size */
2973	rctl |= E1000_RCTL_LPE;
2974
2975	/* disable queue 0 to prevent tail write w/o re-config */
2976	wr32(E1000_RXDCTL(0), 0);
2977
2978	/* Attention!!!  For SR-IOV PF driver operations you must enable
2979	 * queue drop for all VF and PF queues to prevent head of line blocking
2980	 * if an un-trusted VF does not provide descriptors to hardware.
2981	 */
2982	if (adapter->vfs_allocated_count) {
2983		/* set all queue drop enable bits */
2984		wr32(E1000_QDE, ALL_QUEUES);
2985	}
2986
2987	/* This is useful for sniffing bad packets. */
2988	if (adapter->netdev->features & NETIF_F_RXALL) {
2989		/* UPE and MPE will be handled by normal PROMISC logic
2990		 * in e1000e_set_rx_mode */
2991		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
2992			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
2993			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
2994
2995		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
2996			  E1000_RCTL_DPF | /* Allow filtered pause */
2997			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
2998		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
2999		 * and that breaks VLANs.
3000		 */
3001	}
3002
3003	wr32(E1000_RCTL, rctl);
3004}
3005
3006static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3007                                   int vfn)
3008{
3009	struct e1000_hw *hw = &adapter->hw;
3010	u32 vmolr;
3011
3012	/* if it isn't the PF check to see if VFs are enabled and
3013	 * increase the size to support vlan tags */
3014	if (vfn < adapter->vfs_allocated_count &&
3015	    adapter->vf_data[vfn].vlans_enabled)
3016		size += VLAN_TAG_SIZE;
3017
3018	vmolr = rd32(E1000_VMOLR(vfn));
3019	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3020	vmolr |= size | E1000_VMOLR_LPE;
3021	wr32(E1000_VMOLR(vfn), vmolr);
3022
3023	return 0;
3024}
3025
3026/**
3027 * igb_rlpml_set - set maximum receive packet size
3028 * @adapter: board private structure
3029 *
3030 * Configure maximum receivable packet size.
3031 **/
3032static void igb_rlpml_set(struct igb_adapter *adapter)
3033{
3034	u32 max_frame_size = adapter->max_frame_size;
3035	struct e1000_hw *hw = &adapter->hw;
3036	u16 pf_id = adapter->vfs_allocated_count;
3037
3038	if (pf_id) {
3039		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3040		/*
3041		 * If we're in VMDQ or SR-IOV mode, then set global RLPML
3042		 * to our max jumbo frame size, in case we need to enable
3043		 * jumbo frames on one of the rings later.
3044		 * This will not pass over-length frames into the default
3045		 * queue because it's gated by the VMOLR.RLPML.
3046		 */
3047		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3048	}
3049
3050	wr32(E1000_RLPML, max_frame_size);
3051}
3052
3053static inline void igb_set_vmolr(struct igb_adapter *adapter,
3054				 int vfn, bool aupe)
3055{
3056	struct e1000_hw *hw = &adapter->hw;
3057	u32 vmolr;
3058
3059	/*
3060	 * This register exists only on 82576 and newer so if we are older then
3061	 * we should exit and do nothing
3062	 */
3063	if (hw->mac.type < e1000_82576)
3064		return;
3065
3066	vmolr = rd32(E1000_VMOLR(vfn));
3067	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
3068	if (aupe)
3069		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
3070	else
3071		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3072
3073	/* clear all bits that might not be set */
3074	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3075
3076	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3077		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3078	/*
3079	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3080	 * multicast packets
3081	 */
3082	if (vfn <= adapter->vfs_allocated_count)
3083		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */
3084
3085	wr32(E1000_VMOLR(vfn), vmolr);
3086}
3087
3088/**
3089 * igb_configure_rx_ring - Configure a receive ring after Reset
3090 * @adapter: board private structure
3091 * @ring: receive ring to be configured
3092 *
3093 * Configure the Rx unit of the MAC after a reset.
3094 **/
3095void igb_configure_rx_ring(struct igb_adapter *adapter,
3096                           struct igb_ring *ring)
3097{
3098	struct e1000_hw *hw = &adapter->hw;
3099	u64 rdba = ring->dma;
3100	int reg_idx = ring->reg_idx;
3101	u32 srrctl = 0, rxdctl = 0;
3102
3103	/* disable the queue */
3104	wr32(E1000_RXDCTL(reg_idx), 0);
3105
3106	/* Set DMA base address registers */
3107	wr32(E1000_RDBAL(reg_idx),
3108	     rdba & 0x00000000ffffffffULL);
3109	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3110	wr32(E1000_RDLEN(reg_idx),
3111	               ring->count * sizeof(union e1000_adv_rx_desc));
3112
3113	/* initialize head and tail */
3114	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3115	wr32(E1000_RDH(reg_idx), 0);
3116	writel(0, ring->tail);
3117
3118	/* set descriptor configuration */
3119	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3120	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3121	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3122#ifdef CONFIG_IGB_PTP
3123	if (hw->mac.type >= e1000_82580)
3124		srrctl |= E1000_SRRCTL_TIMESTAMP;
3125#endif /* CONFIG_IGB_PTP */
3126	/* Only set Drop Enable if we are supporting multiple queues */
3127	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3128		srrctl |= E1000_SRRCTL_DROP_EN;
3129
3130	wr32(E1000_SRRCTL(reg_idx), srrctl);
3131
3132	/* set filtering for VMDQ pools */
3133	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3134
3135	rxdctl |= IGB_RX_PTHRESH;
3136	rxdctl |= IGB_RX_HTHRESH << 8;
3137	rxdctl |= IGB_RX_WTHRESH << 16;
3138
3139	/* enable receive descriptor fetching */
3140	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3141	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3142}
3143
3144/**
3145 * igb_configure_rx - Configure receive Unit after Reset
3146 * @adapter: board private structure
3147 *
3148 * Configure the Rx unit of the MAC after a reset.
3149 **/
3150static void igb_configure_rx(struct igb_adapter *adapter)
3151{
3152	int i;
3153
3154	/* set UTA to appropriate mode */
3155	igb_set_uta(adapter);
3156
3157	/* set the correct pool for the PF default MAC address in entry 0 */
3158	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3159	                 adapter->vfs_allocated_count);
3160
3161	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3162	 * the Base and Length of the Rx Descriptor Ring */
3163	for (i = 0; i < adapter->num_rx_queues; i++)
3164		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3165}
3166
3167/**
3168 * igb_free_tx_resources - Free Tx Resources per Queue
3169 * @tx_ring: Tx descriptor ring for a specific queue
3170 *
3171 * Free all transmit software resources
3172 **/
3173void igb_free_tx_resources(struct igb_ring *tx_ring)
3174{
3175	igb_clean_tx_ring(tx_ring);
3176
3177	vfree(tx_ring->tx_buffer_info);
3178	tx_ring->tx_buffer_info = NULL;
3179
3180	/* if not set, then don't free */
3181	if (!tx_ring->desc)
3182		return;
3183
3184	dma_free_coherent(tx_ring->dev, tx_ring->size,
3185			  tx_ring->desc, tx_ring->dma);
3186
3187	tx_ring->desc = NULL;
3188}
3189
3190/**
3191 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3192 * @adapter: board private structure
3193 *
3194 * Free all transmit software resources
3195 **/
3196static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3197{
3198	int i;
3199
3200	for (i = 0; i < adapter->num_tx_queues; i++)
3201		igb_free_tx_resources(adapter->tx_ring[i]);
3202}
3203
3204void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3205				    struct igb_tx_buffer *tx_buffer)
3206{
3207	if (tx_buffer->skb) {
3208		dev_kfree_skb_any(tx_buffer->skb);
3209		if (dma_unmap_len(tx_buffer, len))
3210			dma_unmap_single(ring->dev,
3211					 dma_unmap_addr(tx_buffer, dma),
3212					 dma_unmap_len(tx_buffer, len),
3213					 DMA_TO_DEVICE);
3214	} else if (dma_unmap_len(tx_buffer, len)) {
3215		dma_unmap_page(ring->dev,
3216			       dma_unmap_addr(tx_buffer, dma),
3217			       dma_unmap_len(tx_buffer, len),
3218			       DMA_TO_DEVICE);
3219	}
3220	tx_buffer->next_to_watch = NULL;
3221	tx_buffer->skb = NULL;
3222	dma_unmap_len_set(tx_buffer, len, 0);
3223	/* buffer_info must be completely set up in the transmit path */
3224}
3225
3226/**
3227 * igb_clean_tx_ring - Free Tx Buffers
3228 * @tx_ring: ring to be cleaned
3229 **/
3230static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3231{
3232	struct igb_tx_buffer *buffer_info;
3233	unsigned long size;
3234	u16 i;
3235
3236	if (!tx_ring->tx_buffer_info)
3237		return;
3238	/* Free all the Tx ring sk_buffs */
3239
3240	for (i = 0; i < tx_ring->count; i++) {
3241		buffer_info = &tx_ring->tx_buffer_info[i];
3242		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3243	}
3244
3245	netdev_tx_reset_queue(txring_txq(tx_ring));
3246
3247	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3248	memset(tx_ring->tx_buffer_info, 0, size);
3249
3250	/* Zero out the descriptor ring */
3251	memset(tx_ring->desc, 0, tx_ring->size);
3252
3253	tx_ring->next_to_use = 0;
3254	tx_ring->next_to_clean = 0;
3255}
3256
3257/**
3258 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3259 * @adapter: board private structure
3260 **/
3261static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3262{
3263	int i;
3264
3265	for (i = 0; i < adapter->num_tx_queues; i++)
3266		igb_clean_tx_ring(adapter->tx_ring[i]);
3267}
3268
3269/**
3270 * igb_free_rx_resources - Free Rx Resources
3271 * @rx_ring: ring to clean the resources from
3272 *
3273 * Free all receive software resources
3274 **/
3275void igb_free_rx_resources(struct igb_ring *rx_ring)
3276{
3277	igb_clean_rx_ring(rx_ring);
3278
3279	vfree(rx_ring->rx_buffer_info);
3280	rx_ring->rx_buffer_info = NULL;
3281
3282	/* if not set, then don't free */
3283	if (!rx_ring->desc)
3284		return;
3285
3286	dma_free_coherent(rx_ring->dev, rx_ring->size,
3287			  rx_ring->desc, rx_ring->dma);
3288
3289	rx_ring->desc = NULL;
3290}
3291
3292/**
3293 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3294 * @adapter: board private structure
3295 *
3296 * Free all receive software resources
3297 **/
3298static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3299{
3300	int i;
3301
3302	for (i = 0; i < adapter->num_rx_queues; i++)
3303		igb_free_rx_resources(adapter->rx_ring[i]);
3304}
3305
3306/**
3307 * igb_clean_rx_ring - Free Rx Buffers per Queue
3308 * @rx_ring: ring to free buffers from
3309 **/
3310static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3311{
3312	unsigned long size;
3313	u16 i;
3314
3315	if (rx_ring->skb)
3316		dev_kfree_skb(rx_ring->skb);
3317	rx_ring->skb = NULL;
3318
3319	if (!rx_ring->rx_buffer_info)
3320		return;
3321
3322	/* Free all the Rx ring sk_buffs */
3323	for (i = 0; i < rx_ring->count; i++) {
3324		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3325
3326		if (!buffer_info->page)
3327			continue;
3328
3329		dma_unmap_page(rx_ring->dev,
3330			       buffer_info->dma,
3331			       PAGE_SIZE,
3332			       DMA_FROM_DEVICE);
3333		__free_page(buffer_info->page);
3334
3335		buffer_info->page = NULL;
3336	}
3337
3338	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3339	memset(rx_ring->rx_buffer_info, 0, size);
3340
3341	/* Zero out the descriptor ring */
3342	memset(rx_ring->desc, 0, rx_ring->size);
3343
3344	rx_ring->next_to_alloc = 0;
3345	rx_ring->next_to_clean = 0;
3346	rx_ring->next_to_use = 0;
3347}
3348
3349/**
3350 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3351 * @adapter: board private structure
3352 **/
3353static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3354{
3355	int i;
3356
3357	for (i = 0; i < adapter->num_rx_queues; i++)
3358		igb_clean_rx_ring(adapter->rx_ring[i]);
3359}
3360
3361/**
3362 * igb_set_mac - Change the Ethernet Address of the NIC
3363 * @netdev: network interface device structure
3364 * @p: pointer to an address structure
3365 *
3366 * Returns 0 on success, negative on failure
3367 **/
3368static int igb_set_mac(struct net_device *netdev, void *p)
3369{
3370	struct igb_adapter *adapter = netdev_priv(netdev);
3371	struct e1000_hw *hw = &adapter->hw;
3372	struct sockaddr *addr = p;
3373
3374	if (!is_valid_ether_addr(addr->sa_data))
3375		return -EADDRNOTAVAIL;
3376
3377	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3378	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3379
3380	/* set the correct pool for the new PF MAC address in entry 0 */
3381	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3382	                 adapter->vfs_allocated_count);
3383
3384	return 0;
3385}
3386
3387/**
3388 * igb_write_mc_addr_list - write multicast addresses to MTA
3389 * @netdev: network interface device structure
3390 *
3391 * Writes multicast address list to the MTA hash table.
3392 * Returns: -ENOMEM on failure
3393 *                0 on no addresses written
3394 *                X on writing X addresses to MTA
3395 **/
3396static int igb_write_mc_addr_list(struct net_device *netdev)
3397{
3398	struct igb_adapter *adapter = netdev_priv(netdev);
3399	struct e1000_hw *hw = &adapter->hw;
3400	struct netdev_hw_addr *ha;
3401	u8  *mta_list;
3402	int i;
3403
3404	if (netdev_mc_empty(netdev)) {
3405		/* nothing to program, so clear mc list */
3406		igb_update_mc_addr_list(hw, NULL, 0);
3407		igb_restore_vf_multicasts(adapter);
3408		return 0;
3409	}
3410
3411	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3412	if (!mta_list)
3413		return -ENOMEM;
3414
3415	/* The shared function expects a packed array of only addresses. */
3416	i = 0;
3417	netdev_for_each_mc_addr(ha, netdev)
3418		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3419
3420	igb_update_mc_addr_list(hw, mta_list, i);
3421	kfree(mta_list);
3422
3423	return netdev_mc_count(netdev);
3424}
3425
3426/**
3427 * igb_write_uc_addr_list - write unicast addresses to RAR table
3428 * @netdev: network interface device structure
3429 *
3430 * Writes unicast address list to the RAR table.
3431 * Returns: -ENOMEM on failure/insufficient address space
3432 *                0 on no addresses written
3433 *                X on writing X addresses to the RAR table
3434 **/
3435static int igb_write_uc_addr_list(struct net_device *netdev)
3436{
3437	struct igb_adapter *adapter = netdev_priv(netdev);
3438	struct e1000_hw *hw = &adapter->hw;
3439	unsigned int vfn = adapter->vfs_allocated_count;
3440	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3441	int count = 0;
3442
3443	/* return ENOMEM indicating insufficient memory for addresses */
3444	if (netdev_uc_count(netdev) > rar_entries)
3445		return -ENOMEM;
3446
3447	if (!netdev_uc_empty(netdev) && rar_entries) {
3448		struct netdev_hw_addr *ha;
3449
3450		netdev_for_each_uc_addr(ha, netdev) {
3451			if (!rar_entries)
3452				break;
3453			igb_rar_set_qsel(adapter, ha->addr,
3454			                 rar_entries--,
3455			                 vfn);
3456			count++;
3457		}
3458	}
3459	/* write the addresses in reverse order to avoid write combining */
3460	for (; rar_entries > 0 ; rar_entries--) {
3461		wr32(E1000_RAH(rar_entries), 0);
3462		wr32(E1000_RAL(rar_entries), 0);
3463	}
3464	wrfl();
3465
3466	return count;
3467}
3468
3469/**
3470 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3471 * @netdev: network interface device structure
3472 *
3473 * The set_rx_mode entry point is called whenever the unicast or multicast
3474 * address lists or the network interface flags are updated.  This routine is
3475 * responsible for configuring the hardware for proper unicast, multicast,
3476 * promiscuous mode, and all-multi behavior.
3477 **/
3478static void igb_set_rx_mode(struct net_device *netdev)
3479{
3480	struct igb_adapter *adapter = netdev_priv(netdev);
3481	struct e1000_hw *hw = &adapter->hw;
3482	unsigned int vfn = adapter->vfs_allocated_count;
3483	u32 rctl, vmolr = 0;
3484	int count;
3485
3486	/* Check for Promiscuous and All Multicast modes */
3487	rctl = rd32(E1000_RCTL);
3488
3489	/* clear the effected bits */
3490	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3491
3492	if (netdev->flags & IFF_PROMISC) {
3493		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3494		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3495	} else {
3496		if (netdev->flags & IFF_ALLMULTI) {
3497			rctl |= E1000_RCTL_MPE;
3498			vmolr |= E1000_VMOLR_MPME;
3499		} else {
3500			/*
3501			 * Write addresses to the MTA, if the attempt fails
3502			 * then we should just turn on promiscuous mode so
3503			 * that we can at least receive multicast traffic
3504			 */
3505			count = igb_write_mc_addr_list(netdev);
3506			if (count < 0) {
3507				rctl |= E1000_RCTL_MPE;
3508				vmolr |= E1000_VMOLR_MPME;
3509			} else if (count) {
3510				vmolr |= E1000_VMOLR_ROMPE;
3511			}
3512		}
3513		/*
3514		 * Write addresses to available RAR registers, if there is not
3515		 * sufficient space to store all the addresses then enable
3516		 * unicast promiscuous mode
3517		 */
3518		count = igb_write_uc_addr_list(netdev);
3519		if (count < 0) {
3520			rctl |= E1000_RCTL_UPE;
3521			vmolr |= E1000_VMOLR_ROPE;
3522		}
3523		rctl |= E1000_RCTL_VFE;
3524	}
3525	wr32(E1000_RCTL, rctl);
3526
3527	/*
3528	 * In order to support SR-IOV and eventually VMDq it is necessary to set
3529	 * the VMOLR to enable the appropriate modes.  Without this workaround
3530	 * we will have issues with VLAN tag stripping not being done for frames
3531	 * that are only arriving because we are the default pool
3532	 */
3533	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3534		return;
3535
3536	vmolr |= rd32(E1000_VMOLR(vfn)) &
3537	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3538	wr32(E1000_VMOLR(vfn), vmolr);
3539	igb_restore_vf_multicasts(adapter);
3540}
3541
3542static void igb_check_wvbr(struct igb_adapter *adapter)
3543{
3544	struct e1000_hw *hw = &adapter->hw;
3545	u32 wvbr = 0;
3546
3547	switch (hw->mac.type) {
3548	case e1000_82576:
3549	case e1000_i350:
3550		if (!(wvbr = rd32(E1000_WVBR)))
3551			return;
3552		break;
3553	default:
3554		break;
3555	}
3556
3557	adapter->wvbr |= wvbr;
3558}
3559
3560#define IGB_STAGGERED_QUEUE_OFFSET 8
3561
3562static void igb_spoof_check(struct igb_adapter *adapter)
3563{
3564	int j;
3565
3566	if (!adapter->wvbr)
3567		return;
3568
3569	for(j = 0; j < adapter->vfs_allocated_count; j++) {
3570		if (adapter->wvbr & (1 << j) ||
3571		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3572			dev_warn(&adapter->pdev->dev,
3573				"Spoof event(s) detected on VF %d\n", j);
3574			adapter->wvbr &=
3575				~((1 << j) |
3576				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3577		}
3578	}
3579}
3580
3581/* Need to wait a few seconds after link up to get diagnostic information from
3582 * the phy */
3583static void igb_update_phy_info(unsigned long data)
3584{
3585	struct igb_adapter *adapter = (struct igb_adapter *) data;
3586	igb_get_phy_info(&adapter->hw);
3587}
3588
3589/**
3590 * igb_has_link - check shared code for link and determine up/down
3591 * @adapter: pointer to driver private info
3592 **/
3593bool igb_has_link(struct igb_adapter *adapter)
3594{
3595	struct e1000_hw *hw = &adapter->hw;
3596	bool link_active = false;
3597	s32 ret_val = 0;
3598
3599	/* get_link_status is set on LSC (link status) interrupt or
3600	 * rx sequence error interrupt.  get_link_status will stay
3601	 * false until the e1000_check_for_link establishes link
3602	 * for copper adapters ONLY
3603	 */
3604	switch (hw->phy.media_type) {
3605	case e1000_media_type_copper:
3606		if (hw->mac.get_link_status) {
3607			ret_val = hw->mac.ops.check_for_link(hw);
3608			link_active = !hw->mac.get_link_status;
3609		} else {
3610			link_active = true;
3611		}
3612		break;
3613	case e1000_media_type_internal_serdes:
3614		ret_val = hw->mac.ops.check_for_link(hw);
3615		link_active = hw->mac.serdes_has_link;
3616		break;
3617	default:
3618	case e1000_media_type_unknown:
3619		break;
3620	}
3621
3622	return link_active;
3623}
3624
3625static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3626{
3627	bool ret = false;
3628	u32 ctrl_ext, thstat;
3629
3630	/* check for thermal sensor event on i350 copper only */
3631	if (hw->mac.type == e1000_i350) {
3632		thstat = rd32(E1000_THSTAT);
3633		ctrl_ext = rd32(E1000_CTRL_EXT);
3634
3635		if ((hw->phy.media_type == e1000_media_type_copper) &&
3636		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3637			ret = !!(thstat & event);
3638		}
3639	}
3640
3641	return ret;
3642}
3643
3644/**
3645 * igb_watchdog - Timer Call-back
3646 * @data: pointer to adapter cast into an unsigned long
3647 **/
3648static void igb_watchdog(unsigned long data)
3649{
3650	struct igb_adapter *adapter = (struct igb_adapter *)data;
3651	/* Do the rest outside of interrupt context */
3652	schedule_work(&adapter->watchdog_task);
3653}
3654
3655static void igb_watchdog_task(struct work_struct *work)
3656{
3657	struct igb_adapter *adapter = container_of(work,
3658	                                           struct igb_adapter,
3659                                                   watchdog_task);
3660	struct e1000_hw *hw = &adapter->hw;
3661	struct net_device *netdev = adapter->netdev;
3662	u32 link;
3663	int i;
3664
3665	link = igb_has_link(adapter);
3666	if (link) {
3667		/* Cancel scheduled suspend requests. */
3668		pm_runtime_resume(netdev->dev.parent);
3669
3670		if (!netif_carrier_ok(netdev)) {
3671			u32 ctrl;
3672			hw->mac.ops.get_speed_and_duplex(hw,
3673			                                 &adapter->link_speed,
3674			                                 &adapter->link_duplex);
3675
3676			ctrl = rd32(E1000_CTRL);
3677			/* Links status message must follow this format */
3678			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3679			       "Duplex, Flow Control: %s\n",
3680			       netdev->name,
3681			       adapter->link_speed,
3682			       adapter->link_duplex == FULL_DUPLEX ?
3683			       "Full" : "Half",
3684			       (ctrl & E1000_CTRL_TFCE) &&
3685			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3686			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
3687			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3688
3689			/* check for thermal sensor event */
3690			if (igb_thermal_sensor_event(hw,
3691			    E1000_THSTAT_LINK_THROTTLE)) {
3692				netdev_info(netdev, "The network adapter link "
3693					    "speed was downshifted because it "
3694					    "overheated\n");
3695			}
3696
3697			/* adjust timeout factor according to speed/duplex */
3698			adapter->tx_timeout_factor = 1;
3699			switch (adapter->link_speed) {
3700			case SPEED_10:
3701				adapter->tx_timeout_factor = 14;
3702				break;
3703			case SPEED_100:
3704				/* maybe add some timeout factor ? */
3705				break;
3706			}
3707
3708			netif_carrier_on(netdev);
3709
3710			igb_ping_all_vfs(adapter);
3711			igb_check_vf_rate_limit(adapter);
3712
3713			/* link state has changed, schedule phy info update */
3714			if (!test_bit(__IGB_DOWN, &adapter->state))
3715				mod_timer(&adapter->phy_info_timer,
3716					  round_jiffies(jiffies + 2 * HZ));
3717		}
3718	} else {
3719		if (netif_carrier_ok(netdev)) {
3720			adapter->link_speed = 0;
3721			adapter->link_duplex = 0;
3722
3723			/* check for thermal sensor event */
3724			if (igb_thermal_sensor_event(hw,
3725			    E1000_THSTAT_PWR_DOWN)) {
3726				netdev_err(netdev, "The network adapter was "
3727					   "stopped because it overheated\n");
3728			}
3729
3730			/* Links status message must follow this format */
3731			printk(KERN_INFO "igb: %s NIC Link is Down\n",
3732			       netdev->name);
3733			netif_carrier_off(netdev);
3734
3735			igb_ping_all_vfs(adapter);
3736
3737			/* link state has changed, schedule phy info update */
3738			if (!test_bit(__IGB_DOWN, &adapter->state))
3739				mod_timer(&adapter->phy_info_timer,
3740					  round_jiffies(jiffies + 2 * HZ));
3741
3742			pm_schedule_suspend(netdev->dev.parent,
3743					    MSEC_PER_SEC * 5);
3744		}
3745	}
3746
3747	spin_lock(&adapter->stats64_lock);
3748	igb_update_stats(adapter, &adapter->stats64);
3749	spin_unlock(&adapter->stats64_lock);
3750
3751	for (i = 0; i < adapter->num_tx_queues; i++) {
3752		struct igb_ring *tx_ring = adapter->tx_ring[i];
3753		if (!netif_carrier_ok(netdev)) {
3754			/* We've lost link, so the controller stops DMA,
3755			 * but we've got queued Tx work that's never going
3756			 * to get done, so reset controller to flush Tx.
3757			 * (Do the reset outside of interrupt context). */
3758			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3759				adapter->tx_timeout_count++;
3760				schedule_work(&adapter->reset_task);
3761				/* return immediately since reset is imminent */
3762				return;
3763			}
3764		}
3765
3766		/* Force detection of hung controller every watchdog period */
3767		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3768	}
3769
3770	/* Cause software interrupt to ensure rx ring is cleaned */
3771	if (adapter->msix_entries) {
3772		u32 eics = 0;
3773		for (i = 0; i < adapter->num_q_vectors; i++)
3774			eics |= adapter->q_vector[i]->eims_value;
3775		wr32(E1000_EICS, eics);
3776	} else {
3777		wr32(E1000_ICS, E1000_ICS_RXDMT0);
3778	}
3779
3780	igb_spoof_check(adapter);
3781
3782	/* Reset the timer */
3783	if (!test_bit(__IGB_DOWN, &adapter->state))
3784		mod_timer(&adapter->watchdog_timer,
3785			  round_jiffies(jiffies + 2 * HZ));
3786}
3787
3788enum latency_range {
3789	lowest_latency = 0,
3790	low_latency = 1,
3791	bulk_latency = 2,
3792	latency_invalid = 255
3793};
3794
3795/**
3796 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3797 *
3798 *      Stores a new ITR value based on strictly on packet size.  This
3799 *      algorithm is less sophisticated than that used in igb_update_itr,
3800 *      due to the difficulty of synchronizing statistics across multiple
3801 *      receive rings.  The divisors and thresholds used by this function
3802 *      were determined based on theoretical maximum wire speed and testing
3803 *      data, in order to minimize response time while increasing bulk
3804 *      throughput.
3805 *      This functionality is controlled by the InterruptThrottleRate module
3806 *      parameter (see igb_param.c)
3807 *      NOTE:  This function is called only when operating in a multiqueue
3808 *             receive environment.
3809 * @q_vector: pointer to q_vector
3810 **/
3811static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3812{
3813	int new_val = q_vector->itr_val;
3814	int avg_wire_size = 0;
3815	struct igb_adapter *adapter = q_vector->adapter;
3816	unsigned int packets;
3817
3818	/* For non-gigabit speeds, just fix the interrupt rate at 4000
3819	 * ints/sec - ITR timer value of 120 ticks.
3820	 */
3821	if (adapter->link_speed != SPEED_1000) {
3822		new_val = IGB_4K_ITR;
3823		goto set_itr_val;
3824	}
3825
3826	packets = q_vector->rx.total_packets;
3827	if (packets)
3828		avg_wire_size = q_vector->rx.total_bytes / packets;
3829
3830	packets = q_vector->tx.total_packets;
3831	if (packets)
3832		avg_wire_size = max_t(u32, avg_wire_size,
3833				      q_vector->tx.total_bytes / packets);
3834
3835	/* if avg_wire_size isn't set no work was done */
3836	if (!avg_wire_size)
3837		goto clear_counts;
3838
3839	/* Add 24 bytes to size to account for CRC, preamble, and gap */
3840	avg_wire_size += 24;
3841
3842	/* Don't starve jumbo frames */
3843	avg_wire_size = min(avg_wire_size, 3000);
3844
3845	/* Give a little boost to mid-size frames */
3846	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3847		new_val = avg_wire_size / 3;
3848	else
3849		new_val = avg_wire_size / 2;
3850
3851	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3852	if (new_val < IGB_20K_ITR &&
3853	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3854	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3855		new_val = IGB_20K_ITR;
3856
3857set_itr_val:
3858	if (new_val != q_vector->itr_val) {
3859		q_vector->itr_val = new_val;
3860		q_vector->set_itr = 1;
3861	}
3862clear_counts:
3863	q_vector->rx.total_bytes = 0;
3864	q_vector->rx.total_packets = 0;
3865	q_vector->tx.total_bytes = 0;
3866	q_vector->tx.total_packets = 0;
3867}
3868
3869/**
3870 * igb_update_itr - update the dynamic ITR value based on statistics
3871 *      Stores a new ITR value based on packets and byte
3872 *      counts during the last interrupt.  The advantage of per interrupt
3873 *      computation is faster updates and more accurate ITR for the current
3874 *      traffic pattern.  Constants in this function were computed
3875 *      based on theoretical maximum wire speed and thresholds were set based
3876 *      on testing data as well as attempting to minimize response time
3877 *      while increasing bulk throughput.
3878 *      this functionality is controlled by the InterruptThrottleRate module
3879 *      parameter (see igb_param.c)
3880 *      NOTE:  These calculations are only valid when operating in a single-
3881 *             queue environment.
3882 * @q_vector: pointer to q_vector
3883 * @ring_container: ring info to update the itr for
3884 **/
3885static void igb_update_itr(struct igb_q_vector *q_vector,
3886			   struct igb_ring_container *ring_container)
3887{
3888	unsigned int packets = ring_container->total_packets;
3889	unsigned int bytes = ring_container->total_bytes;
3890	u8 itrval = ring_container->itr;
3891
3892	/* no packets, exit with status unchanged */
3893	if (packets == 0)
3894		return;
3895
3896	switch (itrval) {
3897	case lowest_latency:
3898		/* handle TSO and jumbo frames */
3899		if (bytes/packets > 8000)
3900			itrval = bulk_latency;
3901		else if ((packets < 5) && (bytes > 512))
3902			itrval = low_latency;
3903		break;
3904	case low_latency:  /* 50 usec aka 20000 ints/s */
3905		if (bytes > 10000) {
3906			/* this if handles the TSO accounting */
3907			if (bytes/packets > 8000) {
3908				itrval = bulk_latency;
3909			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
3910				itrval = bulk_latency;
3911			} else if ((packets > 35)) {
3912				itrval = lowest_latency;
3913			}
3914		} else if (bytes/packets > 2000) {
3915			itrval = bulk_latency;
3916		} else if (packets <= 2 && bytes < 512) {
3917			itrval = lowest_latency;
3918		}
3919		break;
3920	case bulk_latency: /* 250 usec aka 4000 ints/s */
3921		if (bytes > 25000) {
3922			if (packets > 35)
3923				itrval = low_latency;
3924		} else if (bytes < 1500) {
3925			itrval = low_latency;
3926		}
3927		break;
3928	}
3929
3930	/* clear work counters since we have the values we need */
3931	ring_container->total_bytes = 0;
3932	ring_container->total_packets = 0;
3933
3934	/* write updated itr to ring container */
3935	ring_container->itr = itrval;
3936}
3937
3938static void igb_set_itr(struct igb_q_vector *q_vector)
3939{
3940	struct igb_adapter *adapter = q_vector->adapter;
3941	u32 new_itr = q_vector->itr_val;
3942	u8 current_itr = 0;
3943
3944	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3945	if (adapter->link_speed != SPEED_1000) {
3946		current_itr = 0;
3947		new_itr = IGB_4K_ITR;
3948		goto set_itr_now;
3949	}
3950
3951	igb_update_itr(q_vector, &q_vector->tx);
3952	igb_update_itr(q_vector, &q_vector->rx);
3953
3954	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3955
3956	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3957	if (current_itr == lowest_latency &&
3958	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3959	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3960		current_itr = low_latency;
3961
3962	switch (current_itr) {
3963	/* counts and packets in update_itr are dependent on these numbers */
3964	case lowest_latency:
3965		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
3966		break;
3967	case low_latency:
3968		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
3969		break;
3970	case bulk_latency:
3971		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
3972		break;
3973	default:
3974		break;
3975	}
3976
3977set_itr_now:
3978	if (new_itr != q_vector->itr_val) {
3979		/* this attempts to bias the interrupt rate towards Bulk
3980		 * by adding intermediate steps when interrupt rate is
3981		 * increasing */
3982		new_itr = new_itr > q_vector->itr_val ?
3983		             max((new_itr * q_vector->itr_val) /
3984		                 (new_itr + (q_vector->itr_val >> 2)),
3985				 new_itr) :
3986			     new_itr;
3987		/* Don't write the value here; it resets the adapter's
3988		 * internal timer, and causes us to delay far longer than
3989		 * we should between interrupts.  Instead, we write the ITR
3990		 * value at the beginning of the next interrupt so the timing
3991		 * ends up being correct.
3992		 */
3993		q_vector->itr_val = new_itr;
3994		q_vector->set_itr = 1;
3995	}
3996}
3997
3998static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
3999			    u32 type_tucmd, u32 mss_l4len_idx)
4000{
4001	struct e1000_adv_tx_context_desc *context_desc;
4002	u16 i = tx_ring->next_to_use;
4003
4004	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4005
4006	i++;
4007	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4008
4009	/* set bits to identify this as an advanced context descriptor */
4010	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4011
4012	/* For 82575, context index must be unique per ring. */
4013	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4014		mss_l4len_idx |= tx_ring->reg_idx << 4;
4015
4016	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4017	context_desc->seqnum_seed	= 0;
4018	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4019	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4020}
4021
4022static int igb_tso(struct igb_ring *tx_ring,
4023		   struct igb_tx_buffer *first,
4024		   u8 *hdr_len)
4025{
4026	struct sk_buff *skb = first->skb;
4027	u32 vlan_macip_lens, type_tucmd;
4028	u32 mss_l4len_idx, l4len;
4029
4030	if (!skb_is_gso(skb))
4031		return 0;
4032
4033	if (skb_header_cloned(skb)) {
4034		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4035		if (err)
4036			return err;
4037	}
4038
4039	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4040	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4041
4042	if (first->protocol == __constant_htons(ETH_P_IP)) {
4043		struct iphdr *iph = ip_hdr(skb);
4044		iph->tot_len = 0;
4045		iph->check = 0;
4046		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4047							 iph->daddr, 0,
4048							 IPPROTO_TCP,
4049							 0);
4050		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4051		first->tx_flags |= IGB_TX_FLAGS_TSO |
4052				   IGB_TX_FLAGS_CSUM |
4053				   IGB_TX_FLAGS_IPV4;
4054	} else if (skb_is_gso_v6(skb)) {
4055		ipv6_hdr(skb)->payload_len = 0;
4056		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4057						       &ipv6_hdr(skb)->daddr,
4058						       0, IPPROTO_TCP, 0);
4059		first->tx_flags |= IGB_TX_FLAGS_TSO |
4060				   IGB_TX_FLAGS_CSUM;
4061	}
4062
4063	/* compute header lengths */
4064	l4len = tcp_hdrlen(skb);
4065	*hdr_len = skb_transport_offset(skb) + l4len;
4066
4067	/* update gso size and bytecount with header size */
4068	first->gso_segs = skb_shinfo(skb)->gso_segs;
4069	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4070
4071	/* MSS L4LEN IDX */
4072	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4073	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4074
4075	/* VLAN MACLEN IPLEN */
4076	vlan_macip_lens = skb_network_header_len(skb);
4077	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4078	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4079
4080	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4081
4082	return 1;
4083}
4084
4085static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4086{
4087	struct sk_buff *skb = first->skb;
4088	u32 vlan_macip_lens = 0;
4089	u32 mss_l4len_idx = 0;
4090	u32 type_tucmd = 0;
4091
4092	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4093		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4094			return;
4095	} else {
4096		u8 l4_hdr = 0;
4097		switch (first->protocol) {
4098		case __constant_htons(ETH_P_IP):
4099			vlan_macip_lens |= skb_network_header_len(skb);
4100			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4101			l4_hdr = ip_hdr(skb)->protocol;
4102			break;
4103		case __constant_htons(ETH_P_IPV6):
4104			vlan_macip_lens |= skb_network_header_len(skb);
4105			l4_hdr = ipv6_hdr(skb)->nexthdr;
4106			break;
4107		default:
4108			if (unlikely(net_ratelimit())) {
4109				dev_warn(tx_ring->dev,
4110				 "partial checksum but proto=%x!\n",
4111				 first->protocol);
4112			}
4113			break;
4114		}
4115
4116		switch (l4_hdr) {
4117		case IPPROTO_TCP:
4118			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4119			mss_l4len_idx = tcp_hdrlen(skb) <<
4120					E1000_ADVTXD_L4LEN_SHIFT;
4121			break;
4122		case IPPROTO_SCTP:
4123			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4124			mss_l4len_idx = sizeof(struct sctphdr) <<
4125					E1000_ADVTXD_L4LEN_SHIFT;
4126			break;
4127		case IPPROTO_UDP:
4128			mss_l4len_idx = sizeof(struct udphdr) <<
4129					E1000_ADVTXD_L4LEN_SHIFT;
4130			break;
4131		default:
4132			if (unlikely(net_ratelimit())) {
4133				dev_warn(tx_ring->dev,
4134				 "partial checksum but l4 proto=%x!\n",
4135				 l4_hdr);
4136			}
4137			break;
4138		}
4139
4140		/* update TX checksum flag */
4141		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4142	}
4143
4144	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4145	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4146
4147	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4148}
4149
4150static __le32 igb_tx_cmd_type(u32 tx_flags)
4151{
4152	/* set type for advanced descriptor with frame checksum insertion */
4153	__le32 cmd_type = cpu_to_le32(E1000_ADVTXD_DTYP_DATA |
4154				      E1000_ADVTXD_DCMD_IFCS |
4155				      E1000_ADVTXD_DCMD_DEXT);
4156
4157	/* set HW vlan bit if vlan is present */
4158	if (tx_flags & IGB_TX_FLAGS_VLAN)
4159		cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_VLE);
4160
4161#ifdef CONFIG_IGB_PTP
4162	/* set timestamp bit if present */
4163	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP))
4164		cmd_type |= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP);
4165#endif /* CONFIG_IGB_PTP */
4166
4167	/* set segmentation bits for TSO */
4168	if (tx_flags & IGB_TX_FLAGS_TSO)
4169		cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_TSE);
4170
4171	return cmd_type;
4172}
4173
4174static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4175				 union e1000_adv_tx_desc *tx_desc,
4176				 u32 tx_flags, unsigned int paylen)
4177{
4178	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4179
4180	/* 82575 requires a unique index per ring if any offload is enabled */
4181	if ((tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_VLAN)) &&
4182	    test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4183		olinfo_status |= tx_ring->reg_idx << 4;
4184
4185	/* insert L4 checksum */
4186	if (tx_flags & IGB_TX_FLAGS_CSUM) {
4187		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4188
4189		/* insert IPv4 checksum */
4190		if (tx_flags & IGB_TX_FLAGS_IPV4)
4191			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4192	}
4193
4194	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4195}
4196
4197/*
4198 * The largest size we can write to the descriptor is 65535.  In order to
4199 * maintain a power of two alignment we have to limit ourselves to 32K.
4200 */
4201#define IGB_MAX_TXD_PWR	15
4202#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)
4203
4204static void igb_tx_map(struct igb_ring *tx_ring,
4205		       struct igb_tx_buffer *first,
4206		       const u8 hdr_len)
4207{
4208	struct sk_buff *skb = first->skb;
4209	struct igb_tx_buffer *tx_buffer;
4210	union e1000_adv_tx_desc *tx_desc;
4211	dma_addr_t dma;
4212	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
4213	unsigned int data_len = skb->data_len;
4214	unsigned int size = skb_headlen(skb);
4215	unsigned int paylen = skb->len - hdr_len;
4216	__le32 cmd_type;
4217	u32 tx_flags = first->tx_flags;
4218	u16 i = tx_ring->next_to_use;
4219
4220	tx_desc = IGB_TX_DESC(tx_ring, i);
4221
4222	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, paylen);
4223	cmd_type = igb_tx_cmd_type(tx_flags);
4224
4225	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4226	if (dma_mapping_error(tx_ring->dev, dma))
4227		goto dma_error;
4228
4229	/* record length, and DMA address */
4230	dma_unmap_len_set(first, len, size);
4231	dma_unmap_addr_set(first, dma, dma);
4232	tx_desc->read.buffer_addr = cpu_to_le64(dma);
4233
4234	for (;;) {
4235		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4236			tx_desc->read.cmd_type_len =
4237				cmd_type | cpu_to_le32(IGB_MAX_DATA_PER_TXD);
4238
4239			i++;
4240			tx_desc++;
4241			if (i == tx_ring->count) {
4242				tx_desc = IGB_TX_DESC(tx_ring, 0);
4243				i = 0;
4244			}
4245
4246			dma += IGB_MAX_DATA_PER_TXD;
4247			size -= IGB_MAX_DATA_PER_TXD;
4248
4249			tx_desc->read.olinfo_status = 0;
4250			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4251		}
4252
4253		if (likely(!data_len))
4254			break;
4255
4256		tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
4257
4258		i++;
4259		tx_desc++;
4260		if (i == tx_ring->count) {
4261			tx_desc = IGB_TX_DESC(tx_ring, 0);
4262			i = 0;
4263		}
4264
4265		size = skb_frag_size(frag);
4266		data_len -= size;
4267
4268		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4269				   size, DMA_TO_DEVICE);
4270		if (dma_mapping_error(tx_ring->dev, dma))
4271			goto dma_error;
4272
4273		tx_buffer = &tx_ring->tx_buffer_info[i];
4274		dma_unmap_len_set(tx_buffer, len, size);
4275		dma_unmap_addr_set(tx_buffer, dma, dma);
4276
4277		tx_desc->read.olinfo_status = 0;
4278		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4279
4280		frag++;
4281	}
4282
4283	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4284
4285	/* write last descriptor with RS and EOP bits */
4286	cmd_type |= cpu_to_le32(size) | cpu_to_le32(IGB_TXD_DCMD);
4287	if (unlikely(skb->no_fcs))
4288		cmd_type &= ~(cpu_to_le32(E1000_ADVTXD_DCMD_IFCS));
4289	tx_desc->read.cmd_type_len = cmd_type;
4290
4291	/* set the timestamp */
4292	first->time_stamp = jiffies;
4293
4294	/*
4295	 * Force memory writes to complete before letting h/w know there
4296	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4297	 * memory model archs, such as IA-64).
4298	 *
4299	 * We also need this memory barrier to make certain all of the
4300	 * status bits have been updated before next_to_watch is written.
4301	 */
4302	wmb();
4303
4304	/* set next_to_watch value indicating a packet is present */
4305	first->next_to_watch = tx_desc;
4306
4307	i++;
4308	if (i == tx_ring->count)
4309		i = 0;
4310
4311	tx_ring->next_to_use = i;
4312
4313	writel(i, tx_ring->tail);
4314
4315	/* we need this if more than one processor can write to our tail
4316	 * at a time, it syncronizes IO on IA64/Altix systems */
4317	mmiowb();
4318
4319	return;
4320
4321dma_error:
4322	dev_err(tx_ring->dev, "TX DMA map failed\n");
4323
4324	/* clear dma mappings for failed tx_buffer_info map */
4325	for (;;) {
4326		tx_buffer = &tx_ring->tx_buffer_info[i];
4327		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4328		if (tx_buffer == first)
4329			break;
4330		if (i == 0)
4331			i = tx_ring->count;
4332		i--;
4333	}
4334
4335	tx_ring->next_to_use = i;
4336}
4337
4338static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4339{
4340	struct net_device *netdev = tx_ring->netdev;
4341
4342	netif_stop_subqueue(netdev, tx_ring->queue_index);
4343
4344	/* Herbert's original patch had:
4345	 *  smp_mb__after_netif_stop_queue();
4346	 * but since that doesn't exist yet, just open code it. */
4347	smp_mb();
4348
4349	/* We need to check again in a case another CPU has just
4350	 * made room available. */
4351	if (igb_desc_unused(tx_ring) < size)
4352		return -EBUSY;
4353
4354	/* A reprieve! */
4355	netif_wake_subqueue(netdev, tx_ring->queue_index);
4356
4357	u64_stats_update_begin(&tx_ring->tx_syncp2);
4358	tx_ring->tx_stats.restart_queue2++;
4359	u64_stats_update_end(&tx_ring->tx_syncp2);
4360
4361	return 0;
4362}
4363
4364static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4365{
4366	if (igb_desc_unused(tx_ring) >= size)
4367		return 0;
4368	return __igb_maybe_stop_tx(tx_ring, size);
4369}
4370
4371netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4372				struct igb_ring *tx_ring)
4373{
4374#ifdef CONFIG_IGB_PTP
4375	struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4376#endif /* CONFIG_IGB_PTP */
4377	struct igb_tx_buffer *first;
4378	int tso;
4379	u32 tx_flags = 0;
4380	__be16 protocol = vlan_get_protocol(skb);
4381	u8 hdr_len = 0;
4382
4383	/* need: 1 descriptor per page,
4384	 *       + 2 desc gap to keep tail from touching head,
4385	 *       + 1 desc for skb->data,
4386	 *       + 1 desc for context descriptor,
4387	 * otherwise try next time */
4388	if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4389		/* this is a hard error */
4390		return NETDEV_TX_BUSY;
4391	}
4392
4393	/* record the location of the first descriptor for this packet */
4394	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4395	first->skb = skb;
4396	first->bytecount = skb->len;
4397	first->gso_segs = 1;
4398
4399#ifdef CONFIG_IGB_PTP
4400	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4401		     !(adapter->ptp_tx_skb))) {
4402		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4403		tx_flags |= IGB_TX_FLAGS_TSTAMP;
4404
4405		adapter->ptp_tx_skb = skb_get(skb);
4406		if (adapter->hw.mac.type == e1000_82576)
4407			schedule_work(&adapter->ptp_tx_work);
4408	}
4409#endif /* CONFIG_IGB_PTP */
4410
4411	if (vlan_tx_tag_present(skb)) {
4412		tx_flags |= IGB_TX_FLAGS_VLAN;
4413		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4414	}
4415
4416	/* record initial flags and protocol */
4417	first->tx_flags = tx_flags;
4418	first->protocol = protocol;
4419
4420	tso = igb_tso(tx_ring, first, &hdr_len);
4421	if (tso < 0)
4422		goto out_drop;
4423	else if (!tso)
4424		igb_tx_csum(tx_ring, first);
4425
4426	igb_tx_map(tx_ring, first, hdr_len);
4427
4428	/* Make sure there is space in the ring for the next send. */
4429	igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4430
4431	return NETDEV_TX_OK;
4432
4433out_drop:
4434	igb_unmap_and_free_tx_resource(tx_ring, first);
4435
4436	return NETDEV_TX_OK;
4437}
4438
4439static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4440						    struct sk_buff *skb)
4441{
4442	unsigned int r_idx = skb->queue_mapping;
4443
4444	if (r_idx >= adapter->num_tx_queues)
4445		r_idx = r_idx % adapter->num_tx_queues;
4446
4447	return adapter->tx_ring[r_idx];
4448}
4449
4450static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4451				  struct net_device *netdev)
4452{
4453	struct igb_adapter *adapter = netdev_priv(netdev);
4454
4455	if (test_bit(__IGB_DOWN, &adapter->state)) {
4456		dev_kfree_skb_any(skb);
4457		return NETDEV_TX_OK;
4458	}
4459
4460	if (skb->len <= 0) {
4461		dev_kfree_skb_any(skb);
4462		return NETDEV_TX_OK;
4463	}
4464
4465	/*
4466	 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4467	 * in order to meet this minimum size requirement.
4468	 */
4469	if (unlikely(skb->len < 17)) {
4470		if (skb_pad(skb, 17 - skb->len))
4471			return NETDEV_TX_OK;
4472		skb->len = 17;
4473		skb_set_tail_pointer(skb, 17);
4474	}
4475
4476	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4477}
4478
4479/**
4480 * igb_tx_timeout - Respond to a Tx Hang
4481 * @netdev: network interface device structure
4482 **/
4483static void igb_tx_timeout(struct net_device *netdev)
4484{
4485	struct igb_adapter *adapter = netdev_priv(netdev);
4486	struct e1000_hw *hw = &adapter->hw;
4487
4488	/* Do the reset outside of interrupt context */
4489	adapter->tx_timeout_count++;
4490
4491	if (hw->mac.type >= e1000_82580)
4492		hw->dev_spec._82575.global_device_reset = true;
4493
4494	schedule_work(&adapter->reset_task);
4495	wr32(E1000_EICS,
4496	     (adapter->eims_enable_mask & ~adapter->eims_other));
4497}
4498
4499static void igb_reset_task(struct work_struct *work)
4500{
4501	struct igb_adapter *adapter;
4502	adapter = container_of(work, struct igb_adapter, reset_task);
4503
4504	igb_dump(adapter);
4505	netdev_err(adapter->netdev, "Reset adapter\n");
4506	igb_reinit_locked(adapter);
4507}
4508
4509/**
4510 * igb_get_stats64 - Get System Network Statistics
4511 * @netdev: network interface device structure
4512 * @stats: rtnl_link_stats64 pointer
4513 *
4514 **/
4515static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4516						 struct rtnl_link_stats64 *stats)
4517{
4518	struct igb_adapter *adapter = netdev_priv(netdev);
4519
4520	spin_lock(&adapter->stats64_lock);
4521	igb_update_stats(adapter, &adapter->stats64);
4522	memcpy(stats, &adapter->stats64, sizeof(*stats));
4523	spin_unlock(&adapter->stats64_lock);
4524
4525	return stats;
4526}
4527
4528/**
4529 * igb_change_mtu - Change the Maximum Transfer Unit
4530 * @netdev: network interface device structure
4531 * @new_mtu: new value for maximum frame size
4532 *
4533 * Returns 0 on success, negative on failure
4534 **/
4535static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4536{
4537	struct igb_adapter *adapter = netdev_priv(netdev);
4538	struct pci_dev *pdev = adapter->pdev;
4539	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4540
4541	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4542		dev_err(&pdev->dev, "Invalid MTU setting\n");
4543		return -EINVAL;
4544	}
4545
4546#define MAX_STD_JUMBO_FRAME_SIZE 9238
4547	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4548		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4549		return -EINVAL;
4550	}
4551
4552	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4553		msleep(1);
4554
4555	/* igb_down has a dependency on max_frame_size */
4556	adapter->max_frame_size = max_frame;
4557
4558	if (netif_running(netdev))
4559		igb_down(adapter);
4560
4561	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4562		 netdev->mtu, new_mtu);
4563	netdev->mtu = new_mtu;
4564
4565	if (netif_running(netdev))
4566		igb_up(adapter);
4567	else
4568		igb_reset(adapter);
4569
4570	clear_bit(__IGB_RESETTING, &adapter->state);
4571
4572	return 0;
4573}
4574
4575/**
4576 * igb_update_stats - Update the board statistics counters
4577 * @adapter: board private structure
4578 **/
4579
4580void igb_update_stats(struct igb_adapter *adapter,
4581		      struct rtnl_link_stats64 *net_stats)
4582{
4583	struct e1000_hw *hw = &adapter->hw;
4584	struct pci_dev *pdev = adapter->pdev;
4585	u32 reg, mpc;
4586	u16 phy_tmp;
4587	int i;
4588	u64 bytes, packets;
4589	unsigned int start;
4590	u64 _bytes, _packets;
4591
4592#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4593
4594	/*
4595	 * Prevent stats update while adapter is being reset, or if the pci
4596	 * connection is down.
4597	 */
4598	if (adapter->link_speed == 0)
4599		return;
4600	if (pci_channel_offline(pdev))
4601		return;
4602
4603	bytes = 0;
4604	packets = 0;
4605	for (i = 0; i < adapter->num_rx_queues; i++) {
4606		u32 rqdpc = rd32(E1000_RQDPC(i));
4607		struct igb_ring *ring = adapter->rx_ring[i];
4608
4609		if (rqdpc) {
4610			ring->rx_stats.drops += rqdpc;
4611			net_stats->rx_fifo_errors += rqdpc;
4612		}
4613
4614		do {
4615			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4616			_bytes = ring->rx_stats.bytes;
4617			_packets = ring->rx_stats.packets;
4618		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4619		bytes += _bytes;
4620		packets += _packets;
4621	}
4622
4623	net_stats->rx_bytes = bytes;
4624	net_stats->rx_packets = packets;
4625
4626	bytes = 0;
4627	packets = 0;
4628	for (i = 0; i < adapter->num_tx_queues; i++) {
4629		struct igb_ring *ring = adapter->tx_ring[i];
4630		do {
4631			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4632			_bytes = ring->tx_stats.bytes;
4633			_packets = ring->tx_stats.packets;
4634		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4635		bytes += _bytes;
4636		packets += _packets;
4637	}
4638	net_stats->tx_bytes = bytes;
4639	net_stats->tx_packets = packets;
4640
4641	/* read stats registers */
4642	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4643	adapter->stats.gprc += rd32(E1000_GPRC);
4644	adapter->stats.gorc += rd32(E1000_GORCL);
4645	rd32(E1000_GORCH); /* clear GORCL */
4646	adapter->stats.bprc += rd32(E1000_BPRC);
4647	adapter->stats.mprc += rd32(E1000_MPRC);
4648	adapter->stats.roc += rd32(E1000_ROC);
4649
4650	adapter->stats.prc64 += rd32(E1000_PRC64);
4651	adapter->stats.prc127 += rd32(E1000_PRC127);
4652	adapter->stats.prc255 += rd32(E1000_PRC255);
4653	adapter->stats.prc511 += rd32(E1000_PRC511);
4654	adapter->stats.prc1023 += rd32(E1000_PRC1023);
4655	adapter->stats.prc1522 += rd32(E1000_PRC1522);
4656	adapter->stats.symerrs += rd32(E1000_SYMERRS);
4657	adapter->stats.sec += rd32(E1000_SEC);
4658
4659	mpc = rd32(E1000_MPC);
4660	adapter->stats.mpc += mpc;
4661	net_stats->rx_fifo_errors += mpc;
4662	adapter->stats.scc += rd32(E1000_SCC);
4663	adapter->stats.ecol += rd32(E1000_ECOL);
4664	adapter->stats.mcc += rd32(E1000_MCC);
4665	adapter->stats.latecol += rd32(E1000_LATECOL);
4666	adapter->stats.dc += rd32(E1000_DC);
4667	adapter->stats.rlec += rd32(E1000_RLEC);
4668	adapter->stats.xonrxc += rd32(E1000_XONRXC);
4669	adapter->stats.xontxc += rd32(E1000_XONTXC);
4670	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4671	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4672	adapter->stats.fcruc += rd32(E1000_FCRUC);
4673	adapter->stats.gptc += rd32(E1000_GPTC);
4674	adapter->stats.gotc += rd32(E1000_GOTCL);
4675	rd32(E1000_GOTCH); /* clear GOTCL */
4676	adapter->stats.rnbc += rd32(E1000_RNBC);
4677	adapter->stats.ruc += rd32(E1000_RUC);
4678	adapter->stats.rfc += rd32(E1000_RFC);
4679	adapter->stats.rjc += rd32(E1000_RJC);
4680	adapter->stats.tor += rd32(E1000_TORH);
4681	adapter->stats.tot += rd32(E1000_TOTH);
4682	adapter->stats.tpr += rd32(E1000_TPR);
4683
4684	adapter->stats.ptc64 += rd32(E1000_PTC64);
4685	adapter->stats.ptc127 += rd32(E1000_PTC127);
4686	adapter->stats.ptc255 += rd32(E1000_PTC255);
4687	adapter->stats.ptc511 += rd32(E1000_PTC511);
4688	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4689	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4690
4691	adapter->stats.mptc += rd32(E1000_MPTC);
4692	adapter->stats.bptc += rd32(E1000_BPTC);
4693
4694	adapter->stats.tpt += rd32(E1000_TPT);
4695	adapter->stats.colc += rd32(E1000_COLC);
4696
4697	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4698	/* read internal phy specific stats */
4699	reg = rd32(E1000_CTRL_EXT);
4700	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4701		adapter->stats.rxerrc += rd32(E1000_RXERRC);
4702
4703		/* this stat has invalid values on i210/i211 */
4704		if ((hw->mac.type != e1000_i210) &&
4705		    (hw->mac.type != e1000_i211))
4706			adapter->stats.tncrs += rd32(E1000_TNCRS);
4707	}
4708
4709	adapter->stats.tsctc += rd32(E1000_TSCTC);
4710	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4711
4712	adapter->stats.iac += rd32(E1000_IAC);
4713	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4714	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4715	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4716	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4717	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4718	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4719	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4720	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4721
4722	/* Fill out the OS statistics structure */
4723	net_stats->multicast = adapter->stats.mprc;
4724	net_stats->collisions = adapter->stats.colc;
4725
4726	/* Rx Errors */
4727
4728	/* RLEC on some newer hardware can be incorrect so build
4729	 * our own version based on RUC and ROC */
4730	net_stats->rx_errors = adapter->stats.rxerrc +
4731		adapter->stats.crcerrs + adapter->stats.algnerrc +
4732		adapter->stats.ruc + adapter->stats.roc +
4733		adapter->stats.cexterr;
4734	net_stats->rx_length_errors = adapter->stats.ruc +
4735				      adapter->stats.roc;
4736	net_stats->rx_crc_errors = adapter->stats.crcerrs;
4737	net_stats->rx_frame_errors = adapter->stats.algnerrc;
4738	net_stats->rx_missed_errors = adapter->stats.mpc;
4739
4740	/* Tx Errors */
4741	net_stats->tx_errors = adapter->stats.ecol +
4742			       adapter->stats.latecol;
4743	net_stats->tx_aborted_errors = adapter->stats.ecol;
4744	net_stats->tx_window_errors = adapter->stats.latecol;
4745	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4746
4747	/* Tx Dropped needs to be maintained elsewhere */
4748
4749	/* Phy Stats */
4750	if (hw->phy.media_type == e1000_media_type_copper) {
4751		if ((adapter->link_speed == SPEED_1000) &&
4752		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4753			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4754			adapter->phy_stats.idle_errors += phy_tmp;
4755		}
4756	}
4757
4758	/* Management Stats */
4759	adapter->stats.mgptc += rd32(E1000_MGTPTC);
4760	adapter->stats.mgprc += rd32(E1000_MGTPRC);
4761	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4762
4763	/* OS2BMC Stats */
4764	reg = rd32(E1000_MANC);
4765	if (reg & E1000_MANC_EN_BMC2OS) {
4766		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4767		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4768		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4769		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4770	}
4771}
4772
4773static irqreturn_t igb_msix_other(int irq, void *data)
4774{
4775	struct igb_adapter *adapter = data;
4776	struct e1000_hw *hw = &adapter->hw;
4777	u32 icr = rd32(E1000_ICR);
4778	/* reading ICR causes bit 31 of EICR to be cleared */
4779
4780	if (icr & E1000_ICR_DRSTA)
4781		schedule_work(&adapter->reset_task);
4782
4783	if (icr & E1000_ICR_DOUTSYNC) {
4784		/* HW is reporting DMA is out of sync */
4785		adapter->stats.doosync++;
4786		/* The DMA Out of Sync is also indication of a spoof event
4787		 * in IOV mode. Check the Wrong VM Behavior register to
4788		 * see if it is really a spoof event. */
4789		igb_check_wvbr(adapter);
4790	}
4791
4792	/* Check for a mailbox event */
4793	if (icr & E1000_ICR_VMMB)
4794		igb_msg_task(adapter);
4795
4796	if (icr & E1000_ICR_LSC) {
4797		hw->mac.get_link_status = 1;
4798		/* guard against interrupt when we're going down */
4799		if (!test_bit(__IGB_DOWN, &adapter->state))
4800			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4801	}
4802
4803#ifdef CONFIG_IGB_PTP
4804	if (icr & E1000_ICR_TS) {
4805		u32 tsicr = rd32(E1000_TSICR);
4806
4807		if (tsicr & E1000_TSICR_TXTS) {
4808			/* acknowledge the interrupt */
4809			wr32(E1000_TSICR, E1000_TSICR_TXTS);
4810			/* retrieve hardware timestamp */
4811			schedule_work(&adapter->ptp_tx_work);
4812		}
4813	}
4814#endif /* CONFIG_IGB_PTP */
4815
4816	wr32(E1000_EIMS, adapter->eims_other);
4817
4818	return IRQ_HANDLED;
4819}
4820
4821static void igb_write_itr(struct igb_q_vector *q_vector)
4822{
4823	struct igb_adapter *adapter = q_vector->adapter;
4824	u32 itr_val = q_vector->itr_val & 0x7FFC;
4825
4826	if (!q_vector->set_itr)
4827		return;
4828
4829	if (!itr_val)
4830		itr_val = 0x4;
4831
4832	if (adapter->hw.mac.type == e1000_82575)
4833		itr_val |= itr_val << 16;
4834	else
4835		itr_val |= E1000_EITR_CNT_IGNR;
4836
4837	writel(itr_val, q_vector->itr_register);
4838	q_vector->set_itr = 0;
4839}
4840
4841static irqreturn_t igb_msix_ring(int irq, void *data)
4842{
4843	struct igb_q_vector *q_vector = data;
4844
4845	/* Write the ITR value calculated from the previous interrupt. */
4846	igb_write_itr(q_vector);
4847
4848	napi_schedule(&q_vector->napi);
4849
4850	return IRQ_HANDLED;
4851}
4852
4853#ifdef CONFIG_IGB_DCA
4854static void igb_update_tx_dca(struct igb_adapter *adapter,
4855			      struct igb_ring *tx_ring,
4856			      int cpu)
4857{
4858	struct e1000_hw *hw = &adapter->hw;
4859	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
4860
4861	if (hw->mac.type != e1000_82575)
4862		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
4863
4864	/*
4865	 * We can enable relaxed ordering for reads, but not writes when
4866	 * DCA is enabled.  This is due to a known issue in some chipsets
4867	 * which will cause the DCA tag to be cleared.
4868	 */
4869	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
4870		  E1000_DCA_TXCTRL_DATA_RRO_EN |
4871		  E1000_DCA_TXCTRL_DESC_DCA_EN;
4872
4873	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
4874}
4875
4876static void igb_update_rx_dca(struct igb_adapter *adapter,
4877			      struct igb_ring *rx_ring,
4878			      int cpu)
4879{
4880	struct e1000_hw *hw = &adapter->hw;
4881	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
4882
4883	if (hw->mac.type != e1000_82575)
4884		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
4885
4886	/*
4887	 * We can enable relaxed ordering for reads, but not writes when
4888	 * DCA is enabled.  This is due to a known issue in some chipsets
4889	 * which will cause the DCA tag to be cleared.
4890	 */
4891	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
4892		  E1000_DCA_RXCTRL_DESC_DCA_EN;
4893
4894	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
4895}
4896
4897static void igb_update_dca(struct igb_q_vector *q_vector)
4898{
4899	struct igb_adapter *adapter = q_vector->adapter;
4900	int cpu = get_cpu();
4901
4902	if (q_vector->cpu == cpu)
4903		goto out_no_update;
4904
4905	if (q_vector->tx.ring)
4906		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
4907
4908	if (q_vector->rx.ring)
4909		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
4910
4911	q_vector->cpu = cpu;
4912out_no_update:
4913	put_cpu();
4914}
4915
4916static void igb_setup_dca(struct igb_adapter *adapter)
4917{
4918	struct e1000_hw *hw = &adapter->hw;
4919	int i;
4920
4921	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4922		return;
4923
4924	/* Always use CB2 mode, difference is masked in the CB driver. */
4925	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4926
4927	for (i = 0; i < adapter->num_q_vectors; i++) {
4928		adapter->q_vector[i]->cpu = -1;
4929		igb_update_dca(adapter->q_vector[i]);
4930	}
4931}
4932
4933static int __igb_notify_dca(struct device *dev, void *data)
4934{
4935	struct net_device *netdev = dev_get_drvdata(dev);
4936	struct igb_adapter *adapter = netdev_priv(netdev);
4937	struct pci_dev *pdev = adapter->pdev;
4938	struct e1000_hw *hw = &adapter->hw;
4939	unsigned long event = *(unsigned long *)data;
4940
4941	switch (event) {
4942	case DCA_PROVIDER_ADD:
4943		/* if already enabled, don't do it again */
4944		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4945			break;
4946		if (dca_add_requester(dev) == 0) {
4947			adapter->flags |= IGB_FLAG_DCA_ENABLED;
4948			dev_info(&pdev->dev, "DCA enabled\n");
4949			igb_setup_dca(adapter);
4950			break;
4951		}
4952		/* Fall Through since DCA is disabled. */
4953	case DCA_PROVIDER_REMOVE:
4954		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4955			/* without this a class_device is left
4956			 * hanging around in the sysfs model */
4957			dca_remove_requester(dev);
4958			dev_info(&pdev->dev, "DCA disabled\n");
4959			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4960			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4961		}
4962		break;
4963	}
4964
4965	return 0;
4966}
4967
4968static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4969                          void *p)
4970{
4971	int ret_val;
4972
4973	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4974	                                 __igb_notify_dca);
4975
4976	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4977}
4978#endif /* CONFIG_IGB_DCA */
4979
4980#ifdef CONFIG_PCI_IOV
4981static int igb_vf_configure(struct igb_adapter *adapter, int vf)
4982{
4983	unsigned char mac_addr[ETH_ALEN];
4984
4985	eth_random_addr(mac_addr);
4986	igb_set_vf_mac(adapter, vf, mac_addr);
4987
4988	return 0;
4989}
4990
4991static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
4992{
4993	struct pci_dev *pdev = adapter->pdev;
4994	struct pci_dev *vfdev;
4995	int dev_id;
4996
4997	switch (adapter->hw.mac.type) {
4998	case e1000_82576:
4999		dev_id = IGB_82576_VF_DEV_ID;
5000		break;
5001	case e1000_i350:
5002		dev_id = IGB_I350_VF_DEV_ID;
5003		break;
5004	default:
5005		return false;
5006	}
5007
5008	/* loop through all the VFs to see if we own any that are assigned */
5009	vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
5010	while (vfdev) {
5011		/* if we don't own it we don't care */
5012		if (vfdev->is_virtfn && vfdev->physfn == pdev) {
5013			/* if it is assigned we cannot release it */
5014			if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
5015				return true;
5016		}
5017
5018		vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
5019	}
5020
5021	return false;
5022}
5023
5024#endif
5025static void igb_ping_all_vfs(struct igb_adapter *adapter)
5026{
5027	struct e1000_hw *hw = &adapter->hw;
5028	u32 ping;
5029	int i;
5030
5031	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5032		ping = E1000_PF_CONTROL_MSG;
5033		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5034			ping |= E1000_VT_MSGTYPE_CTS;
5035		igb_write_mbx(hw, &ping, 1, i);
5036	}
5037}
5038
5039static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5040{
5041	struct e1000_hw *hw = &adapter->hw;
5042	u32 vmolr = rd32(E1000_VMOLR(vf));
5043	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5044
5045	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5046	                    IGB_VF_FLAG_MULTI_PROMISC);
5047	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5048
5049	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5050		vmolr |= E1000_VMOLR_MPME;
5051		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5052		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5053	} else {
5054		/*
5055		 * if we have hashes and we are clearing a multicast promisc
5056		 * flag we need to write the hashes to the MTA as this step
5057		 * was previously skipped
5058		 */
5059		if (vf_data->num_vf_mc_hashes > 30) {
5060			vmolr |= E1000_VMOLR_MPME;
5061		} else if (vf_data->num_vf_mc_hashes) {
5062			int j;
5063			vmolr |= E1000_VMOLR_ROMPE;
5064			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5065				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5066		}
5067	}
5068
5069	wr32(E1000_VMOLR(vf), vmolr);
5070
5071	/* there are flags left unprocessed, likely not supported */
5072	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5073		return -EINVAL;
5074
5075	return 0;
5076
5077}
5078
5079static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5080				  u32 *msgbuf, u32 vf)
5081{
5082	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5083	u16 *hash_list = (u16 *)&msgbuf[1];
5084	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5085	int i;
5086
5087	/* salt away the number of multicast addresses assigned
5088	 * to this VF for later use to restore when the PF multi cast
5089	 * list changes
5090	 */
5091	vf_data->num_vf_mc_hashes = n;
5092
5093	/* only up to 30 hash values supported */
5094	if (n > 30)
5095		n = 30;
5096
5097	/* store the hashes for later use */
5098	for (i = 0; i < n; i++)
5099		vf_data->vf_mc_hashes[i] = hash_list[i];
5100
5101	/* Flush and reset the mta with the new values */
5102	igb_set_rx_mode(adapter->netdev);
5103
5104	return 0;
5105}
5106
5107static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5108{
5109	struct e1000_hw *hw = &adapter->hw;
5110	struct vf_data_storage *vf_data;
5111	int i, j;
5112
5113	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5114		u32 vmolr = rd32(E1000_VMOLR(i));
5115		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5116
5117		vf_data = &adapter->vf_data[i];
5118
5119		if ((vf_data->num_vf_mc_hashes > 30) ||
5120		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5121			vmolr |= E1000_VMOLR_MPME;
5122		} else if (vf_data->num_vf_mc_hashes) {
5123			vmolr |= E1000_VMOLR_ROMPE;
5124			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5125				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5126		}
5127		wr32(E1000_VMOLR(i), vmolr);
5128	}
5129}
5130
5131static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5132{
5133	struct e1000_hw *hw = &adapter->hw;
5134	u32 pool_mask, reg, vid;
5135	int i;
5136
5137	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5138
5139	/* Find the vlan filter for this id */
5140	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5141		reg = rd32(E1000_VLVF(i));
5142
5143		/* remove the vf from the pool */
5144		reg &= ~pool_mask;
5145
5146		/* if pool is empty then remove entry from vfta */
5147		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5148		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5149			reg = 0;
5150			vid = reg & E1000_VLVF_VLANID_MASK;
5151			igb_vfta_set(hw, vid, false);
5152		}
5153
5154		wr32(E1000_VLVF(i), reg);
5155	}
5156
5157	adapter->vf_data[vf].vlans_enabled = 0;
5158}
5159
5160static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5161{
5162	struct e1000_hw *hw = &adapter->hw;
5163	u32 reg, i;
5164
5165	/* The vlvf table only exists on 82576 hardware and newer */
5166	if (hw->mac.type < e1000_82576)
5167		return -1;
5168
5169	/* we only need to do this if VMDq is enabled */
5170	if (!adapter->vfs_allocated_count)
5171		return -1;
5172
5173	/* Find the vlan filter for this id */
5174	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5175		reg = rd32(E1000_VLVF(i));
5176		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5177		    vid == (reg & E1000_VLVF_VLANID_MASK))
5178			break;
5179	}
5180
5181	if (add) {
5182		if (i == E1000_VLVF_ARRAY_SIZE) {
5183			/* Did not find a matching VLAN ID entry that was
5184			 * enabled.  Search for a free filter entry, i.e.
5185			 * one without the enable bit set
5186			 */
5187			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5188				reg = rd32(E1000_VLVF(i));
5189				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5190					break;
5191			}
5192		}
5193		if (i < E1000_VLVF_ARRAY_SIZE) {
5194			/* Found an enabled/available entry */
5195			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5196
5197			/* if !enabled we need to set this up in vfta */
5198			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5199				/* add VID to filter table */
5200				igb_vfta_set(hw, vid, true);
5201				reg |= E1000_VLVF_VLANID_ENABLE;
5202			}
5203			reg &= ~E1000_VLVF_VLANID_MASK;
5204			reg |= vid;
5205			wr32(E1000_VLVF(i), reg);
5206
5207			/* do not modify RLPML for PF devices */
5208			if (vf >= adapter->vfs_allocated_count)
5209				return 0;
5210
5211			if (!adapter->vf_data[vf].vlans_enabled) {
5212				u32 size;
5213				reg = rd32(E1000_VMOLR(vf));
5214				size = reg & E1000_VMOLR_RLPML_MASK;
5215				size += 4;
5216				reg &= ~E1000_VMOLR_RLPML_MASK;
5217				reg |= size;
5218				wr32(E1000_VMOLR(vf), reg);
5219			}
5220
5221			adapter->vf_data[vf].vlans_enabled++;
5222		}
5223	} else {
5224		if (i < E1000_VLVF_ARRAY_SIZE) {
5225			/* remove vf from the pool */
5226			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5227			/* if pool is empty then remove entry from vfta */
5228			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5229				reg = 0;
5230				igb_vfta_set(hw, vid, false);
5231			}
5232			wr32(E1000_VLVF(i), reg);
5233
5234			/* do not modify RLPML for PF devices */
5235			if (vf >= adapter->vfs_allocated_count)
5236				return 0;
5237
5238			adapter->vf_data[vf].vlans_enabled--;
5239			if (!adapter->vf_data[vf].vlans_enabled) {
5240				u32 size;
5241				reg = rd32(E1000_VMOLR(vf));
5242				size = reg & E1000_VMOLR_RLPML_MASK;
5243				size -= 4;
5244				reg &= ~E1000_VMOLR_RLPML_MASK;
5245				reg |= size;
5246				wr32(E1000_VMOLR(vf), reg);
5247			}
5248		}
5249	}
5250	return 0;
5251}
5252
5253static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5254{
5255	struct e1000_hw *hw = &adapter->hw;
5256
5257	if (vid)
5258		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5259	else
5260		wr32(E1000_VMVIR(vf), 0);
5261}
5262
5263static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5264			       int vf, u16 vlan, u8 qos)
5265{
5266	int err = 0;
5267	struct igb_adapter *adapter = netdev_priv(netdev);
5268
5269	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5270		return -EINVAL;
5271	if (vlan || qos) {
5272		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5273		if (err)
5274			goto out;
5275		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5276		igb_set_vmolr(adapter, vf, !vlan);
5277		adapter->vf_data[vf].pf_vlan = vlan;
5278		adapter->vf_data[vf].pf_qos = qos;
5279		dev_info(&adapter->pdev->dev,
5280			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5281		if (test_bit(__IGB_DOWN, &adapter->state)) {
5282			dev_warn(&adapter->pdev->dev,
5283				 "The VF VLAN has been set,"
5284				 " but the PF device is not up.\n");
5285			dev_warn(&adapter->pdev->dev,
5286				 "Bring the PF device up before"
5287				 " attempting to use the VF device.\n");
5288		}
5289	} else {
5290		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5291				   false, vf);
5292		igb_set_vmvir(adapter, vlan, vf);
5293		igb_set_vmolr(adapter, vf, true);
5294		adapter->vf_data[vf].pf_vlan = 0;
5295		adapter->vf_data[vf].pf_qos = 0;
5296       }
5297out:
5298       return err;
5299}
5300
5301static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5302{
5303	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5304	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5305
5306	return igb_vlvf_set(adapter, vid, add, vf);
5307}
5308
5309static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5310{
5311	/* clear flags - except flag that indicates PF has set the MAC */
5312	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5313	adapter->vf_data[vf].last_nack = jiffies;
5314
5315	/* reset offloads to defaults */
5316	igb_set_vmolr(adapter, vf, true);
5317
5318	/* reset vlans for device */
5319	igb_clear_vf_vfta(adapter, vf);
5320	if (adapter->vf_data[vf].pf_vlan)
5321		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5322				    adapter->vf_data[vf].pf_vlan,
5323				    adapter->vf_data[vf].pf_qos);
5324	else
5325		igb_clear_vf_vfta(adapter, vf);
5326
5327	/* reset multicast table array for vf */
5328	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5329
5330	/* Flush and reset the mta with the new values */
5331	igb_set_rx_mode(adapter->netdev);
5332}
5333
5334static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5335{
5336	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5337
5338	/* generate a new mac address as we were hotplug removed/added */
5339	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5340		eth_random_addr(vf_mac);
5341
5342	/* process remaining reset events */
5343	igb_vf_reset(adapter, vf);
5344}
5345
5346static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5347{
5348	struct e1000_hw *hw = &adapter->hw;
5349	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5350	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5351	u32 reg, msgbuf[3];
5352	u8 *addr = (u8 *)(&msgbuf[1]);
5353
5354	/* process all the same items cleared in a function level reset */
5355	igb_vf_reset(adapter, vf);
5356
5357	/* set vf mac address */
5358	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5359
5360	/* enable transmit and receive for vf */
5361	reg = rd32(E1000_VFTE);
5362	wr32(E1000_VFTE, reg | (1 << vf));
5363	reg = rd32(E1000_VFRE);
5364	wr32(E1000_VFRE, reg | (1 << vf));
5365
5366	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5367
5368	/* reply to reset with ack and vf mac address */
5369	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5370	memcpy(addr, vf_mac, 6);
5371	igb_write_mbx(hw, msgbuf, 3, vf);
5372}
5373
5374static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5375{
5376	/*
5377	 * The VF MAC Address is stored in a packed array of bytes
5378	 * starting at the second 32 bit word of the msg array
5379	 */
5380	unsigned char *addr = (char *)&msg[1];
5381	int err = -1;
5382
5383	if (is_valid_ether_addr(addr))
5384		err = igb_set_vf_mac(adapter, vf, addr);
5385
5386	return err;
5387}
5388
5389static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5390{
5391	struct e1000_hw *hw = &adapter->hw;
5392	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5393	u32 msg = E1000_VT_MSGTYPE_NACK;
5394
5395	/* if device isn't clear to send it shouldn't be reading either */
5396	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5397	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5398		igb_write_mbx(hw, &msg, 1, vf);
5399		vf_data->last_nack = jiffies;
5400	}
5401}
5402
5403static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5404{
5405	struct pci_dev *pdev = adapter->pdev;
5406	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5407	struct e1000_hw *hw = &adapter->hw;
5408	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5409	s32 retval;
5410
5411	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5412
5413	if (retval) {
5414		/* if receive failed revoke VF CTS stats and restart init */
5415		dev_err(&pdev->dev, "Error receiving message from VF\n");
5416		vf_data->flags &= ~IGB_VF_FLAG_CTS;
5417		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5418			return;
5419		goto out;
5420	}
5421
5422	/* this is a message we already processed, do nothing */
5423	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5424		return;
5425
5426	/*
5427	 * until the vf completes a reset it should not be
5428	 * allowed to start any configuration.
5429	 */
5430
5431	if (msgbuf[0] == E1000_VF_RESET) {
5432		igb_vf_reset_msg(adapter, vf);
5433		return;
5434	}
5435
5436	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5437		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5438			return;
5439		retval = -1;
5440		goto out;
5441	}
5442
5443	switch ((msgbuf[0] & 0xFFFF)) {
5444	case E1000_VF_SET_MAC_ADDR:
5445		retval = -EINVAL;
5446		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5447			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5448		else
5449			dev_warn(&pdev->dev,
5450				 "VF %d attempted to override administratively "
5451				 "set MAC address\nReload the VF driver to "
5452				 "resume operations\n", vf);
5453		break;
5454	case E1000_VF_SET_PROMISC:
5455		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5456		break;
5457	case E1000_VF_SET_MULTICAST:
5458		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5459		break;
5460	case E1000_VF_SET_LPE:
5461		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5462		break;
5463	case E1000_VF_SET_VLAN:
5464		retval = -1;
5465		if (vf_data->pf_vlan)
5466			dev_warn(&pdev->dev,
5467				 "VF %d attempted to override administratively "
5468				 "set VLAN tag\nReload the VF driver to "
5469				 "resume operations\n", vf);
5470		else
5471			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5472		break;
5473	default:
5474		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5475		retval = -1;
5476		break;
5477	}
5478
5479	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5480out:
5481	/* notify the VF of the results of what it sent us */
5482	if (retval)
5483		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5484	else
5485		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5486
5487	igb_write_mbx(hw, msgbuf, 1, vf);
5488}
5489
5490static void igb_msg_task(struct igb_adapter *adapter)
5491{
5492	struct e1000_hw *hw = &adapter->hw;
5493	u32 vf;
5494
5495	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5496		/* process any reset requests */
5497		if (!igb_check_for_rst(hw, vf))
5498			igb_vf_reset_event(adapter, vf);
5499
5500		/* process any messages pending */
5501		if (!igb_check_for_msg(hw, vf))
5502			igb_rcv_msg_from_vf(adapter, vf);
5503
5504		/* process any acks */
5505		if (!igb_check_for_ack(hw, vf))
5506			igb_rcv_ack_from_vf(adapter, vf);
5507	}
5508}
5509
5510/**
5511 *  igb_set_uta - Set unicast filter table address
5512 *  @adapter: board private structure
5513 *
5514 *  The unicast table address is a register array of 32-bit registers.
5515 *  The table is meant to be used in a way similar to how the MTA is used
5516 *  however due to certain limitations in the hardware it is necessary to
5517 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5518 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5519 **/
5520static void igb_set_uta(struct igb_adapter *adapter)
5521{
5522	struct e1000_hw *hw = &adapter->hw;
5523	int i;
5524
5525	/* The UTA table only exists on 82576 hardware and newer */
5526	if (hw->mac.type < e1000_82576)
5527		return;
5528
5529	/* we only need to do this if VMDq is enabled */
5530	if (!adapter->vfs_allocated_count)
5531		return;
5532
5533	for (i = 0; i < hw->mac.uta_reg_count; i++)
5534		array_wr32(E1000_UTA, i, ~0);
5535}
5536
5537/**
5538 * igb_intr_msi - Interrupt Handler
5539 * @irq: interrupt number
5540 * @data: pointer to a network interface device structure
5541 **/
5542static irqreturn_t igb_intr_msi(int irq, void *data)
5543{
5544	struct igb_adapter *adapter = data;
5545	struct igb_q_vector *q_vector = adapter->q_vector[0];
5546	struct e1000_hw *hw = &adapter->hw;
5547	/* read ICR disables interrupts using IAM */
5548	u32 icr = rd32(E1000_ICR);
5549
5550	igb_write_itr(q_vector);
5551
5552	if (icr & E1000_ICR_DRSTA)
5553		schedule_work(&adapter->reset_task);
5554
5555	if (icr & E1000_ICR_DOUTSYNC) {
5556		/* HW is reporting DMA is out of sync */
5557		adapter->stats.doosync++;
5558	}
5559
5560	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5561		hw->mac.get_link_status = 1;
5562		if (!test_bit(__IGB_DOWN, &adapter->state))
5563			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5564	}
5565
5566#ifdef CONFIG_IGB_PTP
5567	if (icr & E1000_ICR_TS) {
5568		u32 tsicr = rd32(E1000_TSICR);
5569
5570		if (tsicr & E1000_TSICR_TXTS) {
5571			/* acknowledge the interrupt */
5572			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5573			/* retrieve hardware timestamp */
5574			schedule_work(&adapter->ptp_tx_work);
5575		}
5576	}
5577#endif /* CONFIG_IGB_PTP */
5578
5579	napi_schedule(&q_vector->napi);
5580
5581	return IRQ_HANDLED;
5582}
5583
5584/**
5585 * igb_intr - Legacy Interrupt Handler
5586 * @irq: interrupt number
5587 * @data: pointer to a network interface device structure
5588 **/
5589static irqreturn_t igb_intr(int irq, void *data)
5590{
5591	struct igb_adapter *adapter = data;
5592	struct igb_q_vector *q_vector = adapter->q_vector[0];
5593	struct e1000_hw *hw = &adapter->hw;
5594	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5595	 * need for the IMC write */
5596	u32 icr = rd32(E1000_ICR);
5597
5598	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5599	 * not set, then the adapter didn't send an interrupt */
5600	if (!(icr & E1000_ICR_INT_ASSERTED))
5601		return IRQ_NONE;
5602
5603	igb_write_itr(q_vector);
5604
5605	if (icr & E1000_ICR_DRSTA)
5606		schedule_work(&adapter->reset_task);
5607
5608	if (icr & E1000_ICR_DOUTSYNC) {
5609		/* HW is reporting DMA is out of sync */
5610		adapter->stats.doosync++;
5611	}
5612
5613	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5614		hw->mac.get_link_status = 1;
5615		/* guard against interrupt when we're going down */
5616		if (!test_bit(__IGB_DOWN, &adapter->state))
5617			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5618	}
5619
5620#ifdef CONFIG_IGB_PTP
5621	if (icr & E1000_ICR_TS) {
5622		u32 tsicr = rd32(E1000_TSICR);
5623
5624		if (tsicr & E1000_TSICR_TXTS) {
5625			/* acknowledge the interrupt */
5626			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5627			/* retrieve hardware timestamp */
5628			schedule_work(&adapter->ptp_tx_work);
5629		}
5630	}
5631#endif /* CONFIG_IGB_PTP */
5632
5633	napi_schedule(&q_vector->napi);
5634
5635	return IRQ_HANDLED;
5636}
5637
5638static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5639{
5640	struct igb_adapter *adapter = q_vector->adapter;
5641	struct e1000_hw *hw = &adapter->hw;
5642
5643	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5644	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5645		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5646			igb_set_itr(q_vector);
5647		else
5648			igb_update_ring_itr(q_vector);
5649	}
5650
5651	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5652		if (adapter->msix_entries)
5653			wr32(E1000_EIMS, q_vector->eims_value);
5654		else
5655			igb_irq_enable(adapter);
5656	}
5657}
5658
5659/**
5660 * igb_poll - NAPI Rx polling callback
5661 * @napi: napi polling structure
5662 * @budget: count of how many packets we should handle
5663 **/
5664static int igb_poll(struct napi_struct *napi, int budget)
5665{
5666	struct igb_q_vector *q_vector = container_of(napi,
5667	                                             struct igb_q_vector,
5668	                                             napi);
5669	bool clean_complete = true;
5670
5671#ifdef CONFIG_IGB_DCA
5672	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5673		igb_update_dca(q_vector);
5674#endif
5675	if (q_vector->tx.ring)
5676		clean_complete = igb_clean_tx_irq(q_vector);
5677
5678	if (q_vector->rx.ring)
5679		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5680
5681	/* If all work not completed, return budget and keep polling */
5682	if (!clean_complete)
5683		return budget;
5684
5685	/* If not enough Rx work done, exit the polling mode */
5686	napi_complete(napi);
5687	igb_ring_irq_enable(q_vector);
5688
5689	return 0;
5690}
5691
5692/**
5693 * igb_clean_tx_irq - Reclaim resources after transmit completes
5694 * @q_vector: pointer to q_vector containing needed info
5695 *
5696 * returns true if ring is completely cleaned
5697 **/
5698static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5699{
5700	struct igb_adapter *adapter = q_vector->adapter;
5701	struct igb_ring *tx_ring = q_vector->tx.ring;
5702	struct igb_tx_buffer *tx_buffer;
5703	union e1000_adv_tx_desc *tx_desc;
5704	unsigned int total_bytes = 0, total_packets = 0;
5705	unsigned int budget = q_vector->tx.work_limit;
5706	unsigned int i = tx_ring->next_to_clean;
5707
5708	if (test_bit(__IGB_DOWN, &adapter->state))
5709		return true;
5710
5711	tx_buffer = &tx_ring->tx_buffer_info[i];
5712	tx_desc = IGB_TX_DESC(tx_ring, i);
5713	i -= tx_ring->count;
5714
5715	do {
5716		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5717
5718		/* if next_to_watch is not set then there is no work pending */
5719		if (!eop_desc)
5720			break;
5721
5722		/* prevent any other reads prior to eop_desc */
5723		rmb();
5724
5725		/* if DD is not set pending work has not been completed */
5726		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5727			break;
5728
5729		/* clear next_to_watch to prevent false hangs */
5730		tx_buffer->next_to_watch = NULL;
5731
5732		/* update the statistics for this packet */
5733		total_bytes += tx_buffer->bytecount;
5734		total_packets += tx_buffer->gso_segs;
5735
5736		/* free the skb */
5737		dev_kfree_skb_any(tx_buffer->skb);
5738
5739		/* unmap skb header data */
5740		dma_unmap_single(tx_ring->dev,
5741				 dma_unmap_addr(tx_buffer, dma),
5742				 dma_unmap_len(tx_buffer, len),
5743				 DMA_TO_DEVICE);
5744
5745		/* clear tx_buffer data */
5746		tx_buffer->skb = NULL;
5747		dma_unmap_len_set(tx_buffer, len, 0);
5748
5749		/* clear last DMA location and unmap remaining buffers */
5750		while (tx_desc != eop_desc) {
5751			tx_buffer++;
5752			tx_desc++;
5753			i++;
5754			if (unlikely(!i)) {
5755				i -= tx_ring->count;
5756				tx_buffer = tx_ring->tx_buffer_info;
5757				tx_desc = IGB_TX_DESC(tx_ring, 0);
5758			}
5759
5760			/* unmap any remaining paged data */
5761			if (dma_unmap_len(tx_buffer, len)) {
5762				dma_unmap_page(tx_ring->dev,
5763					       dma_unmap_addr(tx_buffer, dma),
5764					       dma_unmap_len(tx_buffer, len),
5765					       DMA_TO_DEVICE);
5766				dma_unmap_len_set(tx_buffer, len, 0);
5767			}
5768		}
5769
5770		/* move us one more past the eop_desc for start of next pkt */
5771		tx_buffer++;
5772		tx_desc++;
5773		i++;
5774		if (unlikely(!i)) {
5775			i -= tx_ring->count;
5776			tx_buffer = tx_ring->tx_buffer_info;
5777			tx_desc = IGB_TX_DESC(tx_ring, 0);
5778		}
5779
5780		/* issue prefetch for next Tx descriptor */
5781		prefetch(tx_desc);
5782
5783		/* update budget accounting */
5784		budget--;
5785	} while (likely(budget));
5786
5787	netdev_tx_completed_queue(txring_txq(tx_ring),
5788				  total_packets, total_bytes);
5789	i += tx_ring->count;
5790	tx_ring->next_to_clean = i;
5791	u64_stats_update_begin(&tx_ring->tx_syncp);
5792	tx_ring->tx_stats.bytes += total_bytes;
5793	tx_ring->tx_stats.packets += total_packets;
5794	u64_stats_update_end(&tx_ring->tx_syncp);
5795	q_vector->tx.total_bytes += total_bytes;
5796	q_vector->tx.total_packets += total_packets;
5797
5798	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
5799		struct e1000_hw *hw = &adapter->hw;
5800
5801		/* Detect a transmit hang in hardware, this serializes the
5802		 * check with the clearing of time_stamp and movement of i */
5803		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5804		if (tx_buffer->next_to_watch &&
5805		    time_after(jiffies, tx_buffer->time_stamp +
5806			       (adapter->tx_timeout_factor * HZ)) &&
5807		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5808
5809			/* detected Tx unit hang */
5810			dev_err(tx_ring->dev,
5811				"Detected Tx Unit Hang\n"
5812				"  Tx Queue             <%d>\n"
5813				"  TDH                  <%x>\n"
5814				"  TDT                  <%x>\n"
5815				"  next_to_use          <%x>\n"
5816				"  next_to_clean        <%x>\n"
5817				"buffer_info[next_to_clean]\n"
5818				"  time_stamp           <%lx>\n"
5819				"  next_to_watch        <%p>\n"
5820				"  jiffies              <%lx>\n"
5821				"  desc.status          <%x>\n",
5822				tx_ring->queue_index,
5823				rd32(E1000_TDH(tx_ring->reg_idx)),
5824				readl(tx_ring->tail),
5825				tx_ring->next_to_use,
5826				tx_ring->next_to_clean,
5827				tx_buffer->time_stamp,
5828				tx_buffer->next_to_watch,
5829				jiffies,
5830				tx_buffer->next_to_watch->wb.status);
5831			netif_stop_subqueue(tx_ring->netdev,
5832					    tx_ring->queue_index);
5833
5834			/* we are about to reset, no point in enabling stuff */
5835			return true;
5836		}
5837	}
5838
5839	if (unlikely(total_packets &&
5840		     netif_carrier_ok(tx_ring->netdev) &&
5841		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5842		/* Make sure that anybody stopping the queue after this
5843		 * sees the new next_to_clean.
5844		 */
5845		smp_mb();
5846		if (__netif_subqueue_stopped(tx_ring->netdev,
5847					     tx_ring->queue_index) &&
5848		    !(test_bit(__IGB_DOWN, &adapter->state))) {
5849			netif_wake_subqueue(tx_ring->netdev,
5850					    tx_ring->queue_index);
5851
5852			u64_stats_update_begin(&tx_ring->tx_syncp);
5853			tx_ring->tx_stats.restart_queue++;
5854			u64_stats_update_end(&tx_ring->tx_syncp);
5855		}
5856	}
5857
5858	return !!budget;
5859}
5860
5861/**
5862 * igb_reuse_rx_page - page flip buffer and store it back on the ring
5863 * @rx_ring: rx descriptor ring to store buffers on
5864 * @old_buff: donor buffer to have page reused
5865 *
5866 * Synchronizes page for reuse by the adapter
5867 **/
5868static void igb_reuse_rx_page(struct igb_ring *rx_ring,
5869			      struct igb_rx_buffer *old_buff)
5870{
5871	struct igb_rx_buffer *new_buff;
5872	u16 nta = rx_ring->next_to_alloc;
5873
5874	new_buff = &rx_ring->rx_buffer_info[nta];
5875
5876	/* update, and store next to alloc */
5877	nta++;
5878	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
5879
5880	/* transfer page from old buffer to new buffer */
5881	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
5882
5883	/* sync the buffer for use by the device */
5884	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
5885					 old_buff->page_offset,
5886					 IGB_RX_BUFSZ,
5887					 DMA_FROM_DEVICE);
5888}
5889
5890/**
5891 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
5892 * @rx_ring: rx descriptor ring to transact packets on
5893 * @rx_buffer: buffer containing page to add
5894 * @rx_desc: descriptor containing length of buffer written by hardware
5895 * @skb: sk_buff to place the data into
5896 *
5897 * This function will add the data contained in rx_buffer->page to the skb.
5898 * This is done either through a direct copy if the data in the buffer is
5899 * less than the skb header size, otherwise it will just attach the page as
5900 * a frag to the skb.
5901 *
5902 * The function will then update the page offset if necessary and return
5903 * true if the buffer can be reused by the adapter.
5904 **/
5905static bool igb_add_rx_frag(struct igb_ring *rx_ring,
5906			    struct igb_rx_buffer *rx_buffer,
5907			    union e1000_adv_rx_desc *rx_desc,
5908			    struct sk_buff *skb)
5909{
5910	struct page *page = rx_buffer->page;
5911	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
5912
5913	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
5914		unsigned char *va = page_address(page) + rx_buffer->page_offset;
5915
5916#ifdef CONFIG_IGB_PTP
5917		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
5918			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
5919			va += IGB_TS_HDR_LEN;
5920			size -= IGB_TS_HDR_LEN;
5921		}
5922
5923#endif
5924		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
5925
5926		/* we can reuse buffer as-is, just make sure it is local */
5927		if (likely(page_to_nid(page) == numa_node_id()))
5928			return true;
5929
5930		/* this page cannot be reused so discard it */
5931		put_page(page);
5932		return false;
5933	}
5934
5935	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
5936			rx_buffer->page_offset, size, IGB_RX_BUFSZ);
5937
5938	/* avoid re-using remote pages */
5939	if (unlikely(page_to_nid(page) != numa_node_id()))
5940		return false;
5941
5942#if (PAGE_SIZE < 8192)
5943	/* if we are only owner of page we can reuse it */
5944	if (unlikely(page_count(page) != 1))
5945		return false;
5946
5947	/* flip page offset to other buffer */
5948	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
5949
5950	/*
5951	 * since we are the only owner of the page and we need to
5952	 * increment it, just set the value to 2 in order to avoid
5953	 * an unnecessary locked operation
5954	 */
5955	atomic_set(&page->_count, 2);
5956#else
5957	/* move offset up to the next cache line */
5958	rx_buffer->page_offset += SKB_DATA_ALIGN(size);
5959
5960	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
5961		return false;
5962
5963	/* bump ref count on page before it is given to the stack */
5964	get_page(page);
5965#endif
5966
5967	return true;
5968}
5969
5970static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
5971					   union e1000_adv_rx_desc *rx_desc,
5972					   struct sk_buff *skb)
5973{
5974	struct igb_rx_buffer *rx_buffer;
5975	struct page *page;
5976
5977	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
5978
5979	/*
5980	 * This memory barrier is needed to keep us from reading
5981	 * any other fields out of the rx_desc until we know the
5982	 * RXD_STAT_DD bit is set
5983	 */
5984	rmb();
5985
5986	page = rx_buffer->page;
5987	prefetchw(page);
5988
5989	if (likely(!skb)) {
5990		void *page_addr = page_address(page) +
5991				  rx_buffer->page_offset;
5992
5993		/* prefetch first cache line of first page */
5994		prefetch(page_addr);
5995#if L1_CACHE_BYTES < 128
5996		prefetch(page_addr + L1_CACHE_BYTES);
5997#endif
5998
5999		/* allocate a skb to store the frags */
6000		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6001						IGB_RX_HDR_LEN);
6002		if (unlikely(!skb)) {
6003			rx_ring->rx_stats.alloc_failed++;
6004			return NULL;
6005		}
6006
6007		/*
6008		 * we will be copying header into skb->data in
6009		 * pskb_may_pull so it is in our interest to prefetch
6010		 * it now to avoid a possible cache miss
6011		 */
6012		prefetchw(skb->data);
6013	}
6014
6015	/* we are reusing so sync this buffer for CPU use */
6016	dma_sync_single_range_for_cpu(rx_ring->dev,
6017				      rx_buffer->dma,
6018				      rx_buffer->page_offset,
6019				      IGB_RX_BUFSZ,
6020				      DMA_FROM_DEVICE);
6021
6022	/* pull page into skb */
6023	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6024		/* hand second half of page back to the ring */
6025		igb_reuse_rx_page(rx_ring, rx_buffer);
6026	} else {
6027		/* we are not reusing the buffer so unmap it */
6028		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6029			       PAGE_SIZE, DMA_FROM_DEVICE);
6030	}
6031
6032	/* clear contents of rx_buffer */
6033	rx_buffer->page = NULL;
6034
6035	return skb;
6036}
6037
6038static inline void igb_rx_checksum(struct igb_ring *ring,
6039				   union e1000_adv_rx_desc *rx_desc,
6040				   struct sk_buff *skb)
6041{
6042	skb_checksum_none_assert(skb);
6043
6044	/* Ignore Checksum bit is set */
6045	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6046		return;
6047
6048	/* Rx checksum disabled via ethtool */
6049	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6050		return;
6051
6052	/* TCP/UDP checksum error bit is set */
6053	if (igb_test_staterr(rx_desc,
6054			     E1000_RXDEXT_STATERR_TCPE |
6055			     E1000_RXDEXT_STATERR_IPE)) {
6056		/*
6057		 * work around errata with sctp packets where the TCPE aka
6058		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6059		 * packets, (aka let the stack check the crc32c)
6060		 */
6061		if (!((skb->len == 60) &&
6062		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6063			u64_stats_update_begin(&ring->rx_syncp);
6064			ring->rx_stats.csum_err++;
6065			u64_stats_update_end(&ring->rx_syncp);
6066		}
6067		/* let the stack verify checksum errors */
6068		return;
6069	}
6070	/* It must be a TCP or UDP packet with a valid checksum */
6071	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6072				      E1000_RXD_STAT_UDPCS))
6073		skb->ip_summed = CHECKSUM_UNNECESSARY;
6074
6075	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6076		le32_to_cpu(rx_desc->wb.upper.status_error));
6077}
6078
6079static inline void igb_rx_hash(struct igb_ring *ring,
6080			       union e1000_adv_rx_desc *rx_desc,
6081			       struct sk_buff *skb)
6082{
6083	if (ring->netdev->features & NETIF_F_RXHASH)
6084		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6085}
6086
6087/**
6088 * igb_is_non_eop - process handling of non-EOP buffers
6089 * @rx_ring: Rx ring being processed
6090 * @rx_desc: Rx descriptor for current buffer
6091 * @skb: current socket buffer containing buffer in progress
6092 *
6093 * This function updates next to clean.  If the buffer is an EOP buffer
6094 * this function exits returning false, otherwise it will place the
6095 * sk_buff in the next buffer to be chained and return true indicating
6096 * that this is in fact a non-EOP buffer.
6097 **/
6098static bool igb_is_non_eop(struct igb_ring *rx_ring,
6099			   union e1000_adv_rx_desc *rx_desc)
6100{
6101	u32 ntc = rx_ring->next_to_clean + 1;
6102
6103	/* fetch, update, and store next to clean */
6104	ntc = (ntc < rx_ring->count) ? ntc : 0;
6105	rx_ring->next_to_clean = ntc;
6106
6107	prefetch(IGB_RX_DESC(rx_ring, ntc));
6108
6109	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6110		return false;
6111
6112	return true;
6113}
6114
6115/**
6116 * igb_get_headlen - determine size of header for LRO/GRO
6117 * @data: pointer to the start of the headers
6118 * @max_len: total length of section to find headers in
6119 *
6120 * This function is meant to determine the length of headers that will
6121 * be recognized by hardware for LRO, and GRO offloads.  The main
6122 * motivation of doing this is to only perform one pull for IPv4 TCP
6123 * packets so that we can do basic things like calculating the gso_size
6124 * based on the average data per packet.
6125 **/
6126static unsigned int igb_get_headlen(unsigned char *data,
6127				    unsigned int max_len)
6128{
6129	union {
6130		unsigned char *network;
6131		/* l2 headers */
6132		struct ethhdr *eth;
6133		struct vlan_hdr *vlan;
6134		/* l3 headers */
6135		struct iphdr *ipv4;
6136		struct ipv6hdr *ipv6;
6137	} hdr;
6138	__be16 protocol;
6139	u8 nexthdr = 0;	/* default to not TCP */
6140	u8 hlen;
6141
6142	/* this should never happen, but better safe than sorry */
6143	if (max_len < ETH_HLEN)
6144		return max_len;
6145
6146	/* initialize network frame pointer */
6147	hdr.network = data;
6148
6149	/* set first protocol and move network header forward */
6150	protocol = hdr.eth->h_proto;
6151	hdr.network += ETH_HLEN;
6152
6153	/* handle any vlan tag if present */
6154	if (protocol == __constant_htons(ETH_P_8021Q)) {
6155		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6156			return max_len;
6157
6158		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6159		hdr.network += VLAN_HLEN;
6160	}
6161
6162	/* handle L3 protocols */
6163	if (protocol == __constant_htons(ETH_P_IP)) {
6164		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6165			return max_len;
6166
6167		/* access ihl as a u8 to avoid unaligned access on ia64 */
6168		hlen = (hdr.network[0] & 0x0F) << 2;
6169
6170		/* verify hlen meets minimum size requirements */
6171		if (hlen < sizeof(struct iphdr))
6172			return hdr.network - data;
6173
6174		/* record next protocol */
6175		nexthdr = hdr.ipv4->protocol;
6176		hdr.network += hlen;
6177	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
6178		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6179			return max_len;
6180
6181		/* record next protocol */
6182		nexthdr = hdr.ipv6->nexthdr;
6183		hdr.network += sizeof(struct ipv6hdr);
6184	} else {
6185		return hdr.network - data;
6186	}
6187
6188	/* finally sort out TCP */
6189	if (nexthdr == IPPROTO_TCP) {
6190		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6191			return max_len;
6192
6193		/* access doff as a u8 to avoid unaligned access on ia64 */
6194		hlen = (hdr.network[12] & 0xF0) >> 2;
6195
6196		/* verify hlen meets minimum size requirements */
6197		if (hlen < sizeof(struct tcphdr))
6198			return hdr.network - data;
6199
6200		hdr.network += hlen;
6201	} else if (nexthdr == IPPROTO_UDP) {
6202		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6203			return max_len;
6204
6205		hdr.network += sizeof(struct udphdr);
6206	}
6207
6208	/*
6209	 * If everything has gone correctly hdr.network should be the
6210	 * data section of the packet and will be the end of the header.
6211	 * If not then it probably represents the end of the last recognized
6212	 * header.
6213	 */
6214	if ((hdr.network - data) < max_len)
6215		return hdr.network - data;
6216	else
6217		return max_len;
6218}
6219
6220/**
6221 * igb_pull_tail - igb specific version of skb_pull_tail
6222 * @rx_ring: rx descriptor ring packet is being transacted on
6223 * @rx_desc: pointer to the EOP Rx descriptor
6224 * @skb: pointer to current skb being adjusted
6225 *
6226 * This function is an igb specific version of __pskb_pull_tail.  The
6227 * main difference between this version and the original function is that
6228 * this function can make several assumptions about the state of things
6229 * that allow for significant optimizations versus the standard function.
6230 * As a result we can do things like drop a frag and maintain an accurate
6231 * truesize for the skb.
6232 */
6233static void igb_pull_tail(struct igb_ring *rx_ring,
6234			  union e1000_adv_rx_desc *rx_desc,
6235			  struct sk_buff *skb)
6236{
6237	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6238	unsigned char *va;
6239	unsigned int pull_len;
6240
6241	/*
6242	 * it is valid to use page_address instead of kmap since we are
6243	 * working with pages allocated out of the lomem pool per
6244	 * alloc_page(GFP_ATOMIC)
6245	 */
6246	va = skb_frag_address(frag);
6247
6248#ifdef CONFIG_IGB_PTP
6249	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6250		/* retrieve timestamp from buffer */
6251		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6252
6253		/* update pointers to remove timestamp header */
6254		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6255		frag->page_offset += IGB_TS_HDR_LEN;
6256		skb->data_len -= IGB_TS_HDR_LEN;
6257		skb->len -= IGB_TS_HDR_LEN;
6258
6259		/* move va to start of packet data */
6260		va += IGB_TS_HDR_LEN;
6261	}
6262
6263#endif
6264	/*
6265	 * we need the header to contain the greater of either ETH_HLEN or
6266	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6267	 */
6268	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6269
6270	/* align pull length to size of long to optimize memcpy performance */
6271	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6272
6273	/* update all of the pointers */
6274	skb_frag_size_sub(frag, pull_len);
6275	frag->page_offset += pull_len;
6276	skb->data_len -= pull_len;
6277	skb->tail += pull_len;
6278}
6279
6280/**
6281 * igb_cleanup_headers - Correct corrupted or empty headers
6282 * @rx_ring: rx descriptor ring packet is being transacted on
6283 * @rx_desc: pointer to the EOP Rx descriptor
6284 * @skb: pointer to current skb being fixed
6285 *
6286 * Address the case where we are pulling data in on pages only
6287 * and as such no data is present in the skb header.
6288 *
6289 * In addition if skb is not at least 60 bytes we need to pad it so that
6290 * it is large enough to qualify as a valid Ethernet frame.
6291 *
6292 * Returns true if an error was encountered and skb was freed.
6293 **/
6294static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6295				union e1000_adv_rx_desc *rx_desc,
6296				struct sk_buff *skb)
6297{
6298
6299	if (unlikely((igb_test_staterr(rx_desc,
6300				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6301		struct net_device *netdev = rx_ring->netdev;
6302		if (!(netdev->features & NETIF_F_RXALL)) {
6303			dev_kfree_skb_any(skb);
6304			return true;
6305		}
6306	}
6307
6308	/* place header in linear portion of buffer */
6309	if (skb_is_nonlinear(skb))
6310		igb_pull_tail(rx_ring, rx_desc, skb);
6311
6312	/* if skb_pad returns an error the skb was freed */
6313	if (unlikely(skb->len < 60)) {
6314		int pad_len = 60 - skb->len;
6315
6316		if (skb_pad(skb, pad_len))
6317			return true;
6318		__skb_put(skb, pad_len);
6319	}
6320
6321	return false;
6322}
6323
6324/**
6325 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6326 * @rx_ring: rx descriptor ring packet is being transacted on
6327 * @rx_desc: pointer to the EOP Rx descriptor
6328 * @skb: pointer to current skb being populated
6329 *
6330 * This function checks the ring, descriptor, and packet information in
6331 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6332 * other fields within the skb.
6333 **/
6334static void igb_process_skb_fields(struct igb_ring *rx_ring,
6335				   union e1000_adv_rx_desc *rx_desc,
6336				   struct sk_buff *skb)
6337{
6338	struct net_device *dev = rx_ring->netdev;
6339
6340	igb_rx_hash(rx_ring, rx_desc, skb);
6341
6342	igb_rx_checksum(rx_ring, rx_desc, skb);
6343
6344#ifdef CONFIG_IGB_PTP
6345	igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);
6346#endif /* CONFIG_IGB_PTP */
6347
6348	if ((dev->features & NETIF_F_HW_VLAN_RX) &&
6349	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6350		u16 vid;
6351		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6352		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6353			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6354		else
6355			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6356
6357		__vlan_hwaccel_put_tag(skb, vid);
6358	}
6359
6360	skb_record_rx_queue(skb, rx_ring->queue_index);
6361
6362	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6363}
6364
6365static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6366{
6367	struct igb_ring *rx_ring = q_vector->rx.ring;
6368	struct sk_buff *skb = rx_ring->skb;
6369	unsigned int total_bytes = 0, total_packets = 0;
6370	u16 cleaned_count = igb_desc_unused(rx_ring);
6371
6372	do {
6373		union e1000_adv_rx_desc *rx_desc;
6374
6375		/* return some buffers to hardware, one at a time is too slow */
6376		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6377			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6378			cleaned_count = 0;
6379		}
6380
6381		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6382
6383		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6384			break;
6385
6386		/* retrieve a buffer from the ring */
6387		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6388
6389		/* exit if we failed to retrieve a buffer */
6390		if (!skb)
6391			break;
6392
6393		cleaned_count++;
6394
6395		/* fetch next buffer in frame if non-eop */
6396		if (igb_is_non_eop(rx_ring, rx_desc))
6397			continue;
6398
6399		/* verify the packet layout is correct */
6400		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6401			skb = NULL;
6402			continue;
6403		}
6404
6405		/* probably a little skewed due to removing CRC */
6406		total_bytes += skb->len;
6407
6408		/* populate checksum, timestamp, VLAN, and protocol */
6409		igb_process_skb_fields(rx_ring, rx_desc, skb);
6410
6411		napi_gro_receive(&q_vector->napi, skb);
6412
6413		/* reset skb pointer */
6414		skb = NULL;
6415
6416		/* update budget accounting */
6417		total_packets++;
6418	} while (likely(total_packets < budget));
6419
6420	/* place incomplete frames back on ring for completion */
6421	rx_ring->skb = skb;
6422
6423	u64_stats_update_begin(&rx_ring->rx_syncp);
6424	rx_ring->rx_stats.packets += total_packets;
6425	rx_ring->rx_stats.bytes += total_bytes;
6426	u64_stats_update_end(&rx_ring->rx_syncp);
6427	q_vector->rx.total_packets += total_packets;
6428	q_vector->rx.total_bytes += total_bytes;
6429
6430	if (cleaned_count)
6431		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6432
6433	return (total_packets < budget);
6434}
6435
6436static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6437				  struct igb_rx_buffer *bi)
6438{
6439	struct page *page = bi->page;
6440	dma_addr_t dma;
6441
6442	/* since we are recycling buffers we should seldom need to alloc */
6443	if (likely(page))
6444		return true;
6445
6446	/* alloc new page for storage */
6447	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6448	if (unlikely(!page)) {
6449		rx_ring->rx_stats.alloc_failed++;
6450		return false;
6451	}
6452
6453	/* map page for use */
6454	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6455
6456	/*
6457	 * if mapping failed free memory back to system since
6458	 * there isn't much point in holding memory we can't use
6459	 */
6460	if (dma_mapping_error(rx_ring->dev, dma)) {
6461		__free_page(page);
6462
6463		rx_ring->rx_stats.alloc_failed++;
6464		return false;
6465	}
6466
6467	bi->dma = dma;
6468	bi->page = page;
6469	bi->page_offset = 0;
6470
6471	return true;
6472}
6473
6474/**
6475 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6476 * @adapter: address of board private structure
6477 **/
6478void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6479{
6480	union e1000_adv_rx_desc *rx_desc;
6481	struct igb_rx_buffer *bi;
6482	u16 i = rx_ring->next_to_use;
6483
6484	/* nothing to do */
6485	if (!cleaned_count)
6486		return;
6487
6488	rx_desc = IGB_RX_DESC(rx_ring, i);
6489	bi = &rx_ring->rx_buffer_info[i];
6490	i -= rx_ring->count;
6491
6492	do {
6493		if (!igb_alloc_mapped_page(rx_ring, bi))
6494			break;
6495
6496		/*
6497		 * Refresh the desc even if buffer_addrs didn't change
6498		 * because each write-back erases this info.
6499		 */
6500		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6501
6502		rx_desc++;
6503		bi++;
6504		i++;
6505		if (unlikely(!i)) {
6506			rx_desc = IGB_RX_DESC(rx_ring, 0);
6507			bi = rx_ring->rx_buffer_info;
6508			i -= rx_ring->count;
6509		}
6510
6511		/* clear the hdr_addr for the next_to_use descriptor */
6512		rx_desc->read.hdr_addr = 0;
6513
6514		cleaned_count--;
6515	} while (cleaned_count);
6516
6517	i += rx_ring->count;
6518
6519	if (rx_ring->next_to_use != i) {
6520		/* record the next descriptor to use */
6521		rx_ring->next_to_use = i;
6522
6523		/* update next to alloc since we have filled the ring */
6524		rx_ring->next_to_alloc = i;
6525
6526		/*
6527		 * Force memory writes to complete before letting h/w
6528		 * know there are new descriptors to fetch.  (Only
6529		 * applicable for weak-ordered memory model archs,
6530		 * such as IA-64).
6531		 */
6532		wmb();
6533		writel(i, rx_ring->tail);
6534	}
6535}
6536
6537/**
6538 * igb_mii_ioctl -
6539 * @netdev:
6540 * @ifreq:
6541 * @cmd:
6542 **/
6543static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6544{
6545	struct igb_adapter *adapter = netdev_priv(netdev);
6546	struct mii_ioctl_data *data = if_mii(ifr);
6547
6548	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6549		return -EOPNOTSUPP;
6550
6551	switch (cmd) {
6552	case SIOCGMIIPHY:
6553		data->phy_id = adapter->hw.phy.addr;
6554		break;
6555	case SIOCGMIIREG:
6556		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6557		                     &data->val_out))
6558			return -EIO;
6559		break;
6560	case SIOCSMIIREG:
6561	default:
6562		return -EOPNOTSUPP;
6563	}
6564	return 0;
6565}
6566
6567/**
6568 * igb_ioctl -
6569 * @netdev:
6570 * @ifreq:
6571 * @cmd:
6572 **/
6573static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6574{
6575	switch (cmd) {
6576	case SIOCGMIIPHY:
6577	case SIOCGMIIREG:
6578	case SIOCSMIIREG:
6579		return igb_mii_ioctl(netdev, ifr, cmd);
6580#ifdef CONFIG_IGB_PTP
6581	case SIOCSHWTSTAMP:
6582		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6583#endif /* CONFIG_IGB_PTP */
6584	default:
6585		return -EOPNOTSUPP;
6586	}
6587}
6588
6589s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6590{
6591	struct igb_adapter *adapter = hw->back;
6592
6593	if (pcie_capability_read_word(adapter->pdev, reg, value))
6594		return -E1000_ERR_CONFIG;
6595
6596	return 0;
6597}
6598
6599s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6600{
6601	struct igb_adapter *adapter = hw->back;
6602
6603	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6604		return -E1000_ERR_CONFIG;
6605
6606	return 0;
6607}
6608
6609static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6610{
6611	struct igb_adapter *adapter = netdev_priv(netdev);
6612	struct e1000_hw *hw = &adapter->hw;
6613	u32 ctrl, rctl;
6614	bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6615
6616	if (enable) {
6617		/* enable VLAN tag insert/strip */
6618		ctrl = rd32(E1000_CTRL);
6619		ctrl |= E1000_CTRL_VME;
6620		wr32(E1000_CTRL, ctrl);
6621
6622		/* Disable CFI check */
6623		rctl = rd32(E1000_RCTL);
6624		rctl &= ~E1000_RCTL_CFIEN;
6625		wr32(E1000_RCTL, rctl);
6626	} else {
6627		/* disable VLAN tag insert/strip */
6628		ctrl = rd32(E1000_CTRL);
6629		ctrl &= ~E1000_CTRL_VME;
6630		wr32(E1000_CTRL, ctrl);
6631	}
6632
6633	igb_rlpml_set(adapter);
6634}
6635
6636static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6637{
6638	struct igb_adapter *adapter = netdev_priv(netdev);
6639	struct e1000_hw *hw = &adapter->hw;
6640	int pf_id = adapter->vfs_allocated_count;
6641
6642	/* attempt to add filter to vlvf array */
6643	igb_vlvf_set(adapter, vid, true, pf_id);
6644
6645	/* add the filter since PF can receive vlans w/o entry in vlvf */
6646	igb_vfta_set(hw, vid, true);
6647
6648	set_bit(vid, adapter->active_vlans);
6649
6650	return 0;
6651}
6652
6653static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6654{
6655	struct igb_adapter *adapter = netdev_priv(netdev);
6656	struct e1000_hw *hw = &adapter->hw;
6657	int pf_id = adapter->vfs_allocated_count;
6658	s32 err;
6659
6660	/* remove vlan from VLVF table array */
6661	err = igb_vlvf_set(adapter, vid, false, pf_id);
6662
6663	/* if vid was not present in VLVF just remove it from table */
6664	if (err)
6665		igb_vfta_set(hw, vid, false);
6666
6667	clear_bit(vid, adapter->active_vlans);
6668
6669	return 0;
6670}
6671
6672static void igb_restore_vlan(struct igb_adapter *adapter)
6673{
6674	u16 vid;
6675
6676	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6677
6678	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6679		igb_vlan_rx_add_vid(adapter->netdev, vid);
6680}
6681
6682int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6683{
6684	struct pci_dev *pdev = adapter->pdev;
6685	struct e1000_mac_info *mac = &adapter->hw.mac;
6686
6687	mac->autoneg = 0;
6688
6689	/* Make sure dplx is at most 1 bit and lsb of speed is not set
6690	 * for the switch() below to work */
6691	if ((spd & 1) || (dplx & ~1))
6692		goto err_inval;
6693
6694	/* Fiber NIC's only allow 1000 Gbps Full duplex */
6695	if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6696	    spd != SPEED_1000 &&
6697	    dplx != DUPLEX_FULL)
6698		goto err_inval;
6699
6700	switch (spd + dplx) {
6701	case SPEED_10 + DUPLEX_HALF:
6702		mac->forced_speed_duplex = ADVERTISE_10_HALF;
6703		break;
6704	case SPEED_10 + DUPLEX_FULL:
6705		mac->forced_speed_duplex = ADVERTISE_10_FULL;
6706		break;
6707	case SPEED_100 + DUPLEX_HALF:
6708		mac->forced_speed_duplex = ADVERTISE_100_HALF;
6709		break;
6710	case SPEED_100 + DUPLEX_FULL:
6711		mac->forced_speed_duplex = ADVERTISE_100_FULL;
6712		break;
6713	case SPEED_1000 + DUPLEX_FULL:
6714		mac->autoneg = 1;
6715		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6716		break;
6717	case SPEED_1000 + DUPLEX_HALF: /* not supported */
6718	default:
6719		goto err_inval;
6720	}
6721
6722	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
6723	adapter->hw.phy.mdix = AUTO_ALL_MODES;
6724
6725	return 0;
6726
6727err_inval:
6728	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6729	return -EINVAL;
6730}
6731
6732static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
6733			  bool runtime)
6734{
6735	struct net_device *netdev = pci_get_drvdata(pdev);
6736	struct igb_adapter *adapter = netdev_priv(netdev);
6737	struct e1000_hw *hw = &adapter->hw;
6738	u32 ctrl, rctl, status;
6739	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6740#ifdef CONFIG_PM
6741	int retval = 0;
6742#endif
6743
6744	netif_device_detach(netdev);
6745
6746	if (netif_running(netdev))
6747		__igb_close(netdev, true);
6748
6749	igb_clear_interrupt_scheme(adapter);
6750
6751#ifdef CONFIG_PM
6752	retval = pci_save_state(pdev);
6753	if (retval)
6754		return retval;
6755#endif
6756
6757	status = rd32(E1000_STATUS);
6758	if (status & E1000_STATUS_LU)
6759		wufc &= ~E1000_WUFC_LNKC;
6760
6761	if (wufc) {
6762		igb_setup_rctl(adapter);
6763		igb_set_rx_mode(netdev);
6764
6765		/* turn on all-multi mode if wake on multicast is enabled */
6766		if (wufc & E1000_WUFC_MC) {
6767			rctl = rd32(E1000_RCTL);
6768			rctl |= E1000_RCTL_MPE;
6769			wr32(E1000_RCTL, rctl);
6770		}
6771
6772		ctrl = rd32(E1000_CTRL);
6773		/* advertise wake from D3Cold */
6774		#define E1000_CTRL_ADVD3WUC 0x00100000
6775		/* phy power management enable */
6776		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6777		ctrl |= E1000_CTRL_ADVD3WUC;
6778		wr32(E1000_CTRL, ctrl);
6779
6780		/* Allow time for pending master requests to run */
6781		igb_disable_pcie_master(hw);
6782
6783		wr32(E1000_WUC, E1000_WUC_PME_EN);
6784		wr32(E1000_WUFC, wufc);
6785	} else {
6786		wr32(E1000_WUC, 0);
6787		wr32(E1000_WUFC, 0);
6788	}
6789
6790	*enable_wake = wufc || adapter->en_mng_pt;
6791	if (!*enable_wake)
6792		igb_power_down_link(adapter);
6793	else
6794		igb_power_up_link(adapter);
6795
6796	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6797	 * would have already happened in close and is redundant. */
6798	igb_release_hw_control(adapter);
6799
6800	pci_disable_device(pdev);
6801
6802	return 0;
6803}
6804
6805#ifdef CONFIG_PM
6806#ifdef CONFIG_PM_SLEEP
6807static int igb_suspend(struct device *dev)
6808{
6809	int retval;
6810	bool wake;
6811	struct pci_dev *pdev = to_pci_dev(dev);
6812
6813	retval = __igb_shutdown(pdev, &wake, 0);
6814	if (retval)
6815		return retval;
6816
6817	if (wake) {
6818		pci_prepare_to_sleep(pdev);
6819	} else {
6820		pci_wake_from_d3(pdev, false);
6821		pci_set_power_state(pdev, PCI_D3hot);
6822	}
6823
6824	return 0;
6825}
6826#endif /* CONFIG_PM_SLEEP */
6827
6828static int igb_resume(struct device *dev)
6829{
6830	struct pci_dev *pdev = to_pci_dev(dev);
6831	struct net_device *netdev = pci_get_drvdata(pdev);
6832	struct igb_adapter *adapter = netdev_priv(netdev);
6833	struct e1000_hw *hw = &adapter->hw;
6834	u32 err;
6835
6836	pci_set_power_state(pdev, PCI_D0);
6837	pci_restore_state(pdev);
6838	pci_save_state(pdev);
6839
6840	err = pci_enable_device_mem(pdev);
6841	if (err) {
6842		dev_err(&pdev->dev,
6843			"igb: Cannot enable PCI device from suspend\n");
6844		return err;
6845	}
6846	pci_set_master(pdev);
6847
6848	pci_enable_wake(pdev, PCI_D3hot, 0);
6849	pci_enable_wake(pdev, PCI_D3cold, 0);
6850
6851	if (igb_init_interrupt_scheme(adapter)) {
6852		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6853		return -ENOMEM;
6854	}
6855
6856	igb_reset(adapter);
6857
6858	/* let the f/w know that the h/w is now under the control of the
6859	 * driver. */
6860	igb_get_hw_control(adapter);
6861
6862	wr32(E1000_WUS, ~0);
6863
6864	if (netdev->flags & IFF_UP) {
6865		rtnl_lock();
6866		err = __igb_open(netdev, true);
6867		rtnl_unlock();
6868		if (err)
6869			return err;
6870	}
6871
6872	netif_device_attach(netdev);
6873	return 0;
6874}
6875
6876#ifdef CONFIG_PM_RUNTIME
6877static int igb_runtime_idle(struct device *dev)
6878{
6879	struct pci_dev *pdev = to_pci_dev(dev);
6880	struct net_device *netdev = pci_get_drvdata(pdev);
6881	struct igb_adapter *adapter = netdev_priv(netdev);
6882
6883	if (!igb_has_link(adapter))
6884		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6885
6886	return -EBUSY;
6887}
6888
6889static int igb_runtime_suspend(struct device *dev)
6890{
6891	struct pci_dev *pdev = to_pci_dev(dev);
6892	int retval;
6893	bool wake;
6894
6895	retval = __igb_shutdown(pdev, &wake, 1);
6896	if (retval)
6897		return retval;
6898
6899	if (wake) {
6900		pci_prepare_to_sleep(pdev);
6901	} else {
6902		pci_wake_from_d3(pdev, false);
6903		pci_set_power_state(pdev, PCI_D3hot);
6904	}
6905
6906	return 0;
6907}
6908
6909static int igb_runtime_resume(struct device *dev)
6910{
6911	return igb_resume(dev);
6912}
6913#endif /* CONFIG_PM_RUNTIME */
6914#endif
6915
6916static void igb_shutdown(struct pci_dev *pdev)
6917{
6918	bool wake;
6919
6920	__igb_shutdown(pdev, &wake, 0);
6921
6922	if (system_state == SYSTEM_POWER_OFF) {
6923		pci_wake_from_d3(pdev, wake);
6924		pci_set_power_state(pdev, PCI_D3hot);
6925	}
6926}
6927
6928#ifdef CONFIG_NET_POLL_CONTROLLER
6929/*
6930 * Polling 'interrupt' - used by things like netconsole to send skbs
6931 * without having to re-enable interrupts. It's not called while
6932 * the interrupt routine is executing.
6933 */
6934static void igb_netpoll(struct net_device *netdev)
6935{
6936	struct igb_adapter *adapter = netdev_priv(netdev);
6937	struct e1000_hw *hw = &adapter->hw;
6938	struct igb_q_vector *q_vector;
6939	int i;
6940
6941	for (i = 0; i < adapter->num_q_vectors; i++) {
6942		q_vector = adapter->q_vector[i];
6943		if (adapter->msix_entries)
6944			wr32(E1000_EIMC, q_vector->eims_value);
6945		else
6946			igb_irq_disable(adapter);
6947		napi_schedule(&q_vector->napi);
6948	}
6949}
6950#endif /* CONFIG_NET_POLL_CONTROLLER */
6951
6952/**
6953 * igb_io_error_detected - called when PCI error is detected
6954 * @pdev: Pointer to PCI device
6955 * @state: The current pci connection state
6956 *
6957 * This function is called after a PCI bus error affecting
6958 * this device has been detected.
6959 */
6960static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6961					      pci_channel_state_t state)
6962{
6963	struct net_device *netdev = pci_get_drvdata(pdev);
6964	struct igb_adapter *adapter = netdev_priv(netdev);
6965
6966	netif_device_detach(netdev);
6967
6968	if (state == pci_channel_io_perm_failure)
6969		return PCI_ERS_RESULT_DISCONNECT;
6970
6971	if (netif_running(netdev))
6972		igb_down(adapter);
6973	pci_disable_device(pdev);
6974
6975	/* Request a slot slot reset. */
6976	return PCI_ERS_RESULT_NEED_RESET;
6977}
6978
6979/**
6980 * igb_io_slot_reset - called after the pci bus has been reset.
6981 * @pdev: Pointer to PCI device
6982 *
6983 * Restart the card from scratch, as if from a cold-boot. Implementation
6984 * resembles the first-half of the igb_resume routine.
6985 */
6986static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6987{
6988	struct net_device *netdev = pci_get_drvdata(pdev);
6989	struct igb_adapter *adapter = netdev_priv(netdev);
6990	struct e1000_hw *hw = &adapter->hw;
6991	pci_ers_result_t result;
6992	int err;
6993
6994	if (pci_enable_device_mem(pdev)) {
6995		dev_err(&pdev->dev,
6996			"Cannot re-enable PCI device after reset.\n");
6997		result = PCI_ERS_RESULT_DISCONNECT;
6998	} else {
6999		pci_set_master(pdev);
7000		pci_restore_state(pdev);
7001		pci_save_state(pdev);
7002
7003		pci_enable_wake(pdev, PCI_D3hot, 0);
7004		pci_enable_wake(pdev, PCI_D3cold, 0);
7005
7006		igb_reset(adapter);
7007		wr32(E1000_WUS, ~0);
7008		result = PCI_ERS_RESULT_RECOVERED;
7009	}
7010
7011	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7012	if (err) {
7013		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
7014		        "failed 0x%0x\n", err);
7015		/* non-fatal, continue */
7016	}
7017
7018	return result;
7019}
7020
7021/**
7022 * igb_io_resume - called when traffic can start flowing again.
7023 * @pdev: Pointer to PCI device
7024 *
7025 * This callback is called when the error recovery driver tells us that
7026 * its OK to resume normal operation. Implementation resembles the
7027 * second-half of the igb_resume routine.
7028 */
7029static void igb_io_resume(struct pci_dev *pdev)
7030{
7031	struct net_device *netdev = pci_get_drvdata(pdev);
7032	struct igb_adapter *adapter = netdev_priv(netdev);
7033
7034	if (netif_running(netdev)) {
7035		if (igb_up(adapter)) {
7036			dev_err(&pdev->dev, "igb_up failed after reset\n");
7037			return;
7038		}
7039	}
7040
7041	netif_device_attach(netdev);
7042
7043	/* let the f/w know that the h/w is now under the control of the
7044	 * driver. */
7045	igb_get_hw_control(adapter);
7046}
7047
7048static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7049                             u8 qsel)
7050{
7051	u32 rar_low, rar_high;
7052	struct e1000_hw *hw = &adapter->hw;
7053
7054	/* HW expects these in little endian so we reverse the byte order
7055	 * from network order (big endian) to little endian
7056	 */
7057	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7058	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7059	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7060
7061	/* Indicate to hardware the Address is Valid. */
7062	rar_high |= E1000_RAH_AV;
7063
7064	if (hw->mac.type == e1000_82575)
7065		rar_high |= E1000_RAH_POOL_1 * qsel;
7066	else
7067		rar_high |= E1000_RAH_POOL_1 << qsel;
7068
7069	wr32(E1000_RAL(index), rar_low);
7070	wrfl();
7071	wr32(E1000_RAH(index), rar_high);
7072	wrfl();
7073}
7074
7075static int igb_set_vf_mac(struct igb_adapter *adapter,
7076                          int vf, unsigned char *mac_addr)
7077{
7078	struct e1000_hw *hw = &adapter->hw;
7079	/* VF MAC addresses start at end of receive addresses and moves
7080	 * torwards the first, as a result a collision should not be possible */
7081	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7082
7083	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7084
7085	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7086
7087	return 0;
7088}
7089
7090static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7091{
7092	struct igb_adapter *adapter = netdev_priv(netdev);
7093	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7094		return -EINVAL;
7095	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7096	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7097	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
7098				      " change effective.");
7099	if (test_bit(__IGB_DOWN, &adapter->state)) {
7100		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
7101			 " but the PF device is not up.\n");
7102		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
7103			 " attempting to use the VF device.\n");
7104	}
7105	return igb_set_vf_mac(adapter, vf, mac);
7106}
7107
7108static int igb_link_mbps(int internal_link_speed)
7109{
7110	switch (internal_link_speed) {
7111	case SPEED_100:
7112		return 100;
7113	case SPEED_1000:
7114		return 1000;
7115	default:
7116		return 0;
7117	}
7118}
7119
7120static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7121				  int link_speed)
7122{
7123	int rf_dec, rf_int;
7124	u32 bcnrc_val;
7125
7126	if (tx_rate != 0) {
7127		/* Calculate the rate factor values to set */
7128		rf_int = link_speed / tx_rate;
7129		rf_dec = (link_speed - (rf_int * tx_rate));
7130		rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
7131
7132		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7133		bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
7134		               E1000_RTTBCNRC_RF_INT_MASK);
7135		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7136	} else {
7137		bcnrc_val = 0;
7138	}
7139
7140	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7141	/*
7142	 * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7143	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7144	 */
7145	wr32(E1000_RTTBCNRM, 0x14);
7146	wr32(E1000_RTTBCNRC, bcnrc_val);
7147}
7148
7149static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7150{
7151	int actual_link_speed, i;
7152	bool reset_rate = false;
7153
7154	/* VF TX rate limit was not set or not supported */
7155	if ((adapter->vf_rate_link_speed == 0) ||
7156	    (adapter->hw.mac.type != e1000_82576))
7157		return;
7158
7159	actual_link_speed = igb_link_mbps(adapter->link_speed);
7160	if (actual_link_speed != adapter->vf_rate_link_speed) {
7161		reset_rate = true;
7162		adapter->vf_rate_link_speed = 0;
7163		dev_info(&adapter->pdev->dev,
7164		         "Link speed has been changed. VF Transmit "
7165		         "rate is disabled\n");
7166	}
7167
7168	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7169		if (reset_rate)
7170			adapter->vf_data[i].tx_rate = 0;
7171
7172		igb_set_vf_rate_limit(&adapter->hw, i,
7173		                      adapter->vf_data[i].tx_rate,
7174		                      actual_link_speed);
7175	}
7176}
7177
7178static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7179{
7180	struct igb_adapter *adapter = netdev_priv(netdev);
7181	struct e1000_hw *hw = &adapter->hw;
7182	int actual_link_speed;
7183
7184	if (hw->mac.type != e1000_82576)
7185		return -EOPNOTSUPP;
7186
7187	actual_link_speed = igb_link_mbps(adapter->link_speed);
7188	if ((vf >= adapter->vfs_allocated_count) ||
7189	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7190	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7191		return -EINVAL;
7192
7193	adapter->vf_rate_link_speed = actual_link_speed;
7194	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7195	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7196
7197	return 0;
7198}
7199
7200static int igb_ndo_get_vf_config(struct net_device *netdev,
7201				 int vf, struct ifla_vf_info *ivi)
7202{
7203	struct igb_adapter *adapter = netdev_priv(netdev);
7204	if (vf >= adapter->vfs_allocated_count)
7205		return -EINVAL;
7206	ivi->vf = vf;
7207	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7208	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7209	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7210	ivi->qos = adapter->vf_data[vf].pf_qos;
7211	return 0;
7212}
7213
7214static void igb_vmm_control(struct igb_adapter *adapter)
7215{
7216	struct e1000_hw *hw = &adapter->hw;
7217	u32 reg;
7218
7219	switch (hw->mac.type) {
7220	case e1000_82575:
7221	case e1000_i210:
7222	case e1000_i211:
7223	default:
7224		/* replication is not supported for 82575 */
7225		return;
7226	case e1000_82576:
7227		/* notify HW that the MAC is adding vlan tags */
7228		reg = rd32(E1000_DTXCTL);
7229		reg |= E1000_DTXCTL_VLAN_ADDED;
7230		wr32(E1000_DTXCTL, reg);
7231	case e1000_82580:
7232		/* enable replication vlan tag stripping */
7233		reg = rd32(E1000_RPLOLR);
7234		reg |= E1000_RPLOLR_STRVLAN;
7235		wr32(E1000_RPLOLR, reg);
7236	case e1000_i350:
7237		/* none of the above registers are supported by i350 */
7238		break;
7239	}
7240
7241	if (adapter->vfs_allocated_count) {
7242		igb_vmdq_set_loopback_pf(hw, true);
7243		igb_vmdq_set_replication_pf(hw, true);
7244		igb_vmdq_set_anti_spoofing_pf(hw, true,
7245						adapter->vfs_allocated_count);
7246	} else {
7247		igb_vmdq_set_loopback_pf(hw, false);
7248		igb_vmdq_set_replication_pf(hw, false);
7249	}
7250}
7251
7252static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7253{
7254	struct e1000_hw *hw = &adapter->hw;
7255	u32 dmac_thr;
7256	u16 hwm;
7257
7258	if (hw->mac.type > e1000_82580) {
7259		if (adapter->flags & IGB_FLAG_DMAC) {
7260			u32 reg;
7261
7262			/* force threshold to 0. */
7263			wr32(E1000_DMCTXTH, 0);
7264
7265			/*
7266			 * DMA Coalescing high water mark needs to be greater
7267			 * than the Rx threshold. Set hwm to PBA - max frame
7268			 * size in 16B units, capping it at PBA - 6KB.
7269			 */
7270			hwm = 64 * pba - adapter->max_frame_size / 16;
7271			if (hwm < 64 * (pba - 6))
7272				hwm = 64 * (pba - 6);
7273			reg = rd32(E1000_FCRTC);
7274			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7275			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7276				& E1000_FCRTC_RTH_COAL_MASK);
7277			wr32(E1000_FCRTC, reg);
7278
7279			/*
7280			 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
7281			 * frame size, capping it at PBA - 10KB.
7282			 */
7283			dmac_thr = pba - adapter->max_frame_size / 512;
7284			if (dmac_thr < pba - 10)
7285				dmac_thr = pba - 10;
7286			reg = rd32(E1000_DMACR);
7287			reg &= ~E1000_DMACR_DMACTHR_MASK;
7288			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7289				& E1000_DMACR_DMACTHR_MASK);
7290
7291			/* transition to L0x or L1 if available..*/
7292			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7293
7294			/* watchdog timer= +-1000 usec in 32usec intervals */
7295			reg |= (1000 >> 5);
7296
7297			/* Disable BMC-to-OS Watchdog Enable */
7298			reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7299			wr32(E1000_DMACR, reg);
7300
7301			/*
7302			 * no lower threshold to disable
7303			 * coalescing(smart fifb)-UTRESH=0
7304			 */
7305			wr32(E1000_DMCRTRH, 0);
7306
7307			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7308
7309			wr32(E1000_DMCTLX, reg);
7310
7311			/*
7312			 * free space in tx packet buffer to wake from
7313			 * DMA coal
7314			 */
7315			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7316			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7317
7318			/*
7319			 * make low power state decision controlled
7320			 * by DMA coal
7321			 */
7322			reg = rd32(E1000_PCIEMISC);
7323			reg &= ~E1000_PCIEMISC_LX_DECISION;
7324			wr32(E1000_PCIEMISC, reg);
7325		} /* endif adapter->dmac is not disabled */
7326	} else if (hw->mac.type == e1000_82580) {
7327		u32 reg = rd32(E1000_PCIEMISC);
7328		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7329		wr32(E1000_DMACR, 0);
7330	}
7331}
7332
7333/* igb_main.c */
7334