igb_main.c revision 57ba34c9b068f314b219affafc19a39f8735d5e8
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2014 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, see <http://www.gnu.org/licenses/>.
17
18  The full GNU General Public License is included in this distribution in
19  the file called "COPYING".
20
21  Contact Information:
22  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25*******************************************************************************/
26
27#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28
29#include <linux/module.h>
30#include <linux/types.h>
31#include <linux/init.h>
32#include <linux/bitops.h>
33#include <linux/vmalloc.h>
34#include <linux/pagemap.h>
35#include <linux/netdevice.h>
36#include <linux/ipv6.h>
37#include <linux/slab.h>
38#include <net/checksum.h>
39#include <net/ip6_checksum.h>
40#include <linux/net_tstamp.h>
41#include <linux/mii.h>
42#include <linux/ethtool.h>
43#include <linux/if.h>
44#include <linux/if_vlan.h>
45#include <linux/pci.h>
46#include <linux/pci-aspm.h>
47#include <linux/delay.h>
48#include <linux/interrupt.h>
49#include <linux/ip.h>
50#include <linux/tcp.h>
51#include <linux/sctp.h>
52#include <linux/if_ether.h>
53#include <linux/aer.h>
54#include <linux/prefetch.h>
55#include <linux/pm_runtime.h>
56#ifdef CONFIG_IGB_DCA
57#include <linux/dca.h>
58#endif
59#include <linux/i2c.h>
60#include "igb.h"
61
62#define MAJ 5
63#define MIN 0
64#define BUILD 5
65#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66__stringify(BUILD) "-k"
67char igb_driver_name[] = "igb";
68char igb_driver_version[] = DRV_VERSION;
69static const char igb_driver_string[] =
70				"Intel(R) Gigabit Ethernet Network Driver";
71static const char igb_copyright[] =
72				"Copyright (c) 2007-2014 Intel Corporation.";
73
74static const struct e1000_info *igb_info_tbl[] = {
75	[board_82575] = &e1000_82575_info,
76};
77
78static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
79	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
99	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
104	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
105	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
106	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
107	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
108	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
109	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
110	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
111	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
112	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
113	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
114	/* required last entry */
115	{0, }
116};
117
118MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
119
120void igb_reset(struct igb_adapter *);
121static int igb_setup_all_tx_resources(struct igb_adapter *);
122static int igb_setup_all_rx_resources(struct igb_adapter *);
123static void igb_free_all_tx_resources(struct igb_adapter *);
124static void igb_free_all_rx_resources(struct igb_adapter *);
125static void igb_setup_mrqc(struct igb_adapter *);
126static int igb_probe(struct pci_dev *, const struct pci_device_id *);
127static void igb_remove(struct pci_dev *pdev);
128static int igb_sw_init(struct igb_adapter *);
129static int igb_open(struct net_device *);
130static int igb_close(struct net_device *);
131static void igb_configure(struct igb_adapter *);
132static void igb_configure_tx(struct igb_adapter *);
133static void igb_configure_rx(struct igb_adapter *);
134static void igb_clean_all_tx_rings(struct igb_adapter *);
135static void igb_clean_all_rx_rings(struct igb_adapter *);
136static void igb_clean_tx_ring(struct igb_ring *);
137static void igb_clean_rx_ring(struct igb_ring *);
138static void igb_set_rx_mode(struct net_device *);
139static void igb_update_phy_info(unsigned long);
140static void igb_watchdog(unsigned long);
141static void igb_watchdog_task(struct work_struct *);
142static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
143static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
144						 struct rtnl_link_stats64 *stats);
145static int igb_change_mtu(struct net_device *, int);
146static int igb_set_mac(struct net_device *, void *);
147static void igb_set_uta(struct igb_adapter *adapter);
148static irqreturn_t igb_intr(int irq, void *);
149static irqreturn_t igb_intr_msi(int irq, void *);
150static irqreturn_t igb_msix_other(int irq, void *);
151static irqreturn_t igb_msix_ring(int irq, void *);
152#ifdef CONFIG_IGB_DCA
153static void igb_update_dca(struct igb_q_vector *);
154static void igb_setup_dca(struct igb_adapter *);
155#endif /* CONFIG_IGB_DCA */
156static int igb_poll(struct napi_struct *, int);
157static bool igb_clean_tx_irq(struct igb_q_vector *);
158static bool igb_clean_rx_irq(struct igb_q_vector *, int);
159static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
160static void igb_tx_timeout(struct net_device *);
161static void igb_reset_task(struct work_struct *);
162static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
163static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
164static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
165static void igb_restore_vlan(struct igb_adapter *);
166static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
167static void igb_ping_all_vfs(struct igb_adapter *);
168static void igb_msg_task(struct igb_adapter *);
169static void igb_vmm_control(struct igb_adapter *);
170static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
171static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
172static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
173static int igb_ndo_set_vf_vlan(struct net_device *netdev,
174			       int vf, u16 vlan, u8 qos);
175static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
176static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
177				   bool setting);
178static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
179				 struct ifla_vf_info *ivi);
180static void igb_check_vf_rate_limit(struct igb_adapter *);
181
182#ifdef CONFIG_PCI_IOV
183static int igb_vf_configure(struct igb_adapter *adapter, int vf);
184static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
185#endif
186
187#ifdef CONFIG_PM
188#ifdef CONFIG_PM_SLEEP
189static int igb_suspend(struct device *);
190#endif
191static int igb_resume(struct device *);
192#ifdef CONFIG_PM_RUNTIME
193static int igb_runtime_suspend(struct device *dev);
194static int igb_runtime_resume(struct device *dev);
195static int igb_runtime_idle(struct device *dev);
196#endif
197static const struct dev_pm_ops igb_pm_ops = {
198	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
199	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
200			igb_runtime_idle)
201};
202#endif
203static void igb_shutdown(struct pci_dev *);
204static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
205#ifdef CONFIG_IGB_DCA
206static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
207static struct notifier_block dca_notifier = {
208	.notifier_call	= igb_notify_dca,
209	.next		= NULL,
210	.priority	= 0
211};
212#endif
213#ifdef CONFIG_NET_POLL_CONTROLLER
214/* for netdump / net console */
215static void igb_netpoll(struct net_device *);
216#endif
217#ifdef CONFIG_PCI_IOV
218static unsigned int max_vfs = 0;
219module_param(max_vfs, uint, 0);
220MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
221                 "per physical function");
222#endif /* CONFIG_PCI_IOV */
223
224static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
225		     pci_channel_state_t);
226static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
227static void igb_io_resume(struct pci_dev *);
228
229static const struct pci_error_handlers igb_err_handler = {
230	.error_detected = igb_io_error_detected,
231	.slot_reset = igb_io_slot_reset,
232	.resume = igb_io_resume,
233};
234
235static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
236
237static struct pci_driver igb_driver = {
238	.name     = igb_driver_name,
239	.id_table = igb_pci_tbl,
240	.probe    = igb_probe,
241	.remove   = igb_remove,
242#ifdef CONFIG_PM
243	.driver.pm = &igb_pm_ops,
244#endif
245	.shutdown = igb_shutdown,
246	.sriov_configure = igb_pci_sriov_configure,
247	.err_handler = &igb_err_handler
248};
249
250MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
251MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
252MODULE_LICENSE("GPL");
253MODULE_VERSION(DRV_VERSION);
254
255#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
256static int debug = -1;
257module_param(debug, int, 0);
258MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
259
260struct igb_reg_info {
261	u32 ofs;
262	char *name;
263};
264
265static const struct igb_reg_info igb_reg_info_tbl[] = {
266
267	/* General Registers */
268	{E1000_CTRL, "CTRL"},
269	{E1000_STATUS, "STATUS"},
270	{E1000_CTRL_EXT, "CTRL_EXT"},
271
272	/* Interrupt Registers */
273	{E1000_ICR, "ICR"},
274
275	/* RX Registers */
276	{E1000_RCTL, "RCTL"},
277	{E1000_RDLEN(0), "RDLEN"},
278	{E1000_RDH(0), "RDH"},
279	{E1000_RDT(0), "RDT"},
280	{E1000_RXDCTL(0), "RXDCTL"},
281	{E1000_RDBAL(0), "RDBAL"},
282	{E1000_RDBAH(0), "RDBAH"},
283
284	/* TX Registers */
285	{E1000_TCTL, "TCTL"},
286	{E1000_TDBAL(0), "TDBAL"},
287	{E1000_TDBAH(0), "TDBAH"},
288	{E1000_TDLEN(0), "TDLEN"},
289	{E1000_TDH(0), "TDH"},
290	{E1000_TDT(0), "TDT"},
291	{E1000_TXDCTL(0), "TXDCTL"},
292	{E1000_TDFH, "TDFH"},
293	{E1000_TDFT, "TDFT"},
294	{E1000_TDFHS, "TDFHS"},
295	{E1000_TDFPC, "TDFPC"},
296
297	/* List Terminator */
298	{}
299};
300
301/* igb_regdump - register printout routine */
302static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
303{
304	int n = 0;
305	char rname[16];
306	u32 regs[8];
307
308	switch (reginfo->ofs) {
309	case E1000_RDLEN(0):
310		for (n = 0; n < 4; n++)
311			regs[n] = rd32(E1000_RDLEN(n));
312		break;
313	case E1000_RDH(0):
314		for (n = 0; n < 4; n++)
315			regs[n] = rd32(E1000_RDH(n));
316		break;
317	case E1000_RDT(0):
318		for (n = 0; n < 4; n++)
319			regs[n] = rd32(E1000_RDT(n));
320		break;
321	case E1000_RXDCTL(0):
322		for (n = 0; n < 4; n++)
323			regs[n] = rd32(E1000_RXDCTL(n));
324		break;
325	case E1000_RDBAL(0):
326		for (n = 0; n < 4; n++)
327			regs[n] = rd32(E1000_RDBAL(n));
328		break;
329	case E1000_RDBAH(0):
330		for (n = 0; n < 4; n++)
331			regs[n] = rd32(E1000_RDBAH(n));
332		break;
333	case E1000_TDBAL(0):
334		for (n = 0; n < 4; n++)
335			regs[n] = rd32(E1000_RDBAL(n));
336		break;
337	case E1000_TDBAH(0):
338		for (n = 0; n < 4; n++)
339			regs[n] = rd32(E1000_TDBAH(n));
340		break;
341	case E1000_TDLEN(0):
342		for (n = 0; n < 4; n++)
343			regs[n] = rd32(E1000_TDLEN(n));
344		break;
345	case E1000_TDH(0):
346		for (n = 0; n < 4; n++)
347			regs[n] = rd32(E1000_TDH(n));
348		break;
349	case E1000_TDT(0):
350		for (n = 0; n < 4; n++)
351			regs[n] = rd32(E1000_TDT(n));
352		break;
353	case E1000_TXDCTL(0):
354		for (n = 0; n < 4; n++)
355			regs[n] = rd32(E1000_TXDCTL(n));
356		break;
357	default:
358		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
359		return;
360	}
361
362	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
363	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
364		regs[2], regs[3]);
365}
366
367/* igb_dump - Print registers, Tx-rings and Rx-rings */
368static void igb_dump(struct igb_adapter *adapter)
369{
370	struct net_device *netdev = adapter->netdev;
371	struct e1000_hw *hw = &adapter->hw;
372	struct igb_reg_info *reginfo;
373	struct igb_ring *tx_ring;
374	union e1000_adv_tx_desc *tx_desc;
375	struct my_u0 { u64 a; u64 b; } *u0;
376	struct igb_ring *rx_ring;
377	union e1000_adv_rx_desc *rx_desc;
378	u32 staterr;
379	u16 i, n;
380
381	if (!netif_msg_hw(adapter))
382		return;
383
384	/* Print netdevice Info */
385	if (netdev) {
386		dev_info(&adapter->pdev->dev, "Net device Info\n");
387		pr_info("Device Name     state            trans_start      "
388			"last_rx\n");
389		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
390			netdev->state, netdev->trans_start, netdev->last_rx);
391	}
392
393	/* Print Registers */
394	dev_info(&adapter->pdev->dev, "Register Dump\n");
395	pr_info(" Register Name   Value\n");
396	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
397	     reginfo->name; reginfo++) {
398		igb_regdump(hw, reginfo);
399	}
400
401	/* Print TX Ring Summary */
402	if (!netdev || !netif_running(netdev))
403		goto exit;
404
405	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
406	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
407	for (n = 0; n < adapter->num_tx_queues; n++) {
408		struct igb_tx_buffer *buffer_info;
409		tx_ring = adapter->tx_ring[n];
410		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
411		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
412			n, tx_ring->next_to_use, tx_ring->next_to_clean,
413			(u64)dma_unmap_addr(buffer_info, dma),
414			dma_unmap_len(buffer_info, len),
415			buffer_info->next_to_watch,
416			(u64)buffer_info->time_stamp);
417	}
418
419	/* Print TX Rings */
420	if (!netif_msg_tx_done(adapter))
421		goto rx_ring_summary;
422
423	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
424
425	/* Transmit Descriptor Formats
426	 *
427	 * Advanced Transmit Descriptor
428	 *   +--------------------------------------------------------------+
429	 * 0 |         Buffer Address [63:0]                                |
430	 *   +--------------------------------------------------------------+
431	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
432	 *   +--------------------------------------------------------------+
433	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
434	 */
435
436	for (n = 0; n < adapter->num_tx_queues; n++) {
437		tx_ring = adapter->tx_ring[n];
438		pr_info("------------------------------------\n");
439		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
440		pr_info("------------------------------------\n");
441		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
442			"[bi->dma       ] leng  ntw timestamp        "
443			"bi->skb\n");
444
445		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
446			const char *next_desc;
447			struct igb_tx_buffer *buffer_info;
448			tx_desc = IGB_TX_DESC(tx_ring, i);
449			buffer_info = &tx_ring->tx_buffer_info[i];
450			u0 = (struct my_u0 *)tx_desc;
451			if (i == tx_ring->next_to_use &&
452			    i == tx_ring->next_to_clean)
453				next_desc = " NTC/U";
454			else if (i == tx_ring->next_to_use)
455				next_desc = " NTU";
456			else if (i == tx_ring->next_to_clean)
457				next_desc = " NTC";
458			else
459				next_desc = "";
460
461			pr_info("T [0x%03X]    %016llX %016llX %016llX"
462				" %04X  %p %016llX %p%s\n", i,
463				le64_to_cpu(u0->a),
464				le64_to_cpu(u0->b),
465				(u64)dma_unmap_addr(buffer_info, dma),
466				dma_unmap_len(buffer_info, len),
467				buffer_info->next_to_watch,
468				(u64)buffer_info->time_stamp,
469				buffer_info->skb, next_desc);
470
471			if (netif_msg_pktdata(adapter) && buffer_info->skb)
472				print_hex_dump(KERN_INFO, "",
473					DUMP_PREFIX_ADDRESS,
474					16, 1, buffer_info->skb->data,
475					dma_unmap_len(buffer_info, len),
476					true);
477		}
478	}
479
480	/* Print RX Rings Summary */
481rx_ring_summary:
482	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
483	pr_info("Queue [NTU] [NTC]\n");
484	for (n = 0; n < adapter->num_rx_queues; n++) {
485		rx_ring = adapter->rx_ring[n];
486		pr_info(" %5d %5X %5X\n",
487			n, rx_ring->next_to_use, rx_ring->next_to_clean);
488	}
489
490	/* Print RX Rings */
491	if (!netif_msg_rx_status(adapter))
492		goto exit;
493
494	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
495
496	/* Advanced Receive Descriptor (Read) Format
497	 *    63                                           1        0
498	 *    +-----------------------------------------------------+
499	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
500	 *    +----------------------------------------------+------+
501	 *  8 |       Header Buffer Address [63:1]           |  DD  |
502	 *    +-----------------------------------------------------+
503	 *
504	 *
505	 * Advanced Receive Descriptor (Write-Back) Format
506	 *
507	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
508	 *   +------------------------------------------------------+
509	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
510	 *   | Checksum   Ident  |   |           |    | Type | Type |
511	 *   +------------------------------------------------------+
512	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
513	 *   +------------------------------------------------------+
514	 *   63       48 47    32 31            20 19               0
515	 */
516
517	for (n = 0; n < adapter->num_rx_queues; n++) {
518		rx_ring = adapter->rx_ring[n];
519		pr_info("------------------------------------\n");
520		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
521		pr_info("------------------------------------\n");
522		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
523			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
524		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
525			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
526
527		for (i = 0; i < rx_ring->count; i++) {
528			const char *next_desc;
529			struct igb_rx_buffer *buffer_info;
530			buffer_info = &rx_ring->rx_buffer_info[i];
531			rx_desc = IGB_RX_DESC(rx_ring, i);
532			u0 = (struct my_u0 *)rx_desc;
533			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
534
535			if (i == rx_ring->next_to_use)
536				next_desc = " NTU";
537			else if (i == rx_ring->next_to_clean)
538				next_desc = " NTC";
539			else
540				next_desc = "";
541
542			if (staterr & E1000_RXD_STAT_DD) {
543				/* Descriptor Done */
544				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
545					"RWB", i,
546					le64_to_cpu(u0->a),
547					le64_to_cpu(u0->b),
548					next_desc);
549			} else {
550				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
551					"R  ", i,
552					le64_to_cpu(u0->a),
553					le64_to_cpu(u0->b),
554					(u64)buffer_info->dma,
555					next_desc);
556
557				if (netif_msg_pktdata(adapter) &&
558				    buffer_info->dma && buffer_info->page) {
559					print_hex_dump(KERN_INFO, "",
560					  DUMP_PREFIX_ADDRESS,
561					  16, 1,
562					  page_address(buffer_info->page) +
563						      buffer_info->page_offset,
564					  IGB_RX_BUFSZ, true);
565				}
566			}
567		}
568	}
569
570exit:
571	return;
572}
573
574/**
575 *  igb_get_i2c_data - Reads the I2C SDA data bit
576 *  @hw: pointer to hardware structure
577 *  @i2cctl: Current value of I2CCTL register
578 *
579 *  Returns the I2C data bit value
580 **/
581static int igb_get_i2c_data(void *data)
582{
583	struct igb_adapter *adapter = (struct igb_adapter *)data;
584	struct e1000_hw *hw = &adapter->hw;
585	s32 i2cctl = rd32(E1000_I2CPARAMS);
586
587	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
588}
589
590/**
591 *  igb_set_i2c_data - Sets the I2C data bit
592 *  @data: pointer to hardware structure
593 *  @state: I2C data value (0 or 1) to set
594 *
595 *  Sets the I2C data bit
596 **/
597static void igb_set_i2c_data(void *data, int state)
598{
599	struct igb_adapter *adapter = (struct igb_adapter *)data;
600	struct e1000_hw *hw = &adapter->hw;
601	s32 i2cctl = rd32(E1000_I2CPARAMS);
602
603	if (state)
604		i2cctl |= E1000_I2C_DATA_OUT;
605	else
606		i2cctl &= ~E1000_I2C_DATA_OUT;
607
608	i2cctl &= ~E1000_I2C_DATA_OE_N;
609	i2cctl |= E1000_I2C_CLK_OE_N;
610	wr32(E1000_I2CPARAMS, i2cctl);
611	wrfl();
612
613}
614
615/**
616 *  igb_set_i2c_clk - Sets the I2C SCL clock
617 *  @data: pointer to hardware structure
618 *  @state: state to set clock
619 *
620 *  Sets the I2C clock line to state
621 **/
622static void igb_set_i2c_clk(void *data, int state)
623{
624	struct igb_adapter *adapter = (struct igb_adapter *)data;
625	struct e1000_hw *hw = &adapter->hw;
626	s32 i2cctl = rd32(E1000_I2CPARAMS);
627
628	if (state) {
629		i2cctl |= E1000_I2C_CLK_OUT;
630		i2cctl &= ~E1000_I2C_CLK_OE_N;
631	} else {
632		i2cctl &= ~E1000_I2C_CLK_OUT;
633		i2cctl &= ~E1000_I2C_CLK_OE_N;
634	}
635	wr32(E1000_I2CPARAMS, i2cctl);
636	wrfl();
637}
638
639/**
640 *  igb_get_i2c_clk - Gets the I2C SCL clock state
641 *  @data: pointer to hardware structure
642 *
643 *  Gets the I2C clock state
644 **/
645static int igb_get_i2c_clk(void *data)
646{
647	struct igb_adapter *adapter = (struct igb_adapter *)data;
648	struct e1000_hw *hw = &adapter->hw;
649	s32 i2cctl = rd32(E1000_I2CPARAMS);
650
651	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
652}
653
654static const struct i2c_algo_bit_data igb_i2c_algo = {
655	.setsda		= igb_set_i2c_data,
656	.setscl		= igb_set_i2c_clk,
657	.getsda		= igb_get_i2c_data,
658	.getscl		= igb_get_i2c_clk,
659	.udelay		= 5,
660	.timeout	= 20,
661};
662
663/**
664 *  igb_get_hw_dev - return device
665 *  @hw: pointer to hardware structure
666 *
667 *  used by hardware layer to print debugging information
668 **/
669struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
670{
671	struct igb_adapter *adapter = hw->back;
672	return adapter->netdev;
673}
674
675/**
676 *  igb_init_module - Driver Registration Routine
677 *
678 *  igb_init_module is the first routine called when the driver is
679 *  loaded. All it does is register with the PCI subsystem.
680 **/
681static int __init igb_init_module(void)
682{
683	int ret;
684	pr_info("%s - version %s\n",
685	       igb_driver_string, igb_driver_version);
686
687	pr_info("%s\n", igb_copyright);
688
689#ifdef CONFIG_IGB_DCA
690	dca_register_notify(&dca_notifier);
691#endif
692	ret = pci_register_driver(&igb_driver);
693	return ret;
694}
695
696module_init(igb_init_module);
697
698/**
699 *  igb_exit_module - Driver Exit Cleanup Routine
700 *
701 *  igb_exit_module is called just before the driver is removed
702 *  from memory.
703 **/
704static void __exit igb_exit_module(void)
705{
706#ifdef CONFIG_IGB_DCA
707	dca_unregister_notify(&dca_notifier);
708#endif
709	pci_unregister_driver(&igb_driver);
710}
711
712module_exit(igb_exit_module);
713
714#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
715/**
716 *  igb_cache_ring_register - Descriptor ring to register mapping
717 *  @adapter: board private structure to initialize
718 *
719 *  Once we know the feature-set enabled for the device, we'll cache
720 *  the register offset the descriptor ring is assigned to.
721 **/
722static void igb_cache_ring_register(struct igb_adapter *adapter)
723{
724	int i = 0, j = 0;
725	u32 rbase_offset = adapter->vfs_allocated_count;
726
727	switch (adapter->hw.mac.type) {
728	case e1000_82576:
729		/* The queues are allocated for virtualization such that VF 0
730		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
731		 * In order to avoid collision we start at the first free queue
732		 * and continue consuming queues in the same sequence
733		 */
734		if (adapter->vfs_allocated_count) {
735			for (; i < adapter->rss_queues; i++)
736				adapter->rx_ring[i]->reg_idx = rbase_offset +
737							       Q_IDX_82576(i);
738		}
739	case e1000_82575:
740	case e1000_82580:
741	case e1000_i350:
742	case e1000_i354:
743	case e1000_i210:
744	case e1000_i211:
745	default:
746		for (; i < adapter->num_rx_queues; i++)
747			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
748		for (; j < adapter->num_tx_queues; j++)
749			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
750		break;
751	}
752}
753
754/**
755 *  igb_write_ivar - configure ivar for given MSI-X vector
756 *  @hw: pointer to the HW structure
757 *  @msix_vector: vector number we are allocating to a given ring
758 *  @index: row index of IVAR register to write within IVAR table
759 *  @offset: column offset of in IVAR, should be multiple of 8
760 *
761 *  This function is intended to handle the writing of the IVAR register
762 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
763 *  each containing an cause allocation for an Rx and Tx ring, and a
764 *  variable number of rows depending on the number of queues supported.
765 **/
766static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
767			   int index, int offset)
768{
769	u32 ivar = array_rd32(E1000_IVAR0, index);
770
771	/* clear any bits that are currently set */
772	ivar &= ~((u32)0xFF << offset);
773
774	/* write vector and valid bit */
775	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
776
777	array_wr32(E1000_IVAR0, index, ivar);
778}
779
780#define IGB_N0_QUEUE -1
781static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
782{
783	struct igb_adapter *adapter = q_vector->adapter;
784	struct e1000_hw *hw = &adapter->hw;
785	int rx_queue = IGB_N0_QUEUE;
786	int tx_queue = IGB_N0_QUEUE;
787	u32 msixbm = 0;
788
789	if (q_vector->rx.ring)
790		rx_queue = q_vector->rx.ring->reg_idx;
791	if (q_vector->tx.ring)
792		tx_queue = q_vector->tx.ring->reg_idx;
793
794	switch (hw->mac.type) {
795	case e1000_82575:
796		/* The 82575 assigns vectors using a bitmask, which matches the
797		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
798		 * or more queues to a vector, we write the appropriate bits
799		 * into the MSIXBM register for that vector.
800		 */
801		if (rx_queue > IGB_N0_QUEUE)
802			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
803		if (tx_queue > IGB_N0_QUEUE)
804			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
805		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
806			msixbm |= E1000_EIMS_OTHER;
807		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
808		q_vector->eims_value = msixbm;
809		break;
810	case e1000_82576:
811		/* 82576 uses a table that essentially consists of 2 columns
812		 * with 8 rows.  The ordering is column-major so we use the
813		 * lower 3 bits as the row index, and the 4th bit as the
814		 * column offset.
815		 */
816		if (rx_queue > IGB_N0_QUEUE)
817			igb_write_ivar(hw, msix_vector,
818				       rx_queue & 0x7,
819				       (rx_queue & 0x8) << 1);
820		if (tx_queue > IGB_N0_QUEUE)
821			igb_write_ivar(hw, msix_vector,
822				       tx_queue & 0x7,
823				       ((tx_queue & 0x8) << 1) + 8);
824		q_vector->eims_value = 1 << msix_vector;
825		break;
826	case e1000_82580:
827	case e1000_i350:
828	case e1000_i354:
829	case e1000_i210:
830	case e1000_i211:
831		/* On 82580 and newer adapters the scheme is similar to 82576
832		 * however instead of ordering column-major we have things
833		 * ordered row-major.  So we traverse the table by using
834		 * bit 0 as the column offset, and the remaining bits as the
835		 * row index.
836		 */
837		if (rx_queue > IGB_N0_QUEUE)
838			igb_write_ivar(hw, msix_vector,
839				       rx_queue >> 1,
840				       (rx_queue & 0x1) << 4);
841		if (tx_queue > IGB_N0_QUEUE)
842			igb_write_ivar(hw, msix_vector,
843				       tx_queue >> 1,
844				       ((tx_queue & 0x1) << 4) + 8);
845		q_vector->eims_value = 1 << msix_vector;
846		break;
847	default:
848		BUG();
849		break;
850	}
851
852	/* add q_vector eims value to global eims_enable_mask */
853	adapter->eims_enable_mask |= q_vector->eims_value;
854
855	/* configure q_vector to set itr on first interrupt */
856	q_vector->set_itr = 1;
857}
858
859/**
860 *  igb_configure_msix - Configure MSI-X hardware
861 *  @adapter: board private structure to initialize
862 *
863 *  igb_configure_msix sets up the hardware to properly
864 *  generate MSI-X interrupts.
865 **/
866static void igb_configure_msix(struct igb_adapter *adapter)
867{
868	u32 tmp;
869	int i, vector = 0;
870	struct e1000_hw *hw = &adapter->hw;
871
872	adapter->eims_enable_mask = 0;
873
874	/* set vector for other causes, i.e. link changes */
875	switch (hw->mac.type) {
876	case e1000_82575:
877		tmp = rd32(E1000_CTRL_EXT);
878		/* enable MSI-X PBA support*/
879		tmp |= E1000_CTRL_EXT_PBA_CLR;
880
881		/* Auto-Mask interrupts upon ICR read. */
882		tmp |= E1000_CTRL_EXT_EIAME;
883		tmp |= E1000_CTRL_EXT_IRCA;
884
885		wr32(E1000_CTRL_EXT, tmp);
886
887		/* enable msix_other interrupt */
888		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
889		adapter->eims_other = E1000_EIMS_OTHER;
890
891		break;
892
893	case e1000_82576:
894	case e1000_82580:
895	case e1000_i350:
896	case e1000_i354:
897	case e1000_i210:
898	case e1000_i211:
899		/* Turn on MSI-X capability first, or our settings
900		 * won't stick.  And it will take days to debug.
901		 */
902		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
903		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
904		     E1000_GPIE_NSICR);
905
906		/* enable msix_other interrupt */
907		adapter->eims_other = 1 << vector;
908		tmp = (vector++ | E1000_IVAR_VALID) << 8;
909
910		wr32(E1000_IVAR_MISC, tmp);
911		break;
912	default:
913		/* do nothing, since nothing else supports MSI-X */
914		break;
915	} /* switch (hw->mac.type) */
916
917	adapter->eims_enable_mask |= adapter->eims_other;
918
919	for (i = 0; i < adapter->num_q_vectors; i++)
920		igb_assign_vector(adapter->q_vector[i], vector++);
921
922	wrfl();
923}
924
925/**
926 *  igb_request_msix - Initialize MSI-X interrupts
927 *  @adapter: board private structure to initialize
928 *
929 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
930 *  kernel.
931 **/
932static int igb_request_msix(struct igb_adapter *adapter)
933{
934	struct net_device *netdev = adapter->netdev;
935	struct e1000_hw *hw = &adapter->hw;
936	int i, err = 0, vector = 0, free_vector = 0;
937
938	err = request_irq(adapter->msix_entries[vector].vector,
939			  igb_msix_other, 0, netdev->name, adapter);
940	if (err)
941		goto err_out;
942
943	for (i = 0; i < adapter->num_q_vectors; i++) {
944		struct igb_q_vector *q_vector = adapter->q_vector[i];
945
946		vector++;
947
948		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
949
950		if (q_vector->rx.ring && q_vector->tx.ring)
951			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
952				q_vector->rx.ring->queue_index);
953		else if (q_vector->tx.ring)
954			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
955				q_vector->tx.ring->queue_index);
956		else if (q_vector->rx.ring)
957			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
958				q_vector->rx.ring->queue_index);
959		else
960			sprintf(q_vector->name, "%s-unused", netdev->name);
961
962		err = request_irq(adapter->msix_entries[vector].vector,
963				  igb_msix_ring, 0, q_vector->name,
964				  q_vector);
965		if (err)
966			goto err_free;
967	}
968
969	igb_configure_msix(adapter);
970	return 0;
971
972err_free:
973	/* free already assigned IRQs */
974	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
975
976	vector--;
977	for (i = 0; i < vector; i++) {
978		free_irq(adapter->msix_entries[free_vector++].vector,
979			 adapter->q_vector[i]);
980	}
981err_out:
982	return err;
983}
984
985/**
986 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
987 *  @adapter: board private structure to initialize
988 *  @v_idx: Index of vector to be freed
989 *
990 *  This function frees the memory allocated to the q_vector.
991 **/
992static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
993{
994	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
995
996	adapter->q_vector[v_idx] = NULL;
997
998	/* igb_get_stats64() might access the rings on this vector,
999	 * we must wait a grace period before freeing it.
1000	 */
1001	kfree_rcu(q_vector, rcu);
1002}
1003
1004/**
1005 *  igb_reset_q_vector - Reset config for interrupt vector
1006 *  @adapter: board private structure to initialize
1007 *  @v_idx: Index of vector to be reset
1008 *
1009 *  If NAPI is enabled it will delete any references to the
1010 *  NAPI struct. This is preparation for igb_free_q_vector.
1011 **/
1012static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1013{
1014	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1015
1016	if (q_vector->tx.ring)
1017		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1018
1019	if (q_vector->rx.ring)
1020		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1021
1022	netif_napi_del(&q_vector->napi);
1023
1024}
1025
1026static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1027{
1028	int v_idx = adapter->num_q_vectors;
1029
1030	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1031		pci_disable_msix(adapter->pdev);
1032	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1033		pci_disable_msi(adapter->pdev);
1034
1035	while (v_idx--)
1036		igb_reset_q_vector(adapter, v_idx);
1037}
1038
1039/**
1040 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1041 *  @adapter: board private structure to initialize
1042 *
1043 *  This function frees the memory allocated to the q_vectors.  In addition if
1044 *  NAPI is enabled it will delete any references to the NAPI struct prior
1045 *  to freeing the q_vector.
1046 **/
1047static void igb_free_q_vectors(struct igb_adapter *adapter)
1048{
1049	int v_idx = adapter->num_q_vectors;
1050
1051	adapter->num_tx_queues = 0;
1052	adapter->num_rx_queues = 0;
1053	adapter->num_q_vectors = 0;
1054
1055	while (v_idx--) {
1056		igb_reset_q_vector(adapter, v_idx);
1057		igb_free_q_vector(adapter, v_idx);
1058	}
1059}
1060
1061/**
1062 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1063 *  @adapter: board private structure to initialize
1064 *
1065 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1066 *  MSI-X interrupts allocated.
1067 */
1068static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1069{
1070	igb_free_q_vectors(adapter);
1071	igb_reset_interrupt_capability(adapter);
1072}
1073
1074/**
1075 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1076 *  @adapter: board private structure to initialize
1077 *  @msix: boolean value of MSIX capability
1078 *
1079 *  Attempt to configure interrupts using the best available
1080 *  capabilities of the hardware and kernel.
1081 **/
1082static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1083{
1084	int err;
1085	int numvecs, i;
1086
1087	if (!msix)
1088		goto msi_only;
1089	adapter->flags |= IGB_FLAG_HAS_MSIX;
1090
1091	/* Number of supported queues. */
1092	adapter->num_rx_queues = adapter->rss_queues;
1093	if (adapter->vfs_allocated_count)
1094		adapter->num_tx_queues = 1;
1095	else
1096		adapter->num_tx_queues = adapter->rss_queues;
1097
1098	/* start with one vector for every Rx queue */
1099	numvecs = adapter->num_rx_queues;
1100
1101	/* if Tx handler is separate add 1 for every Tx queue */
1102	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1103		numvecs += adapter->num_tx_queues;
1104
1105	/* store the number of vectors reserved for queues */
1106	adapter->num_q_vectors = numvecs;
1107
1108	/* add 1 vector for link status interrupts */
1109	numvecs++;
1110	for (i = 0; i < numvecs; i++)
1111		adapter->msix_entries[i].entry = i;
1112
1113	err = pci_enable_msix_range(adapter->pdev,
1114				    adapter->msix_entries,
1115				    numvecs,
1116				    numvecs);
1117	if (err > 0)
1118		return;
1119
1120	igb_reset_interrupt_capability(adapter);
1121
1122	/* If we can't do MSI-X, try MSI */
1123msi_only:
1124#ifdef CONFIG_PCI_IOV
1125	/* disable SR-IOV for non MSI-X configurations */
1126	if (adapter->vf_data) {
1127		struct e1000_hw *hw = &adapter->hw;
1128		/* disable iov and allow time for transactions to clear */
1129		pci_disable_sriov(adapter->pdev);
1130		msleep(500);
1131
1132		kfree(adapter->vf_data);
1133		adapter->vf_data = NULL;
1134		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1135		wrfl();
1136		msleep(100);
1137		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1138	}
1139#endif
1140	adapter->vfs_allocated_count = 0;
1141	adapter->rss_queues = 1;
1142	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1143	adapter->num_rx_queues = 1;
1144	adapter->num_tx_queues = 1;
1145	adapter->num_q_vectors = 1;
1146	if (!pci_enable_msi(adapter->pdev))
1147		adapter->flags |= IGB_FLAG_HAS_MSI;
1148}
1149
1150static void igb_add_ring(struct igb_ring *ring,
1151			 struct igb_ring_container *head)
1152{
1153	head->ring = ring;
1154	head->count++;
1155}
1156
1157/**
1158 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1159 *  @adapter: board private structure to initialize
1160 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1161 *  @v_idx: index of vector in adapter struct
1162 *  @txr_count: total number of Tx rings to allocate
1163 *  @txr_idx: index of first Tx ring to allocate
1164 *  @rxr_count: total number of Rx rings to allocate
1165 *  @rxr_idx: index of first Rx ring to allocate
1166 *
1167 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1168 **/
1169static int igb_alloc_q_vector(struct igb_adapter *adapter,
1170			      int v_count, int v_idx,
1171			      int txr_count, int txr_idx,
1172			      int rxr_count, int rxr_idx)
1173{
1174	struct igb_q_vector *q_vector;
1175	struct igb_ring *ring;
1176	int ring_count, size;
1177
1178	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1179	if (txr_count > 1 || rxr_count > 1)
1180		return -ENOMEM;
1181
1182	ring_count = txr_count + rxr_count;
1183	size = sizeof(struct igb_q_vector) +
1184	       (sizeof(struct igb_ring) * ring_count);
1185
1186	/* allocate q_vector and rings */
1187	q_vector = adapter->q_vector[v_idx];
1188	if (!q_vector)
1189		q_vector = kzalloc(size, GFP_KERNEL);
1190	if (!q_vector)
1191		return -ENOMEM;
1192
1193	/* initialize NAPI */
1194	netif_napi_add(adapter->netdev, &q_vector->napi,
1195		       igb_poll, 64);
1196
1197	/* tie q_vector and adapter together */
1198	adapter->q_vector[v_idx] = q_vector;
1199	q_vector->adapter = adapter;
1200
1201	/* initialize work limits */
1202	q_vector->tx.work_limit = adapter->tx_work_limit;
1203
1204	/* initialize ITR configuration */
1205	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1206	q_vector->itr_val = IGB_START_ITR;
1207
1208	/* initialize pointer to rings */
1209	ring = q_vector->ring;
1210
1211	/* intialize ITR */
1212	if (rxr_count) {
1213		/* rx or rx/tx vector */
1214		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1215			q_vector->itr_val = adapter->rx_itr_setting;
1216	} else {
1217		/* tx only vector */
1218		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1219			q_vector->itr_val = adapter->tx_itr_setting;
1220	}
1221
1222	if (txr_count) {
1223		/* assign generic ring traits */
1224		ring->dev = &adapter->pdev->dev;
1225		ring->netdev = adapter->netdev;
1226
1227		/* configure backlink on ring */
1228		ring->q_vector = q_vector;
1229
1230		/* update q_vector Tx values */
1231		igb_add_ring(ring, &q_vector->tx);
1232
1233		/* For 82575, context index must be unique per ring. */
1234		if (adapter->hw.mac.type == e1000_82575)
1235			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1236
1237		/* apply Tx specific ring traits */
1238		ring->count = adapter->tx_ring_count;
1239		ring->queue_index = txr_idx;
1240
1241		u64_stats_init(&ring->tx_syncp);
1242		u64_stats_init(&ring->tx_syncp2);
1243
1244		/* assign ring to adapter */
1245		adapter->tx_ring[txr_idx] = ring;
1246
1247		/* push pointer to next ring */
1248		ring++;
1249	}
1250
1251	if (rxr_count) {
1252		/* assign generic ring traits */
1253		ring->dev = &adapter->pdev->dev;
1254		ring->netdev = adapter->netdev;
1255
1256		/* configure backlink on ring */
1257		ring->q_vector = q_vector;
1258
1259		/* update q_vector Rx values */
1260		igb_add_ring(ring, &q_vector->rx);
1261
1262		/* set flag indicating ring supports SCTP checksum offload */
1263		if (adapter->hw.mac.type >= e1000_82576)
1264			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1265
1266		/*
1267		 * On i350, i354, i210, and i211, loopback VLAN packets
1268		 * have the tag byte-swapped.
1269		 */
1270		if (adapter->hw.mac.type >= e1000_i350)
1271			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1272
1273		/* apply Rx specific ring traits */
1274		ring->count = adapter->rx_ring_count;
1275		ring->queue_index = rxr_idx;
1276
1277		u64_stats_init(&ring->rx_syncp);
1278
1279		/* assign ring to adapter */
1280		adapter->rx_ring[rxr_idx] = ring;
1281	}
1282
1283	return 0;
1284}
1285
1286
1287/**
1288 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1289 *  @adapter: board private structure to initialize
1290 *
1291 *  We allocate one q_vector per queue interrupt.  If allocation fails we
1292 *  return -ENOMEM.
1293 **/
1294static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1295{
1296	int q_vectors = adapter->num_q_vectors;
1297	int rxr_remaining = adapter->num_rx_queues;
1298	int txr_remaining = adapter->num_tx_queues;
1299	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1300	int err;
1301
1302	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1303		for (; rxr_remaining; v_idx++) {
1304			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1305						 0, 0, 1, rxr_idx);
1306
1307			if (err)
1308				goto err_out;
1309
1310			/* update counts and index */
1311			rxr_remaining--;
1312			rxr_idx++;
1313		}
1314	}
1315
1316	for (; v_idx < q_vectors; v_idx++) {
1317		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1318		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1319		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1320					 tqpv, txr_idx, rqpv, rxr_idx);
1321
1322		if (err)
1323			goto err_out;
1324
1325		/* update counts and index */
1326		rxr_remaining -= rqpv;
1327		txr_remaining -= tqpv;
1328		rxr_idx++;
1329		txr_idx++;
1330	}
1331
1332	return 0;
1333
1334err_out:
1335	adapter->num_tx_queues = 0;
1336	adapter->num_rx_queues = 0;
1337	adapter->num_q_vectors = 0;
1338
1339	while (v_idx--)
1340		igb_free_q_vector(adapter, v_idx);
1341
1342	return -ENOMEM;
1343}
1344
1345/**
1346 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1347 *  @adapter: board private structure to initialize
1348 *  @msix: boolean value of MSIX capability
1349 *
1350 *  This function initializes the interrupts and allocates all of the queues.
1351 **/
1352static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1353{
1354	struct pci_dev *pdev = adapter->pdev;
1355	int err;
1356
1357	igb_set_interrupt_capability(adapter, msix);
1358
1359	err = igb_alloc_q_vectors(adapter);
1360	if (err) {
1361		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1362		goto err_alloc_q_vectors;
1363	}
1364
1365	igb_cache_ring_register(adapter);
1366
1367	return 0;
1368
1369err_alloc_q_vectors:
1370	igb_reset_interrupt_capability(adapter);
1371	return err;
1372}
1373
1374/**
1375 *  igb_request_irq - initialize interrupts
1376 *  @adapter: board private structure to initialize
1377 *
1378 *  Attempts to configure interrupts using the best available
1379 *  capabilities of the hardware and kernel.
1380 **/
1381static int igb_request_irq(struct igb_adapter *adapter)
1382{
1383	struct net_device *netdev = adapter->netdev;
1384	struct pci_dev *pdev = adapter->pdev;
1385	int err = 0;
1386
1387	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1388		err = igb_request_msix(adapter);
1389		if (!err)
1390			goto request_done;
1391		/* fall back to MSI */
1392		igb_free_all_tx_resources(adapter);
1393		igb_free_all_rx_resources(adapter);
1394
1395		igb_clear_interrupt_scheme(adapter);
1396		err = igb_init_interrupt_scheme(adapter, false);
1397		if (err)
1398			goto request_done;
1399
1400		igb_setup_all_tx_resources(adapter);
1401		igb_setup_all_rx_resources(adapter);
1402		igb_configure(adapter);
1403	}
1404
1405	igb_assign_vector(adapter->q_vector[0], 0);
1406
1407	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1408		err = request_irq(pdev->irq, igb_intr_msi, 0,
1409				  netdev->name, adapter);
1410		if (!err)
1411			goto request_done;
1412
1413		/* fall back to legacy interrupts */
1414		igb_reset_interrupt_capability(adapter);
1415		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1416	}
1417
1418	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1419			  netdev->name, adapter);
1420
1421	if (err)
1422		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1423			err);
1424
1425request_done:
1426	return err;
1427}
1428
1429static void igb_free_irq(struct igb_adapter *adapter)
1430{
1431	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1432		int vector = 0, i;
1433
1434		free_irq(adapter->msix_entries[vector++].vector, adapter);
1435
1436		for (i = 0; i < adapter->num_q_vectors; i++)
1437			free_irq(adapter->msix_entries[vector++].vector,
1438				 adapter->q_vector[i]);
1439	} else {
1440		free_irq(adapter->pdev->irq, adapter);
1441	}
1442}
1443
1444/**
1445 *  igb_irq_disable - Mask off interrupt generation on the NIC
1446 *  @adapter: board private structure
1447 **/
1448static void igb_irq_disable(struct igb_adapter *adapter)
1449{
1450	struct e1000_hw *hw = &adapter->hw;
1451
1452	/* we need to be careful when disabling interrupts.  The VFs are also
1453	 * mapped into these registers and so clearing the bits can cause
1454	 * issues on the VF drivers so we only need to clear what we set
1455	 */
1456	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1457		u32 regval = rd32(E1000_EIAM);
1458		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1459		wr32(E1000_EIMC, adapter->eims_enable_mask);
1460		regval = rd32(E1000_EIAC);
1461		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1462	}
1463
1464	wr32(E1000_IAM, 0);
1465	wr32(E1000_IMC, ~0);
1466	wrfl();
1467	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1468		int i;
1469		for (i = 0; i < adapter->num_q_vectors; i++)
1470			synchronize_irq(adapter->msix_entries[i].vector);
1471	} else {
1472		synchronize_irq(adapter->pdev->irq);
1473	}
1474}
1475
1476/**
1477 *  igb_irq_enable - Enable default interrupt generation settings
1478 *  @adapter: board private structure
1479 **/
1480static void igb_irq_enable(struct igb_adapter *adapter)
1481{
1482	struct e1000_hw *hw = &adapter->hw;
1483
1484	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1486		u32 regval = rd32(E1000_EIAC);
1487		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1488		regval = rd32(E1000_EIAM);
1489		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1490		wr32(E1000_EIMS, adapter->eims_enable_mask);
1491		if (adapter->vfs_allocated_count) {
1492			wr32(E1000_MBVFIMR, 0xFF);
1493			ims |= E1000_IMS_VMMB;
1494		}
1495		wr32(E1000_IMS, ims);
1496	} else {
1497		wr32(E1000_IMS, IMS_ENABLE_MASK |
1498				E1000_IMS_DRSTA);
1499		wr32(E1000_IAM, IMS_ENABLE_MASK |
1500				E1000_IMS_DRSTA);
1501	}
1502}
1503
1504static void igb_update_mng_vlan(struct igb_adapter *adapter)
1505{
1506	struct e1000_hw *hw = &adapter->hw;
1507	u16 vid = adapter->hw.mng_cookie.vlan_id;
1508	u16 old_vid = adapter->mng_vlan_id;
1509
1510	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1511		/* add VID to filter table */
1512		igb_vfta_set(hw, vid, true);
1513		adapter->mng_vlan_id = vid;
1514	} else {
1515		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1516	}
1517
1518	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1519	    (vid != old_vid) &&
1520	    !test_bit(old_vid, adapter->active_vlans)) {
1521		/* remove VID from filter table */
1522		igb_vfta_set(hw, old_vid, false);
1523	}
1524}
1525
1526/**
1527 *  igb_release_hw_control - release control of the h/w to f/w
1528 *  @adapter: address of board private structure
1529 *
1530 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1531 *  For ASF and Pass Through versions of f/w this means that the
1532 *  driver is no longer loaded.
1533 **/
1534static void igb_release_hw_control(struct igb_adapter *adapter)
1535{
1536	struct e1000_hw *hw = &adapter->hw;
1537	u32 ctrl_ext;
1538
1539	/* Let firmware take over control of h/w */
1540	ctrl_ext = rd32(E1000_CTRL_EXT);
1541	wr32(E1000_CTRL_EXT,
1542			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1543}
1544
1545/**
1546 *  igb_get_hw_control - get control of the h/w from f/w
1547 *  @adapter: address of board private structure
1548 *
1549 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1550 *  For ASF and Pass Through versions of f/w this means that
1551 *  the driver is loaded.
1552 **/
1553static void igb_get_hw_control(struct igb_adapter *adapter)
1554{
1555	struct e1000_hw *hw = &adapter->hw;
1556	u32 ctrl_ext;
1557
1558	/* Let firmware know the driver has taken over */
1559	ctrl_ext = rd32(E1000_CTRL_EXT);
1560	wr32(E1000_CTRL_EXT,
1561			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1562}
1563
1564/**
1565 *  igb_configure - configure the hardware for RX and TX
1566 *  @adapter: private board structure
1567 **/
1568static void igb_configure(struct igb_adapter *adapter)
1569{
1570	struct net_device *netdev = adapter->netdev;
1571	int i;
1572
1573	igb_get_hw_control(adapter);
1574	igb_set_rx_mode(netdev);
1575
1576	igb_restore_vlan(adapter);
1577
1578	igb_setup_tctl(adapter);
1579	igb_setup_mrqc(adapter);
1580	igb_setup_rctl(adapter);
1581
1582	igb_configure_tx(adapter);
1583	igb_configure_rx(adapter);
1584
1585	igb_rx_fifo_flush_82575(&adapter->hw);
1586
1587	/* call igb_desc_unused which always leaves
1588	 * at least 1 descriptor unused to make sure
1589	 * next_to_use != next_to_clean
1590	 */
1591	for (i = 0; i < adapter->num_rx_queues; i++) {
1592		struct igb_ring *ring = adapter->rx_ring[i];
1593		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1594	}
1595}
1596
1597/**
1598 *  igb_power_up_link - Power up the phy/serdes link
1599 *  @adapter: address of board private structure
1600 **/
1601void igb_power_up_link(struct igb_adapter *adapter)
1602{
1603	igb_reset_phy(&adapter->hw);
1604
1605	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1606		igb_power_up_phy_copper(&adapter->hw);
1607	else
1608		igb_power_up_serdes_link_82575(&adapter->hw);
1609}
1610
1611/**
1612 *  igb_power_down_link - Power down the phy/serdes link
1613 *  @adapter: address of board private structure
1614 */
1615static void igb_power_down_link(struct igb_adapter *adapter)
1616{
1617	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1618		igb_power_down_phy_copper_82575(&adapter->hw);
1619	else
1620		igb_shutdown_serdes_link_82575(&adapter->hw);
1621}
1622
1623/**
1624 * Detect and switch function for Media Auto Sense
1625 * @adapter: address of the board private structure
1626 **/
1627static void igb_check_swap_media(struct igb_adapter *adapter)
1628{
1629	struct e1000_hw *hw = &adapter->hw;
1630	u32 ctrl_ext, connsw;
1631	bool swap_now = false;
1632
1633	ctrl_ext = rd32(E1000_CTRL_EXT);
1634	connsw = rd32(E1000_CONNSW);
1635
1636	/* need to live swap if current media is copper and we have fiber/serdes
1637	 * to go to.
1638	 */
1639
1640	if ((hw->phy.media_type == e1000_media_type_copper) &&
1641	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1642		swap_now = true;
1643	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
1644		/* copper signal takes time to appear */
1645		if (adapter->copper_tries < 4) {
1646			adapter->copper_tries++;
1647			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1648			wr32(E1000_CONNSW, connsw);
1649			return;
1650		} else {
1651			adapter->copper_tries = 0;
1652			if ((connsw & E1000_CONNSW_PHYSD) &&
1653			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
1654				swap_now = true;
1655				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1656				wr32(E1000_CONNSW, connsw);
1657			}
1658		}
1659	}
1660
1661	if (!swap_now)
1662		return;
1663
1664	switch (hw->phy.media_type) {
1665	case e1000_media_type_copper:
1666		netdev_info(adapter->netdev,
1667			"MAS: changing media to fiber/serdes\n");
1668		ctrl_ext |=
1669			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1670		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1671		adapter->copper_tries = 0;
1672		break;
1673	case e1000_media_type_internal_serdes:
1674	case e1000_media_type_fiber:
1675		netdev_info(adapter->netdev,
1676			"MAS: changing media to copper\n");
1677		ctrl_ext &=
1678			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1679		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1680		break;
1681	default:
1682		/* shouldn't get here during regular operation */
1683		netdev_err(adapter->netdev,
1684			"AMS: Invalid media type found, returning\n");
1685		break;
1686	}
1687	wr32(E1000_CTRL_EXT, ctrl_ext);
1688}
1689
1690/**
1691 *  igb_up - Open the interface and prepare it to handle traffic
1692 *  @adapter: board private structure
1693 **/
1694int igb_up(struct igb_adapter *adapter)
1695{
1696	struct e1000_hw *hw = &adapter->hw;
1697	int i;
1698
1699	/* hardware has been reset, we need to reload some things */
1700	igb_configure(adapter);
1701
1702	clear_bit(__IGB_DOWN, &adapter->state);
1703
1704	for (i = 0; i < adapter->num_q_vectors; i++)
1705		napi_enable(&(adapter->q_vector[i]->napi));
1706
1707	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1708		igb_configure_msix(adapter);
1709	else
1710		igb_assign_vector(adapter->q_vector[0], 0);
1711
1712	/* Clear any pending interrupts. */
1713	rd32(E1000_ICR);
1714	igb_irq_enable(adapter);
1715
1716	/* notify VFs that reset has been completed */
1717	if (adapter->vfs_allocated_count) {
1718		u32 reg_data = rd32(E1000_CTRL_EXT);
1719		reg_data |= E1000_CTRL_EXT_PFRSTD;
1720		wr32(E1000_CTRL_EXT, reg_data);
1721	}
1722
1723	netif_tx_start_all_queues(adapter->netdev);
1724
1725	/* start the watchdog. */
1726	hw->mac.get_link_status = 1;
1727	schedule_work(&adapter->watchdog_task);
1728
1729	if ((adapter->flags & IGB_FLAG_EEE) &&
1730	    (!hw->dev_spec._82575.eee_disable))
1731		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1732
1733	return 0;
1734}
1735
1736void igb_down(struct igb_adapter *adapter)
1737{
1738	struct net_device *netdev = adapter->netdev;
1739	struct e1000_hw *hw = &adapter->hw;
1740	u32 tctl, rctl;
1741	int i;
1742
1743	/* signal that we're down so the interrupt handler does not
1744	 * reschedule our watchdog timer
1745	 */
1746	set_bit(__IGB_DOWN, &adapter->state);
1747
1748	/* disable receives in the hardware */
1749	rctl = rd32(E1000_RCTL);
1750	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1751	/* flush and sleep below */
1752
1753	netif_tx_stop_all_queues(netdev);
1754
1755	/* disable transmits in the hardware */
1756	tctl = rd32(E1000_TCTL);
1757	tctl &= ~E1000_TCTL_EN;
1758	wr32(E1000_TCTL, tctl);
1759	/* flush both disables and wait for them to finish */
1760	wrfl();
1761	msleep(10);
1762
1763	igb_irq_disable(adapter);
1764
1765	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1766
1767	for (i = 0; i < adapter->num_q_vectors; i++) {
1768		napi_synchronize(&(adapter->q_vector[i]->napi));
1769		napi_disable(&(adapter->q_vector[i]->napi));
1770	}
1771
1772
1773	del_timer_sync(&adapter->watchdog_timer);
1774	del_timer_sync(&adapter->phy_info_timer);
1775
1776	netif_carrier_off(netdev);
1777
1778	/* record the stats before reset*/
1779	spin_lock(&adapter->stats64_lock);
1780	igb_update_stats(adapter, &adapter->stats64);
1781	spin_unlock(&adapter->stats64_lock);
1782
1783	adapter->link_speed = 0;
1784	adapter->link_duplex = 0;
1785
1786	if (!pci_channel_offline(adapter->pdev))
1787		igb_reset(adapter);
1788	igb_clean_all_tx_rings(adapter);
1789	igb_clean_all_rx_rings(adapter);
1790#ifdef CONFIG_IGB_DCA
1791
1792	/* since we reset the hardware DCA settings were cleared */
1793	igb_setup_dca(adapter);
1794#endif
1795}
1796
1797void igb_reinit_locked(struct igb_adapter *adapter)
1798{
1799	WARN_ON(in_interrupt());
1800	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1801		msleep(1);
1802	igb_down(adapter);
1803	igb_up(adapter);
1804	clear_bit(__IGB_RESETTING, &adapter->state);
1805}
1806
1807/** igb_enable_mas - Media Autosense re-enable after swap
1808 *
1809 * @adapter: adapter struct
1810 **/
1811static s32 igb_enable_mas(struct igb_adapter *adapter)
1812{
1813	struct e1000_hw *hw = &adapter->hw;
1814	u32 connsw;
1815	s32 ret_val = 0;
1816
1817	connsw = rd32(E1000_CONNSW);
1818	if (!(hw->phy.media_type == e1000_media_type_copper))
1819		return ret_val;
1820
1821	/* configure for SerDes media detect */
1822	if (!(connsw & E1000_CONNSW_SERDESD)) {
1823		connsw |= E1000_CONNSW_ENRGSRC;
1824		connsw |= E1000_CONNSW_AUTOSENSE_EN;
1825		wr32(E1000_CONNSW, connsw);
1826		wrfl();
1827	} else if (connsw & E1000_CONNSW_SERDESD) {
1828		/* already SerDes, no need to enable anything */
1829		return ret_val;
1830	} else {
1831		netdev_info(adapter->netdev,
1832			"MAS: Unable to configure feature, disabling..\n");
1833		adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1834	}
1835	return ret_val;
1836}
1837
1838void igb_reset(struct igb_adapter *adapter)
1839{
1840	struct pci_dev *pdev = adapter->pdev;
1841	struct e1000_hw *hw = &adapter->hw;
1842	struct e1000_mac_info *mac = &hw->mac;
1843	struct e1000_fc_info *fc = &hw->fc;
1844	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1845
1846	/* Repartition Pba for greater than 9k mtu
1847	 * To take effect CTRL.RST is required.
1848	 */
1849	switch (mac->type) {
1850	case e1000_i350:
1851	case e1000_i354:
1852	case e1000_82580:
1853		pba = rd32(E1000_RXPBS);
1854		pba = igb_rxpbs_adjust_82580(pba);
1855		break;
1856	case e1000_82576:
1857		pba = rd32(E1000_RXPBS);
1858		pba &= E1000_RXPBS_SIZE_MASK_82576;
1859		break;
1860	case e1000_82575:
1861	case e1000_i210:
1862	case e1000_i211:
1863	default:
1864		pba = E1000_PBA_34K;
1865		break;
1866	}
1867
1868	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1869	    (mac->type < e1000_82576)) {
1870		/* adjust PBA for jumbo frames */
1871		wr32(E1000_PBA, pba);
1872
1873		/* To maintain wire speed transmits, the Tx FIFO should be
1874		 * large enough to accommodate two full transmit packets,
1875		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1876		 * the Rx FIFO should be large enough to accommodate at least
1877		 * one full receive packet and is similarly rounded up and
1878		 * expressed in KB.
1879		 */
1880		pba = rd32(E1000_PBA);
1881		/* upper 16 bits has Tx packet buffer allocation size in KB */
1882		tx_space = pba >> 16;
1883		/* lower 16 bits has Rx packet buffer allocation size in KB */
1884		pba &= 0xffff;
1885		/* the Tx fifo also stores 16 bytes of information about the Tx
1886		 * but don't include ethernet FCS because hardware appends it
1887		 */
1888		min_tx_space = (adapter->max_frame_size +
1889				sizeof(union e1000_adv_tx_desc) -
1890				ETH_FCS_LEN) * 2;
1891		min_tx_space = ALIGN(min_tx_space, 1024);
1892		min_tx_space >>= 10;
1893		/* software strips receive CRC, so leave room for it */
1894		min_rx_space = adapter->max_frame_size;
1895		min_rx_space = ALIGN(min_rx_space, 1024);
1896		min_rx_space >>= 10;
1897
1898		/* If current Tx allocation is less than the min Tx FIFO size,
1899		 * and the min Tx FIFO size is less than the current Rx FIFO
1900		 * allocation, take space away from current Rx allocation
1901		 */
1902		if (tx_space < min_tx_space &&
1903		    ((min_tx_space - tx_space) < pba)) {
1904			pba = pba - (min_tx_space - tx_space);
1905
1906			/* if short on Rx space, Rx wins and must trump Tx
1907			 * adjustment
1908			 */
1909			if (pba < min_rx_space)
1910				pba = min_rx_space;
1911		}
1912		wr32(E1000_PBA, pba);
1913	}
1914
1915	/* flow control settings */
1916	/* The high water mark must be low enough to fit one full frame
1917	 * (or the size used for early receive) above it in the Rx FIFO.
1918	 * Set it to the lower of:
1919	 * - 90% of the Rx FIFO size, or
1920	 * - the full Rx FIFO size minus one full frame
1921	 */
1922	hwm = min(((pba << 10) * 9 / 10),
1923			((pba << 10) - 2 * adapter->max_frame_size));
1924
1925	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1926	fc->low_water = fc->high_water - 16;
1927	fc->pause_time = 0xFFFF;
1928	fc->send_xon = 1;
1929	fc->current_mode = fc->requested_mode;
1930
1931	/* disable receive for all VFs and wait one second */
1932	if (adapter->vfs_allocated_count) {
1933		int i;
1934		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1935			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1936
1937		/* ping all the active vfs to let them know we are going down */
1938		igb_ping_all_vfs(adapter);
1939
1940		/* disable transmits and receives */
1941		wr32(E1000_VFRE, 0);
1942		wr32(E1000_VFTE, 0);
1943	}
1944
1945	/* Allow time for pending master requests to run */
1946	hw->mac.ops.reset_hw(hw);
1947	wr32(E1000_WUC, 0);
1948
1949	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1950		/* need to resetup here after media swap */
1951		adapter->ei.get_invariants(hw);
1952		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1953	}
1954	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1955		if (igb_enable_mas(adapter))
1956			dev_err(&pdev->dev,
1957				"Error enabling Media Auto Sense\n");
1958	}
1959	if (hw->mac.ops.init_hw(hw))
1960		dev_err(&pdev->dev, "Hardware Error\n");
1961
1962	/* Flow control settings reset on hardware reset, so guarantee flow
1963	 * control is off when forcing speed.
1964	 */
1965	if (!hw->mac.autoneg)
1966		igb_force_mac_fc(hw);
1967
1968	igb_init_dmac(adapter, pba);
1969#ifdef CONFIG_IGB_HWMON
1970	/* Re-initialize the thermal sensor on i350 devices. */
1971	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1972		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1973			/* If present, re-initialize the external thermal sensor
1974			 * interface.
1975			 */
1976			if (adapter->ets)
1977				mac->ops.init_thermal_sensor_thresh(hw);
1978		}
1979	}
1980#endif
1981	/* Re-establish EEE setting */
1982	if (hw->phy.media_type == e1000_media_type_copper) {
1983		switch (mac->type) {
1984		case e1000_i350:
1985		case e1000_i210:
1986		case e1000_i211:
1987			igb_set_eee_i350(hw);
1988			break;
1989		case e1000_i354:
1990			igb_set_eee_i354(hw);
1991			break;
1992		default:
1993			break;
1994		}
1995	}
1996	if (!netif_running(adapter->netdev))
1997		igb_power_down_link(adapter);
1998
1999	igb_update_mng_vlan(adapter);
2000
2001	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2002	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2003
2004	/* Re-enable PTP, where applicable. */
2005	igb_ptp_reset(adapter);
2006
2007	igb_get_phy_info(hw);
2008}
2009
2010static netdev_features_t igb_fix_features(struct net_device *netdev,
2011	netdev_features_t features)
2012{
2013	/* Since there is no support for separate Rx/Tx vlan accel
2014	 * enable/disable make sure Tx flag is always in same state as Rx.
2015	 */
2016	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2017		features |= NETIF_F_HW_VLAN_CTAG_TX;
2018	else
2019		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2020
2021	return features;
2022}
2023
2024static int igb_set_features(struct net_device *netdev,
2025	netdev_features_t features)
2026{
2027	netdev_features_t changed = netdev->features ^ features;
2028	struct igb_adapter *adapter = netdev_priv(netdev);
2029
2030	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2031		igb_vlan_mode(netdev, features);
2032
2033	if (!(changed & NETIF_F_RXALL))
2034		return 0;
2035
2036	netdev->features = features;
2037
2038	if (netif_running(netdev))
2039		igb_reinit_locked(adapter);
2040	else
2041		igb_reset(adapter);
2042
2043	return 0;
2044}
2045
2046static const struct net_device_ops igb_netdev_ops = {
2047	.ndo_open		= igb_open,
2048	.ndo_stop		= igb_close,
2049	.ndo_start_xmit		= igb_xmit_frame,
2050	.ndo_get_stats64	= igb_get_stats64,
2051	.ndo_set_rx_mode	= igb_set_rx_mode,
2052	.ndo_set_mac_address	= igb_set_mac,
2053	.ndo_change_mtu		= igb_change_mtu,
2054	.ndo_do_ioctl		= igb_ioctl,
2055	.ndo_tx_timeout		= igb_tx_timeout,
2056	.ndo_validate_addr	= eth_validate_addr,
2057	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2058	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2059	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2060	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2061	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
2062	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2063	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2064#ifdef CONFIG_NET_POLL_CONTROLLER
2065	.ndo_poll_controller	= igb_netpoll,
2066#endif
2067	.ndo_fix_features	= igb_fix_features,
2068	.ndo_set_features	= igb_set_features,
2069};
2070
2071/**
2072 * igb_set_fw_version - Configure version string for ethtool
2073 * @adapter: adapter struct
2074 **/
2075void igb_set_fw_version(struct igb_adapter *adapter)
2076{
2077	struct e1000_hw *hw = &adapter->hw;
2078	struct e1000_fw_version fw;
2079
2080	igb_get_fw_version(hw, &fw);
2081
2082	switch (hw->mac.type) {
2083	case e1000_i210:
2084	case e1000_i211:
2085		if (!(igb_get_flash_presence_i210(hw))) {
2086			snprintf(adapter->fw_version,
2087				 sizeof(adapter->fw_version),
2088				 "%2d.%2d-%d",
2089				 fw.invm_major, fw.invm_minor,
2090				 fw.invm_img_type);
2091			break;
2092		}
2093		/* fall through */
2094	default:
2095		/* if option is rom valid, display its version too */
2096		if (fw.or_valid) {
2097			snprintf(adapter->fw_version,
2098				 sizeof(adapter->fw_version),
2099				 "%d.%d, 0x%08x, %d.%d.%d",
2100				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2101				 fw.or_major, fw.or_build, fw.or_patch);
2102		/* no option rom */
2103		} else if (fw.etrack_id != 0X0000) {
2104			snprintf(adapter->fw_version,
2105			    sizeof(adapter->fw_version),
2106			    "%d.%d, 0x%08x",
2107			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2108		} else {
2109		snprintf(adapter->fw_version,
2110		    sizeof(adapter->fw_version),
2111		    "%d.%d.%d",
2112		    fw.eep_major, fw.eep_minor, fw.eep_build);
2113		}
2114		break;
2115	}
2116	return;
2117}
2118
2119/**
2120 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2121 *
2122 * @adapter: adapter struct
2123 **/
2124static void igb_init_mas(struct igb_adapter *adapter)
2125{
2126	struct e1000_hw *hw = &adapter->hw;
2127	u16 eeprom_data;
2128
2129	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2130	switch (hw->bus.func) {
2131	case E1000_FUNC_0:
2132		if (eeprom_data & IGB_MAS_ENABLE_0) {
2133			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2134			netdev_info(adapter->netdev,
2135				"MAS: Enabling Media Autosense for port %d\n",
2136				hw->bus.func);
2137		}
2138		break;
2139	case E1000_FUNC_1:
2140		if (eeprom_data & IGB_MAS_ENABLE_1) {
2141			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2142			netdev_info(adapter->netdev,
2143				"MAS: Enabling Media Autosense for port %d\n",
2144				hw->bus.func);
2145		}
2146		break;
2147	case E1000_FUNC_2:
2148		if (eeprom_data & IGB_MAS_ENABLE_2) {
2149			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2150			netdev_info(adapter->netdev,
2151				"MAS: Enabling Media Autosense for port %d\n",
2152				hw->bus.func);
2153		}
2154		break;
2155	case E1000_FUNC_3:
2156		if (eeprom_data & IGB_MAS_ENABLE_3) {
2157			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2158			netdev_info(adapter->netdev,
2159				"MAS: Enabling Media Autosense for port %d\n",
2160				hw->bus.func);
2161		}
2162		break;
2163	default:
2164		/* Shouldn't get here */
2165		netdev_err(adapter->netdev,
2166			"MAS: Invalid port configuration, returning\n");
2167		break;
2168	}
2169}
2170
2171/**
2172 *  igb_init_i2c - Init I2C interface
2173 *  @adapter: pointer to adapter structure
2174 **/
2175static s32 igb_init_i2c(struct igb_adapter *adapter)
2176{
2177	s32 status = E1000_SUCCESS;
2178
2179	/* I2C interface supported on i350 devices */
2180	if (adapter->hw.mac.type != e1000_i350)
2181		return E1000_SUCCESS;
2182
2183	/* Initialize the i2c bus which is controlled by the registers.
2184	 * This bus will use the i2c_algo_bit structue that implements
2185	 * the protocol through toggling of the 4 bits in the register.
2186	 */
2187	adapter->i2c_adap.owner = THIS_MODULE;
2188	adapter->i2c_algo = igb_i2c_algo;
2189	adapter->i2c_algo.data = adapter;
2190	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2191	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2192	strlcpy(adapter->i2c_adap.name, "igb BB",
2193		sizeof(adapter->i2c_adap.name));
2194	status = i2c_bit_add_bus(&adapter->i2c_adap);
2195	return status;
2196}
2197
2198/**
2199 *  igb_probe - Device Initialization Routine
2200 *  @pdev: PCI device information struct
2201 *  @ent: entry in igb_pci_tbl
2202 *
2203 *  Returns 0 on success, negative on failure
2204 *
2205 *  igb_probe initializes an adapter identified by a pci_dev structure.
2206 *  The OS initialization, configuring of the adapter private structure,
2207 *  and a hardware reset occur.
2208 **/
2209static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2210{
2211	struct net_device *netdev;
2212	struct igb_adapter *adapter;
2213	struct e1000_hw *hw;
2214	u16 eeprom_data = 0;
2215	s32 ret_val;
2216	static int global_quad_port_a; /* global quad port a indication */
2217	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2218	int err, pci_using_dac;
2219	u8 part_str[E1000_PBANUM_LENGTH];
2220
2221	/* Catch broken hardware that put the wrong VF device ID in
2222	 * the PCIe SR-IOV capability.
2223	 */
2224	if (pdev->is_virtfn) {
2225		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2226			pci_name(pdev), pdev->vendor, pdev->device);
2227		return -EINVAL;
2228	}
2229
2230	err = pci_enable_device_mem(pdev);
2231	if (err)
2232		return err;
2233
2234	pci_using_dac = 0;
2235	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2236	if (!err) {
2237		pci_using_dac = 1;
2238	} else {
2239		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2240		if (err) {
2241			dev_err(&pdev->dev,
2242				"No usable DMA configuration, aborting\n");
2243			goto err_dma;
2244		}
2245	}
2246
2247	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2248					   IORESOURCE_MEM),
2249					   igb_driver_name);
2250	if (err)
2251		goto err_pci_reg;
2252
2253	pci_enable_pcie_error_reporting(pdev);
2254
2255	pci_set_master(pdev);
2256	pci_save_state(pdev);
2257
2258	err = -ENOMEM;
2259	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2260				   IGB_MAX_TX_QUEUES);
2261	if (!netdev)
2262		goto err_alloc_etherdev;
2263
2264	SET_NETDEV_DEV(netdev, &pdev->dev);
2265
2266	pci_set_drvdata(pdev, netdev);
2267	adapter = netdev_priv(netdev);
2268	adapter->netdev = netdev;
2269	adapter->pdev = pdev;
2270	hw = &adapter->hw;
2271	hw->back = adapter;
2272	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2273
2274	err = -EIO;
2275	hw->hw_addr = pci_iomap(pdev, 0, 0);
2276	if (!hw->hw_addr)
2277		goto err_ioremap;
2278
2279	netdev->netdev_ops = &igb_netdev_ops;
2280	igb_set_ethtool_ops(netdev);
2281	netdev->watchdog_timeo = 5 * HZ;
2282
2283	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2284
2285	netdev->mem_start = pci_resource_start(pdev, 0);
2286	netdev->mem_end = pci_resource_end(pdev, 0);
2287
2288	/* PCI config space info */
2289	hw->vendor_id = pdev->vendor;
2290	hw->device_id = pdev->device;
2291	hw->revision_id = pdev->revision;
2292	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2293	hw->subsystem_device_id = pdev->subsystem_device;
2294
2295	/* Copy the default MAC, PHY and NVM function pointers */
2296	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2297	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2298	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2299	/* Initialize skew-specific constants */
2300	err = ei->get_invariants(hw);
2301	if (err)
2302		goto err_sw_init;
2303
2304	/* setup the private structure */
2305	err = igb_sw_init(adapter);
2306	if (err)
2307		goto err_sw_init;
2308
2309	igb_get_bus_info_pcie(hw);
2310
2311	hw->phy.autoneg_wait_to_complete = false;
2312
2313	/* Copper options */
2314	if (hw->phy.media_type == e1000_media_type_copper) {
2315		hw->phy.mdix = AUTO_ALL_MODES;
2316		hw->phy.disable_polarity_correction = false;
2317		hw->phy.ms_type = e1000_ms_hw_default;
2318	}
2319
2320	if (igb_check_reset_block(hw))
2321		dev_info(&pdev->dev,
2322			"PHY reset is blocked due to SOL/IDER session.\n");
2323
2324	/* features is initialized to 0 in allocation, it might have bits
2325	 * set by igb_sw_init so we should use an or instead of an
2326	 * assignment.
2327	 */
2328	netdev->features |= NETIF_F_SG |
2329			    NETIF_F_IP_CSUM |
2330			    NETIF_F_IPV6_CSUM |
2331			    NETIF_F_TSO |
2332			    NETIF_F_TSO6 |
2333			    NETIF_F_RXHASH |
2334			    NETIF_F_RXCSUM |
2335			    NETIF_F_HW_VLAN_CTAG_RX |
2336			    NETIF_F_HW_VLAN_CTAG_TX;
2337
2338	/* copy netdev features into list of user selectable features */
2339	netdev->hw_features |= netdev->features;
2340	netdev->hw_features |= NETIF_F_RXALL;
2341
2342	/* set this bit last since it cannot be part of hw_features */
2343	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2344
2345	netdev->vlan_features |= NETIF_F_TSO |
2346				 NETIF_F_TSO6 |
2347				 NETIF_F_IP_CSUM |
2348				 NETIF_F_IPV6_CSUM |
2349				 NETIF_F_SG;
2350
2351	netdev->priv_flags |= IFF_SUPP_NOFCS;
2352
2353	if (pci_using_dac) {
2354		netdev->features |= NETIF_F_HIGHDMA;
2355		netdev->vlan_features |= NETIF_F_HIGHDMA;
2356	}
2357
2358	if (hw->mac.type >= e1000_82576) {
2359		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2360		netdev->features |= NETIF_F_SCTP_CSUM;
2361	}
2362
2363	netdev->priv_flags |= IFF_UNICAST_FLT;
2364
2365	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2366
2367	/* before reading the NVM, reset the controller to put the device in a
2368	 * known good starting state
2369	 */
2370	hw->mac.ops.reset_hw(hw);
2371
2372	/* make sure the NVM is good , i211/i210 parts can have special NVM
2373	 * that doesn't contain a checksum
2374	 */
2375	switch (hw->mac.type) {
2376	case e1000_i210:
2377	case e1000_i211:
2378		if (igb_get_flash_presence_i210(hw)) {
2379			if (hw->nvm.ops.validate(hw) < 0) {
2380				dev_err(&pdev->dev,
2381					"The NVM Checksum Is Not Valid\n");
2382				err = -EIO;
2383				goto err_eeprom;
2384			}
2385		}
2386		break;
2387	default:
2388		if (hw->nvm.ops.validate(hw) < 0) {
2389			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2390			err = -EIO;
2391			goto err_eeprom;
2392		}
2393		break;
2394	}
2395
2396	/* copy the MAC address out of the NVM */
2397	if (hw->mac.ops.read_mac_addr(hw))
2398		dev_err(&pdev->dev, "NVM Read Error\n");
2399
2400	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2401
2402	if (!is_valid_ether_addr(netdev->dev_addr)) {
2403		dev_err(&pdev->dev, "Invalid MAC Address\n");
2404		err = -EIO;
2405		goto err_eeprom;
2406	}
2407
2408	/* get firmware version for ethtool -i */
2409	igb_set_fw_version(adapter);
2410
2411	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2412		    (unsigned long) adapter);
2413	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2414		    (unsigned long) adapter);
2415
2416	INIT_WORK(&adapter->reset_task, igb_reset_task);
2417	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2418
2419	/* Initialize link properties that are user-changeable */
2420	adapter->fc_autoneg = true;
2421	hw->mac.autoneg = true;
2422	hw->phy.autoneg_advertised = 0x2f;
2423
2424	hw->fc.requested_mode = e1000_fc_default;
2425	hw->fc.current_mode = e1000_fc_default;
2426
2427	igb_validate_mdi_setting(hw);
2428
2429	/* By default, support wake on port A */
2430	if (hw->bus.func == 0)
2431		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2432
2433	/* Check the NVM for wake support on non-port A ports */
2434	if (hw->mac.type >= e1000_82580)
2435		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2436				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2437				 &eeprom_data);
2438	else if (hw->bus.func == 1)
2439		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2440
2441	if (eeprom_data & IGB_EEPROM_APME)
2442		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2443
2444	/* now that we have the eeprom settings, apply the special cases where
2445	 * the eeprom may be wrong or the board simply won't support wake on
2446	 * lan on a particular port
2447	 */
2448	switch (pdev->device) {
2449	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2450		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2451		break;
2452	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2453	case E1000_DEV_ID_82576_FIBER:
2454	case E1000_DEV_ID_82576_SERDES:
2455		/* Wake events only supported on port A for dual fiber
2456		 * regardless of eeprom setting
2457		 */
2458		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2459			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2460		break;
2461	case E1000_DEV_ID_82576_QUAD_COPPER:
2462	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2463		/* if quad port adapter, disable WoL on all but port A */
2464		if (global_quad_port_a != 0)
2465			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2466		else
2467			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2468		/* Reset for multiple quad port adapters */
2469		if (++global_quad_port_a == 4)
2470			global_quad_port_a = 0;
2471		break;
2472	default:
2473		/* If the device can't wake, don't set software support */
2474		if (!device_can_wakeup(&adapter->pdev->dev))
2475			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2476	}
2477
2478	/* initialize the wol settings based on the eeprom settings */
2479	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2480		adapter->wol |= E1000_WUFC_MAG;
2481
2482	/* Some vendors want WoL disabled by default, but still supported */
2483	if ((hw->mac.type == e1000_i350) &&
2484	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2485		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2486		adapter->wol = 0;
2487	}
2488
2489	device_set_wakeup_enable(&adapter->pdev->dev,
2490				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2491
2492	/* reset the hardware with the new settings */
2493	igb_reset(adapter);
2494
2495	/* Init the I2C interface */
2496	err = igb_init_i2c(adapter);
2497	if (err) {
2498		dev_err(&pdev->dev, "failed to init i2c interface\n");
2499		goto err_eeprom;
2500	}
2501
2502	/* let the f/w know that the h/w is now under the control of the
2503	 * driver. */
2504	igb_get_hw_control(adapter);
2505
2506	strcpy(netdev->name, "eth%d");
2507	err = register_netdev(netdev);
2508	if (err)
2509		goto err_register;
2510
2511	/* carrier off reporting is important to ethtool even BEFORE open */
2512	netif_carrier_off(netdev);
2513
2514#ifdef CONFIG_IGB_DCA
2515	if (dca_add_requester(&pdev->dev) == 0) {
2516		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2517		dev_info(&pdev->dev, "DCA enabled\n");
2518		igb_setup_dca(adapter);
2519	}
2520
2521#endif
2522#ifdef CONFIG_IGB_HWMON
2523	/* Initialize the thermal sensor on i350 devices. */
2524	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2525		u16 ets_word;
2526
2527		/* Read the NVM to determine if this i350 device supports an
2528		 * external thermal sensor.
2529		 */
2530		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2531		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2532			adapter->ets = true;
2533		else
2534			adapter->ets = false;
2535		if (igb_sysfs_init(adapter))
2536			dev_err(&pdev->dev,
2537				"failed to allocate sysfs resources\n");
2538	} else {
2539		adapter->ets = false;
2540	}
2541#endif
2542	/* Check if Media Autosense is enabled */
2543	adapter->ei = *ei;
2544	if (hw->dev_spec._82575.mas_capable)
2545		igb_init_mas(adapter);
2546
2547	/* do hw tstamp init after resetting */
2548	igb_ptp_init(adapter);
2549
2550	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2551	/* print bus type/speed/width info, not applicable to i354 */
2552	if (hw->mac.type != e1000_i354) {
2553		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2554			 netdev->name,
2555			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2556			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2557			   "unknown"),
2558			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2559			  "Width x4" :
2560			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2561			  "Width x2" :
2562			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2563			  "Width x1" : "unknown"), netdev->dev_addr);
2564	}
2565
2566	if ((hw->mac.type >= e1000_i210 ||
2567	     igb_get_flash_presence_i210(hw))) {
2568		ret_val = igb_read_part_string(hw, part_str,
2569					       E1000_PBANUM_LENGTH);
2570	} else {
2571		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2572	}
2573
2574	if (ret_val)
2575		strcpy(part_str, "Unknown");
2576	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2577	dev_info(&pdev->dev,
2578		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2579		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2580		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2581		adapter->num_rx_queues, adapter->num_tx_queues);
2582	if (hw->phy.media_type == e1000_media_type_copper) {
2583		switch (hw->mac.type) {
2584		case e1000_i350:
2585		case e1000_i210:
2586		case e1000_i211:
2587			/* Enable EEE for internal copper PHY devices */
2588			err = igb_set_eee_i350(hw);
2589			if ((!err) &&
2590			    (!hw->dev_spec._82575.eee_disable)) {
2591				adapter->eee_advert =
2592					MDIO_EEE_100TX | MDIO_EEE_1000T;
2593				adapter->flags |= IGB_FLAG_EEE;
2594			}
2595			break;
2596		case e1000_i354:
2597			if ((rd32(E1000_CTRL_EXT) &
2598			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2599				err = igb_set_eee_i354(hw);
2600				if ((!err) &&
2601					(!hw->dev_spec._82575.eee_disable)) {
2602					adapter->eee_advert =
2603					   MDIO_EEE_100TX | MDIO_EEE_1000T;
2604					adapter->flags |= IGB_FLAG_EEE;
2605				}
2606			}
2607			break;
2608		default:
2609			break;
2610		}
2611	}
2612	pm_runtime_put_noidle(&pdev->dev);
2613	return 0;
2614
2615err_register:
2616	igb_release_hw_control(adapter);
2617	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2618err_eeprom:
2619	if (!igb_check_reset_block(hw))
2620		igb_reset_phy(hw);
2621
2622	if (hw->flash_address)
2623		iounmap(hw->flash_address);
2624err_sw_init:
2625	igb_clear_interrupt_scheme(adapter);
2626	iounmap(hw->hw_addr);
2627err_ioremap:
2628	free_netdev(netdev);
2629err_alloc_etherdev:
2630	pci_release_selected_regions(pdev,
2631				     pci_select_bars(pdev, IORESOURCE_MEM));
2632err_pci_reg:
2633err_dma:
2634	pci_disable_device(pdev);
2635	return err;
2636}
2637
2638#ifdef CONFIG_PCI_IOV
2639static int igb_disable_sriov(struct pci_dev *pdev)
2640{
2641	struct net_device *netdev = pci_get_drvdata(pdev);
2642	struct igb_adapter *adapter = netdev_priv(netdev);
2643	struct e1000_hw *hw = &adapter->hw;
2644
2645	/* reclaim resources allocated to VFs */
2646	if (adapter->vf_data) {
2647		/* disable iov and allow time for transactions to clear */
2648		if (pci_vfs_assigned(pdev)) {
2649			dev_warn(&pdev->dev,
2650				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2651			return -EPERM;
2652		} else {
2653			pci_disable_sriov(pdev);
2654			msleep(500);
2655		}
2656
2657		kfree(adapter->vf_data);
2658		adapter->vf_data = NULL;
2659		adapter->vfs_allocated_count = 0;
2660		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2661		wrfl();
2662		msleep(100);
2663		dev_info(&pdev->dev, "IOV Disabled\n");
2664
2665		/* Re-enable DMA Coalescing flag since IOV is turned off */
2666		adapter->flags |= IGB_FLAG_DMAC;
2667	}
2668
2669	return 0;
2670}
2671
2672static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2673{
2674	struct net_device *netdev = pci_get_drvdata(pdev);
2675	struct igb_adapter *adapter = netdev_priv(netdev);
2676	int old_vfs = pci_num_vf(pdev);
2677	int err = 0;
2678	int i;
2679
2680	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2681		err = -EPERM;
2682		goto out;
2683	}
2684	if (!num_vfs)
2685		goto out;
2686
2687	if (old_vfs) {
2688		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2689			 old_vfs, max_vfs);
2690		adapter->vfs_allocated_count = old_vfs;
2691	} else
2692		adapter->vfs_allocated_count = num_vfs;
2693
2694	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2695				sizeof(struct vf_data_storage), GFP_KERNEL);
2696
2697	/* if allocation failed then we do not support SR-IOV */
2698	if (!adapter->vf_data) {
2699		adapter->vfs_allocated_count = 0;
2700		dev_err(&pdev->dev,
2701			"Unable to allocate memory for VF Data Storage\n");
2702		err = -ENOMEM;
2703		goto out;
2704	}
2705
2706	/* only call pci_enable_sriov() if no VFs are allocated already */
2707	if (!old_vfs) {
2708		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2709		if (err)
2710			goto err_out;
2711	}
2712	dev_info(&pdev->dev, "%d VFs allocated\n",
2713		 adapter->vfs_allocated_count);
2714	for (i = 0; i < adapter->vfs_allocated_count; i++)
2715		igb_vf_configure(adapter, i);
2716
2717	/* DMA Coalescing is not supported in IOV mode. */
2718	adapter->flags &= ~IGB_FLAG_DMAC;
2719	goto out;
2720
2721err_out:
2722	kfree(adapter->vf_data);
2723	adapter->vf_data = NULL;
2724	adapter->vfs_allocated_count = 0;
2725out:
2726	return err;
2727}
2728
2729#endif
2730/**
2731 *  igb_remove_i2c - Cleanup  I2C interface
2732 *  @adapter: pointer to adapter structure
2733 **/
2734static void igb_remove_i2c(struct igb_adapter *adapter)
2735{
2736	/* free the adapter bus structure */
2737	i2c_del_adapter(&adapter->i2c_adap);
2738}
2739
2740/**
2741 *  igb_remove - Device Removal Routine
2742 *  @pdev: PCI device information struct
2743 *
2744 *  igb_remove is called by the PCI subsystem to alert the driver
2745 *  that it should release a PCI device.  The could be caused by a
2746 *  Hot-Plug event, or because the driver is going to be removed from
2747 *  memory.
2748 **/
2749static void igb_remove(struct pci_dev *pdev)
2750{
2751	struct net_device *netdev = pci_get_drvdata(pdev);
2752	struct igb_adapter *adapter = netdev_priv(netdev);
2753	struct e1000_hw *hw = &adapter->hw;
2754
2755	pm_runtime_get_noresume(&pdev->dev);
2756#ifdef CONFIG_IGB_HWMON
2757	igb_sysfs_exit(adapter);
2758#endif
2759	igb_remove_i2c(adapter);
2760	igb_ptp_stop(adapter);
2761	/* The watchdog timer may be rescheduled, so explicitly
2762	 * disable watchdog from being rescheduled.
2763	 */
2764	set_bit(__IGB_DOWN, &adapter->state);
2765	del_timer_sync(&adapter->watchdog_timer);
2766	del_timer_sync(&adapter->phy_info_timer);
2767
2768	cancel_work_sync(&adapter->reset_task);
2769	cancel_work_sync(&adapter->watchdog_task);
2770
2771#ifdef CONFIG_IGB_DCA
2772	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2773		dev_info(&pdev->dev, "DCA disabled\n");
2774		dca_remove_requester(&pdev->dev);
2775		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2776		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2777	}
2778#endif
2779
2780	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2781	 * would have already happened in close and is redundant.
2782	 */
2783	igb_release_hw_control(adapter);
2784
2785	unregister_netdev(netdev);
2786
2787	igb_clear_interrupt_scheme(adapter);
2788
2789#ifdef CONFIG_PCI_IOV
2790	igb_disable_sriov(pdev);
2791#endif
2792
2793	iounmap(hw->hw_addr);
2794	if (hw->flash_address)
2795		iounmap(hw->flash_address);
2796	pci_release_selected_regions(pdev,
2797				     pci_select_bars(pdev, IORESOURCE_MEM));
2798
2799	kfree(adapter->shadow_vfta);
2800	free_netdev(netdev);
2801
2802	pci_disable_pcie_error_reporting(pdev);
2803
2804	pci_disable_device(pdev);
2805}
2806
2807/**
2808 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2809 *  @adapter: board private structure to initialize
2810 *
2811 *  This function initializes the vf specific data storage and then attempts to
2812 *  allocate the VFs.  The reason for ordering it this way is because it is much
2813 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2814 *  the memory for the VFs.
2815 **/
2816static void igb_probe_vfs(struct igb_adapter *adapter)
2817{
2818#ifdef CONFIG_PCI_IOV
2819	struct pci_dev *pdev = adapter->pdev;
2820	struct e1000_hw *hw = &adapter->hw;
2821
2822	/* Virtualization features not supported on i210 family. */
2823	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2824		return;
2825
2826	pci_sriov_set_totalvfs(pdev, 7);
2827	igb_pci_enable_sriov(pdev, max_vfs);
2828
2829#endif /* CONFIG_PCI_IOV */
2830}
2831
2832static void igb_init_queue_configuration(struct igb_adapter *adapter)
2833{
2834	struct e1000_hw *hw = &adapter->hw;
2835	u32 max_rss_queues;
2836
2837	/* Determine the maximum number of RSS queues supported. */
2838	switch (hw->mac.type) {
2839	case e1000_i211:
2840		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2841		break;
2842	case e1000_82575:
2843	case e1000_i210:
2844		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2845		break;
2846	case e1000_i350:
2847		/* I350 cannot do RSS and SR-IOV at the same time */
2848		if (!!adapter->vfs_allocated_count) {
2849			max_rss_queues = 1;
2850			break;
2851		}
2852		/* fall through */
2853	case e1000_82576:
2854		if (!!adapter->vfs_allocated_count) {
2855			max_rss_queues = 2;
2856			break;
2857		}
2858		/* fall through */
2859	case e1000_82580:
2860	case e1000_i354:
2861	default:
2862		max_rss_queues = IGB_MAX_RX_QUEUES;
2863		break;
2864	}
2865
2866	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2867
2868	/* Determine if we need to pair queues. */
2869	switch (hw->mac.type) {
2870	case e1000_82575:
2871	case e1000_i211:
2872		/* Device supports enough interrupts without queue pairing. */
2873		break;
2874	case e1000_82576:
2875		/* If VFs are going to be allocated with RSS queues then we
2876		 * should pair the queues in order to conserve interrupts due
2877		 * to limited supply.
2878		 */
2879		if ((adapter->rss_queues > 1) &&
2880		    (adapter->vfs_allocated_count > 6))
2881			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2882		/* fall through */
2883	case e1000_82580:
2884	case e1000_i350:
2885	case e1000_i354:
2886	case e1000_i210:
2887	default:
2888		/* If rss_queues > half of max_rss_queues, pair the queues in
2889		 * order to conserve interrupts due to limited supply.
2890		 */
2891		if (adapter->rss_queues > (max_rss_queues / 2))
2892			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2893		break;
2894	}
2895}
2896
2897/**
2898 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2899 *  @adapter: board private structure to initialize
2900 *
2901 *  igb_sw_init initializes the Adapter private data structure.
2902 *  Fields are initialized based on PCI device information and
2903 *  OS network device settings (MTU size).
2904 **/
2905static int igb_sw_init(struct igb_adapter *adapter)
2906{
2907	struct e1000_hw *hw = &adapter->hw;
2908	struct net_device *netdev = adapter->netdev;
2909	struct pci_dev *pdev = adapter->pdev;
2910
2911	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2912
2913	/* set default ring sizes */
2914	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2915	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2916
2917	/* set default ITR values */
2918	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2919	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2920
2921	/* set default work limits */
2922	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2923
2924	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2925				  VLAN_HLEN;
2926	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2927
2928	spin_lock_init(&adapter->stats64_lock);
2929#ifdef CONFIG_PCI_IOV
2930	switch (hw->mac.type) {
2931	case e1000_82576:
2932	case e1000_i350:
2933		if (max_vfs > 7) {
2934			dev_warn(&pdev->dev,
2935				 "Maximum of 7 VFs per PF, using max\n");
2936			max_vfs = adapter->vfs_allocated_count = 7;
2937		} else
2938			adapter->vfs_allocated_count = max_vfs;
2939		if (adapter->vfs_allocated_count)
2940			dev_warn(&pdev->dev,
2941				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2942		break;
2943	default:
2944		break;
2945	}
2946#endif /* CONFIG_PCI_IOV */
2947
2948	igb_init_queue_configuration(adapter);
2949
2950	/* Setup and initialize a copy of the hw vlan table array */
2951	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2952				       GFP_ATOMIC);
2953
2954	/* This call may decrease the number of queues */
2955	if (igb_init_interrupt_scheme(adapter, true)) {
2956		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2957		return -ENOMEM;
2958	}
2959
2960	igb_probe_vfs(adapter);
2961
2962	/* Explicitly disable IRQ since the NIC can be in any state. */
2963	igb_irq_disable(adapter);
2964
2965	if (hw->mac.type >= e1000_i350)
2966		adapter->flags &= ~IGB_FLAG_DMAC;
2967
2968	set_bit(__IGB_DOWN, &adapter->state);
2969	return 0;
2970}
2971
2972/**
2973 *  igb_open - Called when a network interface is made active
2974 *  @netdev: network interface device structure
2975 *
2976 *  Returns 0 on success, negative value on failure
2977 *
2978 *  The open entry point is called when a network interface is made
2979 *  active by the system (IFF_UP).  At this point all resources needed
2980 *  for transmit and receive operations are allocated, the interrupt
2981 *  handler is registered with the OS, the watchdog timer is started,
2982 *  and the stack is notified that the interface is ready.
2983 **/
2984static int __igb_open(struct net_device *netdev, bool resuming)
2985{
2986	struct igb_adapter *adapter = netdev_priv(netdev);
2987	struct e1000_hw *hw = &adapter->hw;
2988	struct pci_dev *pdev = adapter->pdev;
2989	int err;
2990	int i;
2991
2992	/* disallow open during test */
2993	if (test_bit(__IGB_TESTING, &adapter->state)) {
2994		WARN_ON(resuming);
2995		return -EBUSY;
2996	}
2997
2998	if (!resuming)
2999		pm_runtime_get_sync(&pdev->dev);
3000
3001	netif_carrier_off(netdev);
3002
3003	/* allocate transmit descriptors */
3004	err = igb_setup_all_tx_resources(adapter);
3005	if (err)
3006		goto err_setup_tx;
3007
3008	/* allocate receive descriptors */
3009	err = igb_setup_all_rx_resources(adapter);
3010	if (err)
3011		goto err_setup_rx;
3012
3013	igb_power_up_link(adapter);
3014
3015	/* before we allocate an interrupt, we must be ready to handle it.
3016	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3017	 * as soon as we call pci_request_irq, so we have to setup our
3018	 * clean_rx handler before we do so.
3019	 */
3020	igb_configure(adapter);
3021
3022	err = igb_request_irq(adapter);
3023	if (err)
3024		goto err_req_irq;
3025
3026	/* Notify the stack of the actual queue counts. */
3027	err = netif_set_real_num_tx_queues(adapter->netdev,
3028					   adapter->num_tx_queues);
3029	if (err)
3030		goto err_set_queues;
3031
3032	err = netif_set_real_num_rx_queues(adapter->netdev,
3033					   adapter->num_rx_queues);
3034	if (err)
3035		goto err_set_queues;
3036
3037	/* From here on the code is the same as igb_up() */
3038	clear_bit(__IGB_DOWN, &adapter->state);
3039
3040	for (i = 0; i < adapter->num_q_vectors; i++)
3041		napi_enable(&(adapter->q_vector[i]->napi));
3042
3043	/* Clear any pending interrupts. */
3044	rd32(E1000_ICR);
3045
3046	igb_irq_enable(adapter);
3047
3048	/* notify VFs that reset has been completed */
3049	if (adapter->vfs_allocated_count) {
3050		u32 reg_data = rd32(E1000_CTRL_EXT);
3051		reg_data |= E1000_CTRL_EXT_PFRSTD;
3052		wr32(E1000_CTRL_EXT, reg_data);
3053	}
3054
3055	netif_tx_start_all_queues(netdev);
3056
3057	if (!resuming)
3058		pm_runtime_put(&pdev->dev);
3059
3060	/* start the watchdog. */
3061	hw->mac.get_link_status = 1;
3062	schedule_work(&adapter->watchdog_task);
3063
3064	return 0;
3065
3066err_set_queues:
3067	igb_free_irq(adapter);
3068err_req_irq:
3069	igb_release_hw_control(adapter);
3070	igb_power_down_link(adapter);
3071	igb_free_all_rx_resources(adapter);
3072err_setup_rx:
3073	igb_free_all_tx_resources(adapter);
3074err_setup_tx:
3075	igb_reset(adapter);
3076	if (!resuming)
3077		pm_runtime_put(&pdev->dev);
3078
3079	return err;
3080}
3081
3082static int igb_open(struct net_device *netdev)
3083{
3084	return __igb_open(netdev, false);
3085}
3086
3087/**
3088 *  igb_close - Disables a network interface
3089 *  @netdev: network interface device structure
3090 *
3091 *  Returns 0, this is not allowed to fail
3092 *
3093 *  The close entry point is called when an interface is de-activated
3094 *  by the OS.  The hardware is still under the driver's control, but
3095 *  needs to be disabled.  A global MAC reset is issued to stop the
3096 *  hardware, and all transmit and receive resources are freed.
3097 **/
3098static int __igb_close(struct net_device *netdev, bool suspending)
3099{
3100	struct igb_adapter *adapter = netdev_priv(netdev);
3101	struct pci_dev *pdev = adapter->pdev;
3102
3103	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3104
3105	if (!suspending)
3106		pm_runtime_get_sync(&pdev->dev);
3107
3108	igb_down(adapter);
3109	igb_free_irq(adapter);
3110
3111	igb_free_all_tx_resources(adapter);
3112	igb_free_all_rx_resources(adapter);
3113
3114	if (!suspending)
3115		pm_runtime_put_sync(&pdev->dev);
3116	return 0;
3117}
3118
3119static int igb_close(struct net_device *netdev)
3120{
3121	return __igb_close(netdev, false);
3122}
3123
3124/**
3125 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3126 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3127 *
3128 *  Return 0 on success, negative on failure
3129 **/
3130int igb_setup_tx_resources(struct igb_ring *tx_ring)
3131{
3132	struct device *dev = tx_ring->dev;
3133	int size;
3134
3135	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3136
3137	tx_ring->tx_buffer_info = vzalloc(size);
3138	if (!tx_ring->tx_buffer_info)
3139		goto err;
3140
3141	/* round up to nearest 4K */
3142	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3143	tx_ring->size = ALIGN(tx_ring->size, 4096);
3144
3145	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3146					   &tx_ring->dma, GFP_KERNEL);
3147	if (!tx_ring->desc)
3148		goto err;
3149
3150	tx_ring->next_to_use = 0;
3151	tx_ring->next_to_clean = 0;
3152
3153	return 0;
3154
3155err:
3156	vfree(tx_ring->tx_buffer_info);
3157	tx_ring->tx_buffer_info = NULL;
3158	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3159	return -ENOMEM;
3160}
3161
3162/**
3163 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3164 *				 (Descriptors) for all queues
3165 *  @adapter: board private structure
3166 *
3167 *  Return 0 on success, negative on failure
3168 **/
3169static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3170{
3171	struct pci_dev *pdev = adapter->pdev;
3172	int i, err = 0;
3173
3174	for (i = 0; i < adapter->num_tx_queues; i++) {
3175		err = igb_setup_tx_resources(adapter->tx_ring[i]);
3176		if (err) {
3177			dev_err(&pdev->dev,
3178				"Allocation for Tx Queue %u failed\n", i);
3179			for (i--; i >= 0; i--)
3180				igb_free_tx_resources(adapter->tx_ring[i]);
3181			break;
3182		}
3183	}
3184
3185	return err;
3186}
3187
3188/**
3189 *  igb_setup_tctl - configure the transmit control registers
3190 *  @adapter: Board private structure
3191 **/
3192void igb_setup_tctl(struct igb_adapter *adapter)
3193{
3194	struct e1000_hw *hw = &adapter->hw;
3195	u32 tctl;
3196
3197	/* disable queue 0 which is enabled by default on 82575 and 82576 */
3198	wr32(E1000_TXDCTL(0), 0);
3199
3200	/* Program the Transmit Control Register */
3201	tctl = rd32(E1000_TCTL);
3202	tctl &= ~E1000_TCTL_CT;
3203	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3204		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3205
3206	igb_config_collision_dist(hw);
3207
3208	/* Enable transmits */
3209	tctl |= E1000_TCTL_EN;
3210
3211	wr32(E1000_TCTL, tctl);
3212}
3213
3214/**
3215 *  igb_configure_tx_ring - Configure transmit ring after Reset
3216 *  @adapter: board private structure
3217 *  @ring: tx ring to configure
3218 *
3219 *  Configure a transmit ring after a reset.
3220 **/
3221void igb_configure_tx_ring(struct igb_adapter *adapter,
3222                           struct igb_ring *ring)
3223{
3224	struct e1000_hw *hw = &adapter->hw;
3225	u32 txdctl = 0;
3226	u64 tdba = ring->dma;
3227	int reg_idx = ring->reg_idx;
3228
3229	/* disable the queue */
3230	wr32(E1000_TXDCTL(reg_idx), 0);
3231	wrfl();
3232	mdelay(10);
3233
3234	wr32(E1000_TDLEN(reg_idx),
3235	     ring->count * sizeof(union e1000_adv_tx_desc));
3236	wr32(E1000_TDBAL(reg_idx),
3237	     tdba & 0x00000000ffffffffULL);
3238	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3239
3240	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3241	wr32(E1000_TDH(reg_idx), 0);
3242	writel(0, ring->tail);
3243
3244	txdctl |= IGB_TX_PTHRESH;
3245	txdctl |= IGB_TX_HTHRESH << 8;
3246	txdctl |= IGB_TX_WTHRESH << 16;
3247
3248	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3249	wr32(E1000_TXDCTL(reg_idx), txdctl);
3250}
3251
3252/**
3253 *  igb_configure_tx - Configure transmit Unit after Reset
3254 *  @adapter: board private structure
3255 *
3256 *  Configure the Tx unit of the MAC after a reset.
3257 **/
3258static void igb_configure_tx(struct igb_adapter *adapter)
3259{
3260	int i;
3261
3262	for (i = 0; i < adapter->num_tx_queues; i++)
3263		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3264}
3265
3266/**
3267 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3268 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3269 *
3270 *  Returns 0 on success, negative on failure
3271 **/
3272int igb_setup_rx_resources(struct igb_ring *rx_ring)
3273{
3274	struct device *dev = rx_ring->dev;
3275	int size;
3276
3277	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3278
3279	rx_ring->rx_buffer_info = vzalloc(size);
3280	if (!rx_ring->rx_buffer_info)
3281		goto err;
3282
3283	/* Round up to nearest 4K */
3284	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3285	rx_ring->size = ALIGN(rx_ring->size, 4096);
3286
3287	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3288					   &rx_ring->dma, GFP_KERNEL);
3289	if (!rx_ring->desc)
3290		goto err;
3291
3292	rx_ring->next_to_alloc = 0;
3293	rx_ring->next_to_clean = 0;
3294	rx_ring->next_to_use = 0;
3295
3296	return 0;
3297
3298err:
3299	vfree(rx_ring->rx_buffer_info);
3300	rx_ring->rx_buffer_info = NULL;
3301	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3302	return -ENOMEM;
3303}
3304
3305/**
3306 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3307 *				 (Descriptors) for all queues
3308 *  @adapter: board private structure
3309 *
3310 *  Return 0 on success, negative on failure
3311 **/
3312static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3313{
3314	struct pci_dev *pdev = adapter->pdev;
3315	int i, err = 0;
3316
3317	for (i = 0; i < adapter->num_rx_queues; i++) {
3318		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3319		if (err) {
3320			dev_err(&pdev->dev,
3321				"Allocation for Rx Queue %u failed\n", i);
3322			for (i--; i >= 0; i--)
3323				igb_free_rx_resources(adapter->rx_ring[i]);
3324			break;
3325		}
3326	}
3327
3328	return err;
3329}
3330
3331/**
3332 *  igb_setup_mrqc - configure the multiple receive queue control registers
3333 *  @adapter: Board private structure
3334 **/
3335static void igb_setup_mrqc(struct igb_adapter *adapter)
3336{
3337	struct e1000_hw *hw = &adapter->hw;
3338	u32 mrqc, rxcsum;
3339	u32 j, num_rx_queues;
3340	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3341					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3342					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3343					0xFA01ACBE };
3344
3345	/* Fill out hash function seeds */
3346	for (j = 0; j < 10; j++)
3347		wr32(E1000_RSSRK(j), rsskey[j]);
3348
3349	num_rx_queues = adapter->rss_queues;
3350
3351	switch (hw->mac.type) {
3352	case e1000_82576:
3353		/* 82576 supports 2 RSS queues for SR-IOV */
3354		if (adapter->vfs_allocated_count)
3355			num_rx_queues = 2;
3356		break;
3357	default:
3358		break;
3359	}
3360
3361	if (adapter->rss_indir_tbl_init != num_rx_queues) {
3362		for (j = 0; j < IGB_RETA_SIZE; j++)
3363			adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
3364		adapter->rss_indir_tbl_init = num_rx_queues;
3365	}
3366	igb_write_rss_indir_tbl(adapter);
3367
3368	/* Disable raw packet checksumming so that RSS hash is placed in
3369	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3370	 * offloads as they are enabled by default
3371	 */
3372	rxcsum = rd32(E1000_RXCSUM);
3373	rxcsum |= E1000_RXCSUM_PCSD;
3374
3375	if (adapter->hw.mac.type >= e1000_82576)
3376		/* Enable Receive Checksum Offload for SCTP */
3377		rxcsum |= E1000_RXCSUM_CRCOFL;
3378
3379	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3380	wr32(E1000_RXCSUM, rxcsum);
3381
3382	/* Generate RSS hash based on packet types, TCP/UDP
3383	 * port numbers and/or IPv4/v6 src and dst addresses
3384	 */
3385	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3386	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3387	       E1000_MRQC_RSS_FIELD_IPV6 |
3388	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3389	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3390
3391	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3392		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3393	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3394		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3395
3396	/* If VMDq is enabled then we set the appropriate mode for that, else
3397	 * we default to RSS so that an RSS hash is calculated per packet even
3398	 * if we are only using one queue
3399	 */
3400	if (adapter->vfs_allocated_count) {
3401		if (hw->mac.type > e1000_82575) {
3402			/* Set the default pool for the PF's first queue */
3403			u32 vtctl = rd32(E1000_VT_CTL);
3404			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3405				   E1000_VT_CTL_DISABLE_DEF_POOL);
3406			vtctl |= adapter->vfs_allocated_count <<
3407				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3408			wr32(E1000_VT_CTL, vtctl);
3409		}
3410		if (adapter->rss_queues > 1)
3411			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3412		else
3413			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3414	} else {
3415		if (hw->mac.type != e1000_i211)
3416			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3417	}
3418	igb_vmm_control(adapter);
3419
3420	wr32(E1000_MRQC, mrqc);
3421}
3422
3423/**
3424 *  igb_setup_rctl - configure the receive control registers
3425 *  @adapter: Board private structure
3426 **/
3427void igb_setup_rctl(struct igb_adapter *adapter)
3428{
3429	struct e1000_hw *hw = &adapter->hw;
3430	u32 rctl;
3431
3432	rctl = rd32(E1000_RCTL);
3433
3434	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3435	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3436
3437	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3438		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3439
3440	/* enable stripping of CRC. It's unlikely this will break BMC
3441	 * redirection as it did with e1000. Newer features require
3442	 * that the HW strips the CRC.
3443	 */
3444	rctl |= E1000_RCTL_SECRC;
3445
3446	/* disable store bad packets and clear size bits. */
3447	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3448
3449	/* enable LPE to prevent packets larger than max_frame_size */
3450	rctl |= E1000_RCTL_LPE;
3451
3452	/* disable queue 0 to prevent tail write w/o re-config */
3453	wr32(E1000_RXDCTL(0), 0);
3454
3455	/* Attention!!!  For SR-IOV PF driver operations you must enable
3456	 * queue drop for all VF and PF queues to prevent head of line blocking
3457	 * if an un-trusted VF does not provide descriptors to hardware.
3458	 */
3459	if (adapter->vfs_allocated_count) {
3460		/* set all queue drop enable bits */
3461		wr32(E1000_QDE, ALL_QUEUES);
3462	}
3463
3464	/* This is useful for sniffing bad packets. */
3465	if (adapter->netdev->features & NETIF_F_RXALL) {
3466		/* UPE and MPE will be handled by normal PROMISC logic
3467		 * in e1000e_set_rx_mode
3468		 */
3469		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3470			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3471			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3472
3473		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3474			  E1000_RCTL_DPF | /* Allow filtered pause */
3475			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3476		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3477		 * and that breaks VLANs.
3478		 */
3479	}
3480
3481	wr32(E1000_RCTL, rctl);
3482}
3483
3484static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3485                                   int vfn)
3486{
3487	struct e1000_hw *hw = &adapter->hw;
3488	u32 vmolr;
3489
3490	/* if it isn't the PF check to see if VFs are enabled and
3491	 * increase the size to support vlan tags
3492	 */
3493	if (vfn < adapter->vfs_allocated_count &&
3494	    adapter->vf_data[vfn].vlans_enabled)
3495		size += VLAN_TAG_SIZE;
3496
3497	vmolr = rd32(E1000_VMOLR(vfn));
3498	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3499	vmolr |= size | E1000_VMOLR_LPE;
3500	wr32(E1000_VMOLR(vfn), vmolr);
3501
3502	return 0;
3503}
3504
3505/**
3506 *  igb_rlpml_set - set maximum receive packet size
3507 *  @adapter: board private structure
3508 *
3509 *  Configure maximum receivable packet size.
3510 **/
3511static void igb_rlpml_set(struct igb_adapter *adapter)
3512{
3513	u32 max_frame_size = adapter->max_frame_size;
3514	struct e1000_hw *hw = &adapter->hw;
3515	u16 pf_id = adapter->vfs_allocated_count;
3516
3517	if (pf_id) {
3518		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3519		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3520		 * to our max jumbo frame size, in case we need to enable
3521		 * jumbo frames on one of the rings later.
3522		 * This will not pass over-length frames into the default
3523		 * queue because it's gated by the VMOLR.RLPML.
3524		 */
3525		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3526	}
3527
3528	wr32(E1000_RLPML, max_frame_size);
3529}
3530
3531static inline void igb_set_vmolr(struct igb_adapter *adapter,
3532				 int vfn, bool aupe)
3533{
3534	struct e1000_hw *hw = &adapter->hw;
3535	u32 vmolr;
3536
3537	/* This register exists only on 82576 and newer so if we are older then
3538	 * we should exit and do nothing
3539	 */
3540	if (hw->mac.type < e1000_82576)
3541		return;
3542
3543	vmolr = rd32(E1000_VMOLR(vfn));
3544	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3545	if (aupe)
3546		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3547	else
3548		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3549
3550	/* clear all bits that might not be set */
3551	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3552
3553	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3554		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3555	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3556	 * multicast packets
3557	 */
3558	if (vfn <= adapter->vfs_allocated_count)
3559		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3560
3561	wr32(E1000_VMOLR(vfn), vmolr);
3562}
3563
3564/**
3565 *  igb_configure_rx_ring - Configure a receive ring after Reset
3566 *  @adapter: board private structure
3567 *  @ring: receive ring to be configured
3568 *
3569 *  Configure the Rx unit of the MAC after a reset.
3570 **/
3571void igb_configure_rx_ring(struct igb_adapter *adapter,
3572			   struct igb_ring *ring)
3573{
3574	struct e1000_hw *hw = &adapter->hw;
3575	u64 rdba = ring->dma;
3576	int reg_idx = ring->reg_idx;
3577	u32 srrctl = 0, rxdctl = 0;
3578
3579	/* disable the queue */
3580	wr32(E1000_RXDCTL(reg_idx), 0);
3581
3582	/* Set DMA base address registers */
3583	wr32(E1000_RDBAL(reg_idx),
3584	     rdba & 0x00000000ffffffffULL);
3585	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3586	wr32(E1000_RDLEN(reg_idx),
3587	     ring->count * sizeof(union e1000_adv_rx_desc));
3588
3589	/* initialize head and tail */
3590	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3591	wr32(E1000_RDH(reg_idx), 0);
3592	writel(0, ring->tail);
3593
3594	/* set descriptor configuration */
3595	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3596	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3597	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3598	if (hw->mac.type >= e1000_82580)
3599		srrctl |= E1000_SRRCTL_TIMESTAMP;
3600	/* Only set Drop Enable if we are supporting multiple queues */
3601	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3602		srrctl |= E1000_SRRCTL_DROP_EN;
3603
3604	wr32(E1000_SRRCTL(reg_idx), srrctl);
3605
3606	/* set filtering for VMDQ pools */
3607	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3608
3609	rxdctl |= IGB_RX_PTHRESH;
3610	rxdctl |= IGB_RX_HTHRESH << 8;
3611	rxdctl |= IGB_RX_WTHRESH << 16;
3612
3613	/* enable receive descriptor fetching */
3614	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3615	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3616}
3617
3618/**
3619 *  igb_configure_rx - Configure receive Unit after Reset
3620 *  @adapter: board private structure
3621 *
3622 *  Configure the Rx unit of the MAC after a reset.
3623 **/
3624static void igb_configure_rx(struct igb_adapter *adapter)
3625{
3626	int i;
3627
3628	/* set UTA to appropriate mode */
3629	igb_set_uta(adapter);
3630
3631	/* set the correct pool for the PF default MAC address in entry 0 */
3632	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3633			 adapter->vfs_allocated_count);
3634
3635	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3636	 * the Base and Length of the Rx Descriptor Ring
3637	 */
3638	for (i = 0; i < adapter->num_rx_queues; i++)
3639		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3640}
3641
3642/**
3643 *  igb_free_tx_resources - Free Tx Resources per Queue
3644 *  @tx_ring: Tx descriptor ring for a specific queue
3645 *
3646 *  Free all transmit software resources
3647 **/
3648void igb_free_tx_resources(struct igb_ring *tx_ring)
3649{
3650	igb_clean_tx_ring(tx_ring);
3651
3652	vfree(tx_ring->tx_buffer_info);
3653	tx_ring->tx_buffer_info = NULL;
3654
3655	/* if not set, then don't free */
3656	if (!tx_ring->desc)
3657		return;
3658
3659	dma_free_coherent(tx_ring->dev, tx_ring->size,
3660			  tx_ring->desc, tx_ring->dma);
3661
3662	tx_ring->desc = NULL;
3663}
3664
3665/**
3666 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3667 *  @adapter: board private structure
3668 *
3669 *  Free all transmit software resources
3670 **/
3671static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3672{
3673	int i;
3674
3675	for (i = 0; i < adapter->num_tx_queues; i++)
3676		igb_free_tx_resources(adapter->tx_ring[i]);
3677}
3678
3679void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3680				    struct igb_tx_buffer *tx_buffer)
3681{
3682	if (tx_buffer->skb) {
3683		dev_kfree_skb_any(tx_buffer->skb);
3684		if (dma_unmap_len(tx_buffer, len))
3685			dma_unmap_single(ring->dev,
3686					 dma_unmap_addr(tx_buffer, dma),
3687					 dma_unmap_len(tx_buffer, len),
3688					 DMA_TO_DEVICE);
3689	} else if (dma_unmap_len(tx_buffer, len)) {
3690		dma_unmap_page(ring->dev,
3691			       dma_unmap_addr(tx_buffer, dma),
3692			       dma_unmap_len(tx_buffer, len),
3693			       DMA_TO_DEVICE);
3694	}
3695	tx_buffer->next_to_watch = NULL;
3696	tx_buffer->skb = NULL;
3697	dma_unmap_len_set(tx_buffer, len, 0);
3698	/* buffer_info must be completely set up in the transmit path */
3699}
3700
3701/**
3702 *  igb_clean_tx_ring - Free Tx Buffers
3703 *  @tx_ring: ring to be cleaned
3704 **/
3705static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3706{
3707	struct igb_tx_buffer *buffer_info;
3708	unsigned long size;
3709	u16 i;
3710
3711	if (!tx_ring->tx_buffer_info)
3712		return;
3713	/* Free all the Tx ring sk_buffs */
3714
3715	for (i = 0; i < tx_ring->count; i++) {
3716		buffer_info = &tx_ring->tx_buffer_info[i];
3717		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3718	}
3719
3720	netdev_tx_reset_queue(txring_txq(tx_ring));
3721
3722	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3723	memset(tx_ring->tx_buffer_info, 0, size);
3724
3725	/* Zero out the descriptor ring */
3726	memset(tx_ring->desc, 0, tx_ring->size);
3727
3728	tx_ring->next_to_use = 0;
3729	tx_ring->next_to_clean = 0;
3730}
3731
3732/**
3733 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3734 *  @adapter: board private structure
3735 **/
3736static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3737{
3738	int i;
3739
3740	for (i = 0; i < adapter->num_tx_queues; i++)
3741		igb_clean_tx_ring(adapter->tx_ring[i]);
3742}
3743
3744/**
3745 *  igb_free_rx_resources - Free Rx Resources
3746 *  @rx_ring: ring to clean the resources from
3747 *
3748 *  Free all receive software resources
3749 **/
3750void igb_free_rx_resources(struct igb_ring *rx_ring)
3751{
3752	igb_clean_rx_ring(rx_ring);
3753
3754	vfree(rx_ring->rx_buffer_info);
3755	rx_ring->rx_buffer_info = NULL;
3756
3757	/* if not set, then don't free */
3758	if (!rx_ring->desc)
3759		return;
3760
3761	dma_free_coherent(rx_ring->dev, rx_ring->size,
3762			  rx_ring->desc, rx_ring->dma);
3763
3764	rx_ring->desc = NULL;
3765}
3766
3767/**
3768 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3769 *  @adapter: board private structure
3770 *
3771 *  Free all receive software resources
3772 **/
3773static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3774{
3775	int i;
3776
3777	for (i = 0; i < adapter->num_rx_queues; i++)
3778		igb_free_rx_resources(adapter->rx_ring[i]);
3779}
3780
3781/**
3782 *  igb_clean_rx_ring - Free Rx Buffers per Queue
3783 *  @rx_ring: ring to free buffers from
3784 **/
3785static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3786{
3787	unsigned long size;
3788	u16 i;
3789
3790	if (rx_ring->skb)
3791		dev_kfree_skb(rx_ring->skb);
3792	rx_ring->skb = NULL;
3793
3794	if (!rx_ring->rx_buffer_info)
3795		return;
3796
3797	/* Free all the Rx ring sk_buffs */
3798	for (i = 0; i < rx_ring->count; i++) {
3799		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3800
3801		if (!buffer_info->page)
3802			continue;
3803
3804		dma_unmap_page(rx_ring->dev,
3805			       buffer_info->dma,
3806			       PAGE_SIZE,
3807			       DMA_FROM_DEVICE);
3808		__free_page(buffer_info->page);
3809
3810		buffer_info->page = NULL;
3811	}
3812
3813	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3814	memset(rx_ring->rx_buffer_info, 0, size);
3815
3816	/* Zero out the descriptor ring */
3817	memset(rx_ring->desc, 0, rx_ring->size);
3818
3819	rx_ring->next_to_alloc = 0;
3820	rx_ring->next_to_clean = 0;
3821	rx_ring->next_to_use = 0;
3822}
3823
3824/**
3825 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3826 *  @adapter: board private structure
3827 **/
3828static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3829{
3830	int i;
3831
3832	for (i = 0; i < adapter->num_rx_queues; i++)
3833		igb_clean_rx_ring(adapter->rx_ring[i]);
3834}
3835
3836/**
3837 *  igb_set_mac - Change the Ethernet Address of the NIC
3838 *  @netdev: network interface device structure
3839 *  @p: pointer to an address structure
3840 *
3841 *  Returns 0 on success, negative on failure
3842 **/
3843static int igb_set_mac(struct net_device *netdev, void *p)
3844{
3845	struct igb_adapter *adapter = netdev_priv(netdev);
3846	struct e1000_hw *hw = &adapter->hw;
3847	struct sockaddr *addr = p;
3848
3849	if (!is_valid_ether_addr(addr->sa_data))
3850		return -EADDRNOTAVAIL;
3851
3852	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3853	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3854
3855	/* set the correct pool for the new PF MAC address in entry 0 */
3856	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3857			 adapter->vfs_allocated_count);
3858
3859	return 0;
3860}
3861
3862/**
3863 *  igb_write_mc_addr_list - write multicast addresses to MTA
3864 *  @netdev: network interface device structure
3865 *
3866 *  Writes multicast address list to the MTA hash table.
3867 *  Returns: -ENOMEM on failure
3868 *           0 on no addresses written
3869 *           X on writing X addresses to MTA
3870 **/
3871static int igb_write_mc_addr_list(struct net_device *netdev)
3872{
3873	struct igb_adapter *adapter = netdev_priv(netdev);
3874	struct e1000_hw *hw = &adapter->hw;
3875	struct netdev_hw_addr *ha;
3876	u8  *mta_list;
3877	int i;
3878
3879	if (netdev_mc_empty(netdev)) {
3880		/* nothing to program, so clear mc list */
3881		igb_update_mc_addr_list(hw, NULL, 0);
3882		igb_restore_vf_multicasts(adapter);
3883		return 0;
3884	}
3885
3886	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3887	if (!mta_list)
3888		return -ENOMEM;
3889
3890	/* The shared function expects a packed array of only addresses. */
3891	i = 0;
3892	netdev_for_each_mc_addr(ha, netdev)
3893		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3894
3895	igb_update_mc_addr_list(hw, mta_list, i);
3896	kfree(mta_list);
3897
3898	return netdev_mc_count(netdev);
3899}
3900
3901/**
3902 *  igb_write_uc_addr_list - write unicast addresses to RAR table
3903 *  @netdev: network interface device structure
3904 *
3905 *  Writes unicast address list to the RAR table.
3906 *  Returns: -ENOMEM on failure/insufficient address space
3907 *           0 on no addresses written
3908 *           X on writing X addresses to the RAR table
3909 **/
3910static int igb_write_uc_addr_list(struct net_device *netdev)
3911{
3912	struct igb_adapter *adapter = netdev_priv(netdev);
3913	struct e1000_hw *hw = &adapter->hw;
3914	unsigned int vfn = adapter->vfs_allocated_count;
3915	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3916	int count = 0;
3917
3918	/* return ENOMEM indicating insufficient memory for addresses */
3919	if (netdev_uc_count(netdev) > rar_entries)
3920		return -ENOMEM;
3921
3922	if (!netdev_uc_empty(netdev) && rar_entries) {
3923		struct netdev_hw_addr *ha;
3924
3925		netdev_for_each_uc_addr(ha, netdev) {
3926			if (!rar_entries)
3927				break;
3928			igb_rar_set_qsel(adapter, ha->addr,
3929					 rar_entries--,
3930					 vfn);
3931			count++;
3932		}
3933	}
3934	/* write the addresses in reverse order to avoid write combining */
3935	for (; rar_entries > 0 ; rar_entries--) {
3936		wr32(E1000_RAH(rar_entries), 0);
3937		wr32(E1000_RAL(rar_entries), 0);
3938	}
3939	wrfl();
3940
3941	return count;
3942}
3943
3944/**
3945 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3946 *  @netdev: network interface device structure
3947 *
3948 *  The set_rx_mode entry point is called whenever the unicast or multicast
3949 *  address lists or the network interface flags are updated.  This routine is
3950 *  responsible for configuring the hardware for proper unicast, multicast,
3951 *  promiscuous mode, and all-multi behavior.
3952 **/
3953static void igb_set_rx_mode(struct net_device *netdev)
3954{
3955	struct igb_adapter *adapter = netdev_priv(netdev);
3956	struct e1000_hw *hw = &adapter->hw;
3957	unsigned int vfn = adapter->vfs_allocated_count;
3958	u32 rctl, vmolr = 0;
3959	int count;
3960
3961	/* Check for Promiscuous and All Multicast modes */
3962	rctl = rd32(E1000_RCTL);
3963
3964	/* clear the effected bits */
3965	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3966
3967	if (netdev->flags & IFF_PROMISC) {
3968		/* retain VLAN HW filtering if in VT mode */
3969		if (adapter->vfs_allocated_count)
3970			rctl |= E1000_RCTL_VFE;
3971		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3972		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3973	} else {
3974		if (netdev->flags & IFF_ALLMULTI) {
3975			rctl |= E1000_RCTL_MPE;
3976			vmolr |= E1000_VMOLR_MPME;
3977		} else {
3978			/* Write addresses to the MTA, if the attempt fails
3979			 * then we should just turn on promiscuous mode so
3980			 * that we can at least receive multicast traffic
3981			 */
3982			count = igb_write_mc_addr_list(netdev);
3983			if (count < 0) {
3984				rctl |= E1000_RCTL_MPE;
3985				vmolr |= E1000_VMOLR_MPME;
3986			} else if (count) {
3987				vmolr |= E1000_VMOLR_ROMPE;
3988			}
3989		}
3990		/* Write addresses to available RAR registers, if there is not
3991		 * sufficient space to store all the addresses then enable
3992		 * unicast promiscuous mode
3993		 */
3994		count = igb_write_uc_addr_list(netdev);
3995		if (count < 0) {
3996			rctl |= E1000_RCTL_UPE;
3997			vmolr |= E1000_VMOLR_ROPE;
3998		}
3999		rctl |= E1000_RCTL_VFE;
4000	}
4001	wr32(E1000_RCTL, rctl);
4002
4003	/* In order to support SR-IOV and eventually VMDq it is necessary to set
4004	 * the VMOLR to enable the appropriate modes.  Without this workaround
4005	 * we will have issues with VLAN tag stripping not being done for frames
4006	 * that are only arriving because we are the default pool
4007	 */
4008	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4009		return;
4010
4011	vmolr |= rd32(E1000_VMOLR(vfn)) &
4012		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4013	wr32(E1000_VMOLR(vfn), vmolr);
4014	igb_restore_vf_multicasts(adapter);
4015}
4016
4017static void igb_check_wvbr(struct igb_adapter *adapter)
4018{
4019	struct e1000_hw *hw = &adapter->hw;
4020	u32 wvbr = 0;
4021
4022	switch (hw->mac.type) {
4023	case e1000_82576:
4024	case e1000_i350:
4025		if (!(wvbr = rd32(E1000_WVBR)))
4026			return;
4027		break;
4028	default:
4029		break;
4030	}
4031
4032	adapter->wvbr |= wvbr;
4033}
4034
4035#define IGB_STAGGERED_QUEUE_OFFSET 8
4036
4037static void igb_spoof_check(struct igb_adapter *adapter)
4038{
4039	int j;
4040
4041	if (!adapter->wvbr)
4042		return;
4043
4044	for(j = 0; j < adapter->vfs_allocated_count; j++) {
4045		if (adapter->wvbr & (1 << j) ||
4046		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4047			dev_warn(&adapter->pdev->dev,
4048				"Spoof event(s) detected on VF %d\n", j);
4049			adapter->wvbr &=
4050				~((1 << j) |
4051				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4052		}
4053	}
4054}
4055
4056/* Need to wait a few seconds after link up to get diagnostic information from
4057 * the phy
4058 */
4059static void igb_update_phy_info(unsigned long data)
4060{
4061	struct igb_adapter *adapter = (struct igb_adapter *) data;
4062	igb_get_phy_info(&adapter->hw);
4063}
4064
4065/**
4066 *  igb_has_link - check shared code for link and determine up/down
4067 *  @adapter: pointer to driver private info
4068 **/
4069bool igb_has_link(struct igb_adapter *adapter)
4070{
4071	struct e1000_hw *hw = &adapter->hw;
4072	bool link_active = false;
4073
4074	/* get_link_status is set on LSC (link status) interrupt or
4075	 * rx sequence error interrupt.  get_link_status will stay
4076	 * false until the e1000_check_for_link establishes link
4077	 * for copper adapters ONLY
4078	 */
4079	switch (hw->phy.media_type) {
4080	case e1000_media_type_copper:
4081		if (!hw->mac.get_link_status)
4082			return true;
4083	case e1000_media_type_internal_serdes:
4084		hw->mac.ops.check_for_link(hw);
4085		link_active = !hw->mac.get_link_status;
4086		break;
4087	default:
4088	case e1000_media_type_unknown:
4089		break;
4090	}
4091
4092	if (((hw->mac.type == e1000_i210) ||
4093	     (hw->mac.type == e1000_i211)) &&
4094	     (hw->phy.id == I210_I_PHY_ID)) {
4095		if (!netif_carrier_ok(adapter->netdev)) {
4096			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4097		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4098			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4099			adapter->link_check_timeout = jiffies;
4100		}
4101	}
4102
4103	return link_active;
4104}
4105
4106static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4107{
4108	bool ret = false;
4109	u32 ctrl_ext, thstat;
4110
4111	/* check for thermal sensor event on i350 copper only */
4112	if (hw->mac.type == e1000_i350) {
4113		thstat = rd32(E1000_THSTAT);
4114		ctrl_ext = rd32(E1000_CTRL_EXT);
4115
4116		if ((hw->phy.media_type == e1000_media_type_copper) &&
4117		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4118			ret = !!(thstat & event);
4119	}
4120
4121	return ret;
4122}
4123
4124/**
4125 *  igb_watchdog - Timer Call-back
4126 *  @data: pointer to adapter cast into an unsigned long
4127 **/
4128static void igb_watchdog(unsigned long data)
4129{
4130	struct igb_adapter *adapter = (struct igb_adapter *)data;
4131	/* Do the rest outside of interrupt context */
4132	schedule_work(&adapter->watchdog_task);
4133}
4134
4135static void igb_watchdog_task(struct work_struct *work)
4136{
4137	struct igb_adapter *adapter = container_of(work,
4138						   struct igb_adapter,
4139						   watchdog_task);
4140	struct e1000_hw *hw = &adapter->hw;
4141	struct e1000_phy_info *phy = &hw->phy;
4142	struct net_device *netdev = adapter->netdev;
4143	u32 link;
4144	int i;
4145	u32 connsw;
4146
4147	link = igb_has_link(adapter);
4148
4149	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4150		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4151			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4152		else
4153			link = false;
4154	}
4155
4156	/* Force link down if we have fiber to swap to */
4157	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4158		if (hw->phy.media_type == e1000_media_type_copper) {
4159			connsw = rd32(E1000_CONNSW);
4160			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4161				link = 0;
4162		}
4163	}
4164	if (link) {
4165		/* Perform a reset if the media type changed. */
4166		if (hw->dev_spec._82575.media_changed) {
4167			hw->dev_spec._82575.media_changed = false;
4168			adapter->flags |= IGB_FLAG_MEDIA_RESET;
4169			igb_reset(adapter);
4170		}
4171		/* Cancel scheduled suspend requests. */
4172		pm_runtime_resume(netdev->dev.parent);
4173
4174		if (!netif_carrier_ok(netdev)) {
4175			u32 ctrl;
4176			hw->mac.ops.get_speed_and_duplex(hw,
4177							 &adapter->link_speed,
4178							 &adapter->link_duplex);
4179
4180			ctrl = rd32(E1000_CTRL);
4181			/* Links status message must follow this format */
4182			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
4183			       "Duplex, Flow Control: %s\n",
4184			       netdev->name,
4185			       adapter->link_speed,
4186			       adapter->link_duplex == FULL_DUPLEX ?
4187			       "Full" : "Half",
4188			       (ctrl & E1000_CTRL_TFCE) &&
4189			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4190			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4191			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4192
4193			/* disable EEE if enabled */
4194			if ((adapter->flags & IGB_FLAG_EEE) &&
4195				(adapter->link_duplex == HALF_DUPLEX)) {
4196				dev_info(&adapter->pdev->dev,
4197				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4198				adapter->hw.dev_spec._82575.eee_disable = true;
4199				adapter->flags &= ~IGB_FLAG_EEE;
4200			}
4201
4202			/* check if SmartSpeed worked */
4203			igb_check_downshift(hw);
4204			if (phy->speed_downgraded)
4205				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4206
4207			/* check for thermal sensor event */
4208			if (igb_thermal_sensor_event(hw,
4209			    E1000_THSTAT_LINK_THROTTLE)) {
4210				netdev_info(netdev, "The network adapter link "
4211					    "speed was downshifted because it "
4212					    "overheated\n");
4213			}
4214
4215			/* adjust timeout factor according to speed/duplex */
4216			adapter->tx_timeout_factor = 1;
4217			switch (adapter->link_speed) {
4218			case SPEED_10:
4219				adapter->tx_timeout_factor = 14;
4220				break;
4221			case SPEED_100:
4222				/* maybe add some timeout factor ? */
4223				break;
4224			}
4225
4226			netif_carrier_on(netdev);
4227
4228			igb_ping_all_vfs(adapter);
4229			igb_check_vf_rate_limit(adapter);
4230
4231			/* link state has changed, schedule phy info update */
4232			if (!test_bit(__IGB_DOWN, &adapter->state))
4233				mod_timer(&adapter->phy_info_timer,
4234					  round_jiffies(jiffies + 2 * HZ));
4235		}
4236	} else {
4237		if (netif_carrier_ok(netdev)) {
4238			adapter->link_speed = 0;
4239			adapter->link_duplex = 0;
4240
4241			/* check for thermal sensor event */
4242			if (igb_thermal_sensor_event(hw,
4243			    E1000_THSTAT_PWR_DOWN)) {
4244				netdev_err(netdev, "The network adapter was "
4245					   "stopped because it overheated\n");
4246			}
4247
4248			/* Links status message must follow this format */
4249			printk(KERN_INFO "igb: %s NIC Link is Down\n",
4250			       netdev->name);
4251			netif_carrier_off(netdev);
4252
4253			igb_ping_all_vfs(adapter);
4254
4255			/* link state has changed, schedule phy info update */
4256			if (!test_bit(__IGB_DOWN, &adapter->state))
4257				mod_timer(&adapter->phy_info_timer,
4258					  round_jiffies(jiffies + 2 * HZ));
4259
4260			/* link is down, time to check for alternate media */
4261			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4262				igb_check_swap_media(adapter);
4263				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4264					schedule_work(&adapter->reset_task);
4265					/* return immediately */
4266					return;
4267				}
4268			}
4269			pm_schedule_suspend(netdev->dev.parent,
4270					    MSEC_PER_SEC * 5);
4271
4272		/* also check for alternate media here */
4273		} else if (!netif_carrier_ok(netdev) &&
4274			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4275			igb_check_swap_media(adapter);
4276			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4277				schedule_work(&adapter->reset_task);
4278				/* return immediately */
4279				return;
4280			}
4281		}
4282	}
4283
4284	spin_lock(&adapter->stats64_lock);
4285	igb_update_stats(adapter, &adapter->stats64);
4286	spin_unlock(&adapter->stats64_lock);
4287
4288	for (i = 0; i < adapter->num_tx_queues; i++) {
4289		struct igb_ring *tx_ring = adapter->tx_ring[i];
4290		if (!netif_carrier_ok(netdev)) {
4291			/* We've lost link, so the controller stops DMA,
4292			 * but we've got queued Tx work that's never going
4293			 * to get done, so reset controller to flush Tx.
4294			 * (Do the reset outside of interrupt context).
4295			 */
4296			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4297				adapter->tx_timeout_count++;
4298				schedule_work(&adapter->reset_task);
4299				/* return immediately since reset is imminent */
4300				return;
4301			}
4302		}
4303
4304		/* Force detection of hung controller every watchdog period */
4305		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4306	}
4307
4308	/* Cause software interrupt to ensure Rx ring is cleaned */
4309	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4310		u32 eics = 0;
4311		for (i = 0; i < adapter->num_q_vectors; i++)
4312			eics |= adapter->q_vector[i]->eims_value;
4313		wr32(E1000_EICS, eics);
4314	} else {
4315		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4316	}
4317
4318	igb_spoof_check(adapter);
4319	igb_ptp_rx_hang(adapter);
4320
4321	/* Reset the timer */
4322	if (!test_bit(__IGB_DOWN, &adapter->state)) {
4323		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4324			mod_timer(&adapter->watchdog_timer,
4325				  round_jiffies(jiffies +  HZ));
4326		else
4327			mod_timer(&adapter->watchdog_timer,
4328				  round_jiffies(jiffies + 2 * HZ));
4329	}
4330}
4331
4332enum latency_range {
4333	lowest_latency = 0,
4334	low_latency = 1,
4335	bulk_latency = 2,
4336	latency_invalid = 255
4337};
4338
4339/**
4340 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4341 *  @q_vector: pointer to q_vector
4342 *
4343 *  Stores a new ITR value based on strictly on packet size.  This
4344 *  algorithm is less sophisticated than that used in igb_update_itr,
4345 *  due to the difficulty of synchronizing statistics across multiple
4346 *  receive rings.  The divisors and thresholds used by this function
4347 *  were determined based on theoretical maximum wire speed and testing
4348 *  data, in order to minimize response time while increasing bulk
4349 *  throughput.
4350 *  This functionality is controlled by the InterruptThrottleRate module
4351 *  parameter (see igb_param.c)
4352 *  NOTE:  This function is called only when operating in a multiqueue
4353 *         receive environment.
4354 **/
4355static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4356{
4357	int new_val = q_vector->itr_val;
4358	int avg_wire_size = 0;
4359	struct igb_adapter *adapter = q_vector->adapter;
4360	unsigned int packets;
4361
4362	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4363	 * ints/sec - ITR timer value of 120 ticks.
4364	 */
4365	if (adapter->link_speed != SPEED_1000) {
4366		new_val = IGB_4K_ITR;
4367		goto set_itr_val;
4368	}
4369
4370	packets = q_vector->rx.total_packets;
4371	if (packets)
4372		avg_wire_size = q_vector->rx.total_bytes / packets;
4373
4374	packets = q_vector->tx.total_packets;
4375	if (packets)
4376		avg_wire_size = max_t(u32, avg_wire_size,
4377				      q_vector->tx.total_bytes / packets);
4378
4379	/* if avg_wire_size isn't set no work was done */
4380	if (!avg_wire_size)
4381		goto clear_counts;
4382
4383	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4384	avg_wire_size += 24;
4385
4386	/* Don't starve jumbo frames */
4387	avg_wire_size = min(avg_wire_size, 3000);
4388
4389	/* Give a little boost to mid-size frames */
4390	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4391		new_val = avg_wire_size / 3;
4392	else
4393		new_val = avg_wire_size / 2;
4394
4395	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4396	if (new_val < IGB_20K_ITR &&
4397	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4398	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4399		new_val = IGB_20K_ITR;
4400
4401set_itr_val:
4402	if (new_val != q_vector->itr_val) {
4403		q_vector->itr_val = new_val;
4404		q_vector->set_itr = 1;
4405	}
4406clear_counts:
4407	q_vector->rx.total_bytes = 0;
4408	q_vector->rx.total_packets = 0;
4409	q_vector->tx.total_bytes = 0;
4410	q_vector->tx.total_packets = 0;
4411}
4412
4413/**
4414 *  igb_update_itr - update the dynamic ITR value based on statistics
4415 *  @q_vector: pointer to q_vector
4416 *  @ring_container: ring info to update the itr for
4417 *
4418 *  Stores a new ITR value based on packets and byte
4419 *  counts during the last interrupt.  The advantage of per interrupt
4420 *  computation is faster updates and more accurate ITR for the current
4421 *  traffic pattern.  Constants in this function were computed
4422 *  based on theoretical maximum wire speed and thresholds were set based
4423 *  on testing data as well as attempting to minimize response time
4424 *  while increasing bulk throughput.
4425 *  this functionality is controlled by the InterruptThrottleRate module
4426 *  parameter (see igb_param.c)
4427 *  NOTE:  These calculations are only valid when operating in a single-
4428 *         queue environment.
4429 **/
4430static void igb_update_itr(struct igb_q_vector *q_vector,
4431			   struct igb_ring_container *ring_container)
4432{
4433	unsigned int packets = ring_container->total_packets;
4434	unsigned int bytes = ring_container->total_bytes;
4435	u8 itrval = ring_container->itr;
4436
4437	/* no packets, exit with status unchanged */
4438	if (packets == 0)
4439		return;
4440
4441	switch (itrval) {
4442	case lowest_latency:
4443		/* handle TSO and jumbo frames */
4444		if (bytes/packets > 8000)
4445			itrval = bulk_latency;
4446		else if ((packets < 5) && (bytes > 512))
4447			itrval = low_latency;
4448		break;
4449	case low_latency:  /* 50 usec aka 20000 ints/s */
4450		if (bytes > 10000) {
4451			/* this if handles the TSO accounting */
4452			if (bytes/packets > 8000) {
4453				itrval = bulk_latency;
4454			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4455				itrval = bulk_latency;
4456			} else if ((packets > 35)) {
4457				itrval = lowest_latency;
4458			}
4459		} else if (bytes/packets > 2000) {
4460			itrval = bulk_latency;
4461		} else if (packets <= 2 && bytes < 512) {
4462			itrval = lowest_latency;
4463		}
4464		break;
4465	case bulk_latency: /* 250 usec aka 4000 ints/s */
4466		if (bytes > 25000) {
4467			if (packets > 35)
4468				itrval = low_latency;
4469		} else if (bytes < 1500) {
4470			itrval = low_latency;
4471		}
4472		break;
4473	}
4474
4475	/* clear work counters since we have the values we need */
4476	ring_container->total_bytes = 0;
4477	ring_container->total_packets = 0;
4478
4479	/* write updated itr to ring container */
4480	ring_container->itr = itrval;
4481}
4482
4483static void igb_set_itr(struct igb_q_vector *q_vector)
4484{
4485	struct igb_adapter *adapter = q_vector->adapter;
4486	u32 new_itr = q_vector->itr_val;
4487	u8 current_itr = 0;
4488
4489	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4490	if (adapter->link_speed != SPEED_1000) {
4491		current_itr = 0;
4492		new_itr = IGB_4K_ITR;
4493		goto set_itr_now;
4494	}
4495
4496	igb_update_itr(q_vector, &q_vector->tx);
4497	igb_update_itr(q_vector, &q_vector->rx);
4498
4499	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4500
4501	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4502	if (current_itr == lowest_latency &&
4503	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4504	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4505		current_itr = low_latency;
4506
4507	switch (current_itr) {
4508	/* counts and packets in update_itr are dependent on these numbers */
4509	case lowest_latency:
4510		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4511		break;
4512	case low_latency:
4513		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4514		break;
4515	case bulk_latency:
4516		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4517		break;
4518	default:
4519		break;
4520	}
4521
4522set_itr_now:
4523	if (new_itr != q_vector->itr_val) {
4524		/* this attempts to bias the interrupt rate towards Bulk
4525		 * by adding intermediate steps when interrupt rate is
4526		 * increasing
4527		 */
4528		new_itr = new_itr > q_vector->itr_val ?
4529			  max((new_itr * q_vector->itr_val) /
4530			  (new_itr + (q_vector->itr_val >> 2)),
4531			  new_itr) : new_itr;
4532		/* Don't write the value here; it resets the adapter's
4533		 * internal timer, and causes us to delay far longer than
4534		 * we should between interrupts.  Instead, we write the ITR
4535		 * value at the beginning of the next interrupt so the timing
4536		 * ends up being correct.
4537		 */
4538		q_vector->itr_val = new_itr;
4539		q_vector->set_itr = 1;
4540	}
4541}
4542
4543static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4544			    u32 type_tucmd, u32 mss_l4len_idx)
4545{
4546	struct e1000_adv_tx_context_desc *context_desc;
4547	u16 i = tx_ring->next_to_use;
4548
4549	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4550
4551	i++;
4552	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4553
4554	/* set bits to identify this as an advanced context descriptor */
4555	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4556
4557	/* For 82575, context index must be unique per ring. */
4558	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4559		mss_l4len_idx |= tx_ring->reg_idx << 4;
4560
4561	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4562	context_desc->seqnum_seed	= 0;
4563	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4564	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4565}
4566
4567static int igb_tso(struct igb_ring *tx_ring,
4568		   struct igb_tx_buffer *first,
4569		   u8 *hdr_len)
4570{
4571	struct sk_buff *skb = first->skb;
4572	u32 vlan_macip_lens, type_tucmd;
4573	u32 mss_l4len_idx, l4len;
4574
4575	if (skb->ip_summed != CHECKSUM_PARTIAL)
4576		return 0;
4577
4578	if (!skb_is_gso(skb))
4579		return 0;
4580
4581	if (skb_header_cloned(skb)) {
4582		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4583		if (err)
4584			return err;
4585	}
4586
4587	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4588	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4589
4590	if (first->protocol == __constant_htons(ETH_P_IP)) {
4591		struct iphdr *iph = ip_hdr(skb);
4592		iph->tot_len = 0;
4593		iph->check = 0;
4594		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4595							 iph->daddr, 0,
4596							 IPPROTO_TCP,
4597							 0);
4598		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4599		first->tx_flags |= IGB_TX_FLAGS_TSO |
4600				   IGB_TX_FLAGS_CSUM |
4601				   IGB_TX_FLAGS_IPV4;
4602	} else if (skb_is_gso_v6(skb)) {
4603		ipv6_hdr(skb)->payload_len = 0;
4604		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4605						       &ipv6_hdr(skb)->daddr,
4606						       0, IPPROTO_TCP, 0);
4607		first->tx_flags |= IGB_TX_FLAGS_TSO |
4608				   IGB_TX_FLAGS_CSUM;
4609	}
4610
4611	/* compute header lengths */
4612	l4len = tcp_hdrlen(skb);
4613	*hdr_len = skb_transport_offset(skb) + l4len;
4614
4615	/* update gso size and bytecount with header size */
4616	first->gso_segs = skb_shinfo(skb)->gso_segs;
4617	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4618
4619	/* MSS L4LEN IDX */
4620	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4621	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4622
4623	/* VLAN MACLEN IPLEN */
4624	vlan_macip_lens = skb_network_header_len(skb);
4625	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4626	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4627
4628	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4629
4630	return 1;
4631}
4632
4633static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4634{
4635	struct sk_buff *skb = first->skb;
4636	u32 vlan_macip_lens = 0;
4637	u32 mss_l4len_idx = 0;
4638	u32 type_tucmd = 0;
4639
4640	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4641		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4642			return;
4643	} else {
4644		u8 l4_hdr = 0;
4645		switch (first->protocol) {
4646		case __constant_htons(ETH_P_IP):
4647			vlan_macip_lens |= skb_network_header_len(skb);
4648			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4649			l4_hdr = ip_hdr(skb)->protocol;
4650			break;
4651		case __constant_htons(ETH_P_IPV6):
4652			vlan_macip_lens |= skb_network_header_len(skb);
4653			l4_hdr = ipv6_hdr(skb)->nexthdr;
4654			break;
4655		default:
4656			if (unlikely(net_ratelimit())) {
4657				dev_warn(tx_ring->dev,
4658					 "partial checksum but proto=%x!\n",
4659					 first->protocol);
4660			}
4661			break;
4662		}
4663
4664		switch (l4_hdr) {
4665		case IPPROTO_TCP:
4666			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4667			mss_l4len_idx = tcp_hdrlen(skb) <<
4668					E1000_ADVTXD_L4LEN_SHIFT;
4669			break;
4670		case IPPROTO_SCTP:
4671			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4672			mss_l4len_idx = sizeof(struct sctphdr) <<
4673					E1000_ADVTXD_L4LEN_SHIFT;
4674			break;
4675		case IPPROTO_UDP:
4676			mss_l4len_idx = sizeof(struct udphdr) <<
4677					E1000_ADVTXD_L4LEN_SHIFT;
4678			break;
4679		default:
4680			if (unlikely(net_ratelimit())) {
4681				dev_warn(tx_ring->dev,
4682					 "partial checksum but l4 proto=%x!\n",
4683					 l4_hdr);
4684			}
4685			break;
4686		}
4687
4688		/* update TX checksum flag */
4689		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4690	}
4691
4692	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4693	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4694
4695	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4696}
4697
4698#define IGB_SET_FLAG(_input, _flag, _result) \
4699	((_flag <= _result) ? \
4700	 ((u32)(_input & _flag) * (_result / _flag)) : \
4701	 ((u32)(_input & _flag) / (_flag / _result)))
4702
4703static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4704{
4705	/* set type for advanced descriptor with frame checksum insertion */
4706	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4707		       E1000_ADVTXD_DCMD_DEXT |
4708		       E1000_ADVTXD_DCMD_IFCS;
4709
4710	/* set HW vlan bit if vlan is present */
4711	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4712				 (E1000_ADVTXD_DCMD_VLE));
4713
4714	/* set segmentation bits for TSO */
4715	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4716				 (E1000_ADVTXD_DCMD_TSE));
4717
4718	/* set timestamp bit if present */
4719	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4720				 (E1000_ADVTXD_MAC_TSTAMP));
4721
4722	/* insert frame checksum */
4723	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4724
4725	return cmd_type;
4726}
4727
4728static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4729				 union e1000_adv_tx_desc *tx_desc,
4730				 u32 tx_flags, unsigned int paylen)
4731{
4732	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4733
4734	/* 82575 requires a unique index per ring */
4735	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4736		olinfo_status |= tx_ring->reg_idx << 4;
4737
4738	/* insert L4 checksum */
4739	olinfo_status |= IGB_SET_FLAG(tx_flags,
4740				      IGB_TX_FLAGS_CSUM,
4741				      (E1000_TXD_POPTS_TXSM << 8));
4742
4743	/* insert IPv4 checksum */
4744	olinfo_status |= IGB_SET_FLAG(tx_flags,
4745				      IGB_TX_FLAGS_IPV4,
4746				      (E1000_TXD_POPTS_IXSM << 8));
4747
4748	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4749}
4750
4751static void igb_tx_map(struct igb_ring *tx_ring,
4752		       struct igb_tx_buffer *first,
4753		       const u8 hdr_len)
4754{
4755	struct sk_buff *skb = first->skb;
4756	struct igb_tx_buffer *tx_buffer;
4757	union e1000_adv_tx_desc *tx_desc;
4758	struct skb_frag_struct *frag;
4759	dma_addr_t dma;
4760	unsigned int data_len, size;
4761	u32 tx_flags = first->tx_flags;
4762	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4763	u16 i = tx_ring->next_to_use;
4764
4765	tx_desc = IGB_TX_DESC(tx_ring, i);
4766
4767	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4768
4769	size = skb_headlen(skb);
4770	data_len = skb->data_len;
4771
4772	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4773
4774	tx_buffer = first;
4775
4776	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4777		if (dma_mapping_error(tx_ring->dev, dma))
4778			goto dma_error;
4779
4780		/* record length, and DMA address */
4781		dma_unmap_len_set(tx_buffer, len, size);
4782		dma_unmap_addr_set(tx_buffer, dma, dma);
4783
4784		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4785
4786		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4787			tx_desc->read.cmd_type_len =
4788				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4789
4790			i++;
4791			tx_desc++;
4792			if (i == tx_ring->count) {
4793				tx_desc = IGB_TX_DESC(tx_ring, 0);
4794				i = 0;
4795			}
4796			tx_desc->read.olinfo_status = 0;
4797
4798			dma += IGB_MAX_DATA_PER_TXD;
4799			size -= IGB_MAX_DATA_PER_TXD;
4800
4801			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4802		}
4803
4804		if (likely(!data_len))
4805			break;
4806
4807		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4808
4809		i++;
4810		tx_desc++;
4811		if (i == tx_ring->count) {
4812			tx_desc = IGB_TX_DESC(tx_ring, 0);
4813			i = 0;
4814		}
4815		tx_desc->read.olinfo_status = 0;
4816
4817		size = skb_frag_size(frag);
4818		data_len -= size;
4819
4820		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4821				       size, DMA_TO_DEVICE);
4822
4823		tx_buffer = &tx_ring->tx_buffer_info[i];
4824	}
4825
4826	/* write last descriptor with RS and EOP bits */
4827	cmd_type |= size | IGB_TXD_DCMD;
4828	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4829
4830	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4831
4832	/* set the timestamp */
4833	first->time_stamp = jiffies;
4834
4835	/* Force memory writes to complete before letting h/w know there
4836	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4837	 * memory model archs, such as IA-64).
4838	 *
4839	 * We also need this memory barrier to make certain all of the
4840	 * status bits have been updated before next_to_watch is written.
4841	 */
4842	wmb();
4843
4844	/* set next_to_watch value indicating a packet is present */
4845	first->next_to_watch = tx_desc;
4846
4847	i++;
4848	if (i == tx_ring->count)
4849		i = 0;
4850
4851	tx_ring->next_to_use = i;
4852
4853	writel(i, tx_ring->tail);
4854
4855	/* we need this if more than one processor can write to our tail
4856	 * at a time, it synchronizes IO on IA64/Altix systems
4857	 */
4858	mmiowb();
4859
4860	return;
4861
4862dma_error:
4863	dev_err(tx_ring->dev, "TX DMA map failed\n");
4864
4865	/* clear dma mappings for failed tx_buffer_info map */
4866	for (;;) {
4867		tx_buffer = &tx_ring->tx_buffer_info[i];
4868		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4869		if (tx_buffer == first)
4870			break;
4871		if (i == 0)
4872			i = tx_ring->count;
4873		i--;
4874	}
4875
4876	tx_ring->next_to_use = i;
4877}
4878
4879static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4880{
4881	struct net_device *netdev = tx_ring->netdev;
4882
4883	netif_stop_subqueue(netdev, tx_ring->queue_index);
4884
4885	/* Herbert's original patch had:
4886	 *  smp_mb__after_netif_stop_queue();
4887	 * but since that doesn't exist yet, just open code it.
4888	 */
4889	smp_mb();
4890
4891	/* We need to check again in a case another CPU has just
4892	 * made room available.
4893	 */
4894	if (igb_desc_unused(tx_ring) < size)
4895		return -EBUSY;
4896
4897	/* A reprieve! */
4898	netif_wake_subqueue(netdev, tx_ring->queue_index);
4899
4900	u64_stats_update_begin(&tx_ring->tx_syncp2);
4901	tx_ring->tx_stats.restart_queue2++;
4902	u64_stats_update_end(&tx_ring->tx_syncp2);
4903
4904	return 0;
4905}
4906
4907static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4908{
4909	if (igb_desc_unused(tx_ring) >= size)
4910		return 0;
4911	return __igb_maybe_stop_tx(tx_ring, size);
4912}
4913
4914netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4915				struct igb_ring *tx_ring)
4916{
4917	struct igb_tx_buffer *first;
4918	int tso;
4919	u32 tx_flags = 0;
4920	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4921	__be16 protocol = vlan_get_protocol(skb);
4922	u8 hdr_len = 0;
4923
4924	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4925	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4926	 *       + 2 desc gap to keep tail from touching head,
4927	 *       + 1 desc for context descriptor,
4928	 * otherwise try next time
4929	 */
4930	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4931		unsigned short f;
4932		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4933			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4934	} else {
4935		count += skb_shinfo(skb)->nr_frags;
4936	}
4937
4938	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4939		/* this is a hard error */
4940		return NETDEV_TX_BUSY;
4941	}
4942
4943	/* record the location of the first descriptor for this packet */
4944	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4945	first->skb = skb;
4946	first->bytecount = skb->len;
4947	first->gso_segs = 1;
4948
4949	skb_tx_timestamp(skb);
4950
4951	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4952		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4953
4954		if (!(adapter->ptp_tx_skb)) {
4955			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4956			tx_flags |= IGB_TX_FLAGS_TSTAMP;
4957
4958			adapter->ptp_tx_skb = skb_get(skb);
4959			adapter->ptp_tx_start = jiffies;
4960			if (adapter->hw.mac.type == e1000_82576)
4961				schedule_work(&adapter->ptp_tx_work);
4962		}
4963	}
4964
4965	if (vlan_tx_tag_present(skb)) {
4966		tx_flags |= IGB_TX_FLAGS_VLAN;
4967		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4968	}
4969
4970	/* record initial flags and protocol */
4971	first->tx_flags = tx_flags;
4972	first->protocol = protocol;
4973
4974	tso = igb_tso(tx_ring, first, &hdr_len);
4975	if (tso < 0)
4976		goto out_drop;
4977	else if (!tso)
4978		igb_tx_csum(tx_ring, first);
4979
4980	igb_tx_map(tx_ring, first, hdr_len);
4981
4982	/* Make sure there is space in the ring for the next send. */
4983	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4984
4985	return NETDEV_TX_OK;
4986
4987out_drop:
4988	igb_unmap_and_free_tx_resource(tx_ring, first);
4989
4990	return NETDEV_TX_OK;
4991}
4992
4993static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4994						    struct sk_buff *skb)
4995{
4996	unsigned int r_idx = skb->queue_mapping;
4997
4998	if (r_idx >= adapter->num_tx_queues)
4999		r_idx = r_idx % adapter->num_tx_queues;
5000
5001	return adapter->tx_ring[r_idx];
5002}
5003
5004static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5005				  struct net_device *netdev)
5006{
5007	struct igb_adapter *adapter = netdev_priv(netdev);
5008
5009	if (test_bit(__IGB_DOWN, &adapter->state)) {
5010		dev_kfree_skb_any(skb);
5011		return NETDEV_TX_OK;
5012	}
5013
5014	if (skb->len <= 0) {
5015		dev_kfree_skb_any(skb);
5016		return NETDEV_TX_OK;
5017	}
5018
5019	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5020	 * in order to meet this minimum size requirement.
5021	 */
5022	if (unlikely(skb->len < 17)) {
5023		if (skb_pad(skb, 17 - skb->len))
5024			return NETDEV_TX_OK;
5025		skb->len = 17;
5026		skb_set_tail_pointer(skb, 17);
5027	}
5028
5029	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5030}
5031
5032/**
5033 *  igb_tx_timeout - Respond to a Tx Hang
5034 *  @netdev: network interface device structure
5035 **/
5036static void igb_tx_timeout(struct net_device *netdev)
5037{
5038	struct igb_adapter *adapter = netdev_priv(netdev);
5039	struct e1000_hw *hw = &adapter->hw;
5040
5041	/* Do the reset outside of interrupt context */
5042	adapter->tx_timeout_count++;
5043
5044	if (hw->mac.type >= e1000_82580)
5045		hw->dev_spec._82575.global_device_reset = true;
5046
5047	schedule_work(&adapter->reset_task);
5048	wr32(E1000_EICS,
5049	     (adapter->eims_enable_mask & ~adapter->eims_other));
5050}
5051
5052static void igb_reset_task(struct work_struct *work)
5053{
5054	struct igb_adapter *adapter;
5055	adapter = container_of(work, struct igb_adapter, reset_task);
5056
5057	igb_dump(adapter);
5058	netdev_err(adapter->netdev, "Reset adapter\n");
5059	igb_reinit_locked(adapter);
5060}
5061
5062/**
5063 *  igb_get_stats64 - Get System Network Statistics
5064 *  @netdev: network interface device structure
5065 *  @stats: rtnl_link_stats64 pointer
5066 **/
5067static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5068						struct rtnl_link_stats64 *stats)
5069{
5070	struct igb_adapter *adapter = netdev_priv(netdev);
5071
5072	spin_lock(&adapter->stats64_lock);
5073	igb_update_stats(adapter, &adapter->stats64);
5074	memcpy(stats, &adapter->stats64, sizeof(*stats));
5075	spin_unlock(&adapter->stats64_lock);
5076
5077	return stats;
5078}
5079
5080/**
5081 *  igb_change_mtu - Change the Maximum Transfer Unit
5082 *  @netdev: network interface device structure
5083 *  @new_mtu: new value for maximum frame size
5084 *
5085 *  Returns 0 on success, negative on failure
5086 **/
5087static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5088{
5089	struct igb_adapter *adapter = netdev_priv(netdev);
5090	struct pci_dev *pdev = adapter->pdev;
5091	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5092
5093	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5094		dev_err(&pdev->dev, "Invalid MTU setting\n");
5095		return -EINVAL;
5096	}
5097
5098#define MAX_STD_JUMBO_FRAME_SIZE 9238
5099	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5100		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5101		return -EINVAL;
5102	}
5103
5104	/* adjust max frame to be at least the size of a standard frame */
5105	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5106		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5107
5108	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5109		msleep(1);
5110
5111	/* igb_down has a dependency on max_frame_size */
5112	adapter->max_frame_size = max_frame;
5113
5114	if (netif_running(netdev))
5115		igb_down(adapter);
5116
5117	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5118		 netdev->mtu, new_mtu);
5119	netdev->mtu = new_mtu;
5120
5121	if (netif_running(netdev))
5122		igb_up(adapter);
5123	else
5124		igb_reset(adapter);
5125
5126	clear_bit(__IGB_RESETTING, &adapter->state);
5127
5128	return 0;
5129}
5130
5131/**
5132 *  igb_update_stats - Update the board statistics counters
5133 *  @adapter: board private structure
5134 **/
5135void igb_update_stats(struct igb_adapter *adapter,
5136		      struct rtnl_link_stats64 *net_stats)
5137{
5138	struct e1000_hw *hw = &adapter->hw;
5139	struct pci_dev *pdev = adapter->pdev;
5140	u32 reg, mpc;
5141	u16 phy_tmp;
5142	int i;
5143	u64 bytes, packets;
5144	unsigned int start;
5145	u64 _bytes, _packets;
5146
5147#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
5148
5149	/* Prevent stats update while adapter is being reset, or if the pci
5150	 * connection is down.
5151	 */
5152	if (adapter->link_speed == 0)
5153		return;
5154	if (pci_channel_offline(pdev))
5155		return;
5156
5157	bytes = 0;
5158	packets = 0;
5159
5160	rcu_read_lock();
5161	for (i = 0; i < adapter->num_rx_queues; i++) {
5162		u32 rqdpc = rd32(E1000_RQDPC(i));
5163		struct igb_ring *ring = adapter->rx_ring[i];
5164
5165		if (rqdpc) {
5166			ring->rx_stats.drops += rqdpc;
5167			net_stats->rx_fifo_errors += rqdpc;
5168		}
5169
5170		do {
5171			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5172			_bytes = ring->rx_stats.bytes;
5173			_packets = ring->rx_stats.packets;
5174		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5175		bytes += _bytes;
5176		packets += _packets;
5177	}
5178
5179	net_stats->rx_bytes = bytes;
5180	net_stats->rx_packets = packets;
5181
5182	bytes = 0;
5183	packets = 0;
5184	for (i = 0; i < adapter->num_tx_queues; i++) {
5185		struct igb_ring *ring = adapter->tx_ring[i];
5186		do {
5187			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5188			_bytes = ring->tx_stats.bytes;
5189			_packets = ring->tx_stats.packets;
5190		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5191		bytes += _bytes;
5192		packets += _packets;
5193	}
5194	net_stats->tx_bytes = bytes;
5195	net_stats->tx_packets = packets;
5196	rcu_read_unlock();
5197
5198	/* read stats registers */
5199	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5200	adapter->stats.gprc += rd32(E1000_GPRC);
5201	adapter->stats.gorc += rd32(E1000_GORCL);
5202	rd32(E1000_GORCH); /* clear GORCL */
5203	adapter->stats.bprc += rd32(E1000_BPRC);
5204	adapter->stats.mprc += rd32(E1000_MPRC);
5205	adapter->stats.roc += rd32(E1000_ROC);
5206
5207	adapter->stats.prc64 += rd32(E1000_PRC64);
5208	adapter->stats.prc127 += rd32(E1000_PRC127);
5209	adapter->stats.prc255 += rd32(E1000_PRC255);
5210	adapter->stats.prc511 += rd32(E1000_PRC511);
5211	adapter->stats.prc1023 += rd32(E1000_PRC1023);
5212	adapter->stats.prc1522 += rd32(E1000_PRC1522);
5213	adapter->stats.symerrs += rd32(E1000_SYMERRS);
5214	adapter->stats.sec += rd32(E1000_SEC);
5215
5216	mpc = rd32(E1000_MPC);
5217	adapter->stats.mpc += mpc;
5218	net_stats->rx_fifo_errors += mpc;
5219	adapter->stats.scc += rd32(E1000_SCC);
5220	adapter->stats.ecol += rd32(E1000_ECOL);
5221	adapter->stats.mcc += rd32(E1000_MCC);
5222	adapter->stats.latecol += rd32(E1000_LATECOL);
5223	adapter->stats.dc += rd32(E1000_DC);
5224	adapter->stats.rlec += rd32(E1000_RLEC);
5225	adapter->stats.xonrxc += rd32(E1000_XONRXC);
5226	adapter->stats.xontxc += rd32(E1000_XONTXC);
5227	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5228	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5229	adapter->stats.fcruc += rd32(E1000_FCRUC);
5230	adapter->stats.gptc += rd32(E1000_GPTC);
5231	adapter->stats.gotc += rd32(E1000_GOTCL);
5232	rd32(E1000_GOTCH); /* clear GOTCL */
5233	adapter->stats.rnbc += rd32(E1000_RNBC);
5234	adapter->stats.ruc += rd32(E1000_RUC);
5235	adapter->stats.rfc += rd32(E1000_RFC);
5236	adapter->stats.rjc += rd32(E1000_RJC);
5237	adapter->stats.tor += rd32(E1000_TORH);
5238	adapter->stats.tot += rd32(E1000_TOTH);
5239	adapter->stats.tpr += rd32(E1000_TPR);
5240
5241	adapter->stats.ptc64 += rd32(E1000_PTC64);
5242	adapter->stats.ptc127 += rd32(E1000_PTC127);
5243	adapter->stats.ptc255 += rd32(E1000_PTC255);
5244	adapter->stats.ptc511 += rd32(E1000_PTC511);
5245	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5246	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5247
5248	adapter->stats.mptc += rd32(E1000_MPTC);
5249	adapter->stats.bptc += rd32(E1000_BPTC);
5250
5251	adapter->stats.tpt += rd32(E1000_TPT);
5252	adapter->stats.colc += rd32(E1000_COLC);
5253
5254	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5255	/* read internal phy specific stats */
5256	reg = rd32(E1000_CTRL_EXT);
5257	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5258		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5259
5260		/* this stat has invalid values on i210/i211 */
5261		if ((hw->mac.type != e1000_i210) &&
5262		    (hw->mac.type != e1000_i211))
5263			adapter->stats.tncrs += rd32(E1000_TNCRS);
5264	}
5265
5266	adapter->stats.tsctc += rd32(E1000_TSCTC);
5267	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5268
5269	adapter->stats.iac += rd32(E1000_IAC);
5270	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5271	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5272	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5273	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5274	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5275	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5276	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5277	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5278
5279	/* Fill out the OS statistics structure */
5280	net_stats->multicast = adapter->stats.mprc;
5281	net_stats->collisions = adapter->stats.colc;
5282
5283	/* Rx Errors */
5284
5285	/* RLEC on some newer hardware can be incorrect so build
5286	 * our own version based on RUC and ROC
5287	 */
5288	net_stats->rx_errors = adapter->stats.rxerrc +
5289		adapter->stats.crcerrs + adapter->stats.algnerrc +
5290		adapter->stats.ruc + adapter->stats.roc +
5291		adapter->stats.cexterr;
5292	net_stats->rx_length_errors = adapter->stats.ruc +
5293				      adapter->stats.roc;
5294	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5295	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5296	net_stats->rx_missed_errors = adapter->stats.mpc;
5297
5298	/* Tx Errors */
5299	net_stats->tx_errors = adapter->stats.ecol +
5300			       adapter->stats.latecol;
5301	net_stats->tx_aborted_errors = adapter->stats.ecol;
5302	net_stats->tx_window_errors = adapter->stats.latecol;
5303	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5304
5305	/* Tx Dropped needs to be maintained elsewhere */
5306
5307	/* Phy Stats */
5308	if (hw->phy.media_type == e1000_media_type_copper) {
5309		if ((adapter->link_speed == SPEED_1000) &&
5310		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5311			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5312			adapter->phy_stats.idle_errors += phy_tmp;
5313		}
5314	}
5315
5316	/* Management Stats */
5317	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5318	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5319	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5320
5321	/* OS2BMC Stats */
5322	reg = rd32(E1000_MANC);
5323	if (reg & E1000_MANC_EN_BMC2OS) {
5324		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5325		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5326		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5327		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5328	}
5329}
5330
5331static irqreturn_t igb_msix_other(int irq, void *data)
5332{
5333	struct igb_adapter *adapter = data;
5334	struct e1000_hw *hw = &adapter->hw;
5335	u32 icr = rd32(E1000_ICR);
5336	/* reading ICR causes bit 31 of EICR to be cleared */
5337
5338	if (icr & E1000_ICR_DRSTA)
5339		schedule_work(&adapter->reset_task);
5340
5341	if (icr & E1000_ICR_DOUTSYNC) {
5342		/* HW is reporting DMA is out of sync */
5343		adapter->stats.doosync++;
5344		/* The DMA Out of Sync is also indication of a spoof event
5345		 * in IOV mode. Check the Wrong VM Behavior register to
5346		 * see if it is really a spoof event.
5347		 */
5348		igb_check_wvbr(adapter);
5349	}
5350
5351	/* Check for a mailbox event */
5352	if (icr & E1000_ICR_VMMB)
5353		igb_msg_task(adapter);
5354
5355	if (icr & E1000_ICR_LSC) {
5356		hw->mac.get_link_status = 1;
5357		/* guard against interrupt when we're going down */
5358		if (!test_bit(__IGB_DOWN, &adapter->state))
5359			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5360	}
5361
5362	if (icr & E1000_ICR_TS) {
5363		u32 tsicr = rd32(E1000_TSICR);
5364
5365		if (tsicr & E1000_TSICR_TXTS) {
5366			/* acknowledge the interrupt */
5367			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5368			/* retrieve hardware timestamp */
5369			schedule_work(&adapter->ptp_tx_work);
5370		}
5371	}
5372
5373	wr32(E1000_EIMS, adapter->eims_other);
5374
5375	return IRQ_HANDLED;
5376}
5377
5378static void igb_write_itr(struct igb_q_vector *q_vector)
5379{
5380	struct igb_adapter *adapter = q_vector->adapter;
5381	u32 itr_val = q_vector->itr_val & 0x7FFC;
5382
5383	if (!q_vector->set_itr)
5384		return;
5385
5386	if (!itr_val)
5387		itr_val = 0x4;
5388
5389	if (adapter->hw.mac.type == e1000_82575)
5390		itr_val |= itr_val << 16;
5391	else
5392		itr_val |= E1000_EITR_CNT_IGNR;
5393
5394	writel(itr_val, q_vector->itr_register);
5395	q_vector->set_itr = 0;
5396}
5397
5398static irqreturn_t igb_msix_ring(int irq, void *data)
5399{
5400	struct igb_q_vector *q_vector = data;
5401
5402	/* Write the ITR value calculated from the previous interrupt. */
5403	igb_write_itr(q_vector);
5404
5405	napi_schedule(&q_vector->napi);
5406
5407	return IRQ_HANDLED;
5408}
5409
5410#ifdef CONFIG_IGB_DCA
5411static void igb_update_tx_dca(struct igb_adapter *adapter,
5412			      struct igb_ring *tx_ring,
5413			      int cpu)
5414{
5415	struct e1000_hw *hw = &adapter->hw;
5416	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5417
5418	if (hw->mac.type != e1000_82575)
5419		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5420
5421	/* We can enable relaxed ordering for reads, but not writes when
5422	 * DCA is enabled.  This is due to a known issue in some chipsets
5423	 * which will cause the DCA tag to be cleared.
5424	 */
5425	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5426		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5427		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5428
5429	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5430}
5431
5432static void igb_update_rx_dca(struct igb_adapter *adapter,
5433			      struct igb_ring *rx_ring,
5434			      int cpu)
5435{
5436	struct e1000_hw *hw = &adapter->hw;
5437	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5438
5439	if (hw->mac.type != e1000_82575)
5440		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5441
5442	/* We can enable relaxed ordering for reads, but not writes when
5443	 * DCA is enabled.  This is due to a known issue in some chipsets
5444	 * which will cause the DCA tag to be cleared.
5445	 */
5446	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5447		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5448
5449	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5450}
5451
5452static void igb_update_dca(struct igb_q_vector *q_vector)
5453{
5454	struct igb_adapter *adapter = q_vector->adapter;
5455	int cpu = get_cpu();
5456
5457	if (q_vector->cpu == cpu)
5458		goto out_no_update;
5459
5460	if (q_vector->tx.ring)
5461		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5462
5463	if (q_vector->rx.ring)
5464		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5465
5466	q_vector->cpu = cpu;
5467out_no_update:
5468	put_cpu();
5469}
5470
5471static void igb_setup_dca(struct igb_adapter *adapter)
5472{
5473	struct e1000_hw *hw = &adapter->hw;
5474	int i;
5475
5476	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5477		return;
5478
5479	/* Always use CB2 mode, difference is masked in the CB driver. */
5480	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5481
5482	for (i = 0; i < adapter->num_q_vectors; i++) {
5483		adapter->q_vector[i]->cpu = -1;
5484		igb_update_dca(adapter->q_vector[i]);
5485	}
5486}
5487
5488static int __igb_notify_dca(struct device *dev, void *data)
5489{
5490	struct net_device *netdev = dev_get_drvdata(dev);
5491	struct igb_adapter *adapter = netdev_priv(netdev);
5492	struct pci_dev *pdev = adapter->pdev;
5493	struct e1000_hw *hw = &adapter->hw;
5494	unsigned long event = *(unsigned long *)data;
5495
5496	switch (event) {
5497	case DCA_PROVIDER_ADD:
5498		/* if already enabled, don't do it again */
5499		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5500			break;
5501		if (dca_add_requester(dev) == 0) {
5502			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5503			dev_info(&pdev->dev, "DCA enabled\n");
5504			igb_setup_dca(adapter);
5505			break;
5506		}
5507		/* Fall Through since DCA is disabled. */
5508	case DCA_PROVIDER_REMOVE:
5509		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5510			/* without this a class_device is left
5511			 * hanging around in the sysfs model
5512			 */
5513			dca_remove_requester(dev);
5514			dev_info(&pdev->dev, "DCA disabled\n");
5515			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5516			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5517		}
5518		break;
5519	}
5520
5521	return 0;
5522}
5523
5524static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5525			  void *p)
5526{
5527	int ret_val;
5528
5529	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5530					 __igb_notify_dca);
5531
5532	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5533}
5534#endif /* CONFIG_IGB_DCA */
5535
5536#ifdef CONFIG_PCI_IOV
5537static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5538{
5539	unsigned char mac_addr[ETH_ALEN];
5540
5541	eth_zero_addr(mac_addr);
5542	igb_set_vf_mac(adapter, vf, mac_addr);
5543
5544	/* By default spoof check is enabled for all VFs */
5545	adapter->vf_data[vf].spoofchk_enabled = true;
5546
5547	return 0;
5548}
5549
5550#endif
5551static void igb_ping_all_vfs(struct igb_adapter *adapter)
5552{
5553	struct e1000_hw *hw = &adapter->hw;
5554	u32 ping;
5555	int i;
5556
5557	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5558		ping = E1000_PF_CONTROL_MSG;
5559		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5560			ping |= E1000_VT_MSGTYPE_CTS;
5561		igb_write_mbx(hw, &ping, 1, i);
5562	}
5563}
5564
5565static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5566{
5567	struct e1000_hw *hw = &adapter->hw;
5568	u32 vmolr = rd32(E1000_VMOLR(vf));
5569	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5570
5571	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5572			    IGB_VF_FLAG_MULTI_PROMISC);
5573	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5574
5575	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5576		vmolr |= E1000_VMOLR_MPME;
5577		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5578		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5579	} else {
5580		/* if we have hashes and we are clearing a multicast promisc
5581		 * flag we need to write the hashes to the MTA as this step
5582		 * was previously skipped
5583		 */
5584		if (vf_data->num_vf_mc_hashes > 30) {
5585			vmolr |= E1000_VMOLR_MPME;
5586		} else if (vf_data->num_vf_mc_hashes) {
5587			int j;
5588			vmolr |= E1000_VMOLR_ROMPE;
5589			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5590				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5591		}
5592	}
5593
5594	wr32(E1000_VMOLR(vf), vmolr);
5595
5596	/* there are flags left unprocessed, likely not supported */
5597	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5598		return -EINVAL;
5599
5600	return 0;
5601}
5602
5603static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5604				  u32 *msgbuf, u32 vf)
5605{
5606	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5607	u16 *hash_list = (u16 *)&msgbuf[1];
5608	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5609	int i;
5610
5611	/* salt away the number of multicast addresses assigned
5612	 * to this VF for later use to restore when the PF multi cast
5613	 * list changes
5614	 */
5615	vf_data->num_vf_mc_hashes = n;
5616
5617	/* only up to 30 hash values supported */
5618	if (n > 30)
5619		n = 30;
5620
5621	/* store the hashes for later use */
5622	for (i = 0; i < n; i++)
5623		vf_data->vf_mc_hashes[i] = hash_list[i];
5624
5625	/* Flush and reset the mta with the new values */
5626	igb_set_rx_mode(adapter->netdev);
5627
5628	return 0;
5629}
5630
5631static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5632{
5633	struct e1000_hw *hw = &adapter->hw;
5634	struct vf_data_storage *vf_data;
5635	int i, j;
5636
5637	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5638		u32 vmolr = rd32(E1000_VMOLR(i));
5639		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5640
5641		vf_data = &adapter->vf_data[i];
5642
5643		if ((vf_data->num_vf_mc_hashes > 30) ||
5644		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5645			vmolr |= E1000_VMOLR_MPME;
5646		} else if (vf_data->num_vf_mc_hashes) {
5647			vmolr |= E1000_VMOLR_ROMPE;
5648			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5649				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5650		}
5651		wr32(E1000_VMOLR(i), vmolr);
5652	}
5653}
5654
5655static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5656{
5657	struct e1000_hw *hw = &adapter->hw;
5658	u32 pool_mask, reg, vid;
5659	int i;
5660
5661	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5662
5663	/* Find the vlan filter for this id */
5664	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5665		reg = rd32(E1000_VLVF(i));
5666
5667		/* remove the vf from the pool */
5668		reg &= ~pool_mask;
5669
5670		/* if pool is empty then remove entry from vfta */
5671		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5672		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5673			reg = 0;
5674			vid = reg & E1000_VLVF_VLANID_MASK;
5675			igb_vfta_set(hw, vid, false);
5676		}
5677
5678		wr32(E1000_VLVF(i), reg);
5679	}
5680
5681	adapter->vf_data[vf].vlans_enabled = 0;
5682}
5683
5684static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5685{
5686	struct e1000_hw *hw = &adapter->hw;
5687	u32 reg, i;
5688
5689	/* The vlvf table only exists on 82576 hardware and newer */
5690	if (hw->mac.type < e1000_82576)
5691		return -1;
5692
5693	/* we only need to do this if VMDq is enabled */
5694	if (!adapter->vfs_allocated_count)
5695		return -1;
5696
5697	/* Find the vlan filter for this id */
5698	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5699		reg = rd32(E1000_VLVF(i));
5700		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5701		    vid == (reg & E1000_VLVF_VLANID_MASK))
5702			break;
5703	}
5704
5705	if (add) {
5706		if (i == E1000_VLVF_ARRAY_SIZE) {
5707			/* Did not find a matching VLAN ID entry that was
5708			 * enabled.  Search for a free filter entry, i.e.
5709			 * one without the enable bit set
5710			 */
5711			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5712				reg = rd32(E1000_VLVF(i));
5713				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5714					break;
5715			}
5716		}
5717		if (i < E1000_VLVF_ARRAY_SIZE) {
5718			/* Found an enabled/available entry */
5719			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5720
5721			/* if !enabled we need to set this up in vfta */
5722			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5723				/* add VID to filter table */
5724				igb_vfta_set(hw, vid, true);
5725				reg |= E1000_VLVF_VLANID_ENABLE;
5726			}
5727			reg &= ~E1000_VLVF_VLANID_MASK;
5728			reg |= vid;
5729			wr32(E1000_VLVF(i), reg);
5730
5731			/* do not modify RLPML for PF devices */
5732			if (vf >= adapter->vfs_allocated_count)
5733				return 0;
5734
5735			if (!adapter->vf_data[vf].vlans_enabled) {
5736				u32 size;
5737				reg = rd32(E1000_VMOLR(vf));
5738				size = reg & E1000_VMOLR_RLPML_MASK;
5739				size += 4;
5740				reg &= ~E1000_VMOLR_RLPML_MASK;
5741				reg |= size;
5742				wr32(E1000_VMOLR(vf), reg);
5743			}
5744
5745			adapter->vf_data[vf].vlans_enabled++;
5746		}
5747	} else {
5748		if (i < E1000_VLVF_ARRAY_SIZE) {
5749			/* remove vf from the pool */
5750			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5751			/* if pool is empty then remove entry from vfta */
5752			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5753				reg = 0;
5754				igb_vfta_set(hw, vid, false);
5755			}
5756			wr32(E1000_VLVF(i), reg);
5757
5758			/* do not modify RLPML for PF devices */
5759			if (vf >= adapter->vfs_allocated_count)
5760				return 0;
5761
5762			adapter->vf_data[vf].vlans_enabled--;
5763			if (!adapter->vf_data[vf].vlans_enabled) {
5764				u32 size;
5765				reg = rd32(E1000_VMOLR(vf));
5766				size = reg & E1000_VMOLR_RLPML_MASK;
5767				size -= 4;
5768				reg &= ~E1000_VMOLR_RLPML_MASK;
5769				reg |= size;
5770				wr32(E1000_VMOLR(vf), reg);
5771			}
5772		}
5773	}
5774	return 0;
5775}
5776
5777static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5778{
5779	struct e1000_hw *hw = &adapter->hw;
5780
5781	if (vid)
5782		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5783	else
5784		wr32(E1000_VMVIR(vf), 0);
5785}
5786
5787static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5788			       int vf, u16 vlan, u8 qos)
5789{
5790	int err = 0;
5791	struct igb_adapter *adapter = netdev_priv(netdev);
5792
5793	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5794		return -EINVAL;
5795	if (vlan || qos) {
5796		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5797		if (err)
5798			goto out;
5799		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5800		igb_set_vmolr(adapter, vf, !vlan);
5801		adapter->vf_data[vf].pf_vlan = vlan;
5802		adapter->vf_data[vf].pf_qos = qos;
5803		dev_info(&adapter->pdev->dev,
5804			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5805		if (test_bit(__IGB_DOWN, &adapter->state)) {
5806			dev_warn(&adapter->pdev->dev,
5807				 "The VF VLAN has been set, but the PF device is not up.\n");
5808			dev_warn(&adapter->pdev->dev,
5809				 "Bring the PF device up before attempting to use the VF device.\n");
5810		}
5811	} else {
5812		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5813			     false, vf);
5814		igb_set_vmvir(adapter, vlan, vf);
5815		igb_set_vmolr(adapter, vf, true);
5816		adapter->vf_data[vf].pf_vlan = 0;
5817		adapter->vf_data[vf].pf_qos = 0;
5818	}
5819out:
5820	return err;
5821}
5822
5823static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5824{
5825	struct e1000_hw *hw = &adapter->hw;
5826	int i;
5827	u32 reg;
5828
5829	/* Find the vlan filter for this id */
5830	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5831		reg = rd32(E1000_VLVF(i));
5832		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5833		    vid == (reg & E1000_VLVF_VLANID_MASK))
5834			break;
5835	}
5836
5837	if (i >= E1000_VLVF_ARRAY_SIZE)
5838		i = -1;
5839
5840	return i;
5841}
5842
5843static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5844{
5845	struct e1000_hw *hw = &adapter->hw;
5846	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5847	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5848	int err = 0;
5849
5850	/* If in promiscuous mode we need to make sure the PF also has
5851	 * the VLAN filter set.
5852	 */
5853	if (add && (adapter->netdev->flags & IFF_PROMISC))
5854		err = igb_vlvf_set(adapter, vid, add,
5855				   adapter->vfs_allocated_count);
5856	if (err)
5857		goto out;
5858
5859	err = igb_vlvf_set(adapter, vid, add, vf);
5860
5861	if (err)
5862		goto out;
5863
5864	/* Go through all the checks to see if the VLAN filter should
5865	 * be wiped completely.
5866	 */
5867	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5868		u32 vlvf, bits;
5869
5870		int regndx = igb_find_vlvf_entry(adapter, vid);
5871		if (regndx < 0)
5872			goto out;
5873		/* See if any other pools are set for this VLAN filter
5874		 * entry other than the PF.
5875		 */
5876		vlvf = bits = rd32(E1000_VLVF(regndx));
5877		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5878			      adapter->vfs_allocated_count);
5879		/* If the filter was removed then ensure PF pool bit
5880		 * is cleared if the PF only added itself to the pool
5881		 * because the PF is in promiscuous mode.
5882		 */
5883		if ((vlvf & VLAN_VID_MASK) == vid &&
5884		    !test_bit(vid, adapter->active_vlans) &&
5885		    !bits)
5886			igb_vlvf_set(adapter, vid, add,
5887				     adapter->vfs_allocated_count);
5888	}
5889
5890out:
5891	return err;
5892}
5893
5894static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5895{
5896	/* clear flags - except flag that indicates PF has set the MAC */
5897	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5898	adapter->vf_data[vf].last_nack = jiffies;
5899
5900	/* reset offloads to defaults */
5901	igb_set_vmolr(adapter, vf, true);
5902
5903	/* reset vlans for device */
5904	igb_clear_vf_vfta(adapter, vf);
5905	if (adapter->vf_data[vf].pf_vlan)
5906		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5907				    adapter->vf_data[vf].pf_vlan,
5908				    adapter->vf_data[vf].pf_qos);
5909	else
5910		igb_clear_vf_vfta(adapter, vf);
5911
5912	/* reset multicast table array for vf */
5913	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5914
5915	/* Flush and reset the mta with the new values */
5916	igb_set_rx_mode(adapter->netdev);
5917}
5918
5919static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5920{
5921	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5922
5923	/* clear mac address as we were hotplug removed/added */
5924	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5925		eth_zero_addr(vf_mac);
5926
5927	/* process remaining reset events */
5928	igb_vf_reset(adapter, vf);
5929}
5930
5931static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5932{
5933	struct e1000_hw *hw = &adapter->hw;
5934	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5935	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5936	u32 reg, msgbuf[3];
5937	u8 *addr = (u8 *)(&msgbuf[1]);
5938
5939	/* process all the same items cleared in a function level reset */
5940	igb_vf_reset(adapter, vf);
5941
5942	/* set vf mac address */
5943	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5944
5945	/* enable transmit and receive for vf */
5946	reg = rd32(E1000_VFTE);
5947	wr32(E1000_VFTE, reg | (1 << vf));
5948	reg = rd32(E1000_VFRE);
5949	wr32(E1000_VFRE, reg | (1 << vf));
5950
5951	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5952
5953	/* reply to reset with ack and vf mac address */
5954	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5955	memcpy(addr, vf_mac, ETH_ALEN);
5956	igb_write_mbx(hw, msgbuf, 3, vf);
5957}
5958
5959static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5960{
5961	/* The VF MAC Address is stored in a packed array of bytes
5962	 * starting at the second 32 bit word of the msg array
5963	 */
5964	unsigned char *addr = (char *)&msg[1];
5965	int err = -1;
5966
5967	if (is_valid_ether_addr(addr))
5968		err = igb_set_vf_mac(adapter, vf, addr);
5969
5970	return err;
5971}
5972
5973static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5974{
5975	struct e1000_hw *hw = &adapter->hw;
5976	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5977	u32 msg = E1000_VT_MSGTYPE_NACK;
5978
5979	/* if device isn't clear to send it shouldn't be reading either */
5980	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5981	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5982		igb_write_mbx(hw, &msg, 1, vf);
5983		vf_data->last_nack = jiffies;
5984	}
5985}
5986
5987static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5988{
5989	struct pci_dev *pdev = adapter->pdev;
5990	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5991	struct e1000_hw *hw = &adapter->hw;
5992	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5993	s32 retval;
5994
5995	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5996
5997	if (retval) {
5998		/* if receive failed revoke VF CTS stats and restart init */
5999		dev_err(&pdev->dev, "Error receiving message from VF\n");
6000		vf_data->flags &= ~IGB_VF_FLAG_CTS;
6001		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6002			return;
6003		goto out;
6004	}
6005
6006	/* this is a message we already processed, do nothing */
6007	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6008		return;
6009
6010	/* until the vf completes a reset it should not be
6011	 * allowed to start any configuration.
6012	 */
6013	if (msgbuf[0] == E1000_VF_RESET) {
6014		igb_vf_reset_msg(adapter, vf);
6015		return;
6016	}
6017
6018	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6019		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6020			return;
6021		retval = -1;
6022		goto out;
6023	}
6024
6025	switch ((msgbuf[0] & 0xFFFF)) {
6026	case E1000_VF_SET_MAC_ADDR:
6027		retval = -EINVAL;
6028		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6029			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6030		else
6031			dev_warn(&pdev->dev,
6032				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6033				 vf);
6034		break;
6035	case E1000_VF_SET_PROMISC:
6036		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6037		break;
6038	case E1000_VF_SET_MULTICAST:
6039		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6040		break;
6041	case E1000_VF_SET_LPE:
6042		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6043		break;
6044	case E1000_VF_SET_VLAN:
6045		retval = -1;
6046		if (vf_data->pf_vlan)
6047			dev_warn(&pdev->dev,
6048				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6049				 vf);
6050		else
6051			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6052		break;
6053	default:
6054		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6055		retval = -1;
6056		break;
6057	}
6058
6059	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6060out:
6061	/* notify the VF of the results of what it sent us */
6062	if (retval)
6063		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6064	else
6065		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6066
6067	igb_write_mbx(hw, msgbuf, 1, vf);
6068}
6069
6070static void igb_msg_task(struct igb_adapter *adapter)
6071{
6072	struct e1000_hw *hw = &adapter->hw;
6073	u32 vf;
6074
6075	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6076		/* process any reset requests */
6077		if (!igb_check_for_rst(hw, vf))
6078			igb_vf_reset_event(adapter, vf);
6079
6080		/* process any messages pending */
6081		if (!igb_check_for_msg(hw, vf))
6082			igb_rcv_msg_from_vf(adapter, vf);
6083
6084		/* process any acks */
6085		if (!igb_check_for_ack(hw, vf))
6086			igb_rcv_ack_from_vf(adapter, vf);
6087	}
6088}
6089
6090/**
6091 *  igb_set_uta - Set unicast filter table address
6092 *  @adapter: board private structure
6093 *
6094 *  The unicast table address is a register array of 32-bit registers.
6095 *  The table is meant to be used in a way similar to how the MTA is used
6096 *  however due to certain limitations in the hardware it is necessary to
6097 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6098 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6099 **/
6100static void igb_set_uta(struct igb_adapter *adapter)
6101{
6102	struct e1000_hw *hw = &adapter->hw;
6103	int i;
6104
6105	/* The UTA table only exists on 82576 hardware and newer */
6106	if (hw->mac.type < e1000_82576)
6107		return;
6108
6109	/* we only need to do this if VMDq is enabled */
6110	if (!adapter->vfs_allocated_count)
6111		return;
6112
6113	for (i = 0; i < hw->mac.uta_reg_count; i++)
6114		array_wr32(E1000_UTA, i, ~0);
6115}
6116
6117/**
6118 *  igb_intr_msi - Interrupt Handler
6119 *  @irq: interrupt number
6120 *  @data: pointer to a network interface device structure
6121 **/
6122static irqreturn_t igb_intr_msi(int irq, void *data)
6123{
6124	struct igb_adapter *adapter = data;
6125	struct igb_q_vector *q_vector = adapter->q_vector[0];
6126	struct e1000_hw *hw = &adapter->hw;
6127	/* read ICR disables interrupts using IAM */
6128	u32 icr = rd32(E1000_ICR);
6129
6130	igb_write_itr(q_vector);
6131
6132	if (icr & E1000_ICR_DRSTA)
6133		schedule_work(&adapter->reset_task);
6134
6135	if (icr & E1000_ICR_DOUTSYNC) {
6136		/* HW is reporting DMA is out of sync */
6137		adapter->stats.doosync++;
6138	}
6139
6140	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6141		hw->mac.get_link_status = 1;
6142		if (!test_bit(__IGB_DOWN, &adapter->state))
6143			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6144	}
6145
6146	if (icr & E1000_ICR_TS) {
6147		u32 tsicr = rd32(E1000_TSICR);
6148
6149		if (tsicr & E1000_TSICR_TXTS) {
6150			/* acknowledge the interrupt */
6151			wr32(E1000_TSICR, E1000_TSICR_TXTS);
6152			/* retrieve hardware timestamp */
6153			schedule_work(&adapter->ptp_tx_work);
6154		}
6155	}
6156
6157	napi_schedule(&q_vector->napi);
6158
6159	return IRQ_HANDLED;
6160}
6161
6162/**
6163 *  igb_intr - Legacy Interrupt Handler
6164 *  @irq: interrupt number
6165 *  @data: pointer to a network interface device structure
6166 **/
6167static irqreturn_t igb_intr(int irq, void *data)
6168{
6169	struct igb_adapter *adapter = data;
6170	struct igb_q_vector *q_vector = adapter->q_vector[0];
6171	struct e1000_hw *hw = &adapter->hw;
6172	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6173	 * need for the IMC write
6174	 */
6175	u32 icr = rd32(E1000_ICR);
6176
6177	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6178	 * not set, then the adapter didn't send an interrupt
6179	 */
6180	if (!(icr & E1000_ICR_INT_ASSERTED))
6181		return IRQ_NONE;
6182
6183	igb_write_itr(q_vector);
6184
6185	if (icr & E1000_ICR_DRSTA)
6186		schedule_work(&adapter->reset_task);
6187
6188	if (icr & E1000_ICR_DOUTSYNC) {
6189		/* HW is reporting DMA is out of sync */
6190		adapter->stats.doosync++;
6191	}
6192
6193	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6194		hw->mac.get_link_status = 1;
6195		/* guard against interrupt when we're going down */
6196		if (!test_bit(__IGB_DOWN, &adapter->state))
6197			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6198	}
6199
6200	if (icr & E1000_ICR_TS) {
6201		u32 tsicr = rd32(E1000_TSICR);
6202
6203		if (tsicr & E1000_TSICR_TXTS) {
6204			/* acknowledge the interrupt */
6205			wr32(E1000_TSICR, E1000_TSICR_TXTS);
6206			/* retrieve hardware timestamp */
6207			schedule_work(&adapter->ptp_tx_work);
6208		}
6209	}
6210
6211	napi_schedule(&q_vector->napi);
6212
6213	return IRQ_HANDLED;
6214}
6215
6216static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6217{
6218	struct igb_adapter *adapter = q_vector->adapter;
6219	struct e1000_hw *hw = &adapter->hw;
6220
6221	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6222	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6223		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6224			igb_set_itr(q_vector);
6225		else
6226			igb_update_ring_itr(q_vector);
6227	}
6228
6229	if (!test_bit(__IGB_DOWN, &adapter->state)) {
6230		if (adapter->flags & IGB_FLAG_HAS_MSIX)
6231			wr32(E1000_EIMS, q_vector->eims_value);
6232		else
6233			igb_irq_enable(adapter);
6234	}
6235}
6236
6237/**
6238 *  igb_poll - NAPI Rx polling callback
6239 *  @napi: napi polling structure
6240 *  @budget: count of how many packets we should handle
6241 **/
6242static int igb_poll(struct napi_struct *napi, int budget)
6243{
6244	struct igb_q_vector *q_vector = container_of(napi,
6245						     struct igb_q_vector,
6246						     napi);
6247	bool clean_complete = true;
6248
6249#ifdef CONFIG_IGB_DCA
6250	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6251		igb_update_dca(q_vector);
6252#endif
6253	if (q_vector->tx.ring)
6254		clean_complete = igb_clean_tx_irq(q_vector);
6255
6256	if (q_vector->rx.ring)
6257		clean_complete &= igb_clean_rx_irq(q_vector, budget);
6258
6259	/* If all work not completed, return budget and keep polling */
6260	if (!clean_complete)
6261		return budget;
6262
6263	/* If not enough Rx work done, exit the polling mode */
6264	napi_complete(napi);
6265	igb_ring_irq_enable(q_vector);
6266
6267	return 0;
6268}
6269
6270/**
6271 *  igb_clean_tx_irq - Reclaim resources after transmit completes
6272 *  @q_vector: pointer to q_vector containing needed info
6273 *
6274 *  returns true if ring is completely cleaned
6275 **/
6276static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6277{
6278	struct igb_adapter *adapter = q_vector->adapter;
6279	struct igb_ring *tx_ring = q_vector->tx.ring;
6280	struct igb_tx_buffer *tx_buffer;
6281	union e1000_adv_tx_desc *tx_desc;
6282	unsigned int total_bytes = 0, total_packets = 0;
6283	unsigned int budget = q_vector->tx.work_limit;
6284	unsigned int i = tx_ring->next_to_clean;
6285
6286	if (test_bit(__IGB_DOWN, &adapter->state))
6287		return true;
6288
6289	tx_buffer = &tx_ring->tx_buffer_info[i];
6290	tx_desc = IGB_TX_DESC(tx_ring, i);
6291	i -= tx_ring->count;
6292
6293	do {
6294		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6295
6296		/* if next_to_watch is not set then there is no work pending */
6297		if (!eop_desc)
6298			break;
6299
6300		/* prevent any other reads prior to eop_desc */
6301		read_barrier_depends();
6302
6303		/* if DD is not set pending work has not been completed */
6304		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6305			break;
6306
6307		/* clear next_to_watch to prevent false hangs */
6308		tx_buffer->next_to_watch = NULL;
6309
6310		/* update the statistics for this packet */
6311		total_bytes += tx_buffer->bytecount;
6312		total_packets += tx_buffer->gso_segs;
6313
6314		/* free the skb */
6315		dev_kfree_skb_any(tx_buffer->skb);
6316
6317		/* unmap skb header data */
6318		dma_unmap_single(tx_ring->dev,
6319				 dma_unmap_addr(tx_buffer, dma),
6320				 dma_unmap_len(tx_buffer, len),
6321				 DMA_TO_DEVICE);
6322
6323		/* clear tx_buffer data */
6324		tx_buffer->skb = NULL;
6325		dma_unmap_len_set(tx_buffer, len, 0);
6326
6327		/* clear last DMA location and unmap remaining buffers */
6328		while (tx_desc != eop_desc) {
6329			tx_buffer++;
6330			tx_desc++;
6331			i++;
6332			if (unlikely(!i)) {
6333				i -= tx_ring->count;
6334				tx_buffer = tx_ring->tx_buffer_info;
6335				tx_desc = IGB_TX_DESC(tx_ring, 0);
6336			}
6337
6338			/* unmap any remaining paged data */
6339			if (dma_unmap_len(tx_buffer, len)) {
6340				dma_unmap_page(tx_ring->dev,
6341					       dma_unmap_addr(tx_buffer, dma),
6342					       dma_unmap_len(tx_buffer, len),
6343					       DMA_TO_DEVICE);
6344				dma_unmap_len_set(tx_buffer, len, 0);
6345			}
6346		}
6347
6348		/* move us one more past the eop_desc for start of next pkt */
6349		tx_buffer++;
6350		tx_desc++;
6351		i++;
6352		if (unlikely(!i)) {
6353			i -= tx_ring->count;
6354			tx_buffer = tx_ring->tx_buffer_info;
6355			tx_desc = IGB_TX_DESC(tx_ring, 0);
6356		}
6357
6358		/* issue prefetch for next Tx descriptor */
6359		prefetch(tx_desc);
6360
6361		/* update budget accounting */
6362		budget--;
6363	} while (likely(budget));
6364
6365	netdev_tx_completed_queue(txring_txq(tx_ring),
6366				  total_packets, total_bytes);
6367	i += tx_ring->count;
6368	tx_ring->next_to_clean = i;
6369	u64_stats_update_begin(&tx_ring->tx_syncp);
6370	tx_ring->tx_stats.bytes += total_bytes;
6371	tx_ring->tx_stats.packets += total_packets;
6372	u64_stats_update_end(&tx_ring->tx_syncp);
6373	q_vector->tx.total_bytes += total_bytes;
6374	q_vector->tx.total_packets += total_packets;
6375
6376	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6377		struct e1000_hw *hw = &adapter->hw;
6378
6379		/* Detect a transmit hang in hardware, this serializes the
6380		 * check with the clearing of time_stamp and movement of i
6381		 */
6382		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6383		if (tx_buffer->next_to_watch &&
6384		    time_after(jiffies, tx_buffer->time_stamp +
6385			       (adapter->tx_timeout_factor * HZ)) &&
6386		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6387
6388			/* detected Tx unit hang */
6389			dev_err(tx_ring->dev,
6390				"Detected Tx Unit Hang\n"
6391				"  Tx Queue             <%d>\n"
6392				"  TDH                  <%x>\n"
6393				"  TDT                  <%x>\n"
6394				"  next_to_use          <%x>\n"
6395				"  next_to_clean        <%x>\n"
6396				"buffer_info[next_to_clean]\n"
6397				"  time_stamp           <%lx>\n"
6398				"  next_to_watch        <%p>\n"
6399				"  jiffies              <%lx>\n"
6400				"  desc.status          <%x>\n",
6401				tx_ring->queue_index,
6402				rd32(E1000_TDH(tx_ring->reg_idx)),
6403				readl(tx_ring->tail),
6404				tx_ring->next_to_use,
6405				tx_ring->next_to_clean,
6406				tx_buffer->time_stamp,
6407				tx_buffer->next_to_watch,
6408				jiffies,
6409				tx_buffer->next_to_watch->wb.status);
6410			netif_stop_subqueue(tx_ring->netdev,
6411					    tx_ring->queue_index);
6412
6413			/* we are about to reset, no point in enabling stuff */
6414			return true;
6415		}
6416	}
6417
6418#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6419	if (unlikely(total_packets &&
6420	    netif_carrier_ok(tx_ring->netdev) &&
6421	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6422		/* Make sure that anybody stopping the queue after this
6423		 * sees the new next_to_clean.
6424		 */
6425		smp_mb();
6426		if (__netif_subqueue_stopped(tx_ring->netdev,
6427					     tx_ring->queue_index) &&
6428		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6429			netif_wake_subqueue(tx_ring->netdev,
6430					    tx_ring->queue_index);
6431
6432			u64_stats_update_begin(&tx_ring->tx_syncp);
6433			tx_ring->tx_stats.restart_queue++;
6434			u64_stats_update_end(&tx_ring->tx_syncp);
6435		}
6436	}
6437
6438	return !!budget;
6439}
6440
6441/**
6442 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6443 *  @rx_ring: rx descriptor ring to store buffers on
6444 *  @old_buff: donor buffer to have page reused
6445 *
6446 *  Synchronizes page for reuse by the adapter
6447 **/
6448static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6449			      struct igb_rx_buffer *old_buff)
6450{
6451	struct igb_rx_buffer *new_buff;
6452	u16 nta = rx_ring->next_to_alloc;
6453
6454	new_buff = &rx_ring->rx_buffer_info[nta];
6455
6456	/* update, and store next to alloc */
6457	nta++;
6458	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6459
6460	/* transfer page from old buffer to new buffer */
6461	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6462
6463	/* sync the buffer for use by the device */
6464	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6465					 old_buff->page_offset,
6466					 IGB_RX_BUFSZ,
6467					 DMA_FROM_DEVICE);
6468}
6469
6470static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6471				  struct page *page,
6472				  unsigned int truesize)
6473{
6474	/* avoid re-using remote pages */
6475	if (unlikely(page_to_nid(page) != numa_node_id()))
6476		return false;
6477
6478#if (PAGE_SIZE < 8192)
6479	/* if we are only owner of page we can reuse it */
6480	if (unlikely(page_count(page) != 1))
6481		return false;
6482
6483	/* flip page offset to other buffer */
6484	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6485
6486	/* since we are the only owner of the page and we need to
6487	 * increment it, just set the value to 2 in order to avoid
6488	 * an unnecessary locked operation
6489	 */
6490	atomic_set(&page->_count, 2);
6491#else
6492	/* move offset up to the next cache line */
6493	rx_buffer->page_offset += truesize;
6494
6495	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6496		return false;
6497
6498	/* bump ref count on page before it is given to the stack */
6499	get_page(page);
6500#endif
6501
6502	return true;
6503}
6504
6505/**
6506 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6507 *  @rx_ring: rx descriptor ring to transact packets on
6508 *  @rx_buffer: buffer containing page to add
6509 *  @rx_desc: descriptor containing length of buffer written by hardware
6510 *  @skb: sk_buff to place the data into
6511 *
6512 *  This function will add the data contained in rx_buffer->page to the skb.
6513 *  This is done either through a direct copy if the data in the buffer is
6514 *  less than the skb header size, otherwise it will just attach the page as
6515 *  a frag to the skb.
6516 *
6517 *  The function will then update the page offset if necessary and return
6518 *  true if the buffer can be reused by the adapter.
6519 **/
6520static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6521			    struct igb_rx_buffer *rx_buffer,
6522			    union e1000_adv_rx_desc *rx_desc,
6523			    struct sk_buff *skb)
6524{
6525	struct page *page = rx_buffer->page;
6526	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6527#if (PAGE_SIZE < 8192)
6528	unsigned int truesize = IGB_RX_BUFSZ;
6529#else
6530	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6531#endif
6532
6533	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6534		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6535
6536		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6537			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6538			va += IGB_TS_HDR_LEN;
6539			size -= IGB_TS_HDR_LEN;
6540		}
6541
6542		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6543
6544		/* we can reuse buffer as-is, just make sure it is local */
6545		if (likely(page_to_nid(page) == numa_node_id()))
6546			return true;
6547
6548		/* this page cannot be reused so discard it */
6549		put_page(page);
6550		return false;
6551	}
6552
6553	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6554			rx_buffer->page_offset, size, truesize);
6555
6556	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6557}
6558
6559static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6560					   union e1000_adv_rx_desc *rx_desc,
6561					   struct sk_buff *skb)
6562{
6563	struct igb_rx_buffer *rx_buffer;
6564	struct page *page;
6565
6566	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6567
6568	page = rx_buffer->page;
6569	prefetchw(page);
6570
6571	if (likely(!skb)) {
6572		void *page_addr = page_address(page) +
6573				  rx_buffer->page_offset;
6574
6575		/* prefetch first cache line of first page */
6576		prefetch(page_addr);
6577#if L1_CACHE_BYTES < 128
6578		prefetch(page_addr + L1_CACHE_BYTES);
6579#endif
6580
6581		/* allocate a skb to store the frags */
6582		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6583						IGB_RX_HDR_LEN);
6584		if (unlikely(!skb)) {
6585			rx_ring->rx_stats.alloc_failed++;
6586			return NULL;
6587		}
6588
6589		/* we will be copying header into skb->data in
6590		 * pskb_may_pull so it is in our interest to prefetch
6591		 * it now to avoid a possible cache miss
6592		 */
6593		prefetchw(skb->data);
6594	}
6595
6596	/* we are reusing so sync this buffer for CPU use */
6597	dma_sync_single_range_for_cpu(rx_ring->dev,
6598				      rx_buffer->dma,
6599				      rx_buffer->page_offset,
6600				      IGB_RX_BUFSZ,
6601				      DMA_FROM_DEVICE);
6602
6603	/* pull page into skb */
6604	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6605		/* hand second half of page back to the ring */
6606		igb_reuse_rx_page(rx_ring, rx_buffer);
6607	} else {
6608		/* we are not reusing the buffer so unmap it */
6609		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6610			       PAGE_SIZE, DMA_FROM_DEVICE);
6611	}
6612
6613	/* clear contents of rx_buffer */
6614	rx_buffer->page = NULL;
6615
6616	return skb;
6617}
6618
6619static inline void igb_rx_checksum(struct igb_ring *ring,
6620				   union e1000_adv_rx_desc *rx_desc,
6621				   struct sk_buff *skb)
6622{
6623	skb_checksum_none_assert(skb);
6624
6625	/* Ignore Checksum bit is set */
6626	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6627		return;
6628
6629	/* Rx checksum disabled via ethtool */
6630	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6631		return;
6632
6633	/* TCP/UDP checksum error bit is set */
6634	if (igb_test_staterr(rx_desc,
6635			     E1000_RXDEXT_STATERR_TCPE |
6636			     E1000_RXDEXT_STATERR_IPE)) {
6637		/* work around errata with sctp packets where the TCPE aka
6638		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6639		 * packets, (aka let the stack check the crc32c)
6640		 */
6641		if (!((skb->len == 60) &&
6642		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6643			u64_stats_update_begin(&ring->rx_syncp);
6644			ring->rx_stats.csum_err++;
6645			u64_stats_update_end(&ring->rx_syncp);
6646		}
6647		/* let the stack verify checksum errors */
6648		return;
6649	}
6650	/* It must be a TCP or UDP packet with a valid checksum */
6651	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6652				      E1000_RXD_STAT_UDPCS))
6653		skb->ip_summed = CHECKSUM_UNNECESSARY;
6654
6655	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6656		le32_to_cpu(rx_desc->wb.upper.status_error));
6657}
6658
6659static inline void igb_rx_hash(struct igb_ring *ring,
6660			       union e1000_adv_rx_desc *rx_desc,
6661			       struct sk_buff *skb)
6662{
6663	if (ring->netdev->features & NETIF_F_RXHASH)
6664		skb_set_hash(skb,
6665			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6666			     PKT_HASH_TYPE_L3);
6667}
6668
6669/**
6670 *  igb_is_non_eop - process handling of non-EOP buffers
6671 *  @rx_ring: Rx ring being processed
6672 *  @rx_desc: Rx descriptor for current buffer
6673 *  @skb: current socket buffer containing buffer in progress
6674 *
6675 *  This function updates next to clean.  If the buffer is an EOP buffer
6676 *  this function exits returning false, otherwise it will place the
6677 *  sk_buff in the next buffer to be chained and return true indicating
6678 *  that this is in fact a non-EOP buffer.
6679 **/
6680static bool igb_is_non_eop(struct igb_ring *rx_ring,
6681			   union e1000_adv_rx_desc *rx_desc)
6682{
6683	u32 ntc = rx_ring->next_to_clean + 1;
6684
6685	/* fetch, update, and store next to clean */
6686	ntc = (ntc < rx_ring->count) ? ntc : 0;
6687	rx_ring->next_to_clean = ntc;
6688
6689	prefetch(IGB_RX_DESC(rx_ring, ntc));
6690
6691	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6692		return false;
6693
6694	return true;
6695}
6696
6697/**
6698 *  igb_get_headlen - determine size of header for LRO/GRO
6699 *  @data: pointer to the start of the headers
6700 *  @max_len: total length of section to find headers in
6701 *
6702 *  This function is meant to determine the length of headers that will
6703 *  be recognized by hardware for LRO, and GRO offloads.  The main
6704 *  motivation of doing this is to only perform one pull for IPv4 TCP
6705 *  packets so that we can do basic things like calculating the gso_size
6706 *  based on the average data per packet.
6707 **/
6708static unsigned int igb_get_headlen(unsigned char *data,
6709				    unsigned int max_len)
6710{
6711	union {
6712		unsigned char *network;
6713		/* l2 headers */
6714		struct ethhdr *eth;
6715		struct vlan_hdr *vlan;
6716		/* l3 headers */
6717		struct iphdr *ipv4;
6718		struct ipv6hdr *ipv6;
6719	} hdr;
6720	__be16 protocol;
6721	u8 nexthdr = 0;	/* default to not TCP */
6722	u8 hlen;
6723
6724	/* this should never happen, but better safe than sorry */
6725	if (max_len < ETH_HLEN)
6726		return max_len;
6727
6728	/* initialize network frame pointer */
6729	hdr.network = data;
6730
6731	/* set first protocol and move network header forward */
6732	protocol = hdr.eth->h_proto;
6733	hdr.network += ETH_HLEN;
6734
6735	/* handle any vlan tag if present */
6736	if (protocol == __constant_htons(ETH_P_8021Q)) {
6737		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6738			return max_len;
6739
6740		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6741		hdr.network += VLAN_HLEN;
6742	}
6743
6744	/* handle L3 protocols */
6745	if (protocol == __constant_htons(ETH_P_IP)) {
6746		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6747			return max_len;
6748
6749		/* access ihl as a u8 to avoid unaligned access on ia64 */
6750		hlen = (hdr.network[0] & 0x0F) << 2;
6751
6752		/* verify hlen meets minimum size requirements */
6753		if (hlen < sizeof(struct iphdr))
6754			return hdr.network - data;
6755
6756		/* record next protocol if header is present */
6757		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6758			nexthdr = hdr.ipv4->protocol;
6759	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
6760		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6761			return max_len;
6762
6763		/* record next protocol */
6764		nexthdr = hdr.ipv6->nexthdr;
6765		hlen = sizeof(struct ipv6hdr);
6766	} else {
6767		return hdr.network - data;
6768	}
6769
6770	/* relocate pointer to start of L4 header */
6771	hdr.network += hlen;
6772
6773	/* finally sort out TCP */
6774	if (nexthdr == IPPROTO_TCP) {
6775		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6776			return max_len;
6777
6778		/* access doff as a u8 to avoid unaligned access on ia64 */
6779		hlen = (hdr.network[12] & 0xF0) >> 2;
6780
6781		/* verify hlen meets minimum size requirements */
6782		if (hlen < sizeof(struct tcphdr))
6783			return hdr.network - data;
6784
6785		hdr.network += hlen;
6786	} else if (nexthdr == IPPROTO_UDP) {
6787		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6788			return max_len;
6789
6790		hdr.network += sizeof(struct udphdr);
6791	}
6792
6793	/* If everything has gone correctly hdr.network should be the
6794	 * data section of the packet and will be the end of the header.
6795	 * If not then it probably represents the end of the last recognized
6796	 * header.
6797	 */
6798	if ((hdr.network - data) < max_len)
6799		return hdr.network - data;
6800	else
6801		return max_len;
6802}
6803
6804/**
6805 *  igb_pull_tail - igb specific version of skb_pull_tail
6806 *  @rx_ring: rx descriptor ring packet is being transacted on
6807 *  @rx_desc: pointer to the EOP Rx descriptor
6808 *  @skb: pointer to current skb being adjusted
6809 *
6810 *  This function is an igb specific version of __pskb_pull_tail.  The
6811 *  main difference between this version and the original function is that
6812 *  this function can make several assumptions about the state of things
6813 *  that allow for significant optimizations versus the standard function.
6814 *  As a result we can do things like drop a frag and maintain an accurate
6815 *  truesize for the skb.
6816 */
6817static void igb_pull_tail(struct igb_ring *rx_ring,
6818			  union e1000_adv_rx_desc *rx_desc,
6819			  struct sk_buff *skb)
6820{
6821	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6822	unsigned char *va;
6823	unsigned int pull_len;
6824
6825	/* it is valid to use page_address instead of kmap since we are
6826	 * working with pages allocated out of the lomem pool per
6827	 * alloc_page(GFP_ATOMIC)
6828	 */
6829	va = skb_frag_address(frag);
6830
6831	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6832		/* retrieve timestamp from buffer */
6833		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6834
6835		/* update pointers to remove timestamp header */
6836		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6837		frag->page_offset += IGB_TS_HDR_LEN;
6838		skb->data_len -= IGB_TS_HDR_LEN;
6839		skb->len -= IGB_TS_HDR_LEN;
6840
6841		/* move va to start of packet data */
6842		va += IGB_TS_HDR_LEN;
6843	}
6844
6845	/* we need the header to contain the greater of either ETH_HLEN or
6846	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6847	 */
6848	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6849
6850	/* align pull length to size of long to optimize memcpy performance */
6851	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6852
6853	/* update all of the pointers */
6854	skb_frag_size_sub(frag, pull_len);
6855	frag->page_offset += pull_len;
6856	skb->data_len -= pull_len;
6857	skb->tail += pull_len;
6858}
6859
6860/**
6861 *  igb_cleanup_headers - Correct corrupted or empty headers
6862 *  @rx_ring: rx descriptor ring packet is being transacted on
6863 *  @rx_desc: pointer to the EOP Rx descriptor
6864 *  @skb: pointer to current skb being fixed
6865 *
6866 *  Address the case where we are pulling data in on pages only
6867 *  and as such no data is present in the skb header.
6868 *
6869 *  In addition if skb is not at least 60 bytes we need to pad it so that
6870 *  it is large enough to qualify as a valid Ethernet frame.
6871 *
6872 *  Returns true if an error was encountered and skb was freed.
6873 **/
6874static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6875				union e1000_adv_rx_desc *rx_desc,
6876				struct sk_buff *skb)
6877{
6878	if (unlikely((igb_test_staterr(rx_desc,
6879				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6880		struct net_device *netdev = rx_ring->netdev;
6881		if (!(netdev->features & NETIF_F_RXALL)) {
6882			dev_kfree_skb_any(skb);
6883			return true;
6884		}
6885	}
6886
6887	/* place header in linear portion of buffer */
6888	if (skb_is_nonlinear(skb))
6889		igb_pull_tail(rx_ring, rx_desc, skb);
6890
6891	/* if skb_pad returns an error the skb was freed */
6892	if (unlikely(skb->len < 60)) {
6893		int pad_len = 60 - skb->len;
6894
6895		if (skb_pad(skb, pad_len))
6896			return true;
6897		__skb_put(skb, pad_len);
6898	}
6899
6900	return false;
6901}
6902
6903/**
6904 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6905 *  @rx_ring: rx descriptor ring packet is being transacted on
6906 *  @rx_desc: pointer to the EOP Rx descriptor
6907 *  @skb: pointer to current skb being populated
6908 *
6909 *  This function checks the ring, descriptor, and packet information in
6910 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6911 *  other fields within the skb.
6912 **/
6913static void igb_process_skb_fields(struct igb_ring *rx_ring,
6914				   union e1000_adv_rx_desc *rx_desc,
6915				   struct sk_buff *skb)
6916{
6917	struct net_device *dev = rx_ring->netdev;
6918
6919	igb_rx_hash(rx_ring, rx_desc, skb);
6920
6921	igb_rx_checksum(rx_ring, rx_desc, skb);
6922
6923	igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
6924
6925	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6926	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6927		u16 vid;
6928		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6929		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6930			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6931		else
6932			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6933
6934		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6935	}
6936
6937	skb_record_rx_queue(skb, rx_ring->queue_index);
6938
6939	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6940}
6941
6942static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6943{
6944	struct igb_ring *rx_ring = q_vector->rx.ring;
6945	struct sk_buff *skb = rx_ring->skb;
6946	unsigned int total_bytes = 0, total_packets = 0;
6947	u16 cleaned_count = igb_desc_unused(rx_ring);
6948
6949	while (likely(total_packets < budget)) {
6950		union e1000_adv_rx_desc *rx_desc;
6951
6952		/* return some buffers to hardware, one at a time is too slow */
6953		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6954			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6955			cleaned_count = 0;
6956		}
6957
6958		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6959
6960		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6961			break;
6962
6963		/* This memory barrier is needed to keep us from reading
6964		 * any other fields out of the rx_desc until we know the
6965		 * RXD_STAT_DD bit is set
6966		 */
6967		rmb();
6968
6969		/* retrieve a buffer from the ring */
6970		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6971
6972		/* exit if we failed to retrieve a buffer */
6973		if (!skb)
6974			break;
6975
6976		cleaned_count++;
6977
6978		/* fetch next buffer in frame if non-eop */
6979		if (igb_is_non_eop(rx_ring, rx_desc))
6980			continue;
6981
6982		/* verify the packet layout is correct */
6983		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6984			skb = NULL;
6985			continue;
6986		}
6987
6988		/* probably a little skewed due to removing CRC */
6989		total_bytes += skb->len;
6990
6991		/* populate checksum, timestamp, VLAN, and protocol */
6992		igb_process_skb_fields(rx_ring, rx_desc, skb);
6993
6994		napi_gro_receive(&q_vector->napi, skb);
6995
6996		/* reset skb pointer */
6997		skb = NULL;
6998
6999		/* update budget accounting */
7000		total_packets++;
7001	}
7002
7003	/* place incomplete frames back on ring for completion */
7004	rx_ring->skb = skb;
7005
7006	u64_stats_update_begin(&rx_ring->rx_syncp);
7007	rx_ring->rx_stats.packets += total_packets;
7008	rx_ring->rx_stats.bytes += total_bytes;
7009	u64_stats_update_end(&rx_ring->rx_syncp);
7010	q_vector->rx.total_packets += total_packets;
7011	q_vector->rx.total_bytes += total_bytes;
7012
7013	if (cleaned_count)
7014		igb_alloc_rx_buffers(rx_ring, cleaned_count);
7015
7016	return (total_packets < budget);
7017}
7018
7019static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7020				  struct igb_rx_buffer *bi)
7021{
7022	struct page *page = bi->page;
7023	dma_addr_t dma;
7024
7025	/* since we are recycling buffers we should seldom need to alloc */
7026	if (likely(page))
7027		return true;
7028
7029	/* alloc new page for storage */
7030	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
7031	if (unlikely(!page)) {
7032		rx_ring->rx_stats.alloc_failed++;
7033		return false;
7034	}
7035
7036	/* map page for use */
7037	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7038
7039	/* if mapping failed free memory back to system since
7040	 * there isn't much point in holding memory we can't use
7041	 */
7042	if (dma_mapping_error(rx_ring->dev, dma)) {
7043		__free_page(page);
7044
7045		rx_ring->rx_stats.alloc_failed++;
7046		return false;
7047	}
7048
7049	bi->dma = dma;
7050	bi->page = page;
7051	bi->page_offset = 0;
7052
7053	return true;
7054}
7055
7056/**
7057 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7058 *  @adapter: address of board private structure
7059 **/
7060void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7061{
7062	union e1000_adv_rx_desc *rx_desc;
7063	struct igb_rx_buffer *bi;
7064	u16 i = rx_ring->next_to_use;
7065
7066	/* nothing to do */
7067	if (!cleaned_count)
7068		return;
7069
7070	rx_desc = IGB_RX_DESC(rx_ring, i);
7071	bi = &rx_ring->rx_buffer_info[i];
7072	i -= rx_ring->count;
7073
7074	do {
7075		if (!igb_alloc_mapped_page(rx_ring, bi))
7076			break;
7077
7078		/* Refresh the desc even if buffer_addrs didn't change
7079		 * because each write-back erases this info.
7080		 */
7081		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7082
7083		rx_desc++;
7084		bi++;
7085		i++;
7086		if (unlikely(!i)) {
7087			rx_desc = IGB_RX_DESC(rx_ring, 0);
7088			bi = rx_ring->rx_buffer_info;
7089			i -= rx_ring->count;
7090		}
7091
7092		/* clear the hdr_addr for the next_to_use descriptor */
7093		rx_desc->read.hdr_addr = 0;
7094
7095		cleaned_count--;
7096	} while (cleaned_count);
7097
7098	i += rx_ring->count;
7099
7100	if (rx_ring->next_to_use != i) {
7101		/* record the next descriptor to use */
7102		rx_ring->next_to_use = i;
7103
7104		/* update next to alloc since we have filled the ring */
7105		rx_ring->next_to_alloc = i;
7106
7107		/* Force memory writes to complete before letting h/w
7108		 * know there are new descriptors to fetch.  (Only
7109		 * applicable for weak-ordered memory model archs,
7110		 * such as IA-64).
7111		 */
7112		wmb();
7113		writel(i, rx_ring->tail);
7114	}
7115}
7116
7117/**
7118 * igb_mii_ioctl -
7119 * @netdev:
7120 * @ifreq:
7121 * @cmd:
7122 **/
7123static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7124{
7125	struct igb_adapter *adapter = netdev_priv(netdev);
7126	struct mii_ioctl_data *data = if_mii(ifr);
7127
7128	if (adapter->hw.phy.media_type != e1000_media_type_copper)
7129		return -EOPNOTSUPP;
7130
7131	switch (cmd) {
7132	case SIOCGMIIPHY:
7133		data->phy_id = adapter->hw.phy.addr;
7134		break;
7135	case SIOCGMIIREG:
7136		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7137		                     &data->val_out))
7138			return -EIO;
7139		break;
7140	case SIOCSMIIREG:
7141	default:
7142		return -EOPNOTSUPP;
7143	}
7144	return 0;
7145}
7146
7147/**
7148 * igb_ioctl -
7149 * @netdev:
7150 * @ifreq:
7151 * @cmd:
7152 **/
7153static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7154{
7155	switch (cmd) {
7156	case SIOCGMIIPHY:
7157	case SIOCGMIIREG:
7158	case SIOCSMIIREG:
7159		return igb_mii_ioctl(netdev, ifr, cmd);
7160	case SIOCSHWTSTAMP:
7161		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
7162	default:
7163		return -EOPNOTSUPP;
7164	}
7165}
7166
7167s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7168{
7169	struct igb_adapter *adapter = hw->back;
7170
7171	if (pcie_capability_read_word(adapter->pdev, reg, value))
7172		return -E1000_ERR_CONFIG;
7173
7174	return 0;
7175}
7176
7177s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7178{
7179	struct igb_adapter *adapter = hw->back;
7180
7181	if (pcie_capability_write_word(adapter->pdev, reg, *value))
7182		return -E1000_ERR_CONFIG;
7183
7184	return 0;
7185}
7186
7187static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7188{
7189	struct igb_adapter *adapter = netdev_priv(netdev);
7190	struct e1000_hw *hw = &adapter->hw;
7191	u32 ctrl, rctl;
7192	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7193
7194	if (enable) {
7195		/* enable VLAN tag insert/strip */
7196		ctrl = rd32(E1000_CTRL);
7197		ctrl |= E1000_CTRL_VME;
7198		wr32(E1000_CTRL, ctrl);
7199
7200		/* Disable CFI check */
7201		rctl = rd32(E1000_RCTL);
7202		rctl &= ~E1000_RCTL_CFIEN;
7203		wr32(E1000_RCTL, rctl);
7204	} else {
7205		/* disable VLAN tag insert/strip */
7206		ctrl = rd32(E1000_CTRL);
7207		ctrl &= ~E1000_CTRL_VME;
7208		wr32(E1000_CTRL, ctrl);
7209	}
7210
7211	igb_rlpml_set(adapter);
7212}
7213
7214static int igb_vlan_rx_add_vid(struct net_device *netdev,
7215			       __be16 proto, u16 vid)
7216{
7217	struct igb_adapter *adapter = netdev_priv(netdev);
7218	struct e1000_hw *hw = &adapter->hw;
7219	int pf_id = adapter->vfs_allocated_count;
7220
7221	/* attempt to add filter to vlvf array */
7222	igb_vlvf_set(adapter, vid, true, pf_id);
7223
7224	/* add the filter since PF can receive vlans w/o entry in vlvf */
7225	igb_vfta_set(hw, vid, true);
7226
7227	set_bit(vid, adapter->active_vlans);
7228
7229	return 0;
7230}
7231
7232static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7233				__be16 proto, u16 vid)
7234{
7235	struct igb_adapter *adapter = netdev_priv(netdev);
7236	struct e1000_hw *hw = &adapter->hw;
7237	int pf_id = adapter->vfs_allocated_count;
7238	s32 err;
7239
7240	/* remove vlan from VLVF table array */
7241	err = igb_vlvf_set(adapter, vid, false, pf_id);
7242
7243	/* if vid was not present in VLVF just remove it from table */
7244	if (err)
7245		igb_vfta_set(hw, vid, false);
7246
7247	clear_bit(vid, adapter->active_vlans);
7248
7249	return 0;
7250}
7251
7252static void igb_restore_vlan(struct igb_adapter *adapter)
7253{
7254	u16 vid;
7255
7256	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7257
7258	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7259		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7260}
7261
7262int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7263{
7264	struct pci_dev *pdev = adapter->pdev;
7265	struct e1000_mac_info *mac = &adapter->hw.mac;
7266
7267	mac->autoneg = 0;
7268
7269	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7270	 * for the switch() below to work
7271	 */
7272	if ((spd & 1) || (dplx & ~1))
7273		goto err_inval;
7274
7275	/* Fiber NIC's only allow 1000 gbps Full duplex
7276	 * and 100Mbps Full duplex for 100baseFx sfp
7277	 */
7278	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7279		switch (spd + dplx) {
7280		case SPEED_10 + DUPLEX_HALF:
7281		case SPEED_10 + DUPLEX_FULL:
7282		case SPEED_100 + DUPLEX_HALF:
7283			goto err_inval;
7284		default:
7285			break;
7286		}
7287	}
7288
7289	switch (spd + dplx) {
7290	case SPEED_10 + DUPLEX_HALF:
7291		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7292		break;
7293	case SPEED_10 + DUPLEX_FULL:
7294		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7295		break;
7296	case SPEED_100 + DUPLEX_HALF:
7297		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7298		break;
7299	case SPEED_100 + DUPLEX_FULL:
7300		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7301		break;
7302	case SPEED_1000 + DUPLEX_FULL:
7303		mac->autoneg = 1;
7304		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7305		break;
7306	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7307	default:
7308		goto err_inval;
7309	}
7310
7311	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7312	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7313
7314	return 0;
7315
7316err_inval:
7317	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7318	return -EINVAL;
7319}
7320
7321static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7322			  bool runtime)
7323{
7324	struct net_device *netdev = pci_get_drvdata(pdev);
7325	struct igb_adapter *adapter = netdev_priv(netdev);
7326	struct e1000_hw *hw = &adapter->hw;
7327	u32 ctrl, rctl, status;
7328	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7329#ifdef CONFIG_PM
7330	int retval = 0;
7331#endif
7332
7333	netif_device_detach(netdev);
7334
7335	if (netif_running(netdev))
7336		__igb_close(netdev, true);
7337
7338	igb_clear_interrupt_scheme(adapter);
7339
7340#ifdef CONFIG_PM
7341	retval = pci_save_state(pdev);
7342	if (retval)
7343		return retval;
7344#endif
7345
7346	status = rd32(E1000_STATUS);
7347	if (status & E1000_STATUS_LU)
7348		wufc &= ~E1000_WUFC_LNKC;
7349
7350	if (wufc) {
7351		igb_setup_rctl(adapter);
7352		igb_set_rx_mode(netdev);
7353
7354		/* turn on all-multi mode if wake on multicast is enabled */
7355		if (wufc & E1000_WUFC_MC) {
7356			rctl = rd32(E1000_RCTL);
7357			rctl |= E1000_RCTL_MPE;
7358			wr32(E1000_RCTL, rctl);
7359		}
7360
7361		ctrl = rd32(E1000_CTRL);
7362		/* advertise wake from D3Cold */
7363		#define E1000_CTRL_ADVD3WUC 0x00100000
7364		/* phy power management enable */
7365		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7366		ctrl |= E1000_CTRL_ADVD3WUC;
7367		wr32(E1000_CTRL, ctrl);
7368
7369		/* Allow time for pending master requests to run */
7370		igb_disable_pcie_master(hw);
7371
7372		wr32(E1000_WUC, E1000_WUC_PME_EN);
7373		wr32(E1000_WUFC, wufc);
7374	} else {
7375		wr32(E1000_WUC, 0);
7376		wr32(E1000_WUFC, 0);
7377	}
7378
7379	*enable_wake = wufc || adapter->en_mng_pt;
7380	if (!*enable_wake)
7381		igb_power_down_link(adapter);
7382	else
7383		igb_power_up_link(adapter);
7384
7385	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7386	 * would have already happened in close and is redundant.
7387	 */
7388	igb_release_hw_control(adapter);
7389
7390	pci_disable_device(pdev);
7391
7392	return 0;
7393}
7394
7395#ifdef CONFIG_PM
7396#ifdef CONFIG_PM_SLEEP
7397static int igb_suspend(struct device *dev)
7398{
7399	int retval;
7400	bool wake;
7401	struct pci_dev *pdev = to_pci_dev(dev);
7402
7403	retval = __igb_shutdown(pdev, &wake, 0);
7404	if (retval)
7405		return retval;
7406
7407	if (wake) {
7408		pci_prepare_to_sleep(pdev);
7409	} else {
7410		pci_wake_from_d3(pdev, false);
7411		pci_set_power_state(pdev, PCI_D3hot);
7412	}
7413
7414	return 0;
7415}
7416#endif /* CONFIG_PM_SLEEP */
7417
7418static int igb_resume(struct device *dev)
7419{
7420	struct pci_dev *pdev = to_pci_dev(dev);
7421	struct net_device *netdev = pci_get_drvdata(pdev);
7422	struct igb_adapter *adapter = netdev_priv(netdev);
7423	struct e1000_hw *hw = &adapter->hw;
7424	u32 err;
7425
7426	pci_set_power_state(pdev, PCI_D0);
7427	pci_restore_state(pdev);
7428	pci_save_state(pdev);
7429
7430	err = pci_enable_device_mem(pdev);
7431	if (err) {
7432		dev_err(&pdev->dev,
7433			"igb: Cannot enable PCI device from suspend\n");
7434		return err;
7435	}
7436	pci_set_master(pdev);
7437
7438	pci_enable_wake(pdev, PCI_D3hot, 0);
7439	pci_enable_wake(pdev, PCI_D3cold, 0);
7440
7441	if (igb_init_interrupt_scheme(adapter, true)) {
7442		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7443		return -ENOMEM;
7444	}
7445
7446	igb_reset(adapter);
7447
7448	/* let the f/w know that the h/w is now under the control of the
7449	 * driver.
7450	 */
7451	igb_get_hw_control(adapter);
7452
7453	wr32(E1000_WUS, ~0);
7454
7455	if (netdev->flags & IFF_UP) {
7456		rtnl_lock();
7457		err = __igb_open(netdev, true);
7458		rtnl_unlock();
7459		if (err)
7460			return err;
7461	}
7462
7463	netif_device_attach(netdev);
7464	return 0;
7465}
7466
7467#ifdef CONFIG_PM_RUNTIME
7468static int igb_runtime_idle(struct device *dev)
7469{
7470	struct pci_dev *pdev = to_pci_dev(dev);
7471	struct net_device *netdev = pci_get_drvdata(pdev);
7472	struct igb_adapter *adapter = netdev_priv(netdev);
7473
7474	if (!igb_has_link(adapter))
7475		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7476
7477	return -EBUSY;
7478}
7479
7480static int igb_runtime_suspend(struct device *dev)
7481{
7482	struct pci_dev *pdev = to_pci_dev(dev);
7483	int retval;
7484	bool wake;
7485
7486	retval = __igb_shutdown(pdev, &wake, 1);
7487	if (retval)
7488		return retval;
7489
7490	if (wake) {
7491		pci_prepare_to_sleep(pdev);
7492	} else {
7493		pci_wake_from_d3(pdev, false);
7494		pci_set_power_state(pdev, PCI_D3hot);
7495	}
7496
7497	return 0;
7498}
7499
7500static int igb_runtime_resume(struct device *dev)
7501{
7502	return igb_resume(dev);
7503}
7504#endif /* CONFIG_PM_RUNTIME */
7505#endif
7506
7507static void igb_shutdown(struct pci_dev *pdev)
7508{
7509	bool wake;
7510
7511	__igb_shutdown(pdev, &wake, 0);
7512
7513	if (system_state == SYSTEM_POWER_OFF) {
7514		pci_wake_from_d3(pdev, wake);
7515		pci_set_power_state(pdev, PCI_D3hot);
7516	}
7517}
7518
7519#ifdef CONFIG_PCI_IOV
7520static int igb_sriov_reinit(struct pci_dev *dev)
7521{
7522	struct net_device *netdev = pci_get_drvdata(dev);
7523	struct igb_adapter *adapter = netdev_priv(netdev);
7524	struct pci_dev *pdev = adapter->pdev;
7525
7526	rtnl_lock();
7527
7528	if (netif_running(netdev))
7529		igb_close(netdev);
7530
7531	igb_clear_interrupt_scheme(adapter);
7532
7533	igb_init_queue_configuration(adapter);
7534
7535	if (igb_init_interrupt_scheme(adapter, true)) {
7536		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7537		return -ENOMEM;
7538	}
7539
7540	if (netif_running(netdev))
7541		igb_open(netdev);
7542
7543	rtnl_unlock();
7544
7545	return 0;
7546}
7547
7548static int igb_pci_disable_sriov(struct pci_dev *dev)
7549{
7550	int err = igb_disable_sriov(dev);
7551
7552	if (!err)
7553		err = igb_sriov_reinit(dev);
7554
7555	return err;
7556}
7557
7558static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7559{
7560	int err = igb_enable_sriov(dev, num_vfs);
7561
7562	if (err)
7563		goto out;
7564
7565	err = igb_sriov_reinit(dev);
7566	if (!err)
7567		return num_vfs;
7568
7569out:
7570	return err;
7571}
7572
7573#endif
7574static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7575{
7576#ifdef CONFIG_PCI_IOV
7577	if (num_vfs == 0)
7578		return igb_pci_disable_sriov(dev);
7579	else
7580		return igb_pci_enable_sriov(dev, num_vfs);
7581#endif
7582	return 0;
7583}
7584
7585#ifdef CONFIG_NET_POLL_CONTROLLER
7586/* Polling 'interrupt' - used by things like netconsole to send skbs
7587 * without having to re-enable interrupts. It's not called while
7588 * the interrupt routine is executing.
7589 */
7590static void igb_netpoll(struct net_device *netdev)
7591{
7592	struct igb_adapter *adapter = netdev_priv(netdev);
7593	struct e1000_hw *hw = &adapter->hw;
7594	struct igb_q_vector *q_vector;
7595	int i;
7596
7597	for (i = 0; i < adapter->num_q_vectors; i++) {
7598		q_vector = adapter->q_vector[i];
7599		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7600			wr32(E1000_EIMC, q_vector->eims_value);
7601		else
7602			igb_irq_disable(adapter);
7603		napi_schedule(&q_vector->napi);
7604	}
7605}
7606#endif /* CONFIG_NET_POLL_CONTROLLER */
7607
7608/**
7609 *  igb_io_error_detected - called when PCI error is detected
7610 *  @pdev: Pointer to PCI device
7611 *  @state: The current pci connection state
7612 *
7613 *  This function is called after a PCI bus error affecting
7614 *  this device has been detected.
7615 **/
7616static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7617					      pci_channel_state_t state)
7618{
7619	struct net_device *netdev = pci_get_drvdata(pdev);
7620	struct igb_adapter *adapter = netdev_priv(netdev);
7621
7622	netif_device_detach(netdev);
7623
7624	if (state == pci_channel_io_perm_failure)
7625		return PCI_ERS_RESULT_DISCONNECT;
7626
7627	if (netif_running(netdev))
7628		igb_down(adapter);
7629	pci_disable_device(pdev);
7630
7631	/* Request a slot slot reset. */
7632	return PCI_ERS_RESULT_NEED_RESET;
7633}
7634
7635/**
7636 *  igb_io_slot_reset - called after the pci bus has been reset.
7637 *  @pdev: Pointer to PCI device
7638 *
7639 *  Restart the card from scratch, as if from a cold-boot. Implementation
7640 *  resembles the first-half of the igb_resume routine.
7641 **/
7642static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7643{
7644	struct net_device *netdev = pci_get_drvdata(pdev);
7645	struct igb_adapter *adapter = netdev_priv(netdev);
7646	struct e1000_hw *hw = &adapter->hw;
7647	pci_ers_result_t result;
7648	int err;
7649
7650	if (pci_enable_device_mem(pdev)) {
7651		dev_err(&pdev->dev,
7652			"Cannot re-enable PCI device after reset.\n");
7653		result = PCI_ERS_RESULT_DISCONNECT;
7654	} else {
7655		pci_set_master(pdev);
7656		pci_restore_state(pdev);
7657		pci_save_state(pdev);
7658
7659		pci_enable_wake(pdev, PCI_D3hot, 0);
7660		pci_enable_wake(pdev, PCI_D3cold, 0);
7661
7662		igb_reset(adapter);
7663		wr32(E1000_WUS, ~0);
7664		result = PCI_ERS_RESULT_RECOVERED;
7665	}
7666
7667	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7668	if (err) {
7669		dev_err(&pdev->dev,
7670			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7671			err);
7672		/* non-fatal, continue */
7673	}
7674
7675	return result;
7676}
7677
7678/**
7679 *  igb_io_resume - called when traffic can start flowing again.
7680 *  @pdev: Pointer to PCI device
7681 *
7682 *  This callback is called when the error recovery driver tells us that
7683 *  its OK to resume normal operation. Implementation resembles the
7684 *  second-half of the igb_resume routine.
7685 */
7686static void igb_io_resume(struct pci_dev *pdev)
7687{
7688	struct net_device *netdev = pci_get_drvdata(pdev);
7689	struct igb_adapter *adapter = netdev_priv(netdev);
7690
7691	if (netif_running(netdev)) {
7692		if (igb_up(adapter)) {
7693			dev_err(&pdev->dev, "igb_up failed after reset\n");
7694			return;
7695		}
7696	}
7697
7698	netif_device_attach(netdev);
7699
7700	/* let the f/w know that the h/w is now under the control of the
7701	 * driver.
7702	 */
7703	igb_get_hw_control(adapter);
7704}
7705
7706static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7707			     u8 qsel)
7708{
7709	u32 rar_low, rar_high;
7710	struct e1000_hw *hw = &adapter->hw;
7711
7712	/* HW expects these in little endian so we reverse the byte order
7713	 * from network order (big endian) to little endian
7714	 */
7715	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7716		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7717	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7718
7719	/* Indicate to hardware the Address is Valid. */
7720	rar_high |= E1000_RAH_AV;
7721
7722	if (hw->mac.type == e1000_82575)
7723		rar_high |= E1000_RAH_POOL_1 * qsel;
7724	else
7725		rar_high |= E1000_RAH_POOL_1 << qsel;
7726
7727	wr32(E1000_RAL(index), rar_low);
7728	wrfl();
7729	wr32(E1000_RAH(index), rar_high);
7730	wrfl();
7731}
7732
7733static int igb_set_vf_mac(struct igb_adapter *adapter,
7734			  int vf, unsigned char *mac_addr)
7735{
7736	struct e1000_hw *hw = &adapter->hw;
7737	/* VF MAC addresses start at end of receive addresses and moves
7738	 * towards the first, as a result a collision should not be possible
7739	 */
7740	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7741
7742	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7743
7744	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7745
7746	return 0;
7747}
7748
7749static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7750{
7751	struct igb_adapter *adapter = netdev_priv(netdev);
7752	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7753		return -EINVAL;
7754	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7755	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7756	dev_info(&adapter->pdev->dev,
7757		 "Reload the VF driver to make this change effective.");
7758	if (test_bit(__IGB_DOWN, &adapter->state)) {
7759		dev_warn(&adapter->pdev->dev,
7760			 "The VF MAC address has been set, but the PF device is not up.\n");
7761		dev_warn(&adapter->pdev->dev,
7762			 "Bring the PF device up before attempting to use the VF device.\n");
7763	}
7764	return igb_set_vf_mac(adapter, vf, mac);
7765}
7766
7767static int igb_link_mbps(int internal_link_speed)
7768{
7769	switch (internal_link_speed) {
7770	case SPEED_100:
7771		return 100;
7772	case SPEED_1000:
7773		return 1000;
7774	default:
7775		return 0;
7776	}
7777}
7778
7779static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7780				  int link_speed)
7781{
7782	int rf_dec, rf_int;
7783	u32 bcnrc_val;
7784
7785	if (tx_rate != 0) {
7786		/* Calculate the rate factor values to set */
7787		rf_int = link_speed / tx_rate;
7788		rf_dec = (link_speed - (rf_int * tx_rate));
7789		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7790			 tx_rate;
7791
7792		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7793		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7794			      E1000_RTTBCNRC_RF_INT_MASK);
7795		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7796	} else {
7797		bcnrc_val = 0;
7798	}
7799
7800	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7801	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7802	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7803	 */
7804	wr32(E1000_RTTBCNRM, 0x14);
7805	wr32(E1000_RTTBCNRC, bcnrc_val);
7806}
7807
7808static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7809{
7810	int actual_link_speed, i;
7811	bool reset_rate = false;
7812
7813	/* VF TX rate limit was not set or not supported */
7814	if ((adapter->vf_rate_link_speed == 0) ||
7815	    (adapter->hw.mac.type != e1000_82576))
7816		return;
7817
7818	actual_link_speed = igb_link_mbps(adapter->link_speed);
7819	if (actual_link_speed != adapter->vf_rate_link_speed) {
7820		reset_rate = true;
7821		adapter->vf_rate_link_speed = 0;
7822		dev_info(&adapter->pdev->dev,
7823			 "Link speed has been changed. VF Transmit rate is disabled\n");
7824	}
7825
7826	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7827		if (reset_rate)
7828			adapter->vf_data[i].tx_rate = 0;
7829
7830		igb_set_vf_rate_limit(&adapter->hw, i,
7831				      adapter->vf_data[i].tx_rate,
7832				      actual_link_speed);
7833	}
7834}
7835
7836static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7837{
7838	struct igb_adapter *adapter = netdev_priv(netdev);
7839	struct e1000_hw *hw = &adapter->hw;
7840	int actual_link_speed;
7841
7842	if (hw->mac.type != e1000_82576)
7843		return -EOPNOTSUPP;
7844
7845	actual_link_speed = igb_link_mbps(adapter->link_speed);
7846	if ((vf >= adapter->vfs_allocated_count) ||
7847	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7848	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7849		return -EINVAL;
7850
7851	adapter->vf_rate_link_speed = actual_link_speed;
7852	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7853	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7854
7855	return 0;
7856}
7857
7858static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7859				   bool setting)
7860{
7861	struct igb_adapter *adapter = netdev_priv(netdev);
7862	struct e1000_hw *hw = &adapter->hw;
7863	u32 reg_val, reg_offset;
7864
7865	if (!adapter->vfs_allocated_count)
7866		return -EOPNOTSUPP;
7867
7868	if (vf >= adapter->vfs_allocated_count)
7869		return -EINVAL;
7870
7871	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7872	reg_val = rd32(reg_offset);
7873	if (setting)
7874		reg_val |= ((1 << vf) |
7875			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7876	else
7877		reg_val &= ~((1 << vf) |
7878			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7879	wr32(reg_offset, reg_val);
7880
7881	adapter->vf_data[vf].spoofchk_enabled = setting;
7882	return E1000_SUCCESS;
7883}
7884
7885static int igb_ndo_get_vf_config(struct net_device *netdev,
7886				 int vf, struct ifla_vf_info *ivi)
7887{
7888	struct igb_adapter *adapter = netdev_priv(netdev);
7889	if (vf >= adapter->vfs_allocated_count)
7890		return -EINVAL;
7891	ivi->vf = vf;
7892	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7893	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7894	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7895	ivi->qos = adapter->vf_data[vf].pf_qos;
7896	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7897	return 0;
7898}
7899
7900static void igb_vmm_control(struct igb_adapter *adapter)
7901{
7902	struct e1000_hw *hw = &adapter->hw;
7903	u32 reg;
7904
7905	switch (hw->mac.type) {
7906	case e1000_82575:
7907	case e1000_i210:
7908	case e1000_i211:
7909	case e1000_i354:
7910	default:
7911		/* replication is not supported for 82575 */
7912		return;
7913	case e1000_82576:
7914		/* notify HW that the MAC is adding vlan tags */
7915		reg = rd32(E1000_DTXCTL);
7916		reg |= E1000_DTXCTL_VLAN_ADDED;
7917		wr32(E1000_DTXCTL, reg);
7918	case e1000_82580:
7919		/* enable replication vlan tag stripping */
7920		reg = rd32(E1000_RPLOLR);
7921		reg |= E1000_RPLOLR_STRVLAN;
7922		wr32(E1000_RPLOLR, reg);
7923	case e1000_i350:
7924		/* none of the above registers are supported by i350 */
7925		break;
7926	}
7927
7928	if (adapter->vfs_allocated_count) {
7929		igb_vmdq_set_loopback_pf(hw, true);
7930		igb_vmdq_set_replication_pf(hw, true);
7931		igb_vmdq_set_anti_spoofing_pf(hw, true,
7932					      adapter->vfs_allocated_count);
7933	} else {
7934		igb_vmdq_set_loopback_pf(hw, false);
7935		igb_vmdq_set_replication_pf(hw, false);
7936	}
7937}
7938
7939static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7940{
7941	struct e1000_hw *hw = &adapter->hw;
7942	u32 dmac_thr;
7943	u16 hwm;
7944
7945	if (hw->mac.type > e1000_82580) {
7946		if (adapter->flags & IGB_FLAG_DMAC) {
7947			u32 reg;
7948
7949			/* force threshold to 0. */
7950			wr32(E1000_DMCTXTH, 0);
7951
7952			/* DMA Coalescing high water mark needs to be greater
7953			 * than the Rx threshold. Set hwm to PBA - max frame
7954			 * size in 16B units, capping it at PBA - 6KB.
7955			 */
7956			hwm = 64 * pba - adapter->max_frame_size / 16;
7957			if (hwm < 64 * (pba - 6))
7958				hwm = 64 * (pba - 6);
7959			reg = rd32(E1000_FCRTC);
7960			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7961			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7962				& E1000_FCRTC_RTH_COAL_MASK);
7963			wr32(E1000_FCRTC, reg);
7964
7965			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7966			 * frame size, capping it at PBA - 10KB.
7967			 */
7968			dmac_thr = pba - adapter->max_frame_size / 512;
7969			if (dmac_thr < pba - 10)
7970				dmac_thr = pba - 10;
7971			reg = rd32(E1000_DMACR);
7972			reg &= ~E1000_DMACR_DMACTHR_MASK;
7973			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7974				& E1000_DMACR_DMACTHR_MASK);
7975
7976			/* transition to L0x or L1 if available..*/
7977			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7978
7979			/* watchdog timer= +-1000 usec in 32usec intervals */
7980			reg |= (1000 >> 5);
7981
7982			/* Disable BMC-to-OS Watchdog Enable */
7983			if (hw->mac.type != e1000_i354)
7984				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7985
7986			wr32(E1000_DMACR, reg);
7987
7988			/* no lower threshold to disable
7989			 * coalescing(smart fifb)-UTRESH=0
7990			 */
7991			wr32(E1000_DMCRTRH, 0);
7992
7993			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7994
7995			wr32(E1000_DMCTLX, reg);
7996
7997			/* free space in tx packet buffer to wake from
7998			 * DMA coal
7999			 */
8000			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8001			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8002
8003			/* make low power state decision controlled
8004			 * by DMA coal
8005			 */
8006			reg = rd32(E1000_PCIEMISC);
8007			reg &= ~E1000_PCIEMISC_LX_DECISION;
8008			wr32(E1000_PCIEMISC, reg);
8009		} /* endif adapter->dmac is not disabled */
8010	} else if (hw->mac.type == e1000_82580) {
8011		u32 reg = rd32(E1000_PCIEMISC);
8012		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8013		wr32(E1000_DMACR, 0);
8014	}
8015}
8016
8017/**
8018 *  igb_read_i2c_byte - Reads 8 bit word over I2C
8019 *  @hw: pointer to hardware structure
8020 *  @byte_offset: byte offset to read
8021 *  @dev_addr: device address
8022 *  @data: value read
8023 *
8024 *  Performs byte read operation over I2C interface at
8025 *  a specified device address.
8026 **/
8027s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8028		      u8 dev_addr, u8 *data)
8029{
8030	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8031	struct i2c_client *this_client = adapter->i2c_client;
8032	s32 status;
8033	u16 swfw_mask = 0;
8034
8035	if (!this_client)
8036		return E1000_ERR_I2C;
8037
8038	swfw_mask = E1000_SWFW_PHY0_SM;
8039
8040	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
8041	    != E1000_SUCCESS)
8042		return E1000_ERR_SWFW_SYNC;
8043
8044	status = i2c_smbus_read_byte_data(this_client, byte_offset);
8045	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8046
8047	if (status < 0)
8048		return E1000_ERR_I2C;
8049	else {
8050		*data = status;
8051		return E1000_SUCCESS;
8052	}
8053}
8054
8055/**
8056 *  igb_write_i2c_byte - Writes 8 bit word over I2C
8057 *  @hw: pointer to hardware structure
8058 *  @byte_offset: byte offset to write
8059 *  @dev_addr: device address
8060 *  @data: value to write
8061 *
8062 *  Performs byte write operation over I2C interface at
8063 *  a specified device address.
8064 **/
8065s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8066		       u8 dev_addr, u8 data)
8067{
8068	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8069	struct i2c_client *this_client = adapter->i2c_client;
8070	s32 status;
8071	u16 swfw_mask = E1000_SWFW_PHY0_SM;
8072
8073	if (!this_client)
8074		return E1000_ERR_I2C;
8075
8076	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
8077		return E1000_ERR_SWFW_SYNC;
8078	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8079	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8080
8081	if (status)
8082		return E1000_ERR_I2C;
8083	else
8084		return E1000_SUCCESS;
8085
8086}
8087
8088int igb_reinit_queues(struct igb_adapter *adapter)
8089{
8090	struct net_device *netdev = adapter->netdev;
8091	struct pci_dev *pdev = adapter->pdev;
8092	int err = 0;
8093
8094	if (netif_running(netdev))
8095		igb_close(netdev);
8096
8097	igb_reset_interrupt_capability(adapter);
8098
8099	if (igb_init_interrupt_scheme(adapter, true)) {
8100		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8101		return -ENOMEM;
8102	}
8103
8104	if (netif_running(netdev))
8105		err = igb_open(netdev);
8106
8107	return err;
8108}
8109/* igb_main.c */
8110