igb_main.c revision 41f149a285da21529bc9a0bad323df53b2f17b16
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2013 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
33#include <linux/bitops.h>
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/netdevice.h>
37#include <linux/ipv6.h>
38#include <linux/slab.h>
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
41#include <linux/net_tstamp.h>
42#include <linux/mii.h>
43#include <linux/ethtool.h>
44#include <linux/if.h>
45#include <linux/if_vlan.h>
46#include <linux/pci.h>
47#include <linux/pci-aspm.h>
48#include <linux/delay.h>
49#include <linux/interrupt.h>
50#include <linux/ip.h>
51#include <linux/tcp.h>
52#include <linux/sctp.h>
53#include <linux/if_ether.h>
54#include <linux/aer.h>
55#include <linux/prefetch.h>
56#include <linux/pm_runtime.h>
57#ifdef CONFIG_IGB_DCA
58#include <linux/dca.h>
59#endif
60#include <linux/i2c.h>
61#include "igb.h"
62
63#define MAJ 5
64#define MIN 0
65#define BUILD 3
66#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67__stringify(BUILD) "-k"
68char igb_driver_name[] = "igb";
69char igb_driver_version[] = DRV_VERSION;
70static const char igb_driver_string[] =
71				"Intel(R) Gigabit Ethernet Network Driver";
72static const char igb_copyright[] =
73				"Copyright (c) 2007-2013 Intel Corporation.";
74
75static const struct e1000_info *igb_info_tbl[] = {
76	[board_82575] = &e1000_82575_info,
77};
78
79static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
99	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
104	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
105	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
106	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
107	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
108	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
109	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
110	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
111	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
112	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
113	/* required last entry */
114	{0, }
115};
116
117MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
118
119void igb_reset(struct igb_adapter *);
120static int igb_setup_all_tx_resources(struct igb_adapter *);
121static int igb_setup_all_rx_resources(struct igb_adapter *);
122static void igb_free_all_tx_resources(struct igb_adapter *);
123static void igb_free_all_rx_resources(struct igb_adapter *);
124static void igb_setup_mrqc(struct igb_adapter *);
125static int igb_probe(struct pci_dev *, const struct pci_device_id *);
126static void igb_remove(struct pci_dev *pdev);
127static int igb_sw_init(struct igb_adapter *);
128static int igb_open(struct net_device *);
129static int igb_close(struct net_device *);
130static void igb_configure(struct igb_adapter *);
131static void igb_configure_tx(struct igb_adapter *);
132static void igb_configure_rx(struct igb_adapter *);
133static void igb_clean_all_tx_rings(struct igb_adapter *);
134static void igb_clean_all_rx_rings(struct igb_adapter *);
135static void igb_clean_tx_ring(struct igb_ring *);
136static void igb_clean_rx_ring(struct igb_ring *);
137static void igb_set_rx_mode(struct net_device *);
138static void igb_update_phy_info(unsigned long);
139static void igb_watchdog(unsigned long);
140static void igb_watchdog_task(struct work_struct *);
141static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
142static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
143						 struct rtnl_link_stats64 *stats);
144static int igb_change_mtu(struct net_device *, int);
145static int igb_set_mac(struct net_device *, void *);
146static void igb_set_uta(struct igb_adapter *adapter);
147static irqreturn_t igb_intr(int irq, void *);
148static irqreturn_t igb_intr_msi(int irq, void *);
149static irqreturn_t igb_msix_other(int irq, void *);
150static irqreturn_t igb_msix_ring(int irq, void *);
151#ifdef CONFIG_IGB_DCA
152static void igb_update_dca(struct igb_q_vector *);
153static void igb_setup_dca(struct igb_adapter *);
154#endif /* CONFIG_IGB_DCA */
155static int igb_poll(struct napi_struct *, int);
156static bool igb_clean_tx_irq(struct igb_q_vector *);
157static bool igb_clean_rx_irq(struct igb_q_vector *, int);
158static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
159static void igb_tx_timeout(struct net_device *);
160static void igb_reset_task(struct work_struct *);
161static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
162static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
163static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
164static void igb_restore_vlan(struct igb_adapter *);
165static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
166static void igb_ping_all_vfs(struct igb_adapter *);
167static void igb_msg_task(struct igb_adapter *);
168static void igb_vmm_control(struct igb_adapter *);
169static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
170static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
171static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
172static int igb_ndo_set_vf_vlan(struct net_device *netdev,
173			       int vf, u16 vlan, u8 qos);
174static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
175static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
176				   bool setting);
177static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
178				 struct ifla_vf_info *ivi);
179static void igb_check_vf_rate_limit(struct igb_adapter *);
180
181#ifdef CONFIG_PCI_IOV
182static int igb_vf_configure(struct igb_adapter *adapter, int vf);
183#endif
184
185#ifdef CONFIG_PM
186#ifdef CONFIG_PM_SLEEP
187static int igb_suspend(struct device *);
188#endif
189static int igb_resume(struct device *);
190#ifdef CONFIG_PM_RUNTIME
191static int igb_runtime_suspend(struct device *dev);
192static int igb_runtime_resume(struct device *dev);
193static int igb_runtime_idle(struct device *dev);
194#endif
195static const struct dev_pm_ops igb_pm_ops = {
196	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
197	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
198			igb_runtime_idle)
199};
200#endif
201static void igb_shutdown(struct pci_dev *);
202static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
203#ifdef CONFIG_IGB_DCA
204static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
205static struct notifier_block dca_notifier = {
206	.notifier_call	= igb_notify_dca,
207	.next		= NULL,
208	.priority	= 0
209};
210#endif
211#ifdef CONFIG_NET_POLL_CONTROLLER
212/* for netdump / net console */
213static void igb_netpoll(struct net_device *);
214#endif
215#ifdef CONFIG_PCI_IOV
216static unsigned int max_vfs = 0;
217module_param(max_vfs, uint, 0);
218MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
219                 "per physical function");
220#endif /* CONFIG_PCI_IOV */
221
222static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
223		     pci_channel_state_t);
224static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
225static void igb_io_resume(struct pci_dev *);
226
227static const struct pci_error_handlers igb_err_handler = {
228	.error_detected = igb_io_error_detected,
229	.slot_reset = igb_io_slot_reset,
230	.resume = igb_io_resume,
231};
232
233static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
234
235static struct pci_driver igb_driver = {
236	.name     = igb_driver_name,
237	.id_table = igb_pci_tbl,
238	.probe    = igb_probe,
239	.remove   = igb_remove,
240#ifdef CONFIG_PM
241	.driver.pm = &igb_pm_ops,
242#endif
243	.shutdown = igb_shutdown,
244	.sriov_configure = igb_pci_sriov_configure,
245	.err_handler = &igb_err_handler
246};
247
248MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
249MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
250MODULE_LICENSE("GPL");
251MODULE_VERSION(DRV_VERSION);
252
253#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
254static int debug = -1;
255module_param(debug, int, 0);
256MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
257
258struct igb_reg_info {
259	u32 ofs;
260	char *name;
261};
262
263static const struct igb_reg_info igb_reg_info_tbl[] = {
264
265	/* General Registers */
266	{E1000_CTRL, "CTRL"},
267	{E1000_STATUS, "STATUS"},
268	{E1000_CTRL_EXT, "CTRL_EXT"},
269
270	/* Interrupt Registers */
271	{E1000_ICR, "ICR"},
272
273	/* RX Registers */
274	{E1000_RCTL, "RCTL"},
275	{E1000_RDLEN(0), "RDLEN"},
276	{E1000_RDH(0), "RDH"},
277	{E1000_RDT(0), "RDT"},
278	{E1000_RXDCTL(0), "RXDCTL"},
279	{E1000_RDBAL(0), "RDBAL"},
280	{E1000_RDBAH(0), "RDBAH"},
281
282	/* TX Registers */
283	{E1000_TCTL, "TCTL"},
284	{E1000_TDBAL(0), "TDBAL"},
285	{E1000_TDBAH(0), "TDBAH"},
286	{E1000_TDLEN(0), "TDLEN"},
287	{E1000_TDH(0), "TDH"},
288	{E1000_TDT(0), "TDT"},
289	{E1000_TXDCTL(0), "TXDCTL"},
290	{E1000_TDFH, "TDFH"},
291	{E1000_TDFT, "TDFT"},
292	{E1000_TDFHS, "TDFHS"},
293	{E1000_TDFPC, "TDFPC"},
294
295	/* List Terminator */
296	{}
297};
298
299/* igb_regdump - register printout routine */
300static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
301{
302	int n = 0;
303	char rname[16];
304	u32 regs[8];
305
306	switch (reginfo->ofs) {
307	case E1000_RDLEN(0):
308		for (n = 0; n < 4; n++)
309			regs[n] = rd32(E1000_RDLEN(n));
310		break;
311	case E1000_RDH(0):
312		for (n = 0; n < 4; n++)
313			regs[n] = rd32(E1000_RDH(n));
314		break;
315	case E1000_RDT(0):
316		for (n = 0; n < 4; n++)
317			regs[n] = rd32(E1000_RDT(n));
318		break;
319	case E1000_RXDCTL(0):
320		for (n = 0; n < 4; n++)
321			regs[n] = rd32(E1000_RXDCTL(n));
322		break;
323	case E1000_RDBAL(0):
324		for (n = 0; n < 4; n++)
325			regs[n] = rd32(E1000_RDBAL(n));
326		break;
327	case E1000_RDBAH(0):
328		for (n = 0; n < 4; n++)
329			regs[n] = rd32(E1000_RDBAH(n));
330		break;
331	case E1000_TDBAL(0):
332		for (n = 0; n < 4; n++)
333			regs[n] = rd32(E1000_RDBAL(n));
334		break;
335	case E1000_TDBAH(0):
336		for (n = 0; n < 4; n++)
337			regs[n] = rd32(E1000_TDBAH(n));
338		break;
339	case E1000_TDLEN(0):
340		for (n = 0; n < 4; n++)
341			regs[n] = rd32(E1000_TDLEN(n));
342		break;
343	case E1000_TDH(0):
344		for (n = 0; n < 4; n++)
345			regs[n] = rd32(E1000_TDH(n));
346		break;
347	case E1000_TDT(0):
348		for (n = 0; n < 4; n++)
349			regs[n] = rd32(E1000_TDT(n));
350		break;
351	case E1000_TXDCTL(0):
352		for (n = 0; n < 4; n++)
353			regs[n] = rd32(E1000_TXDCTL(n));
354		break;
355	default:
356		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
357		return;
358	}
359
360	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
361	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
362		regs[2], regs[3]);
363}
364
365/* igb_dump - Print registers, Tx-rings and Rx-rings */
366static void igb_dump(struct igb_adapter *adapter)
367{
368	struct net_device *netdev = adapter->netdev;
369	struct e1000_hw *hw = &adapter->hw;
370	struct igb_reg_info *reginfo;
371	struct igb_ring *tx_ring;
372	union e1000_adv_tx_desc *tx_desc;
373	struct my_u0 { u64 a; u64 b; } *u0;
374	struct igb_ring *rx_ring;
375	union e1000_adv_rx_desc *rx_desc;
376	u32 staterr;
377	u16 i, n;
378
379	if (!netif_msg_hw(adapter))
380		return;
381
382	/* Print netdevice Info */
383	if (netdev) {
384		dev_info(&adapter->pdev->dev, "Net device Info\n");
385		pr_info("Device Name     state            trans_start      "
386			"last_rx\n");
387		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
388			netdev->state, netdev->trans_start, netdev->last_rx);
389	}
390
391	/* Print Registers */
392	dev_info(&adapter->pdev->dev, "Register Dump\n");
393	pr_info(" Register Name   Value\n");
394	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395	     reginfo->name; reginfo++) {
396		igb_regdump(hw, reginfo);
397	}
398
399	/* Print TX Ring Summary */
400	if (!netdev || !netif_running(netdev))
401		goto exit;
402
403	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
404	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
405	for (n = 0; n < adapter->num_tx_queues; n++) {
406		struct igb_tx_buffer *buffer_info;
407		tx_ring = adapter->tx_ring[n];
408		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
409		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410			n, tx_ring->next_to_use, tx_ring->next_to_clean,
411			(u64)dma_unmap_addr(buffer_info, dma),
412			dma_unmap_len(buffer_info, len),
413			buffer_info->next_to_watch,
414			(u64)buffer_info->time_stamp);
415	}
416
417	/* Print TX Rings */
418	if (!netif_msg_tx_done(adapter))
419		goto rx_ring_summary;
420
421	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422
423	/* Transmit Descriptor Formats
424	 *
425	 * Advanced Transmit Descriptor
426	 *   +--------------------------------------------------------------+
427	 * 0 |         Buffer Address [63:0]                                |
428	 *   +--------------------------------------------------------------+
429	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
430	 *   +--------------------------------------------------------------+
431	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
432	 */
433
434	for (n = 0; n < adapter->num_tx_queues; n++) {
435		tx_ring = adapter->tx_ring[n];
436		pr_info("------------------------------------\n");
437		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438		pr_info("------------------------------------\n");
439		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
440			"[bi->dma       ] leng  ntw timestamp        "
441			"bi->skb\n");
442
443		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
444			const char *next_desc;
445			struct igb_tx_buffer *buffer_info;
446			tx_desc = IGB_TX_DESC(tx_ring, i);
447			buffer_info = &tx_ring->tx_buffer_info[i];
448			u0 = (struct my_u0 *)tx_desc;
449			if (i == tx_ring->next_to_use &&
450			    i == tx_ring->next_to_clean)
451				next_desc = " NTC/U";
452			else if (i == tx_ring->next_to_use)
453				next_desc = " NTU";
454			else if (i == tx_ring->next_to_clean)
455				next_desc = " NTC";
456			else
457				next_desc = "";
458
459			pr_info("T [0x%03X]    %016llX %016llX %016llX"
460				" %04X  %p %016llX %p%s\n", i,
461				le64_to_cpu(u0->a),
462				le64_to_cpu(u0->b),
463				(u64)dma_unmap_addr(buffer_info, dma),
464				dma_unmap_len(buffer_info, len),
465				buffer_info->next_to_watch,
466				(u64)buffer_info->time_stamp,
467				buffer_info->skb, next_desc);
468
469			if (netif_msg_pktdata(adapter) && buffer_info->skb)
470				print_hex_dump(KERN_INFO, "",
471					DUMP_PREFIX_ADDRESS,
472					16, 1, buffer_info->skb->data,
473					dma_unmap_len(buffer_info, len),
474					true);
475		}
476	}
477
478	/* Print RX Rings Summary */
479rx_ring_summary:
480	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
481	pr_info("Queue [NTU] [NTC]\n");
482	for (n = 0; n < adapter->num_rx_queues; n++) {
483		rx_ring = adapter->rx_ring[n];
484		pr_info(" %5d %5X %5X\n",
485			n, rx_ring->next_to_use, rx_ring->next_to_clean);
486	}
487
488	/* Print RX Rings */
489	if (!netif_msg_rx_status(adapter))
490		goto exit;
491
492	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
493
494	/* Advanced Receive Descriptor (Read) Format
495	 *    63                                           1        0
496	 *    +-----------------------------------------------------+
497	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
498	 *    +----------------------------------------------+------+
499	 *  8 |       Header Buffer Address [63:1]           |  DD  |
500	 *    +-----------------------------------------------------+
501	 *
502	 *
503	 * Advanced Receive Descriptor (Write-Back) Format
504	 *
505	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
506	 *   +------------------------------------------------------+
507	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
508	 *   | Checksum   Ident  |   |           |    | Type | Type |
509	 *   +------------------------------------------------------+
510	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
511	 *   +------------------------------------------------------+
512	 *   63       48 47    32 31            20 19               0
513	 */
514
515	for (n = 0; n < adapter->num_rx_queues; n++) {
516		rx_ring = adapter->rx_ring[n];
517		pr_info("------------------------------------\n");
518		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
519		pr_info("------------------------------------\n");
520		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
521			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
522		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
523			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
524
525		for (i = 0; i < rx_ring->count; i++) {
526			const char *next_desc;
527			struct igb_rx_buffer *buffer_info;
528			buffer_info = &rx_ring->rx_buffer_info[i];
529			rx_desc = IGB_RX_DESC(rx_ring, i);
530			u0 = (struct my_u0 *)rx_desc;
531			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
532
533			if (i == rx_ring->next_to_use)
534				next_desc = " NTU";
535			else if (i == rx_ring->next_to_clean)
536				next_desc = " NTC";
537			else
538				next_desc = "";
539
540			if (staterr & E1000_RXD_STAT_DD) {
541				/* Descriptor Done */
542				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
543					"RWB", i,
544					le64_to_cpu(u0->a),
545					le64_to_cpu(u0->b),
546					next_desc);
547			} else {
548				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
549					"R  ", i,
550					le64_to_cpu(u0->a),
551					le64_to_cpu(u0->b),
552					(u64)buffer_info->dma,
553					next_desc);
554
555				if (netif_msg_pktdata(adapter) &&
556				    buffer_info->dma && buffer_info->page) {
557					print_hex_dump(KERN_INFO, "",
558					  DUMP_PREFIX_ADDRESS,
559					  16, 1,
560					  page_address(buffer_info->page) +
561						      buffer_info->page_offset,
562					  IGB_RX_BUFSZ, true);
563				}
564			}
565		}
566	}
567
568exit:
569	return;
570}
571
572/**
573 *  igb_get_i2c_data - Reads the I2C SDA data bit
574 *  @hw: pointer to hardware structure
575 *  @i2cctl: Current value of I2CCTL register
576 *
577 *  Returns the I2C data bit value
578 **/
579static int igb_get_i2c_data(void *data)
580{
581	struct igb_adapter *adapter = (struct igb_adapter *)data;
582	struct e1000_hw *hw = &adapter->hw;
583	s32 i2cctl = rd32(E1000_I2CPARAMS);
584
585	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
586}
587
588/**
589 *  igb_set_i2c_data - Sets the I2C data bit
590 *  @data: pointer to hardware structure
591 *  @state: I2C data value (0 or 1) to set
592 *
593 *  Sets the I2C data bit
594 **/
595static void igb_set_i2c_data(void *data, int state)
596{
597	struct igb_adapter *adapter = (struct igb_adapter *)data;
598	struct e1000_hw *hw = &adapter->hw;
599	s32 i2cctl = rd32(E1000_I2CPARAMS);
600
601	if (state)
602		i2cctl |= E1000_I2C_DATA_OUT;
603	else
604		i2cctl &= ~E1000_I2C_DATA_OUT;
605
606	i2cctl &= ~E1000_I2C_DATA_OE_N;
607	i2cctl |= E1000_I2C_CLK_OE_N;
608	wr32(E1000_I2CPARAMS, i2cctl);
609	wrfl();
610
611}
612
613/**
614 *  igb_set_i2c_clk - Sets the I2C SCL clock
615 *  @data: pointer to hardware structure
616 *  @state: state to set clock
617 *
618 *  Sets the I2C clock line to state
619 **/
620static void igb_set_i2c_clk(void *data, int state)
621{
622	struct igb_adapter *adapter = (struct igb_adapter *)data;
623	struct e1000_hw *hw = &adapter->hw;
624	s32 i2cctl = rd32(E1000_I2CPARAMS);
625
626	if (state) {
627		i2cctl |= E1000_I2C_CLK_OUT;
628		i2cctl &= ~E1000_I2C_CLK_OE_N;
629	} else {
630		i2cctl &= ~E1000_I2C_CLK_OUT;
631		i2cctl &= ~E1000_I2C_CLK_OE_N;
632	}
633	wr32(E1000_I2CPARAMS, i2cctl);
634	wrfl();
635}
636
637/**
638 *  igb_get_i2c_clk - Gets the I2C SCL clock state
639 *  @data: pointer to hardware structure
640 *
641 *  Gets the I2C clock state
642 **/
643static int igb_get_i2c_clk(void *data)
644{
645	struct igb_adapter *adapter = (struct igb_adapter *)data;
646	struct e1000_hw *hw = &adapter->hw;
647	s32 i2cctl = rd32(E1000_I2CPARAMS);
648
649	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
650}
651
652static const struct i2c_algo_bit_data igb_i2c_algo = {
653	.setsda		= igb_set_i2c_data,
654	.setscl		= igb_set_i2c_clk,
655	.getsda		= igb_get_i2c_data,
656	.getscl		= igb_get_i2c_clk,
657	.udelay		= 5,
658	.timeout	= 20,
659};
660
661/**
662 *  igb_get_hw_dev - return device
663 *  @hw: pointer to hardware structure
664 *
665 *  used by hardware layer to print debugging information
666 **/
667struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
668{
669	struct igb_adapter *adapter = hw->back;
670	return adapter->netdev;
671}
672
673/**
674 *  igb_init_module - Driver Registration Routine
675 *
676 *  igb_init_module is the first routine called when the driver is
677 *  loaded. All it does is register with the PCI subsystem.
678 **/
679static int __init igb_init_module(void)
680{
681	int ret;
682	pr_info("%s - version %s\n",
683	       igb_driver_string, igb_driver_version);
684
685	pr_info("%s\n", igb_copyright);
686
687#ifdef CONFIG_IGB_DCA
688	dca_register_notify(&dca_notifier);
689#endif
690	ret = pci_register_driver(&igb_driver);
691	return ret;
692}
693
694module_init(igb_init_module);
695
696/**
697 *  igb_exit_module - Driver Exit Cleanup Routine
698 *
699 *  igb_exit_module is called just before the driver is removed
700 *  from memory.
701 **/
702static void __exit igb_exit_module(void)
703{
704#ifdef CONFIG_IGB_DCA
705	dca_unregister_notify(&dca_notifier);
706#endif
707	pci_unregister_driver(&igb_driver);
708}
709
710module_exit(igb_exit_module);
711
712#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
713/**
714 *  igb_cache_ring_register - Descriptor ring to register mapping
715 *  @adapter: board private structure to initialize
716 *
717 *  Once we know the feature-set enabled for the device, we'll cache
718 *  the register offset the descriptor ring is assigned to.
719 **/
720static void igb_cache_ring_register(struct igb_adapter *adapter)
721{
722	int i = 0, j = 0;
723	u32 rbase_offset = adapter->vfs_allocated_count;
724
725	switch (adapter->hw.mac.type) {
726	case e1000_82576:
727		/* The queues are allocated for virtualization such that VF 0
728		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
729		 * In order to avoid collision we start at the first free queue
730		 * and continue consuming queues in the same sequence
731		 */
732		if (adapter->vfs_allocated_count) {
733			for (; i < adapter->rss_queues; i++)
734				adapter->rx_ring[i]->reg_idx = rbase_offset +
735							       Q_IDX_82576(i);
736		}
737	case e1000_82575:
738	case e1000_82580:
739	case e1000_i350:
740	case e1000_i354:
741	case e1000_i210:
742	case e1000_i211:
743	default:
744		for (; i < adapter->num_rx_queues; i++)
745			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
746		for (; j < adapter->num_tx_queues; j++)
747			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
748		break;
749	}
750}
751
752/**
753 *  igb_write_ivar - configure ivar for given MSI-X vector
754 *  @hw: pointer to the HW structure
755 *  @msix_vector: vector number we are allocating to a given ring
756 *  @index: row index of IVAR register to write within IVAR table
757 *  @offset: column offset of in IVAR, should be multiple of 8
758 *
759 *  This function is intended to handle the writing of the IVAR register
760 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
761 *  each containing an cause allocation for an Rx and Tx ring, and a
762 *  variable number of rows depending on the number of queues supported.
763 **/
764static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
765			   int index, int offset)
766{
767	u32 ivar = array_rd32(E1000_IVAR0, index);
768
769	/* clear any bits that are currently set */
770	ivar &= ~((u32)0xFF << offset);
771
772	/* write vector and valid bit */
773	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
774
775	array_wr32(E1000_IVAR0, index, ivar);
776}
777
778#define IGB_N0_QUEUE -1
779static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
780{
781	struct igb_adapter *adapter = q_vector->adapter;
782	struct e1000_hw *hw = &adapter->hw;
783	int rx_queue = IGB_N0_QUEUE;
784	int tx_queue = IGB_N0_QUEUE;
785	u32 msixbm = 0;
786
787	if (q_vector->rx.ring)
788		rx_queue = q_vector->rx.ring->reg_idx;
789	if (q_vector->tx.ring)
790		tx_queue = q_vector->tx.ring->reg_idx;
791
792	switch (hw->mac.type) {
793	case e1000_82575:
794		/* The 82575 assigns vectors using a bitmask, which matches the
795		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
796		 * or more queues to a vector, we write the appropriate bits
797		 * into the MSIXBM register for that vector.
798		 */
799		if (rx_queue > IGB_N0_QUEUE)
800			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
801		if (tx_queue > IGB_N0_QUEUE)
802			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
803		if (!adapter->msix_entries && msix_vector == 0)
804			msixbm |= E1000_EIMS_OTHER;
805		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
806		q_vector->eims_value = msixbm;
807		break;
808	case e1000_82576:
809		/* 82576 uses a table that essentially consists of 2 columns
810		 * with 8 rows.  The ordering is column-major so we use the
811		 * lower 3 bits as the row index, and the 4th bit as the
812		 * column offset.
813		 */
814		if (rx_queue > IGB_N0_QUEUE)
815			igb_write_ivar(hw, msix_vector,
816				       rx_queue & 0x7,
817				       (rx_queue & 0x8) << 1);
818		if (tx_queue > IGB_N0_QUEUE)
819			igb_write_ivar(hw, msix_vector,
820				       tx_queue & 0x7,
821				       ((tx_queue & 0x8) << 1) + 8);
822		q_vector->eims_value = 1 << msix_vector;
823		break;
824	case e1000_82580:
825	case e1000_i350:
826	case e1000_i354:
827	case e1000_i210:
828	case e1000_i211:
829		/* On 82580 and newer adapters the scheme is similar to 82576
830		 * however instead of ordering column-major we have things
831		 * ordered row-major.  So we traverse the table by using
832		 * bit 0 as the column offset, and the remaining bits as the
833		 * row index.
834		 */
835		if (rx_queue > IGB_N0_QUEUE)
836			igb_write_ivar(hw, msix_vector,
837				       rx_queue >> 1,
838				       (rx_queue & 0x1) << 4);
839		if (tx_queue > IGB_N0_QUEUE)
840			igb_write_ivar(hw, msix_vector,
841				       tx_queue >> 1,
842				       ((tx_queue & 0x1) << 4) + 8);
843		q_vector->eims_value = 1 << msix_vector;
844		break;
845	default:
846		BUG();
847		break;
848	}
849
850	/* add q_vector eims value to global eims_enable_mask */
851	adapter->eims_enable_mask |= q_vector->eims_value;
852
853	/* configure q_vector to set itr on first interrupt */
854	q_vector->set_itr = 1;
855}
856
857/**
858 *  igb_configure_msix - Configure MSI-X hardware
859 *  @adapter: board private structure to initialize
860 *
861 *  igb_configure_msix sets up the hardware to properly
862 *  generate MSI-X interrupts.
863 **/
864static void igb_configure_msix(struct igb_adapter *adapter)
865{
866	u32 tmp;
867	int i, vector = 0;
868	struct e1000_hw *hw = &adapter->hw;
869
870	adapter->eims_enable_mask = 0;
871
872	/* set vector for other causes, i.e. link changes */
873	switch (hw->mac.type) {
874	case e1000_82575:
875		tmp = rd32(E1000_CTRL_EXT);
876		/* enable MSI-X PBA support*/
877		tmp |= E1000_CTRL_EXT_PBA_CLR;
878
879		/* Auto-Mask interrupts upon ICR read. */
880		tmp |= E1000_CTRL_EXT_EIAME;
881		tmp |= E1000_CTRL_EXT_IRCA;
882
883		wr32(E1000_CTRL_EXT, tmp);
884
885		/* enable msix_other interrupt */
886		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
887		adapter->eims_other = E1000_EIMS_OTHER;
888
889		break;
890
891	case e1000_82576:
892	case e1000_82580:
893	case e1000_i350:
894	case e1000_i354:
895	case e1000_i210:
896	case e1000_i211:
897		/* Turn on MSI-X capability first, or our settings
898		 * won't stick.  And it will take days to debug.
899		 */
900		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
901		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
902		     E1000_GPIE_NSICR);
903
904		/* enable msix_other interrupt */
905		adapter->eims_other = 1 << vector;
906		tmp = (vector++ | E1000_IVAR_VALID) << 8;
907
908		wr32(E1000_IVAR_MISC, tmp);
909		break;
910	default:
911		/* do nothing, since nothing else supports MSI-X */
912		break;
913	} /* switch (hw->mac.type) */
914
915	adapter->eims_enable_mask |= adapter->eims_other;
916
917	for (i = 0; i < adapter->num_q_vectors; i++)
918		igb_assign_vector(adapter->q_vector[i], vector++);
919
920	wrfl();
921}
922
923/**
924 *  igb_request_msix - Initialize MSI-X interrupts
925 *  @adapter: board private structure to initialize
926 *
927 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
928 *  kernel.
929 **/
930static int igb_request_msix(struct igb_adapter *adapter)
931{
932	struct net_device *netdev = adapter->netdev;
933	struct e1000_hw *hw = &adapter->hw;
934	int i, err = 0, vector = 0, free_vector = 0;
935
936	err = request_irq(adapter->msix_entries[vector].vector,
937			  igb_msix_other, 0, netdev->name, adapter);
938	if (err)
939		goto err_out;
940
941	for (i = 0; i < adapter->num_q_vectors; i++) {
942		struct igb_q_vector *q_vector = adapter->q_vector[i];
943
944		vector++;
945
946		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
947
948		if (q_vector->rx.ring && q_vector->tx.ring)
949			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
950				q_vector->rx.ring->queue_index);
951		else if (q_vector->tx.ring)
952			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
953				q_vector->tx.ring->queue_index);
954		else if (q_vector->rx.ring)
955			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
956				q_vector->rx.ring->queue_index);
957		else
958			sprintf(q_vector->name, "%s-unused", netdev->name);
959
960		err = request_irq(adapter->msix_entries[vector].vector,
961				  igb_msix_ring, 0, q_vector->name,
962				  q_vector);
963		if (err)
964			goto err_free;
965	}
966
967	igb_configure_msix(adapter);
968	return 0;
969
970err_free:
971	/* free already assigned IRQs */
972	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
973
974	vector--;
975	for (i = 0; i < vector; i++) {
976		free_irq(adapter->msix_entries[free_vector++].vector,
977			 adapter->q_vector[i]);
978	}
979err_out:
980	return err;
981}
982
983static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
984{
985	if (adapter->msix_entries) {
986		pci_disable_msix(adapter->pdev);
987		kfree(adapter->msix_entries);
988		adapter->msix_entries = NULL;
989	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
990		pci_disable_msi(adapter->pdev);
991	}
992}
993
994/**
995 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
996 *  @adapter: board private structure to initialize
997 *  @v_idx: Index of vector to be freed
998 *
999 *  This function frees the memory allocated to the q_vector.  In addition if
1000 *  NAPI is enabled it will delete any references to the NAPI struct prior
1001 *  to freeing the q_vector.
1002 **/
1003static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1004{
1005	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1006
1007	if (q_vector->tx.ring)
1008		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1009
1010	if (q_vector->rx.ring)
1011		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1012
1013	adapter->q_vector[v_idx] = NULL;
1014	netif_napi_del(&q_vector->napi);
1015
1016	/* ixgbe_get_stats64() might access the rings on this vector,
1017	 * we must wait a grace period before freeing it.
1018	 */
1019	kfree_rcu(q_vector, rcu);
1020}
1021
1022/**
1023 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1024 *  @adapter: board private structure to initialize
1025 *
1026 *  This function frees the memory allocated to the q_vectors.  In addition if
1027 *  NAPI is enabled it will delete any references to the NAPI struct prior
1028 *  to freeing the q_vector.
1029 **/
1030static void igb_free_q_vectors(struct igb_adapter *adapter)
1031{
1032	int v_idx = adapter->num_q_vectors;
1033
1034	adapter->num_tx_queues = 0;
1035	adapter->num_rx_queues = 0;
1036	adapter->num_q_vectors = 0;
1037
1038	while (v_idx--)
1039		igb_free_q_vector(adapter, v_idx);
1040}
1041
1042/**
1043 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1044 *  @adapter: board private structure to initialize
1045 *
1046 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1047 *  MSI-X interrupts allocated.
1048 */
1049static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1050{
1051	igb_free_q_vectors(adapter);
1052	igb_reset_interrupt_capability(adapter);
1053}
1054
1055/**
1056 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1057 *  @adapter: board private structure to initialize
1058 *  @msix: boolean value of MSIX capability
1059 *
1060 *  Attempt to configure interrupts using the best available
1061 *  capabilities of the hardware and kernel.
1062 **/
1063static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1064{
1065	int err;
1066	int numvecs, i;
1067
1068	if (!msix)
1069		goto msi_only;
1070
1071	/* Number of supported queues. */
1072	adapter->num_rx_queues = adapter->rss_queues;
1073	if (adapter->vfs_allocated_count)
1074		adapter->num_tx_queues = 1;
1075	else
1076		adapter->num_tx_queues = adapter->rss_queues;
1077
1078	/* start with one vector for every Rx queue */
1079	numvecs = adapter->num_rx_queues;
1080
1081	/* if Tx handler is separate add 1 for every Tx queue */
1082	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1083		numvecs += adapter->num_tx_queues;
1084
1085	/* store the number of vectors reserved for queues */
1086	adapter->num_q_vectors = numvecs;
1087
1088	/* add 1 vector for link status interrupts */
1089	numvecs++;
1090	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1091					GFP_KERNEL);
1092
1093	if (!adapter->msix_entries)
1094		goto msi_only;
1095
1096	for (i = 0; i < numvecs; i++)
1097		adapter->msix_entries[i].entry = i;
1098
1099	err = pci_enable_msix(adapter->pdev,
1100			      adapter->msix_entries,
1101			      numvecs);
1102	if (err == 0)
1103		return;
1104
1105	igb_reset_interrupt_capability(adapter);
1106
1107	/* If we can't do MSI-X, try MSI */
1108msi_only:
1109#ifdef CONFIG_PCI_IOV
1110	/* disable SR-IOV for non MSI-X configurations */
1111	if (adapter->vf_data) {
1112		struct e1000_hw *hw = &adapter->hw;
1113		/* disable iov and allow time for transactions to clear */
1114		pci_disable_sriov(adapter->pdev);
1115		msleep(500);
1116
1117		kfree(adapter->vf_data);
1118		adapter->vf_data = NULL;
1119		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1120		wrfl();
1121		msleep(100);
1122		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1123	}
1124#endif
1125	adapter->vfs_allocated_count = 0;
1126	adapter->rss_queues = 1;
1127	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1128	adapter->num_rx_queues = 1;
1129	adapter->num_tx_queues = 1;
1130	adapter->num_q_vectors = 1;
1131	if (!pci_enable_msi(adapter->pdev))
1132		adapter->flags |= IGB_FLAG_HAS_MSI;
1133}
1134
1135static void igb_add_ring(struct igb_ring *ring,
1136			 struct igb_ring_container *head)
1137{
1138	head->ring = ring;
1139	head->count++;
1140}
1141
1142/**
1143 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1144 *  @adapter: board private structure to initialize
1145 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1146 *  @v_idx: index of vector in adapter struct
1147 *  @txr_count: total number of Tx rings to allocate
1148 *  @txr_idx: index of first Tx ring to allocate
1149 *  @rxr_count: total number of Rx rings to allocate
1150 *  @rxr_idx: index of first Rx ring to allocate
1151 *
1152 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1153 **/
1154static int igb_alloc_q_vector(struct igb_adapter *adapter,
1155			      int v_count, int v_idx,
1156			      int txr_count, int txr_idx,
1157			      int rxr_count, int rxr_idx)
1158{
1159	struct igb_q_vector *q_vector;
1160	struct igb_ring *ring;
1161	int ring_count, size;
1162
1163	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1164	if (txr_count > 1 || rxr_count > 1)
1165		return -ENOMEM;
1166
1167	ring_count = txr_count + rxr_count;
1168	size = sizeof(struct igb_q_vector) +
1169	       (sizeof(struct igb_ring) * ring_count);
1170
1171	/* allocate q_vector and rings */
1172	q_vector = kzalloc(size, GFP_KERNEL);
1173	if (!q_vector)
1174		return -ENOMEM;
1175
1176	/* initialize NAPI */
1177	netif_napi_add(adapter->netdev, &q_vector->napi,
1178		       igb_poll, 64);
1179
1180	/* tie q_vector and adapter together */
1181	adapter->q_vector[v_idx] = q_vector;
1182	q_vector->adapter = adapter;
1183
1184	/* initialize work limits */
1185	q_vector->tx.work_limit = adapter->tx_work_limit;
1186
1187	/* initialize ITR configuration */
1188	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1189	q_vector->itr_val = IGB_START_ITR;
1190
1191	/* initialize pointer to rings */
1192	ring = q_vector->ring;
1193
1194	/* intialize ITR */
1195	if (rxr_count) {
1196		/* rx or rx/tx vector */
1197		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1198			q_vector->itr_val = adapter->rx_itr_setting;
1199	} else {
1200		/* tx only vector */
1201		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1202			q_vector->itr_val = adapter->tx_itr_setting;
1203	}
1204
1205	if (txr_count) {
1206		/* assign generic ring traits */
1207		ring->dev = &adapter->pdev->dev;
1208		ring->netdev = adapter->netdev;
1209
1210		/* configure backlink on ring */
1211		ring->q_vector = q_vector;
1212
1213		/* update q_vector Tx values */
1214		igb_add_ring(ring, &q_vector->tx);
1215
1216		/* For 82575, context index must be unique per ring. */
1217		if (adapter->hw.mac.type == e1000_82575)
1218			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1219
1220		/* apply Tx specific ring traits */
1221		ring->count = adapter->tx_ring_count;
1222		ring->queue_index = txr_idx;
1223
1224		/* assign ring to adapter */
1225		adapter->tx_ring[txr_idx] = ring;
1226
1227		/* push pointer to next ring */
1228		ring++;
1229	}
1230
1231	if (rxr_count) {
1232		/* assign generic ring traits */
1233		ring->dev = &adapter->pdev->dev;
1234		ring->netdev = adapter->netdev;
1235
1236		/* configure backlink on ring */
1237		ring->q_vector = q_vector;
1238
1239		/* update q_vector Rx values */
1240		igb_add_ring(ring, &q_vector->rx);
1241
1242		/* set flag indicating ring supports SCTP checksum offload */
1243		if (adapter->hw.mac.type >= e1000_82576)
1244			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1245
1246		/*
1247		 * On i350, i354, i210, and i211, loopback VLAN packets
1248		 * have the tag byte-swapped.
1249		 */
1250		if (adapter->hw.mac.type >= e1000_i350)
1251			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1252
1253		/* apply Rx specific ring traits */
1254		ring->count = adapter->rx_ring_count;
1255		ring->queue_index = rxr_idx;
1256
1257		/* assign ring to adapter */
1258		adapter->rx_ring[rxr_idx] = ring;
1259	}
1260
1261	return 0;
1262}
1263
1264
1265/**
1266 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1267 *  @adapter: board private structure to initialize
1268 *
1269 *  We allocate one q_vector per queue interrupt.  If allocation fails we
1270 *  return -ENOMEM.
1271 **/
1272static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1273{
1274	int q_vectors = adapter->num_q_vectors;
1275	int rxr_remaining = adapter->num_rx_queues;
1276	int txr_remaining = adapter->num_tx_queues;
1277	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1278	int err;
1279
1280	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1281		for (; rxr_remaining; v_idx++) {
1282			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1283						 0, 0, 1, rxr_idx);
1284
1285			if (err)
1286				goto err_out;
1287
1288			/* update counts and index */
1289			rxr_remaining--;
1290			rxr_idx++;
1291		}
1292	}
1293
1294	for (; v_idx < q_vectors; v_idx++) {
1295		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1296		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1297		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1298					 tqpv, txr_idx, rqpv, rxr_idx);
1299
1300		if (err)
1301			goto err_out;
1302
1303		/* update counts and index */
1304		rxr_remaining -= rqpv;
1305		txr_remaining -= tqpv;
1306		rxr_idx++;
1307		txr_idx++;
1308	}
1309
1310	return 0;
1311
1312err_out:
1313	adapter->num_tx_queues = 0;
1314	adapter->num_rx_queues = 0;
1315	adapter->num_q_vectors = 0;
1316
1317	while (v_idx--)
1318		igb_free_q_vector(adapter, v_idx);
1319
1320	return -ENOMEM;
1321}
1322
1323/**
1324 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1325 *  @adapter: board private structure to initialize
1326 *  @msix: boolean value of MSIX capability
1327 *
1328 *  This function initializes the interrupts and allocates all of the queues.
1329 **/
1330static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1331{
1332	struct pci_dev *pdev = adapter->pdev;
1333	int err;
1334
1335	igb_set_interrupt_capability(adapter, msix);
1336
1337	err = igb_alloc_q_vectors(adapter);
1338	if (err) {
1339		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1340		goto err_alloc_q_vectors;
1341	}
1342
1343	igb_cache_ring_register(adapter);
1344
1345	return 0;
1346
1347err_alloc_q_vectors:
1348	igb_reset_interrupt_capability(adapter);
1349	return err;
1350}
1351
1352/**
1353 *  igb_request_irq - initialize interrupts
1354 *  @adapter: board private structure to initialize
1355 *
1356 *  Attempts to configure interrupts using the best available
1357 *  capabilities of the hardware and kernel.
1358 **/
1359static int igb_request_irq(struct igb_adapter *adapter)
1360{
1361	struct net_device *netdev = adapter->netdev;
1362	struct pci_dev *pdev = adapter->pdev;
1363	int err = 0;
1364
1365	if (adapter->msix_entries) {
1366		err = igb_request_msix(adapter);
1367		if (!err)
1368			goto request_done;
1369		/* fall back to MSI */
1370		igb_free_all_tx_resources(adapter);
1371		igb_free_all_rx_resources(adapter);
1372
1373		igb_clear_interrupt_scheme(adapter);
1374		err = igb_init_interrupt_scheme(adapter, false);
1375		if (err)
1376			goto request_done;
1377
1378		igb_setup_all_tx_resources(adapter);
1379		igb_setup_all_rx_resources(adapter);
1380		igb_configure(adapter);
1381	}
1382
1383	igb_assign_vector(adapter->q_vector[0], 0);
1384
1385	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1386		err = request_irq(pdev->irq, igb_intr_msi, 0,
1387				  netdev->name, adapter);
1388		if (!err)
1389			goto request_done;
1390
1391		/* fall back to legacy interrupts */
1392		igb_reset_interrupt_capability(adapter);
1393		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1394	}
1395
1396	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1397			  netdev->name, adapter);
1398
1399	if (err)
1400		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1401			err);
1402
1403request_done:
1404	return err;
1405}
1406
1407static void igb_free_irq(struct igb_adapter *adapter)
1408{
1409	if (adapter->msix_entries) {
1410		int vector = 0, i;
1411
1412		free_irq(adapter->msix_entries[vector++].vector, adapter);
1413
1414		for (i = 0; i < adapter->num_q_vectors; i++)
1415			free_irq(adapter->msix_entries[vector++].vector,
1416				 adapter->q_vector[i]);
1417	} else {
1418		free_irq(adapter->pdev->irq, adapter);
1419	}
1420}
1421
1422/**
1423 *  igb_irq_disable - Mask off interrupt generation on the NIC
1424 *  @adapter: board private structure
1425 **/
1426static void igb_irq_disable(struct igb_adapter *adapter)
1427{
1428	struct e1000_hw *hw = &adapter->hw;
1429
1430	/* we need to be careful when disabling interrupts.  The VFs are also
1431	 * mapped into these registers and so clearing the bits can cause
1432	 * issues on the VF drivers so we only need to clear what we set
1433	 */
1434	if (adapter->msix_entries) {
1435		u32 regval = rd32(E1000_EIAM);
1436		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1437		wr32(E1000_EIMC, adapter->eims_enable_mask);
1438		regval = rd32(E1000_EIAC);
1439		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1440	}
1441
1442	wr32(E1000_IAM, 0);
1443	wr32(E1000_IMC, ~0);
1444	wrfl();
1445	if (adapter->msix_entries) {
1446		int i;
1447		for (i = 0; i < adapter->num_q_vectors; i++)
1448			synchronize_irq(adapter->msix_entries[i].vector);
1449	} else {
1450		synchronize_irq(adapter->pdev->irq);
1451	}
1452}
1453
1454/**
1455 *  igb_irq_enable - Enable default interrupt generation settings
1456 *  @adapter: board private structure
1457 **/
1458static void igb_irq_enable(struct igb_adapter *adapter)
1459{
1460	struct e1000_hw *hw = &adapter->hw;
1461
1462	if (adapter->msix_entries) {
1463		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1464		u32 regval = rd32(E1000_EIAC);
1465		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1466		regval = rd32(E1000_EIAM);
1467		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1468		wr32(E1000_EIMS, adapter->eims_enable_mask);
1469		if (adapter->vfs_allocated_count) {
1470			wr32(E1000_MBVFIMR, 0xFF);
1471			ims |= E1000_IMS_VMMB;
1472		}
1473		wr32(E1000_IMS, ims);
1474	} else {
1475		wr32(E1000_IMS, IMS_ENABLE_MASK |
1476				E1000_IMS_DRSTA);
1477		wr32(E1000_IAM, IMS_ENABLE_MASK |
1478				E1000_IMS_DRSTA);
1479	}
1480}
1481
1482static void igb_update_mng_vlan(struct igb_adapter *adapter)
1483{
1484	struct e1000_hw *hw = &adapter->hw;
1485	u16 vid = adapter->hw.mng_cookie.vlan_id;
1486	u16 old_vid = adapter->mng_vlan_id;
1487
1488	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1489		/* add VID to filter table */
1490		igb_vfta_set(hw, vid, true);
1491		adapter->mng_vlan_id = vid;
1492	} else {
1493		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1494	}
1495
1496	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1497	    (vid != old_vid) &&
1498	    !test_bit(old_vid, adapter->active_vlans)) {
1499		/* remove VID from filter table */
1500		igb_vfta_set(hw, old_vid, false);
1501	}
1502}
1503
1504/**
1505 *  igb_release_hw_control - release control of the h/w to f/w
1506 *  @adapter: address of board private structure
1507 *
1508 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1509 *  For ASF and Pass Through versions of f/w this means that the
1510 *  driver is no longer loaded.
1511 **/
1512static void igb_release_hw_control(struct igb_adapter *adapter)
1513{
1514	struct e1000_hw *hw = &adapter->hw;
1515	u32 ctrl_ext;
1516
1517	/* Let firmware take over control of h/w */
1518	ctrl_ext = rd32(E1000_CTRL_EXT);
1519	wr32(E1000_CTRL_EXT,
1520			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1521}
1522
1523/**
1524 *  igb_get_hw_control - get control of the h/w from f/w
1525 *  @adapter: address of board private structure
1526 *
1527 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1528 *  For ASF and Pass Through versions of f/w this means that
1529 *  the driver is loaded.
1530 **/
1531static void igb_get_hw_control(struct igb_adapter *adapter)
1532{
1533	struct e1000_hw *hw = &adapter->hw;
1534	u32 ctrl_ext;
1535
1536	/* Let firmware know the driver has taken over */
1537	ctrl_ext = rd32(E1000_CTRL_EXT);
1538	wr32(E1000_CTRL_EXT,
1539			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1540}
1541
1542/**
1543 *  igb_configure - configure the hardware for RX and TX
1544 *  @adapter: private board structure
1545 **/
1546static void igb_configure(struct igb_adapter *adapter)
1547{
1548	struct net_device *netdev = adapter->netdev;
1549	int i;
1550
1551	igb_get_hw_control(adapter);
1552	igb_set_rx_mode(netdev);
1553
1554	igb_restore_vlan(adapter);
1555
1556	igb_setup_tctl(adapter);
1557	igb_setup_mrqc(adapter);
1558	igb_setup_rctl(adapter);
1559
1560	igb_configure_tx(adapter);
1561	igb_configure_rx(adapter);
1562
1563	igb_rx_fifo_flush_82575(&adapter->hw);
1564
1565	/* call igb_desc_unused which always leaves
1566	 * at least 1 descriptor unused to make sure
1567	 * next_to_use != next_to_clean
1568	 */
1569	for (i = 0; i < adapter->num_rx_queues; i++) {
1570		struct igb_ring *ring = adapter->rx_ring[i];
1571		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1572	}
1573}
1574
1575/**
1576 *  igb_power_up_link - Power up the phy/serdes link
1577 *  @adapter: address of board private structure
1578 **/
1579void igb_power_up_link(struct igb_adapter *adapter)
1580{
1581	igb_reset_phy(&adapter->hw);
1582
1583	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1584		igb_power_up_phy_copper(&adapter->hw);
1585	else
1586		igb_power_up_serdes_link_82575(&adapter->hw);
1587}
1588
1589/**
1590 *  igb_power_down_link - Power down the phy/serdes link
1591 *  @adapter: address of board private structure
1592 */
1593static void igb_power_down_link(struct igb_adapter *adapter)
1594{
1595	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1596		igb_power_down_phy_copper_82575(&adapter->hw);
1597	else
1598		igb_shutdown_serdes_link_82575(&adapter->hw);
1599}
1600
1601/**
1602 *  igb_up - Open the interface and prepare it to handle traffic
1603 *  @adapter: board private structure
1604 **/
1605int igb_up(struct igb_adapter *adapter)
1606{
1607	struct e1000_hw *hw = &adapter->hw;
1608	int i;
1609
1610	/* hardware has been reset, we need to reload some things */
1611	igb_configure(adapter);
1612
1613	clear_bit(__IGB_DOWN, &adapter->state);
1614
1615	for (i = 0; i < adapter->num_q_vectors; i++)
1616		napi_enable(&(adapter->q_vector[i]->napi));
1617
1618	if (adapter->msix_entries)
1619		igb_configure_msix(adapter);
1620	else
1621		igb_assign_vector(adapter->q_vector[0], 0);
1622
1623	/* Clear any pending interrupts. */
1624	rd32(E1000_ICR);
1625	igb_irq_enable(adapter);
1626
1627	/* notify VFs that reset has been completed */
1628	if (adapter->vfs_allocated_count) {
1629		u32 reg_data = rd32(E1000_CTRL_EXT);
1630		reg_data |= E1000_CTRL_EXT_PFRSTD;
1631		wr32(E1000_CTRL_EXT, reg_data);
1632	}
1633
1634	netif_tx_start_all_queues(adapter->netdev);
1635
1636	/* start the watchdog. */
1637	hw->mac.get_link_status = 1;
1638	schedule_work(&adapter->watchdog_task);
1639
1640	return 0;
1641}
1642
1643void igb_down(struct igb_adapter *adapter)
1644{
1645	struct net_device *netdev = adapter->netdev;
1646	struct e1000_hw *hw = &adapter->hw;
1647	u32 tctl, rctl;
1648	int i;
1649
1650	/* signal that we're down so the interrupt handler does not
1651	 * reschedule our watchdog timer
1652	 */
1653	set_bit(__IGB_DOWN, &adapter->state);
1654
1655	/* disable receives in the hardware */
1656	rctl = rd32(E1000_RCTL);
1657	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1658	/* flush and sleep below */
1659
1660	netif_tx_stop_all_queues(netdev);
1661
1662	/* disable transmits in the hardware */
1663	tctl = rd32(E1000_TCTL);
1664	tctl &= ~E1000_TCTL_EN;
1665	wr32(E1000_TCTL, tctl);
1666	/* flush both disables and wait for them to finish */
1667	wrfl();
1668	msleep(10);
1669
1670	igb_irq_disable(adapter);
1671
1672	for (i = 0; i < adapter->num_q_vectors; i++) {
1673		napi_synchronize(&(adapter->q_vector[i]->napi));
1674		napi_disable(&(adapter->q_vector[i]->napi));
1675	}
1676
1677
1678	del_timer_sync(&adapter->watchdog_timer);
1679	del_timer_sync(&adapter->phy_info_timer);
1680
1681	netif_carrier_off(netdev);
1682
1683	/* record the stats before reset*/
1684	spin_lock(&adapter->stats64_lock);
1685	igb_update_stats(adapter, &adapter->stats64);
1686	spin_unlock(&adapter->stats64_lock);
1687
1688	adapter->link_speed = 0;
1689	adapter->link_duplex = 0;
1690
1691	if (!pci_channel_offline(adapter->pdev))
1692		igb_reset(adapter);
1693	igb_clean_all_tx_rings(adapter);
1694	igb_clean_all_rx_rings(adapter);
1695#ifdef CONFIG_IGB_DCA
1696
1697	/* since we reset the hardware DCA settings were cleared */
1698	igb_setup_dca(adapter);
1699#endif
1700}
1701
1702void igb_reinit_locked(struct igb_adapter *adapter)
1703{
1704	WARN_ON(in_interrupt());
1705	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1706		msleep(1);
1707	igb_down(adapter);
1708	igb_up(adapter);
1709	clear_bit(__IGB_RESETTING, &adapter->state);
1710}
1711
1712void igb_reset(struct igb_adapter *adapter)
1713{
1714	struct pci_dev *pdev = adapter->pdev;
1715	struct e1000_hw *hw = &adapter->hw;
1716	struct e1000_mac_info *mac = &hw->mac;
1717	struct e1000_fc_info *fc = &hw->fc;
1718	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1719
1720	/* Repartition Pba for greater than 9k mtu
1721	 * To take effect CTRL.RST is required.
1722	 */
1723	switch (mac->type) {
1724	case e1000_i350:
1725	case e1000_i354:
1726	case e1000_82580:
1727		pba = rd32(E1000_RXPBS);
1728		pba = igb_rxpbs_adjust_82580(pba);
1729		break;
1730	case e1000_82576:
1731		pba = rd32(E1000_RXPBS);
1732		pba &= E1000_RXPBS_SIZE_MASK_82576;
1733		break;
1734	case e1000_82575:
1735	case e1000_i210:
1736	case e1000_i211:
1737	default:
1738		pba = E1000_PBA_34K;
1739		break;
1740	}
1741
1742	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1743	    (mac->type < e1000_82576)) {
1744		/* adjust PBA for jumbo frames */
1745		wr32(E1000_PBA, pba);
1746
1747		/* To maintain wire speed transmits, the Tx FIFO should be
1748		 * large enough to accommodate two full transmit packets,
1749		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1750		 * the Rx FIFO should be large enough to accommodate at least
1751		 * one full receive packet and is similarly rounded up and
1752		 * expressed in KB.
1753		 */
1754		pba = rd32(E1000_PBA);
1755		/* upper 16 bits has Tx packet buffer allocation size in KB */
1756		tx_space = pba >> 16;
1757		/* lower 16 bits has Rx packet buffer allocation size in KB */
1758		pba &= 0xffff;
1759		/* the Tx fifo also stores 16 bytes of information about the Tx
1760		 * but don't include ethernet FCS because hardware appends it
1761		 */
1762		min_tx_space = (adapter->max_frame_size +
1763				sizeof(union e1000_adv_tx_desc) -
1764				ETH_FCS_LEN) * 2;
1765		min_tx_space = ALIGN(min_tx_space, 1024);
1766		min_tx_space >>= 10;
1767		/* software strips receive CRC, so leave room for it */
1768		min_rx_space = adapter->max_frame_size;
1769		min_rx_space = ALIGN(min_rx_space, 1024);
1770		min_rx_space >>= 10;
1771
1772		/* If current Tx allocation is less than the min Tx FIFO size,
1773		 * and the min Tx FIFO size is less than the current Rx FIFO
1774		 * allocation, take space away from current Rx allocation
1775		 */
1776		if (tx_space < min_tx_space &&
1777		    ((min_tx_space - tx_space) < pba)) {
1778			pba = pba - (min_tx_space - tx_space);
1779
1780			/* if short on Rx space, Rx wins and must trump Tx
1781			 * adjustment
1782			 */
1783			if (pba < min_rx_space)
1784				pba = min_rx_space;
1785		}
1786		wr32(E1000_PBA, pba);
1787	}
1788
1789	/* flow control settings */
1790	/* The high water mark must be low enough to fit one full frame
1791	 * (or the size used for early receive) above it in the Rx FIFO.
1792	 * Set it to the lower of:
1793	 * - 90% of the Rx FIFO size, or
1794	 * - the full Rx FIFO size minus one full frame
1795	 */
1796	hwm = min(((pba << 10) * 9 / 10),
1797			((pba << 10) - 2 * adapter->max_frame_size));
1798
1799	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1800	fc->low_water = fc->high_water - 16;
1801	fc->pause_time = 0xFFFF;
1802	fc->send_xon = 1;
1803	fc->current_mode = fc->requested_mode;
1804
1805	/* disable receive for all VFs and wait one second */
1806	if (adapter->vfs_allocated_count) {
1807		int i;
1808		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1809			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1810
1811		/* ping all the active vfs to let them know we are going down */
1812		igb_ping_all_vfs(adapter);
1813
1814		/* disable transmits and receives */
1815		wr32(E1000_VFRE, 0);
1816		wr32(E1000_VFTE, 0);
1817	}
1818
1819	/* Allow time for pending master requests to run */
1820	hw->mac.ops.reset_hw(hw);
1821	wr32(E1000_WUC, 0);
1822
1823	if (hw->mac.ops.init_hw(hw))
1824		dev_err(&pdev->dev, "Hardware Error\n");
1825
1826	/* Flow control settings reset on hardware reset, so guarantee flow
1827	 * control is off when forcing speed.
1828	 */
1829	if (!hw->mac.autoneg)
1830		igb_force_mac_fc(hw);
1831
1832	igb_init_dmac(adapter, pba);
1833#ifdef CONFIG_IGB_HWMON
1834	/* Re-initialize the thermal sensor on i350 devices. */
1835	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1836		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1837			/* If present, re-initialize the external thermal sensor
1838			 * interface.
1839			 */
1840			if (adapter->ets)
1841				mac->ops.init_thermal_sensor_thresh(hw);
1842		}
1843	}
1844#endif
1845	if (!netif_running(adapter->netdev))
1846		igb_power_down_link(adapter);
1847
1848	igb_update_mng_vlan(adapter);
1849
1850	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1851	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1852
1853	/* Re-enable PTP, where applicable. */
1854	igb_ptp_reset(adapter);
1855
1856	igb_get_phy_info(hw);
1857}
1858
1859static netdev_features_t igb_fix_features(struct net_device *netdev,
1860	netdev_features_t features)
1861{
1862	/* Since there is no support for separate Rx/Tx vlan accel
1863	 * enable/disable make sure Tx flag is always in same state as Rx.
1864	 */
1865	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1866		features |= NETIF_F_HW_VLAN_CTAG_TX;
1867	else
1868		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1869
1870	return features;
1871}
1872
1873static int igb_set_features(struct net_device *netdev,
1874	netdev_features_t features)
1875{
1876	netdev_features_t changed = netdev->features ^ features;
1877	struct igb_adapter *adapter = netdev_priv(netdev);
1878
1879	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1880		igb_vlan_mode(netdev, features);
1881
1882	if (!(changed & NETIF_F_RXALL))
1883		return 0;
1884
1885	netdev->features = features;
1886
1887	if (netif_running(netdev))
1888		igb_reinit_locked(adapter);
1889	else
1890		igb_reset(adapter);
1891
1892	return 0;
1893}
1894
1895static const struct net_device_ops igb_netdev_ops = {
1896	.ndo_open		= igb_open,
1897	.ndo_stop		= igb_close,
1898	.ndo_start_xmit		= igb_xmit_frame,
1899	.ndo_get_stats64	= igb_get_stats64,
1900	.ndo_set_rx_mode	= igb_set_rx_mode,
1901	.ndo_set_mac_address	= igb_set_mac,
1902	.ndo_change_mtu		= igb_change_mtu,
1903	.ndo_do_ioctl		= igb_ioctl,
1904	.ndo_tx_timeout		= igb_tx_timeout,
1905	.ndo_validate_addr	= eth_validate_addr,
1906	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
1907	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1908	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
1909	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
1910	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
1911	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
1912	.ndo_get_vf_config	= igb_ndo_get_vf_config,
1913#ifdef CONFIG_NET_POLL_CONTROLLER
1914	.ndo_poll_controller	= igb_netpoll,
1915#endif
1916	.ndo_fix_features	= igb_fix_features,
1917	.ndo_set_features	= igb_set_features,
1918};
1919
1920/**
1921 * igb_set_fw_version - Configure version string for ethtool
1922 * @adapter: adapter struct
1923 **/
1924void igb_set_fw_version(struct igb_adapter *adapter)
1925{
1926	struct e1000_hw *hw = &adapter->hw;
1927	struct e1000_fw_version fw;
1928
1929	igb_get_fw_version(hw, &fw);
1930
1931	switch (hw->mac.type) {
1932	case e1000_i211:
1933		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1934			 "%2d.%2d-%d",
1935			 fw.invm_major, fw.invm_minor, fw.invm_img_type);
1936		break;
1937
1938	default:
1939		/* if option is rom valid, display its version too */
1940		if (fw.or_valid) {
1941			snprintf(adapter->fw_version,
1942				 sizeof(adapter->fw_version),
1943				 "%d.%d, 0x%08x, %d.%d.%d",
1944				 fw.eep_major, fw.eep_minor, fw.etrack_id,
1945				 fw.or_major, fw.or_build, fw.or_patch);
1946		/* no option rom */
1947		} else {
1948			snprintf(adapter->fw_version,
1949				 sizeof(adapter->fw_version),
1950				 "%d.%d, 0x%08x",
1951				 fw.eep_major, fw.eep_minor, fw.etrack_id);
1952		}
1953		break;
1954	}
1955	return;
1956}
1957
1958/**
1959 *  igb_init_i2c - Init I2C interface
1960 *  @adapter: pointer to adapter structure
1961 **/
1962static s32 igb_init_i2c(struct igb_adapter *adapter)
1963{
1964	s32 status = E1000_SUCCESS;
1965
1966	/* I2C interface supported on i350 devices */
1967	if (adapter->hw.mac.type != e1000_i350)
1968		return E1000_SUCCESS;
1969
1970	/* Initialize the i2c bus which is controlled by the registers.
1971	 * This bus will use the i2c_algo_bit structue that implements
1972	 * the protocol through toggling of the 4 bits in the register.
1973	 */
1974	adapter->i2c_adap.owner = THIS_MODULE;
1975	adapter->i2c_algo = igb_i2c_algo;
1976	adapter->i2c_algo.data = adapter;
1977	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1978	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1979	strlcpy(adapter->i2c_adap.name, "igb BB",
1980		sizeof(adapter->i2c_adap.name));
1981	status = i2c_bit_add_bus(&adapter->i2c_adap);
1982	return status;
1983}
1984
1985/**
1986 *  igb_probe - Device Initialization Routine
1987 *  @pdev: PCI device information struct
1988 *  @ent: entry in igb_pci_tbl
1989 *
1990 *  Returns 0 on success, negative on failure
1991 *
1992 *  igb_probe initializes an adapter identified by a pci_dev structure.
1993 *  The OS initialization, configuring of the adapter private structure,
1994 *  and a hardware reset occur.
1995 **/
1996static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1997{
1998	struct net_device *netdev;
1999	struct igb_adapter *adapter;
2000	struct e1000_hw *hw;
2001	u16 eeprom_data = 0;
2002	s32 ret_val;
2003	static int global_quad_port_a; /* global quad port a indication */
2004	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2005	unsigned long mmio_start, mmio_len;
2006	int err, pci_using_dac;
2007	u8 part_str[E1000_PBANUM_LENGTH];
2008
2009	/* Catch broken hardware that put the wrong VF device ID in
2010	 * the PCIe SR-IOV capability.
2011	 */
2012	if (pdev->is_virtfn) {
2013		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2014			pci_name(pdev), pdev->vendor, pdev->device);
2015		return -EINVAL;
2016	}
2017
2018	err = pci_enable_device_mem(pdev);
2019	if (err)
2020		return err;
2021
2022	pci_using_dac = 0;
2023	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2024	if (!err) {
2025		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2026		if (!err)
2027			pci_using_dac = 1;
2028	} else {
2029		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2030		if (err) {
2031			err = dma_set_coherent_mask(&pdev->dev,
2032						    DMA_BIT_MASK(32));
2033			if (err) {
2034				dev_err(&pdev->dev,
2035					"No usable DMA configuration, aborting\n");
2036				goto err_dma;
2037			}
2038		}
2039	}
2040
2041	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2042					   IORESOURCE_MEM),
2043					   igb_driver_name);
2044	if (err)
2045		goto err_pci_reg;
2046
2047	pci_enable_pcie_error_reporting(pdev);
2048
2049	pci_set_master(pdev);
2050	pci_save_state(pdev);
2051
2052	err = -ENOMEM;
2053	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2054				   IGB_MAX_TX_QUEUES);
2055	if (!netdev)
2056		goto err_alloc_etherdev;
2057
2058	SET_NETDEV_DEV(netdev, &pdev->dev);
2059
2060	pci_set_drvdata(pdev, netdev);
2061	adapter = netdev_priv(netdev);
2062	adapter->netdev = netdev;
2063	adapter->pdev = pdev;
2064	hw = &adapter->hw;
2065	hw->back = adapter;
2066	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2067
2068	mmio_start = pci_resource_start(pdev, 0);
2069	mmio_len = pci_resource_len(pdev, 0);
2070
2071	err = -EIO;
2072	hw->hw_addr = ioremap(mmio_start, mmio_len);
2073	if (!hw->hw_addr)
2074		goto err_ioremap;
2075
2076	netdev->netdev_ops = &igb_netdev_ops;
2077	igb_set_ethtool_ops(netdev);
2078	netdev->watchdog_timeo = 5 * HZ;
2079
2080	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2081
2082	netdev->mem_start = mmio_start;
2083	netdev->mem_end = mmio_start + mmio_len;
2084
2085	/* PCI config space info */
2086	hw->vendor_id = pdev->vendor;
2087	hw->device_id = pdev->device;
2088	hw->revision_id = pdev->revision;
2089	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2090	hw->subsystem_device_id = pdev->subsystem_device;
2091
2092	/* Copy the default MAC, PHY and NVM function pointers */
2093	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2094	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2095	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2096	/* Initialize skew-specific constants */
2097	err = ei->get_invariants(hw);
2098	if (err)
2099		goto err_sw_init;
2100
2101	/* setup the private structure */
2102	err = igb_sw_init(adapter);
2103	if (err)
2104		goto err_sw_init;
2105
2106	igb_get_bus_info_pcie(hw);
2107
2108	hw->phy.autoneg_wait_to_complete = false;
2109
2110	/* Copper options */
2111	if (hw->phy.media_type == e1000_media_type_copper) {
2112		hw->phy.mdix = AUTO_ALL_MODES;
2113		hw->phy.disable_polarity_correction = false;
2114		hw->phy.ms_type = e1000_ms_hw_default;
2115	}
2116
2117	if (igb_check_reset_block(hw))
2118		dev_info(&pdev->dev,
2119			"PHY reset is blocked due to SOL/IDER session.\n");
2120
2121	/* features is initialized to 0 in allocation, it might have bits
2122	 * set by igb_sw_init so we should use an or instead of an
2123	 * assignment.
2124	 */
2125	netdev->features |= NETIF_F_SG |
2126			    NETIF_F_IP_CSUM |
2127			    NETIF_F_IPV6_CSUM |
2128			    NETIF_F_TSO |
2129			    NETIF_F_TSO6 |
2130			    NETIF_F_RXHASH |
2131			    NETIF_F_RXCSUM |
2132			    NETIF_F_HW_VLAN_CTAG_RX |
2133			    NETIF_F_HW_VLAN_CTAG_TX;
2134
2135	/* copy netdev features into list of user selectable features */
2136	netdev->hw_features |= netdev->features;
2137	netdev->hw_features |= NETIF_F_RXALL;
2138
2139	/* set this bit last since it cannot be part of hw_features */
2140	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2141
2142	netdev->vlan_features |= NETIF_F_TSO |
2143				 NETIF_F_TSO6 |
2144				 NETIF_F_IP_CSUM |
2145				 NETIF_F_IPV6_CSUM |
2146				 NETIF_F_SG;
2147
2148	netdev->priv_flags |= IFF_SUPP_NOFCS;
2149
2150	if (pci_using_dac) {
2151		netdev->features |= NETIF_F_HIGHDMA;
2152		netdev->vlan_features |= NETIF_F_HIGHDMA;
2153	}
2154
2155	if (hw->mac.type >= e1000_82576) {
2156		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2157		netdev->features |= NETIF_F_SCTP_CSUM;
2158	}
2159
2160	netdev->priv_flags |= IFF_UNICAST_FLT;
2161
2162	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2163
2164	/* before reading the NVM, reset the controller to put the device in a
2165	 * known good starting state
2166	 */
2167	hw->mac.ops.reset_hw(hw);
2168
2169	/* make sure the NVM is good , i211 parts have special NVM that
2170	 * doesn't contain a checksum
2171	 */
2172	if (hw->mac.type != e1000_i211) {
2173		if (hw->nvm.ops.validate(hw) < 0) {
2174			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2175			err = -EIO;
2176			goto err_eeprom;
2177		}
2178	}
2179
2180	/* copy the MAC address out of the NVM */
2181	if (hw->mac.ops.read_mac_addr(hw))
2182		dev_err(&pdev->dev, "NVM Read Error\n");
2183
2184	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2185
2186	if (!is_valid_ether_addr(netdev->dev_addr)) {
2187		dev_err(&pdev->dev, "Invalid MAC Address\n");
2188		err = -EIO;
2189		goto err_eeprom;
2190	}
2191
2192	/* get firmware version for ethtool -i */
2193	igb_set_fw_version(adapter);
2194
2195	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2196		    (unsigned long) adapter);
2197	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2198		    (unsigned long) adapter);
2199
2200	INIT_WORK(&adapter->reset_task, igb_reset_task);
2201	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2202
2203	/* Initialize link properties that are user-changeable */
2204	adapter->fc_autoneg = true;
2205	hw->mac.autoneg = true;
2206	hw->phy.autoneg_advertised = 0x2f;
2207
2208	hw->fc.requested_mode = e1000_fc_default;
2209	hw->fc.current_mode = e1000_fc_default;
2210
2211	igb_validate_mdi_setting(hw);
2212
2213	/* By default, support wake on port A */
2214	if (hw->bus.func == 0)
2215		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2216
2217	/* Check the NVM for wake support on non-port A ports */
2218	if (hw->mac.type >= e1000_82580)
2219		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2220				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2221				 &eeprom_data);
2222	else if (hw->bus.func == 1)
2223		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2224
2225	if (eeprom_data & IGB_EEPROM_APME)
2226		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2227
2228	/* now that we have the eeprom settings, apply the special cases where
2229	 * the eeprom may be wrong or the board simply won't support wake on
2230	 * lan on a particular port
2231	 */
2232	switch (pdev->device) {
2233	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2234		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2235		break;
2236	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2237	case E1000_DEV_ID_82576_FIBER:
2238	case E1000_DEV_ID_82576_SERDES:
2239		/* Wake events only supported on port A for dual fiber
2240		 * regardless of eeprom setting
2241		 */
2242		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2243			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2244		break;
2245	case E1000_DEV_ID_82576_QUAD_COPPER:
2246	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2247		/* if quad port adapter, disable WoL on all but port A */
2248		if (global_quad_port_a != 0)
2249			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2250		else
2251			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2252		/* Reset for multiple quad port adapters */
2253		if (++global_quad_port_a == 4)
2254			global_quad_port_a = 0;
2255		break;
2256	default:
2257		/* If the device can't wake, don't set software support */
2258		if (!device_can_wakeup(&adapter->pdev->dev))
2259			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2260	}
2261
2262	/* initialize the wol settings based on the eeprom settings */
2263	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2264		adapter->wol |= E1000_WUFC_MAG;
2265
2266	/* Some vendors want WoL disabled by default, but still supported */
2267	if ((hw->mac.type == e1000_i350) &&
2268	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2269		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2270		adapter->wol = 0;
2271	}
2272
2273	device_set_wakeup_enable(&adapter->pdev->dev,
2274				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2275
2276	/* reset the hardware with the new settings */
2277	igb_reset(adapter);
2278
2279	/* Init the I2C interface */
2280	err = igb_init_i2c(adapter);
2281	if (err) {
2282		dev_err(&pdev->dev, "failed to init i2c interface\n");
2283		goto err_eeprom;
2284	}
2285
2286	/* let the f/w know that the h/w is now under the control of the
2287	 * driver. */
2288	igb_get_hw_control(adapter);
2289
2290	strcpy(netdev->name, "eth%d");
2291	err = register_netdev(netdev);
2292	if (err)
2293		goto err_register;
2294
2295	/* carrier off reporting is important to ethtool even BEFORE open */
2296	netif_carrier_off(netdev);
2297
2298#ifdef CONFIG_IGB_DCA
2299	if (dca_add_requester(&pdev->dev) == 0) {
2300		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2301		dev_info(&pdev->dev, "DCA enabled\n");
2302		igb_setup_dca(adapter);
2303	}
2304
2305#endif
2306#ifdef CONFIG_IGB_HWMON
2307	/* Initialize the thermal sensor on i350 devices. */
2308	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2309		u16 ets_word;
2310
2311		/* Read the NVM to determine if this i350 device supports an
2312		 * external thermal sensor.
2313		 */
2314		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2315		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2316			adapter->ets = true;
2317		else
2318			adapter->ets = false;
2319		if (igb_sysfs_init(adapter))
2320			dev_err(&pdev->dev,
2321				"failed to allocate sysfs resources\n");
2322	} else {
2323		adapter->ets = false;
2324	}
2325#endif
2326	/* do hw tstamp init after resetting */
2327	igb_ptp_init(adapter);
2328
2329	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2330	/* print bus type/speed/width info, not applicable to i354 */
2331	if (hw->mac.type != e1000_i354) {
2332		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2333			 netdev->name,
2334			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2335			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2336			   "unknown"),
2337			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2338			  "Width x4" :
2339			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2340			  "Width x2" :
2341			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2342			  "Width x1" : "unknown"), netdev->dev_addr);
2343	}
2344
2345	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2346	if (ret_val)
2347		strcpy(part_str, "Unknown");
2348	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2349	dev_info(&pdev->dev,
2350		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2351		adapter->msix_entries ? "MSI-X" :
2352		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2353		adapter->num_rx_queues, adapter->num_tx_queues);
2354	switch (hw->mac.type) {
2355	case e1000_i350:
2356	case e1000_i210:
2357	case e1000_i211:
2358		igb_set_eee_i350(hw);
2359		break;
2360	case e1000_i354:
2361		if (hw->phy.media_type == e1000_media_type_copper) {
2362			if ((rd32(E1000_CTRL_EXT) &
2363			    E1000_CTRL_EXT_LINK_MODE_SGMII))
2364				igb_set_eee_i354(hw);
2365		}
2366		break;
2367	default:
2368		break;
2369	}
2370
2371	pm_runtime_put_noidle(&pdev->dev);
2372	return 0;
2373
2374err_register:
2375	igb_release_hw_control(adapter);
2376	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2377err_eeprom:
2378	if (!igb_check_reset_block(hw))
2379		igb_reset_phy(hw);
2380
2381	if (hw->flash_address)
2382		iounmap(hw->flash_address);
2383err_sw_init:
2384	igb_clear_interrupt_scheme(adapter);
2385	iounmap(hw->hw_addr);
2386err_ioremap:
2387	free_netdev(netdev);
2388err_alloc_etherdev:
2389	pci_release_selected_regions(pdev,
2390				     pci_select_bars(pdev, IORESOURCE_MEM));
2391err_pci_reg:
2392err_dma:
2393	pci_disable_device(pdev);
2394	return err;
2395}
2396
2397#ifdef CONFIG_PCI_IOV
2398static int  igb_disable_sriov(struct pci_dev *pdev)
2399{
2400	struct net_device *netdev = pci_get_drvdata(pdev);
2401	struct igb_adapter *adapter = netdev_priv(netdev);
2402	struct e1000_hw *hw = &adapter->hw;
2403
2404	/* reclaim resources allocated to VFs */
2405	if (adapter->vf_data) {
2406		/* disable iov and allow time for transactions to clear */
2407		if (pci_vfs_assigned(pdev)) {
2408			dev_warn(&pdev->dev,
2409				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2410			return -EPERM;
2411		} else {
2412			pci_disable_sriov(pdev);
2413			msleep(500);
2414		}
2415
2416		kfree(adapter->vf_data);
2417		adapter->vf_data = NULL;
2418		adapter->vfs_allocated_count = 0;
2419		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2420		wrfl();
2421		msleep(100);
2422		dev_info(&pdev->dev, "IOV Disabled\n");
2423
2424		/* Re-enable DMA Coalescing flag since IOV is turned off */
2425		adapter->flags |= IGB_FLAG_DMAC;
2426	}
2427
2428	return 0;
2429}
2430
2431static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2432{
2433	struct net_device *netdev = pci_get_drvdata(pdev);
2434	struct igb_adapter *adapter = netdev_priv(netdev);
2435	int old_vfs = pci_num_vf(pdev);
2436	int err = 0;
2437	int i;
2438
2439	if (!num_vfs)
2440		goto out;
2441	else if (old_vfs && old_vfs == num_vfs)
2442		goto out;
2443	else if (old_vfs && old_vfs != num_vfs)
2444		err = igb_disable_sriov(pdev);
2445
2446	if (err)
2447		goto out;
2448
2449	if (num_vfs > 7) {
2450		err = -EPERM;
2451		goto out;
2452	}
2453
2454	adapter->vfs_allocated_count = num_vfs;
2455
2456	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2457				sizeof(struct vf_data_storage), GFP_KERNEL);
2458
2459	/* if allocation failed then we do not support SR-IOV */
2460	if (!adapter->vf_data) {
2461		adapter->vfs_allocated_count = 0;
2462		dev_err(&pdev->dev,
2463			"Unable to allocate memory for VF Data Storage\n");
2464		err = -ENOMEM;
2465		goto out;
2466	}
2467
2468	err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2469	if (err)
2470		goto err_out;
2471
2472	dev_info(&pdev->dev, "%d VFs allocated\n",
2473		 adapter->vfs_allocated_count);
2474	for (i = 0; i < adapter->vfs_allocated_count; i++)
2475		igb_vf_configure(adapter, i);
2476
2477	/* DMA Coalescing is not supported in IOV mode. */
2478	adapter->flags &= ~IGB_FLAG_DMAC;
2479	goto out;
2480
2481err_out:
2482	kfree(adapter->vf_data);
2483	adapter->vf_data = NULL;
2484	adapter->vfs_allocated_count = 0;
2485out:
2486	return err;
2487}
2488
2489#endif
2490/**
2491 *  igb_remove_i2c - Cleanup  I2C interface
2492 *  @adapter: pointer to adapter structure
2493 **/
2494static void igb_remove_i2c(struct igb_adapter *adapter)
2495{
2496	/* free the adapter bus structure */
2497	i2c_del_adapter(&adapter->i2c_adap);
2498}
2499
2500/**
2501 *  igb_remove - Device Removal Routine
2502 *  @pdev: PCI device information struct
2503 *
2504 *  igb_remove is called by the PCI subsystem to alert the driver
2505 *  that it should release a PCI device.  The could be caused by a
2506 *  Hot-Plug event, or because the driver is going to be removed from
2507 *  memory.
2508 **/
2509static void igb_remove(struct pci_dev *pdev)
2510{
2511	struct net_device *netdev = pci_get_drvdata(pdev);
2512	struct igb_adapter *adapter = netdev_priv(netdev);
2513	struct e1000_hw *hw = &adapter->hw;
2514
2515	pm_runtime_get_noresume(&pdev->dev);
2516#ifdef CONFIG_IGB_HWMON
2517	igb_sysfs_exit(adapter);
2518#endif
2519	igb_remove_i2c(adapter);
2520	igb_ptp_stop(adapter);
2521	/* The watchdog timer may be rescheduled, so explicitly
2522	 * disable watchdog from being rescheduled.
2523	 */
2524	set_bit(__IGB_DOWN, &adapter->state);
2525	del_timer_sync(&adapter->watchdog_timer);
2526	del_timer_sync(&adapter->phy_info_timer);
2527
2528	cancel_work_sync(&adapter->reset_task);
2529	cancel_work_sync(&adapter->watchdog_task);
2530
2531#ifdef CONFIG_IGB_DCA
2532	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2533		dev_info(&pdev->dev, "DCA disabled\n");
2534		dca_remove_requester(&pdev->dev);
2535		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2536		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2537	}
2538#endif
2539
2540	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2541	 * would have already happened in close and is redundant.
2542	 */
2543	igb_release_hw_control(adapter);
2544
2545	unregister_netdev(netdev);
2546
2547	igb_clear_interrupt_scheme(adapter);
2548
2549#ifdef CONFIG_PCI_IOV
2550	igb_disable_sriov(pdev);
2551#endif
2552
2553	iounmap(hw->hw_addr);
2554	if (hw->flash_address)
2555		iounmap(hw->flash_address);
2556	pci_release_selected_regions(pdev,
2557				     pci_select_bars(pdev, IORESOURCE_MEM));
2558
2559	kfree(adapter->shadow_vfta);
2560	free_netdev(netdev);
2561
2562	pci_disable_pcie_error_reporting(pdev);
2563
2564	pci_disable_device(pdev);
2565}
2566
2567/**
2568 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2569 *  @adapter: board private structure to initialize
2570 *
2571 *  This function initializes the vf specific data storage and then attempts to
2572 *  allocate the VFs.  The reason for ordering it this way is because it is much
2573 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2574 *  the memory for the VFs.
2575 **/
2576static void igb_probe_vfs(struct igb_adapter *adapter)
2577{
2578#ifdef CONFIG_PCI_IOV
2579	struct pci_dev *pdev = adapter->pdev;
2580	struct e1000_hw *hw = &adapter->hw;
2581
2582	/* Virtualization features not supported on i210 family. */
2583	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2584		return;
2585
2586	pci_sriov_set_totalvfs(pdev, 7);
2587	igb_enable_sriov(pdev, max_vfs);
2588
2589#endif /* CONFIG_PCI_IOV */
2590}
2591
2592static void igb_init_queue_configuration(struct igb_adapter *adapter)
2593{
2594	struct e1000_hw *hw = &adapter->hw;
2595	u32 max_rss_queues;
2596
2597	/* Determine the maximum number of RSS queues supported. */
2598	switch (hw->mac.type) {
2599	case e1000_i211:
2600		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2601		break;
2602	case e1000_82575:
2603	case e1000_i210:
2604		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2605		break;
2606	case e1000_i350:
2607		/* I350 cannot do RSS and SR-IOV at the same time */
2608		if (!!adapter->vfs_allocated_count) {
2609			max_rss_queues = 1;
2610			break;
2611		}
2612		/* fall through */
2613	case e1000_82576:
2614		if (!!adapter->vfs_allocated_count) {
2615			max_rss_queues = 2;
2616			break;
2617		}
2618		/* fall through */
2619	case e1000_82580:
2620	case e1000_i354:
2621	default:
2622		max_rss_queues = IGB_MAX_RX_QUEUES;
2623		break;
2624	}
2625
2626	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2627
2628	/* Determine if we need to pair queues. */
2629	switch (hw->mac.type) {
2630	case e1000_82575:
2631	case e1000_i211:
2632		/* Device supports enough interrupts without queue pairing. */
2633		break;
2634	case e1000_82576:
2635		/* If VFs are going to be allocated with RSS queues then we
2636		 * should pair the queues in order to conserve interrupts due
2637		 * to limited supply.
2638		 */
2639		if ((adapter->rss_queues > 1) &&
2640		    (adapter->vfs_allocated_count > 6))
2641			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2642		/* fall through */
2643	case e1000_82580:
2644	case e1000_i350:
2645	case e1000_i354:
2646	case e1000_i210:
2647	default:
2648		/* If rss_queues > half of max_rss_queues, pair the queues in
2649		 * order to conserve interrupts due to limited supply.
2650		 */
2651		if (adapter->rss_queues > (max_rss_queues / 2))
2652			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2653		break;
2654	}
2655}
2656
2657/**
2658 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2659 *  @adapter: board private structure to initialize
2660 *
2661 *  igb_sw_init initializes the Adapter private data structure.
2662 *  Fields are initialized based on PCI device information and
2663 *  OS network device settings (MTU size).
2664 **/
2665static int igb_sw_init(struct igb_adapter *adapter)
2666{
2667	struct e1000_hw *hw = &adapter->hw;
2668	struct net_device *netdev = adapter->netdev;
2669	struct pci_dev *pdev = adapter->pdev;
2670
2671	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2672
2673	/* set default ring sizes */
2674	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2675	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2676
2677	/* set default ITR values */
2678	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2679	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2680
2681	/* set default work limits */
2682	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2683
2684	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2685				  VLAN_HLEN;
2686	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2687
2688	spin_lock_init(&adapter->stats64_lock);
2689#ifdef CONFIG_PCI_IOV
2690	switch (hw->mac.type) {
2691	case e1000_82576:
2692	case e1000_i350:
2693		if (max_vfs > 7) {
2694			dev_warn(&pdev->dev,
2695				 "Maximum of 7 VFs per PF, using max\n");
2696			max_vfs = adapter->vfs_allocated_count = 7;
2697		} else
2698			adapter->vfs_allocated_count = max_vfs;
2699		if (adapter->vfs_allocated_count)
2700			dev_warn(&pdev->dev,
2701				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2702		break;
2703	default:
2704		break;
2705	}
2706#endif /* CONFIG_PCI_IOV */
2707
2708	igb_init_queue_configuration(adapter);
2709
2710	/* Setup and initialize a copy of the hw vlan table array */
2711	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2712				       GFP_ATOMIC);
2713
2714	/* This call may decrease the number of queues */
2715	if (igb_init_interrupt_scheme(adapter, true)) {
2716		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2717		return -ENOMEM;
2718	}
2719
2720	igb_probe_vfs(adapter);
2721
2722	/* Explicitly disable IRQ since the NIC can be in any state. */
2723	igb_irq_disable(adapter);
2724
2725	if (hw->mac.type >= e1000_i350)
2726		adapter->flags &= ~IGB_FLAG_DMAC;
2727
2728	set_bit(__IGB_DOWN, &adapter->state);
2729	return 0;
2730}
2731
2732/**
2733 *  igb_open - Called when a network interface is made active
2734 *  @netdev: network interface device structure
2735 *
2736 *  Returns 0 on success, negative value on failure
2737 *
2738 *  The open entry point is called when a network interface is made
2739 *  active by the system (IFF_UP).  At this point all resources needed
2740 *  for transmit and receive operations are allocated, the interrupt
2741 *  handler is registered with the OS, the watchdog timer is started,
2742 *  and the stack is notified that the interface is ready.
2743 **/
2744static int __igb_open(struct net_device *netdev, bool resuming)
2745{
2746	struct igb_adapter *adapter = netdev_priv(netdev);
2747	struct e1000_hw *hw = &adapter->hw;
2748	struct pci_dev *pdev = adapter->pdev;
2749	int err;
2750	int i;
2751
2752	/* disallow open during test */
2753	if (test_bit(__IGB_TESTING, &adapter->state)) {
2754		WARN_ON(resuming);
2755		return -EBUSY;
2756	}
2757
2758	if (!resuming)
2759		pm_runtime_get_sync(&pdev->dev);
2760
2761	netif_carrier_off(netdev);
2762
2763	/* allocate transmit descriptors */
2764	err = igb_setup_all_tx_resources(adapter);
2765	if (err)
2766		goto err_setup_tx;
2767
2768	/* allocate receive descriptors */
2769	err = igb_setup_all_rx_resources(adapter);
2770	if (err)
2771		goto err_setup_rx;
2772
2773	igb_power_up_link(adapter);
2774
2775	/* before we allocate an interrupt, we must be ready to handle it.
2776	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2777	 * as soon as we call pci_request_irq, so we have to setup our
2778	 * clean_rx handler before we do so.
2779	 */
2780	igb_configure(adapter);
2781
2782	err = igb_request_irq(adapter);
2783	if (err)
2784		goto err_req_irq;
2785
2786	/* Notify the stack of the actual queue counts. */
2787	err = netif_set_real_num_tx_queues(adapter->netdev,
2788					   adapter->num_tx_queues);
2789	if (err)
2790		goto err_set_queues;
2791
2792	err = netif_set_real_num_rx_queues(adapter->netdev,
2793					   adapter->num_rx_queues);
2794	if (err)
2795		goto err_set_queues;
2796
2797	/* From here on the code is the same as igb_up() */
2798	clear_bit(__IGB_DOWN, &adapter->state);
2799
2800	for (i = 0; i < adapter->num_q_vectors; i++)
2801		napi_enable(&(adapter->q_vector[i]->napi));
2802
2803	/* Clear any pending interrupts. */
2804	rd32(E1000_ICR);
2805
2806	igb_irq_enable(adapter);
2807
2808	/* notify VFs that reset has been completed */
2809	if (adapter->vfs_allocated_count) {
2810		u32 reg_data = rd32(E1000_CTRL_EXT);
2811		reg_data |= E1000_CTRL_EXT_PFRSTD;
2812		wr32(E1000_CTRL_EXT, reg_data);
2813	}
2814
2815	netif_tx_start_all_queues(netdev);
2816
2817	if (!resuming)
2818		pm_runtime_put(&pdev->dev);
2819
2820	/* start the watchdog. */
2821	hw->mac.get_link_status = 1;
2822	schedule_work(&adapter->watchdog_task);
2823
2824	return 0;
2825
2826err_set_queues:
2827	igb_free_irq(adapter);
2828err_req_irq:
2829	igb_release_hw_control(adapter);
2830	igb_power_down_link(adapter);
2831	igb_free_all_rx_resources(adapter);
2832err_setup_rx:
2833	igb_free_all_tx_resources(adapter);
2834err_setup_tx:
2835	igb_reset(adapter);
2836	if (!resuming)
2837		pm_runtime_put(&pdev->dev);
2838
2839	return err;
2840}
2841
2842static int igb_open(struct net_device *netdev)
2843{
2844	return __igb_open(netdev, false);
2845}
2846
2847/**
2848 *  igb_close - Disables a network interface
2849 *  @netdev: network interface device structure
2850 *
2851 *  Returns 0, this is not allowed to fail
2852 *
2853 *  The close entry point is called when an interface is de-activated
2854 *  by the OS.  The hardware is still under the driver's control, but
2855 *  needs to be disabled.  A global MAC reset is issued to stop the
2856 *  hardware, and all transmit and receive resources are freed.
2857 **/
2858static int __igb_close(struct net_device *netdev, bool suspending)
2859{
2860	struct igb_adapter *adapter = netdev_priv(netdev);
2861	struct pci_dev *pdev = adapter->pdev;
2862
2863	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2864
2865	if (!suspending)
2866		pm_runtime_get_sync(&pdev->dev);
2867
2868	igb_down(adapter);
2869	igb_free_irq(adapter);
2870
2871	igb_free_all_tx_resources(adapter);
2872	igb_free_all_rx_resources(adapter);
2873
2874	if (!suspending)
2875		pm_runtime_put_sync(&pdev->dev);
2876	return 0;
2877}
2878
2879static int igb_close(struct net_device *netdev)
2880{
2881	return __igb_close(netdev, false);
2882}
2883
2884/**
2885 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
2886 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
2887 *
2888 *  Return 0 on success, negative on failure
2889 **/
2890int igb_setup_tx_resources(struct igb_ring *tx_ring)
2891{
2892	struct device *dev = tx_ring->dev;
2893	int size;
2894
2895	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2896
2897	tx_ring->tx_buffer_info = vzalloc(size);
2898	if (!tx_ring->tx_buffer_info)
2899		goto err;
2900
2901	/* round up to nearest 4K */
2902	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2903	tx_ring->size = ALIGN(tx_ring->size, 4096);
2904
2905	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2906					   &tx_ring->dma, GFP_KERNEL);
2907	if (!tx_ring->desc)
2908		goto err;
2909
2910	tx_ring->next_to_use = 0;
2911	tx_ring->next_to_clean = 0;
2912
2913	return 0;
2914
2915err:
2916	vfree(tx_ring->tx_buffer_info);
2917	tx_ring->tx_buffer_info = NULL;
2918	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2919	return -ENOMEM;
2920}
2921
2922/**
2923 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
2924 *				 (Descriptors) for all queues
2925 *  @adapter: board private structure
2926 *
2927 *  Return 0 on success, negative on failure
2928 **/
2929static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2930{
2931	struct pci_dev *pdev = adapter->pdev;
2932	int i, err = 0;
2933
2934	for (i = 0; i < adapter->num_tx_queues; i++) {
2935		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2936		if (err) {
2937			dev_err(&pdev->dev,
2938				"Allocation for Tx Queue %u failed\n", i);
2939			for (i--; i >= 0; i--)
2940				igb_free_tx_resources(adapter->tx_ring[i]);
2941			break;
2942		}
2943	}
2944
2945	return err;
2946}
2947
2948/**
2949 *  igb_setup_tctl - configure the transmit control registers
2950 *  @adapter: Board private structure
2951 **/
2952void igb_setup_tctl(struct igb_adapter *adapter)
2953{
2954	struct e1000_hw *hw = &adapter->hw;
2955	u32 tctl;
2956
2957	/* disable queue 0 which is enabled by default on 82575 and 82576 */
2958	wr32(E1000_TXDCTL(0), 0);
2959
2960	/* Program the Transmit Control Register */
2961	tctl = rd32(E1000_TCTL);
2962	tctl &= ~E1000_TCTL_CT;
2963	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2964		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2965
2966	igb_config_collision_dist(hw);
2967
2968	/* Enable transmits */
2969	tctl |= E1000_TCTL_EN;
2970
2971	wr32(E1000_TCTL, tctl);
2972}
2973
2974/**
2975 *  igb_configure_tx_ring - Configure transmit ring after Reset
2976 *  @adapter: board private structure
2977 *  @ring: tx ring to configure
2978 *
2979 *  Configure a transmit ring after a reset.
2980 **/
2981void igb_configure_tx_ring(struct igb_adapter *adapter,
2982                           struct igb_ring *ring)
2983{
2984	struct e1000_hw *hw = &adapter->hw;
2985	u32 txdctl = 0;
2986	u64 tdba = ring->dma;
2987	int reg_idx = ring->reg_idx;
2988
2989	/* disable the queue */
2990	wr32(E1000_TXDCTL(reg_idx), 0);
2991	wrfl();
2992	mdelay(10);
2993
2994	wr32(E1000_TDLEN(reg_idx),
2995	     ring->count * sizeof(union e1000_adv_tx_desc));
2996	wr32(E1000_TDBAL(reg_idx),
2997	     tdba & 0x00000000ffffffffULL);
2998	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2999
3000	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3001	wr32(E1000_TDH(reg_idx), 0);
3002	writel(0, ring->tail);
3003
3004	txdctl |= IGB_TX_PTHRESH;
3005	txdctl |= IGB_TX_HTHRESH << 8;
3006	txdctl |= IGB_TX_WTHRESH << 16;
3007
3008	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3009	wr32(E1000_TXDCTL(reg_idx), txdctl);
3010}
3011
3012/**
3013 *  igb_configure_tx - Configure transmit Unit after Reset
3014 *  @adapter: board private structure
3015 *
3016 *  Configure the Tx unit of the MAC after a reset.
3017 **/
3018static void igb_configure_tx(struct igb_adapter *adapter)
3019{
3020	int i;
3021
3022	for (i = 0; i < adapter->num_tx_queues; i++)
3023		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3024}
3025
3026/**
3027 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3028 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3029 *
3030 *  Returns 0 on success, negative on failure
3031 **/
3032int igb_setup_rx_resources(struct igb_ring *rx_ring)
3033{
3034	struct device *dev = rx_ring->dev;
3035	int size;
3036
3037	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3038
3039	rx_ring->rx_buffer_info = vzalloc(size);
3040	if (!rx_ring->rx_buffer_info)
3041		goto err;
3042
3043	/* Round up to nearest 4K */
3044	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3045	rx_ring->size = ALIGN(rx_ring->size, 4096);
3046
3047	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3048					   &rx_ring->dma, GFP_KERNEL);
3049	if (!rx_ring->desc)
3050		goto err;
3051
3052	rx_ring->next_to_alloc = 0;
3053	rx_ring->next_to_clean = 0;
3054	rx_ring->next_to_use = 0;
3055
3056	return 0;
3057
3058err:
3059	vfree(rx_ring->rx_buffer_info);
3060	rx_ring->rx_buffer_info = NULL;
3061	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3062	return -ENOMEM;
3063}
3064
3065/**
3066 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3067 *				 (Descriptors) for all queues
3068 *  @adapter: board private structure
3069 *
3070 *  Return 0 on success, negative on failure
3071 **/
3072static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3073{
3074	struct pci_dev *pdev = adapter->pdev;
3075	int i, err = 0;
3076
3077	for (i = 0; i < adapter->num_rx_queues; i++) {
3078		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3079		if (err) {
3080			dev_err(&pdev->dev,
3081				"Allocation for Rx Queue %u failed\n", i);
3082			for (i--; i >= 0; i--)
3083				igb_free_rx_resources(adapter->rx_ring[i]);
3084			break;
3085		}
3086	}
3087
3088	return err;
3089}
3090
3091/**
3092 *  igb_setup_mrqc - configure the multiple receive queue control registers
3093 *  @adapter: Board private structure
3094 **/
3095static void igb_setup_mrqc(struct igb_adapter *adapter)
3096{
3097	struct e1000_hw *hw = &adapter->hw;
3098	u32 mrqc, rxcsum;
3099	u32 j, num_rx_queues, shift = 0;
3100	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3101					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3102					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3103					0xFA01ACBE };
3104
3105	/* Fill out hash function seeds */
3106	for (j = 0; j < 10; j++)
3107		wr32(E1000_RSSRK(j), rsskey[j]);
3108
3109	num_rx_queues = adapter->rss_queues;
3110
3111	switch (hw->mac.type) {
3112	case e1000_82575:
3113		shift = 6;
3114		break;
3115	case e1000_82576:
3116		/* 82576 supports 2 RSS queues for SR-IOV */
3117		if (adapter->vfs_allocated_count) {
3118			shift = 3;
3119			num_rx_queues = 2;
3120		}
3121		break;
3122	default:
3123		break;
3124	}
3125
3126	/* Populate the indirection table 4 entries at a time.  To do this
3127	 * we are generating the results for n and n+2 and then interleaving
3128	 * those with the results with n+1 and n+3.
3129	 */
3130	for (j = 0; j < 32; j++) {
3131		/* first pass generates n and n+2 */
3132		u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
3133		u32 reta = (base & 0x07800780) >> (7 - shift);
3134
3135		/* second pass generates n+1 and n+3 */
3136		base += 0x00010001 * num_rx_queues;
3137		reta |= (base & 0x07800780) << (1 + shift);
3138
3139		wr32(E1000_RETA(j), reta);
3140	}
3141
3142	/* Disable raw packet checksumming so that RSS hash is placed in
3143	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3144	 * offloads as they are enabled by default
3145	 */
3146	rxcsum = rd32(E1000_RXCSUM);
3147	rxcsum |= E1000_RXCSUM_PCSD;
3148
3149	if (adapter->hw.mac.type >= e1000_82576)
3150		/* Enable Receive Checksum Offload for SCTP */
3151		rxcsum |= E1000_RXCSUM_CRCOFL;
3152
3153	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3154	wr32(E1000_RXCSUM, rxcsum);
3155
3156	/* Generate RSS hash based on packet types, TCP/UDP
3157	 * port numbers and/or IPv4/v6 src and dst addresses
3158	 */
3159	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3160	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3161	       E1000_MRQC_RSS_FIELD_IPV6 |
3162	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3163	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3164
3165	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3166		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3167	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3168		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3169
3170	/* If VMDq is enabled then we set the appropriate mode for that, else
3171	 * we default to RSS so that an RSS hash is calculated per packet even
3172	 * if we are only using one queue
3173	 */
3174	if (adapter->vfs_allocated_count) {
3175		if (hw->mac.type > e1000_82575) {
3176			/* Set the default pool for the PF's first queue */
3177			u32 vtctl = rd32(E1000_VT_CTL);
3178			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3179				   E1000_VT_CTL_DISABLE_DEF_POOL);
3180			vtctl |= adapter->vfs_allocated_count <<
3181				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3182			wr32(E1000_VT_CTL, vtctl);
3183		}
3184		if (adapter->rss_queues > 1)
3185			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3186		else
3187			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3188	} else {
3189		if (hw->mac.type != e1000_i211)
3190			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3191	}
3192	igb_vmm_control(adapter);
3193
3194	wr32(E1000_MRQC, mrqc);
3195}
3196
3197/**
3198 *  igb_setup_rctl - configure the receive control registers
3199 *  @adapter: Board private structure
3200 **/
3201void igb_setup_rctl(struct igb_adapter *adapter)
3202{
3203	struct e1000_hw *hw = &adapter->hw;
3204	u32 rctl;
3205
3206	rctl = rd32(E1000_RCTL);
3207
3208	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3209	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3210
3211	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3212		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3213
3214	/* enable stripping of CRC. It's unlikely this will break BMC
3215	 * redirection as it did with e1000. Newer features require
3216	 * that the HW strips the CRC.
3217	 */
3218	rctl |= E1000_RCTL_SECRC;
3219
3220	/* disable store bad packets and clear size bits. */
3221	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3222
3223	/* enable LPE to prevent packets larger than max_frame_size */
3224	rctl |= E1000_RCTL_LPE;
3225
3226	/* disable queue 0 to prevent tail write w/o re-config */
3227	wr32(E1000_RXDCTL(0), 0);
3228
3229	/* Attention!!!  For SR-IOV PF driver operations you must enable
3230	 * queue drop for all VF and PF queues to prevent head of line blocking
3231	 * if an un-trusted VF does not provide descriptors to hardware.
3232	 */
3233	if (adapter->vfs_allocated_count) {
3234		/* set all queue drop enable bits */
3235		wr32(E1000_QDE, ALL_QUEUES);
3236	}
3237
3238	/* This is useful for sniffing bad packets. */
3239	if (adapter->netdev->features & NETIF_F_RXALL) {
3240		/* UPE and MPE will be handled by normal PROMISC logic
3241		 * in e1000e_set_rx_mode
3242		 */
3243		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3244			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3245			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3246
3247		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3248			  E1000_RCTL_DPF | /* Allow filtered pause */
3249			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3250		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3251		 * and that breaks VLANs.
3252		 */
3253	}
3254
3255	wr32(E1000_RCTL, rctl);
3256}
3257
3258static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3259                                   int vfn)
3260{
3261	struct e1000_hw *hw = &adapter->hw;
3262	u32 vmolr;
3263
3264	/* if it isn't the PF check to see if VFs are enabled and
3265	 * increase the size to support vlan tags
3266	 */
3267	if (vfn < adapter->vfs_allocated_count &&
3268	    adapter->vf_data[vfn].vlans_enabled)
3269		size += VLAN_TAG_SIZE;
3270
3271	vmolr = rd32(E1000_VMOLR(vfn));
3272	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3273	vmolr |= size | E1000_VMOLR_LPE;
3274	wr32(E1000_VMOLR(vfn), vmolr);
3275
3276	return 0;
3277}
3278
3279/**
3280 *  igb_rlpml_set - set maximum receive packet size
3281 *  @adapter: board private structure
3282 *
3283 *  Configure maximum receivable packet size.
3284 **/
3285static void igb_rlpml_set(struct igb_adapter *adapter)
3286{
3287	u32 max_frame_size = adapter->max_frame_size;
3288	struct e1000_hw *hw = &adapter->hw;
3289	u16 pf_id = adapter->vfs_allocated_count;
3290
3291	if (pf_id) {
3292		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3293		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3294		 * to our max jumbo frame size, in case we need to enable
3295		 * jumbo frames on one of the rings later.
3296		 * This will not pass over-length frames into the default
3297		 * queue because it's gated by the VMOLR.RLPML.
3298		 */
3299		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3300	}
3301
3302	wr32(E1000_RLPML, max_frame_size);
3303}
3304
3305static inline void igb_set_vmolr(struct igb_adapter *adapter,
3306				 int vfn, bool aupe)
3307{
3308	struct e1000_hw *hw = &adapter->hw;
3309	u32 vmolr;
3310
3311	/* This register exists only on 82576 and newer so if we are older then
3312	 * we should exit and do nothing
3313	 */
3314	if (hw->mac.type < e1000_82576)
3315		return;
3316
3317	vmolr = rd32(E1000_VMOLR(vfn));
3318	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3319	if (aupe)
3320		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3321	else
3322		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3323
3324	/* clear all bits that might not be set */
3325	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3326
3327	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3328		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3329	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3330	 * multicast packets
3331	 */
3332	if (vfn <= adapter->vfs_allocated_count)
3333		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3334
3335	wr32(E1000_VMOLR(vfn), vmolr);
3336}
3337
3338/**
3339 *  igb_configure_rx_ring - Configure a receive ring after Reset
3340 *  @adapter: board private structure
3341 *  @ring: receive ring to be configured
3342 *
3343 *  Configure the Rx unit of the MAC after a reset.
3344 **/
3345void igb_configure_rx_ring(struct igb_adapter *adapter,
3346			   struct igb_ring *ring)
3347{
3348	struct e1000_hw *hw = &adapter->hw;
3349	u64 rdba = ring->dma;
3350	int reg_idx = ring->reg_idx;
3351	u32 srrctl = 0, rxdctl = 0;
3352
3353	/* disable the queue */
3354	wr32(E1000_RXDCTL(reg_idx), 0);
3355
3356	/* Set DMA base address registers */
3357	wr32(E1000_RDBAL(reg_idx),
3358	     rdba & 0x00000000ffffffffULL);
3359	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3360	wr32(E1000_RDLEN(reg_idx),
3361	     ring->count * sizeof(union e1000_adv_rx_desc));
3362
3363	/* initialize head and tail */
3364	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3365	wr32(E1000_RDH(reg_idx), 0);
3366	writel(0, ring->tail);
3367
3368	/* set descriptor configuration */
3369	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3370	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3371	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3372	if (hw->mac.type >= e1000_82580)
3373		srrctl |= E1000_SRRCTL_TIMESTAMP;
3374	/* Only set Drop Enable if we are supporting multiple queues */
3375	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3376		srrctl |= E1000_SRRCTL_DROP_EN;
3377
3378	wr32(E1000_SRRCTL(reg_idx), srrctl);
3379
3380	/* set filtering for VMDQ pools */
3381	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3382
3383	rxdctl |= IGB_RX_PTHRESH;
3384	rxdctl |= IGB_RX_HTHRESH << 8;
3385	rxdctl |= IGB_RX_WTHRESH << 16;
3386
3387	/* enable receive descriptor fetching */
3388	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3389	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3390}
3391
3392/**
3393 *  igb_configure_rx - Configure receive Unit after Reset
3394 *  @adapter: board private structure
3395 *
3396 *  Configure the Rx unit of the MAC after a reset.
3397 **/
3398static void igb_configure_rx(struct igb_adapter *adapter)
3399{
3400	int i;
3401
3402	/* set UTA to appropriate mode */
3403	igb_set_uta(adapter);
3404
3405	/* set the correct pool for the PF default MAC address in entry 0 */
3406	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3407			 adapter->vfs_allocated_count);
3408
3409	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3410	 * the Base and Length of the Rx Descriptor Ring
3411	 */
3412	for (i = 0; i < adapter->num_rx_queues; i++)
3413		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3414}
3415
3416/**
3417 *  igb_free_tx_resources - Free Tx Resources per Queue
3418 *  @tx_ring: Tx descriptor ring for a specific queue
3419 *
3420 *  Free all transmit software resources
3421 **/
3422void igb_free_tx_resources(struct igb_ring *tx_ring)
3423{
3424	igb_clean_tx_ring(tx_ring);
3425
3426	vfree(tx_ring->tx_buffer_info);
3427	tx_ring->tx_buffer_info = NULL;
3428
3429	/* if not set, then don't free */
3430	if (!tx_ring->desc)
3431		return;
3432
3433	dma_free_coherent(tx_ring->dev, tx_ring->size,
3434			  tx_ring->desc, tx_ring->dma);
3435
3436	tx_ring->desc = NULL;
3437}
3438
3439/**
3440 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3441 *  @adapter: board private structure
3442 *
3443 *  Free all transmit software resources
3444 **/
3445static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3446{
3447	int i;
3448
3449	for (i = 0; i < adapter->num_tx_queues; i++)
3450		igb_free_tx_resources(adapter->tx_ring[i]);
3451}
3452
3453void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3454				    struct igb_tx_buffer *tx_buffer)
3455{
3456	if (tx_buffer->skb) {
3457		dev_kfree_skb_any(tx_buffer->skb);
3458		if (dma_unmap_len(tx_buffer, len))
3459			dma_unmap_single(ring->dev,
3460					 dma_unmap_addr(tx_buffer, dma),
3461					 dma_unmap_len(tx_buffer, len),
3462					 DMA_TO_DEVICE);
3463	} else if (dma_unmap_len(tx_buffer, len)) {
3464		dma_unmap_page(ring->dev,
3465			       dma_unmap_addr(tx_buffer, dma),
3466			       dma_unmap_len(tx_buffer, len),
3467			       DMA_TO_DEVICE);
3468	}
3469	tx_buffer->next_to_watch = NULL;
3470	tx_buffer->skb = NULL;
3471	dma_unmap_len_set(tx_buffer, len, 0);
3472	/* buffer_info must be completely set up in the transmit path */
3473}
3474
3475/**
3476 *  igb_clean_tx_ring - Free Tx Buffers
3477 *  @tx_ring: ring to be cleaned
3478 **/
3479static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3480{
3481	struct igb_tx_buffer *buffer_info;
3482	unsigned long size;
3483	u16 i;
3484
3485	if (!tx_ring->tx_buffer_info)
3486		return;
3487	/* Free all the Tx ring sk_buffs */
3488
3489	for (i = 0; i < tx_ring->count; i++) {
3490		buffer_info = &tx_ring->tx_buffer_info[i];
3491		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3492	}
3493
3494	netdev_tx_reset_queue(txring_txq(tx_ring));
3495
3496	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3497	memset(tx_ring->tx_buffer_info, 0, size);
3498
3499	/* Zero out the descriptor ring */
3500	memset(tx_ring->desc, 0, tx_ring->size);
3501
3502	tx_ring->next_to_use = 0;
3503	tx_ring->next_to_clean = 0;
3504}
3505
3506/**
3507 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3508 *  @adapter: board private structure
3509 **/
3510static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3511{
3512	int i;
3513
3514	for (i = 0; i < adapter->num_tx_queues; i++)
3515		igb_clean_tx_ring(adapter->tx_ring[i]);
3516}
3517
3518/**
3519 *  igb_free_rx_resources - Free Rx Resources
3520 *  @rx_ring: ring to clean the resources from
3521 *
3522 *  Free all receive software resources
3523 **/
3524void igb_free_rx_resources(struct igb_ring *rx_ring)
3525{
3526	igb_clean_rx_ring(rx_ring);
3527
3528	vfree(rx_ring->rx_buffer_info);
3529	rx_ring->rx_buffer_info = NULL;
3530
3531	/* if not set, then don't free */
3532	if (!rx_ring->desc)
3533		return;
3534
3535	dma_free_coherent(rx_ring->dev, rx_ring->size,
3536			  rx_ring->desc, rx_ring->dma);
3537
3538	rx_ring->desc = NULL;
3539}
3540
3541/**
3542 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3543 *  @adapter: board private structure
3544 *
3545 *  Free all receive software resources
3546 **/
3547static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3548{
3549	int i;
3550
3551	for (i = 0; i < adapter->num_rx_queues; i++)
3552		igb_free_rx_resources(adapter->rx_ring[i]);
3553}
3554
3555/**
3556 *  igb_clean_rx_ring - Free Rx Buffers per Queue
3557 *  @rx_ring: ring to free buffers from
3558 **/
3559static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3560{
3561	unsigned long size;
3562	u16 i;
3563
3564	if (rx_ring->skb)
3565		dev_kfree_skb(rx_ring->skb);
3566	rx_ring->skb = NULL;
3567
3568	if (!rx_ring->rx_buffer_info)
3569		return;
3570
3571	/* Free all the Rx ring sk_buffs */
3572	for (i = 0; i < rx_ring->count; i++) {
3573		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3574
3575		if (!buffer_info->page)
3576			continue;
3577
3578		dma_unmap_page(rx_ring->dev,
3579			       buffer_info->dma,
3580			       PAGE_SIZE,
3581			       DMA_FROM_DEVICE);
3582		__free_page(buffer_info->page);
3583
3584		buffer_info->page = NULL;
3585	}
3586
3587	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3588	memset(rx_ring->rx_buffer_info, 0, size);
3589
3590	/* Zero out the descriptor ring */
3591	memset(rx_ring->desc, 0, rx_ring->size);
3592
3593	rx_ring->next_to_alloc = 0;
3594	rx_ring->next_to_clean = 0;
3595	rx_ring->next_to_use = 0;
3596}
3597
3598/**
3599 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3600 *  @adapter: board private structure
3601 **/
3602static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3603{
3604	int i;
3605
3606	for (i = 0; i < adapter->num_rx_queues; i++)
3607		igb_clean_rx_ring(adapter->rx_ring[i]);
3608}
3609
3610/**
3611 *  igb_set_mac - Change the Ethernet Address of the NIC
3612 *  @netdev: network interface device structure
3613 *  @p: pointer to an address structure
3614 *
3615 *  Returns 0 on success, negative on failure
3616 **/
3617static int igb_set_mac(struct net_device *netdev, void *p)
3618{
3619	struct igb_adapter *adapter = netdev_priv(netdev);
3620	struct e1000_hw *hw = &adapter->hw;
3621	struct sockaddr *addr = p;
3622
3623	if (!is_valid_ether_addr(addr->sa_data))
3624		return -EADDRNOTAVAIL;
3625
3626	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3627	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3628
3629	/* set the correct pool for the new PF MAC address in entry 0 */
3630	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3631			 adapter->vfs_allocated_count);
3632
3633	return 0;
3634}
3635
3636/**
3637 *  igb_write_mc_addr_list - write multicast addresses to MTA
3638 *  @netdev: network interface device structure
3639 *
3640 *  Writes multicast address list to the MTA hash table.
3641 *  Returns: -ENOMEM on failure
3642 *           0 on no addresses written
3643 *           X on writing X addresses to MTA
3644 **/
3645static int igb_write_mc_addr_list(struct net_device *netdev)
3646{
3647	struct igb_adapter *adapter = netdev_priv(netdev);
3648	struct e1000_hw *hw = &adapter->hw;
3649	struct netdev_hw_addr *ha;
3650	u8  *mta_list;
3651	int i;
3652
3653	if (netdev_mc_empty(netdev)) {
3654		/* nothing to program, so clear mc list */
3655		igb_update_mc_addr_list(hw, NULL, 0);
3656		igb_restore_vf_multicasts(adapter);
3657		return 0;
3658	}
3659
3660	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3661	if (!mta_list)
3662		return -ENOMEM;
3663
3664	/* The shared function expects a packed array of only addresses. */
3665	i = 0;
3666	netdev_for_each_mc_addr(ha, netdev)
3667		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3668
3669	igb_update_mc_addr_list(hw, mta_list, i);
3670	kfree(mta_list);
3671
3672	return netdev_mc_count(netdev);
3673}
3674
3675/**
3676 *  igb_write_uc_addr_list - write unicast addresses to RAR table
3677 *  @netdev: network interface device structure
3678 *
3679 *  Writes unicast address list to the RAR table.
3680 *  Returns: -ENOMEM on failure/insufficient address space
3681 *           0 on no addresses written
3682 *           X on writing X addresses to the RAR table
3683 **/
3684static int igb_write_uc_addr_list(struct net_device *netdev)
3685{
3686	struct igb_adapter *adapter = netdev_priv(netdev);
3687	struct e1000_hw *hw = &adapter->hw;
3688	unsigned int vfn = adapter->vfs_allocated_count;
3689	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3690	int count = 0;
3691
3692	/* return ENOMEM indicating insufficient memory for addresses */
3693	if (netdev_uc_count(netdev) > rar_entries)
3694		return -ENOMEM;
3695
3696	if (!netdev_uc_empty(netdev) && rar_entries) {
3697		struct netdev_hw_addr *ha;
3698
3699		netdev_for_each_uc_addr(ha, netdev) {
3700			if (!rar_entries)
3701				break;
3702			igb_rar_set_qsel(adapter, ha->addr,
3703					 rar_entries--,
3704					 vfn);
3705			count++;
3706		}
3707	}
3708	/* write the addresses in reverse order to avoid write combining */
3709	for (; rar_entries > 0 ; rar_entries--) {
3710		wr32(E1000_RAH(rar_entries), 0);
3711		wr32(E1000_RAL(rar_entries), 0);
3712	}
3713	wrfl();
3714
3715	return count;
3716}
3717
3718/**
3719 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3720 *  @netdev: network interface device structure
3721 *
3722 *  The set_rx_mode entry point is called whenever the unicast or multicast
3723 *  address lists or the network interface flags are updated.  This routine is
3724 *  responsible for configuring the hardware for proper unicast, multicast,
3725 *  promiscuous mode, and all-multi behavior.
3726 **/
3727static void igb_set_rx_mode(struct net_device *netdev)
3728{
3729	struct igb_adapter *adapter = netdev_priv(netdev);
3730	struct e1000_hw *hw = &adapter->hw;
3731	unsigned int vfn = adapter->vfs_allocated_count;
3732	u32 rctl, vmolr = 0;
3733	int count;
3734
3735	/* Check for Promiscuous and All Multicast modes */
3736	rctl = rd32(E1000_RCTL);
3737
3738	/* clear the effected bits */
3739	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3740
3741	if (netdev->flags & IFF_PROMISC) {
3742		u32 mrqc = rd32(E1000_MRQC);
3743		/* retain VLAN HW filtering if in VT mode */
3744		if (mrqc & E1000_MRQC_ENABLE_VMDQ)
3745			rctl |= E1000_RCTL_VFE;
3746		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3747		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3748	} else {
3749		if (netdev->flags & IFF_ALLMULTI) {
3750			rctl |= E1000_RCTL_MPE;
3751			vmolr |= E1000_VMOLR_MPME;
3752		} else {
3753			/* Write addresses to the MTA, if the attempt fails
3754			 * then we should just turn on promiscuous mode so
3755			 * that we can at least receive multicast traffic
3756			 */
3757			count = igb_write_mc_addr_list(netdev);
3758			if (count < 0) {
3759				rctl |= E1000_RCTL_MPE;
3760				vmolr |= E1000_VMOLR_MPME;
3761			} else if (count) {
3762				vmolr |= E1000_VMOLR_ROMPE;
3763			}
3764		}
3765		/* Write addresses to available RAR registers, if there is not
3766		 * sufficient space to store all the addresses then enable
3767		 * unicast promiscuous mode
3768		 */
3769		count = igb_write_uc_addr_list(netdev);
3770		if (count < 0) {
3771			rctl |= E1000_RCTL_UPE;
3772			vmolr |= E1000_VMOLR_ROPE;
3773		}
3774		rctl |= E1000_RCTL_VFE;
3775	}
3776	wr32(E1000_RCTL, rctl);
3777
3778	/* In order to support SR-IOV and eventually VMDq it is necessary to set
3779	 * the VMOLR to enable the appropriate modes.  Without this workaround
3780	 * we will have issues with VLAN tag stripping not being done for frames
3781	 * that are only arriving because we are the default pool
3782	 */
3783	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3784		return;
3785
3786	vmolr |= rd32(E1000_VMOLR(vfn)) &
3787		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3788	wr32(E1000_VMOLR(vfn), vmolr);
3789	igb_restore_vf_multicasts(adapter);
3790}
3791
3792static void igb_check_wvbr(struct igb_adapter *adapter)
3793{
3794	struct e1000_hw *hw = &adapter->hw;
3795	u32 wvbr = 0;
3796
3797	switch (hw->mac.type) {
3798	case e1000_82576:
3799	case e1000_i350:
3800		if (!(wvbr = rd32(E1000_WVBR)))
3801			return;
3802		break;
3803	default:
3804		break;
3805	}
3806
3807	adapter->wvbr |= wvbr;
3808}
3809
3810#define IGB_STAGGERED_QUEUE_OFFSET 8
3811
3812static void igb_spoof_check(struct igb_adapter *adapter)
3813{
3814	int j;
3815
3816	if (!adapter->wvbr)
3817		return;
3818
3819	for(j = 0; j < adapter->vfs_allocated_count; j++) {
3820		if (adapter->wvbr & (1 << j) ||
3821		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3822			dev_warn(&adapter->pdev->dev,
3823				"Spoof event(s) detected on VF %d\n", j);
3824			adapter->wvbr &=
3825				~((1 << j) |
3826				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3827		}
3828	}
3829}
3830
3831/* Need to wait a few seconds after link up to get diagnostic information from
3832 * the phy
3833 */
3834static void igb_update_phy_info(unsigned long data)
3835{
3836	struct igb_adapter *adapter = (struct igb_adapter *) data;
3837	igb_get_phy_info(&adapter->hw);
3838}
3839
3840/**
3841 *  igb_has_link - check shared code for link and determine up/down
3842 *  @adapter: pointer to driver private info
3843 **/
3844bool igb_has_link(struct igb_adapter *adapter)
3845{
3846	struct e1000_hw *hw = &adapter->hw;
3847	bool link_active = false;
3848	s32 ret_val = 0;
3849
3850	/* get_link_status is set on LSC (link status) interrupt or
3851	 * rx sequence error interrupt.  get_link_status will stay
3852	 * false until the e1000_check_for_link establishes link
3853	 * for copper adapters ONLY
3854	 */
3855	switch (hw->phy.media_type) {
3856	case e1000_media_type_copper:
3857		if (hw->mac.get_link_status) {
3858			ret_val = hw->mac.ops.check_for_link(hw);
3859			link_active = !hw->mac.get_link_status;
3860		} else {
3861			link_active = true;
3862		}
3863		break;
3864	case e1000_media_type_internal_serdes:
3865		ret_val = hw->mac.ops.check_for_link(hw);
3866		link_active = hw->mac.serdes_has_link;
3867		break;
3868	default:
3869	case e1000_media_type_unknown:
3870		break;
3871	}
3872
3873	return link_active;
3874}
3875
3876static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3877{
3878	bool ret = false;
3879	u32 ctrl_ext, thstat;
3880
3881	/* check for thermal sensor event on i350 copper only */
3882	if (hw->mac.type == e1000_i350) {
3883		thstat = rd32(E1000_THSTAT);
3884		ctrl_ext = rd32(E1000_CTRL_EXT);
3885
3886		if ((hw->phy.media_type == e1000_media_type_copper) &&
3887		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
3888			ret = !!(thstat & event);
3889	}
3890
3891	return ret;
3892}
3893
3894/**
3895 *  igb_watchdog - Timer Call-back
3896 *  @data: pointer to adapter cast into an unsigned long
3897 **/
3898static void igb_watchdog(unsigned long data)
3899{
3900	struct igb_adapter *adapter = (struct igb_adapter *)data;
3901	/* Do the rest outside of interrupt context */
3902	schedule_work(&adapter->watchdog_task);
3903}
3904
3905static void igb_watchdog_task(struct work_struct *work)
3906{
3907	struct igb_adapter *adapter = container_of(work,
3908						   struct igb_adapter,
3909						   watchdog_task);
3910	struct e1000_hw *hw = &adapter->hw;
3911	struct e1000_phy_info *phy = &hw->phy;
3912	struct net_device *netdev = adapter->netdev;
3913	u32 link;
3914	int i;
3915
3916	link = igb_has_link(adapter);
3917	if (link) {
3918		/* Cancel scheduled suspend requests. */
3919		pm_runtime_resume(netdev->dev.parent);
3920
3921		if (!netif_carrier_ok(netdev)) {
3922			u32 ctrl;
3923			hw->mac.ops.get_speed_and_duplex(hw,
3924							 &adapter->link_speed,
3925							 &adapter->link_duplex);
3926
3927			ctrl = rd32(E1000_CTRL);
3928			/* Links status message must follow this format */
3929			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3930			       "Duplex, Flow Control: %s\n",
3931			       netdev->name,
3932			       adapter->link_speed,
3933			       adapter->link_duplex == FULL_DUPLEX ?
3934			       "Full" : "Half",
3935			       (ctrl & E1000_CTRL_TFCE) &&
3936			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3937			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
3938			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3939
3940			/* check if SmartSpeed worked */
3941			igb_check_downshift(hw);
3942			if (phy->speed_downgraded)
3943				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
3944
3945			/* check for thermal sensor event */
3946			if (igb_thermal_sensor_event(hw,
3947			    E1000_THSTAT_LINK_THROTTLE)) {
3948				netdev_info(netdev, "The network adapter link "
3949					    "speed was downshifted because it "
3950					    "overheated\n");
3951			}
3952
3953			/* adjust timeout factor according to speed/duplex */
3954			adapter->tx_timeout_factor = 1;
3955			switch (adapter->link_speed) {
3956			case SPEED_10:
3957				adapter->tx_timeout_factor = 14;
3958				break;
3959			case SPEED_100:
3960				/* maybe add some timeout factor ? */
3961				break;
3962			}
3963
3964			netif_carrier_on(netdev);
3965
3966			igb_ping_all_vfs(adapter);
3967			igb_check_vf_rate_limit(adapter);
3968
3969			/* link state has changed, schedule phy info update */
3970			if (!test_bit(__IGB_DOWN, &adapter->state))
3971				mod_timer(&adapter->phy_info_timer,
3972					  round_jiffies(jiffies + 2 * HZ));
3973		}
3974	} else {
3975		if (netif_carrier_ok(netdev)) {
3976			adapter->link_speed = 0;
3977			adapter->link_duplex = 0;
3978
3979			/* check for thermal sensor event */
3980			if (igb_thermal_sensor_event(hw,
3981			    E1000_THSTAT_PWR_DOWN)) {
3982				netdev_err(netdev, "The network adapter was "
3983					   "stopped because it overheated\n");
3984			}
3985
3986			/* Links status message must follow this format */
3987			printk(KERN_INFO "igb: %s NIC Link is Down\n",
3988			       netdev->name);
3989			netif_carrier_off(netdev);
3990
3991			igb_ping_all_vfs(adapter);
3992
3993			/* link state has changed, schedule phy info update */
3994			if (!test_bit(__IGB_DOWN, &adapter->state))
3995				mod_timer(&adapter->phy_info_timer,
3996					  round_jiffies(jiffies + 2 * HZ));
3997
3998			pm_schedule_suspend(netdev->dev.parent,
3999					    MSEC_PER_SEC * 5);
4000		}
4001	}
4002
4003	spin_lock(&adapter->stats64_lock);
4004	igb_update_stats(adapter, &adapter->stats64);
4005	spin_unlock(&adapter->stats64_lock);
4006
4007	for (i = 0; i < adapter->num_tx_queues; i++) {
4008		struct igb_ring *tx_ring = adapter->tx_ring[i];
4009		if (!netif_carrier_ok(netdev)) {
4010			/* We've lost link, so the controller stops DMA,
4011			 * but we've got queued Tx work that's never going
4012			 * to get done, so reset controller to flush Tx.
4013			 * (Do the reset outside of interrupt context).
4014			 */
4015			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4016				adapter->tx_timeout_count++;
4017				schedule_work(&adapter->reset_task);
4018				/* return immediately since reset is imminent */
4019				return;
4020			}
4021		}
4022
4023		/* Force detection of hung controller every watchdog period */
4024		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4025	}
4026
4027	/* Cause software interrupt to ensure Rx ring is cleaned */
4028	if (adapter->msix_entries) {
4029		u32 eics = 0;
4030		for (i = 0; i < adapter->num_q_vectors; i++)
4031			eics |= adapter->q_vector[i]->eims_value;
4032		wr32(E1000_EICS, eics);
4033	} else {
4034		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4035	}
4036
4037	igb_spoof_check(adapter);
4038	igb_ptp_rx_hang(adapter);
4039
4040	/* Reset the timer */
4041	if (!test_bit(__IGB_DOWN, &adapter->state))
4042		mod_timer(&adapter->watchdog_timer,
4043			  round_jiffies(jiffies + 2 * HZ));
4044}
4045
4046enum latency_range {
4047	lowest_latency = 0,
4048	low_latency = 1,
4049	bulk_latency = 2,
4050	latency_invalid = 255
4051};
4052
4053/**
4054 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4055 *  @q_vector: pointer to q_vector
4056 *
4057 *  Stores a new ITR value based on strictly on packet size.  This
4058 *  algorithm is less sophisticated than that used in igb_update_itr,
4059 *  due to the difficulty of synchronizing statistics across multiple
4060 *  receive rings.  The divisors and thresholds used by this function
4061 *  were determined based on theoretical maximum wire speed and testing
4062 *  data, in order to minimize response time while increasing bulk
4063 *  throughput.
4064 *  This functionality is controlled by the InterruptThrottleRate module
4065 *  parameter (see igb_param.c)
4066 *  NOTE:  This function is called only when operating in a multiqueue
4067 *         receive environment.
4068 **/
4069static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4070{
4071	int new_val = q_vector->itr_val;
4072	int avg_wire_size = 0;
4073	struct igb_adapter *adapter = q_vector->adapter;
4074	unsigned int packets;
4075
4076	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4077	 * ints/sec - ITR timer value of 120 ticks.
4078	 */
4079	if (adapter->link_speed != SPEED_1000) {
4080		new_val = IGB_4K_ITR;
4081		goto set_itr_val;
4082	}
4083
4084	packets = q_vector->rx.total_packets;
4085	if (packets)
4086		avg_wire_size = q_vector->rx.total_bytes / packets;
4087
4088	packets = q_vector->tx.total_packets;
4089	if (packets)
4090		avg_wire_size = max_t(u32, avg_wire_size,
4091				      q_vector->tx.total_bytes / packets);
4092
4093	/* if avg_wire_size isn't set no work was done */
4094	if (!avg_wire_size)
4095		goto clear_counts;
4096
4097	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4098	avg_wire_size += 24;
4099
4100	/* Don't starve jumbo frames */
4101	avg_wire_size = min(avg_wire_size, 3000);
4102
4103	/* Give a little boost to mid-size frames */
4104	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4105		new_val = avg_wire_size / 3;
4106	else
4107		new_val = avg_wire_size / 2;
4108
4109	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4110	if (new_val < IGB_20K_ITR &&
4111	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4112	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4113		new_val = IGB_20K_ITR;
4114
4115set_itr_val:
4116	if (new_val != q_vector->itr_val) {
4117		q_vector->itr_val = new_val;
4118		q_vector->set_itr = 1;
4119	}
4120clear_counts:
4121	q_vector->rx.total_bytes = 0;
4122	q_vector->rx.total_packets = 0;
4123	q_vector->tx.total_bytes = 0;
4124	q_vector->tx.total_packets = 0;
4125}
4126
4127/**
4128 *  igb_update_itr - update the dynamic ITR value based on statistics
4129 *  @q_vector: pointer to q_vector
4130 *  @ring_container: ring info to update the itr for
4131 *
4132 *  Stores a new ITR value based on packets and byte
4133 *  counts during the last interrupt.  The advantage of per interrupt
4134 *  computation is faster updates and more accurate ITR for the current
4135 *  traffic pattern.  Constants in this function were computed
4136 *  based on theoretical maximum wire speed and thresholds were set based
4137 *  on testing data as well as attempting to minimize response time
4138 *  while increasing bulk throughput.
4139 *  this functionality is controlled by the InterruptThrottleRate module
4140 *  parameter (see igb_param.c)
4141 *  NOTE:  These calculations are only valid when operating in a single-
4142 *         queue environment.
4143 **/
4144static void igb_update_itr(struct igb_q_vector *q_vector,
4145			   struct igb_ring_container *ring_container)
4146{
4147	unsigned int packets = ring_container->total_packets;
4148	unsigned int bytes = ring_container->total_bytes;
4149	u8 itrval = ring_container->itr;
4150
4151	/* no packets, exit with status unchanged */
4152	if (packets == 0)
4153		return;
4154
4155	switch (itrval) {
4156	case lowest_latency:
4157		/* handle TSO and jumbo frames */
4158		if (bytes/packets > 8000)
4159			itrval = bulk_latency;
4160		else if ((packets < 5) && (bytes > 512))
4161			itrval = low_latency;
4162		break;
4163	case low_latency:  /* 50 usec aka 20000 ints/s */
4164		if (bytes > 10000) {
4165			/* this if handles the TSO accounting */
4166			if (bytes/packets > 8000) {
4167				itrval = bulk_latency;
4168			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4169				itrval = bulk_latency;
4170			} else if ((packets > 35)) {
4171				itrval = lowest_latency;
4172			}
4173		} else if (bytes/packets > 2000) {
4174			itrval = bulk_latency;
4175		} else if (packets <= 2 && bytes < 512) {
4176			itrval = lowest_latency;
4177		}
4178		break;
4179	case bulk_latency: /* 250 usec aka 4000 ints/s */
4180		if (bytes > 25000) {
4181			if (packets > 35)
4182				itrval = low_latency;
4183		} else if (bytes < 1500) {
4184			itrval = low_latency;
4185		}
4186		break;
4187	}
4188
4189	/* clear work counters since we have the values we need */
4190	ring_container->total_bytes = 0;
4191	ring_container->total_packets = 0;
4192
4193	/* write updated itr to ring container */
4194	ring_container->itr = itrval;
4195}
4196
4197static void igb_set_itr(struct igb_q_vector *q_vector)
4198{
4199	struct igb_adapter *adapter = q_vector->adapter;
4200	u32 new_itr = q_vector->itr_val;
4201	u8 current_itr = 0;
4202
4203	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4204	if (adapter->link_speed != SPEED_1000) {
4205		current_itr = 0;
4206		new_itr = IGB_4K_ITR;
4207		goto set_itr_now;
4208	}
4209
4210	igb_update_itr(q_vector, &q_vector->tx);
4211	igb_update_itr(q_vector, &q_vector->rx);
4212
4213	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4214
4215	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4216	if (current_itr == lowest_latency &&
4217	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4218	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4219		current_itr = low_latency;
4220
4221	switch (current_itr) {
4222	/* counts and packets in update_itr are dependent on these numbers */
4223	case lowest_latency:
4224		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4225		break;
4226	case low_latency:
4227		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4228		break;
4229	case bulk_latency:
4230		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4231		break;
4232	default:
4233		break;
4234	}
4235
4236set_itr_now:
4237	if (new_itr != q_vector->itr_val) {
4238		/* this attempts to bias the interrupt rate towards Bulk
4239		 * by adding intermediate steps when interrupt rate is
4240		 * increasing
4241		 */
4242		new_itr = new_itr > q_vector->itr_val ?
4243			  max((new_itr * q_vector->itr_val) /
4244			  (new_itr + (q_vector->itr_val >> 2)),
4245			  new_itr) : new_itr;
4246		/* Don't write the value here; it resets the adapter's
4247		 * internal timer, and causes us to delay far longer than
4248		 * we should between interrupts.  Instead, we write the ITR
4249		 * value at the beginning of the next interrupt so the timing
4250		 * ends up being correct.
4251		 */
4252		q_vector->itr_val = new_itr;
4253		q_vector->set_itr = 1;
4254	}
4255}
4256
4257static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4258			    u32 type_tucmd, u32 mss_l4len_idx)
4259{
4260	struct e1000_adv_tx_context_desc *context_desc;
4261	u16 i = tx_ring->next_to_use;
4262
4263	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4264
4265	i++;
4266	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4267
4268	/* set bits to identify this as an advanced context descriptor */
4269	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4270
4271	/* For 82575, context index must be unique per ring. */
4272	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4273		mss_l4len_idx |= tx_ring->reg_idx << 4;
4274
4275	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4276	context_desc->seqnum_seed	= 0;
4277	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4278	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4279}
4280
4281static int igb_tso(struct igb_ring *tx_ring,
4282		   struct igb_tx_buffer *first,
4283		   u8 *hdr_len)
4284{
4285	struct sk_buff *skb = first->skb;
4286	u32 vlan_macip_lens, type_tucmd;
4287	u32 mss_l4len_idx, l4len;
4288
4289	if (skb->ip_summed != CHECKSUM_PARTIAL)
4290		return 0;
4291
4292	if (!skb_is_gso(skb))
4293		return 0;
4294
4295	if (skb_header_cloned(skb)) {
4296		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4297		if (err)
4298			return err;
4299	}
4300
4301	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4302	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4303
4304	if (first->protocol == __constant_htons(ETH_P_IP)) {
4305		struct iphdr *iph = ip_hdr(skb);
4306		iph->tot_len = 0;
4307		iph->check = 0;
4308		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4309							 iph->daddr, 0,
4310							 IPPROTO_TCP,
4311							 0);
4312		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4313		first->tx_flags |= IGB_TX_FLAGS_TSO |
4314				   IGB_TX_FLAGS_CSUM |
4315				   IGB_TX_FLAGS_IPV4;
4316	} else if (skb_is_gso_v6(skb)) {
4317		ipv6_hdr(skb)->payload_len = 0;
4318		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4319						       &ipv6_hdr(skb)->daddr,
4320						       0, IPPROTO_TCP, 0);
4321		first->tx_flags |= IGB_TX_FLAGS_TSO |
4322				   IGB_TX_FLAGS_CSUM;
4323	}
4324
4325	/* compute header lengths */
4326	l4len = tcp_hdrlen(skb);
4327	*hdr_len = skb_transport_offset(skb) + l4len;
4328
4329	/* update gso size and bytecount with header size */
4330	first->gso_segs = skb_shinfo(skb)->gso_segs;
4331	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4332
4333	/* MSS L4LEN IDX */
4334	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4335	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4336
4337	/* VLAN MACLEN IPLEN */
4338	vlan_macip_lens = skb_network_header_len(skb);
4339	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4340	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4341
4342	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4343
4344	return 1;
4345}
4346
4347static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4348{
4349	struct sk_buff *skb = first->skb;
4350	u32 vlan_macip_lens = 0;
4351	u32 mss_l4len_idx = 0;
4352	u32 type_tucmd = 0;
4353
4354	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4355		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4356			return;
4357	} else {
4358		u8 l4_hdr = 0;
4359		switch (first->protocol) {
4360		case __constant_htons(ETH_P_IP):
4361			vlan_macip_lens |= skb_network_header_len(skb);
4362			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4363			l4_hdr = ip_hdr(skb)->protocol;
4364			break;
4365		case __constant_htons(ETH_P_IPV6):
4366			vlan_macip_lens |= skb_network_header_len(skb);
4367			l4_hdr = ipv6_hdr(skb)->nexthdr;
4368			break;
4369		default:
4370			if (unlikely(net_ratelimit())) {
4371				dev_warn(tx_ring->dev,
4372					 "partial checksum but proto=%x!\n",
4373					 first->protocol);
4374			}
4375			break;
4376		}
4377
4378		switch (l4_hdr) {
4379		case IPPROTO_TCP:
4380			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4381			mss_l4len_idx = tcp_hdrlen(skb) <<
4382					E1000_ADVTXD_L4LEN_SHIFT;
4383			break;
4384		case IPPROTO_SCTP:
4385			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4386			mss_l4len_idx = sizeof(struct sctphdr) <<
4387					E1000_ADVTXD_L4LEN_SHIFT;
4388			break;
4389		case IPPROTO_UDP:
4390			mss_l4len_idx = sizeof(struct udphdr) <<
4391					E1000_ADVTXD_L4LEN_SHIFT;
4392			break;
4393		default:
4394			if (unlikely(net_ratelimit())) {
4395				dev_warn(tx_ring->dev,
4396					 "partial checksum but l4 proto=%x!\n",
4397					 l4_hdr);
4398			}
4399			break;
4400		}
4401
4402		/* update TX checksum flag */
4403		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4404	}
4405
4406	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4407	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4408
4409	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4410}
4411
4412#define IGB_SET_FLAG(_input, _flag, _result) \
4413	((_flag <= _result) ? \
4414	 ((u32)(_input & _flag) * (_result / _flag)) : \
4415	 ((u32)(_input & _flag) / (_flag / _result)))
4416
4417static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4418{
4419	/* set type for advanced descriptor with frame checksum insertion */
4420	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4421		       E1000_ADVTXD_DCMD_DEXT |
4422		       E1000_ADVTXD_DCMD_IFCS;
4423
4424	/* set HW vlan bit if vlan is present */
4425	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4426				 (E1000_ADVTXD_DCMD_VLE));
4427
4428	/* set segmentation bits for TSO */
4429	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4430				 (E1000_ADVTXD_DCMD_TSE));
4431
4432	/* set timestamp bit if present */
4433	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4434				 (E1000_ADVTXD_MAC_TSTAMP));
4435
4436	/* insert frame checksum */
4437	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4438
4439	return cmd_type;
4440}
4441
4442static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4443				 union e1000_adv_tx_desc *tx_desc,
4444				 u32 tx_flags, unsigned int paylen)
4445{
4446	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4447
4448	/* 82575 requires a unique index per ring */
4449	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4450		olinfo_status |= tx_ring->reg_idx << 4;
4451
4452	/* insert L4 checksum */
4453	olinfo_status |= IGB_SET_FLAG(tx_flags,
4454				      IGB_TX_FLAGS_CSUM,
4455				      (E1000_TXD_POPTS_TXSM << 8));
4456
4457	/* insert IPv4 checksum */
4458	olinfo_status |= IGB_SET_FLAG(tx_flags,
4459				      IGB_TX_FLAGS_IPV4,
4460				      (E1000_TXD_POPTS_IXSM << 8));
4461
4462	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4463}
4464
4465static void igb_tx_map(struct igb_ring *tx_ring,
4466		       struct igb_tx_buffer *first,
4467		       const u8 hdr_len)
4468{
4469	struct sk_buff *skb = first->skb;
4470	struct igb_tx_buffer *tx_buffer;
4471	union e1000_adv_tx_desc *tx_desc;
4472	struct skb_frag_struct *frag;
4473	dma_addr_t dma;
4474	unsigned int data_len, size;
4475	u32 tx_flags = first->tx_flags;
4476	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4477	u16 i = tx_ring->next_to_use;
4478
4479	tx_desc = IGB_TX_DESC(tx_ring, i);
4480
4481	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4482
4483	size = skb_headlen(skb);
4484	data_len = skb->data_len;
4485
4486	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4487
4488	tx_buffer = first;
4489
4490	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4491		if (dma_mapping_error(tx_ring->dev, dma))
4492			goto dma_error;
4493
4494		/* record length, and DMA address */
4495		dma_unmap_len_set(tx_buffer, len, size);
4496		dma_unmap_addr_set(tx_buffer, dma, dma);
4497
4498		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4499
4500		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4501			tx_desc->read.cmd_type_len =
4502				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4503
4504			i++;
4505			tx_desc++;
4506			if (i == tx_ring->count) {
4507				tx_desc = IGB_TX_DESC(tx_ring, 0);
4508				i = 0;
4509			}
4510			tx_desc->read.olinfo_status = 0;
4511
4512			dma += IGB_MAX_DATA_PER_TXD;
4513			size -= IGB_MAX_DATA_PER_TXD;
4514
4515			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4516		}
4517
4518		if (likely(!data_len))
4519			break;
4520
4521		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4522
4523		i++;
4524		tx_desc++;
4525		if (i == tx_ring->count) {
4526			tx_desc = IGB_TX_DESC(tx_ring, 0);
4527			i = 0;
4528		}
4529		tx_desc->read.olinfo_status = 0;
4530
4531		size = skb_frag_size(frag);
4532		data_len -= size;
4533
4534		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4535				       size, DMA_TO_DEVICE);
4536
4537		tx_buffer = &tx_ring->tx_buffer_info[i];
4538	}
4539
4540	/* write last descriptor with RS and EOP bits */
4541	cmd_type |= size | IGB_TXD_DCMD;
4542	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4543
4544	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4545
4546	/* set the timestamp */
4547	first->time_stamp = jiffies;
4548
4549	/* Force memory writes to complete before letting h/w know there
4550	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4551	 * memory model archs, such as IA-64).
4552	 *
4553	 * We also need this memory barrier to make certain all of the
4554	 * status bits have been updated before next_to_watch is written.
4555	 */
4556	wmb();
4557
4558	/* set next_to_watch value indicating a packet is present */
4559	first->next_to_watch = tx_desc;
4560
4561	i++;
4562	if (i == tx_ring->count)
4563		i = 0;
4564
4565	tx_ring->next_to_use = i;
4566
4567	writel(i, tx_ring->tail);
4568
4569	/* we need this if more than one processor can write to our tail
4570	 * at a time, it synchronizes IO on IA64/Altix systems
4571	 */
4572	mmiowb();
4573
4574	return;
4575
4576dma_error:
4577	dev_err(tx_ring->dev, "TX DMA map failed\n");
4578
4579	/* clear dma mappings for failed tx_buffer_info map */
4580	for (;;) {
4581		tx_buffer = &tx_ring->tx_buffer_info[i];
4582		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4583		if (tx_buffer == first)
4584			break;
4585		if (i == 0)
4586			i = tx_ring->count;
4587		i--;
4588	}
4589
4590	tx_ring->next_to_use = i;
4591}
4592
4593static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4594{
4595	struct net_device *netdev = tx_ring->netdev;
4596
4597	netif_stop_subqueue(netdev, tx_ring->queue_index);
4598
4599	/* Herbert's original patch had:
4600	 *  smp_mb__after_netif_stop_queue();
4601	 * but since that doesn't exist yet, just open code it.
4602	 */
4603	smp_mb();
4604
4605	/* We need to check again in a case another CPU has just
4606	 * made room available.
4607	 */
4608	if (igb_desc_unused(tx_ring) < size)
4609		return -EBUSY;
4610
4611	/* A reprieve! */
4612	netif_wake_subqueue(netdev, tx_ring->queue_index);
4613
4614	u64_stats_update_begin(&tx_ring->tx_syncp2);
4615	tx_ring->tx_stats.restart_queue2++;
4616	u64_stats_update_end(&tx_ring->tx_syncp2);
4617
4618	return 0;
4619}
4620
4621static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4622{
4623	if (igb_desc_unused(tx_ring) >= size)
4624		return 0;
4625	return __igb_maybe_stop_tx(tx_ring, size);
4626}
4627
4628netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4629				struct igb_ring *tx_ring)
4630{
4631	struct igb_tx_buffer *first;
4632	int tso;
4633	u32 tx_flags = 0;
4634	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4635	__be16 protocol = vlan_get_protocol(skb);
4636	u8 hdr_len = 0;
4637
4638	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4639	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4640	 *       + 2 desc gap to keep tail from touching head,
4641	 *       + 1 desc for context descriptor,
4642	 * otherwise try next time
4643	 */
4644	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4645		unsigned short f;
4646		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4647			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4648	} else {
4649		count += skb_shinfo(skb)->nr_frags;
4650	}
4651
4652	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4653		/* this is a hard error */
4654		return NETDEV_TX_BUSY;
4655	}
4656
4657	/* record the location of the first descriptor for this packet */
4658	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4659	first->skb = skb;
4660	first->bytecount = skb->len;
4661	first->gso_segs = 1;
4662
4663	skb_tx_timestamp(skb);
4664
4665	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4666		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4667
4668		if (!(adapter->ptp_tx_skb)) {
4669			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4670			tx_flags |= IGB_TX_FLAGS_TSTAMP;
4671
4672			adapter->ptp_tx_skb = skb_get(skb);
4673			adapter->ptp_tx_start = jiffies;
4674			if (adapter->hw.mac.type == e1000_82576)
4675				schedule_work(&adapter->ptp_tx_work);
4676		}
4677	}
4678
4679	if (vlan_tx_tag_present(skb)) {
4680		tx_flags |= IGB_TX_FLAGS_VLAN;
4681		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4682	}
4683
4684	/* record initial flags and protocol */
4685	first->tx_flags = tx_flags;
4686	first->protocol = protocol;
4687
4688	tso = igb_tso(tx_ring, first, &hdr_len);
4689	if (tso < 0)
4690		goto out_drop;
4691	else if (!tso)
4692		igb_tx_csum(tx_ring, first);
4693
4694	igb_tx_map(tx_ring, first, hdr_len);
4695
4696	/* Make sure there is space in the ring for the next send. */
4697	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4698
4699	return NETDEV_TX_OK;
4700
4701out_drop:
4702	igb_unmap_and_free_tx_resource(tx_ring, first);
4703
4704	return NETDEV_TX_OK;
4705}
4706
4707static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4708						    struct sk_buff *skb)
4709{
4710	unsigned int r_idx = skb->queue_mapping;
4711
4712	if (r_idx >= adapter->num_tx_queues)
4713		r_idx = r_idx % adapter->num_tx_queues;
4714
4715	return adapter->tx_ring[r_idx];
4716}
4717
4718static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4719				  struct net_device *netdev)
4720{
4721	struct igb_adapter *adapter = netdev_priv(netdev);
4722
4723	if (test_bit(__IGB_DOWN, &adapter->state)) {
4724		dev_kfree_skb_any(skb);
4725		return NETDEV_TX_OK;
4726	}
4727
4728	if (skb->len <= 0) {
4729		dev_kfree_skb_any(skb);
4730		return NETDEV_TX_OK;
4731	}
4732
4733	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4734	 * in order to meet this minimum size requirement.
4735	 */
4736	if (unlikely(skb->len < 17)) {
4737		if (skb_pad(skb, 17 - skb->len))
4738			return NETDEV_TX_OK;
4739		skb->len = 17;
4740		skb_set_tail_pointer(skb, 17);
4741	}
4742
4743	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4744}
4745
4746/**
4747 *  igb_tx_timeout - Respond to a Tx Hang
4748 *  @netdev: network interface device structure
4749 **/
4750static void igb_tx_timeout(struct net_device *netdev)
4751{
4752	struct igb_adapter *adapter = netdev_priv(netdev);
4753	struct e1000_hw *hw = &adapter->hw;
4754
4755	/* Do the reset outside of interrupt context */
4756	adapter->tx_timeout_count++;
4757
4758	if (hw->mac.type >= e1000_82580)
4759		hw->dev_spec._82575.global_device_reset = true;
4760
4761	schedule_work(&adapter->reset_task);
4762	wr32(E1000_EICS,
4763	     (adapter->eims_enable_mask & ~adapter->eims_other));
4764}
4765
4766static void igb_reset_task(struct work_struct *work)
4767{
4768	struct igb_adapter *adapter;
4769	adapter = container_of(work, struct igb_adapter, reset_task);
4770
4771	igb_dump(adapter);
4772	netdev_err(adapter->netdev, "Reset adapter\n");
4773	igb_reinit_locked(adapter);
4774}
4775
4776/**
4777 *  igb_get_stats64 - Get System Network Statistics
4778 *  @netdev: network interface device structure
4779 *  @stats: rtnl_link_stats64 pointer
4780 **/
4781static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4782						struct rtnl_link_stats64 *stats)
4783{
4784	struct igb_adapter *adapter = netdev_priv(netdev);
4785
4786	spin_lock(&adapter->stats64_lock);
4787	igb_update_stats(adapter, &adapter->stats64);
4788	memcpy(stats, &adapter->stats64, sizeof(*stats));
4789	spin_unlock(&adapter->stats64_lock);
4790
4791	return stats;
4792}
4793
4794/**
4795 *  igb_change_mtu - Change the Maximum Transfer Unit
4796 *  @netdev: network interface device structure
4797 *  @new_mtu: new value for maximum frame size
4798 *
4799 *  Returns 0 on success, negative on failure
4800 **/
4801static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4802{
4803	struct igb_adapter *adapter = netdev_priv(netdev);
4804	struct pci_dev *pdev = adapter->pdev;
4805	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4806
4807	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4808		dev_err(&pdev->dev, "Invalid MTU setting\n");
4809		return -EINVAL;
4810	}
4811
4812#define MAX_STD_JUMBO_FRAME_SIZE 9238
4813	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4814		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4815		return -EINVAL;
4816	}
4817
4818	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4819		msleep(1);
4820
4821	/* igb_down has a dependency on max_frame_size */
4822	adapter->max_frame_size = max_frame;
4823
4824	if (netif_running(netdev))
4825		igb_down(adapter);
4826
4827	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4828		 netdev->mtu, new_mtu);
4829	netdev->mtu = new_mtu;
4830
4831	if (netif_running(netdev))
4832		igb_up(adapter);
4833	else
4834		igb_reset(adapter);
4835
4836	clear_bit(__IGB_RESETTING, &adapter->state);
4837
4838	return 0;
4839}
4840
4841/**
4842 *  igb_update_stats - Update the board statistics counters
4843 *  @adapter: board private structure
4844 **/
4845void igb_update_stats(struct igb_adapter *adapter,
4846		      struct rtnl_link_stats64 *net_stats)
4847{
4848	struct e1000_hw *hw = &adapter->hw;
4849	struct pci_dev *pdev = adapter->pdev;
4850	u32 reg, mpc;
4851	u16 phy_tmp;
4852	int i;
4853	u64 bytes, packets;
4854	unsigned int start;
4855	u64 _bytes, _packets;
4856
4857#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4858
4859	/* Prevent stats update while adapter is being reset, or if the pci
4860	 * connection is down.
4861	 */
4862	if (adapter->link_speed == 0)
4863		return;
4864	if (pci_channel_offline(pdev))
4865		return;
4866
4867	bytes = 0;
4868	packets = 0;
4869	for (i = 0; i < adapter->num_rx_queues; i++) {
4870		u32 rqdpc = rd32(E1000_RQDPC(i));
4871		struct igb_ring *ring = adapter->rx_ring[i];
4872
4873		if (rqdpc) {
4874			ring->rx_stats.drops += rqdpc;
4875			net_stats->rx_fifo_errors += rqdpc;
4876		}
4877
4878		do {
4879			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4880			_bytes = ring->rx_stats.bytes;
4881			_packets = ring->rx_stats.packets;
4882		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4883		bytes += _bytes;
4884		packets += _packets;
4885	}
4886
4887	net_stats->rx_bytes = bytes;
4888	net_stats->rx_packets = packets;
4889
4890	bytes = 0;
4891	packets = 0;
4892	for (i = 0; i < adapter->num_tx_queues; i++) {
4893		struct igb_ring *ring = adapter->tx_ring[i];
4894		do {
4895			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4896			_bytes = ring->tx_stats.bytes;
4897			_packets = ring->tx_stats.packets;
4898		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4899		bytes += _bytes;
4900		packets += _packets;
4901	}
4902	net_stats->tx_bytes = bytes;
4903	net_stats->tx_packets = packets;
4904
4905	/* read stats registers */
4906	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4907	adapter->stats.gprc += rd32(E1000_GPRC);
4908	adapter->stats.gorc += rd32(E1000_GORCL);
4909	rd32(E1000_GORCH); /* clear GORCL */
4910	adapter->stats.bprc += rd32(E1000_BPRC);
4911	adapter->stats.mprc += rd32(E1000_MPRC);
4912	adapter->stats.roc += rd32(E1000_ROC);
4913
4914	adapter->stats.prc64 += rd32(E1000_PRC64);
4915	adapter->stats.prc127 += rd32(E1000_PRC127);
4916	adapter->stats.prc255 += rd32(E1000_PRC255);
4917	adapter->stats.prc511 += rd32(E1000_PRC511);
4918	adapter->stats.prc1023 += rd32(E1000_PRC1023);
4919	adapter->stats.prc1522 += rd32(E1000_PRC1522);
4920	adapter->stats.symerrs += rd32(E1000_SYMERRS);
4921	adapter->stats.sec += rd32(E1000_SEC);
4922
4923	mpc = rd32(E1000_MPC);
4924	adapter->stats.mpc += mpc;
4925	net_stats->rx_fifo_errors += mpc;
4926	adapter->stats.scc += rd32(E1000_SCC);
4927	adapter->stats.ecol += rd32(E1000_ECOL);
4928	adapter->stats.mcc += rd32(E1000_MCC);
4929	adapter->stats.latecol += rd32(E1000_LATECOL);
4930	adapter->stats.dc += rd32(E1000_DC);
4931	adapter->stats.rlec += rd32(E1000_RLEC);
4932	adapter->stats.xonrxc += rd32(E1000_XONRXC);
4933	adapter->stats.xontxc += rd32(E1000_XONTXC);
4934	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4935	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4936	adapter->stats.fcruc += rd32(E1000_FCRUC);
4937	adapter->stats.gptc += rd32(E1000_GPTC);
4938	adapter->stats.gotc += rd32(E1000_GOTCL);
4939	rd32(E1000_GOTCH); /* clear GOTCL */
4940	adapter->stats.rnbc += rd32(E1000_RNBC);
4941	adapter->stats.ruc += rd32(E1000_RUC);
4942	adapter->stats.rfc += rd32(E1000_RFC);
4943	adapter->stats.rjc += rd32(E1000_RJC);
4944	adapter->stats.tor += rd32(E1000_TORH);
4945	adapter->stats.tot += rd32(E1000_TOTH);
4946	adapter->stats.tpr += rd32(E1000_TPR);
4947
4948	adapter->stats.ptc64 += rd32(E1000_PTC64);
4949	adapter->stats.ptc127 += rd32(E1000_PTC127);
4950	adapter->stats.ptc255 += rd32(E1000_PTC255);
4951	adapter->stats.ptc511 += rd32(E1000_PTC511);
4952	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4953	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4954
4955	adapter->stats.mptc += rd32(E1000_MPTC);
4956	adapter->stats.bptc += rd32(E1000_BPTC);
4957
4958	adapter->stats.tpt += rd32(E1000_TPT);
4959	adapter->stats.colc += rd32(E1000_COLC);
4960
4961	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4962	/* read internal phy specific stats */
4963	reg = rd32(E1000_CTRL_EXT);
4964	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4965		adapter->stats.rxerrc += rd32(E1000_RXERRC);
4966
4967		/* this stat has invalid values on i210/i211 */
4968		if ((hw->mac.type != e1000_i210) &&
4969		    (hw->mac.type != e1000_i211))
4970			adapter->stats.tncrs += rd32(E1000_TNCRS);
4971	}
4972
4973	adapter->stats.tsctc += rd32(E1000_TSCTC);
4974	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4975
4976	adapter->stats.iac += rd32(E1000_IAC);
4977	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4978	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4979	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4980	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4981	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4982	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4983	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4984	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4985
4986	/* Fill out the OS statistics structure */
4987	net_stats->multicast = adapter->stats.mprc;
4988	net_stats->collisions = adapter->stats.colc;
4989
4990	/* Rx Errors */
4991
4992	/* RLEC on some newer hardware can be incorrect so build
4993	 * our own version based on RUC and ROC
4994	 */
4995	net_stats->rx_errors = adapter->stats.rxerrc +
4996		adapter->stats.crcerrs + adapter->stats.algnerrc +
4997		adapter->stats.ruc + adapter->stats.roc +
4998		adapter->stats.cexterr;
4999	net_stats->rx_length_errors = adapter->stats.ruc +
5000				      adapter->stats.roc;
5001	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5002	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5003	net_stats->rx_missed_errors = adapter->stats.mpc;
5004
5005	/* Tx Errors */
5006	net_stats->tx_errors = adapter->stats.ecol +
5007			       adapter->stats.latecol;
5008	net_stats->tx_aborted_errors = adapter->stats.ecol;
5009	net_stats->tx_window_errors = adapter->stats.latecol;
5010	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5011
5012	/* Tx Dropped needs to be maintained elsewhere */
5013
5014	/* Phy Stats */
5015	if (hw->phy.media_type == e1000_media_type_copper) {
5016		if ((adapter->link_speed == SPEED_1000) &&
5017		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5018			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5019			adapter->phy_stats.idle_errors += phy_tmp;
5020		}
5021	}
5022
5023	/* Management Stats */
5024	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5025	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5026	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5027
5028	/* OS2BMC Stats */
5029	reg = rd32(E1000_MANC);
5030	if (reg & E1000_MANC_EN_BMC2OS) {
5031		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5032		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5033		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5034		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5035	}
5036}
5037
5038static irqreturn_t igb_msix_other(int irq, void *data)
5039{
5040	struct igb_adapter *adapter = data;
5041	struct e1000_hw *hw = &adapter->hw;
5042	u32 icr = rd32(E1000_ICR);
5043	/* reading ICR causes bit 31 of EICR to be cleared */
5044
5045	if (icr & E1000_ICR_DRSTA)
5046		schedule_work(&adapter->reset_task);
5047
5048	if (icr & E1000_ICR_DOUTSYNC) {
5049		/* HW is reporting DMA is out of sync */
5050		adapter->stats.doosync++;
5051		/* The DMA Out of Sync is also indication of a spoof event
5052		 * in IOV mode. Check the Wrong VM Behavior register to
5053		 * see if it is really a spoof event.
5054		 */
5055		igb_check_wvbr(adapter);
5056	}
5057
5058	/* Check for a mailbox event */
5059	if (icr & E1000_ICR_VMMB)
5060		igb_msg_task(adapter);
5061
5062	if (icr & E1000_ICR_LSC) {
5063		hw->mac.get_link_status = 1;
5064		/* guard against interrupt when we're going down */
5065		if (!test_bit(__IGB_DOWN, &adapter->state))
5066			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5067	}
5068
5069	if (icr & E1000_ICR_TS) {
5070		u32 tsicr = rd32(E1000_TSICR);
5071
5072		if (tsicr & E1000_TSICR_TXTS) {
5073			/* acknowledge the interrupt */
5074			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5075			/* retrieve hardware timestamp */
5076			schedule_work(&adapter->ptp_tx_work);
5077		}
5078	}
5079
5080	wr32(E1000_EIMS, adapter->eims_other);
5081
5082	return IRQ_HANDLED;
5083}
5084
5085static void igb_write_itr(struct igb_q_vector *q_vector)
5086{
5087	struct igb_adapter *adapter = q_vector->adapter;
5088	u32 itr_val = q_vector->itr_val & 0x7FFC;
5089
5090	if (!q_vector->set_itr)
5091		return;
5092
5093	if (!itr_val)
5094		itr_val = 0x4;
5095
5096	if (adapter->hw.mac.type == e1000_82575)
5097		itr_val |= itr_val << 16;
5098	else
5099		itr_val |= E1000_EITR_CNT_IGNR;
5100
5101	writel(itr_val, q_vector->itr_register);
5102	q_vector->set_itr = 0;
5103}
5104
5105static irqreturn_t igb_msix_ring(int irq, void *data)
5106{
5107	struct igb_q_vector *q_vector = data;
5108
5109	/* Write the ITR value calculated from the previous interrupt. */
5110	igb_write_itr(q_vector);
5111
5112	napi_schedule(&q_vector->napi);
5113
5114	return IRQ_HANDLED;
5115}
5116
5117#ifdef CONFIG_IGB_DCA
5118static void igb_update_tx_dca(struct igb_adapter *adapter,
5119			      struct igb_ring *tx_ring,
5120			      int cpu)
5121{
5122	struct e1000_hw *hw = &adapter->hw;
5123	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5124
5125	if (hw->mac.type != e1000_82575)
5126		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5127
5128	/* We can enable relaxed ordering for reads, but not writes when
5129	 * DCA is enabled.  This is due to a known issue in some chipsets
5130	 * which will cause the DCA tag to be cleared.
5131	 */
5132	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5133		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5134		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5135
5136	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5137}
5138
5139static void igb_update_rx_dca(struct igb_adapter *adapter,
5140			      struct igb_ring *rx_ring,
5141			      int cpu)
5142{
5143	struct e1000_hw *hw = &adapter->hw;
5144	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5145
5146	if (hw->mac.type != e1000_82575)
5147		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5148
5149	/* We can enable relaxed ordering for reads, but not writes when
5150	 * DCA is enabled.  This is due to a known issue in some chipsets
5151	 * which will cause the DCA tag to be cleared.
5152	 */
5153	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5154		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5155
5156	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5157}
5158
5159static void igb_update_dca(struct igb_q_vector *q_vector)
5160{
5161	struct igb_adapter *adapter = q_vector->adapter;
5162	int cpu = get_cpu();
5163
5164	if (q_vector->cpu == cpu)
5165		goto out_no_update;
5166
5167	if (q_vector->tx.ring)
5168		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5169
5170	if (q_vector->rx.ring)
5171		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5172
5173	q_vector->cpu = cpu;
5174out_no_update:
5175	put_cpu();
5176}
5177
5178static void igb_setup_dca(struct igb_adapter *adapter)
5179{
5180	struct e1000_hw *hw = &adapter->hw;
5181	int i;
5182
5183	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5184		return;
5185
5186	/* Always use CB2 mode, difference is masked in the CB driver. */
5187	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5188
5189	for (i = 0; i < adapter->num_q_vectors; i++) {
5190		adapter->q_vector[i]->cpu = -1;
5191		igb_update_dca(adapter->q_vector[i]);
5192	}
5193}
5194
5195static int __igb_notify_dca(struct device *dev, void *data)
5196{
5197	struct net_device *netdev = dev_get_drvdata(dev);
5198	struct igb_adapter *adapter = netdev_priv(netdev);
5199	struct pci_dev *pdev = adapter->pdev;
5200	struct e1000_hw *hw = &adapter->hw;
5201	unsigned long event = *(unsigned long *)data;
5202
5203	switch (event) {
5204	case DCA_PROVIDER_ADD:
5205		/* if already enabled, don't do it again */
5206		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5207			break;
5208		if (dca_add_requester(dev) == 0) {
5209			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5210			dev_info(&pdev->dev, "DCA enabled\n");
5211			igb_setup_dca(adapter);
5212			break;
5213		}
5214		/* Fall Through since DCA is disabled. */
5215	case DCA_PROVIDER_REMOVE:
5216		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5217			/* without this a class_device is left
5218			 * hanging around in the sysfs model
5219			 */
5220			dca_remove_requester(dev);
5221			dev_info(&pdev->dev, "DCA disabled\n");
5222			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5223			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5224		}
5225		break;
5226	}
5227
5228	return 0;
5229}
5230
5231static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5232			  void *p)
5233{
5234	int ret_val;
5235
5236	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5237					 __igb_notify_dca);
5238
5239	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5240}
5241#endif /* CONFIG_IGB_DCA */
5242
5243#ifdef CONFIG_PCI_IOV
5244static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5245{
5246	unsigned char mac_addr[ETH_ALEN];
5247
5248	eth_zero_addr(mac_addr);
5249	igb_set_vf_mac(adapter, vf, mac_addr);
5250
5251	/* By default spoof check is enabled for all VFs */
5252	adapter->vf_data[vf].spoofchk_enabled = true;
5253
5254	return 0;
5255}
5256
5257#endif
5258static void igb_ping_all_vfs(struct igb_adapter *adapter)
5259{
5260	struct e1000_hw *hw = &adapter->hw;
5261	u32 ping;
5262	int i;
5263
5264	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5265		ping = E1000_PF_CONTROL_MSG;
5266		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5267			ping |= E1000_VT_MSGTYPE_CTS;
5268		igb_write_mbx(hw, &ping, 1, i);
5269	}
5270}
5271
5272static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5273{
5274	struct e1000_hw *hw = &adapter->hw;
5275	u32 vmolr = rd32(E1000_VMOLR(vf));
5276	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5277
5278	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5279			    IGB_VF_FLAG_MULTI_PROMISC);
5280	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5281
5282	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5283		vmolr |= E1000_VMOLR_MPME;
5284		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5285		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5286	} else {
5287		/* if we have hashes and we are clearing a multicast promisc
5288		 * flag we need to write the hashes to the MTA as this step
5289		 * was previously skipped
5290		 */
5291		if (vf_data->num_vf_mc_hashes > 30) {
5292			vmolr |= E1000_VMOLR_MPME;
5293		} else if (vf_data->num_vf_mc_hashes) {
5294			int j;
5295			vmolr |= E1000_VMOLR_ROMPE;
5296			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5297				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5298		}
5299	}
5300
5301	wr32(E1000_VMOLR(vf), vmolr);
5302
5303	/* there are flags left unprocessed, likely not supported */
5304	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5305		return -EINVAL;
5306
5307	return 0;
5308}
5309
5310static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5311				  u32 *msgbuf, u32 vf)
5312{
5313	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5314	u16 *hash_list = (u16 *)&msgbuf[1];
5315	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5316	int i;
5317
5318	/* salt away the number of multicast addresses assigned
5319	 * to this VF for later use to restore when the PF multi cast
5320	 * list changes
5321	 */
5322	vf_data->num_vf_mc_hashes = n;
5323
5324	/* only up to 30 hash values supported */
5325	if (n > 30)
5326		n = 30;
5327
5328	/* store the hashes for later use */
5329	for (i = 0; i < n; i++)
5330		vf_data->vf_mc_hashes[i] = hash_list[i];
5331
5332	/* Flush and reset the mta with the new values */
5333	igb_set_rx_mode(adapter->netdev);
5334
5335	return 0;
5336}
5337
5338static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5339{
5340	struct e1000_hw *hw = &adapter->hw;
5341	struct vf_data_storage *vf_data;
5342	int i, j;
5343
5344	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5345		u32 vmolr = rd32(E1000_VMOLR(i));
5346		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5347
5348		vf_data = &adapter->vf_data[i];
5349
5350		if ((vf_data->num_vf_mc_hashes > 30) ||
5351		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5352			vmolr |= E1000_VMOLR_MPME;
5353		} else if (vf_data->num_vf_mc_hashes) {
5354			vmolr |= E1000_VMOLR_ROMPE;
5355			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5356				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5357		}
5358		wr32(E1000_VMOLR(i), vmolr);
5359	}
5360}
5361
5362static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5363{
5364	struct e1000_hw *hw = &adapter->hw;
5365	u32 pool_mask, reg, vid;
5366	int i;
5367
5368	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5369
5370	/* Find the vlan filter for this id */
5371	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5372		reg = rd32(E1000_VLVF(i));
5373
5374		/* remove the vf from the pool */
5375		reg &= ~pool_mask;
5376
5377		/* if pool is empty then remove entry from vfta */
5378		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5379		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5380			reg = 0;
5381			vid = reg & E1000_VLVF_VLANID_MASK;
5382			igb_vfta_set(hw, vid, false);
5383		}
5384
5385		wr32(E1000_VLVF(i), reg);
5386	}
5387
5388	adapter->vf_data[vf].vlans_enabled = 0;
5389}
5390
5391static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5392{
5393	struct e1000_hw *hw = &adapter->hw;
5394	u32 reg, i;
5395
5396	/* The vlvf table only exists on 82576 hardware and newer */
5397	if (hw->mac.type < e1000_82576)
5398		return -1;
5399
5400	/* we only need to do this if VMDq is enabled */
5401	if (!adapter->vfs_allocated_count)
5402		return -1;
5403
5404	/* Find the vlan filter for this id */
5405	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5406		reg = rd32(E1000_VLVF(i));
5407		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5408		    vid == (reg & E1000_VLVF_VLANID_MASK))
5409			break;
5410	}
5411
5412	if (add) {
5413		if (i == E1000_VLVF_ARRAY_SIZE) {
5414			/* Did not find a matching VLAN ID entry that was
5415			 * enabled.  Search for a free filter entry, i.e.
5416			 * one without the enable bit set
5417			 */
5418			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5419				reg = rd32(E1000_VLVF(i));
5420				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5421					break;
5422			}
5423		}
5424		if (i < E1000_VLVF_ARRAY_SIZE) {
5425			/* Found an enabled/available entry */
5426			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5427
5428			/* if !enabled we need to set this up in vfta */
5429			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5430				/* add VID to filter table */
5431				igb_vfta_set(hw, vid, true);
5432				reg |= E1000_VLVF_VLANID_ENABLE;
5433			}
5434			reg &= ~E1000_VLVF_VLANID_MASK;
5435			reg |= vid;
5436			wr32(E1000_VLVF(i), reg);
5437
5438			/* do not modify RLPML for PF devices */
5439			if (vf >= adapter->vfs_allocated_count)
5440				return 0;
5441
5442			if (!adapter->vf_data[vf].vlans_enabled) {
5443				u32 size;
5444				reg = rd32(E1000_VMOLR(vf));
5445				size = reg & E1000_VMOLR_RLPML_MASK;
5446				size += 4;
5447				reg &= ~E1000_VMOLR_RLPML_MASK;
5448				reg |= size;
5449				wr32(E1000_VMOLR(vf), reg);
5450			}
5451
5452			adapter->vf_data[vf].vlans_enabled++;
5453		}
5454	} else {
5455		if (i < E1000_VLVF_ARRAY_SIZE) {
5456			/* remove vf from the pool */
5457			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5458			/* if pool is empty then remove entry from vfta */
5459			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5460				reg = 0;
5461				igb_vfta_set(hw, vid, false);
5462			}
5463			wr32(E1000_VLVF(i), reg);
5464
5465			/* do not modify RLPML for PF devices */
5466			if (vf >= adapter->vfs_allocated_count)
5467				return 0;
5468
5469			adapter->vf_data[vf].vlans_enabled--;
5470			if (!adapter->vf_data[vf].vlans_enabled) {
5471				u32 size;
5472				reg = rd32(E1000_VMOLR(vf));
5473				size = reg & E1000_VMOLR_RLPML_MASK;
5474				size -= 4;
5475				reg &= ~E1000_VMOLR_RLPML_MASK;
5476				reg |= size;
5477				wr32(E1000_VMOLR(vf), reg);
5478			}
5479		}
5480	}
5481	return 0;
5482}
5483
5484static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5485{
5486	struct e1000_hw *hw = &adapter->hw;
5487
5488	if (vid)
5489		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5490	else
5491		wr32(E1000_VMVIR(vf), 0);
5492}
5493
5494static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5495			       int vf, u16 vlan, u8 qos)
5496{
5497	int err = 0;
5498	struct igb_adapter *adapter = netdev_priv(netdev);
5499
5500	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5501		return -EINVAL;
5502	if (vlan || qos) {
5503		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5504		if (err)
5505			goto out;
5506		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5507		igb_set_vmolr(adapter, vf, !vlan);
5508		adapter->vf_data[vf].pf_vlan = vlan;
5509		adapter->vf_data[vf].pf_qos = qos;
5510		dev_info(&adapter->pdev->dev,
5511			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5512		if (test_bit(__IGB_DOWN, &adapter->state)) {
5513			dev_warn(&adapter->pdev->dev,
5514				 "The VF VLAN has been set, but the PF device is not up.\n");
5515			dev_warn(&adapter->pdev->dev,
5516				 "Bring the PF device up before attempting to use the VF device.\n");
5517		}
5518	} else {
5519		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5520			     false, vf);
5521		igb_set_vmvir(adapter, vlan, vf);
5522		igb_set_vmolr(adapter, vf, true);
5523		adapter->vf_data[vf].pf_vlan = 0;
5524		adapter->vf_data[vf].pf_qos = 0;
5525	}
5526out:
5527	return err;
5528}
5529
5530static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5531{
5532	struct e1000_hw *hw = &adapter->hw;
5533	int i;
5534	u32 reg;
5535
5536	/* Find the vlan filter for this id */
5537	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5538		reg = rd32(E1000_VLVF(i));
5539		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5540		    vid == (reg & E1000_VLVF_VLANID_MASK))
5541			break;
5542	}
5543
5544	if (i >= E1000_VLVF_ARRAY_SIZE)
5545		i = -1;
5546
5547	return i;
5548}
5549
5550static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5551{
5552	struct e1000_hw *hw = &adapter->hw;
5553	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5554	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5555	int err = 0;
5556
5557	/* If in promiscuous mode we need to make sure the PF also has
5558	 * the VLAN filter set.
5559	 */
5560	if (add && (adapter->netdev->flags & IFF_PROMISC))
5561		err = igb_vlvf_set(adapter, vid, add,
5562				   adapter->vfs_allocated_count);
5563	if (err)
5564		goto out;
5565
5566	err = igb_vlvf_set(adapter, vid, add, vf);
5567
5568	if (err)
5569		goto out;
5570
5571	/* Go through all the checks to see if the VLAN filter should
5572	 * be wiped completely.
5573	 */
5574	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5575		u32 vlvf, bits;
5576
5577		int regndx = igb_find_vlvf_entry(adapter, vid);
5578		if (regndx < 0)
5579			goto out;
5580		/* See if any other pools are set for this VLAN filter
5581		 * entry other than the PF.
5582		 */
5583		vlvf = bits = rd32(E1000_VLVF(regndx));
5584		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5585			      adapter->vfs_allocated_count);
5586		/* If the filter was removed then ensure PF pool bit
5587		 * is cleared if the PF only added itself to the pool
5588		 * because the PF is in promiscuous mode.
5589		 */
5590		if ((vlvf & VLAN_VID_MASK) == vid &&
5591		    !test_bit(vid, adapter->active_vlans) &&
5592		    !bits)
5593			igb_vlvf_set(adapter, vid, add,
5594				     adapter->vfs_allocated_count);
5595	}
5596
5597out:
5598	return err;
5599}
5600
5601static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5602{
5603	/* clear flags - except flag that indicates PF has set the MAC */
5604	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5605	adapter->vf_data[vf].last_nack = jiffies;
5606
5607	/* reset offloads to defaults */
5608	igb_set_vmolr(adapter, vf, true);
5609
5610	/* reset vlans for device */
5611	igb_clear_vf_vfta(adapter, vf);
5612	if (adapter->vf_data[vf].pf_vlan)
5613		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5614				    adapter->vf_data[vf].pf_vlan,
5615				    adapter->vf_data[vf].pf_qos);
5616	else
5617		igb_clear_vf_vfta(adapter, vf);
5618
5619	/* reset multicast table array for vf */
5620	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5621
5622	/* Flush and reset the mta with the new values */
5623	igb_set_rx_mode(adapter->netdev);
5624}
5625
5626static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5627{
5628	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5629
5630	/* clear mac address as we were hotplug removed/added */
5631	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5632		eth_zero_addr(vf_mac);
5633
5634	/* process remaining reset events */
5635	igb_vf_reset(adapter, vf);
5636}
5637
5638static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5639{
5640	struct e1000_hw *hw = &adapter->hw;
5641	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5642	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5643	u32 reg, msgbuf[3];
5644	u8 *addr = (u8 *)(&msgbuf[1]);
5645
5646	/* process all the same items cleared in a function level reset */
5647	igb_vf_reset(adapter, vf);
5648
5649	/* set vf mac address */
5650	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5651
5652	/* enable transmit and receive for vf */
5653	reg = rd32(E1000_VFTE);
5654	wr32(E1000_VFTE, reg | (1 << vf));
5655	reg = rd32(E1000_VFRE);
5656	wr32(E1000_VFRE, reg | (1 << vf));
5657
5658	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5659
5660	/* reply to reset with ack and vf mac address */
5661	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5662	memcpy(addr, vf_mac, 6);
5663	igb_write_mbx(hw, msgbuf, 3, vf);
5664}
5665
5666static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5667{
5668	/* The VF MAC Address is stored in a packed array of bytes
5669	 * starting at the second 32 bit word of the msg array
5670	 */
5671	unsigned char *addr = (char *)&msg[1];
5672	int err = -1;
5673
5674	if (is_valid_ether_addr(addr))
5675		err = igb_set_vf_mac(adapter, vf, addr);
5676
5677	return err;
5678}
5679
5680static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5681{
5682	struct e1000_hw *hw = &adapter->hw;
5683	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5684	u32 msg = E1000_VT_MSGTYPE_NACK;
5685
5686	/* if device isn't clear to send it shouldn't be reading either */
5687	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5688	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5689		igb_write_mbx(hw, &msg, 1, vf);
5690		vf_data->last_nack = jiffies;
5691	}
5692}
5693
5694static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5695{
5696	struct pci_dev *pdev = adapter->pdev;
5697	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5698	struct e1000_hw *hw = &adapter->hw;
5699	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5700	s32 retval;
5701
5702	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5703
5704	if (retval) {
5705		/* if receive failed revoke VF CTS stats and restart init */
5706		dev_err(&pdev->dev, "Error receiving message from VF\n");
5707		vf_data->flags &= ~IGB_VF_FLAG_CTS;
5708		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5709			return;
5710		goto out;
5711	}
5712
5713	/* this is a message we already processed, do nothing */
5714	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5715		return;
5716
5717	/* until the vf completes a reset it should not be
5718	 * allowed to start any configuration.
5719	 */
5720	if (msgbuf[0] == E1000_VF_RESET) {
5721		igb_vf_reset_msg(adapter, vf);
5722		return;
5723	}
5724
5725	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5726		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5727			return;
5728		retval = -1;
5729		goto out;
5730	}
5731
5732	switch ((msgbuf[0] & 0xFFFF)) {
5733	case E1000_VF_SET_MAC_ADDR:
5734		retval = -EINVAL;
5735		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5736			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5737		else
5738			dev_warn(&pdev->dev,
5739				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
5740				 vf);
5741		break;
5742	case E1000_VF_SET_PROMISC:
5743		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5744		break;
5745	case E1000_VF_SET_MULTICAST:
5746		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5747		break;
5748	case E1000_VF_SET_LPE:
5749		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5750		break;
5751	case E1000_VF_SET_VLAN:
5752		retval = -1;
5753		if (vf_data->pf_vlan)
5754			dev_warn(&pdev->dev,
5755				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
5756				 vf);
5757		else
5758			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5759		break;
5760	default:
5761		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5762		retval = -1;
5763		break;
5764	}
5765
5766	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5767out:
5768	/* notify the VF of the results of what it sent us */
5769	if (retval)
5770		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5771	else
5772		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5773
5774	igb_write_mbx(hw, msgbuf, 1, vf);
5775}
5776
5777static void igb_msg_task(struct igb_adapter *adapter)
5778{
5779	struct e1000_hw *hw = &adapter->hw;
5780	u32 vf;
5781
5782	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5783		/* process any reset requests */
5784		if (!igb_check_for_rst(hw, vf))
5785			igb_vf_reset_event(adapter, vf);
5786
5787		/* process any messages pending */
5788		if (!igb_check_for_msg(hw, vf))
5789			igb_rcv_msg_from_vf(adapter, vf);
5790
5791		/* process any acks */
5792		if (!igb_check_for_ack(hw, vf))
5793			igb_rcv_ack_from_vf(adapter, vf);
5794	}
5795}
5796
5797/**
5798 *  igb_set_uta - Set unicast filter table address
5799 *  @adapter: board private structure
5800 *
5801 *  The unicast table address is a register array of 32-bit registers.
5802 *  The table is meant to be used in a way similar to how the MTA is used
5803 *  however due to certain limitations in the hardware it is necessary to
5804 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5805 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5806 **/
5807static void igb_set_uta(struct igb_adapter *adapter)
5808{
5809	struct e1000_hw *hw = &adapter->hw;
5810	int i;
5811
5812	/* The UTA table only exists on 82576 hardware and newer */
5813	if (hw->mac.type < e1000_82576)
5814		return;
5815
5816	/* we only need to do this if VMDq is enabled */
5817	if (!adapter->vfs_allocated_count)
5818		return;
5819
5820	for (i = 0; i < hw->mac.uta_reg_count; i++)
5821		array_wr32(E1000_UTA, i, ~0);
5822}
5823
5824/**
5825 *  igb_intr_msi - Interrupt Handler
5826 *  @irq: interrupt number
5827 *  @data: pointer to a network interface device structure
5828 **/
5829static irqreturn_t igb_intr_msi(int irq, void *data)
5830{
5831	struct igb_adapter *adapter = data;
5832	struct igb_q_vector *q_vector = adapter->q_vector[0];
5833	struct e1000_hw *hw = &adapter->hw;
5834	/* read ICR disables interrupts using IAM */
5835	u32 icr = rd32(E1000_ICR);
5836
5837	igb_write_itr(q_vector);
5838
5839	if (icr & E1000_ICR_DRSTA)
5840		schedule_work(&adapter->reset_task);
5841
5842	if (icr & E1000_ICR_DOUTSYNC) {
5843		/* HW is reporting DMA is out of sync */
5844		adapter->stats.doosync++;
5845	}
5846
5847	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5848		hw->mac.get_link_status = 1;
5849		if (!test_bit(__IGB_DOWN, &adapter->state))
5850			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5851	}
5852
5853	if (icr & E1000_ICR_TS) {
5854		u32 tsicr = rd32(E1000_TSICR);
5855
5856		if (tsicr & E1000_TSICR_TXTS) {
5857			/* acknowledge the interrupt */
5858			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5859			/* retrieve hardware timestamp */
5860			schedule_work(&adapter->ptp_tx_work);
5861		}
5862	}
5863
5864	napi_schedule(&q_vector->napi);
5865
5866	return IRQ_HANDLED;
5867}
5868
5869/**
5870 *  igb_intr - Legacy Interrupt Handler
5871 *  @irq: interrupt number
5872 *  @data: pointer to a network interface device structure
5873 **/
5874static irqreturn_t igb_intr(int irq, void *data)
5875{
5876	struct igb_adapter *adapter = data;
5877	struct igb_q_vector *q_vector = adapter->q_vector[0];
5878	struct e1000_hw *hw = &adapter->hw;
5879	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5880	 * need for the IMC write
5881	 */
5882	u32 icr = rd32(E1000_ICR);
5883
5884	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5885	 * not set, then the adapter didn't send an interrupt
5886	 */
5887	if (!(icr & E1000_ICR_INT_ASSERTED))
5888		return IRQ_NONE;
5889
5890	igb_write_itr(q_vector);
5891
5892	if (icr & E1000_ICR_DRSTA)
5893		schedule_work(&adapter->reset_task);
5894
5895	if (icr & E1000_ICR_DOUTSYNC) {
5896		/* HW is reporting DMA is out of sync */
5897		adapter->stats.doosync++;
5898	}
5899
5900	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5901		hw->mac.get_link_status = 1;
5902		/* guard against interrupt when we're going down */
5903		if (!test_bit(__IGB_DOWN, &adapter->state))
5904			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5905	}
5906
5907	if (icr & E1000_ICR_TS) {
5908		u32 tsicr = rd32(E1000_TSICR);
5909
5910		if (tsicr & E1000_TSICR_TXTS) {
5911			/* acknowledge the interrupt */
5912			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5913			/* retrieve hardware timestamp */
5914			schedule_work(&adapter->ptp_tx_work);
5915		}
5916	}
5917
5918	napi_schedule(&q_vector->napi);
5919
5920	return IRQ_HANDLED;
5921}
5922
5923static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5924{
5925	struct igb_adapter *adapter = q_vector->adapter;
5926	struct e1000_hw *hw = &adapter->hw;
5927
5928	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5929	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5930		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5931			igb_set_itr(q_vector);
5932		else
5933			igb_update_ring_itr(q_vector);
5934	}
5935
5936	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5937		if (adapter->msix_entries)
5938			wr32(E1000_EIMS, q_vector->eims_value);
5939		else
5940			igb_irq_enable(adapter);
5941	}
5942}
5943
5944/**
5945 *  igb_poll - NAPI Rx polling callback
5946 *  @napi: napi polling structure
5947 *  @budget: count of how many packets we should handle
5948 **/
5949static int igb_poll(struct napi_struct *napi, int budget)
5950{
5951	struct igb_q_vector *q_vector = container_of(napi,
5952						     struct igb_q_vector,
5953						     napi);
5954	bool clean_complete = true;
5955
5956#ifdef CONFIG_IGB_DCA
5957	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5958		igb_update_dca(q_vector);
5959#endif
5960	if (q_vector->tx.ring)
5961		clean_complete = igb_clean_tx_irq(q_vector);
5962
5963	if (q_vector->rx.ring)
5964		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5965
5966	/* If all work not completed, return budget and keep polling */
5967	if (!clean_complete)
5968		return budget;
5969
5970	/* If not enough Rx work done, exit the polling mode */
5971	napi_complete(napi);
5972	igb_ring_irq_enable(q_vector);
5973
5974	return 0;
5975}
5976
5977/**
5978 *  igb_clean_tx_irq - Reclaim resources after transmit completes
5979 *  @q_vector: pointer to q_vector containing needed info
5980 *
5981 *  returns true if ring is completely cleaned
5982 **/
5983static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5984{
5985	struct igb_adapter *adapter = q_vector->adapter;
5986	struct igb_ring *tx_ring = q_vector->tx.ring;
5987	struct igb_tx_buffer *tx_buffer;
5988	union e1000_adv_tx_desc *tx_desc;
5989	unsigned int total_bytes = 0, total_packets = 0;
5990	unsigned int budget = q_vector->tx.work_limit;
5991	unsigned int i = tx_ring->next_to_clean;
5992
5993	if (test_bit(__IGB_DOWN, &adapter->state))
5994		return true;
5995
5996	tx_buffer = &tx_ring->tx_buffer_info[i];
5997	tx_desc = IGB_TX_DESC(tx_ring, i);
5998	i -= tx_ring->count;
5999
6000	do {
6001		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6002
6003		/* if next_to_watch is not set then there is no work pending */
6004		if (!eop_desc)
6005			break;
6006
6007		/* prevent any other reads prior to eop_desc */
6008		read_barrier_depends();
6009
6010		/* if DD is not set pending work has not been completed */
6011		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6012			break;
6013
6014		/* clear next_to_watch to prevent false hangs */
6015		tx_buffer->next_to_watch = NULL;
6016
6017		/* update the statistics for this packet */
6018		total_bytes += tx_buffer->bytecount;
6019		total_packets += tx_buffer->gso_segs;
6020
6021		/* free the skb */
6022		dev_kfree_skb_any(tx_buffer->skb);
6023
6024		/* unmap skb header data */
6025		dma_unmap_single(tx_ring->dev,
6026				 dma_unmap_addr(tx_buffer, dma),
6027				 dma_unmap_len(tx_buffer, len),
6028				 DMA_TO_DEVICE);
6029
6030		/* clear tx_buffer data */
6031		tx_buffer->skb = NULL;
6032		dma_unmap_len_set(tx_buffer, len, 0);
6033
6034		/* clear last DMA location and unmap remaining buffers */
6035		while (tx_desc != eop_desc) {
6036			tx_buffer++;
6037			tx_desc++;
6038			i++;
6039			if (unlikely(!i)) {
6040				i -= tx_ring->count;
6041				tx_buffer = tx_ring->tx_buffer_info;
6042				tx_desc = IGB_TX_DESC(tx_ring, 0);
6043			}
6044
6045			/* unmap any remaining paged data */
6046			if (dma_unmap_len(tx_buffer, len)) {
6047				dma_unmap_page(tx_ring->dev,
6048					       dma_unmap_addr(tx_buffer, dma),
6049					       dma_unmap_len(tx_buffer, len),
6050					       DMA_TO_DEVICE);
6051				dma_unmap_len_set(tx_buffer, len, 0);
6052			}
6053		}
6054
6055		/* move us one more past the eop_desc for start of next pkt */
6056		tx_buffer++;
6057		tx_desc++;
6058		i++;
6059		if (unlikely(!i)) {
6060			i -= tx_ring->count;
6061			tx_buffer = tx_ring->tx_buffer_info;
6062			tx_desc = IGB_TX_DESC(tx_ring, 0);
6063		}
6064
6065		/* issue prefetch for next Tx descriptor */
6066		prefetch(tx_desc);
6067
6068		/* update budget accounting */
6069		budget--;
6070	} while (likely(budget));
6071
6072	netdev_tx_completed_queue(txring_txq(tx_ring),
6073				  total_packets, total_bytes);
6074	i += tx_ring->count;
6075	tx_ring->next_to_clean = i;
6076	u64_stats_update_begin(&tx_ring->tx_syncp);
6077	tx_ring->tx_stats.bytes += total_bytes;
6078	tx_ring->tx_stats.packets += total_packets;
6079	u64_stats_update_end(&tx_ring->tx_syncp);
6080	q_vector->tx.total_bytes += total_bytes;
6081	q_vector->tx.total_packets += total_packets;
6082
6083	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6084		struct e1000_hw *hw = &adapter->hw;
6085
6086		/* Detect a transmit hang in hardware, this serializes the
6087		 * check with the clearing of time_stamp and movement of i
6088		 */
6089		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6090		if (tx_buffer->next_to_watch &&
6091		    time_after(jiffies, tx_buffer->time_stamp +
6092			       (adapter->tx_timeout_factor * HZ)) &&
6093		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6094
6095			/* detected Tx unit hang */
6096			dev_err(tx_ring->dev,
6097				"Detected Tx Unit Hang\n"
6098				"  Tx Queue             <%d>\n"
6099				"  TDH                  <%x>\n"
6100				"  TDT                  <%x>\n"
6101				"  next_to_use          <%x>\n"
6102				"  next_to_clean        <%x>\n"
6103				"buffer_info[next_to_clean]\n"
6104				"  time_stamp           <%lx>\n"
6105				"  next_to_watch        <%p>\n"
6106				"  jiffies              <%lx>\n"
6107				"  desc.status          <%x>\n",
6108				tx_ring->queue_index,
6109				rd32(E1000_TDH(tx_ring->reg_idx)),
6110				readl(tx_ring->tail),
6111				tx_ring->next_to_use,
6112				tx_ring->next_to_clean,
6113				tx_buffer->time_stamp,
6114				tx_buffer->next_to_watch,
6115				jiffies,
6116				tx_buffer->next_to_watch->wb.status);
6117			netif_stop_subqueue(tx_ring->netdev,
6118					    tx_ring->queue_index);
6119
6120			/* we are about to reset, no point in enabling stuff */
6121			return true;
6122		}
6123	}
6124
6125#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6126	if (unlikely(total_packets &&
6127	    netif_carrier_ok(tx_ring->netdev) &&
6128	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6129		/* Make sure that anybody stopping the queue after this
6130		 * sees the new next_to_clean.
6131		 */
6132		smp_mb();
6133		if (__netif_subqueue_stopped(tx_ring->netdev,
6134					     tx_ring->queue_index) &&
6135		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6136			netif_wake_subqueue(tx_ring->netdev,
6137					    tx_ring->queue_index);
6138
6139			u64_stats_update_begin(&tx_ring->tx_syncp);
6140			tx_ring->tx_stats.restart_queue++;
6141			u64_stats_update_end(&tx_ring->tx_syncp);
6142		}
6143	}
6144
6145	return !!budget;
6146}
6147
6148/**
6149 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6150 *  @rx_ring: rx descriptor ring to store buffers on
6151 *  @old_buff: donor buffer to have page reused
6152 *
6153 *  Synchronizes page for reuse by the adapter
6154 **/
6155static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6156			      struct igb_rx_buffer *old_buff)
6157{
6158	struct igb_rx_buffer *new_buff;
6159	u16 nta = rx_ring->next_to_alloc;
6160
6161	new_buff = &rx_ring->rx_buffer_info[nta];
6162
6163	/* update, and store next to alloc */
6164	nta++;
6165	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6166
6167	/* transfer page from old buffer to new buffer */
6168	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6169
6170	/* sync the buffer for use by the device */
6171	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6172					 old_buff->page_offset,
6173					 IGB_RX_BUFSZ,
6174					 DMA_FROM_DEVICE);
6175}
6176
6177static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6178				  struct page *page,
6179				  unsigned int truesize)
6180{
6181	/* avoid re-using remote pages */
6182	if (unlikely(page_to_nid(page) != numa_node_id()))
6183		return false;
6184
6185#if (PAGE_SIZE < 8192)
6186	/* if we are only owner of page we can reuse it */
6187	if (unlikely(page_count(page) != 1))
6188		return false;
6189
6190	/* flip page offset to other buffer */
6191	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6192
6193	/* since we are the only owner of the page and we need to
6194	 * increment it, just set the value to 2 in order to avoid
6195	 * an unnecessary locked operation
6196	 */
6197	atomic_set(&page->_count, 2);
6198#else
6199	/* move offset up to the next cache line */
6200	rx_buffer->page_offset += truesize;
6201
6202	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6203		return false;
6204
6205	/* bump ref count on page before it is given to the stack */
6206	get_page(page);
6207#endif
6208
6209	return true;
6210}
6211
6212/**
6213 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6214 *  @rx_ring: rx descriptor ring to transact packets on
6215 *  @rx_buffer: buffer containing page to add
6216 *  @rx_desc: descriptor containing length of buffer written by hardware
6217 *  @skb: sk_buff to place the data into
6218 *
6219 *  This function will add the data contained in rx_buffer->page to the skb.
6220 *  This is done either through a direct copy if the data in the buffer is
6221 *  less than the skb header size, otherwise it will just attach the page as
6222 *  a frag to the skb.
6223 *
6224 *  The function will then update the page offset if necessary and return
6225 *  true if the buffer can be reused by the adapter.
6226 **/
6227static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6228			    struct igb_rx_buffer *rx_buffer,
6229			    union e1000_adv_rx_desc *rx_desc,
6230			    struct sk_buff *skb)
6231{
6232	struct page *page = rx_buffer->page;
6233	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6234#if (PAGE_SIZE < 8192)
6235	unsigned int truesize = IGB_RX_BUFSZ;
6236#else
6237	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6238#endif
6239
6240	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6241		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6242
6243		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6244			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6245			va += IGB_TS_HDR_LEN;
6246			size -= IGB_TS_HDR_LEN;
6247		}
6248
6249		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6250
6251		/* we can reuse buffer as-is, just make sure it is local */
6252		if (likely(page_to_nid(page) == numa_node_id()))
6253			return true;
6254
6255		/* this page cannot be reused so discard it */
6256		put_page(page);
6257		return false;
6258	}
6259
6260	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6261			rx_buffer->page_offset, size, truesize);
6262
6263	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6264}
6265
6266static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6267					   union e1000_adv_rx_desc *rx_desc,
6268					   struct sk_buff *skb)
6269{
6270	struct igb_rx_buffer *rx_buffer;
6271	struct page *page;
6272
6273	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6274
6275	page = rx_buffer->page;
6276	prefetchw(page);
6277
6278	if (likely(!skb)) {
6279		void *page_addr = page_address(page) +
6280				  rx_buffer->page_offset;
6281
6282		/* prefetch first cache line of first page */
6283		prefetch(page_addr);
6284#if L1_CACHE_BYTES < 128
6285		prefetch(page_addr + L1_CACHE_BYTES);
6286#endif
6287
6288		/* allocate a skb to store the frags */
6289		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6290						IGB_RX_HDR_LEN);
6291		if (unlikely(!skb)) {
6292			rx_ring->rx_stats.alloc_failed++;
6293			return NULL;
6294		}
6295
6296		/* we will be copying header into skb->data in
6297		 * pskb_may_pull so it is in our interest to prefetch
6298		 * it now to avoid a possible cache miss
6299		 */
6300		prefetchw(skb->data);
6301	}
6302
6303	/* we are reusing so sync this buffer for CPU use */
6304	dma_sync_single_range_for_cpu(rx_ring->dev,
6305				      rx_buffer->dma,
6306				      rx_buffer->page_offset,
6307				      IGB_RX_BUFSZ,
6308				      DMA_FROM_DEVICE);
6309
6310	/* pull page into skb */
6311	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6312		/* hand second half of page back to the ring */
6313		igb_reuse_rx_page(rx_ring, rx_buffer);
6314	} else {
6315		/* we are not reusing the buffer so unmap it */
6316		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6317			       PAGE_SIZE, DMA_FROM_DEVICE);
6318	}
6319
6320	/* clear contents of rx_buffer */
6321	rx_buffer->page = NULL;
6322
6323	return skb;
6324}
6325
6326static inline void igb_rx_checksum(struct igb_ring *ring,
6327				   union e1000_adv_rx_desc *rx_desc,
6328				   struct sk_buff *skb)
6329{
6330	skb_checksum_none_assert(skb);
6331
6332	/* Ignore Checksum bit is set */
6333	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6334		return;
6335
6336	/* Rx checksum disabled via ethtool */
6337	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6338		return;
6339
6340	/* TCP/UDP checksum error bit is set */
6341	if (igb_test_staterr(rx_desc,
6342			     E1000_RXDEXT_STATERR_TCPE |
6343			     E1000_RXDEXT_STATERR_IPE)) {
6344		/* work around errata with sctp packets where the TCPE aka
6345		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6346		 * packets, (aka let the stack check the crc32c)
6347		 */
6348		if (!((skb->len == 60) &&
6349		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6350			u64_stats_update_begin(&ring->rx_syncp);
6351			ring->rx_stats.csum_err++;
6352			u64_stats_update_end(&ring->rx_syncp);
6353		}
6354		/* let the stack verify checksum errors */
6355		return;
6356	}
6357	/* It must be a TCP or UDP packet with a valid checksum */
6358	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6359				      E1000_RXD_STAT_UDPCS))
6360		skb->ip_summed = CHECKSUM_UNNECESSARY;
6361
6362	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6363		le32_to_cpu(rx_desc->wb.upper.status_error));
6364}
6365
6366static inline void igb_rx_hash(struct igb_ring *ring,
6367			       union e1000_adv_rx_desc *rx_desc,
6368			       struct sk_buff *skb)
6369{
6370	if (ring->netdev->features & NETIF_F_RXHASH)
6371		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6372}
6373
6374/**
6375 *  igb_is_non_eop - process handling of non-EOP buffers
6376 *  @rx_ring: Rx ring being processed
6377 *  @rx_desc: Rx descriptor for current buffer
6378 *  @skb: current socket buffer containing buffer in progress
6379 *
6380 *  This function updates next to clean.  If the buffer is an EOP buffer
6381 *  this function exits returning false, otherwise it will place the
6382 *  sk_buff in the next buffer to be chained and return true indicating
6383 *  that this is in fact a non-EOP buffer.
6384 **/
6385static bool igb_is_non_eop(struct igb_ring *rx_ring,
6386			   union e1000_adv_rx_desc *rx_desc)
6387{
6388	u32 ntc = rx_ring->next_to_clean + 1;
6389
6390	/* fetch, update, and store next to clean */
6391	ntc = (ntc < rx_ring->count) ? ntc : 0;
6392	rx_ring->next_to_clean = ntc;
6393
6394	prefetch(IGB_RX_DESC(rx_ring, ntc));
6395
6396	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6397		return false;
6398
6399	return true;
6400}
6401
6402/**
6403 *  igb_get_headlen - determine size of header for LRO/GRO
6404 *  @data: pointer to the start of the headers
6405 *  @max_len: total length of section to find headers in
6406 *
6407 *  This function is meant to determine the length of headers that will
6408 *  be recognized by hardware for LRO, and GRO offloads.  The main
6409 *  motivation of doing this is to only perform one pull for IPv4 TCP
6410 *  packets so that we can do basic things like calculating the gso_size
6411 *  based on the average data per packet.
6412 **/
6413static unsigned int igb_get_headlen(unsigned char *data,
6414				    unsigned int max_len)
6415{
6416	union {
6417		unsigned char *network;
6418		/* l2 headers */
6419		struct ethhdr *eth;
6420		struct vlan_hdr *vlan;
6421		/* l3 headers */
6422		struct iphdr *ipv4;
6423		struct ipv6hdr *ipv6;
6424	} hdr;
6425	__be16 protocol;
6426	u8 nexthdr = 0;	/* default to not TCP */
6427	u8 hlen;
6428
6429	/* this should never happen, but better safe than sorry */
6430	if (max_len < ETH_HLEN)
6431		return max_len;
6432
6433	/* initialize network frame pointer */
6434	hdr.network = data;
6435
6436	/* set first protocol and move network header forward */
6437	protocol = hdr.eth->h_proto;
6438	hdr.network += ETH_HLEN;
6439
6440	/* handle any vlan tag if present */
6441	if (protocol == __constant_htons(ETH_P_8021Q)) {
6442		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6443			return max_len;
6444
6445		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6446		hdr.network += VLAN_HLEN;
6447	}
6448
6449	/* handle L3 protocols */
6450	if (protocol == __constant_htons(ETH_P_IP)) {
6451		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6452			return max_len;
6453
6454		/* access ihl as a u8 to avoid unaligned access on ia64 */
6455		hlen = (hdr.network[0] & 0x0F) << 2;
6456
6457		/* verify hlen meets minimum size requirements */
6458		if (hlen < sizeof(struct iphdr))
6459			return hdr.network - data;
6460
6461		/* record next protocol if header is present */
6462		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6463			nexthdr = hdr.ipv4->protocol;
6464	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
6465		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6466			return max_len;
6467
6468		/* record next protocol */
6469		nexthdr = hdr.ipv6->nexthdr;
6470		hlen = sizeof(struct ipv6hdr);
6471	} else {
6472		return hdr.network - data;
6473	}
6474
6475	/* relocate pointer to start of L4 header */
6476	hdr.network += hlen;
6477
6478	/* finally sort out TCP */
6479	if (nexthdr == IPPROTO_TCP) {
6480		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6481			return max_len;
6482
6483		/* access doff as a u8 to avoid unaligned access on ia64 */
6484		hlen = (hdr.network[12] & 0xF0) >> 2;
6485
6486		/* verify hlen meets minimum size requirements */
6487		if (hlen < sizeof(struct tcphdr))
6488			return hdr.network - data;
6489
6490		hdr.network += hlen;
6491	} else if (nexthdr == IPPROTO_UDP) {
6492		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6493			return max_len;
6494
6495		hdr.network += sizeof(struct udphdr);
6496	}
6497
6498	/* If everything has gone correctly hdr.network should be the
6499	 * data section of the packet and will be the end of the header.
6500	 * If not then it probably represents the end of the last recognized
6501	 * header.
6502	 */
6503	if ((hdr.network - data) < max_len)
6504		return hdr.network - data;
6505	else
6506		return max_len;
6507}
6508
6509/**
6510 *  igb_pull_tail - igb specific version of skb_pull_tail
6511 *  @rx_ring: rx descriptor ring packet is being transacted on
6512 *  @rx_desc: pointer to the EOP Rx descriptor
6513 *  @skb: pointer to current skb being adjusted
6514 *
6515 *  This function is an igb specific version of __pskb_pull_tail.  The
6516 *  main difference between this version and the original function is that
6517 *  this function can make several assumptions about the state of things
6518 *  that allow for significant optimizations versus the standard function.
6519 *  As a result we can do things like drop a frag and maintain an accurate
6520 *  truesize for the skb.
6521 */
6522static void igb_pull_tail(struct igb_ring *rx_ring,
6523			  union e1000_adv_rx_desc *rx_desc,
6524			  struct sk_buff *skb)
6525{
6526	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6527	unsigned char *va;
6528	unsigned int pull_len;
6529
6530	/* it is valid to use page_address instead of kmap since we are
6531	 * working with pages allocated out of the lomem pool per
6532	 * alloc_page(GFP_ATOMIC)
6533	 */
6534	va = skb_frag_address(frag);
6535
6536	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6537		/* retrieve timestamp from buffer */
6538		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6539
6540		/* update pointers to remove timestamp header */
6541		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6542		frag->page_offset += IGB_TS_HDR_LEN;
6543		skb->data_len -= IGB_TS_HDR_LEN;
6544		skb->len -= IGB_TS_HDR_LEN;
6545
6546		/* move va to start of packet data */
6547		va += IGB_TS_HDR_LEN;
6548	}
6549
6550	/* we need the header to contain the greater of either ETH_HLEN or
6551	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6552	 */
6553	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6554
6555	/* align pull length to size of long to optimize memcpy performance */
6556	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6557
6558	/* update all of the pointers */
6559	skb_frag_size_sub(frag, pull_len);
6560	frag->page_offset += pull_len;
6561	skb->data_len -= pull_len;
6562	skb->tail += pull_len;
6563}
6564
6565/**
6566 *  igb_cleanup_headers - Correct corrupted or empty headers
6567 *  @rx_ring: rx descriptor ring packet is being transacted on
6568 *  @rx_desc: pointer to the EOP Rx descriptor
6569 *  @skb: pointer to current skb being fixed
6570 *
6571 *  Address the case where we are pulling data in on pages only
6572 *  and as such no data is present in the skb header.
6573 *
6574 *  In addition if skb is not at least 60 bytes we need to pad it so that
6575 *  it is large enough to qualify as a valid Ethernet frame.
6576 *
6577 *  Returns true if an error was encountered and skb was freed.
6578 **/
6579static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6580				union e1000_adv_rx_desc *rx_desc,
6581				struct sk_buff *skb)
6582{
6583	if (unlikely((igb_test_staterr(rx_desc,
6584				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6585		struct net_device *netdev = rx_ring->netdev;
6586		if (!(netdev->features & NETIF_F_RXALL)) {
6587			dev_kfree_skb_any(skb);
6588			return true;
6589		}
6590	}
6591
6592	/* place header in linear portion of buffer */
6593	if (skb_is_nonlinear(skb))
6594		igb_pull_tail(rx_ring, rx_desc, skb);
6595
6596	/* if skb_pad returns an error the skb was freed */
6597	if (unlikely(skb->len < 60)) {
6598		int pad_len = 60 - skb->len;
6599
6600		if (skb_pad(skb, pad_len))
6601			return true;
6602		__skb_put(skb, pad_len);
6603	}
6604
6605	return false;
6606}
6607
6608/**
6609 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6610 *  @rx_ring: rx descriptor ring packet is being transacted on
6611 *  @rx_desc: pointer to the EOP Rx descriptor
6612 *  @skb: pointer to current skb being populated
6613 *
6614 *  This function checks the ring, descriptor, and packet information in
6615 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6616 *  other fields within the skb.
6617 **/
6618static void igb_process_skb_fields(struct igb_ring *rx_ring,
6619				   union e1000_adv_rx_desc *rx_desc,
6620				   struct sk_buff *skb)
6621{
6622	struct net_device *dev = rx_ring->netdev;
6623
6624	igb_rx_hash(rx_ring, rx_desc, skb);
6625
6626	igb_rx_checksum(rx_ring, rx_desc, skb);
6627
6628	igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
6629
6630	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6631	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6632		u16 vid;
6633		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6634		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6635			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6636		else
6637			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6638
6639		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6640	}
6641
6642	skb_record_rx_queue(skb, rx_ring->queue_index);
6643
6644	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6645}
6646
6647static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6648{
6649	struct igb_ring *rx_ring = q_vector->rx.ring;
6650	struct sk_buff *skb = rx_ring->skb;
6651	unsigned int total_bytes = 0, total_packets = 0;
6652	u16 cleaned_count = igb_desc_unused(rx_ring);
6653
6654	do {
6655		union e1000_adv_rx_desc *rx_desc;
6656
6657		/* return some buffers to hardware, one at a time is too slow */
6658		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6659			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6660			cleaned_count = 0;
6661		}
6662
6663		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6664
6665		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6666			break;
6667
6668		/* This memory barrier is needed to keep us from reading
6669		 * any other fields out of the rx_desc until we know the
6670		 * RXD_STAT_DD bit is set
6671		 */
6672		rmb();
6673
6674		/* retrieve a buffer from the ring */
6675		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6676
6677		/* exit if we failed to retrieve a buffer */
6678		if (!skb)
6679			break;
6680
6681		cleaned_count++;
6682
6683		/* fetch next buffer in frame if non-eop */
6684		if (igb_is_non_eop(rx_ring, rx_desc))
6685			continue;
6686
6687		/* verify the packet layout is correct */
6688		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6689			skb = NULL;
6690			continue;
6691		}
6692
6693		/* probably a little skewed due to removing CRC */
6694		total_bytes += skb->len;
6695
6696		/* populate checksum, timestamp, VLAN, and protocol */
6697		igb_process_skb_fields(rx_ring, rx_desc, skb);
6698
6699		napi_gro_receive(&q_vector->napi, skb);
6700
6701		/* reset skb pointer */
6702		skb = NULL;
6703
6704		/* update budget accounting */
6705		total_packets++;
6706	} while (likely(total_packets < budget));
6707
6708	/* place incomplete frames back on ring for completion */
6709	rx_ring->skb = skb;
6710
6711	u64_stats_update_begin(&rx_ring->rx_syncp);
6712	rx_ring->rx_stats.packets += total_packets;
6713	rx_ring->rx_stats.bytes += total_bytes;
6714	u64_stats_update_end(&rx_ring->rx_syncp);
6715	q_vector->rx.total_packets += total_packets;
6716	q_vector->rx.total_bytes += total_bytes;
6717
6718	if (cleaned_count)
6719		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6720
6721	return (total_packets < budget);
6722}
6723
6724static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6725				  struct igb_rx_buffer *bi)
6726{
6727	struct page *page = bi->page;
6728	dma_addr_t dma;
6729
6730	/* since we are recycling buffers we should seldom need to alloc */
6731	if (likely(page))
6732		return true;
6733
6734	/* alloc new page for storage */
6735	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6736	if (unlikely(!page)) {
6737		rx_ring->rx_stats.alloc_failed++;
6738		return false;
6739	}
6740
6741	/* map page for use */
6742	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6743
6744	/* if mapping failed free memory back to system since
6745	 * there isn't much point in holding memory we can't use
6746	 */
6747	if (dma_mapping_error(rx_ring->dev, dma)) {
6748		__free_page(page);
6749
6750		rx_ring->rx_stats.alloc_failed++;
6751		return false;
6752	}
6753
6754	bi->dma = dma;
6755	bi->page = page;
6756	bi->page_offset = 0;
6757
6758	return true;
6759}
6760
6761/**
6762 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
6763 *  @adapter: address of board private structure
6764 **/
6765void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6766{
6767	union e1000_adv_rx_desc *rx_desc;
6768	struct igb_rx_buffer *bi;
6769	u16 i = rx_ring->next_to_use;
6770
6771	/* nothing to do */
6772	if (!cleaned_count)
6773		return;
6774
6775	rx_desc = IGB_RX_DESC(rx_ring, i);
6776	bi = &rx_ring->rx_buffer_info[i];
6777	i -= rx_ring->count;
6778
6779	do {
6780		if (!igb_alloc_mapped_page(rx_ring, bi))
6781			break;
6782
6783		/* Refresh the desc even if buffer_addrs didn't change
6784		 * because each write-back erases this info.
6785		 */
6786		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6787
6788		rx_desc++;
6789		bi++;
6790		i++;
6791		if (unlikely(!i)) {
6792			rx_desc = IGB_RX_DESC(rx_ring, 0);
6793			bi = rx_ring->rx_buffer_info;
6794			i -= rx_ring->count;
6795		}
6796
6797		/* clear the hdr_addr for the next_to_use descriptor */
6798		rx_desc->read.hdr_addr = 0;
6799
6800		cleaned_count--;
6801	} while (cleaned_count);
6802
6803	i += rx_ring->count;
6804
6805	if (rx_ring->next_to_use != i) {
6806		/* record the next descriptor to use */
6807		rx_ring->next_to_use = i;
6808
6809		/* update next to alloc since we have filled the ring */
6810		rx_ring->next_to_alloc = i;
6811
6812		/* Force memory writes to complete before letting h/w
6813		 * know there are new descriptors to fetch.  (Only
6814		 * applicable for weak-ordered memory model archs,
6815		 * such as IA-64).
6816		 */
6817		wmb();
6818		writel(i, rx_ring->tail);
6819	}
6820}
6821
6822/**
6823 * igb_mii_ioctl -
6824 * @netdev:
6825 * @ifreq:
6826 * @cmd:
6827 **/
6828static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6829{
6830	struct igb_adapter *adapter = netdev_priv(netdev);
6831	struct mii_ioctl_data *data = if_mii(ifr);
6832
6833	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6834		return -EOPNOTSUPP;
6835
6836	switch (cmd) {
6837	case SIOCGMIIPHY:
6838		data->phy_id = adapter->hw.phy.addr;
6839		break;
6840	case SIOCGMIIREG:
6841		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6842		                     &data->val_out))
6843			return -EIO;
6844		break;
6845	case SIOCSMIIREG:
6846	default:
6847		return -EOPNOTSUPP;
6848	}
6849	return 0;
6850}
6851
6852/**
6853 * igb_ioctl -
6854 * @netdev:
6855 * @ifreq:
6856 * @cmd:
6857 **/
6858static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6859{
6860	switch (cmd) {
6861	case SIOCGMIIPHY:
6862	case SIOCGMIIREG:
6863	case SIOCSMIIREG:
6864		return igb_mii_ioctl(netdev, ifr, cmd);
6865	case SIOCSHWTSTAMP:
6866		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6867	default:
6868		return -EOPNOTSUPP;
6869	}
6870}
6871
6872s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6873{
6874	struct igb_adapter *adapter = hw->back;
6875
6876	if (pcie_capability_read_word(adapter->pdev, reg, value))
6877		return -E1000_ERR_CONFIG;
6878
6879	return 0;
6880}
6881
6882s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6883{
6884	struct igb_adapter *adapter = hw->back;
6885
6886	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6887		return -E1000_ERR_CONFIG;
6888
6889	return 0;
6890}
6891
6892static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6893{
6894	struct igb_adapter *adapter = netdev_priv(netdev);
6895	struct e1000_hw *hw = &adapter->hw;
6896	u32 ctrl, rctl;
6897	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
6898
6899	if (enable) {
6900		/* enable VLAN tag insert/strip */
6901		ctrl = rd32(E1000_CTRL);
6902		ctrl |= E1000_CTRL_VME;
6903		wr32(E1000_CTRL, ctrl);
6904
6905		/* Disable CFI check */
6906		rctl = rd32(E1000_RCTL);
6907		rctl &= ~E1000_RCTL_CFIEN;
6908		wr32(E1000_RCTL, rctl);
6909	} else {
6910		/* disable VLAN tag insert/strip */
6911		ctrl = rd32(E1000_CTRL);
6912		ctrl &= ~E1000_CTRL_VME;
6913		wr32(E1000_CTRL, ctrl);
6914	}
6915
6916	igb_rlpml_set(adapter);
6917}
6918
6919static int igb_vlan_rx_add_vid(struct net_device *netdev,
6920			       __be16 proto, u16 vid)
6921{
6922	struct igb_adapter *adapter = netdev_priv(netdev);
6923	struct e1000_hw *hw = &adapter->hw;
6924	int pf_id = adapter->vfs_allocated_count;
6925
6926	/* attempt to add filter to vlvf array */
6927	igb_vlvf_set(adapter, vid, true, pf_id);
6928
6929	/* add the filter since PF can receive vlans w/o entry in vlvf */
6930	igb_vfta_set(hw, vid, true);
6931
6932	set_bit(vid, adapter->active_vlans);
6933
6934	return 0;
6935}
6936
6937static int igb_vlan_rx_kill_vid(struct net_device *netdev,
6938				__be16 proto, u16 vid)
6939{
6940	struct igb_adapter *adapter = netdev_priv(netdev);
6941	struct e1000_hw *hw = &adapter->hw;
6942	int pf_id = adapter->vfs_allocated_count;
6943	s32 err;
6944
6945	/* remove vlan from VLVF table array */
6946	err = igb_vlvf_set(adapter, vid, false, pf_id);
6947
6948	/* if vid was not present in VLVF just remove it from table */
6949	if (err)
6950		igb_vfta_set(hw, vid, false);
6951
6952	clear_bit(vid, adapter->active_vlans);
6953
6954	return 0;
6955}
6956
6957static void igb_restore_vlan(struct igb_adapter *adapter)
6958{
6959	u16 vid;
6960
6961	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6962
6963	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6964		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
6965}
6966
6967int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6968{
6969	struct pci_dev *pdev = adapter->pdev;
6970	struct e1000_mac_info *mac = &adapter->hw.mac;
6971
6972	mac->autoneg = 0;
6973
6974	/* Make sure dplx is at most 1 bit and lsb of speed is not set
6975	 * for the switch() below to work
6976	 */
6977	if ((spd & 1) || (dplx & ~1))
6978		goto err_inval;
6979
6980	/* Fiber NIC's only allow 1000 gbps Full duplex
6981	 * and 100Mbps Full duplex for 100baseFx sfp
6982	 */
6983	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
6984		switch (spd + dplx) {
6985		case SPEED_10 + DUPLEX_HALF:
6986		case SPEED_10 + DUPLEX_FULL:
6987		case SPEED_100 + DUPLEX_HALF:
6988			goto err_inval;
6989		default:
6990			break;
6991		}
6992	}
6993
6994	switch (spd + dplx) {
6995	case SPEED_10 + DUPLEX_HALF:
6996		mac->forced_speed_duplex = ADVERTISE_10_HALF;
6997		break;
6998	case SPEED_10 + DUPLEX_FULL:
6999		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7000		break;
7001	case SPEED_100 + DUPLEX_HALF:
7002		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7003		break;
7004	case SPEED_100 + DUPLEX_FULL:
7005		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7006		break;
7007	case SPEED_1000 + DUPLEX_FULL:
7008		mac->autoneg = 1;
7009		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7010		break;
7011	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7012	default:
7013		goto err_inval;
7014	}
7015
7016	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7017	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7018
7019	return 0;
7020
7021err_inval:
7022	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7023	return -EINVAL;
7024}
7025
7026static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7027			  bool runtime)
7028{
7029	struct net_device *netdev = pci_get_drvdata(pdev);
7030	struct igb_adapter *adapter = netdev_priv(netdev);
7031	struct e1000_hw *hw = &adapter->hw;
7032	u32 ctrl, rctl, status;
7033	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7034#ifdef CONFIG_PM
7035	int retval = 0;
7036#endif
7037
7038	netif_device_detach(netdev);
7039
7040	if (netif_running(netdev))
7041		__igb_close(netdev, true);
7042
7043	igb_clear_interrupt_scheme(adapter);
7044
7045#ifdef CONFIG_PM
7046	retval = pci_save_state(pdev);
7047	if (retval)
7048		return retval;
7049#endif
7050
7051	status = rd32(E1000_STATUS);
7052	if (status & E1000_STATUS_LU)
7053		wufc &= ~E1000_WUFC_LNKC;
7054
7055	if (wufc) {
7056		igb_setup_rctl(adapter);
7057		igb_set_rx_mode(netdev);
7058
7059		/* turn on all-multi mode if wake on multicast is enabled */
7060		if (wufc & E1000_WUFC_MC) {
7061			rctl = rd32(E1000_RCTL);
7062			rctl |= E1000_RCTL_MPE;
7063			wr32(E1000_RCTL, rctl);
7064		}
7065
7066		ctrl = rd32(E1000_CTRL);
7067		/* advertise wake from D3Cold */
7068		#define E1000_CTRL_ADVD3WUC 0x00100000
7069		/* phy power management enable */
7070		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7071		ctrl |= E1000_CTRL_ADVD3WUC;
7072		wr32(E1000_CTRL, ctrl);
7073
7074		/* Allow time for pending master requests to run */
7075		igb_disable_pcie_master(hw);
7076
7077		wr32(E1000_WUC, E1000_WUC_PME_EN);
7078		wr32(E1000_WUFC, wufc);
7079	} else {
7080		wr32(E1000_WUC, 0);
7081		wr32(E1000_WUFC, 0);
7082	}
7083
7084	*enable_wake = wufc || adapter->en_mng_pt;
7085	if (!*enable_wake)
7086		igb_power_down_link(adapter);
7087	else
7088		igb_power_up_link(adapter);
7089
7090	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7091	 * would have already happened in close and is redundant.
7092	 */
7093	igb_release_hw_control(adapter);
7094
7095	pci_disable_device(pdev);
7096
7097	return 0;
7098}
7099
7100#ifdef CONFIG_PM
7101#ifdef CONFIG_PM_SLEEP
7102static int igb_suspend(struct device *dev)
7103{
7104	int retval;
7105	bool wake;
7106	struct pci_dev *pdev = to_pci_dev(dev);
7107
7108	retval = __igb_shutdown(pdev, &wake, 0);
7109	if (retval)
7110		return retval;
7111
7112	if (wake) {
7113		pci_prepare_to_sleep(pdev);
7114	} else {
7115		pci_wake_from_d3(pdev, false);
7116		pci_set_power_state(pdev, PCI_D3hot);
7117	}
7118
7119	return 0;
7120}
7121#endif /* CONFIG_PM_SLEEP */
7122
7123static int igb_resume(struct device *dev)
7124{
7125	struct pci_dev *pdev = to_pci_dev(dev);
7126	struct net_device *netdev = pci_get_drvdata(pdev);
7127	struct igb_adapter *adapter = netdev_priv(netdev);
7128	struct e1000_hw *hw = &adapter->hw;
7129	u32 err;
7130
7131	pci_set_power_state(pdev, PCI_D0);
7132	pci_restore_state(pdev);
7133	pci_save_state(pdev);
7134
7135	err = pci_enable_device_mem(pdev);
7136	if (err) {
7137		dev_err(&pdev->dev,
7138			"igb: Cannot enable PCI device from suspend\n");
7139		return err;
7140	}
7141	pci_set_master(pdev);
7142
7143	pci_enable_wake(pdev, PCI_D3hot, 0);
7144	pci_enable_wake(pdev, PCI_D3cold, 0);
7145
7146	if (igb_init_interrupt_scheme(adapter, true)) {
7147		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7148		return -ENOMEM;
7149	}
7150
7151	igb_reset(adapter);
7152
7153	/* let the f/w know that the h/w is now under the control of the
7154	 * driver.
7155	 */
7156	igb_get_hw_control(adapter);
7157
7158	wr32(E1000_WUS, ~0);
7159
7160	if (netdev->flags & IFF_UP) {
7161		rtnl_lock();
7162		err = __igb_open(netdev, true);
7163		rtnl_unlock();
7164		if (err)
7165			return err;
7166	}
7167
7168	netif_device_attach(netdev);
7169	return 0;
7170}
7171
7172#ifdef CONFIG_PM_RUNTIME
7173static int igb_runtime_idle(struct device *dev)
7174{
7175	struct pci_dev *pdev = to_pci_dev(dev);
7176	struct net_device *netdev = pci_get_drvdata(pdev);
7177	struct igb_adapter *adapter = netdev_priv(netdev);
7178
7179	if (!igb_has_link(adapter))
7180		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7181
7182	return -EBUSY;
7183}
7184
7185static int igb_runtime_suspend(struct device *dev)
7186{
7187	struct pci_dev *pdev = to_pci_dev(dev);
7188	int retval;
7189	bool wake;
7190
7191	retval = __igb_shutdown(pdev, &wake, 1);
7192	if (retval)
7193		return retval;
7194
7195	if (wake) {
7196		pci_prepare_to_sleep(pdev);
7197	} else {
7198		pci_wake_from_d3(pdev, false);
7199		pci_set_power_state(pdev, PCI_D3hot);
7200	}
7201
7202	return 0;
7203}
7204
7205static int igb_runtime_resume(struct device *dev)
7206{
7207	return igb_resume(dev);
7208}
7209#endif /* CONFIG_PM_RUNTIME */
7210#endif
7211
7212static void igb_shutdown(struct pci_dev *pdev)
7213{
7214	bool wake;
7215
7216	__igb_shutdown(pdev, &wake, 0);
7217
7218	if (system_state == SYSTEM_POWER_OFF) {
7219		pci_wake_from_d3(pdev, wake);
7220		pci_set_power_state(pdev, PCI_D3hot);
7221	}
7222}
7223
7224#ifdef CONFIG_PCI_IOV
7225static int igb_sriov_reinit(struct pci_dev *dev)
7226{
7227	struct net_device *netdev = pci_get_drvdata(dev);
7228	struct igb_adapter *adapter = netdev_priv(netdev);
7229	struct pci_dev *pdev = adapter->pdev;
7230
7231	rtnl_lock();
7232
7233	if (netif_running(netdev))
7234		igb_close(netdev);
7235
7236	igb_clear_interrupt_scheme(adapter);
7237
7238	igb_init_queue_configuration(adapter);
7239
7240	if (igb_init_interrupt_scheme(adapter, true)) {
7241		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7242		return -ENOMEM;
7243	}
7244
7245	if (netif_running(netdev))
7246		igb_open(netdev);
7247
7248	rtnl_unlock();
7249
7250	return 0;
7251}
7252
7253static int igb_pci_disable_sriov(struct pci_dev *dev)
7254{
7255	int err = igb_disable_sriov(dev);
7256
7257	if (!err)
7258		err = igb_sriov_reinit(dev);
7259
7260	return err;
7261}
7262
7263static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7264{
7265	int err = igb_enable_sriov(dev, num_vfs);
7266
7267	if (err)
7268		goto out;
7269
7270	err = igb_sriov_reinit(dev);
7271	if (!err)
7272		return num_vfs;
7273
7274out:
7275	return err;
7276}
7277
7278#endif
7279static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7280{
7281#ifdef CONFIG_PCI_IOV
7282	if (num_vfs == 0)
7283		return igb_pci_disable_sriov(dev);
7284	else
7285		return igb_pci_enable_sriov(dev, num_vfs);
7286#endif
7287	return 0;
7288}
7289
7290#ifdef CONFIG_NET_POLL_CONTROLLER
7291/* Polling 'interrupt' - used by things like netconsole to send skbs
7292 * without having to re-enable interrupts. It's not called while
7293 * the interrupt routine is executing.
7294 */
7295static void igb_netpoll(struct net_device *netdev)
7296{
7297	struct igb_adapter *adapter = netdev_priv(netdev);
7298	struct e1000_hw *hw = &adapter->hw;
7299	struct igb_q_vector *q_vector;
7300	int i;
7301
7302	for (i = 0; i < adapter->num_q_vectors; i++) {
7303		q_vector = adapter->q_vector[i];
7304		if (adapter->msix_entries)
7305			wr32(E1000_EIMC, q_vector->eims_value);
7306		else
7307			igb_irq_disable(adapter);
7308		napi_schedule(&q_vector->napi);
7309	}
7310}
7311#endif /* CONFIG_NET_POLL_CONTROLLER */
7312
7313/**
7314 *  igb_io_error_detected - called when PCI error is detected
7315 *  @pdev: Pointer to PCI device
7316 *  @state: The current pci connection state
7317 *
7318 *  This function is called after a PCI bus error affecting
7319 *  this device has been detected.
7320 **/
7321static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7322					      pci_channel_state_t state)
7323{
7324	struct net_device *netdev = pci_get_drvdata(pdev);
7325	struct igb_adapter *adapter = netdev_priv(netdev);
7326
7327	netif_device_detach(netdev);
7328
7329	if (state == pci_channel_io_perm_failure)
7330		return PCI_ERS_RESULT_DISCONNECT;
7331
7332	if (netif_running(netdev))
7333		igb_down(adapter);
7334	pci_disable_device(pdev);
7335
7336	/* Request a slot slot reset. */
7337	return PCI_ERS_RESULT_NEED_RESET;
7338}
7339
7340/**
7341 *  igb_io_slot_reset - called after the pci bus has been reset.
7342 *  @pdev: Pointer to PCI device
7343 *
7344 *  Restart the card from scratch, as if from a cold-boot. Implementation
7345 *  resembles the first-half of the igb_resume routine.
7346 **/
7347static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7348{
7349	struct net_device *netdev = pci_get_drvdata(pdev);
7350	struct igb_adapter *adapter = netdev_priv(netdev);
7351	struct e1000_hw *hw = &adapter->hw;
7352	pci_ers_result_t result;
7353	int err;
7354
7355	if (pci_enable_device_mem(pdev)) {
7356		dev_err(&pdev->dev,
7357			"Cannot re-enable PCI device after reset.\n");
7358		result = PCI_ERS_RESULT_DISCONNECT;
7359	} else {
7360		pci_set_master(pdev);
7361		pci_restore_state(pdev);
7362		pci_save_state(pdev);
7363
7364		pci_enable_wake(pdev, PCI_D3hot, 0);
7365		pci_enable_wake(pdev, PCI_D3cold, 0);
7366
7367		igb_reset(adapter);
7368		wr32(E1000_WUS, ~0);
7369		result = PCI_ERS_RESULT_RECOVERED;
7370	}
7371
7372	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7373	if (err) {
7374		dev_err(&pdev->dev,
7375			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7376			err);
7377		/* non-fatal, continue */
7378	}
7379
7380	return result;
7381}
7382
7383/**
7384 *  igb_io_resume - called when traffic can start flowing again.
7385 *  @pdev: Pointer to PCI device
7386 *
7387 *  This callback is called when the error recovery driver tells us that
7388 *  its OK to resume normal operation. Implementation resembles the
7389 *  second-half of the igb_resume routine.
7390 */
7391static void igb_io_resume(struct pci_dev *pdev)
7392{
7393	struct net_device *netdev = pci_get_drvdata(pdev);
7394	struct igb_adapter *adapter = netdev_priv(netdev);
7395
7396	if (netif_running(netdev)) {
7397		if (igb_up(adapter)) {
7398			dev_err(&pdev->dev, "igb_up failed after reset\n");
7399			return;
7400		}
7401	}
7402
7403	netif_device_attach(netdev);
7404
7405	/* let the f/w know that the h/w is now under the control of the
7406	 * driver.
7407	 */
7408	igb_get_hw_control(adapter);
7409}
7410
7411static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7412			     u8 qsel)
7413{
7414	u32 rar_low, rar_high;
7415	struct e1000_hw *hw = &adapter->hw;
7416
7417	/* HW expects these in little endian so we reverse the byte order
7418	 * from network order (big endian) to little endian
7419	 */
7420	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7421		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7422	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7423
7424	/* Indicate to hardware the Address is Valid. */
7425	rar_high |= E1000_RAH_AV;
7426
7427	if (hw->mac.type == e1000_82575)
7428		rar_high |= E1000_RAH_POOL_1 * qsel;
7429	else
7430		rar_high |= E1000_RAH_POOL_1 << qsel;
7431
7432	wr32(E1000_RAL(index), rar_low);
7433	wrfl();
7434	wr32(E1000_RAH(index), rar_high);
7435	wrfl();
7436}
7437
7438static int igb_set_vf_mac(struct igb_adapter *adapter,
7439			  int vf, unsigned char *mac_addr)
7440{
7441	struct e1000_hw *hw = &adapter->hw;
7442	/* VF MAC addresses start at end of receive addresses and moves
7443	 * towards the first, as a result a collision should not be possible
7444	 */
7445	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7446
7447	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7448
7449	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7450
7451	return 0;
7452}
7453
7454static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7455{
7456	struct igb_adapter *adapter = netdev_priv(netdev);
7457	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7458		return -EINVAL;
7459	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7460	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7461	dev_info(&adapter->pdev->dev,
7462		 "Reload the VF driver to make this change effective.");
7463	if (test_bit(__IGB_DOWN, &adapter->state)) {
7464		dev_warn(&adapter->pdev->dev,
7465			 "The VF MAC address has been set, but the PF device is not up.\n");
7466		dev_warn(&adapter->pdev->dev,
7467			 "Bring the PF device up before attempting to use the VF device.\n");
7468	}
7469	return igb_set_vf_mac(adapter, vf, mac);
7470}
7471
7472static int igb_link_mbps(int internal_link_speed)
7473{
7474	switch (internal_link_speed) {
7475	case SPEED_100:
7476		return 100;
7477	case SPEED_1000:
7478		return 1000;
7479	default:
7480		return 0;
7481	}
7482}
7483
7484static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7485				  int link_speed)
7486{
7487	int rf_dec, rf_int;
7488	u32 bcnrc_val;
7489
7490	if (tx_rate != 0) {
7491		/* Calculate the rate factor values to set */
7492		rf_int = link_speed / tx_rate;
7493		rf_dec = (link_speed - (rf_int * tx_rate));
7494		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7495			 tx_rate;
7496
7497		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7498		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7499			      E1000_RTTBCNRC_RF_INT_MASK);
7500		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7501	} else {
7502		bcnrc_val = 0;
7503	}
7504
7505	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7506	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7507	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7508	 */
7509	wr32(E1000_RTTBCNRM, 0x14);
7510	wr32(E1000_RTTBCNRC, bcnrc_val);
7511}
7512
7513static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7514{
7515	int actual_link_speed, i;
7516	bool reset_rate = false;
7517
7518	/* VF TX rate limit was not set or not supported */
7519	if ((adapter->vf_rate_link_speed == 0) ||
7520	    (adapter->hw.mac.type != e1000_82576))
7521		return;
7522
7523	actual_link_speed = igb_link_mbps(adapter->link_speed);
7524	if (actual_link_speed != adapter->vf_rate_link_speed) {
7525		reset_rate = true;
7526		adapter->vf_rate_link_speed = 0;
7527		dev_info(&adapter->pdev->dev,
7528			 "Link speed has been changed. VF Transmit rate is disabled\n");
7529	}
7530
7531	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7532		if (reset_rate)
7533			adapter->vf_data[i].tx_rate = 0;
7534
7535		igb_set_vf_rate_limit(&adapter->hw, i,
7536				      adapter->vf_data[i].tx_rate,
7537				      actual_link_speed);
7538	}
7539}
7540
7541static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7542{
7543	struct igb_adapter *adapter = netdev_priv(netdev);
7544	struct e1000_hw *hw = &adapter->hw;
7545	int actual_link_speed;
7546
7547	if (hw->mac.type != e1000_82576)
7548		return -EOPNOTSUPP;
7549
7550	actual_link_speed = igb_link_mbps(adapter->link_speed);
7551	if ((vf >= adapter->vfs_allocated_count) ||
7552	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7553	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7554		return -EINVAL;
7555
7556	adapter->vf_rate_link_speed = actual_link_speed;
7557	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7558	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7559
7560	return 0;
7561}
7562
7563static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7564				   bool setting)
7565{
7566	struct igb_adapter *adapter = netdev_priv(netdev);
7567	struct e1000_hw *hw = &adapter->hw;
7568	u32 reg_val, reg_offset;
7569
7570	if (!adapter->vfs_allocated_count)
7571		return -EOPNOTSUPP;
7572
7573	if (vf >= adapter->vfs_allocated_count)
7574		return -EINVAL;
7575
7576	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7577	reg_val = rd32(reg_offset);
7578	if (setting)
7579		reg_val |= ((1 << vf) |
7580			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7581	else
7582		reg_val &= ~((1 << vf) |
7583			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7584	wr32(reg_offset, reg_val);
7585
7586	adapter->vf_data[vf].spoofchk_enabled = setting;
7587	return E1000_SUCCESS;
7588}
7589
7590static int igb_ndo_get_vf_config(struct net_device *netdev,
7591				 int vf, struct ifla_vf_info *ivi)
7592{
7593	struct igb_adapter *adapter = netdev_priv(netdev);
7594	if (vf >= adapter->vfs_allocated_count)
7595		return -EINVAL;
7596	ivi->vf = vf;
7597	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7598	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7599	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7600	ivi->qos = adapter->vf_data[vf].pf_qos;
7601	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7602	return 0;
7603}
7604
7605static void igb_vmm_control(struct igb_adapter *adapter)
7606{
7607	struct e1000_hw *hw = &adapter->hw;
7608	u32 reg;
7609
7610	switch (hw->mac.type) {
7611	case e1000_82575:
7612	case e1000_i210:
7613	case e1000_i211:
7614	case e1000_i354:
7615	default:
7616		/* replication is not supported for 82575 */
7617		return;
7618	case e1000_82576:
7619		/* notify HW that the MAC is adding vlan tags */
7620		reg = rd32(E1000_DTXCTL);
7621		reg |= E1000_DTXCTL_VLAN_ADDED;
7622		wr32(E1000_DTXCTL, reg);
7623	case e1000_82580:
7624		/* enable replication vlan tag stripping */
7625		reg = rd32(E1000_RPLOLR);
7626		reg |= E1000_RPLOLR_STRVLAN;
7627		wr32(E1000_RPLOLR, reg);
7628	case e1000_i350:
7629		/* none of the above registers are supported by i350 */
7630		break;
7631	}
7632
7633	if (adapter->vfs_allocated_count) {
7634		igb_vmdq_set_loopback_pf(hw, true);
7635		igb_vmdq_set_replication_pf(hw, true);
7636		igb_vmdq_set_anti_spoofing_pf(hw, true,
7637					      adapter->vfs_allocated_count);
7638	} else {
7639		igb_vmdq_set_loopback_pf(hw, false);
7640		igb_vmdq_set_replication_pf(hw, false);
7641	}
7642}
7643
7644static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7645{
7646	struct e1000_hw *hw = &adapter->hw;
7647	u32 dmac_thr;
7648	u16 hwm;
7649
7650	if (hw->mac.type > e1000_82580) {
7651		if (adapter->flags & IGB_FLAG_DMAC) {
7652			u32 reg;
7653
7654			/* force threshold to 0. */
7655			wr32(E1000_DMCTXTH, 0);
7656
7657			/* DMA Coalescing high water mark needs to be greater
7658			 * than the Rx threshold. Set hwm to PBA - max frame
7659			 * size in 16B units, capping it at PBA - 6KB.
7660			 */
7661			hwm = 64 * pba - adapter->max_frame_size / 16;
7662			if (hwm < 64 * (pba - 6))
7663				hwm = 64 * (pba - 6);
7664			reg = rd32(E1000_FCRTC);
7665			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7666			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7667				& E1000_FCRTC_RTH_COAL_MASK);
7668			wr32(E1000_FCRTC, reg);
7669
7670			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7671			 * frame size, capping it at PBA - 10KB.
7672			 */
7673			dmac_thr = pba - adapter->max_frame_size / 512;
7674			if (dmac_thr < pba - 10)
7675				dmac_thr = pba - 10;
7676			reg = rd32(E1000_DMACR);
7677			reg &= ~E1000_DMACR_DMACTHR_MASK;
7678			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7679				& E1000_DMACR_DMACTHR_MASK);
7680
7681			/* transition to L0x or L1 if available..*/
7682			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7683
7684			/* watchdog timer= +-1000 usec in 32usec intervals */
7685			reg |= (1000 >> 5);
7686
7687			/* Disable BMC-to-OS Watchdog Enable */
7688			if (hw->mac.type != e1000_i354)
7689				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7690
7691			wr32(E1000_DMACR, reg);
7692
7693			/* no lower threshold to disable
7694			 * coalescing(smart fifb)-UTRESH=0
7695			 */
7696			wr32(E1000_DMCRTRH, 0);
7697
7698			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7699
7700			wr32(E1000_DMCTLX, reg);
7701
7702			/* free space in tx packet buffer to wake from
7703			 * DMA coal
7704			 */
7705			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7706			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7707
7708			/* make low power state decision controlled
7709			 * by DMA coal
7710			 */
7711			reg = rd32(E1000_PCIEMISC);
7712			reg &= ~E1000_PCIEMISC_LX_DECISION;
7713			wr32(E1000_PCIEMISC, reg);
7714		} /* endif adapter->dmac is not disabled */
7715	} else if (hw->mac.type == e1000_82580) {
7716		u32 reg = rd32(E1000_PCIEMISC);
7717		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7718		wr32(E1000_DMACR, 0);
7719	}
7720}
7721
7722/**
7723 *  igb_read_i2c_byte - Reads 8 bit word over I2C
7724 *  @hw: pointer to hardware structure
7725 *  @byte_offset: byte offset to read
7726 *  @dev_addr: device address
7727 *  @data: value read
7728 *
7729 *  Performs byte read operation over I2C interface at
7730 *  a specified device address.
7731 **/
7732s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7733		      u8 dev_addr, u8 *data)
7734{
7735	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7736	struct i2c_client *this_client = adapter->i2c_client;
7737	s32 status;
7738	u16 swfw_mask = 0;
7739
7740	if (!this_client)
7741		return E1000_ERR_I2C;
7742
7743	swfw_mask = E1000_SWFW_PHY0_SM;
7744
7745	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7746	    != E1000_SUCCESS)
7747		return E1000_ERR_SWFW_SYNC;
7748
7749	status = i2c_smbus_read_byte_data(this_client, byte_offset);
7750	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7751
7752	if (status < 0)
7753		return E1000_ERR_I2C;
7754	else {
7755		*data = status;
7756		return E1000_SUCCESS;
7757	}
7758}
7759
7760/**
7761 *  igb_write_i2c_byte - Writes 8 bit word over I2C
7762 *  @hw: pointer to hardware structure
7763 *  @byte_offset: byte offset to write
7764 *  @dev_addr: device address
7765 *  @data: value to write
7766 *
7767 *  Performs byte write operation over I2C interface at
7768 *  a specified device address.
7769 **/
7770s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7771		       u8 dev_addr, u8 data)
7772{
7773	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7774	struct i2c_client *this_client = adapter->i2c_client;
7775	s32 status;
7776	u16 swfw_mask = E1000_SWFW_PHY0_SM;
7777
7778	if (!this_client)
7779		return E1000_ERR_I2C;
7780
7781	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7782		return E1000_ERR_SWFW_SYNC;
7783	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7784	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7785
7786	if (status)
7787		return E1000_ERR_I2C;
7788	else
7789		return E1000_SUCCESS;
7790
7791}
7792/* igb_main.c */
7793