igb_main.c revision 5ac6f91d39e0884813dc010e14552143cd1d0d8b
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2013 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
33#include <linux/bitops.h>
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/netdevice.h>
37#include <linux/ipv6.h>
38#include <linux/slab.h>
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
41#include <linux/net_tstamp.h>
42#include <linux/mii.h>
43#include <linux/ethtool.h>
44#include <linux/if.h>
45#include <linux/if_vlan.h>
46#include <linux/pci.h>
47#include <linux/pci-aspm.h>
48#include <linux/delay.h>
49#include <linux/interrupt.h>
50#include <linux/ip.h>
51#include <linux/tcp.h>
52#include <linux/sctp.h>
53#include <linux/if_ether.h>
54#include <linux/aer.h>
55#include <linux/prefetch.h>
56#include <linux/pm_runtime.h>
57#ifdef CONFIG_IGB_DCA
58#include <linux/dca.h>
59#endif
60#include <linux/i2c.h>
61#include "igb.h"
62
63#define MAJ 4
64#define MIN 1
65#define BUILD 2
66#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67__stringify(BUILD) "-k"
68char igb_driver_name[] = "igb";
69char igb_driver_version[] = DRV_VERSION;
70static const char igb_driver_string[] =
71				"Intel(R) Gigabit Ethernet Network Driver";
72static const char igb_copyright[] =
73				"Copyright (c) 2007-2013 Intel Corporation.";
74
75static const struct e1000_info *igb_info_tbl[] = {
76	[board_82575] = &e1000_82575_info,
77};
78
79static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
99	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
104	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
105	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
106	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
107	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
108	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
109	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
110	/* required last entry */
111	{0, }
112};
113
114MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
115
116void igb_reset(struct igb_adapter *);
117static int igb_setup_all_tx_resources(struct igb_adapter *);
118static int igb_setup_all_rx_resources(struct igb_adapter *);
119static void igb_free_all_tx_resources(struct igb_adapter *);
120static void igb_free_all_rx_resources(struct igb_adapter *);
121static void igb_setup_mrqc(struct igb_adapter *);
122static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123static void igb_remove(struct pci_dev *pdev);
124static int igb_sw_init(struct igb_adapter *);
125static int igb_open(struct net_device *);
126static int igb_close(struct net_device *);
127static void igb_configure(struct igb_adapter *);
128static void igb_configure_tx(struct igb_adapter *);
129static void igb_configure_rx(struct igb_adapter *);
130static void igb_clean_all_tx_rings(struct igb_adapter *);
131static void igb_clean_all_rx_rings(struct igb_adapter *);
132static void igb_clean_tx_ring(struct igb_ring *);
133static void igb_clean_rx_ring(struct igb_ring *);
134static void igb_set_rx_mode(struct net_device *);
135static void igb_update_phy_info(unsigned long);
136static void igb_watchdog(unsigned long);
137static void igb_watchdog_task(struct work_struct *);
138static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140						 struct rtnl_link_stats64 *stats);
141static int igb_change_mtu(struct net_device *, int);
142static int igb_set_mac(struct net_device *, void *);
143static void igb_set_uta(struct igb_adapter *adapter);
144static irqreturn_t igb_intr(int irq, void *);
145static irqreturn_t igb_intr_msi(int irq, void *);
146static irqreturn_t igb_msix_other(int irq, void *);
147static irqreturn_t igb_msix_ring(int irq, void *);
148#ifdef CONFIG_IGB_DCA
149static void igb_update_dca(struct igb_q_vector *);
150static void igb_setup_dca(struct igb_adapter *);
151#endif /* CONFIG_IGB_DCA */
152static int igb_poll(struct napi_struct *, int);
153static bool igb_clean_tx_irq(struct igb_q_vector *);
154static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156static void igb_tx_timeout(struct net_device *);
157static void igb_reset_task(struct work_struct *);
158static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
159static int igb_vlan_rx_add_vid(struct net_device *, u16);
160static int igb_vlan_rx_kill_vid(struct net_device *, u16);
161static void igb_restore_vlan(struct igb_adapter *);
162static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
163static void igb_ping_all_vfs(struct igb_adapter *);
164static void igb_msg_task(struct igb_adapter *);
165static void igb_vmm_control(struct igb_adapter *);
166static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
167static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
168static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
169static int igb_ndo_set_vf_vlan(struct net_device *netdev,
170			       int vf, u16 vlan, u8 qos);
171static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
172static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
173				 struct ifla_vf_info *ivi);
174static void igb_check_vf_rate_limit(struct igb_adapter *);
175
176#ifdef CONFIG_PCI_IOV
177static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
179#endif
180
181#ifdef CONFIG_PM
182#ifdef CONFIG_PM_SLEEP
183static int igb_suspend(struct device *);
184#endif
185static int igb_resume(struct device *);
186#ifdef CONFIG_PM_RUNTIME
187static int igb_runtime_suspend(struct device *dev);
188static int igb_runtime_resume(struct device *dev);
189static int igb_runtime_idle(struct device *dev);
190#endif
191static const struct dev_pm_ops igb_pm_ops = {
192	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
193	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
194			igb_runtime_idle)
195};
196#endif
197static void igb_shutdown(struct pci_dev *);
198static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
199#ifdef CONFIG_IGB_DCA
200static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
201static struct notifier_block dca_notifier = {
202	.notifier_call	= igb_notify_dca,
203	.next		= NULL,
204	.priority	= 0
205};
206#endif
207#ifdef CONFIG_NET_POLL_CONTROLLER
208/* for netdump / net console */
209static void igb_netpoll(struct net_device *);
210#endif
211#ifdef CONFIG_PCI_IOV
212static unsigned int max_vfs = 0;
213module_param(max_vfs, uint, 0);
214MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
215                 "per physical function");
216#endif /* CONFIG_PCI_IOV */
217
218static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
219		     pci_channel_state_t);
220static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
221static void igb_io_resume(struct pci_dev *);
222
223static const struct pci_error_handlers igb_err_handler = {
224	.error_detected = igb_io_error_detected,
225	.slot_reset = igb_io_slot_reset,
226	.resume = igb_io_resume,
227};
228
229static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
230
231static struct pci_driver igb_driver = {
232	.name     = igb_driver_name,
233	.id_table = igb_pci_tbl,
234	.probe    = igb_probe,
235	.remove   = igb_remove,
236#ifdef CONFIG_PM
237	.driver.pm = &igb_pm_ops,
238#endif
239	.shutdown = igb_shutdown,
240	.sriov_configure = igb_pci_sriov_configure,
241	.err_handler = &igb_err_handler
242};
243
244MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
245MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
246MODULE_LICENSE("GPL");
247MODULE_VERSION(DRV_VERSION);
248
249#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
250static int debug = -1;
251module_param(debug, int, 0);
252MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
253
254struct igb_reg_info {
255	u32 ofs;
256	char *name;
257};
258
259static const struct igb_reg_info igb_reg_info_tbl[] = {
260
261	/* General Registers */
262	{E1000_CTRL, "CTRL"},
263	{E1000_STATUS, "STATUS"},
264	{E1000_CTRL_EXT, "CTRL_EXT"},
265
266	/* Interrupt Registers */
267	{E1000_ICR, "ICR"},
268
269	/* RX Registers */
270	{E1000_RCTL, "RCTL"},
271	{E1000_RDLEN(0), "RDLEN"},
272	{E1000_RDH(0), "RDH"},
273	{E1000_RDT(0), "RDT"},
274	{E1000_RXDCTL(0), "RXDCTL"},
275	{E1000_RDBAL(0), "RDBAL"},
276	{E1000_RDBAH(0), "RDBAH"},
277
278	/* TX Registers */
279	{E1000_TCTL, "TCTL"},
280	{E1000_TDBAL(0), "TDBAL"},
281	{E1000_TDBAH(0), "TDBAH"},
282	{E1000_TDLEN(0), "TDLEN"},
283	{E1000_TDH(0), "TDH"},
284	{E1000_TDT(0), "TDT"},
285	{E1000_TXDCTL(0), "TXDCTL"},
286	{E1000_TDFH, "TDFH"},
287	{E1000_TDFT, "TDFT"},
288	{E1000_TDFHS, "TDFHS"},
289	{E1000_TDFPC, "TDFPC"},
290
291	/* List Terminator */
292	{}
293};
294
295/*
296 * igb_regdump - register printout routine
297 */
298static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
299{
300	int n = 0;
301	char rname[16];
302	u32 regs[8];
303
304	switch (reginfo->ofs) {
305	case E1000_RDLEN(0):
306		for (n = 0; n < 4; n++)
307			regs[n] = rd32(E1000_RDLEN(n));
308		break;
309	case E1000_RDH(0):
310		for (n = 0; n < 4; n++)
311			regs[n] = rd32(E1000_RDH(n));
312		break;
313	case E1000_RDT(0):
314		for (n = 0; n < 4; n++)
315			regs[n] = rd32(E1000_RDT(n));
316		break;
317	case E1000_RXDCTL(0):
318		for (n = 0; n < 4; n++)
319			regs[n] = rd32(E1000_RXDCTL(n));
320		break;
321	case E1000_RDBAL(0):
322		for (n = 0; n < 4; n++)
323			regs[n] = rd32(E1000_RDBAL(n));
324		break;
325	case E1000_RDBAH(0):
326		for (n = 0; n < 4; n++)
327			regs[n] = rd32(E1000_RDBAH(n));
328		break;
329	case E1000_TDBAL(0):
330		for (n = 0; n < 4; n++)
331			regs[n] = rd32(E1000_RDBAL(n));
332		break;
333	case E1000_TDBAH(0):
334		for (n = 0; n < 4; n++)
335			regs[n] = rd32(E1000_TDBAH(n));
336		break;
337	case E1000_TDLEN(0):
338		for (n = 0; n < 4; n++)
339			regs[n] = rd32(E1000_TDLEN(n));
340		break;
341	case E1000_TDH(0):
342		for (n = 0; n < 4; n++)
343			regs[n] = rd32(E1000_TDH(n));
344		break;
345	case E1000_TDT(0):
346		for (n = 0; n < 4; n++)
347			regs[n] = rd32(E1000_TDT(n));
348		break;
349	case E1000_TXDCTL(0):
350		for (n = 0; n < 4; n++)
351			regs[n] = rd32(E1000_TXDCTL(n));
352		break;
353	default:
354		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
355		return;
356	}
357
358	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
359	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
360		regs[2], regs[3]);
361}
362
363/*
364 * igb_dump - Print registers, tx-rings and rx-rings
365 */
366static void igb_dump(struct igb_adapter *adapter)
367{
368	struct net_device *netdev = adapter->netdev;
369	struct e1000_hw *hw = &adapter->hw;
370	struct igb_reg_info *reginfo;
371	struct igb_ring *tx_ring;
372	union e1000_adv_tx_desc *tx_desc;
373	struct my_u0 { u64 a; u64 b; } *u0;
374	struct igb_ring *rx_ring;
375	union e1000_adv_rx_desc *rx_desc;
376	u32 staterr;
377	u16 i, n;
378
379	if (!netif_msg_hw(adapter))
380		return;
381
382	/* Print netdevice Info */
383	if (netdev) {
384		dev_info(&adapter->pdev->dev, "Net device Info\n");
385		pr_info("Device Name     state            trans_start      "
386			"last_rx\n");
387		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
388			netdev->state, netdev->trans_start, netdev->last_rx);
389	}
390
391	/* Print Registers */
392	dev_info(&adapter->pdev->dev, "Register Dump\n");
393	pr_info(" Register Name   Value\n");
394	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395	     reginfo->name; reginfo++) {
396		igb_regdump(hw, reginfo);
397	}
398
399	/* Print TX Ring Summary */
400	if (!netdev || !netif_running(netdev))
401		goto exit;
402
403	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
404	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
405	for (n = 0; n < adapter->num_tx_queues; n++) {
406		struct igb_tx_buffer *buffer_info;
407		tx_ring = adapter->tx_ring[n];
408		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
409		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410			n, tx_ring->next_to_use, tx_ring->next_to_clean,
411			(u64)dma_unmap_addr(buffer_info, dma),
412			dma_unmap_len(buffer_info, len),
413			buffer_info->next_to_watch,
414			(u64)buffer_info->time_stamp);
415	}
416
417	/* Print TX Rings */
418	if (!netif_msg_tx_done(adapter))
419		goto rx_ring_summary;
420
421	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422
423	/* Transmit Descriptor Formats
424	 *
425	 * Advanced Transmit Descriptor
426	 *   +--------------------------------------------------------------+
427	 * 0 |         Buffer Address [63:0]                                |
428	 *   +--------------------------------------------------------------+
429	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
430	 *   +--------------------------------------------------------------+
431	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
432	 */
433
434	for (n = 0; n < adapter->num_tx_queues; n++) {
435		tx_ring = adapter->tx_ring[n];
436		pr_info("------------------------------------\n");
437		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438		pr_info("------------------------------------\n");
439		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
440			"[bi->dma       ] leng  ntw timestamp        "
441			"bi->skb\n");
442
443		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
444			const char *next_desc;
445			struct igb_tx_buffer *buffer_info;
446			tx_desc = IGB_TX_DESC(tx_ring, i);
447			buffer_info = &tx_ring->tx_buffer_info[i];
448			u0 = (struct my_u0 *)tx_desc;
449			if (i == tx_ring->next_to_use &&
450			    i == tx_ring->next_to_clean)
451				next_desc = " NTC/U";
452			else if (i == tx_ring->next_to_use)
453				next_desc = " NTU";
454			else if (i == tx_ring->next_to_clean)
455				next_desc = " NTC";
456			else
457				next_desc = "";
458
459			pr_info("T [0x%03X]    %016llX %016llX %016llX"
460				" %04X  %p %016llX %p%s\n", i,
461				le64_to_cpu(u0->a),
462				le64_to_cpu(u0->b),
463				(u64)dma_unmap_addr(buffer_info, dma),
464				dma_unmap_len(buffer_info, len),
465				buffer_info->next_to_watch,
466				(u64)buffer_info->time_stamp,
467				buffer_info->skb, next_desc);
468
469			if (netif_msg_pktdata(adapter) && buffer_info->skb)
470				print_hex_dump(KERN_INFO, "",
471					DUMP_PREFIX_ADDRESS,
472					16, 1, buffer_info->skb->data,
473					dma_unmap_len(buffer_info, len),
474					true);
475		}
476	}
477
478	/* Print RX Rings Summary */
479rx_ring_summary:
480	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
481	pr_info("Queue [NTU] [NTC]\n");
482	for (n = 0; n < adapter->num_rx_queues; n++) {
483		rx_ring = adapter->rx_ring[n];
484		pr_info(" %5d %5X %5X\n",
485			n, rx_ring->next_to_use, rx_ring->next_to_clean);
486	}
487
488	/* Print RX Rings */
489	if (!netif_msg_rx_status(adapter))
490		goto exit;
491
492	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
493
494	/* Advanced Receive Descriptor (Read) Format
495	 *    63                                           1        0
496	 *    +-----------------------------------------------------+
497	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
498	 *    +----------------------------------------------+------+
499	 *  8 |       Header Buffer Address [63:1]           |  DD  |
500	 *    +-----------------------------------------------------+
501	 *
502	 *
503	 * Advanced Receive Descriptor (Write-Back) Format
504	 *
505	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
506	 *   +------------------------------------------------------+
507	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
508	 *   | Checksum   Ident  |   |           |    | Type | Type |
509	 *   +------------------------------------------------------+
510	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
511	 *   +------------------------------------------------------+
512	 *   63       48 47    32 31            20 19               0
513	 */
514
515	for (n = 0; n < adapter->num_rx_queues; n++) {
516		rx_ring = adapter->rx_ring[n];
517		pr_info("------------------------------------\n");
518		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
519		pr_info("------------------------------------\n");
520		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
521			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
522		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
523			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
524
525		for (i = 0; i < rx_ring->count; i++) {
526			const char *next_desc;
527			struct igb_rx_buffer *buffer_info;
528			buffer_info = &rx_ring->rx_buffer_info[i];
529			rx_desc = IGB_RX_DESC(rx_ring, i);
530			u0 = (struct my_u0 *)rx_desc;
531			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
532
533			if (i == rx_ring->next_to_use)
534				next_desc = " NTU";
535			else if (i == rx_ring->next_to_clean)
536				next_desc = " NTC";
537			else
538				next_desc = "";
539
540			if (staterr & E1000_RXD_STAT_DD) {
541				/* Descriptor Done */
542				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
543					"RWB", i,
544					le64_to_cpu(u0->a),
545					le64_to_cpu(u0->b),
546					next_desc);
547			} else {
548				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
549					"R  ", i,
550					le64_to_cpu(u0->a),
551					le64_to_cpu(u0->b),
552					(u64)buffer_info->dma,
553					next_desc);
554
555				if (netif_msg_pktdata(adapter) &&
556				    buffer_info->dma && buffer_info->page) {
557					print_hex_dump(KERN_INFO, "",
558					  DUMP_PREFIX_ADDRESS,
559					  16, 1,
560					  page_address(buffer_info->page) +
561						      buffer_info->page_offset,
562					  IGB_RX_BUFSZ, true);
563				}
564			}
565		}
566	}
567
568exit:
569	return;
570}
571
572/*  igb_get_i2c_data - Reads the I2C SDA data bit
573 *  @hw: pointer to hardware structure
574 *  @i2cctl: Current value of I2CCTL register
575 *
576 *  Returns the I2C data bit value
577 */
578static int igb_get_i2c_data(void *data)
579{
580	struct igb_adapter *adapter = (struct igb_adapter *)data;
581	struct e1000_hw *hw = &adapter->hw;
582	s32 i2cctl = rd32(E1000_I2CPARAMS);
583
584	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
585}
586
587/* igb_set_i2c_data - Sets the I2C data bit
588 *  @data: pointer to hardware structure
589 *  @state: I2C data value (0 or 1) to set
590 *
591 *  Sets the I2C data bit
592 */
593static void igb_set_i2c_data(void *data, int state)
594{
595	struct igb_adapter *adapter = (struct igb_adapter *)data;
596	struct e1000_hw *hw = &adapter->hw;
597	s32 i2cctl = rd32(E1000_I2CPARAMS);
598
599	if (state)
600		i2cctl |= E1000_I2C_DATA_OUT;
601	else
602		i2cctl &= ~E1000_I2C_DATA_OUT;
603
604	i2cctl &= ~E1000_I2C_DATA_OE_N;
605	i2cctl |= E1000_I2C_CLK_OE_N;
606	wr32(E1000_I2CPARAMS, i2cctl);
607	wrfl();
608
609}
610
611/* igb_set_i2c_clk - Sets the I2C SCL clock
612 *  @data: pointer to hardware structure
613 *  @state: state to set clock
614 *
615 *  Sets the I2C clock line to state
616 */
617static void igb_set_i2c_clk(void *data, int state)
618{
619	struct igb_adapter *adapter = (struct igb_adapter *)data;
620	struct e1000_hw *hw = &adapter->hw;
621	s32 i2cctl = rd32(E1000_I2CPARAMS);
622
623	if (state) {
624		i2cctl |= E1000_I2C_CLK_OUT;
625		i2cctl &= ~E1000_I2C_CLK_OE_N;
626	} else {
627		i2cctl &= ~E1000_I2C_CLK_OUT;
628		i2cctl &= ~E1000_I2C_CLK_OE_N;
629	}
630	wr32(E1000_I2CPARAMS, i2cctl);
631	wrfl();
632}
633
634/* igb_get_i2c_clk - Gets the I2C SCL clock state
635 *  @data: pointer to hardware structure
636 *
637 *  Gets the I2C clock state
638 */
639static int igb_get_i2c_clk(void *data)
640{
641	struct igb_adapter *adapter = (struct igb_adapter *)data;
642	struct e1000_hw *hw = &adapter->hw;
643	s32 i2cctl = rd32(E1000_I2CPARAMS);
644
645	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
646}
647
648static const struct i2c_algo_bit_data igb_i2c_algo = {
649	.setsda		= igb_set_i2c_data,
650	.setscl		= igb_set_i2c_clk,
651	.getsda		= igb_get_i2c_data,
652	.getscl		= igb_get_i2c_clk,
653	.udelay		= 5,
654	.timeout	= 20,
655};
656
657/**
658 * igb_get_hw_dev - return device
659 * used by hardware layer to print debugging information
660 **/
661struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
662{
663	struct igb_adapter *adapter = hw->back;
664	return adapter->netdev;
665}
666
667/**
668 * igb_init_module - Driver Registration Routine
669 *
670 * igb_init_module is the first routine called when the driver is
671 * loaded. All it does is register with the PCI subsystem.
672 **/
673static int __init igb_init_module(void)
674{
675	int ret;
676	pr_info("%s - version %s\n",
677	       igb_driver_string, igb_driver_version);
678
679	pr_info("%s\n", igb_copyright);
680
681#ifdef CONFIG_IGB_DCA
682	dca_register_notify(&dca_notifier);
683#endif
684	ret = pci_register_driver(&igb_driver);
685	return ret;
686}
687
688module_init(igb_init_module);
689
690/**
691 * igb_exit_module - Driver Exit Cleanup Routine
692 *
693 * igb_exit_module is called just before the driver is removed
694 * from memory.
695 **/
696static void __exit igb_exit_module(void)
697{
698#ifdef CONFIG_IGB_DCA
699	dca_unregister_notify(&dca_notifier);
700#endif
701	pci_unregister_driver(&igb_driver);
702}
703
704module_exit(igb_exit_module);
705
706#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
707/**
708 * igb_cache_ring_register - Descriptor ring to register mapping
709 * @adapter: board private structure to initialize
710 *
711 * Once we know the feature-set enabled for the device, we'll cache
712 * the register offset the descriptor ring is assigned to.
713 **/
714static void igb_cache_ring_register(struct igb_adapter *adapter)
715{
716	int i = 0, j = 0;
717	u32 rbase_offset = adapter->vfs_allocated_count;
718
719	switch (adapter->hw.mac.type) {
720	case e1000_82576:
721		/* The queues are allocated for virtualization such that VF 0
722		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
723		 * In order to avoid collision we start at the first free queue
724		 * and continue consuming queues in the same sequence
725		 */
726		if (adapter->vfs_allocated_count) {
727			for (; i < adapter->rss_queues; i++)
728				adapter->rx_ring[i]->reg_idx = rbase_offset +
729				                               Q_IDX_82576(i);
730		}
731	case e1000_82575:
732	case e1000_82580:
733	case e1000_i350:
734	case e1000_i210:
735	case e1000_i211:
736	default:
737		for (; i < adapter->num_rx_queues; i++)
738			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
739		for (; j < adapter->num_tx_queues; j++)
740			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
741		break;
742	}
743}
744
745/**
746 *  igb_write_ivar - configure ivar for given MSI-X vector
747 *  @hw: pointer to the HW structure
748 *  @msix_vector: vector number we are allocating to a given ring
749 *  @index: row index of IVAR register to write within IVAR table
750 *  @offset: column offset of in IVAR, should be multiple of 8
751 *
752 *  This function is intended to handle the writing of the IVAR register
753 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
754 *  each containing an cause allocation for an Rx and Tx ring, and a
755 *  variable number of rows depending on the number of queues supported.
756 **/
757static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
758			   int index, int offset)
759{
760	u32 ivar = array_rd32(E1000_IVAR0, index);
761
762	/* clear any bits that are currently set */
763	ivar &= ~((u32)0xFF << offset);
764
765	/* write vector and valid bit */
766	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
767
768	array_wr32(E1000_IVAR0, index, ivar);
769}
770
771#define IGB_N0_QUEUE -1
772static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
773{
774	struct igb_adapter *adapter = q_vector->adapter;
775	struct e1000_hw *hw = &adapter->hw;
776	int rx_queue = IGB_N0_QUEUE;
777	int tx_queue = IGB_N0_QUEUE;
778	u32 msixbm = 0;
779
780	if (q_vector->rx.ring)
781		rx_queue = q_vector->rx.ring->reg_idx;
782	if (q_vector->tx.ring)
783		tx_queue = q_vector->tx.ring->reg_idx;
784
785	switch (hw->mac.type) {
786	case e1000_82575:
787		/* The 82575 assigns vectors using a bitmask, which matches the
788		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
789		   or more queues to a vector, we write the appropriate bits
790		   into the MSIXBM register for that vector. */
791		if (rx_queue > IGB_N0_QUEUE)
792			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
793		if (tx_queue > IGB_N0_QUEUE)
794			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
795		if (!adapter->msix_entries && msix_vector == 0)
796			msixbm |= E1000_EIMS_OTHER;
797		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
798		q_vector->eims_value = msixbm;
799		break;
800	case e1000_82576:
801		/*
802		 * 82576 uses a table that essentially consists of 2 columns
803		 * with 8 rows.  The ordering is column-major so we use the
804		 * lower 3 bits as the row index, and the 4th bit as the
805		 * column offset.
806		 */
807		if (rx_queue > IGB_N0_QUEUE)
808			igb_write_ivar(hw, msix_vector,
809				       rx_queue & 0x7,
810				       (rx_queue & 0x8) << 1);
811		if (tx_queue > IGB_N0_QUEUE)
812			igb_write_ivar(hw, msix_vector,
813				       tx_queue & 0x7,
814				       ((tx_queue & 0x8) << 1) + 8);
815		q_vector->eims_value = 1 << msix_vector;
816		break;
817	case e1000_82580:
818	case e1000_i350:
819	case e1000_i210:
820	case e1000_i211:
821		/*
822		 * On 82580 and newer adapters the scheme is similar to 82576
823		 * however instead of ordering column-major we have things
824		 * ordered row-major.  So we traverse the table by using
825		 * bit 0 as the column offset, and the remaining bits as the
826		 * row index.
827		 */
828		if (rx_queue > IGB_N0_QUEUE)
829			igb_write_ivar(hw, msix_vector,
830				       rx_queue >> 1,
831				       (rx_queue & 0x1) << 4);
832		if (tx_queue > IGB_N0_QUEUE)
833			igb_write_ivar(hw, msix_vector,
834				       tx_queue >> 1,
835				       ((tx_queue & 0x1) << 4) + 8);
836		q_vector->eims_value = 1 << msix_vector;
837		break;
838	default:
839		BUG();
840		break;
841	}
842
843	/* add q_vector eims value to global eims_enable_mask */
844	adapter->eims_enable_mask |= q_vector->eims_value;
845
846	/* configure q_vector to set itr on first interrupt */
847	q_vector->set_itr = 1;
848}
849
850/**
851 * igb_configure_msix - Configure MSI-X hardware
852 *
853 * igb_configure_msix sets up the hardware to properly
854 * generate MSI-X interrupts.
855 **/
856static void igb_configure_msix(struct igb_adapter *adapter)
857{
858	u32 tmp;
859	int i, vector = 0;
860	struct e1000_hw *hw = &adapter->hw;
861
862	adapter->eims_enable_mask = 0;
863
864	/* set vector for other causes, i.e. link changes */
865	switch (hw->mac.type) {
866	case e1000_82575:
867		tmp = rd32(E1000_CTRL_EXT);
868		/* enable MSI-X PBA support*/
869		tmp |= E1000_CTRL_EXT_PBA_CLR;
870
871		/* Auto-Mask interrupts upon ICR read. */
872		tmp |= E1000_CTRL_EXT_EIAME;
873		tmp |= E1000_CTRL_EXT_IRCA;
874
875		wr32(E1000_CTRL_EXT, tmp);
876
877		/* enable msix_other interrupt */
878		array_wr32(E1000_MSIXBM(0), vector++,
879		                      E1000_EIMS_OTHER);
880		adapter->eims_other = E1000_EIMS_OTHER;
881
882		break;
883
884	case e1000_82576:
885	case e1000_82580:
886	case e1000_i350:
887	case e1000_i210:
888	case e1000_i211:
889		/* Turn on MSI-X capability first, or our settings
890		 * won't stick.  And it will take days to debug. */
891		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
892		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
893		                E1000_GPIE_NSICR);
894
895		/* enable msix_other interrupt */
896		adapter->eims_other = 1 << vector;
897		tmp = (vector++ | E1000_IVAR_VALID) << 8;
898
899		wr32(E1000_IVAR_MISC, tmp);
900		break;
901	default:
902		/* do nothing, since nothing else supports MSI-X */
903		break;
904	} /* switch (hw->mac.type) */
905
906	adapter->eims_enable_mask |= adapter->eims_other;
907
908	for (i = 0; i < adapter->num_q_vectors; i++)
909		igb_assign_vector(adapter->q_vector[i], vector++);
910
911	wrfl();
912}
913
914/**
915 * igb_request_msix - Initialize MSI-X interrupts
916 *
917 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
918 * kernel.
919 **/
920static int igb_request_msix(struct igb_adapter *adapter)
921{
922	struct net_device *netdev = adapter->netdev;
923	struct e1000_hw *hw = &adapter->hw;
924	int i, err = 0, vector = 0, free_vector = 0;
925
926	err = request_irq(adapter->msix_entries[vector].vector,
927	                  igb_msix_other, 0, netdev->name, adapter);
928	if (err)
929		goto err_out;
930
931	for (i = 0; i < adapter->num_q_vectors; i++) {
932		struct igb_q_vector *q_vector = adapter->q_vector[i];
933
934		vector++;
935
936		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
937
938		if (q_vector->rx.ring && q_vector->tx.ring)
939			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
940				q_vector->rx.ring->queue_index);
941		else if (q_vector->tx.ring)
942			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
943				q_vector->tx.ring->queue_index);
944		else if (q_vector->rx.ring)
945			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
946				q_vector->rx.ring->queue_index);
947		else
948			sprintf(q_vector->name, "%s-unused", netdev->name);
949
950		err = request_irq(adapter->msix_entries[vector].vector,
951		                  igb_msix_ring, 0, q_vector->name,
952		                  q_vector);
953		if (err)
954			goto err_free;
955	}
956
957	igb_configure_msix(adapter);
958	return 0;
959
960err_free:
961	/* free already assigned IRQs */
962	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
963
964	vector--;
965	for (i = 0; i < vector; i++) {
966		free_irq(adapter->msix_entries[free_vector++].vector,
967			 adapter->q_vector[i]);
968	}
969err_out:
970	return err;
971}
972
973static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
974{
975	if (adapter->msix_entries) {
976		pci_disable_msix(adapter->pdev);
977		kfree(adapter->msix_entries);
978		adapter->msix_entries = NULL;
979	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
980		pci_disable_msi(adapter->pdev);
981	}
982}
983
984/**
985 * igb_free_q_vector - Free memory allocated for specific interrupt vector
986 * @adapter: board private structure to initialize
987 * @v_idx: Index of vector to be freed
988 *
989 * This function frees the memory allocated to the q_vector.  In addition if
990 * NAPI is enabled it will delete any references to the NAPI struct prior
991 * to freeing the q_vector.
992 **/
993static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
994{
995	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
996
997	if (q_vector->tx.ring)
998		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
999
1000	if (q_vector->rx.ring)
1001		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1002
1003	adapter->q_vector[v_idx] = NULL;
1004	netif_napi_del(&q_vector->napi);
1005
1006	/*
1007	 * ixgbe_get_stats64() might access the rings on this vector,
1008	 * we must wait a grace period before freeing it.
1009	 */
1010	kfree_rcu(q_vector, rcu);
1011}
1012
1013/**
1014 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1015 * @adapter: board private structure to initialize
1016 *
1017 * This function frees the memory allocated to the q_vectors.  In addition if
1018 * NAPI is enabled it will delete any references to the NAPI struct prior
1019 * to freeing the q_vector.
1020 **/
1021static void igb_free_q_vectors(struct igb_adapter *adapter)
1022{
1023	int v_idx = adapter->num_q_vectors;
1024
1025	adapter->num_tx_queues = 0;
1026	adapter->num_rx_queues = 0;
1027	adapter->num_q_vectors = 0;
1028
1029	while (v_idx--)
1030		igb_free_q_vector(adapter, v_idx);
1031}
1032
1033/**
1034 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1035 *
1036 * This function resets the device so that it has 0 rx queues, tx queues, and
1037 * MSI-X interrupts allocated.
1038 */
1039static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1040{
1041	igb_free_q_vectors(adapter);
1042	igb_reset_interrupt_capability(adapter);
1043}
1044
1045/**
1046 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1047 *
1048 * Attempt to configure interrupts using the best available
1049 * capabilities of the hardware and kernel.
1050 **/
1051static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1052{
1053	int err;
1054	int numvecs, i;
1055
1056	if (!msix)
1057		goto msi_only;
1058
1059	/* Number of supported queues. */
1060	adapter->num_rx_queues = adapter->rss_queues;
1061	if (adapter->vfs_allocated_count)
1062		adapter->num_tx_queues = 1;
1063	else
1064		adapter->num_tx_queues = adapter->rss_queues;
1065
1066	/* start with one vector for every rx queue */
1067	numvecs = adapter->num_rx_queues;
1068
1069	/* if tx handler is separate add 1 for every tx queue */
1070	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1071		numvecs += adapter->num_tx_queues;
1072
1073	/* store the number of vectors reserved for queues */
1074	adapter->num_q_vectors = numvecs;
1075
1076	/* add 1 vector for link status interrupts */
1077	numvecs++;
1078	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1079					GFP_KERNEL);
1080
1081	if (!adapter->msix_entries)
1082		goto msi_only;
1083
1084	for (i = 0; i < numvecs; i++)
1085		adapter->msix_entries[i].entry = i;
1086
1087	err = pci_enable_msix(adapter->pdev,
1088			      adapter->msix_entries,
1089			      numvecs);
1090	if (err == 0)
1091		return;
1092
1093	igb_reset_interrupt_capability(adapter);
1094
1095	/* If we can't do MSI-X, try MSI */
1096msi_only:
1097#ifdef CONFIG_PCI_IOV
1098	/* disable SR-IOV for non MSI-X configurations */
1099	if (adapter->vf_data) {
1100		struct e1000_hw *hw = &adapter->hw;
1101		/* disable iov and allow time for transactions to clear */
1102		pci_disable_sriov(adapter->pdev);
1103		msleep(500);
1104
1105		kfree(adapter->vf_data);
1106		adapter->vf_data = NULL;
1107		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1108		wrfl();
1109		msleep(100);
1110		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1111	}
1112#endif
1113	adapter->vfs_allocated_count = 0;
1114	adapter->rss_queues = 1;
1115	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1116	adapter->num_rx_queues = 1;
1117	adapter->num_tx_queues = 1;
1118	adapter->num_q_vectors = 1;
1119	if (!pci_enable_msi(adapter->pdev))
1120		adapter->flags |= IGB_FLAG_HAS_MSI;
1121}
1122
1123static void igb_add_ring(struct igb_ring *ring,
1124			 struct igb_ring_container *head)
1125{
1126	head->ring = ring;
1127	head->count++;
1128}
1129
1130/**
1131 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1132 * @adapter: board private structure to initialize
1133 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1134 * @v_idx: index of vector in adapter struct
1135 * @txr_count: total number of Tx rings to allocate
1136 * @txr_idx: index of first Tx ring to allocate
1137 * @rxr_count: total number of Rx rings to allocate
1138 * @rxr_idx: index of first Rx ring to allocate
1139 *
1140 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1141 **/
1142static int igb_alloc_q_vector(struct igb_adapter *adapter,
1143			      int v_count, int v_idx,
1144			      int txr_count, int txr_idx,
1145			      int rxr_count, int rxr_idx)
1146{
1147	struct igb_q_vector *q_vector;
1148	struct igb_ring *ring;
1149	int ring_count, size;
1150
1151	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1152	if (txr_count > 1 || rxr_count > 1)
1153		return -ENOMEM;
1154
1155	ring_count = txr_count + rxr_count;
1156	size = sizeof(struct igb_q_vector) +
1157	       (sizeof(struct igb_ring) * ring_count);
1158
1159	/* allocate q_vector and rings */
1160	q_vector = kzalloc(size, GFP_KERNEL);
1161	if (!q_vector)
1162		return -ENOMEM;
1163
1164	/* initialize NAPI */
1165	netif_napi_add(adapter->netdev, &q_vector->napi,
1166		       igb_poll, 64);
1167
1168	/* tie q_vector and adapter together */
1169	adapter->q_vector[v_idx] = q_vector;
1170	q_vector->adapter = adapter;
1171
1172	/* initialize work limits */
1173	q_vector->tx.work_limit = adapter->tx_work_limit;
1174
1175	/* initialize ITR configuration */
1176	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1177	q_vector->itr_val = IGB_START_ITR;
1178
1179	/* initialize pointer to rings */
1180	ring = q_vector->ring;
1181
1182	if (txr_count) {
1183		/* assign generic ring traits */
1184		ring->dev = &adapter->pdev->dev;
1185		ring->netdev = adapter->netdev;
1186
1187		/* configure backlink on ring */
1188		ring->q_vector = q_vector;
1189
1190		/* update q_vector Tx values */
1191		igb_add_ring(ring, &q_vector->tx);
1192
1193		/* For 82575, context index must be unique per ring. */
1194		if (adapter->hw.mac.type == e1000_82575)
1195			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1196
1197		/* apply Tx specific ring traits */
1198		ring->count = adapter->tx_ring_count;
1199		ring->queue_index = txr_idx;
1200
1201		/* assign ring to adapter */
1202		adapter->tx_ring[txr_idx] = ring;
1203
1204		/* push pointer to next ring */
1205		ring++;
1206	}
1207
1208	if (rxr_count) {
1209		/* assign generic ring traits */
1210		ring->dev = &adapter->pdev->dev;
1211		ring->netdev = adapter->netdev;
1212
1213		/* configure backlink on ring */
1214		ring->q_vector = q_vector;
1215
1216		/* update q_vector Rx values */
1217		igb_add_ring(ring, &q_vector->rx);
1218
1219		/* set flag indicating ring supports SCTP checksum offload */
1220		if (adapter->hw.mac.type >= e1000_82576)
1221			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1222
1223		/*
1224		 * On i350, i210, and i211, loopback VLAN packets
1225		 * have the tag byte-swapped.
1226		 * */
1227		if (adapter->hw.mac.type >= e1000_i350)
1228			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1229
1230		/* apply Rx specific ring traits */
1231		ring->count = adapter->rx_ring_count;
1232		ring->queue_index = rxr_idx;
1233
1234		/* assign ring to adapter */
1235		adapter->rx_ring[rxr_idx] = ring;
1236	}
1237
1238	return 0;
1239}
1240
1241
1242/**
1243 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1244 * @adapter: board private structure to initialize
1245 *
1246 * We allocate one q_vector per queue interrupt.  If allocation fails we
1247 * return -ENOMEM.
1248 **/
1249static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1250{
1251	int q_vectors = adapter->num_q_vectors;
1252	int rxr_remaining = adapter->num_rx_queues;
1253	int txr_remaining = adapter->num_tx_queues;
1254	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1255	int err;
1256
1257	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1258		for (; rxr_remaining; v_idx++) {
1259			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1260						 0, 0, 1, rxr_idx);
1261
1262			if (err)
1263				goto err_out;
1264
1265			/* update counts and index */
1266			rxr_remaining--;
1267			rxr_idx++;
1268		}
1269	}
1270
1271	for (; v_idx < q_vectors; v_idx++) {
1272		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1273		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1274		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1275					 tqpv, txr_idx, rqpv, rxr_idx);
1276
1277		if (err)
1278			goto err_out;
1279
1280		/* update counts and index */
1281		rxr_remaining -= rqpv;
1282		txr_remaining -= tqpv;
1283		rxr_idx++;
1284		txr_idx++;
1285	}
1286
1287	return 0;
1288
1289err_out:
1290	adapter->num_tx_queues = 0;
1291	adapter->num_rx_queues = 0;
1292	adapter->num_q_vectors = 0;
1293
1294	while (v_idx--)
1295		igb_free_q_vector(adapter, v_idx);
1296
1297	return -ENOMEM;
1298}
1299
1300/**
1301 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1302 *
1303 * This function initializes the interrupts and allocates all of the queues.
1304 **/
1305static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1306{
1307	struct pci_dev *pdev = adapter->pdev;
1308	int err;
1309
1310	igb_set_interrupt_capability(adapter, msix);
1311
1312	err = igb_alloc_q_vectors(adapter);
1313	if (err) {
1314		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1315		goto err_alloc_q_vectors;
1316	}
1317
1318	igb_cache_ring_register(adapter);
1319
1320	return 0;
1321
1322err_alloc_q_vectors:
1323	igb_reset_interrupt_capability(adapter);
1324	return err;
1325}
1326
1327/**
1328 * igb_request_irq - initialize interrupts
1329 *
1330 * Attempts to configure interrupts using the best available
1331 * capabilities of the hardware and kernel.
1332 **/
1333static int igb_request_irq(struct igb_adapter *adapter)
1334{
1335	struct net_device *netdev = adapter->netdev;
1336	struct pci_dev *pdev = adapter->pdev;
1337	int err = 0;
1338
1339	if (adapter->msix_entries) {
1340		err = igb_request_msix(adapter);
1341		if (!err)
1342			goto request_done;
1343		/* fall back to MSI */
1344		igb_free_all_tx_resources(adapter);
1345		igb_free_all_rx_resources(adapter);
1346
1347		igb_clear_interrupt_scheme(adapter);
1348		err = igb_init_interrupt_scheme(adapter, false);
1349		if (err)
1350			goto request_done;
1351
1352		igb_setup_all_tx_resources(adapter);
1353		igb_setup_all_rx_resources(adapter);
1354		igb_configure(adapter);
1355	}
1356
1357	igb_assign_vector(adapter->q_vector[0], 0);
1358
1359	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1360		err = request_irq(pdev->irq, igb_intr_msi, 0,
1361				  netdev->name, adapter);
1362		if (!err)
1363			goto request_done;
1364
1365		/* fall back to legacy interrupts */
1366		igb_reset_interrupt_capability(adapter);
1367		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1368	}
1369
1370	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1371			  netdev->name, adapter);
1372
1373	if (err)
1374		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1375			err);
1376
1377request_done:
1378	return err;
1379}
1380
1381static void igb_free_irq(struct igb_adapter *adapter)
1382{
1383	if (adapter->msix_entries) {
1384		int vector = 0, i;
1385
1386		free_irq(adapter->msix_entries[vector++].vector, adapter);
1387
1388		for (i = 0; i < adapter->num_q_vectors; i++)
1389			free_irq(adapter->msix_entries[vector++].vector,
1390				 adapter->q_vector[i]);
1391	} else {
1392		free_irq(adapter->pdev->irq, adapter);
1393	}
1394}
1395
1396/**
1397 * igb_irq_disable - Mask off interrupt generation on the NIC
1398 * @adapter: board private structure
1399 **/
1400static void igb_irq_disable(struct igb_adapter *adapter)
1401{
1402	struct e1000_hw *hw = &adapter->hw;
1403
1404	/*
1405	 * we need to be careful when disabling interrupts.  The VFs are also
1406	 * mapped into these registers and so clearing the bits can cause
1407	 * issues on the VF drivers so we only need to clear what we set
1408	 */
1409	if (adapter->msix_entries) {
1410		u32 regval = rd32(E1000_EIAM);
1411		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1412		wr32(E1000_EIMC, adapter->eims_enable_mask);
1413		regval = rd32(E1000_EIAC);
1414		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1415	}
1416
1417	wr32(E1000_IAM, 0);
1418	wr32(E1000_IMC, ~0);
1419	wrfl();
1420	if (adapter->msix_entries) {
1421		int i;
1422		for (i = 0; i < adapter->num_q_vectors; i++)
1423			synchronize_irq(adapter->msix_entries[i].vector);
1424	} else {
1425		synchronize_irq(adapter->pdev->irq);
1426	}
1427}
1428
1429/**
1430 * igb_irq_enable - Enable default interrupt generation settings
1431 * @adapter: board private structure
1432 **/
1433static void igb_irq_enable(struct igb_adapter *adapter)
1434{
1435	struct e1000_hw *hw = &adapter->hw;
1436
1437	if (adapter->msix_entries) {
1438		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1439		u32 regval = rd32(E1000_EIAC);
1440		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1441		regval = rd32(E1000_EIAM);
1442		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1443		wr32(E1000_EIMS, adapter->eims_enable_mask);
1444		if (adapter->vfs_allocated_count) {
1445			wr32(E1000_MBVFIMR, 0xFF);
1446			ims |= E1000_IMS_VMMB;
1447		}
1448		wr32(E1000_IMS, ims);
1449	} else {
1450		wr32(E1000_IMS, IMS_ENABLE_MASK |
1451				E1000_IMS_DRSTA);
1452		wr32(E1000_IAM, IMS_ENABLE_MASK |
1453				E1000_IMS_DRSTA);
1454	}
1455}
1456
1457static void igb_update_mng_vlan(struct igb_adapter *adapter)
1458{
1459	struct e1000_hw *hw = &adapter->hw;
1460	u16 vid = adapter->hw.mng_cookie.vlan_id;
1461	u16 old_vid = adapter->mng_vlan_id;
1462
1463	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1464		/* add VID to filter table */
1465		igb_vfta_set(hw, vid, true);
1466		adapter->mng_vlan_id = vid;
1467	} else {
1468		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1469	}
1470
1471	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1472	    (vid != old_vid) &&
1473	    !test_bit(old_vid, adapter->active_vlans)) {
1474		/* remove VID from filter table */
1475		igb_vfta_set(hw, old_vid, false);
1476	}
1477}
1478
1479/**
1480 * igb_release_hw_control - release control of the h/w to f/w
1481 * @adapter: address of board private structure
1482 *
1483 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1484 * For ASF and Pass Through versions of f/w this means that the
1485 * driver is no longer loaded.
1486 *
1487 **/
1488static void igb_release_hw_control(struct igb_adapter *adapter)
1489{
1490	struct e1000_hw *hw = &adapter->hw;
1491	u32 ctrl_ext;
1492
1493	/* Let firmware take over control of h/w */
1494	ctrl_ext = rd32(E1000_CTRL_EXT);
1495	wr32(E1000_CTRL_EXT,
1496			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1497}
1498
1499/**
1500 * igb_get_hw_control - get control of the h/w from f/w
1501 * @adapter: address of board private structure
1502 *
1503 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1504 * For ASF and Pass Through versions of f/w this means that
1505 * the driver is loaded.
1506 *
1507 **/
1508static void igb_get_hw_control(struct igb_adapter *adapter)
1509{
1510	struct e1000_hw *hw = &adapter->hw;
1511	u32 ctrl_ext;
1512
1513	/* Let firmware know the driver has taken over */
1514	ctrl_ext = rd32(E1000_CTRL_EXT);
1515	wr32(E1000_CTRL_EXT,
1516			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1517}
1518
1519/**
1520 * igb_configure - configure the hardware for RX and TX
1521 * @adapter: private board structure
1522 **/
1523static void igb_configure(struct igb_adapter *adapter)
1524{
1525	struct net_device *netdev = adapter->netdev;
1526	int i;
1527
1528	igb_get_hw_control(adapter);
1529	igb_set_rx_mode(netdev);
1530
1531	igb_restore_vlan(adapter);
1532
1533	igb_setup_tctl(adapter);
1534	igb_setup_mrqc(adapter);
1535	igb_setup_rctl(adapter);
1536
1537	igb_configure_tx(adapter);
1538	igb_configure_rx(adapter);
1539
1540	igb_rx_fifo_flush_82575(&adapter->hw);
1541
1542	/* call igb_desc_unused which always leaves
1543	 * at least 1 descriptor unused to make sure
1544	 * next_to_use != next_to_clean */
1545	for (i = 0; i < adapter->num_rx_queues; i++) {
1546		struct igb_ring *ring = adapter->rx_ring[i];
1547		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1548	}
1549}
1550
1551/**
1552 * igb_power_up_link - Power up the phy/serdes link
1553 * @adapter: address of board private structure
1554 **/
1555void igb_power_up_link(struct igb_adapter *adapter)
1556{
1557	igb_reset_phy(&adapter->hw);
1558
1559	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1560		igb_power_up_phy_copper(&adapter->hw);
1561	else
1562		igb_power_up_serdes_link_82575(&adapter->hw);
1563}
1564
1565/**
1566 * igb_power_down_link - Power down the phy/serdes link
1567 * @adapter: address of board private structure
1568 */
1569static void igb_power_down_link(struct igb_adapter *adapter)
1570{
1571	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1572		igb_power_down_phy_copper_82575(&adapter->hw);
1573	else
1574		igb_shutdown_serdes_link_82575(&adapter->hw);
1575}
1576
1577/**
1578 * igb_up - Open the interface and prepare it to handle traffic
1579 * @adapter: board private structure
1580 **/
1581int igb_up(struct igb_adapter *adapter)
1582{
1583	struct e1000_hw *hw = &adapter->hw;
1584	int i;
1585
1586	/* hardware has been reset, we need to reload some things */
1587	igb_configure(adapter);
1588
1589	clear_bit(__IGB_DOWN, &adapter->state);
1590
1591	for (i = 0; i < adapter->num_q_vectors; i++)
1592		napi_enable(&(adapter->q_vector[i]->napi));
1593
1594	if (adapter->msix_entries)
1595		igb_configure_msix(adapter);
1596	else
1597		igb_assign_vector(adapter->q_vector[0], 0);
1598
1599	/* Clear any pending interrupts. */
1600	rd32(E1000_ICR);
1601	igb_irq_enable(adapter);
1602
1603	/* notify VFs that reset has been completed */
1604	if (adapter->vfs_allocated_count) {
1605		u32 reg_data = rd32(E1000_CTRL_EXT);
1606		reg_data |= E1000_CTRL_EXT_PFRSTD;
1607		wr32(E1000_CTRL_EXT, reg_data);
1608	}
1609
1610	netif_tx_start_all_queues(adapter->netdev);
1611
1612	/* start the watchdog. */
1613	hw->mac.get_link_status = 1;
1614	schedule_work(&adapter->watchdog_task);
1615
1616	return 0;
1617}
1618
1619void igb_down(struct igb_adapter *adapter)
1620{
1621	struct net_device *netdev = adapter->netdev;
1622	struct e1000_hw *hw = &adapter->hw;
1623	u32 tctl, rctl;
1624	int i;
1625
1626	/* signal that we're down so the interrupt handler does not
1627	 * reschedule our watchdog timer */
1628	set_bit(__IGB_DOWN, &adapter->state);
1629
1630	/* disable receives in the hardware */
1631	rctl = rd32(E1000_RCTL);
1632	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1633	/* flush and sleep below */
1634
1635	netif_tx_stop_all_queues(netdev);
1636
1637	/* disable transmits in the hardware */
1638	tctl = rd32(E1000_TCTL);
1639	tctl &= ~E1000_TCTL_EN;
1640	wr32(E1000_TCTL, tctl);
1641	/* flush both disables and wait for them to finish */
1642	wrfl();
1643	msleep(10);
1644
1645	for (i = 0; i < adapter->num_q_vectors; i++)
1646		napi_disable(&(adapter->q_vector[i]->napi));
1647
1648	igb_irq_disable(adapter);
1649
1650	del_timer_sync(&adapter->watchdog_timer);
1651	del_timer_sync(&adapter->phy_info_timer);
1652
1653	netif_carrier_off(netdev);
1654
1655	/* record the stats before reset*/
1656	spin_lock(&adapter->stats64_lock);
1657	igb_update_stats(adapter, &adapter->stats64);
1658	spin_unlock(&adapter->stats64_lock);
1659
1660	adapter->link_speed = 0;
1661	adapter->link_duplex = 0;
1662
1663	if (!pci_channel_offline(adapter->pdev))
1664		igb_reset(adapter);
1665	igb_clean_all_tx_rings(adapter);
1666	igb_clean_all_rx_rings(adapter);
1667#ifdef CONFIG_IGB_DCA
1668
1669	/* since we reset the hardware DCA settings were cleared */
1670	igb_setup_dca(adapter);
1671#endif
1672}
1673
1674void igb_reinit_locked(struct igb_adapter *adapter)
1675{
1676	WARN_ON(in_interrupt());
1677	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1678		msleep(1);
1679	igb_down(adapter);
1680	igb_up(adapter);
1681	clear_bit(__IGB_RESETTING, &adapter->state);
1682}
1683
1684void igb_reset(struct igb_adapter *adapter)
1685{
1686	struct pci_dev *pdev = adapter->pdev;
1687	struct e1000_hw *hw = &adapter->hw;
1688	struct e1000_mac_info *mac = &hw->mac;
1689	struct e1000_fc_info *fc = &hw->fc;
1690	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1691
1692	/* Repartition Pba for greater than 9k mtu
1693	 * To take effect CTRL.RST is required.
1694	 */
1695	switch (mac->type) {
1696	case e1000_i350:
1697	case e1000_82580:
1698		pba = rd32(E1000_RXPBS);
1699		pba = igb_rxpbs_adjust_82580(pba);
1700		break;
1701	case e1000_82576:
1702		pba = rd32(E1000_RXPBS);
1703		pba &= E1000_RXPBS_SIZE_MASK_82576;
1704		break;
1705	case e1000_82575:
1706	case e1000_i210:
1707	case e1000_i211:
1708	default:
1709		pba = E1000_PBA_34K;
1710		break;
1711	}
1712
1713	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1714	    (mac->type < e1000_82576)) {
1715		/* adjust PBA for jumbo frames */
1716		wr32(E1000_PBA, pba);
1717
1718		/* To maintain wire speed transmits, the Tx FIFO should be
1719		 * large enough to accommodate two full transmit packets,
1720		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1721		 * the Rx FIFO should be large enough to accommodate at least
1722		 * one full receive packet and is similarly rounded up and
1723		 * expressed in KB. */
1724		pba = rd32(E1000_PBA);
1725		/* upper 16 bits has Tx packet buffer allocation size in KB */
1726		tx_space = pba >> 16;
1727		/* lower 16 bits has Rx packet buffer allocation size in KB */
1728		pba &= 0xffff;
1729		/* the tx fifo also stores 16 bytes of information about the tx
1730		 * but don't include ethernet FCS because hardware appends it */
1731		min_tx_space = (adapter->max_frame_size +
1732				sizeof(union e1000_adv_tx_desc) -
1733				ETH_FCS_LEN) * 2;
1734		min_tx_space = ALIGN(min_tx_space, 1024);
1735		min_tx_space >>= 10;
1736		/* software strips receive CRC, so leave room for it */
1737		min_rx_space = adapter->max_frame_size;
1738		min_rx_space = ALIGN(min_rx_space, 1024);
1739		min_rx_space >>= 10;
1740
1741		/* If current Tx allocation is less than the min Tx FIFO size,
1742		 * and the min Tx FIFO size is less than the current Rx FIFO
1743		 * allocation, take space away from current Rx allocation */
1744		if (tx_space < min_tx_space &&
1745		    ((min_tx_space - tx_space) < pba)) {
1746			pba = pba - (min_tx_space - tx_space);
1747
1748			/* if short on rx space, rx wins and must trump tx
1749			 * adjustment */
1750			if (pba < min_rx_space)
1751				pba = min_rx_space;
1752		}
1753		wr32(E1000_PBA, pba);
1754	}
1755
1756	/* flow control settings */
1757	/* The high water mark must be low enough to fit one full frame
1758	 * (or the size used for early receive) above it in the Rx FIFO.
1759	 * Set it to the lower of:
1760	 * - 90% of the Rx FIFO size, or
1761	 * - the full Rx FIFO size minus one full frame */
1762	hwm = min(((pba << 10) * 9 / 10),
1763			((pba << 10) - 2 * adapter->max_frame_size));
1764
1765	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1766	fc->low_water = fc->high_water - 16;
1767	fc->pause_time = 0xFFFF;
1768	fc->send_xon = 1;
1769	fc->current_mode = fc->requested_mode;
1770
1771	/* disable receive for all VFs and wait one second */
1772	if (adapter->vfs_allocated_count) {
1773		int i;
1774		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1775			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1776
1777		/* ping all the active vfs to let them know we are going down */
1778		igb_ping_all_vfs(adapter);
1779
1780		/* disable transmits and receives */
1781		wr32(E1000_VFRE, 0);
1782		wr32(E1000_VFTE, 0);
1783	}
1784
1785	/* Allow time for pending master requests to run */
1786	hw->mac.ops.reset_hw(hw);
1787	wr32(E1000_WUC, 0);
1788
1789	if (hw->mac.ops.init_hw(hw))
1790		dev_err(&pdev->dev, "Hardware Error\n");
1791
1792	/*
1793	 * Flow control settings reset on hardware reset, so guarantee flow
1794	 * control is off when forcing speed.
1795	 */
1796	if (!hw->mac.autoneg)
1797		igb_force_mac_fc(hw);
1798
1799	igb_init_dmac(adapter, pba);
1800#ifdef CONFIG_IGB_HWMON
1801	/* Re-initialize the thermal sensor on i350 devices. */
1802	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1803		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1804			/* If present, re-initialize the external thermal sensor
1805			 * interface.
1806			 */
1807			if (adapter->ets)
1808				mac->ops.init_thermal_sensor_thresh(hw);
1809		}
1810	}
1811#endif
1812	if (!netif_running(adapter->netdev))
1813		igb_power_down_link(adapter);
1814
1815	igb_update_mng_vlan(adapter);
1816
1817	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1818	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1819
1820	/* Re-enable PTP, where applicable. */
1821	igb_ptp_reset(adapter);
1822
1823	igb_get_phy_info(hw);
1824}
1825
1826static netdev_features_t igb_fix_features(struct net_device *netdev,
1827	netdev_features_t features)
1828{
1829	/*
1830	 * Since there is no support for separate rx/tx vlan accel
1831	 * enable/disable make sure tx flag is always in same state as rx.
1832	 */
1833	if (features & NETIF_F_HW_VLAN_RX)
1834		features |= NETIF_F_HW_VLAN_TX;
1835	else
1836		features &= ~NETIF_F_HW_VLAN_TX;
1837
1838	return features;
1839}
1840
1841static int igb_set_features(struct net_device *netdev,
1842	netdev_features_t features)
1843{
1844	netdev_features_t changed = netdev->features ^ features;
1845	struct igb_adapter *adapter = netdev_priv(netdev);
1846
1847	if (changed & NETIF_F_HW_VLAN_RX)
1848		igb_vlan_mode(netdev, features);
1849
1850	if (!(changed & NETIF_F_RXALL))
1851		return 0;
1852
1853	netdev->features = features;
1854
1855	if (netif_running(netdev))
1856		igb_reinit_locked(adapter);
1857	else
1858		igb_reset(adapter);
1859
1860	return 0;
1861}
1862
1863static const struct net_device_ops igb_netdev_ops = {
1864	.ndo_open		= igb_open,
1865	.ndo_stop		= igb_close,
1866	.ndo_start_xmit		= igb_xmit_frame,
1867	.ndo_get_stats64	= igb_get_stats64,
1868	.ndo_set_rx_mode	= igb_set_rx_mode,
1869	.ndo_set_mac_address	= igb_set_mac,
1870	.ndo_change_mtu		= igb_change_mtu,
1871	.ndo_do_ioctl		= igb_ioctl,
1872	.ndo_tx_timeout		= igb_tx_timeout,
1873	.ndo_validate_addr	= eth_validate_addr,
1874	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
1875	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1876	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
1877	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
1878	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
1879	.ndo_get_vf_config	= igb_ndo_get_vf_config,
1880#ifdef CONFIG_NET_POLL_CONTROLLER
1881	.ndo_poll_controller	= igb_netpoll,
1882#endif
1883	.ndo_fix_features	= igb_fix_features,
1884	.ndo_set_features	= igb_set_features,
1885};
1886
1887/**
1888 * igb_set_fw_version - Configure version string for ethtool
1889 * @adapter: adapter struct
1890 *
1891 **/
1892void igb_set_fw_version(struct igb_adapter *adapter)
1893{
1894	struct e1000_hw *hw = &adapter->hw;
1895	struct e1000_fw_version fw;
1896
1897	igb_get_fw_version(hw, &fw);
1898
1899	switch (hw->mac.type) {
1900	case e1000_i211:
1901		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1902			 "%2d.%2d-%d",
1903			 fw.invm_major, fw.invm_minor, fw.invm_img_type);
1904		break;
1905
1906	default:
1907		/* if option is rom valid, display its version too */
1908		if (fw.or_valid) {
1909			snprintf(adapter->fw_version,
1910				 sizeof(adapter->fw_version),
1911				 "%d.%d, 0x%08x, %d.%d.%d",
1912				 fw.eep_major, fw.eep_minor, fw.etrack_id,
1913				 fw.or_major, fw.or_build, fw.or_patch);
1914		/* no option rom */
1915		} else {
1916			snprintf(adapter->fw_version,
1917				 sizeof(adapter->fw_version),
1918				 "%d.%d, 0x%08x",
1919				 fw.eep_major, fw.eep_minor, fw.etrack_id);
1920		}
1921		break;
1922	}
1923	return;
1924}
1925
1926static const struct i2c_board_info i350_sensor_info = {
1927	I2C_BOARD_INFO("i350bb", 0Xf8),
1928};
1929
1930/*  igb_init_i2c - Init I2C interface
1931 *  @adapter: pointer to adapter structure
1932 *
1933 */
1934static s32 igb_init_i2c(struct igb_adapter *adapter)
1935{
1936	s32 status = E1000_SUCCESS;
1937
1938	/* I2C interface supported on i350 devices */
1939	if (adapter->hw.mac.type != e1000_i350)
1940		return E1000_SUCCESS;
1941
1942	/* Initialize the i2c bus which is controlled by the registers.
1943	 * This bus will use the i2c_algo_bit structue that implements
1944	 * the protocol through toggling of the 4 bits in the register.
1945	 */
1946	adapter->i2c_adap.owner = THIS_MODULE;
1947	adapter->i2c_algo = igb_i2c_algo;
1948	adapter->i2c_algo.data = adapter;
1949	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1950	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1951	strlcpy(adapter->i2c_adap.name, "igb BB",
1952		sizeof(adapter->i2c_adap.name));
1953	status = i2c_bit_add_bus(&adapter->i2c_adap);
1954	return status;
1955}
1956
1957/**
1958 * igb_probe - Device Initialization Routine
1959 * @pdev: PCI device information struct
1960 * @ent: entry in igb_pci_tbl
1961 *
1962 * Returns 0 on success, negative on failure
1963 *
1964 * igb_probe initializes an adapter identified by a pci_dev structure.
1965 * The OS initialization, configuring of the adapter private structure,
1966 * and a hardware reset occur.
1967 **/
1968static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1969{
1970	struct net_device *netdev;
1971	struct igb_adapter *adapter;
1972	struct e1000_hw *hw;
1973	u16 eeprom_data = 0;
1974	s32 ret_val;
1975	static int global_quad_port_a; /* global quad port a indication */
1976	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1977	unsigned long mmio_start, mmio_len;
1978	int err, pci_using_dac;
1979	u8 part_str[E1000_PBANUM_LENGTH];
1980
1981	/* Catch broken hardware that put the wrong VF device ID in
1982	 * the PCIe SR-IOV capability.
1983	 */
1984	if (pdev->is_virtfn) {
1985		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1986			pci_name(pdev), pdev->vendor, pdev->device);
1987		return -EINVAL;
1988	}
1989
1990	err = pci_enable_device_mem(pdev);
1991	if (err)
1992		return err;
1993
1994	pci_using_dac = 0;
1995	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1996	if (!err) {
1997		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1998		if (!err)
1999			pci_using_dac = 1;
2000	} else {
2001		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2002		if (err) {
2003			err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
2004			if (err) {
2005				dev_err(&pdev->dev, "No usable DMA "
2006					"configuration, aborting\n");
2007				goto err_dma;
2008			}
2009		}
2010	}
2011
2012	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2013	                                   IORESOURCE_MEM),
2014	                                   igb_driver_name);
2015	if (err)
2016		goto err_pci_reg;
2017
2018	pci_enable_pcie_error_reporting(pdev);
2019
2020	pci_set_master(pdev);
2021	pci_save_state(pdev);
2022
2023	err = -ENOMEM;
2024	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2025				   IGB_MAX_TX_QUEUES);
2026	if (!netdev)
2027		goto err_alloc_etherdev;
2028
2029	SET_NETDEV_DEV(netdev, &pdev->dev);
2030
2031	pci_set_drvdata(pdev, netdev);
2032	adapter = netdev_priv(netdev);
2033	adapter->netdev = netdev;
2034	adapter->pdev = pdev;
2035	hw = &adapter->hw;
2036	hw->back = adapter;
2037	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2038
2039	mmio_start = pci_resource_start(pdev, 0);
2040	mmio_len = pci_resource_len(pdev, 0);
2041
2042	err = -EIO;
2043	hw->hw_addr = ioremap(mmio_start, mmio_len);
2044	if (!hw->hw_addr)
2045		goto err_ioremap;
2046
2047	netdev->netdev_ops = &igb_netdev_ops;
2048	igb_set_ethtool_ops(netdev);
2049	netdev->watchdog_timeo = 5 * HZ;
2050
2051	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2052
2053	netdev->mem_start = mmio_start;
2054	netdev->mem_end = mmio_start + mmio_len;
2055
2056	/* PCI config space info */
2057	hw->vendor_id = pdev->vendor;
2058	hw->device_id = pdev->device;
2059	hw->revision_id = pdev->revision;
2060	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2061	hw->subsystem_device_id = pdev->subsystem_device;
2062
2063	/* Copy the default MAC, PHY and NVM function pointers */
2064	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2065	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2066	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2067	/* Initialize skew-specific constants */
2068	err = ei->get_invariants(hw);
2069	if (err)
2070		goto err_sw_init;
2071
2072	/* setup the private structure */
2073	err = igb_sw_init(adapter);
2074	if (err)
2075		goto err_sw_init;
2076
2077	igb_get_bus_info_pcie(hw);
2078
2079	hw->phy.autoneg_wait_to_complete = false;
2080
2081	/* Copper options */
2082	if (hw->phy.media_type == e1000_media_type_copper) {
2083		hw->phy.mdix = AUTO_ALL_MODES;
2084		hw->phy.disable_polarity_correction = false;
2085		hw->phy.ms_type = e1000_ms_hw_default;
2086	}
2087
2088	if (igb_check_reset_block(hw))
2089		dev_info(&pdev->dev,
2090			"PHY reset is blocked due to SOL/IDER session.\n");
2091
2092	/*
2093	 * features is initialized to 0 in allocation, it might have bits
2094	 * set by igb_sw_init so we should use an or instead of an
2095	 * assignment.
2096	 */
2097	netdev->features |= NETIF_F_SG |
2098			    NETIF_F_IP_CSUM |
2099			    NETIF_F_IPV6_CSUM |
2100			    NETIF_F_TSO |
2101			    NETIF_F_TSO6 |
2102			    NETIF_F_RXHASH |
2103			    NETIF_F_RXCSUM |
2104			    NETIF_F_HW_VLAN_RX |
2105			    NETIF_F_HW_VLAN_TX;
2106
2107	/* copy netdev features into list of user selectable features */
2108	netdev->hw_features |= netdev->features;
2109	netdev->hw_features |= NETIF_F_RXALL;
2110
2111	/* set this bit last since it cannot be part of hw_features */
2112	netdev->features |= NETIF_F_HW_VLAN_FILTER;
2113
2114	netdev->vlan_features |= NETIF_F_TSO |
2115				 NETIF_F_TSO6 |
2116				 NETIF_F_IP_CSUM |
2117				 NETIF_F_IPV6_CSUM |
2118				 NETIF_F_SG;
2119
2120	netdev->priv_flags |= IFF_SUPP_NOFCS;
2121
2122	if (pci_using_dac) {
2123		netdev->features |= NETIF_F_HIGHDMA;
2124		netdev->vlan_features |= NETIF_F_HIGHDMA;
2125	}
2126
2127	if (hw->mac.type >= e1000_82576) {
2128		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2129		netdev->features |= NETIF_F_SCTP_CSUM;
2130	}
2131
2132	netdev->priv_flags |= IFF_UNICAST_FLT;
2133
2134	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2135
2136	/* before reading the NVM, reset the controller to put the device in a
2137	 * known good starting state */
2138	hw->mac.ops.reset_hw(hw);
2139
2140	/*
2141	 * make sure the NVM is good , i211 parts have special NVM that
2142	 * doesn't contain a checksum
2143	 */
2144	if (hw->mac.type != e1000_i211) {
2145		if (hw->nvm.ops.validate(hw) < 0) {
2146			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2147			err = -EIO;
2148			goto err_eeprom;
2149		}
2150	}
2151
2152	/* copy the MAC address out of the NVM */
2153	if (hw->mac.ops.read_mac_addr(hw))
2154		dev_err(&pdev->dev, "NVM Read Error\n");
2155
2156	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2157
2158	if (!is_valid_ether_addr(netdev->dev_addr)) {
2159		dev_err(&pdev->dev, "Invalid MAC Address\n");
2160		err = -EIO;
2161		goto err_eeprom;
2162	}
2163
2164	/* get firmware version for ethtool -i */
2165	igb_set_fw_version(adapter);
2166
2167	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2168	            (unsigned long) adapter);
2169	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2170	            (unsigned long) adapter);
2171
2172	INIT_WORK(&adapter->reset_task, igb_reset_task);
2173	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2174
2175	/* Initialize link properties that are user-changeable */
2176	adapter->fc_autoneg = true;
2177	hw->mac.autoneg = true;
2178	hw->phy.autoneg_advertised = 0x2f;
2179
2180	hw->fc.requested_mode = e1000_fc_default;
2181	hw->fc.current_mode = e1000_fc_default;
2182
2183	igb_validate_mdi_setting(hw);
2184
2185	/* By default, support wake on port A */
2186	if (hw->bus.func == 0)
2187		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2188
2189	/* Check the NVM for wake support on non-port A ports */
2190	if (hw->mac.type >= e1000_82580)
2191		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2192		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2193		                 &eeprom_data);
2194	else if (hw->bus.func == 1)
2195		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2196
2197	if (eeprom_data & IGB_EEPROM_APME)
2198		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2199
2200	/* now that we have the eeprom settings, apply the special cases where
2201	 * the eeprom may be wrong or the board simply won't support wake on
2202	 * lan on a particular port */
2203	switch (pdev->device) {
2204	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2205		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2206		break;
2207	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2208	case E1000_DEV_ID_82576_FIBER:
2209	case E1000_DEV_ID_82576_SERDES:
2210		/* Wake events only supported on port A for dual fiber
2211		 * regardless of eeprom setting */
2212		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2213			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2214		break;
2215	case E1000_DEV_ID_82576_QUAD_COPPER:
2216	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2217		/* if quad port adapter, disable WoL on all but port A */
2218		if (global_quad_port_a != 0)
2219			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2220		else
2221			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2222		/* Reset for multiple quad port adapters */
2223		if (++global_quad_port_a == 4)
2224			global_quad_port_a = 0;
2225		break;
2226	default:
2227		/* If the device can't wake, don't set software support */
2228		if (!device_can_wakeup(&adapter->pdev->dev))
2229			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2230	}
2231
2232	/* initialize the wol settings based on the eeprom settings */
2233	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2234		adapter->wol |= E1000_WUFC_MAG;
2235
2236	/* Some vendors want WoL disabled by default, but still supported */
2237	if ((hw->mac.type == e1000_i350) &&
2238	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2239		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2240		adapter->wol = 0;
2241	}
2242
2243	device_set_wakeup_enable(&adapter->pdev->dev,
2244				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2245
2246	/* reset the hardware with the new settings */
2247	igb_reset(adapter);
2248
2249	/* Init the I2C interface */
2250	err = igb_init_i2c(adapter);
2251	if (err) {
2252		dev_err(&pdev->dev, "failed to init i2c interface\n");
2253		goto err_eeprom;
2254	}
2255
2256	/* let the f/w know that the h/w is now under the control of the
2257	 * driver. */
2258	igb_get_hw_control(adapter);
2259
2260	strcpy(netdev->name, "eth%d");
2261	err = register_netdev(netdev);
2262	if (err)
2263		goto err_register;
2264
2265	/* carrier off reporting is important to ethtool even BEFORE open */
2266	netif_carrier_off(netdev);
2267
2268#ifdef CONFIG_IGB_DCA
2269	if (dca_add_requester(&pdev->dev) == 0) {
2270		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2271		dev_info(&pdev->dev, "DCA enabled\n");
2272		igb_setup_dca(adapter);
2273	}
2274
2275#endif
2276#ifdef CONFIG_IGB_HWMON
2277	/* Initialize the thermal sensor on i350 devices. */
2278	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2279		u16 ets_word;
2280
2281		/*
2282		 * Read the NVM to determine if this i350 device supports an
2283		 * external thermal sensor.
2284		 */
2285		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2286		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2287			adapter->ets = true;
2288		else
2289			adapter->ets = false;
2290		if (igb_sysfs_init(adapter))
2291			dev_err(&pdev->dev,
2292				"failed to allocate sysfs resources\n");
2293	} else {
2294		adapter->ets = false;
2295	}
2296#endif
2297	/* do hw tstamp init after resetting */
2298	igb_ptp_init(adapter);
2299
2300	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2301	/* print bus type/speed/width info */
2302	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2303		 netdev->name,
2304		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2305		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2306		                                            "unknown"),
2307		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2308		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2309		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2310		   "unknown"),
2311		 netdev->dev_addr);
2312
2313	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2314	if (ret_val)
2315		strcpy(part_str, "Unknown");
2316	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2317	dev_info(&pdev->dev,
2318		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2319		adapter->msix_entries ? "MSI-X" :
2320		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2321		adapter->num_rx_queues, adapter->num_tx_queues);
2322	switch (hw->mac.type) {
2323	case e1000_i350:
2324	case e1000_i210:
2325	case e1000_i211:
2326		igb_set_eee_i350(hw);
2327		break;
2328	default:
2329		break;
2330	}
2331
2332	pm_runtime_put_noidle(&pdev->dev);
2333	return 0;
2334
2335err_register:
2336	igb_release_hw_control(adapter);
2337	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2338err_eeprom:
2339	if (!igb_check_reset_block(hw))
2340		igb_reset_phy(hw);
2341
2342	if (hw->flash_address)
2343		iounmap(hw->flash_address);
2344err_sw_init:
2345	igb_clear_interrupt_scheme(adapter);
2346	iounmap(hw->hw_addr);
2347err_ioremap:
2348	free_netdev(netdev);
2349err_alloc_etherdev:
2350	pci_release_selected_regions(pdev,
2351	                             pci_select_bars(pdev, IORESOURCE_MEM));
2352err_pci_reg:
2353err_dma:
2354	pci_disable_device(pdev);
2355	return err;
2356}
2357
2358#ifdef CONFIG_PCI_IOV
2359static int  igb_disable_sriov(struct pci_dev *pdev)
2360{
2361	struct net_device *netdev = pci_get_drvdata(pdev);
2362	struct igb_adapter *adapter = netdev_priv(netdev);
2363	struct e1000_hw *hw = &adapter->hw;
2364
2365	/* reclaim resources allocated to VFs */
2366	if (adapter->vf_data) {
2367		/* disable iov and allow time for transactions to clear */
2368		if (igb_vfs_are_assigned(adapter)) {
2369			dev_warn(&pdev->dev,
2370				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2371			return -EPERM;
2372		} else {
2373			pci_disable_sriov(pdev);
2374			msleep(500);
2375		}
2376
2377		kfree(adapter->vf_data);
2378		adapter->vf_data = NULL;
2379		adapter->vfs_allocated_count = 0;
2380		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2381		wrfl();
2382		msleep(100);
2383		dev_info(&pdev->dev, "IOV Disabled\n");
2384
2385		/* Re-enable DMA Coalescing flag since IOV is turned off */
2386		adapter->flags |= IGB_FLAG_DMAC;
2387	}
2388
2389	return 0;
2390}
2391
2392static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2393{
2394	struct net_device *netdev = pci_get_drvdata(pdev);
2395	struct igb_adapter *adapter = netdev_priv(netdev);
2396	int old_vfs = pci_num_vf(pdev);
2397	int err = 0;
2398	int i;
2399
2400	if (!num_vfs)
2401		goto out;
2402	else if (old_vfs && old_vfs == num_vfs)
2403		goto out;
2404	else if (old_vfs && old_vfs != num_vfs)
2405		err = igb_disable_sriov(pdev);
2406
2407	if (err)
2408		goto out;
2409
2410	if (num_vfs > 7) {
2411		err = -EPERM;
2412		goto out;
2413	}
2414
2415	adapter->vfs_allocated_count = num_vfs;
2416
2417	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2418				sizeof(struct vf_data_storage), GFP_KERNEL);
2419
2420	/* if allocation failed then we do not support SR-IOV */
2421	if (!adapter->vf_data) {
2422		adapter->vfs_allocated_count = 0;
2423		dev_err(&pdev->dev,
2424			"Unable to allocate memory for VF Data Storage\n");
2425		err = -ENOMEM;
2426		goto out;
2427	}
2428
2429	err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2430	if (err)
2431		goto err_out;
2432
2433	dev_info(&pdev->dev, "%d VFs allocated\n",
2434		 adapter->vfs_allocated_count);
2435	for (i = 0; i < adapter->vfs_allocated_count; i++)
2436		igb_vf_configure(adapter, i);
2437
2438	/* DMA Coalescing is not supported in IOV mode. */
2439	adapter->flags &= ~IGB_FLAG_DMAC;
2440	goto out;
2441
2442err_out:
2443	kfree(adapter->vf_data);
2444	adapter->vf_data = NULL;
2445	adapter->vfs_allocated_count = 0;
2446out:
2447	return err;
2448}
2449
2450#endif
2451/*
2452 *  igb_remove_i2c - Cleanup  I2C interface
2453 *  @adapter: pointer to adapter structure
2454 *
2455 */
2456static void igb_remove_i2c(struct igb_adapter *adapter)
2457{
2458
2459	/* free the adapter bus structure */
2460	i2c_del_adapter(&adapter->i2c_adap);
2461}
2462
2463/**
2464 * igb_remove - Device Removal Routine
2465 * @pdev: PCI device information struct
2466 *
2467 * igb_remove is called by the PCI subsystem to alert the driver
2468 * that it should release a PCI device.  The could be caused by a
2469 * Hot-Plug event, or because the driver is going to be removed from
2470 * memory.
2471 **/
2472static void igb_remove(struct pci_dev *pdev)
2473{
2474	struct net_device *netdev = pci_get_drvdata(pdev);
2475	struct igb_adapter *adapter = netdev_priv(netdev);
2476	struct e1000_hw *hw = &adapter->hw;
2477
2478	pm_runtime_get_noresume(&pdev->dev);
2479#ifdef CONFIG_IGB_HWMON
2480	igb_sysfs_exit(adapter);
2481#endif
2482	igb_remove_i2c(adapter);
2483	igb_ptp_stop(adapter);
2484	/*
2485	 * The watchdog timer may be rescheduled, so explicitly
2486	 * disable watchdog from being rescheduled.
2487	 */
2488	set_bit(__IGB_DOWN, &adapter->state);
2489	del_timer_sync(&adapter->watchdog_timer);
2490	del_timer_sync(&adapter->phy_info_timer);
2491
2492	cancel_work_sync(&adapter->reset_task);
2493	cancel_work_sync(&adapter->watchdog_task);
2494
2495#ifdef CONFIG_IGB_DCA
2496	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2497		dev_info(&pdev->dev, "DCA disabled\n");
2498		dca_remove_requester(&pdev->dev);
2499		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2500		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2501	}
2502#endif
2503
2504	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2505	 * would have already happened in close and is redundant. */
2506	igb_release_hw_control(adapter);
2507
2508	unregister_netdev(netdev);
2509
2510	igb_clear_interrupt_scheme(adapter);
2511
2512#ifdef CONFIG_PCI_IOV
2513	igb_disable_sriov(pdev);
2514#endif
2515
2516	iounmap(hw->hw_addr);
2517	if (hw->flash_address)
2518		iounmap(hw->flash_address);
2519	pci_release_selected_regions(pdev,
2520	                             pci_select_bars(pdev, IORESOURCE_MEM));
2521
2522	kfree(adapter->shadow_vfta);
2523	free_netdev(netdev);
2524
2525	pci_disable_pcie_error_reporting(pdev);
2526
2527	pci_disable_device(pdev);
2528}
2529
2530/**
2531 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2532 * @adapter: board private structure to initialize
2533 *
2534 * This function initializes the vf specific data storage and then attempts to
2535 * allocate the VFs.  The reason for ordering it this way is because it is much
2536 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2537 * the memory for the VFs.
2538 **/
2539static void igb_probe_vfs(struct igb_adapter *adapter)
2540{
2541#ifdef CONFIG_PCI_IOV
2542	struct pci_dev *pdev = adapter->pdev;
2543	struct e1000_hw *hw = &adapter->hw;
2544
2545	/* Virtualization features not supported on i210 family. */
2546	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2547		return;
2548
2549	igb_enable_sriov(pdev, max_vfs);
2550	pci_sriov_set_totalvfs(pdev, 7);
2551
2552#endif /* CONFIG_PCI_IOV */
2553}
2554
2555static void igb_init_queue_configuration(struct igb_adapter *adapter)
2556{
2557	struct e1000_hw *hw = &adapter->hw;
2558	u32 max_rss_queues;
2559
2560	/* Determine the maximum number of RSS queues supported. */
2561	switch (hw->mac.type) {
2562	case e1000_i211:
2563		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2564		break;
2565	case e1000_82575:
2566	case e1000_i210:
2567		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2568		break;
2569	case e1000_i350:
2570		/* I350 cannot do RSS and SR-IOV at the same time */
2571		if (!!adapter->vfs_allocated_count) {
2572			max_rss_queues = 1;
2573			break;
2574		}
2575		/* fall through */
2576	case e1000_82576:
2577		if (!!adapter->vfs_allocated_count) {
2578			max_rss_queues = 2;
2579			break;
2580		}
2581		/* fall through */
2582	case e1000_82580:
2583	default:
2584		max_rss_queues = IGB_MAX_RX_QUEUES;
2585		break;
2586	}
2587
2588	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2589
2590	/* Determine if we need to pair queues. */
2591	switch (hw->mac.type) {
2592	case e1000_82575:
2593	case e1000_i211:
2594		/* Device supports enough interrupts without queue pairing. */
2595		break;
2596	case e1000_82576:
2597		/*
2598		 * If VFs are going to be allocated with RSS queues then we
2599		 * should pair the queues in order to conserve interrupts due
2600		 * to limited supply.
2601		 */
2602		if ((adapter->rss_queues > 1) &&
2603		    (adapter->vfs_allocated_count > 6))
2604			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2605		/* fall through */
2606	case e1000_82580:
2607	case e1000_i350:
2608	case e1000_i210:
2609	default:
2610		/*
2611		 * If rss_queues > half of max_rss_queues, pair the queues in
2612		 * order to conserve interrupts due to limited supply.
2613		 */
2614		if (adapter->rss_queues > (max_rss_queues / 2))
2615			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2616		break;
2617	}
2618}
2619
2620/**
2621 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2622 * @adapter: board private structure to initialize
2623 *
2624 * igb_sw_init initializes the Adapter private data structure.
2625 * Fields are initialized based on PCI device information and
2626 * OS network device settings (MTU size).
2627 **/
2628static int igb_sw_init(struct igb_adapter *adapter)
2629{
2630	struct e1000_hw *hw = &adapter->hw;
2631	struct net_device *netdev = adapter->netdev;
2632	struct pci_dev *pdev = adapter->pdev;
2633
2634	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2635
2636	/* set default ring sizes */
2637	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2638	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2639
2640	/* set default ITR values */
2641	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2642	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2643
2644	/* set default work limits */
2645	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2646
2647	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2648				  VLAN_HLEN;
2649	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2650
2651	spin_lock_init(&adapter->stats64_lock);
2652#ifdef CONFIG_PCI_IOV
2653	switch (hw->mac.type) {
2654	case e1000_82576:
2655	case e1000_i350:
2656		if (max_vfs > 7) {
2657			dev_warn(&pdev->dev,
2658				 "Maximum of 7 VFs per PF, using max\n");
2659			adapter->vfs_allocated_count = 7;
2660		} else
2661			adapter->vfs_allocated_count = max_vfs;
2662		if (adapter->vfs_allocated_count)
2663			dev_warn(&pdev->dev,
2664				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2665		break;
2666	default:
2667		break;
2668	}
2669#endif /* CONFIG_PCI_IOV */
2670
2671	igb_init_queue_configuration(adapter);
2672
2673	/* Setup and initialize a copy of the hw vlan table array */
2674	adapter->shadow_vfta = kzalloc(sizeof(u32) *
2675				E1000_VLAN_FILTER_TBL_SIZE,
2676				GFP_ATOMIC);
2677
2678	/* This call may decrease the number of queues */
2679	if (igb_init_interrupt_scheme(adapter, true)) {
2680		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2681		return -ENOMEM;
2682	}
2683
2684	igb_probe_vfs(adapter);
2685
2686	/* Explicitly disable IRQ since the NIC can be in any state. */
2687	igb_irq_disable(adapter);
2688
2689	if (hw->mac.type >= e1000_i350)
2690		adapter->flags &= ~IGB_FLAG_DMAC;
2691
2692	set_bit(__IGB_DOWN, &adapter->state);
2693	return 0;
2694}
2695
2696/**
2697 * igb_open - Called when a network interface is made active
2698 * @netdev: network interface device structure
2699 *
2700 * Returns 0 on success, negative value on failure
2701 *
2702 * The open entry point is called when a network interface is made
2703 * active by the system (IFF_UP).  At this point all resources needed
2704 * for transmit and receive operations are allocated, the interrupt
2705 * handler is registered with the OS, the watchdog timer is started,
2706 * and the stack is notified that the interface is ready.
2707 **/
2708static int __igb_open(struct net_device *netdev, bool resuming)
2709{
2710	struct igb_adapter *adapter = netdev_priv(netdev);
2711	struct e1000_hw *hw = &adapter->hw;
2712	struct pci_dev *pdev = adapter->pdev;
2713	int err;
2714	int i;
2715
2716	/* disallow open during test */
2717	if (test_bit(__IGB_TESTING, &adapter->state)) {
2718		WARN_ON(resuming);
2719		return -EBUSY;
2720	}
2721
2722	if (!resuming)
2723		pm_runtime_get_sync(&pdev->dev);
2724
2725	netif_carrier_off(netdev);
2726
2727	/* allocate transmit descriptors */
2728	err = igb_setup_all_tx_resources(adapter);
2729	if (err)
2730		goto err_setup_tx;
2731
2732	/* allocate receive descriptors */
2733	err = igb_setup_all_rx_resources(adapter);
2734	if (err)
2735		goto err_setup_rx;
2736
2737	igb_power_up_link(adapter);
2738
2739	/* before we allocate an interrupt, we must be ready to handle it.
2740	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2741	 * as soon as we call pci_request_irq, so we have to setup our
2742	 * clean_rx handler before we do so.  */
2743	igb_configure(adapter);
2744
2745	err = igb_request_irq(adapter);
2746	if (err)
2747		goto err_req_irq;
2748
2749	/* Notify the stack of the actual queue counts. */
2750	err = netif_set_real_num_tx_queues(adapter->netdev,
2751					   adapter->num_tx_queues);
2752	if (err)
2753		goto err_set_queues;
2754
2755	err = netif_set_real_num_rx_queues(adapter->netdev,
2756					   adapter->num_rx_queues);
2757	if (err)
2758		goto err_set_queues;
2759
2760	/* From here on the code is the same as igb_up() */
2761	clear_bit(__IGB_DOWN, &adapter->state);
2762
2763	for (i = 0; i < adapter->num_q_vectors; i++)
2764		napi_enable(&(adapter->q_vector[i]->napi));
2765
2766	/* Clear any pending interrupts. */
2767	rd32(E1000_ICR);
2768
2769	igb_irq_enable(adapter);
2770
2771	/* notify VFs that reset has been completed */
2772	if (adapter->vfs_allocated_count) {
2773		u32 reg_data = rd32(E1000_CTRL_EXT);
2774		reg_data |= E1000_CTRL_EXT_PFRSTD;
2775		wr32(E1000_CTRL_EXT, reg_data);
2776	}
2777
2778	netif_tx_start_all_queues(netdev);
2779
2780	if (!resuming)
2781		pm_runtime_put(&pdev->dev);
2782
2783	/* start the watchdog. */
2784	hw->mac.get_link_status = 1;
2785	schedule_work(&adapter->watchdog_task);
2786
2787	return 0;
2788
2789err_set_queues:
2790	igb_free_irq(adapter);
2791err_req_irq:
2792	igb_release_hw_control(adapter);
2793	igb_power_down_link(adapter);
2794	igb_free_all_rx_resources(adapter);
2795err_setup_rx:
2796	igb_free_all_tx_resources(adapter);
2797err_setup_tx:
2798	igb_reset(adapter);
2799	if (!resuming)
2800		pm_runtime_put(&pdev->dev);
2801
2802	return err;
2803}
2804
2805static int igb_open(struct net_device *netdev)
2806{
2807	return __igb_open(netdev, false);
2808}
2809
2810/**
2811 * igb_close - Disables a network interface
2812 * @netdev: network interface device structure
2813 *
2814 * Returns 0, this is not allowed to fail
2815 *
2816 * The close entry point is called when an interface is de-activated
2817 * by the OS.  The hardware is still under the driver's control, but
2818 * needs to be disabled.  A global MAC reset is issued to stop the
2819 * hardware, and all transmit and receive resources are freed.
2820 **/
2821static int __igb_close(struct net_device *netdev, bool suspending)
2822{
2823	struct igb_adapter *adapter = netdev_priv(netdev);
2824	struct pci_dev *pdev = adapter->pdev;
2825
2826	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2827
2828	if (!suspending)
2829		pm_runtime_get_sync(&pdev->dev);
2830
2831	igb_down(adapter);
2832	igb_free_irq(adapter);
2833
2834	igb_free_all_tx_resources(adapter);
2835	igb_free_all_rx_resources(adapter);
2836
2837	if (!suspending)
2838		pm_runtime_put_sync(&pdev->dev);
2839	return 0;
2840}
2841
2842static int igb_close(struct net_device *netdev)
2843{
2844	return __igb_close(netdev, false);
2845}
2846
2847/**
2848 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2849 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2850 *
2851 * Return 0 on success, negative on failure
2852 **/
2853int igb_setup_tx_resources(struct igb_ring *tx_ring)
2854{
2855	struct device *dev = tx_ring->dev;
2856	int size;
2857
2858	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2859
2860	tx_ring->tx_buffer_info = vzalloc(size);
2861	if (!tx_ring->tx_buffer_info)
2862		goto err;
2863
2864	/* round up to nearest 4K */
2865	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2866	tx_ring->size = ALIGN(tx_ring->size, 4096);
2867
2868	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2869					   &tx_ring->dma, GFP_KERNEL);
2870	if (!tx_ring->desc)
2871		goto err;
2872
2873	tx_ring->next_to_use = 0;
2874	tx_ring->next_to_clean = 0;
2875
2876	return 0;
2877
2878err:
2879	vfree(tx_ring->tx_buffer_info);
2880	tx_ring->tx_buffer_info = NULL;
2881	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2882	return -ENOMEM;
2883}
2884
2885/**
2886 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2887 *				  (Descriptors) for all queues
2888 * @adapter: board private structure
2889 *
2890 * Return 0 on success, negative on failure
2891 **/
2892static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2893{
2894	struct pci_dev *pdev = adapter->pdev;
2895	int i, err = 0;
2896
2897	for (i = 0; i < adapter->num_tx_queues; i++) {
2898		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2899		if (err) {
2900			dev_err(&pdev->dev,
2901				"Allocation for Tx Queue %u failed\n", i);
2902			for (i--; i >= 0; i--)
2903				igb_free_tx_resources(adapter->tx_ring[i]);
2904			break;
2905		}
2906	}
2907
2908	return err;
2909}
2910
2911/**
2912 * igb_setup_tctl - configure the transmit control registers
2913 * @adapter: Board private structure
2914 **/
2915void igb_setup_tctl(struct igb_adapter *adapter)
2916{
2917	struct e1000_hw *hw = &adapter->hw;
2918	u32 tctl;
2919
2920	/* disable queue 0 which is enabled by default on 82575 and 82576 */
2921	wr32(E1000_TXDCTL(0), 0);
2922
2923	/* Program the Transmit Control Register */
2924	tctl = rd32(E1000_TCTL);
2925	tctl &= ~E1000_TCTL_CT;
2926	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2927		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2928
2929	igb_config_collision_dist(hw);
2930
2931	/* Enable transmits */
2932	tctl |= E1000_TCTL_EN;
2933
2934	wr32(E1000_TCTL, tctl);
2935}
2936
2937/**
2938 * igb_configure_tx_ring - Configure transmit ring after Reset
2939 * @adapter: board private structure
2940 * @ring: tx ring to configure
2941 *
2942 * Configure a transmit ring after a reset.
2943 **/
2944void igb_configure_tx_ring(struct igb_adapter *adapter,
2945                           struct igb_ring *ring)
2946{
2947	struct e1000_hw *hw = &adapter->hw;
2948	u32 txdctl = 0;
2949	u64 tdba = ring->dma;
2950	int reg_idx = ring->reg_idx;
2951
2952	/* disable the queue */
2953	wr32(E1000_TXDCTL(reg_idx), 0);
2954	wrfl();
2955	mdelay(10);
2956
2957	wr32(E1000_TDLEN(reg_idx),
2958	                ring->count * sizeof(union e1000_adv_tx_desc));
2959	wr32(E1000_TDBAL(reg_idx),
2960	                tdba & 0x00000000ffffffffULL);
2961	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2962
2963	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2964	wr32(E1000_TDH(reg_idx), 0);
2965	writel(0, ring->tail);
2966
2967	txdctl |= IGB_TX_PTHRESH;
2968	txdctl |= IGB_TX_HTHRESH << 8;
2969	txdctl |= IGB_TX_WTHRESH << 16;
2970
2971	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2972	wr32(E1000_TXDCTL(reg_idx), txdctl);
2973}
2974
2975/**
2976 * igb_configure_tx - Configure transmit Unit after Reset
2977 * @adapter: board private structure
2978 *
2979 * Configure the Tx unit of the MAC after a reset.
2980 **/
2981static void igb_configure_tx(struct igb_adapter *adapter)
2982{
2983	int i;
2984
2985	for (i = 0; i < adapter->num_tx_queues; i++)
2986		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2987}
2988
2989/**
2990 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2991 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2992 *
2993 * Returns 0 on success, negative on failure
2994 **/
2995int igb_setup_rx_resources(struct igb_ring *rx_ring)
2996{
2997	struct device *dev = rx_ring->dev;
2998	int size;
2999
3000	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3001
3002	rx_ring->rx_buffer_info = vzalloc(size);
3003	if (!rx_ring->rx_buffer_info)
3004		goto err;
3005
3006	/* Round up to nearest 4K */
3007	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3008	rx_ring->size = ALIGN(rx_ring->size, 4096);
3009
3010	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3011					   &rx_ring->dma, GFP_KERNEL);
3012	if (!rx_ring->desc)
3013		goto err;
3014
3015	rx_ring->next_to_alloc = 0;
3016	rx_ring->next_to_clean = 0;
3017	rx_ring->next_to_use = 0;
3018
3019	return 0;
3020
3021err:
3022	vfree(rx_ring->rx_buffer_info);
3023	rx_ring->rx_buffer_info = NULL;
3024	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3025	return -ENOMEM;
3026}
3027
3028/**
3029 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3030 *				  (Descriptors) for all queues
3031 * @adapter: board private structure
3032 *
3033 * Return 0 on success, negative on failure
3034 **/
3035static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3036{
3037	struct pci_dev *pdev = adapter->pdev;
3038	int i, err = 0;
3039
3040	for (i = 0; i < adapter->num_rx_queues; i++) {
3041		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3042		if (err) {
3043			dev_err(&pdev->dev,
3044				"Allocation for Rx Queue %u failed\n", i);
3045			for (i--; i >= 0; i--)
3046				igb_free_rx_resources(adapter->rx_ring[i]);
3047			break;
3048		}
3049	}
3050
3051	return err;
3052}
3053
3054/**
3055 * igb_setup_mrqc - configure the multiple receive queue control registers
3056 * @adapter: Board private structure
3057 **/
3058static void igb_setup_mrqc(struct igb_adapter *adapter)
3059{
3060	struct e1000_hw *hw = &adapter->hw;
3061	u32 mrqc, rxcsum;
3062	u32 j, num_rx_queues, shift = 0;
3063	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3064					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3065					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3066					0xFA01ACBE };
3067
3068	/* Fill out hash function seeds */
3069	for (j = 0; j < 10; j++)
3070		wr32(E1000_RSSRK(j), rsskey[j]);
3071
3072	num_rx_queues = adapter->rss_queues;
3073
3074	switch (hw->mac.type) {
3075	case e1000_82575:
3076		shift = 6;
3077		break;
3078	case e1000_82576:
3079		/* 82576 supports 2 RSS queues for SR-IOV */
3080		if (adapter->vfs_allocated_count) {
3081			shift = 3;
3082			num_rx_queues = 2;
3083		}
3084		break;
3085	default:
3086		break;
3087	}
3088
3089	/*
3090	 * Populate the indirection table 4 entries at a time.  To do this
3091	 * we are generating the results for n and n+2 and then interleaving
3092	 * those with the results with n+1 and n+3.
3093	 */
3094	for (j = 0; j < 32; j++) {
3095		/* first pass generates n and n+2 */
3096		u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
3097		u32 reta = (base & 0x07800780) >> (7 - shift);
3098
3099		/* second pass generates n+1 and n+3 */
3100		base += 0x00010001 * num_rx_queues;
3101		reta |= (base & 0x07800780) << (1 + shift);
3102
3103		wr32(E1000_RETA(j), reta);
3104	}
3105
3106	/*
3107	 * Disable raw packet checksumming so that RSS hash is placed in
3108	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3109	 * offloads as they are enabled by default
3110	 */
3111	rxcsum = rd32(E1000_RXCSUM);
3112	rxcsum |= E1000_RXCSUM_PCSD;
3113
3114	if (adapter->hw.mac.type >= e1000_82576)
3115		/* Enable Receive Checksum Offload for SCTP */
3116		rxcsum |= E1000_RXCSUM_CRCOFL;
3117
3118	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3119	wr32(E1000_RXCSUM, rxcsum);
3120
3121	/* Generate RSS hash based on packet types, TCP/UDP
3122	 * port numbers and/or IPv4/v6 src and dst addresses
3123	 */
3124	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3125	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3126	       E1000_MRQC_RSS_FIELD_IPV6 |
3127	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3128	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3129
3130	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3131		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3132	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3133		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3134
3135	/* If VMDq is enabled then we set the appropriate mode for that, else
3136	 * we default to RSS so that an RSS hash is calculated per packet even
3137	 * if we are only using one queue */
3138	if (adapter->vfs_allocated_count) {
3139		if (hw->mac.type > e1000_82575) {
3140			/* Set the default pool for the PF's first queue */
3141			u32 vtctl = rd32(E1000_VT_CTL);
3142			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3143				   E1000_VT_CTL_DISABLE_DEF_POOL);
3144			vtctl |= adapter->vfs_allocated_count <<
3145				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3146			wr32(E1000_VT_CTL, vtctl);
3147		}
3148		if (adapter->rss_queues > 1)
3149			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3150		else
3151			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3152	} else {
3153		if (hw->mac.type != e1000_i211)
3154			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3155	}
3156	igb_vmm_control(adapter);
3157
3158	wr32(E1000_MRQC, mrqc);
3159}
3160
3161/**
3162 * igb_setup_rctl - configure the receive control registers
3163 * @adapter: Board private structure
3164 **/
3165void igb_setup_rctl(struct igb_adapter *adapter)
3166{
3167	struct e1000_hw *hw = &adapter->hw;
3168	u32 rctl;
3169
3170	rctl = rd32(E1000_RCTL);
3171
3172	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3173	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3174
3175	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3176		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3177
3178	/*
3179	 * enable stripping of CRC. It's unlikely this will break BMC
3180	 * redirection as it did with e1000. Newer features require
3181	 * that the HW strips the CRC.
3182	 */
3183	rctl |= E1000_RCTL_SECRC;
3184
3185	/* disable store bad packets and clear size bits. */
3186	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3187
3188	/* enable LPE to prevent packets larger than max_frame_size */
3189	rctl |= E1000_RCTL_LPE;
3190
3191	/* disable queue 0 to prevent tail write w/o re-config */
3192	wr32(E1000_RXDCTL(0), 0);
3193
3194	/* Attention!!!  For SR-IOV PF driver operations you must enable
3195	 * queue drop for all VF and PF queues to prevent head of line blocking
3196	 * if an un-trusted VF does not provide descriptors to hardware.
3197	 */
3198	if (adapter->vfs_allocated_count) {
3199		/* set all queue drop enable bits */
3200		wr32(E1000_QDE, ALL_QUEUES);
3201	}
3202
3203	/* This is useful for sniffing bad packets. */
3204	if (adapter->netdev->features & NETIF_F_RXALL) {
3205		/* UPE and MPE will be handled by normal PROMISC logic
3206		 * in e1000e_set_rx_mode */
3207		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3208			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3209			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3210
3211		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3212			  E1000_RCTL_DPF | /* Allow filtered pause */
3213			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3214		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3215		 * and that breaks VLANs.
3216		 */
3217	}
3218
3219	wr32(E1000_RCTL, rctl);
3220}
3221
3222static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3223                                   int vfn)
3224{
3225	struct e1000_hw *hw = &adapter->hw;
3226	u32 vmolr;
3227
3228	/* if it isn't the PF check to see if VFs are enabled and
3229	 * increase the size to support vlan tags */
3230	if (vfn < adapter->vfs_allocated_count &&
3231	    adapter->vf_data[vfn].vlans_enabled)
3232		size += VLAN_TAG_SIZE;
3233
3234	vmolr = rd32(E1000_VMOLR(vfn));
3235	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3236	vmolr |= size | E1000_VMOLR_LPE;
3237	wr32(E1000_VMOLR(vfn), vmolr);
3238
3239	return 0;
3240}
3241
3242/**
3243 * igb_rlpml_set - set maximum receive packet size
3244 * @adapter: board private structure
3245 *
3246 * Configure maximum receivable packet size.
3247 **/
3248static void igb_rlpml_set(struct igb_adapter *adapter)
3249{
3250	u32 max_frame_size = adapter->max_frame_size;
3251	struct e1000_hw *hw = &adapter->hw;
3252	u16 pf_id = adapter->vfs_allocated_count;
3253
3254	if (pf_id) {
3255		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3256		/*
3257		 * If we're in VMDQ or SR-IOV mode, then set global RLPML
3258		 * to our max jumbo frame size, in case we need to enable
3259		 * jumbo frames on one of the rings later.
3260		 * This will not pass over-length frames into the default
3261		 * queue because it's gated by the VMOLR.RLPML.
3262		 */
3263		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3264	}
3265
3266	wr32(E1000_RLPML, max_frame_size);
3267}
3268
3269static inline void igb_set_vmolr(struct igb_adapter *adapter,
3270				 int vfn, bool aupe)
3271{
3272	struct e1000_hw *hw = &adapter->hw;
3273	u32 vmolr;
3274
3275	/*
3276	 * This register exists only on 82576 and newer so if we are older then
3277	 * we should exit and do nothing
3278	 */
3279	if (hw->mac.type < e1000_82576)
3280		return;
3281
3282	vmolr = rd32(E1000_VMOLR(vfn));
3283	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
3284	if (aupe)
3285		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
3286	else
3287		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3288
3289	/* clear all bits that might not be set */
3290	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3291
3292	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3293		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3294	/*
3295	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3296	 * multicast packets
3297	 */
3298	if (vfn <= adapter->vfs_allocated_count)
3299		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */
3300
3301	wr32(E1000_VMOLR(vfn), vmolr);
3302}
3303
3304/**
3305 * igb_configure_rx_ring - Configure a receive ring after Reset
3306 * @adapter: board private structure
3307 * @ring: receive ring to be configured
3308 *
3309 * Configure the Rx unit of the MAC after a reset.
3310 **/
3311void igb_configure_rx_ring(struct igb_adapter *adapter,
3312                           struct igb_ring *ring)
3313{
3314	struct e1000_hw *hw = &adapter->hw;
3315	u64 rdba = ring->dma;
3316	int reg_idx = ring->reg_idx;
3317	u32 srrctl = 0, rxdctl = 0;
3318
3319	/* disable the queue */
3320	wr32(E1000_RXDCTL(reg_idx), 0);
3321
3322	/* Set DMA base address registers */
3323	wr32(E1000_RDBAL(reg_idx),
3324	     rdba & 0x00000000ffffffffULL);
3325	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3326	wr32(E1000_RDLEN(reg_idx),
3327	               ring->count * sizeof(union e1000_adv_rx_desc));
3328
3329	/* initialize head and tail */
3330	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3331	wr32(E1000_RDH(reg_idx), 0);
3332	writel(0, ring->tail);
3333
3334	/* set descriptor configuration */
3335	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3336	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3337	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3338	if (hw->mac.type >= e1000_82580)
3339		srrctl |= E1000_SRRCTL_TIMESTAMP;
3340	/* Only set Drop Enable if we are supporting multiple queues */
3341	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3342		srrctl |= E1000_SRRCTL_DROP_EN;
3343
3344	wr32(E1000_SRRCTL(reg_idx), srrctl);
3345
3346	/* set filtering for VMDQ pools */
3347	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3348
3349	rxdctl |= IGB_RX_PTHRESH;
3350	rxdctl |= IGB_RX_HTHRESH << 8;
3351	rxdctl |= IGB_RX_WTHRESH << 16;
3352
3353	/* enable receive descriptor fetching */
3354	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3355	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3356}
3357
3358/**
3359 * igb_configure_rx - Configure receive Unit after Reset
3360 * @adapter: board private structure
3361 *
3362 * Configure the Rx unit of the MAC after a reset.
3363 **/
3364static void igb_configure_rx(struct igb_adapter *adapter)
3365{
3366	int i;
3367
3368	/* set UTA to appropriate mode */
3369	igb_set_uta(adapter);
3370
3371	/* set the correct pool for the PF default MAC address in entry 0 */
3372	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3373	                 adapter->vfs_allocated_count);
3374
3375	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3376	 * the Base and Length of the Rx Descriptor Ring */
3377	for (i = 0; i < adapter->num_rx_queues; i++)
3378		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3379}
3380
3381/**
3382 * igb_free_tx_resources - Free Tx Resources per Queue
3383 * @tx_ring: Tx descriptor ring for a specific queue
3384 *
3385 * Free all transmit software resources
3386 **/
3387void igb_free_tx_resources(struct igb_ring *tx_ring)
3388{
3389	igb_clean_tx_ring(tx_ring);
3390
3391	vfree(tx_ring->tx_buffer_info);
3392	tx_ring->tx_buffer_info = NULL;
3393
3394	/* if not set, then don't free */
3395	if (!tx_ring->desc)
3396		return;
3397
3398	dma_free_coherent(tx_ring->dev, tx_ring->size,
3399			  tx_ring->desc, tx_ring->dma);
3400
3401	tx_ring->desc = NULL;
3402}
3403
3404/**
3405 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3406 * @adapter: board private structure
3407 *
3408 * Free all transmit software resources
3409 **/
3410static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3411{
3412	int i;
3413
3414	for (i = 0; i < adapter->num_tx_queues; i++)
3415		igb_free_tx_resources(adapter->tx_ring[i]);
3416}
3417
3418void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3419				    struct igb_tx_buffer *tx_buffer)
3420{
3421	if (tx_buffer->skb) {
3422		dev_kfree_skb_any(tx_buffer->skb);
3423		if (dma_unmap_len(tx_buffer, len))
3424			dma_unmap_single(ring->dev,
3425					 dma_unmap_addr(tx_buffer, dma),
3426					 dma_unmap_len(tx_buffer, len),
3427					 DMA_TO_DEVICE);
3428	} else if (dma_unmap_len(tx_buffer, len)) {
3429		dma_unmap_page(ring->dev,
3430			       dma_unmap_addr(tx_buffer, dma),
3431			       dma_unmap_len(tx_buffer, len),
3432			       DMA_TO_DEVICE);
3433	}
3434	tx_buffer->next_to_watch = NULL;
3435	tx_buffer->skb = NULL;
3436	dma_unmap_len_set(tx_buffer, len, 0);
3437	/* buffer_info must be completely set up in the transmit path */
3438}
3439
3440/**
3441 * igb_clean_tx_ring - Free Tx Buffers
3442 * @tx_ring: ring to be cleaned
3443 **/
3444static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3445{
3446	struct igb_tx_buffer *buffer_info;
3447	unsigned long size;
3448	u16 i;
3449
3450	if (!tx_ring->tx_buffer_info)
3451		return;
3452	/* Free all the Tx ring sk_buffs */
3453
3454	for (i = 0; i < tx_ring->count; i++) {
3455		buffer_info = &tx_ring->tx_buffer_info[i];
3456		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3457	}
3458
3459	netdev_tx_reset_queue(txring_txq(tx_ring));
3460
3461	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3462	memset(tx_ring->tx_buffer_info, 0, size);
3463
3464	/* Zero out the descriptor ring */
3465	memset(tx_ring->desc, 0, tx_ring->size);
3466
3467	tx_ring->next_to_use = 0;
3468	tx_ring->next_to_clean = 0;
3469}
3470
3471/**
3472 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3473 * @adapter: board private structure
3474 **/
3475static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3476{
3477	int i;
3478
3479	for (i = 0; i < adapter->num_tx_queues; i++)
3480		igb_clean_tx_ring(adapter->tx_ring[i]);
3481}
3482
3483/**
3484 * igb_free_rx_resources - Free Rx Resources
3485 * @rx_ring: ring to clean the resources from
3486 *
3487 * Free all receive software resources
3488 **/
3489void igb_free_rx_resources(struct igb_ring *rx_ring)
3490{
3491	igb_clean_rx_ring(rx_ring);
3492
3493	vfree(rx_ring->rx_buffer_info);
3494	rx_ring->rx_buffer_info = NULL;
3495
3496	/* if not set, then don't free */
3497	if (!rx_ring->desc)
3498		return;
3499
3500	dma_free_coherent(rx_ring->dev, rx_ring->size,
3501			  rx_ring->desc, rx_ring->dma);
3502
3503	rx_ring->desc = NULL;
3504}
3505
3506/**
3507 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3508 * @adapter: board private structure
3509 *
3510 * Free all receive software resources
3511 **/
3512static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3513{
3514	int i;
3515
3516	for (i = 0; i < adapter->num_rx_queues; i++)
3517		igb_free_rx_resources(adapter->rx_ring[i]);
3518}
3519
3520/**
3521 * igb_clean_rx_ring - Free Rx Buffers per Queue
3522 * @rx_ring: ring to free buffers from
3523 **/
3524static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3525{
3526	unsigned long size;
3527	u16 i;
3528
3529	if (rx_ring->skb)
3530		dev_kfree_skb(rx_ring->skb);
3531	rx_ring->skb = NULL;
3532
3533	if (!rx_ring->rx_buffer_info)
3534		return;
3535
3536	/* Free all the Rx ring sk_buffs */
3537	for (i = 0; i < rx_ring->count; i++) {
3538		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3539
3540		if (!buffer_info->page)
3541			continue;
3542
3543		dma_unmap_page(rx_ring->dev,
3544			       buffer_info->dma,
3545			       PAGE_SIZE,
3546			       DMA_FROM_DEVICE);
3547		__free_page(buffer_info->page);
3548
3549		buffer_info->page = NULL;
3550	}
3551
3552	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3553	memset(rx_ring->rx_buffer_info, 0, size);
3554
3555	/* Zero out the descriptor ring */
3556	memset(rx_ring->desc, 0, rx_ring->size);
3557
3558	rx_ring->next_to_alloc = 0;
3559	rx_ring->next_to_clean = 0;
3560	rx_ring->next_to_use = 0;
3561}
3562
3563/**
3564 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3565 * @adapter: board private structure
3566 **/
3567static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3568{
3569	int i;
3570
3571	for (i = 0; i < adapter->num_rx_queues; i++)
3572		igb_clean_rx_ring(adapter->rx_ring[i]);
3573}
3574
3575/**
3576 * igb_set_mac - Change the Ethernet Address of the NIC
3577 * @netdev: network interface device structure
3578 * @p: pointer to an address structure
3579 *
3580 * Returns 0 on success, negative on failure
3581 **/
3582static int igb_set_mac(struct net_device *netdev, void *p)
3583{
3584	struct igb_adapter *adapter = netdev_priv(netdev);
3585	struct e1000_hw *hw = &adapter->hw;
3586	struct sockaddr *addr = p;
3587
3588	if (!is_valid_ether_addr(addr->sa_data))
3589		return -EADDRNOTAVAIL;
3590
3591	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3592	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3593
3594	/* set the correct pool for the new PF MAC address in entry 0 */
3595	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3596	                 adapter->vfs_allocated_count);
3597
3598	return 0;
3599}
3600
3601/**
3602 * igb_write_mc_addr_list - write multicast addresses to MTA
3603 * @netdev: network interface device structure
3604 *
3605 * Writes multicast address list to the MTA hash table.
3606 * Returns: -ENOMEM on failure
3607 *                0 on no addresses written
3608 *                X on writing X addresses to MTA
3609 **/
3610static int igb_write_mc_addr_list(struct net_device *netdev)
3611{
3612	struct igb_adapter *adapter = netdev_priv(netdev);
3613	struct e1000_hw *hw = &adapter->hw;
3614	struct netdev_hw_addr *ha;
3615	u8  *mta_list;
3616	int i;
3617
3618	if (netdev_mc_empty(netdev)) {
3619		/* nothing to program, so clear mc list */
3620		igb_update_mc_addr_list(hw, NULL, 0);
3621		igb_restore_vf_multicasts(adapter);
3622		return 0;
3623	}
3624
3625	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3626	if (!mta_list)
3627		return -ENOMEM;
3628
3629	/* The shared function expects a packed array of only addresses. */
3630	i = 0;
3631	netdev_for_each_mc_addr(ha, netdev)
3632		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3633
3634	igb_update_mc_addr_list(hw, mta_list, i);
3635	kfree(mta_list);
3636
3637	return netdev_mc_count(netdev);
3638}
3639
3640/**
3641 * igb_write_uc_addr_list - write unicast addresses to RAR table
3642 * @netdev: network interface device structure
3643 *
3644 * Writes unicast address list to the RAR table.
3645 * Returns: -ENOMEM on failure/insufficient address space
3646 *                0 on no addresses written
3647 *                X on writing X addresses to the RAR table
3648 **/
3649static int igb_write_uc_addr_list(struct net_device *netdev)
3650{
3651	struct igb_adapter *adapter = netdev_priv(netdev);
3652	struct e1000_hw *hw = &adapter->hw;
3653	unsigned int vfn = adapter->vfs_allocated_count;
3654	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3655	int count = 0;
3656
3657	/* return ENOMEM indicating insufficient memory for addresses */
3658	if (netdev_uc_count(netdev) > rar_entries)
3659		return -ENOMEM;
3660
3661	if (!netdev_uc_empty(netdev) && rar_entries) {
3662		struct netdev_hw_addr *ha;
3663
3664		netdev_for_each_uc_addr(ha, netdev) {
3665			if (!rar_entries)
3666				break;
3667			igb_rar_set_qsel(adapter, ha->addr,
3668			                 rar_entries--,
3669			                 vfn);
3670			count++;
3671		}
3672	}
3673	/* write the addresses in reverse order to avoid write combining */
3674	for (; rar_entries > 0 ; rar_entries--) {
3675		wr32(E1000_RAH(rar_entries), 0);
3676		wr32(E1000_RAL(rar_entries), 0);
3677	}
3678	wrfl();
3679
3680	return count;
3681}
3682
3683/**
3684 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3685 * @netdev: network interface device structure
3686 *
3687 * The set_rx_mode entry point is called whenever the unicast or multicast
3688 * address lists or the network interface flags are updated.  This routine is
3689 * responsible for configuring the hardware for proper unicast, multicast,
3690 * promiscuous mode, and all-multi behavior.
3691 **/
3692static void igb_set_rx_mode(struct net_device *netdev)
3693{
3694	struct igb_adapter *adapter = netdev_priv(netdev);
3695	struct e1000_hw *hw = &adapter->hw;
3696	unsigned int vfn = adapter->vfs_allocated_count;
3697	u32 rctl, vmolr = 0;
3698	int count;
3699
3700	/* Check for Promiscuous and All Multicast modes */
3701	rctl = rd32(E1000_RCTL);
3702
3703	/* clear the effected bits */
3704	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3705
3706	if (netdev->flags & IFF_PROMISC) {
3707		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3708		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3709	} else {
3710		if (netdev->flags & IFF_ALLMULTI) {
3711			rctl |= E1000_RCTL_MPE;
3712			vmolr |= E1000_VMOLR_MPME;
3713		} else {
3714			/*
3715			 * Write addresses to the MTA, if the attempt fails
3716			 * then we should just turn on promiscuous mode so
3717			 * that we can at least receive multicast traffic
3718			 */
3719			count = igb_write_mc_addr_list(netdev);
3720			if (count < 0) {
3721				rctl |= E1000_RCTL_MPE;
3722				vmolr |= E1000_VMOLR_MPME;
3723			} else if (count) {
3724				vmolr |= E1000_VMOLR_ROMPE;
3725			}
3726		}
3727		/*
3728		 * Write addresses to available RAR registers, if there is not
3729		 * sufficient space to store all the addresses then enable
3730		 * unicast promiscuous mode
3731		 */
3732		count = igb_write_uc_addr_list(netdev);
3733		if (count < 0) {
3734			rctl |= E1000_RCTL_UPE;
3735			vmolr |= E1000_VMOLR_ROPE;
3736		}
3737		rctl |= E1000_RCTL_VFE;
3738	}
3739	wr32(E1000_RCTL, rctl);
3740
3741	/*
3742	 * In order to support SR-IOV and eventually VMDq it is necessary to set
3743	 * the VMOLR to enable the appropriate modes.  Without this workaround
3744	 * we will have issues with VLAN tag stripping not being done for frames
3745	 * that are only arriving because we are the default pool
3746	 */
3747	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3748		return;
3749
3750	vmolr |= rd32(E1000_VMOLR(vfn)) &
3751	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3752	wr32(E1000_VMOLR(vfn), vmolr);
3753	igb_restore_vf_multicasts(adapter);
3754}
3755
3756static void igb_check_wvbr(struct igb_adapter *adapter)
3757{
3758	struct e1000_hw *hw = &adapter->hw;
3759	u32 wvbr = 0;
3760
3761	switch (hw->mac.type) {
3762	case e1000_82576:
3763	case e1000_i350:
3764		if (!(wvbr = rd32(E1000_WVBR)))
3765			return;
3766		break;
3767	default:
3768		break;
3769	}
3770
3771	adapter->wvbr |= wvbr;
3772}
3773
3774#define IGB_STAGGERED_QUEUE_OFFSET 8
3775
3776static void igb_spoof_check(struct igb_adapter *adapter)
3777{
3778	int j;
3779
3780	if (!adapter->wvbr)
3781		return;
3782
3783	for(j = 0; j < adapter->vfs_allocated_count; j++) {
3784		if (adapter->wvbr & (1 << j) ||
3785		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3786			dev_warn(&adapter->pdev->dev,
3787				"Spoof event(s) detected on VF %d\n", j);
3788			adapter->wvbr &=
3789				~((1 << j) |
3790				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3791		}
3792	}
3793}
3794
3795/* Need to wait a few seconds after link up to get diagnostic information from
3796 * the phy */
3797static void igb_update_phy_info(unsigned long data)
3798{
3799	struct igb_adapter *adapter = (struct igb_adapter *) data;
3800	igb_get_phy_info(&adapter->hw);
3801}
3802
3803/**
3804 * igb_has_link - check shared code for link and determine up/down
3805 * @adapter: pointer to driver private info
3806 **/
3807bool igb_has_link(struct igb_adapter *adapter)
3808{
3809	struct e1000_hw *hw = &adapter->hw;
3810	bool link_active = false;
3811	s32 ret_val = 0;
3812
3813	/* get_link_status is set on LSC (link status) interrupt or
3814	 * rx sequence error interrupt.  get_link_status will stay
3815	 * false until the e1000_check_for_link establishes link
3816	 * for copper adapters ONLY
3817	 */
3818	switch (hw->phy.media_type) {
3819	case e1000_media_type_copper:
3820		if (hw->mac.get_link_status) {
3821			ret_val = hw->mac.ops.check_for_link(hw);
3822			link_active = !hw->mac.get_link_status;
3823		} else {
3824			link_active = true;
3825		}
3826		break;
3827	case e1000_media_type_internal_serdes:
3828		ret_val = hw->mac.ops.check_for_link(hw);
3829		link_active = hw->mac.serdes_has_link;
3830		break;
3831	default:
3832	case e1000_media_type_unknown:
3833		break;
3834	}
3835
3836	return link_active;
3837}
3838
3839static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3840{
3841	bool ret = false;
3842	u32 ctrl_ext, thstat;
3843
3844	/* check for thermal sensor event on i350 copper only */
3845	if (hw->mac.type == e1000_i350) {
3846		thstat = rd32(E1000_THSTAT);
3847		ctrl_ext = rd32(E1000_CTRL_EXT);
3848
3849		if ((hw->phy.media_type == e1000_media_type_copper) &&
3850		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3851			ret = !!(thstat & event);
3852		}
3853	}
3854
3855	return ret;
3856}
3857
3858/**
3859 * igb_watchdog - Timer Call-back
3860 * @data: pointer to adapter cast into an unsigned long
3861 **/
3862static void igb_watchdog(unsigned long data)
3863{
3864	struct igb_adapter *adapter = (struct igb_adapter *)data;
3865	/* Do the rest outside of interrupt context */
3866	schedule_work(&adapter->watchdog_task);
3867}
3868
3869static void igb_watchdog_task(struct work_struct *work)
3870{
3871	struct igb_adapter *adapter = container_of(work,
3872	                                           struct igb_adapter,
3873                                                   watchdog_task);
3874	struct e1000_hw *hw = &adapter->hw;
3875	struct net_device *netdev = adapter->netdev;
3876	u32 link;
3877	int i;
3878
3879	link = igb_has_link(adapter);
3880	if (link) {
3881		/* Cancel scheduled suspend requests. */
3882		pm_runtime_resume(netdev->dev.parent);
3883
3884		if (!netif_carrier_ok(netdev)) {
3885			u32 ctrl;
3886			hw->mac.ops.get_speed_and_duplex(hw,
3887			                                 &adapter->link_speed,
3888			                                 &adapter->link_duplex);
3889
3890			ctrl = rd32(E1000_CTRL);
3891			/* Links status message must follow this format */
3892			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3893			       "Duplex, Flow Control: %s\n",
3894			       netdev->name,
3895			       adapter->link_speed,
3896			       adapter->link_duplex == FULL_DUPLEX ?
3897			       "Full" : "Half",
3898			       (ctrl & E1000_CTRL_TFCE) &&
3899			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3900			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
3901			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3902
3903			/* check for thermal sensor event */
3904			if (igb_thermal_sensor_event(hw,
3905			    E1000_THSTAT_LINK_THROTTLE)) {
3906				netdev_info(netdev, "The network adapter link "
3907					    "speed was downshifted because it "
3908					    "overheated\n");
3909			}
3910
3911			/* adjust timeout factor according to speed/duplex */
3912			adapter->tx_timeout_factor = 1;
3913			switch (adapter->link_speed) {
3914			case SPEED_10:
3915				adapter->tx_timeout_factor = 14;
3916				break;
3917			case SPEED_100:
3918				/* maybe add some timeout factor ? */
3919				break;
3920			}
3921
3922			netif_carrier_on(netdev);
3923
3924			igb_ping_all_vfs(adapter);
3925			igb_check_vf_rate_limit(adapter);
3926
3927			/* link state has changed, schedule phy info update */
3928			if (!test_bit(__IGB_DOWN, &adapter->state))
3929				mod_timer(&adapter->phy_info_timer,
3930					  round_jiffies(jiffies + 2 * HZ));
3931		}
3932	} else {
3933		if (netif_carrier_ok(netdev)) {
3934			adapter->link_speed = 0;
3935			adapter->link_duplex = 0;
3936
3937			/* check for thermal sensor event */
3938			if (igb_thermal_sensor_event(hw,
3939			    E1000_THSTAT_PWR_DOWN)) {
3940				netdev_err(netdev, "The network adapter was "
3941					   "stopped because it overheated\n");
3942			}
3943
3944			/* Links status message must follow this format */
3945			printk(KERN_INFO "igb: %s NIC Link is Down\n",
3946			       netdev->name);
3947			netif_carrier_off(netdev);
3948
3949			igb_ping_all_vfs(adapter);
3950
3951			/* link state has changed, schedule phy info update */
3952			if (!test_bit(__IGB_DOWN, &adapter->state))
3953				mod_timer(&adapter->phy_info_timer,
3954					  round_jiffies(jiffies + 2 * HZ));
3955
3956			pm_schedule_suspend(netdev->dev.parent,
3957					    MSEC_PER_SEC * 5);
3958		}
3959	}
3960
3961	spin_lock(&adapter->stats64_lock);
3962	igb_update_stats(adapter, &adapter->stats64);
3963	spin_unlock(&adapter->stats64_lock);
3964
3965	for (i = 0; i < adapter->num_tx_queues; i++) {
3966		struct igb_ring *tx_ring = adapter->tx_ring[i];
3967		if (!netif_carrier_ok(netdev)) {
3968			/* We've lost link, so the controller stops DMA,
3969			 * but we've got queued Tx work that's never going
3970			 * to get done, so reset controller to flush Tx.
3971			 * (Do the reset outside of interrupt context). */
3972			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3973				adapter->tx_timeout_count++;
3974				schedule_work(&adapter->reset_task);
3975				/* return immediately since reset is imminent */
3976				return;
3977			}
3978		}
3979
3980		/* Force detection of hung controller every watchdog period */
3981		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3982	}
3983
3984	/* Cause software interrupt to ensure rx ring is cleaned */
3985	if (adapter->msix_entries) {
3986		u32 eics = 0;
3987		for (i = 0; i < adapter->num_q_vectors; i++)
3988			eics |= adapter->q_vector[i]->eims_value;
3989		wr32(E1000_EICS, eics);
3990	} else {
3991		wr32(E1000_ICS, E1000_ICS_RXDMT0);
3992	}
3993
3994	igb_spoof_check(adapter);
3995	igb_ptp_rx_hang(adapter);
3996
3997	/* Reset the timer */
3998	if (!test_bit(__IGB_DOWN, &adapter->state))
3999		mod_timer(&adapter->watchdog_timer,
4000			  round_jiffies(jiffies + 2 * HZ));
4001}
4002
4003enum latency_range {
4004	lowest_latency = 0,
4005	low_latency = 1,
4006	bulk_latency = 2,
4007	latency_invalid = 255
4008};
4009
4010/**
4011 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4012 *
4013 *      Stores a new ITR value based on strictly on packet size.  This
4014 *      algorithm is less sophisticated than that used in igb_update_itr,
4015 *      due to the difficulty of synchronizing statistics across multiple
4016 *      receive rings.  The divisors and thresholds used by this function
4017 *      were determined based on theoretical maximum wire speed and testing
4018 *      data, in order to minimize response time while increasing bulk
4019 *      throughput.
4020 *      This functionality is controlled by the InterruptThrottleRate module
4021 *      parameter (see igb_param.c)
4022 *      NOTE:  This function is called only when operating in a multiqueue
4023 *             receive environment.
4024 * @q_vector: pointer to q_vector
4025 **/
4026static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4027{
4028	int new_val = q_vector->itr_val;
4029	int avg_wire_size = 0;
4030	struct igb_adapter *adapter = q_vector->adapter;
4031	unsigned int packets;
4032
4033	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4034	 * ints/sec - ITR timer value of 120 ticks.
4035	 */
4036	if (adapter->link_speed != SPEED_1000) {
4037		new_val = IGB_4K_ITR;
4038		goto set_itr_val;
4039	}
4040
4041	packets = q_vector->rx.total_packets;
4042	if (packets)
4043		avg_wire_size = q_vector->rx.total_bytes / packets;
4044
4045	packets = q_vector->tx.total_packets;
4046	if (packets)
4047		avg_wire_size = max_t(u32, avg_wire_size,
4048				      q_vector->tx.total_bytes / packets);
4049
4050	/* if avg_wire_size isn't set no work was done */
4051	if (!avg_wire_size)
4052		goto clear_counts;
4053
4054	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4055	avg_wire_size += 24;
4056
4057	/* Don't starve jumbo frames */
4058	avg_wire_size = min(avg_wire_size, 3000);
4059
4060	/* Give a little boost to mid-size frames */
4061	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4062		new_val = avg_wire_size / 3;
4063	else
4064		new_val = avg_wire_size / 2;
4065
4066	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4067	if (new_val < IGB_20K_ITR &&
4068	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4069	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4070		new_val = IGB_20K_ITR;
4071
4072set_itr_val:
4073	if (new_val != q_vector->itr_val) {
4074		q_vector->itr_val = new_val;
4075		q_vector->set_itr = 1;
4076	}
4077clear_counts:
4078	q_vector->rx.total_bytes = 0;
4079	q_vector->rx.total_packets = 0;
4080	q_vector->tx.total_bytes = 0;
4081	q_vector->tx.total_packets = 0;
4082}
4083
4084/**
4085 * igb_update_itr - update the dynamic ITR value based on statistics
4086 *      Stores a new ITR value based on packets and byte
4087 *      counts during the last interrupt.  The advantage of per interrupt
4088 *      computation is faster updates and more accurate ITR for the current
4089 *      traffic pattern.  Constants in this function were computed
4090 *      based on theoretical maximum wire speed and thresholds were set based
4091 *      on testing data as well as attempting to minimize response time
4092 *      while increasing bulk throughput.
4093 *      this functionality is controlled by the InterruptThrottleRate module
4094 *      parameter (see igb_param.c)
4095 *      NOTE:  These calculations are only valid when operating in a single-
4096 *             queue environment.
4097 * @q_vector: pointer to q_vector
4098 * @ring_container: ring info to update the itr for
4099 **/
4100static void igb_update_itr(struct igb_q_vector *q_vector,
4101			   struct igb_ring_container *ring_container)
4102{
4103	unsigned int packets = ring_container->total_packets;
4104	unsigned int bytes = ring_container->total_bytes;
4105	u8 itrval = ring_container->itr;
4106
4107	/* no packets, exit with status unchanged */
4108	if (packets == 0)
4109		return;
4110
4111	switch (itrval) {
4112	case lowest_latency:
4113		/* handle TSO and jumbo frames */
4114		if (bytes/packets > 8000)
4115			itrval = bulk_latency;
4116		else if ((packets < 5) && (bytes > 512))
4117			itrval = low_latency;
4118		break;
4119	case low_latency:  /* 50 usec aka 20000 ints/s */
4120		if (bytes > 10000) {
4121			/* this if handles the TSO accounting */
4122			if (bytes/packets > 8000) {
4123				itrval = bulk_latency;
4124			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4125				itrval = bulk_latency;
4126			} else if ((packets > 35)) {
4127				itrval = lowest_latency;
4128			}
4129		} else if (bytes/packets > 2000) {
4130			itrval = bulk_latency;
4131		} else if (packets <= 2 && bytes < 512) {
4132			itrval = lowest_latency;
4133		}
4134		break;
4135	case bulk_latency: /* 250 usec aka 4000 ints/s */
4136		if (bytes > 25000) {
4137			if (packets > 35)
4138				itrval = low_latency;
4139		} else if (bytes < 1500) {
4140			itrval = low_latency;
4141		}
4142		break;
4143	}
4144
4145	/* clear work counters since we have the values we need */
4146	ring_container->total_bytes = 0;
4147	ring_container->total_packets = 0;
4148
4149	/* write updated itr to ring container */
4150	ring_container->itr = itrval;
4151}
4152
4153static void igb_set_itr(struct igb_q_vector *q_vector)
4154{
4155	struct igb_adapter *adapter = q_vector->adapter;
4156	u32 new_itr = q_vector->itr_val;
4157	u8 current_itr = 0;
4158
4159	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4160	if (adapter->link_speed != SPEED_1000) {
4161		current_itr = 0;
4162		new_itr = IGB_4K_ITR;
4163		goto set_itr_now;
4164	}
4165
4166	igb_update_itr(q_vector, &q_vector->tx);
4167	igb_update_itr(q_vector, &q_vector->rx);
4168
4169	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4170
4171	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4172	if (current_itr == lowest_latency &&
4173	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4174	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4175		current_itr = low_latency;
4176
4177	switch (current_itr) {
4178	/* counts and packets in update_itr are dependent on these numbers */
4179	case lowest_latency:
4180		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4181		break;
4182	case low_latency:
4183		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4184		break;
4185	case bulk_latency:
4186		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4187		break;
4188	default:
4189		break;
4190	}
4191
4192set_itr_now:
4193	if (new_itr != q_vector->itr_val) {
4194		/* this attempts to bias the interrupt rate towards Bulk
4195		 * by adding intermediate steps when interrupt rate is
4196		 * increasing */
4197		new_itr = new_itr > q_vector->itr_val ?
4198		             max((new_itr * q_vector->itr_val) /
4199		                 (new_itr + (q_vector->itr_val >> 2)),
4200				 new_itr) :
4201			     new_itr;
4202		/* Don't write the value here; it resets the adapter's
4203		 * internal timer, and causes us to delay far longer than
4204		 * we should between interrupts.  Instead, we write the ITR
4205		 * value at the beginning of the next interrupt so the timing
4206		 * ends up being correct.
4207		 */
4208		q_vector->itr_val = new_itr;
4209		q_vector->set_itr = 1;
4210	}
4211}
4212
4213static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4214			    u32 type_tucmd, u32 mss_l4len_idx)
4215{
4216	struct e1000_adv_tx_context_desc *context_desc;
4217	u16 i = tx_ring->next_to_use;
4218
4219	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4220
4221	i++;
4222	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4223
4224	/* set bits to identify this as an advanced context descriptor */
4225	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4226
4227	/* For 82575, context index must be unique per ring. */
4228	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4229		mss_l4len_idx |= tx_ring->reg_idx << 4;
4230
4231	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4232	context_desc->seqnum_seed	= 0;
4233	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4234	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4235}
4236
4237static int igb_tso(struct igb_ring *tx_ring,
4238		   struct igb_tx_buffer *first,
4239		   u8 *hdr_len)
4240{
4241	struct sk_buff *skb = first->skb;
4242	u32 vlan_macip_lens, type_tucmd;
4243	u32 mss_l4len_idx, l4len;
4244
4245	if (skb->ip_summed != CHECKSUM_PARTIAL)
4246		return 0;
4247
4248	if (!skb_is_gso(skb))
4249		return 0;
4250
4251	if (skb_header_cloned(skb)) {
4252		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4253		if (err)
4254			return err;
4255	}
4256
4257	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4258	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4259
4260	if (first->protocol == __constant_htons(ETH_P_IP)) {
4261		struct iphdr *iph = ip_hdr(skb);
4262		iph->tot_len = 0;
4263		iph->check = 0;
4264		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4265							 iph->daddr, 0,
4266							 IPPROTO_TCP,
4267							 0);
4268		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4269		first->tx_flags |= IGB_TX_FLAGS_TSO |
4270				   IGB_TX_FLAGS_CSUM |
4271				   IGB_TX_FLAGS_IPV4;
4272	} else if (skb_is_gso_v6(skb)) {
4273		ipv6_hdr(skb)->payload_len = 0;
4274		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4275						       &ipv6_hdr(skb)->daddr,
4276						       0, IPPROTO_TCP, 0);
4277		first->tx_flags |= IGB_TX_FLAGS_TSO |
4278				   IGB_TX_FLAGS_CSUM;
4279	}
4280
4281	/* compute header lengths */
4282	l4len = tcp_hdrlen(skb);
4283	*hdr_len = skb_transport_offset(skb) + l4len;
4284
4285	/* update gso size and bytecount with header size */
4286	first->gso_segs = skb_shinfo(skb)->gso_segs;
4287	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4288
4289	/* MSS L4LEN IDX */
4290	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4291	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4292
4293	/* VLAN MACLEN IPLEN */
4294	vlan_macip_lens = skb_network_header_len(skb);
4295	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4296	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4297
4298	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4299
4300	return 1;
4301}
4302
4303static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4304{
4305	struct sk_buff *skb = first->skb;
4306	u32 vlan_macip_lens = 0;
4307	u32 mss_l4len_idx = 0;
4308	u32 type_tucmd = 0;
4309
4310	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4311		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4312			return;
4313	} else {
4314		u8 l4_hdr = 0;
4315		switch (first->protocol) {
4316		case __constant_htons(ETH_P_IP):
4317			vlan_macip_lens |= skb_network_header_len(skb);
4318			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4319			l4_hdr = ip_hdr(skb)->protocol;
4320			break;
4321		case __constant_htons(ETH_P_IPV6):
4322			vlan_macip_lens |= skb_network_header_len(skb);
4323			l4_hdr = ipv6_hdr(skb)->nexthdr;
4324			break;
4325		default:
4326			if (unlikely(net_ratelimit())) {
4327				dev_warn(tx_ring->dev,
4328				 "partial checksum but proto=%x!\n",
4329				 first->protocol);
4330			}
4331			break;
4332		}
4333
4334		switch (l4_hdr) {
4335		case IPPROTO_TCP:
4336			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4337			mss_l4len_idx = tcp_hdrlen(skb) <<
4338					E1000_ADVTXD_L4LEN_SHIFT;
4339			break;
4340		case IPPROTO_SCTP:
4341			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4342			mss_l4len_idx = sizeof(struct sctphdr) <<
4343					E1000_ADVTXD_L4LEN_SHIFT;
4344			break;
4345		case IPPROTO_UDP:
4346			mss_l4len_idx = sizeof(struct udphdr) <<
4347					E1000_ADVTXD_L4LEN_SHIFT;
4348			break;
4349		default:
4350			if (unlikely(net_ratelimit())) {
4351				dev_warn(tx_ring->dev,
4352				 "partial checksum but l4 proto=%x!\n",
4353				 l4_hdr);
4354			}
4355			break;
4356		}
4357
4358		/* update TX checksum flag */
4359		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4360	}
4361
4362	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4363	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4364
4365	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4366}
4367
4368#define IGB_SET_FLAG(_input, _flag, _result) \
4369	((_flag <= _result) ? \
4370	 ((u32)(_input & _flag) * (_result / _flag)) : \
4371	 ((u32)(_input & _flag) / (_flag / _result)))
4372
4373static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4374{
4375	/* set type for advanced descriptor with frame checksum insertion */
4376	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4377		       E1000_ADVTXD_DCMD_DEXT |
4378		       E1000_ADVTXD_DCMD_IFCS;
4379
4380	/* set HW vlan bit if vlan is present */
4381	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4382				 (E1000_ADVTXD_DCMD_VLE));
4383
4384	/* set segmentation bits for TSO */
4385	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4386				 (E1000_ADVTXD_DCMD_TSE));
4387
4388	/* set timestamp bit if present */
4389	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4390				 (E1000_ADVTXD_MAC_TSTAMP));
4391
4392	/* insert frame checksum */
4393	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4394
4395	return cmd_type;
4396}
4397
4398static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4399				 union e1000_adv_tx_desc *tx_desc,
4400				 u32 tx_flags, unsigned int paylen)
4401{
4402	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4403
4404	/* 82575 requires a unique index per ring */
4405	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4406		olinfo_status |= tx_ring->reg_idx << 4;
4407
4408	/* insert L4 checksum */
4409	olinfo_status |= IGB_SET_FLAG(tx_flags,
4410				      IGB_TX_FLAGS_CSUM,
4411				      (E1000_TXD_POPTS_TXSM << 8));
4412
4413	/* insert IPv4 checksum */
4414	olinfo_status |= IGB_SET_FLAG(tx_flags,
4415				      IGB_TX_FLAGS_IPV4,
4416				      (E1000_TXD_POPTS_IXSM << 8));
4417
4418	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4419}
4420
4421/*
4422 * The largest size we can write to the descriptor is 65535.  In order to
4423 * maintain a power of two alignment we have to limit ourselves to 32K.
4424 */
4425#define IGB_MAX_TXD_PWR	15
4426#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)
4427
4428static void igb_tx_map(struct igb_ring *tx_ring,
4429		       struct igb_tx_buffer *first,
4430		       const u8 hdr_len)
4431{
4432	struct sk_buff *skb = first->skb;
4433	struct igb_tx_buffer *tx_buffer;
4434	union e1000_adv_tx_desc *tx_desc;
4435	struct skb_frag_struct *frag;
4436	dma_addr_t dma;
4437	unsigned int data_len, size;
4438	u32 tx_flags = first->tx_flags;
4439	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4440	u16 i = tx_ring->next_to_use;
4441
4442	tx_desc = IGB_TX_DESC(tx_ring, i);
4443
4444	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4445
4446	size = skb_headlen(skb);
4447	data_len = skb->data_len;
4448
4449	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4450
4451	tx_buffer = first;
4452
4453	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4454		if (dma_mapping_error(tx_ring->dev, dma))
4455			goto dma_error;
4456
4457		/* record length, and DMA address */
4458		dma_unmap_len_set(tx_buffer, len, size);
4459		dma_unmap_addr_set(tx_buffer, dma, dma);
4460
4461		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4462
4463		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4464			tx_desc->read.cmd_type_len =
4465				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4466
4467			i++;
4468			tx_desc++;
4469			if (i == tx_ring->count) {
4470				tx_desc = IGB_TX_DESC(tx_ring, 0);
4471				i = 0;
4472			}
4473			tx_desc->read.olinfo_status = 0;
4474
4475			dma += IGB_MAX_DATA_PER_TXD;
4476			size -= IGB_MAX_DATA_PER_TXD;
4477
4478			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4479		}
4480
4481		if (likely(!data_len))
4482			break;
4483
4484		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4485
4486		i++;
4487		tx_desc++;
4488		if (i == tx_ring->count) {
4489			tx_desc = IGB_TX_DESC(tx_ring, 0);
4490			i = 0;
4491		}
4492		tx_desc->read.olinfo_status = 0;
4493
4494		size = skb_frag_size(frag);
4495		data_len -= size;
4496
4497		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4498				       size, DMA_TO_DEVICE);
4499
4500		tx_buffer = &tx_ring->tx_buffer_info[i];
4501	}
4502
4503	/* write last descriptor with RS and EOP bits */
4504	cmd_type |= size | IGB_TXD_DCMD;
4505	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4506
4507	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4508
4509	/* set the timestamp */
4510	first->time_stamp = jiffies;
4511
4512	/*
4513	 * Force memory writes to complete before letting h/w know there
4514	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4515	 * memory model archs, such as IA-64).
4516	 *
4517	 * We also need this memory barrier to make certain all of the
4518	 * status bits have been updated before next_to_watch is written.
4519	 */
4520	wmb();
4521
4522	/* set next_to_watch value indicating a packet is present */
4523	first->next_to_watch = tx_desc;
4524
4525	i++;
4526	if (i == tx_ring->count)
4527		i = 0;
4528
4529	tx_ring->next_to_use = i;
4530
4531	writel(i, tx_ring->tail);
4532
4533	/* we need this if more than one processor can write to our tail
4534	 * at a time, it syncronizes IO on IA64/Altix systems */
4535	mmiowb();
4536
4537	return;
4538
4539dma_error:
4540	dev_err(tx_ring->dev, "TX DMA map failed\n");
4541
4542	/* clear dma mappings for failed tx_buffer_info map */
4543	for (;;) {
4544		tx_buffer = &tx_ring->tx_buffer_info[i];
4545		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4546		if (tx_buffer == first)
4547			break;
4548		if (i == 0)
4549			i = tx_ring->count;
4550		i--;
4551	}
4552
4553	tx_ring->next_to_use = i;
4554}
4555
4556static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4557{
4558	struct net_device *netdev = tx_ring->netdev;
4559
4560	netif_stop_subqueue(netdev, tx_ring->queue_index);
4561
4562	/* Herbert's original patch had:
4563	 *  smp_mb__after_netif_stop_queue();
4564	 * but since that doesn't exist yet, just open code it. */
4565	smp_mb();
4566
4567	/* We need to check again in a case another CPU has just
4568	 * made room available. */
4569	if (igb_desc_unused(tx_ring) < size)
4570		return -EBUSY;
4571
4572	/* A reprieve! */
4573	netif_wake_subqueue(netdev, tx_ring->queue_index);
4574
4575	u64_stats_update_begin(&tx_ring->tx_syncp2);
4576	tx_ring->tx_stats.restart_queue2++;
4577	u64_stats_update_end(&tx_ring->tx_syncp2);
4578
4579	return 0;
4580}
4581
4582static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4583{
4584	if (igb_desc_unused(tx_ring) >= size)
4585		return 0;
4586	return __igb_maybe_stop_tx(tx_ring, size);
4587}
4588
4589netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4590				struct igb_ring *tx_ring)
4591{
4592	struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4593	struct igb_tx_buffer *first;
4594	int tso;
4595	u32 tx_flags = 0;
4596	__be16 protocol = vlan_get_protocol(skb);
4597	u8 hdr_len = 0;
4598
4599	/* need: 1 descriptor per page,
4600	 *       + 2 desc gap to keep tail from touching head,
4601	 *       + 1 desc for skb->data,
4602	 *       + 1 desc for context descriptor,
4603	 * otherwise try next time */
4604	if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4605		/* this is a hard error */
4606		return NETDEV_TX_BUSY;
4607	}
4608
4609	/* record the location of the first descriptor for this packet */
4610	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4611	first->skb = skb;
4612	first->bytecount = skb->len;
4613	first->gso_segs = 1;
4614
4615	skb_tx_timestamp(skb);
4616
4617	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4618		     !(adapter->ptp_tx_skb))) {
4619		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4620		tx_flags |= IGB_TX_FLAGS_TSTAMP;
4621
4622		adapter->ptp_tx_skb = skb_get(skb);
4623		adapter->ptp_tx_start = jiffies;
4624		if (adapter->hw.mac.type == e1000_82576)
4625			schedule_work(&adapter->ptp_tx_work);
4626	}
4627
4628	if (vlan_tx_tag_present(skb)) {
4629		tx_flags |= IGB_TX_FLAGS_VLAN;
4630		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4631	}
4632
4633	/* record initial flags and protocol */
4634	first->tx_flags = tx_flags;
4635	first->protocol = protocol;
4636
4637	tso = igb_tso(tx_ring, first, &hdr_len);
4638	if (tso < 0)
4639		goto out_drop;
4640	else if (!tso)
4641		igb_tx_csum(tx_ring, first);
4642
4643	igb_tx_map(tx_ring, first, hdr_len);
4644
4645	/* Make sure there is space in the ring for the next send. */
4646	igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4647
4648	return NETDEV_TX_OK;
4649
4650out_drop:
4651	igb_unmap_and_free_tx_resource(tx_ring, first);
4652
4653	return NETDEV_TX_OK;
4654}
4655
4656static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4657						    struct sk_buff *skb)
4658{
4659	unsigned int r_idx = skb->queue_mapping;
4660
4661	if (r_idx >= adapter->num_tx_queues)
4662		r_idx = r_idx % adapter->num_tx_queues;
4663
4664	return adapter->tx_ring[r_idx];
4665}
4666
4667static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4668				  struct net_device *netdev)
4669{
4670	struct igb_adapter *adapter = netdev_priv(netdev);
4671
4672	if (test_bit(__IGB_DOWN, &adapter->state)) {
4673		dev_kfree_skb_any(skb);
4674		return NETDEV_TX_OK;
4675	}
4676
4677	if (skb->len <= 0) {
4678		dev_kfree_skb_any(skb);
4679		return NETDEV_TX_OK;
4680	}
4681
4682	/*
4683	 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4684	 * in order to meet this minimum size requirement.
4685	 */
4686	if (unlikely(skb->len < 17)) {
4687		if (skb_pad(skb, 17 - skb->len))
4688			return NETDEV_TX_OK;
4689		skb->len = 17;
4690		skb_set_tail_pointer(skb, 17);
4691	}
4692
4693	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4694}
4695
4696/**
4697 * igb_tx_timeout - Respond to a Tx Hang
4698 * @netdev: network interface device structure
4699 **/
4700static void igb_tx_timeout(struct net_device *netdev)
4701{
4702	struct igb_adapter *adapter = netdev_priv(netdev);
4703	struct e1000_hw *hw = &adapter->hw;
4704
4705	/* Do the reset outside of interrupt context */
4706	adapter->tx_timeout_count++;
4707
4708	if (hw->mac.type >= e1000_82580)
4709		hw->dev_spec._82575.global_device_reset = true;
4710
4711	schedule_work(&adapter->reset_task);
4712	wr32(E1000_EICS,
4713	     (adapter->eims_enable_mask & ~adapter->eims_other));
4714}
4715
4716static void igb_reset_task(struct work_struct *work)
4717{
4718	struct igb_adapter *adapter;
4719	adapter = container_of(work, struct igb_adapter, reset_task);
4720
4721	igb_dump(adapter);
4722	netdev_err(adapter->netdev, "Reset adapter\n");
4723	igb_reinit_locked(adapter);
4724}
4725
4726/**
4727 * igb_get_stats64 - Get System Network Statistics
4728 * @netdev: network interface device structure
4729 * @stats: rtnl_link_stats64 pointer
4730 *
4731 **/
4732static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4733						 struct rtnl_link_stats64 *stats)
4734{
4735	struct igb_adapter *adapter = netdev_priv(netdev);
4736
4737	spin_lock(&adapter->stats64_lock);
4738	igb_update_stats(adapter, &adapter->stats64);
4739	memcpy(stats, &adapter->stats64, sizeof(*stats));
4740	spin_unlock(&adapter->stats64_lock);
4741
4742	return stats;
4743}
4744
4745/**
4746 * igb_change_mtu - Change the Maximum Transfer Unit
4747 * @netdev: network interface device structure
4748 * @new_mtu: new value for maximum frame size
4749 *
4750 * Returns 0 on success, negative on failure
4751 **/
4752static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4753{
4754	struct igb_adapter *adapter = netdev_priv(netdev);
4755	struct pci_dev *pdev = adapter->pdev;
4756	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4757
4758	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4759		dev_err(&pdev->dev, "Invalid MTU setting\n");
4760		return -EINVAL;
4761	}
4762
4763#define MAX_STD_JUMBO_FRAME_SIZE 9238
4764	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4765		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4766		return -EINVAL;
4767	}
4768
4769	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4770		msleep(1);
4771
4772	/* igb_down has a dependency on max_frame_size */
4773	adapter->max_frame_size = max_frame;
4774
4775	if (netif_running(netdev))
4776		igb_down(adapter);
4777
4778	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4779		 netdev->mtu, new_mtu);
4780	netdev->mtu = new_mtu;
4781
4782	if (netif_running(netdev))
4783		igb_up(adapter);
4784	else
4785		igb_reset(adapter);
4786
4787	clear_bit(__IGB_RESETTING, &adapter->state);
4788
4789	return 0;
4790}
4791
4792/**
4793 * igb_update_stats - Update the board statistics counters
4794 * @adapter: board private structure
4795 **/
4796
4797void igb_update_stats(struct igb_adapter *adapter,
4798		      struct rtnl_link_stats64 *net_stats)
4799{
4800	struct e1000_hw *hw = &adapter->hw;
4801	struct pci_dev *pdev = adapter->pdev;
4802	u32 reg, mpc;
4803	u16 phy_tmp;
4804	int i;
4805	u64 bytes, packets;
4806	unsigned int start;
4807	u64 _bytes, _packets;
4808
4809#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4810
4811	/*
4812	 * Prevent stats update while adapter is being reset, or if the pci
4813	 * connection is down.
4814	 */
4815	if (adapter->link_speed == 0)
4816		return;
4817	if (pci_channel_offline(pdev))
4818		return;
4819
4820	bytes = 0;
4821	packets = 0;
4822	for (i = 0; i < adapter->num_rx_queues; i++) {
4823		u32 rqdpc = rd32(E1000_RQDPC(i));
4824		struct igb_ring *ring = adapter->rx_ring[i];
4825
4826		if (rqdpc) {
4827			ring->rx_stats.drops += rqdpc;
4828			net_stats->rx_fifo_errors += rqdpc;
4829		}
4830
4831		do {
4832			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4833			_bytes = ring->rx_stats.bytes;
4834			_packets = ring->rx_stats.packets;
4835		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4836		bytes += _bytes;
4837		packets += _packets;
4838	}
4839
4840	net_stats->rx_bytes = bytes;
4841	net_stats->rx_packets = packets;
4842
4843	bytes = 0;
4844	packets = 0;
4845	for (i = 0; i < adapter->num_tx_queues; i++) {
4846		struct igb_ring *ring = adapter->tx_ring[i];
4847		do {
4848			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4849			_bytes = ring->tx_stats.bytes;
4850			_packets = ring->tx_stats.packets;
4851		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4852		bytes += _bytes;
4853		packets += _packets;
4854	}
4855	net_stats->tx_bytes = bytes;
4856	net_stats->tx_packets = packets;
4857
4858	/* read stats registers */
4859	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4860	adapter->stats.gprc += rd32(E1000_GPRC);
4861	adapter->stats.gorc += rd32(E1000_GORCL);
4862	rd32(E1000_GORCH); /* clear GORCL */
4863	adapter->stats.bprc += rd32(E1000_BPRC);
4864	adapter->stats.mprc += rd32(E1000_MPRC);
4865	adapter->stats.roc += rd32(E1000_ROC);
4866
4867	adapter->stats.prc64 += rd32(E1000_PRC64);
4868	adapter->stats.prc127 += rd32(E1000_PRC127);
4869	adapter->stats.prc255 += rd32(E1000_PRC255);
4870	adapter->stats.prc511 += rd32(E1000_PRC511);
4871	adapter->stats.prc1023 += rd32(E1000_PRC1023);
4872	adapter->stats.prc1522 += rd32(E1000_PRC1522);
4873	adapter->stats.symerrs += rd32(E1000_SYMERRS);
4874	adapter->stats.sec += rd32(E1000_SEC);
4875
4876	mpc = rd32(E1000_MPC);
4877	adapter->stats.mpc += mpc;
4878	net_stats->rx_fifo_errors += mpc;
4879	adapter->stats.scc += rd32(E1000_SCC);
4880	adapter->stats.ecol += rd32(E1000_ECOL);
4881	adapter->stats.mcc += rd32(E1000_MCC);
4882	adapter->stats.latecol += rd32(E1000_LATECOL);
4883	adapter->stats.dc += rd32(E1000_DC);
4884	adapter->stats.rlec += rd32(E1000_RLEC);
4885	adapter->stats.xonrxc += rd32(E1000_XONRXC);
4886	adapter->stats.xontxc += rd32(E1000_XONTXC);
4887	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4888	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4889	adapter->stats.fcruc += rd32(E1000_FCRUC);
4890	adapter->stats.gptc += rd32(E1000_GPTC);
4891	adapter->stats.gotc += rd32(E1000_GOTCL);
4892	rd32(E1000_GOTCH); /* clear GOTCL */
4893	adapter->stats.rnbc += rd32(E1000_RNBC);
4894	adapter->stats.ruc += rd32(E1000_RUC);
4895	adapter->stats.rfc += rd32(E1000_RFC);
4896	adapter->stats.rjc += rd32(E1000_RJC);
4897	adapter->stats.tor += rd32(E1000_TORH);
4898	adapter->stats.tot += rd32(E1000_TOTH);
4899	adapter->stats.tpr += rd32(E1000_TPR);
4900
4901	adapter->stats.ptc64 += rd32(E1000_PTC64);
4902	adapter->stats.ptc127 += rd32(E1000_PTC127);
4903	adapter->stats.ptc255 += rd32(E1000_PTC255);
4904	adapter->stats.ptc511 += rd32(E1000_PTC511);
4905	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4906	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4907
4908	adapter->stats.mptc += rd32(E1000_MPTC);
4909	adapter->stats.bptc += rd32(E1000_BPTC);
4910
4911	adapter->stats.tpt += rd32(E1000_TPT);
4912	adapter->stats.colc += rd32(E1000_COLC);
4913
4914	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4915	/* read internal phy specific stats */
4916	reg = rd32(E1000_CTRL_EXT);
4917	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4918		adapter->stats.rxerrc += rd32(E1000_RXERRC);
4919
4920		/* this stat has invalid values on i210/i211 */
4921		if ((hw->mac.type != e1000_i210) &&
4922		    (hw->mac.type != e1000_i211))
4923			adapter->stats.tncrs += rd32(E1000_TNCRS);
4924	}
4925
4926	adapter->stats.tsctc += rd32(E1000_TSCTC);
4927	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4928
4929	adapter->stats.iac += rd32(E1000_IAC);
4930	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4931	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4932	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4933	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4934	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4935	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4936	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4937	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4938
4939	/* Fill out the OS statistics structure */
4940	net_stats->multicast = adapter->stats.mprc;
4941	net_stats->collisions = adapter->stats.colc;
4942
4943	/* Rx Errors */
4944
4945	/* RLEC on some newer hardware can be incorrect so build
4946	 * our own version based on RUC and ROC */
4947	net_stats->rx_errors = adapter->stats.rxerrc +
4948		adapter->stats.crcerrs + adapter->stats.algnerrc +
4949		adapter->stats.ruc + adapter->stats.roc +
4950		adapter->stats.cexterr;
4951	net_stats->rx_length_errors = adapter->stats.ruc +
4952				      adapter->stats.roc;
4953	net_stats->rx_crc_errors = adapter->stats.crcerrs;
4954	net_stats->rx_frame_errors = adapter->stats.algnerrc;
4955	net_stats->rx_missed_errors = adapter->stats.mpc;
4956
4957	/* Tx Errors */
4958	net_stats->tx_errors = adapter->stats.ecol +
4959			       adapter->stats.latecol;
4960	net_stats->tx_aborted_errors = adapter->stats.ecol;
4961	net_stats->tx_window_errors = adapter->stats.latecol;
4962	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4963
4964	/* Tx Dropped needs to be maintained elsewhere */
4965
4966	/* Phy Stats */
4967	if (hw->phy.media_type == e1000_media_type_copper) {
4968		if ((adapter->link_speed == SPEED_1000) &&
4969		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4970			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4971			adapter->phy_stats.idle_errors += phy_tmp;
4972		}
4973	}
4974
4975	/* Management Stats */
4976	adapter->stats.mgptc += rd32(E1000_MGTPTC);
4977	adapter->stats.mgprc += rd32(E1000_MGTPRC);
4978	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4979
4980	/* OS2BMC Stats */
4981	reg = rd32(E1000_MANC);
4982	if (reg & E1000_MANC_EN_BMC2OS) {
4983		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4984		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4985		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4986		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4987	}
4988}
4989
4990static irqreturn_t igb_msix_other(int irq, void *data)
4991{
4992	struct igb_adapter *adapter = data;
4993	struct e1000_hw *hw = &adapter->hw;
4994	u32 icr = rd32(E1000_ICR);
4995	/* reading ICR causes bit 31 of EICR to be cleared */
4996
4997	if (icr & E1000_ICR_DRSTA)
4998		schedule_work(&adapter->reset_task);
4999
5000	if (icr & E1000_ICR_DOUTSYNC) {
5001		/* HW is reporting DMA is out of sync */
5002		adapter->stats.doosync++;
5003		/* The DMA Out of Sync is also indication of a spoof event
5004		 * in IOV mode. Check the Wrong VM Behavior register to
5005		 * see if it is really a spoof event. */
5006		igb_check_wvbr(adapter);
5007	}
5008
5009	/* Check for a mailbox event */
5010	if (icr & E1000_ICR_VMMB)
5011		igb_msg_task(adapter);
5012
5013	if (icr & E1000_ICR_LSC) {
5014		hw->mac.get_link_status = 1;
5015		/* guard against interrupt when we're going down */
5016		if (!test_bit(__IGB_DOWN, &adapter->state))
5017			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5018	}
5019
5020	if (icr & E1000_ICR_TS) {
5021		u32 tsicr = rd32(E1000_TSICR);
5022
5023		if (tsicr & E1000_TSICR_TXTS) {
5024			/* acknowledge the interrupt */
5025			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5026			/* retrieve hardware timestamp */
5027			schedule_work(&adapter->ptp_tx_work);
5028		}
5029	}
5030
5031	wr32(E1000_EIMS, adapter->eims_other);
5032
5033	return IRQ_HANDLED;
5034}
5035
5036static void igb_write_itr(struct igb_q_vector *q_vector)
5037{
5038	struct igb_adapter *adapter = q_vector->adapter;
5039	u32 itr_val = q_vector->itr_val & 0x7FFC;
5040
5041	if (!q_vector->set_itr)
5042		return;
5043
5044	if (!itr_val)
5045		itr_val = 0x4;
5046
5047	if (adapter->hw.mac.type == e1000_82575)
5048		itr_val |= itr_val << 16;
5049	else
5050		itr_val |= E1000_EITR_CNT_IGNR;
5051
5052	writel(itr_val, q_vector->itr_register);
5053	q_vector->set_itr = 0;
5054}
5055
5056static irqreturn_t igb_msix_ring(int irq, void *data)
5057{
5058	struct igb_q_vector *q_vector = data;
5059
5060	/* Write the ITR value calculated from the previous interrupt. */
5061	igb_write_itr(q_vector);
5062
5063	napi_schedule(&q_vector->napi);
5064
5065	return IRQ_HANDLED;
5066}
5067
5068#ifdef CONFIG_IGB_DCA
5069static void igb_update_tx_dca(struct igb_adapter *adapter,
5070			      struct igb_ring *tx_ring,
5071			      int cpu)
5072{
5073	struct e1000_hw *hw = &adapter->hw;
5074	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5075
5076	if (hw->mac.type != e1000_82575)
5077		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5078
5079	/*
5080	 * We can enable relaxed ordering for reads, but not writes when
5081	 * DCA is enabled.  This is due to a known issue in some chipsets
5082	 * which will cause the DCA tag to be cleared.
5083	 */
5084	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5085		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5086		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5087
5088	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5089}
5090
5091static void igb_update_rx_dca(struct igb_adapter *adapter,
5092			      struct igb_ring *rx_ring,
5093			      int cpu)
5094{
5095	struct e1000_hw *hw = &adapter->hw;
5096	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5097
5098	if (hw->mac.type != e1000_82575)
5099		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5100
5101	/*
5102	 * We can enable relaxed ordering for reads, but not writes when
5103	 * DCA is enabled.  This is due to a known issue in some chipsets
5104	 * which will cause the DCA tag to be cleared.
5105	 */
5106	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5107		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5108
5109	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5110}
5111
5112static void igb_update_dca(struct igb_q_vector *q_vector)
5113{
5114	struct igb_adapter *adapter = q_vector->adapter;
5115	int cpu = get_cpu();
5116
5117	if (q_vector->cpu == cpu)
5118		goto out_no_update;
5119
5120	if (q_vector->tx.ring)
5121		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5122
5123	if (q_vector->rx.ring)
5124		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5125
5126	q_vector->cpu = cpu;
5127out_no_update:
5128	put_cpu();
5129}
5130
5131static void igb_setup_dca(struct igb_adapter *adapter)
5132{
5133	struct e1000_hw *hw = &adapter->hw;
5134	int i;
5135
5136	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5137		return;
5138
5139	/* Always use CB2 mode, difference is masked in the CB driver. */
5140	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5141
5142	for (i = 0; i < adapter->num_q_vectors; i++) {
5143		adapter->q_vector[i]->cpu = -1;
5144		igb_update_dca(adapter->q_vector[i]);
5145	}
5146}
5147
5148static int __igb_notify_dca(struct device *dev, void *data)
5149{
5150	struct net_device *netdev = dev_get_drvdata(dev);
5151	struct igb_adapter *adapter = netdev_priv(netdev);
5152	struct pci_dev *pdev = adapter->pdev;
5153	struct e1000_hw *hw = &adapter->hw;
5154	unsigned long event = *(unsigned long *)data;
5155
5156	switch (event) {
5157	case DCA_PROVIDER_ADD:
5158		/* if already enabled, don't do it again */
5159		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5160			break;
5161		if (dca_add_requester(dev) == 0) {
5162			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5163			dev_info(&pdev->dev, "DCA enabled\n");
5164			igb_setup_dca(adapter);
5165			break;
5166		}
5167		/* Fall Through since DCA is disabled. */
5168	case DCA_PROVIDER_REMOVE:
5169		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5170			/* without this a class_device is left
5171			 * hanging around in the sysfs model */
5172			dca_remove_requester(dev);
5173			dev_info(&pdev->dev, "DCA disabled\n");
5174			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5175			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5176		}
5177		break;
5178	}
5179
5180	return 0;
5181}
5182
5183static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5184                          void *p)
5185{
5186	int ret_val;
5187
5188	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5189	                                 __igb_notify_dca);
5190
5191	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5192}
5193#endif /* CONFIG_IGB_DCA */
5194
5195#ifdef CONFIG_PCI_IOV
5196static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5197{
5198	unsigned char mac_addr[ETH_ALEN];
5199
5200	eth_zero_addr(mac_addr);
5201	igb_set_vf_mac(adapter, vf, mac_addr);
5202
5203	return 0;
5204}
5205
5206static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
5207{
5208	struct pci_dev *pdev = adapter->pdev;
5209	struct pci_dev *vfdev;
5210	int dev_id;
5211
5212	switch (adapter->hw.mac.type) {
5213	case e1000_82576:
5214		dev_id = IGB_82576_VF_DEV_ID;
5215		break;
5216	case e1000_i350:
5217		dev_id = IGB_I350_VF_DEV_ID;
5218		break;
5219	default:
5220		return false;
5221	}
5222
5223	/* loop through all the VFs to see if we own any that are assigned */
5224	vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
5225	while (vfdev) {
5226		/* if we don't own it we don't care */
5227		if (vfdev->is_virtfn && vfdev->physfn == pdev) {
5228			/* if it is assigned we cannot release it */
5229			if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
5230				return true;
5231		}
5232
5233		vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
5234	}
5235
5236	return false;
5237}
5238
5239#endif
5240static void igb_ping_all_vfs(struct igb_adapter *adapter)
5241{
5242	struct e1000_hw *hw = &adapter->hw;
5243	u32 ping;
5244	int i;
5245
5246	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5247		ping = E1000_PF_CONTROL_MSG;
5248		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5249			ping |= E1000_VT_MSGTYPE_CTS;
5250		igb_write_mbx(hw, &ping, 1, i);
5251	}
5252}
5253
5254static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5255{
5256	struct e1000_hw *hw = &adapter->hw;
5257	u32 vmolr = rd32(E1000_VMOLR(vf));
5258	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5259
5260	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5261	                    IGB_VF_FLAG_MULTI_PROMISC);
5262	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5263
5264	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5265		vmolr |= E1000_VMOLR_MPME;
5266		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5267		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5268	} else {
5269		/*
5270		 * if we have hashes and we are clearing a multicast promisc
5271		 * flag we need to write the hashes to the MTA as this step
5272		 * was previously skipped
5273		 */
5274		if (vf_data->num_vf_mc_hashes > 30) {
5275			vmolr |= E1000_VMOLR_MPME;
5276		} else if (vf_data->num_vf_mc_hashes) {
5277			int j;
5278			vmolr |= E1000_VMOLR_ROMPE;
5279			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5280				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5281		}
5282	}
5283
5284	wr32(E1000_VMOLR(vf), vmolr);
5285
5286	/* there are flags left unprocessed, likely not supported */
5287	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5288		return -EINVAL;
5289
5290	return 0;
5291
5292}
5293
5294static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5295				  u32 *msgbuf, u32 vf)
5296{
5297	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5298	u16 *hash_list = (u16 *)&msgbuf[1];
5299	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5300	int i;
5301
5302	/* salt away the number of multicast addresses assigned
5303	 * to this VF for later use to restore when the PF multi cast
5304	 * list changes
5305	 */
5306	vf_data->num_vf_mc_hashes = n;
5307
5308	/* only up to 30 hash values supported */
5309	if (n > 30)
5310		n = 30;
5311
5312	/* store the hashes for later use */
5313	for (i = 0; i < n; i++)
5314		vf_data->vf_mc_hashes[i] = hash_list[i];
5315
5316	/* Flush and reset the mta with the new values */
5317	igb_set_rx_mode(adapter->netdev);
5318
5319	return 0;
5320}
5321
5322static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5323{
5324	struct e1000_hw *hw = &adapter->hw;
5325	struct vf_data_storage *vf_data;
5326	int i, j;
5327
5328	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5329		u32 vmolr = rd32(E1000_VMOLR(i));
5330		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5331
5332		vf_data = &adapter->vf_data[i];
5333
5334		if ((vf_data->num_vf_mc_hashes > 30) ||
5335		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5336			vmolr |= E1000_VMOLR_MPME;
5337		} else if (vf_data->num_vf_mc_hashes) {
5338			vmolr |= E1000_VMOLR_ROMPE;
5339			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5340				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5341		}
5342		wr32(E1000_VMOLR(i), vmolr);
5343	}
5344}
5345
5346static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5347{
5348	struct e1000_hw *hw = &adapter->hw;
5349	u32 pool_mask, reg, vid;
5350	int i;
5351
5352	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5353
5354	/* Find the vlan filter for this id */
5355	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5356		reg = rd32(E1000_VLVF(i));
5357
5358		/* remove the vf from the pool */
5359		reg &= ~pool_mask;
5360
5361		/* if pool is empty then remove entry from vfta */
5362		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5363		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5364			reg = 0;
5365			vid = reg & E1000_VLVF_VLANID_MASK;
5366			igb_vfta_set(hw, vid, false);
5367		}
5368
5369		wr32(E1000_VLVF(i), reg);
5370	}
5371
5372	adapter->vf_data[vf].vlans_enabled = 0;
5373}
5374
5375static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5376{
5377	struct e1000_hw *hw = &adapter->hw;
5378	u32 reg, i;
5379
5380	/* The vlvf table only exists on 82576 hardware and newer */
5381	if (hw->mac.type < e1000_82576)
5382		return -1;
5383
5384	/* we only need to do this if VMDq is enabled */
5385	if (!adapter->vfs_allocated_count)
5386		return -1;
5387
5388	/* Find the vlan filter for this id */
5389	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5390		reg = rd32(E1000_VLVF(i));
5391		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5392		    vid == (reg & E1000_VLVF_VLANID_MASK))
5393			break;
5394	}
5395
5396	if (add) {
5397		if (i == E1000_VLVF_ARRAY_SIZE) {
5398			/* Did not find a matching VLAN ID entry that was
5399			 * enabled.  Search for a free filter entry, i.e.
5400			 * one without the enable bit set
5401			 */
5402			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5403				reg = rd32(E1000_VLVF(i));
5404				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5405					break;
5406			}
5407		}
5408		if (i < E1000_VLVF_ARRAY_SIZE) {
5409			/* Found an enabled/available entry */
5410			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5411
5412			/* if !enabled we need to set this up in vfta */
5413			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5414				/* add VID to filter table */
5415				igb_vfta_set(hw, vid, true);
5416				reg |= E1000_VLVF_VLANID_ENABLE;
5417			}
5418			reg &= ~E1000_VLVF_VLANID_MASK;
5419			reg |= vid;
5420			wr32(E1000_VLVF(i), reg);
5421
5422			/* do not modify RLPML for PF devices */
5423			if (vf >= adapter->vfs_allocated_count)
5424				return 0;
5425
5426			if (!adapter->vf_data[vf].vlans_enabled) {
5427				u32 size;
5428				reg = rd32(E1000_VMOLR(vf));
5429				size = reg & E1000_VMOLR_RLPML_MASK;
5430				size += 4;
5431				reg &= ~E1000_VMOLR_RLPML_MASK;
5432				reg |= size;
5433				wr32(E1000_VMOLR(vf), reg);
5434			}
5435
5436			adapter->vf_data[vf].vlans_enabled++;
5437		}
5438	} else {
5439		if (i < E1000_VLVF_ARRAY_SIZE) {
5440			/* remove vf from the pool */
5441			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5442			/* if pool is empty then remove entry from vfta */
5443			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5444				reg = 0;
5445				igb_vfta_set(hw, vid, false);
5446			}
5447			wr32(E1000_VLVF(i), reg);
5448
5449			/* do not modify RLPML for PF devices */
5450			if (vf >= adapter->vfs_allocated_count)
5451				return 0;
5452
5453			adapter->vf_data[vf].vlans_enabled--;
5454			if (!adapter->vf_data[vf].vlans_enabled) {
5455				u32 size;
5456				reg = rd32(E1000_VMOLR(vf));
5457				size = reg & E1000_VMOLR_RLPML_MASK;
5458				size -= 4;
5459				reg &= ~E1000_VMOLR_RLPML_MASK;
5460				reg |= size;
5461				wr32(E1000_VMOLR(vf), reg);
5462			}
5463		}
5464	}
5465	return 0;
5466}
5467
5468static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5469{
5470	struct e1000_hw *hw = &adapter->hw;
5471
5472	if (vid)
5473		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5474	else
5475		wr32(E1000_VMVIR(vf), 0);
5476}
5477
5478static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5479			       int vf, u16 vlan, u8 qos)
5480{
5481	int err = 0;
5482	struct igb_adapter *adapter = netdev_priv(netdev);
5483
5484	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5485		return -EINVAL;
5486	if (vlan || qos) {
5487		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5488		if (err)
5489			goto out;
5490		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5491		igb_set_vmolr(adapter, vf, !vlan);
5492		adapter->vf_data[vf].pf_vlan = vlan;
5493		adapter->vf_data[vf].pf_qos = qos;
5494		dev_info(&adapter->pdev->dev,
5495			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5496		if (test_bit(__IGB_DOWN, &adapter->state)) {
5497			dev_warn(&adapter->pdev->dev,
5498				 "The VF VLAN has been set,"
5499				 " but the PF device is not up.\n");
5500			dev_warn(&adapter->pdev->dev,
5501				 "Bring the PF device up before"
5502				 " attempting to use the VF device.\n");
5503		}
5504	} else {
5505		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5506				   false, vf);
5507		igb_set_vmvir(adapter, vlan, vf);
5508		igb_set_vmolr(adapter, vf, true);
5509		adapter->vf_data[vf].pf_vlan = 0;
5510		adapter->vf_data[vf].pf_qos = 0;
5511       }
5512out:
5513       return err;
5514}
5515
5516static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5517{
5518	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5519	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5520
5521	return igb_vlvf_set(adapter, vid, add, vf);
5522}
5523
5524static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5525{
5526	/* clear flags - except flag that indicates PF has set the MAC */
5527	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5528	adapter->vf_data[vf].last_nack = jiffies;
5529
5530	/* reset offloads to defaults */
5531	igb_set_vmolr(adapter, vf, true);
5532
5533	/* reset vlans for device */
5534	igb_clear_vf_vfta(adapter, vf);
5535	if (adapter->vf_data[vf].pf_vlan)
5536		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5537				    adapter->vf_data[vf].pf_vlan,
5538				    adapter->vf_data[vf].pf_qos);
5539	else
5540		igb_clear_vf_vfta(adapter, vf);
5541
5542	/* reset multicast table array for vf */
5543	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5544
5545	/* Flush and reset the mta with the new values */
5546	igb_set_rx_mode(adapter->netdev);
5547}
5548
5549static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5550{
5551	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5552
5553	/* clear mac address as we were hotplug removed/added */
5554	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5555		eth_zero_addr(vf_mac);
5556
5557	/* process remaining reset events */
5558	igb_vf_reset(adapter, vf);
5559}
5560
5561static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5562{
5563	struct e1000_hw *hw = &adapter->hw;
5564	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5565	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5566	u32 reg, msgbuf[3];
5567	u8 *addr = (u8 *)(&msgbuf[1]);
5568
5569	/* process all the same items cleared in a function level reset */
5570	igb_vf_reset(adapter, vf);
5571
5572	/* set vf mac address */
5573	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5574
5575	/* enable transmit and receive for vf */
5576	reg = rd32(E1000_VFTE);
5577	wr32(E1000_VFTE, reg | (1 << vf));
5578	reg = rd32(E1000_VFRE);
5579	wr32(E1000_VFRE, reg | (1 << vf));
5580
5581	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5582
5583	/* reply to reset with ack and vf mac address */
5584	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5585	memcpy(addr, vf_mac, 6);
5586	igb_write_mbx(hw, msgbuf, 3, vf);
5587}
5588
5589static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5590{
5591	/*
5592	 * The VF MAC Address is stored in a packed array of bytes
5593	 * starting at the second 32 bit word of the msg array
5594	 */
5595	unsigned char *addr = (char *)&msg[1];
5596	int err = -1;
5597
5598	if (is_valid_ether_addr(addr))
5599		err = igb_set_vf_mac(adapter, vf, addr);
5600
5601	return err;
5602}
5603
5604static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5605{
5606	struct e1000_hw *hw = &adapter->hw;
5607	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5608	u32 msg = E1000_VT_MSGTYPE_NACK;
5609
5610	/* if device isn't clear to send it shouldn't be reading either */
5611	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5612	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5613		igb_write_mbx(hw, &msg, 1, vf);
5614		vf_data->last_nack = jiffies;
5615	}
5616}
5617
5618static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5619{
5620	struct pci_dev *pdev = adapter->pdev;
5621	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5622	struct e1000_hw *hw = &adapter->hw;
5623	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5624	s32 retval;
5625
5626	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5627
5628	if (retval) {
5629		/* if receive failed revoke VF CTS stats and restart init */
5630		dev_err(&pdev->dev, "Error receiving message from VF\n");
5631		vf_data->flags &= ~IGB_VF_FLAG_CTS;
5632		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5633			return;
5634		goto out;
5635	}
5636
5637	/* this is a message we already processed, do nothing */
5638	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5639		return;
5640
5641	/*
5642	 * until the vf completes a reset it should not be
5643	 * allowed to start any configuration.
5644	 */
5645
5646	if (msgbuf[0] == E1000_VF_RESET) {
5647		igb_vf_reset_msg(adapter, vf);
5648		return;
5649	}
5650
5651	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5652		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5653			return;
5654		retval = -1;
5655		goto out;
5656	}
5657
5658	switch ((msgbuf[0] & 0xFFFF)) {
5659	case E1000_VF_SET_MAC_ADDR:
5660		retval = -EINVAL;
5661		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5662			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5663		else
5664			dev_warn(&pdev->dev,
5665				 "VF %d attempted to override administratively "
5666				 "set MAC address\nReload the VF driver to "
5667				 "resume operations\n", vf);
5668		break;
5669	case E1000_VF_SET_PROMISC:
5670		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5671		break;
5672	case E1000_VF_SET_MULTICAST:
5673		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5674		break;
5675	case E1000_VF_SET_LPE:
5676		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5677		break;
5678	case E1000_VF_SET_VLAN:
5679		retval = -1;
5680		if (vf_data->pf_vlan)
5681			dev_warn(&pdev->dev,
5682				 "VF %d attempted to override administratively "
5683				 "set VLAN tag\nReload the VF driver to "
5684				 "resume operations\n", vf);
5685		else
5686			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5687		break;
5688	default:
5689		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5690		retval = -1;
5691		break;
5692	}
5693
5694	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5695out:
5696	/* notify the VF of the results of what it sent us */
5697	if (retval)
5698		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5699	else
5700		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5701
5702	igb_write_mbx(hw, msgbuf, 1, vf);
5703}
5704
5705static void igb_msg_task(struct igb_adapter *adapter)
5706{
5707	struct e1000_hw *hw = &adapter->hw;
5708	u32 vf;
5709
5710	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5711		/* process any reset requests */
5712		if (!igb_check_for_rst(hw, vf))
5713			igb_vf_reset_event(adapter, vf);
5714
5715		/* process any messages pending */
5716		if (!igb_check_for_msg(hw, vf))
5717			igb_rcv_msg_from_vf(adapter, vf);
5718
5719		/* process any acks */
5720		if (!igb_check_for_ack(hw, vf))
5721			igb_rcv_ack_from_vf(adapter, vf);
5722	}
5723}
5724
5725/**
5726 *  igb_set_uta - Set unicast filter table address
5727 *  @adapter: board private structure
5728 *
5729 *  The unicast table address is a register array of 32-bit registers.
5730 *  The table is meant to be used in a way similar to how the MTA is used
5731 *  however due to certain limitations in the hardware it is necessary to
5732 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5733 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5734 **/
5735static void igb_set_uta(struct igb_adapter *adapter)
5736{
5737	struct e1000_hw *hw = &adapter->hw;
5738	int i;
5739
5740	/* The UTA table only exists on 82576 hardware and newer */
5741	if (hw->mac.type < e1000_82576)
5742		return;
5743
5744	/* we only need to do this if VMDq is enabled */
5745	if (!adapter->vfs_allocated_count)
5746		return;
5747
5748	for (i = 0; i < hw->mac.uta_reg_count; i++)
5749		array_wr32(E1000_UTA, i, ~0);
5750}
5751
5752/**
5753 * igb_intr_msi - Interrupt Handler
5754 * @irq: interrupt number
5755 * @data: pointer to a network interface device structure
5756 **/
5757static irqreturn_t igb_intr_msi(int irq, void *data)
5758{
5759	struct igb_adapter *adapter = data;
5760	struct igb_q_vector *q_vector = adapter->q_vector[0];
5761	struct e1000_hw *hw = &adapter->hw;
5762	/* read ICR disables interrupts using IAM */
5763	u32 icr = rd32(E1000_ICR);
5764
5765	igb_write_itr(q_vector);
5766
5767	if (icr & E1000_ICR_DRSTA)
5768		schedule_work(&adapter->reset_task);
5769
5770	if (icr & E1000_ICR_DOUTSYNC) {
5771		/* HW is reporting DMA is out of sync */
5772		adapter->stats.doosync++;
5773	}
5774
5775	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5776		hw->mac.get_link_status = 1;
5777		if (!test_bit(__IGB_DOWN, &adapter->state))
5778			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5779	}
5780
5781	if (icr & E1000_ICR_TS) {
5782		u32 tsicr = rd32(E1000_TSICR);
5783
5784		if (tsicr & E1000_TSICR_TXTS) {
5785			/* acknowledge the interrupt */
5786			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5787			/* retrieve hardware timestamp */
5788			schedule_work(&adapter->ptp_tx_work);
5789		}
5790	}
5791
5792	napi_schedule(&q_vector->napi);
5793
5794	return IRQ_HANDLED;
5795}
5796
5797/**
5798 * igb_intr - Legacy Interrupt Handler
5799 * @irq: interrupt number
5800 * @data: pointer to a network interface device structure
5801 **/
5802static irqreturn_t igb_intr(int irq, void *data)
5803{
5804	struct igb_adapter *adapter = data;
5805	struct igb_q_vector *q_vector = adapter->q_vector[0];
5806	struct e1000_hw *hw = &adapter->hw;
5807	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5808	 * need for the IMC write */
5809	u32 icr = rd32(E1000_ICR);
5810
5811	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5812	 * not set, then the adapter didn't send an interrupt */
5813	if (!(icr & E1000_ICR_INT_ASSERTED))
5814		return IRQ_NONE;
5815
5816	igb_write_itr(q_vector);
5817
5818	if (icr & E1000_ICR_DRSTA)
5819		schedule_work(&adapter->reset_task);
5820
5821	if (icr & E1000_ICR_DOUTSYNC) {
5822		/* HW is reporting DMA is out of sync */
5823		adapter->stats.doosync++;
5824	}
5825
5826	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5827		hw->mac.get_link_status = 1;
5828		/* guard against interrupt when we're going down */
5829		if (!test_bit(__IGB_DOWN, &adapter->state))
5830			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5831	}
5832
5833	if (icr & E1000_ICR_TS) {
5834		u32 tsicr = rd32(E1000_TSICR);
5835
5836		if (tsicr & E1000_TSICR_TXTS) {
5837			/* acknowledge the interrupt */
5838			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5839			/* retrieve hardware timestamp */
5840			schedule_work(&adapter->ptp_tx_work);
5841		}
5842	}
5843
5844	napi_schedule(&q_vector->napi);
5845
5846	return IRQ_HANDLED;
5847}
5848
5849static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5850{
5851	struct igb_adapter *adapter = q_vector->adapter;
5852	struct e1000_hw *hw = &adapter->hw;
5853
5854	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5855	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5856		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5857			igb_set_itr(q_vector);
5858		else
5859			igb_update_ring_itr(q_vector);
5860	}
5861
5862	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5863		if (adapter->msix_entries)
5864			wr32(E1000_EIMS, q_vector->eims_value);
5865		else
5866			igb_irq_enable(adapter);
5867	}
5868}
5869
5870/**
5871 * igb_poll - NAPI Rx polling callback
5872 * @napi: napi polling structure
5873 * @budget: count of how many packets we should handle
5874 **/
5875static int igb_poll(struct napi_struct *napi, int budget)
5876{
5877	struct igb_q_vector *q_vector = container_of(napi,
5878	                                             struct igb_q_vector,
5879	                                             napi);
5880	bool clean_complete = true;
5881
5882#ifdef CONFIG_IGB_DCA
5883	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5884		igb_update_dca(q_vector);
5885#endif
5886	if (q_vector->tx.ring)
5887		clean_complete = igb_clean_tx_irq(q_vector);
5888
5889	if (q_vector->rx.ring)
5890		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5891
5892	/* If all work not completed, return budget and keep polling */
5893	if (!clean_complete)
5894		return budget;
5895
5896	/* If not enough Rx work done, exit the polling mode */
5897	napi_complete(napi);
5898	igb_ring_irq_enable(q_vector);
5899
5900	return 0;
5901}
5902
5903/**
5904 * igb_clean_tx_irq - Reclaim resources after transmit completes
5905 * @q_vector: pointer to q_vector containing needed info
5906 *
5907 * returns true if ring is completely cleaned
5908 **/
5909static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5910{
5911	struct igb_adapter *adapter = q_vector->adapter;
5912	struct igb_ring *tx_ring = q_vector->tx.ring;
5913	struct igb_tx_buffer *tx_buffer;
5914	union e1000_adv_tx_desc *tx_desc;
5915	unsigned int total_bytes = 0, total_packets = 0;
5916	unsigned int budget = q_vector->tx.work_limit;
5917	unsigned int i = tx_ring->next_to_clean;
5918
5919	if (test_bit(__IGB_DOWN, &adapter->state))
5920		return true;
5921
5922	tx_buffer = &tx_ring->tx_buffer_info[i];
5923	tx_desc = IGB_TX_DESC(tx_ring, i);
5924	i -= tx_ring->count;
5925
5926	do {
5927		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5928
5929		/* if next_to_watch is not set then there is no work pending */
5930		if (!eop_desc)
5931			break;
5932
5933		/* prevent any other reads prior to eop_desc */
5934		read_barrier_depends();
5935
5936		/* if DD is not set pending work has not been completed */
5937		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5938			break;
5939
5940		/* clear next_to_watch to prevent false hangs */
5941		tx_buffer->next_to_watch = NULL;
5942
5943		/* update the statistics for this packet */
5944		total_bytes += tx_buffer->bytecount;
5945		total_packets += tx_buffer->gso_segs;
5946
5947		/* free the skb */
5948		dev_kfree_skb_any(tx_buffer->skb);
5949
5950		/* unmap skb header data */
5951		dma_unmap_single(tx_ring->dev,
5952				 dma_unmap_addr(tx_buffer, dma),
5953				 dma_unmap_len(tx_buffer, len),
5954				 DMA_TO_DEVICE);
5955
5956		/* clear tx_buffer data */
5957		tx_buffer->skb = NULL;
5958		dma_unmap_len_set(tx_buffer, len, 0);
5959
5960		/* clear last DMA location and unmap remaining buffers */
5961		while (tx_desc != eop_desc) {
5962			tx_buffer++;
5963			tx_desc++;
5964			i++;
5965			if (unlikely(!i)) {
5966				i -= tx_ring->count;
5967				tx_buffer = tx_ring->tx_buffer_info;
5968				tx_desc = IGB_TX_DESC(tx_ring, 0);
5969			}
5970
5971			/* unmap any remaining paged data */
5972			if (dma_unmap_len(tx_buffer, len)) {
5973				dma_unmap_page(tx_ring->dev,
5974					       dma_unmap_addr(tx_buffer, dma),
5975					       dma_unmap_len(tx_buffer, len),
5976					       DMA_TO_DEVICE);
5977				dma_unmap_len_set(tx_buffer, len, 0);
5978			}
5979		}
5980
5981		/* move us one more past the eop_desc for start of next pkt */
5982		tx_buffer++;
5983		tx_desc++;
5984		i++;
5985		if (unlikely(!i)) {
5986			i -= tx_ring->count;
5987			tx_buffer = tx_ring->tx_buffer_info;
5988			tx_desc = IGB_TX_DESC(tx_ring, 0);
5989		}
5990
5991		/* issue prefetch for next Tx descriptor */
5992		prefetch(tx_desc);
5993
5994		/* update budget accounting */
5995		budget--;
5996	} while (likely(budget));
5997
5998	netdev_tx_completed_queue(txring_txq(tx_ring),
5999				  total_packets, total_bytes);
6000	i += tx_ring->count;
6001	tx_ring->next_to_clean = i;
6002	u64_stats_update_begin(&tx_ring->tx_syncp);
6003	tx_ring->tx_stats.bytes += total_bytes;
6004	tx_ring->tx_stats.packets += total_packets;
6005	u64_stats_update_end(&tx_ring->tx_syncp);
6006	q_vector->tx.total_bytes += total_bytes;
6007	q_vector->tx.total_packets += total_packets;
6008
6009	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6010		struct e1000_hw *hw = &adapter->hw;
6011
6012		/* Detect a transmit hang in hardware, this serializes the
6013		 * check with the clearing of time_stamp and movement of i */
6014		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6015		if (tx_buffer->next_to_watch &&
6016		    time_after(jiffies, tx_buffer->time_stamp +
6017			       (adapter->tx_timeout_factor * HZ)) &&
6018		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6019
6020			/* detected Tx unit hang */
6021			dev_err(tx_ring->dev,
6022				"Detected Tx Unit Hang\n"
6023				"  Tx Queue             <%d>\n"
6024				"  TDH                  <%x>\n"
6025				"  TDT                  <%x>\n"
6026				"  next_to_use          <%x>\n"
6027				"  next_to_clean        <%x>\n"
6028				"buffer_info[next_to_clean]\n"
6029				"  time_stamp           <%lx>\n"
6030				"  next_to_watch        <%p>\n"
6031				"  jiffies              <%lx>\n"
6032				"  desc.status          <%x>\n",
6033				tx_ring->queue_index,
6034				rd32(E1000_TDH(tx_ring->reg_idx)),
6035				readl(tx_ring->tail),
6036				tx_ring->next_to_use,
6037				tx_ring->next_to_clean,
6038				tx_buffer->time_stamp,
6039				tx_buffer->next_to_watch,
6040				jiffies,
6041				tx_buffer->next_to_watch->wb.status);
6042			netif_stop_subqueue(tx_ring->netdev,
6043					    tx_ring->queue_index);
6044
6045			/* we are about to reset, no point in enabling stuff */
6046			return true;
6047		}
6048	}
6049
6050	if (unlikely(total_packets &&
6051		     netif_carrier_ok(tx_ring->netdev) &&
6052		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
6053		/* Make sure that anybody stopping the queue after this
6054		 * sees the new next_to_clean.
6055		 */
6056		smp_mb();
6057		if (__netif_subqueue_stopped(tx_ring->netdev,
6058					     tx_ring->queue_index) &&
6059		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6060			netif_wake_subqueue(tx_ring->netdev,
6061					    tx_ring->queue_index);
6062
6063			u64_stats_update_begin(&tx_ring->tx_syncp);
6064			tx_ring->tx_stats.restart_queue++;
6065			u64_stats_update_end(&tx_ring->tx_syncp);
6066		}
6067	}
6068
6069	return !!budget;
6070}
6071
6072/**
6073 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6074 * @rx_ring: rx descriptor ring to store buffers on
6075 * @old_buff: donor buffer to have page reused
6076 *
6077 * Synchronizes page for reuse by the adapter
6078 **/
6079static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6080			      struct igb_rx_buffer *old_buff)
6081{
6082	struct igb_rx_buffer *new_buff;
6083	u16 nta = rx_ring->next_to_alloc;
6084
6085	new_buff = &rx_ring->rx_buffer_info[nta];
6086
6087	/* update, and store next to alloc */
6088	nta++;
6089	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6090
6091	/* transfer page from old buffer to new buffer */
6092	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6093
6094	/* sync the buffer for use by the device */
6095	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6096					 old_buff->page_offset,
6097					 IGB_RX_BUFSZ,
6098					 DMA_FROM_DEVICE);
6099}
6100
6101/**
6102 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6103 * @rx_ring: rx descriptor ring to transact packets on
6104 * @rx_buffer: buffer containing page to add
6105 * @rx_desc: descriptor containing length of buffer written by hardware
6106 * @skb: sk_buff to place the data into
6107 *
6108 * This function will add the data contained in rx_buffer->page to the skb.
6109 * This is done either through a direct copy if the data in the buffer is
6110 * less than the skb header size, otherwise it will just attach the page as
6111 * a frag to the skb.
6112 *
6113 * The function will then update the page offset if necessary and return
6114 * true if the buffer can be reused by the adapter.
6115 **/
6116static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6117			    struct igb_rx_buffer *rx_buffer,
6118			    union e1000_adv_rx_desc *rx_desc,
6119			    struct sk_buff *skb)
6120{
6121	struct page *page = rx_buffer->page;
6122	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6123
6124	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6125		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6126
6127		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6128			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6129			va += IGB_TS_HDR_LEN;
6130			size -= IGB_TS_HDR_LEN;
6131		}
6132
6133		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6134
6135		/* we can reuse buffer as-is, just make sure it is local */
6136		if (likely(page_to_nid(page) == numa_node_id()))
6137			return true;
6138
6139		/* this page cannot be reused so discard it */
6140		put_page(page);
6141		return false;
6142	}
6143
6144	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6145			rx_buffer->page_offset, size, IGB_RX_BUFSZ);
6146
6147	/* avoid re-using remote pages */
6148	if (unlikely(page_to_nid(page) != numa_node_id()))
6149		return false;
6150
6151#if (PAGE_SIZE < 8192)
6152	/* if we are only owner of page we can reuse it */
6153	if (unlikely(page_count(page) != 1))
6154		return false;
6155
6156	/* flip page offset to other buffer */
6157	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6158
6159	/*
6160	 * since we are the only owner of the page and we need to
6161	 * increment it, just set the value to 2 in order to avoid
6162	 * an unnecessary locked operation
6163	 */
6164	atomic_set(&page->_count, 2);
6165#else
6166	/* move offset up to the next cache line */
6167	rx_buffer->page_offset += SKB_DATA_ALIGN(size);
6168
6169	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6170		return false;
6171
6172	/* bump ref count on page before it is given to the stack */
6173	get_page(page);
6174#endif
6175
6176	return true;
6177}
6178
6179static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6180					   union e1000_adv_rx_desc *rx_desc,
6181					   struct sk_buff *skb)
6182{
6183	struct igb_rx_buffer *rx_buffer;
6184	struct page *page;
6185
6186	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6187
6188	/*
6189	 * This memory barrier is needed to keep us from reading
6190	 * any other fields out of the rx_desc until we know the
6191	 * RXD_STAT_DD bit is set
6192	 */
6193	rmb();
6194
6195	page = rx_buffer->page;
6196	prefetchw(page);
6197
6198	if (likely(!skb)) {
6199		void *page_addr = page_address(page) +
6200				  rx_buffer->page_offset;
6201
6202		/* prefetch first cache line of first page */
6203		prefetch(page_addr);
6204#if L1_CACHE_BYTES < 128
6205		prefetch(page_addr + L1_CACHE_BYTES);
6206#endif
6207
6208		/* allocate a skb to store the frags */
6209		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6210						IGB_RX_HDR_LEN);
6211		if (unlikely(!skb)) {
6212			rx_ring->rx_stats.alloc_failed++;
6213			return NULL;
6214		}
6215
6216		/*
6217		 * we will be copying header into skb->data in
6218		 * pskb_may_pull so it is in our interest to prefetch
6219		 * it now to avoid a possible cache miss
6220		 */
6221		prefetchw(skb->data);
6222	}
6223
6224	/* we are reusing so sync this buffer for CPU use */
6225	dma_sync_single_range_for_cpu(rx_ring->dev,
6226				      rx_buffer->dma,
6227				      rx_buffer->page_offset,
6228				      IGB_RX_BUFSZ,
6229				      DMA_FROM_DEVICE);
6230
6231	/* pull page into skb */
6232	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6233		/* hand second half of page back to the ring */
6234		igb_reuse_rx_page(rx_ring, rx_buffer);
6235	} else {
6236		/* we are not reusing the buffer so unmap it */
6237		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6238			       PAGE_SIZE, DMA_FROM_DEVICE);
6239	}
6240
6241	/* clear contents of rx_buffer */
6242	rx_buffer->page = NULL;
6243
6244	return skb;
6245}
6246
6247static inline void igb_rx_checksum(struct igb_ring *ring,
6248				   union e1000_adv_rx_desc *rx_desc,
6249				   struct sk_buff *skb)
6250{
6251	skb_checksum_none_assert(skb);
6252
6253	/* Ignore Checksum bit is set */
6254	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6255		return;
6256
6257	/* Rx checksum disabled via ethtool */
6258	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6259		return;
6260
6261	/* TCP/UDP checksum error bit is set */
6262	if (igb_test_staterr(rx_desc,
6263			     E1000_RXDEXT_STATERR_TCPE |
6264			     E1000_RXDEXT_STATERR_IPE)) {
6265		/*
6266		 * work around errata with sctp packets where the TCPE aka
6267		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6268		 * packets, (aka let the stack check the crc32c)
6269		 */
6270		if (!((skb->len == 60) &&
6271		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6272			u64_stats_update_begin(&ring->rx_syncp);
6273			ring->rx_stats.csum_err++;
6274			u64_stats_update_end(&ring->rx_syncp);
6275		}
6276		/* let the stack verify checksum errors */
6277		return;
6278	}
6279	/* It must be a TCP or UDP packet with a valid checksum */
6280	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6281				      E1000_RXD_STAT_UDPCS))
6282		skb->ip_summed = CHECKSUM_UNNECESSARY;
6283
6284	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6285		le32_to_cpu(rx_desc->wb.upper.status_error));
6286}
6287
6288static inline void igb_rx_hash(struct igb_ring *ring,
6289			       union e1000_adv_rx_desc *rx_desc,
6290			       struct sk_buff *skb)
6291{
6292	if (ring->netdev->features & NETIF_F_RXHASH)
6293		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6294}
6295
6296/**
6297 * igb_is_non_eop - process handling of non-EOP buffers
6298 * @rx_ring: Rx ring being processed
6299 * @rx_desc: Rx descriptor for current buffer
6300 * @skb: current socket buffer containing buffer in progress
6301 *
6302 * This function updates next to clean.  If the buffer is an EOP buffer
6303 * this function exits returning false, otherwise it will place the
6304 * sk_buff in the next buffer to be chained and return true indicating
6305 * that this is in fact a non-EOP buffer.
6306 **/
6307static bool igb_is_non_eop(struct igb_ring *rx_ring,
6308			   union e1000_adv_rx_desc *rx_desc)
6309{
6310	u32 ntc = rx_ring->next_to_clean + 1;
6311
6312	/* fetch, update, and store next to clean */
6313	ntc = (ntc < rx_ring->count) ? ntc : 0;
6314	rx_ring->next_to_clean = ntc;
6315
6316	prefetch(IGB_RX_DESC(rx_ring, ntc));
6317
6318	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6319		return false;
6320
6321	return true;
6322}
6323
6324/**
6325 * igb_get_headlen - determine size of header for LRO/GRO
6326 * @data: pointer to the start of the headers
6327 * @max_len: total length of section to find headers in
6328 *
6329 * This function is meant to determine the length of headers that will
6330 * be recognized by hardware for LRO, and GRO offloads.  The main
6331 * motivation of doing this is to only perform one pull for IPv4 TCP
6332 * packets so that we can do basic things like calculating the gso_size
6333 * based on the average data per packet.
6334 **/
6335static unsigned int igb_get_headlen(unsigned char *data,
6336				    unsigned int max_len)
6337{
6338	union {
6339		unsigned char *network;
6340		/* l2 headers */
6341		struct ethhdr *eth;
6342		struct vlan_hdr *vlan;
6343		/* l3 headers */
6344		struct iphdr *ipv4;
6345		struct ipv6hdr *ipv6;
6346	} hdr;
6347	__be16 protocol;
6348	u8 nexthdr = 0;	/* default to not TCP */
6349	u8 hlen;
6350
6351	/* this should never happen, but better safe than sorry */
6352	if (max_len < ETH_HLEN)
6353		return max_len;
6354
6355	/* initialize network frame pointer */
6356	hdr.network = data;
6357
6358	/* set first protocol and move network header forward */
6359	protocol = hdr.eth->h_proto;
6360	hdr.network += ETH_HLEN;
6361
6362	/* handle any vlan tag if present */
6363	if (protocol == __constant_htons(ETH_P_8021Q)) {
6364		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6365			return max_len;
6366
6367		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6368		hdr.network += VLAN_HLEN;
6369	}
6370
6371	/* handle L3 protocols */
6372	if (protocol == __constant_htons(ETH_P_IP)) {
6373		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6374			return max_len;
6375
6376		/* access ihl as a u8 to avoid unaligned access on ia64 */
6377		hlen = (hdr.network[0] & 0x0F) << 2;
6378
6379		/* verify hlen meets minimum size requirements */
6380		if (hlen < sizeof(struct iphdr))
6381			return hdr.network - data;
6382
6383		/* record next protocol if header is present */
6384		if (!hdr.ipv4->frag_off)
6385			nexthdr = hdr.ipv4->protocol;
6386	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
6387		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6388			return max_len;
6389
6390		/* record next protocol */
6391		nexthdr = hdr.ipv6->nexthdr;
6392		hlen = sizeof(struct ipv6hdr);
6393	} else {
6394		return hdr.network - data;
6395	}
6396
6397	/* relocate pointer to start of L4 header */
6398	hdr.network += hlen;
6399
6400	/* finally sort out TCP */
6401	if (nexthdr == IPPROTO_TCP) {
6402		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6403			return max_len;
6404
6405		/* access doff as a u8 to avoid unaligned access on ia64 */
6406		hlen = (hdr.network[12] & 0xF0) >> 2;
6407
6408		/* verify hlen meets minimum size requirements */
6409		if (hlen < sizeof(struct tcphdr))
6410			return hdr.network - data;
6411
6412		hdr.network += hlen;
6413	} else if (nexthdr == IPPROTO_UDP) {
6414		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6415			return max_len;
6416
6417		hdr.network += sizeof(struct udphdr);
6418	}
6419
6420	/*
6421	 * If everything has gone correctly hdr.network should be the
6422	 * data section of the packet and will be the end of the header.
6423	 * If not then it probably represents the end of the last recognized
6424	 * header.
6425	 */
6426	if ((hdr.network - data) < max_len)
6427		return hdr.network - data;
6428	else
6429		return max_len;
6430}
6431
6432/**
6433 * igb_pull_tail - igb specific version of skb_pull_tail
6434 * @rx_ring: rx descriptor ring packet is being transacted on
6435 * @rx_desc: pointer to the EOP Rx descriptor
6436 * @skb: pointer to current skb being adjusted
6437 *
6438 * This function is an igb specific version of __pskb_pull_tail.  The
6439 * main difference between this version and the original function is that
6440 * this function can make several assumptions about the state of things
6441 * that allow for significant optimizations versus the standard function.
6442 * As a result we can do things like drop a frag and maintain an accurate
6443 * truesize for the skb.
6444 */
6445static void igb_pull_tail(struct igb_ring *rx_ring,
6446			  union e1000_adv_rx_desc *rx_desc,
6447			  struct sk_buff *skb)
6448{
6449	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6450	unsigned char *va;
6451	unsigned int pull_len;
6452
6453	/*
6454	 * it is valid to use page_address instead of kmap since we are
6455	 * working with pages allocated out of the lomem pool per
6456	 * alloc_page(GFP_ATOMIC)
6457	 */
6458	va = skb_frag_address(frag);
6459
6460	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6461		/* retrieve timestamp from buffer */
6462		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6463
6464		/* update pointers to remove timestamp header */
6465		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6466		frag->page_offset += IGB_TS_HDR_LEN;
6467		skb->data_len -= IGB_TS_HDR_LEN;
6468		skb->len -= IGB_TS_HDR_LEN;
6469
6470		/* move va to start of packet data */
6471		va += IGB_TS_HDR_LEN;
6472	}
6473
6474	/*
6475	 * we need the header to contain the greater of either ETH_HLEN or
6476	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6477	 */
6478	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6479
6480	/* align pull length to size of long to optimize memcpy performance */
6481	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6482
6483	/* update all of the pointers */
6484	skb_frag_size_sub(frag, pull_len);
6485	frag->page_offset += pull_len;
6486	skb->data_len -= pull_len;
6487	skb->tail += pull_len;
6488}
6489
6490/**
6491 * igb_cleanup_headers - Correct corrupted or empty headers
6492 * @rx_ring: rx descriptor ring packet is being transacted on
6493 * @rx_desc: pointer to the EOP Rx descriptor
6494 * @skb: pointer to current skb being fixed
6495 *
6496 * Address the case where we are pulling data in on pages only
6497 * and as such no data is present in the skb header.
6498 *
6499 * In addition if skb is not at least 60 bytes we need to pad it so that
6500 * it is large enough to qualify as a valid Ethernet frame.
6501 *
6502 * Returns true if an error was encountered and skb was freed.
6503 **/
6504static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6505				union e1000_adv_rx_desc *rx_desc,
6506				struct sk_buff *skb)
6507{
6508
6509	if (unlikely((igb_test_staterr(rx_desc,
6510				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6511		struct net_device *netdev = rx_ring->netdev;
6512		if (!(netdev->features & NETIF_F_RXALL)) {
6513			dev_kfree_skb_any(skb);
6514			return true;
6515		}
6516	}
6517
6518	/* place header in linear portion of buffer */
6519	if (skb_is_nonlinear(skb))
6520		igb_pull_tail(rx_ring, rx_desc, skb);
6521
6522	/* if skb_pad returns an error the skb was freed */
6523	if (unlikely(skb->len < 60)) {
6524		int pad_len = 60 - skb->len;
6525
6526		if (skb_pad(skb, pad_len))
6527			return true;
6528		__skb_put(skb, pad_len);
6529	}
6530
6531	return false;
6532}
6533
6534/**
6535 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6536 * @rx_ring: rx descriptor ring packet is being transacted on
6537 * @rx_desc: pointer to the EOP Rx descriptor
6538 * @skb: pointer to current skb being populated
6539 *
6540 * This function checks the ring, descriptor, and packet information in
6541 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6542 * other fields within the skb.
6543 **/
6544static void igb_process_skb_fields(struct igb_ring *rx_ring,
6545				   union e1000_adv_rx_desc *rx_desc,
6546				   struct sk_buff *skb)
6547{
6548	struct net_device *dev = rx_ring->netdev;
6549
6550	igb_rx_hash(rx_ring, rx_desc, skb);
6551
6552	igb_rx_checksum(rx_ring, rx_desc, skb);
6553
6554	igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);
6555
6556	if ((dev->features & NETIF_F_HW_VLAN_RX) &&
6557	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6558		u16 vid;
6559		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6560		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6561			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6562		else
6563			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6564
6565		__vlan_hwaccel_put_tag(skb, vid);
6566	}
6567
6568	skb_record_rx_queue(skb, rx_ring->queue_index);
6569
6570	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6571}
6572
6573static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6574{
6575	struct igb_ring *rx_ring = q_vector->rx.ring;
6576	struct sk_buff *skb = rx_ring->skb;
6577	unsigned int total_bytes = 0, total_packets = 0;
6578	u16 cleaned_count = igb_desc_unused(rx_ring);
6579
6580	do {
6581		union e1000_adv_rx_desc *rx_desc;
6582
6583		/* return some buffers to hardware, one at a time is too slow */
6584		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6585			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6586			cleaned_count = 0;
6587		}
6588
6589		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6590
6591		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6592			break;
6593
6594		/* retrieve a buffer from the ring */
6595		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6596
6597		/* exit if we failed to retrieve a buffer */
6598		if (!skb)
6599			break;
6600
6601		cleaned_count++;
6602
6603		/* fetch next buffer in frame if non-eop */
6604		if (igb_is_non_eop(rx_ring, rx_desc))
6605			continue;
6606
6607		/* verify the packet layout is correct */
6608		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6609			skb = NULL;
6610			continue;
6611		}
6612
6613		/* probably a little skewed due to removing CRC */
6614		total_bytes += skb->len;
6615
6616		/* populate checksum, timestamp, VLAN, and protocol */
6617		igb_process_skb_fields(rx_ring, rx_desc, skb);
6618
6619		napi_gro_receive(&q_vector->napi, skb);
6620
6621		/* reset skb pointer */
6622		skb = NULL;
6623
6624		/* update budget accounting */
6625		total_packets++;
6626	} while (likely(total_packets < budget));
6627
6628	/* place incomplete frames back on ring for completion */
6629	rx_ring->skb = skb;
6630
6631	u64_stats_update_begin(&rx_ring->rx_syncp);
6632	rx_ring->rx_stats.packets += total_packets;
6633	rx_ring->rx_stats.bytes += total_bytes;
6634	u64_stats_update_end(&rx_ring->rx_syncp);
6635	q_vector->rx.total_packets += total_packets;
6636	q_vector->rx.total_bytes += total_bytes;
6637
6638	if (cleaned_count)
6639		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6640
6641	return (total_packets < budget);
6642}
6643
6644static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6645				  struct igb_rx_buffer *bi)
6646{
6647	struct page *page = bi->page;
6648	dma_addr_t dma;
6649
6650	/* since we are recycling buffers we should seldom need to alloc */
6651	if (likely(page))
6652		return true;
6653
6654	/* alloc new page for storage */
6655	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6656	if (unlikely(!page)) {
6657		rx_ring->rx_stats.alloc_failed++;
6658		return false;
6659	}
6660
6661	/* map page for use */
6662	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6663
6664	/*
6665	 * if mapping failed free memory back to system since
6666	 * there isn't much point in holding memory we can't use
6667	 */
6668	if (dma_mapping_error(rx_ring->dev, dma)) {
6669		__free_page(page);
6670
6671		rx_ring->rx_stats.alloc_failed++;
6672		return false;
6673	}
6674
6675	bi->dma = dma;
6676	bi->page = page;
6677	bi->page_offset = 0;
6678
6679	return true;
6680}
6681
6682/**
6683 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6684 * @adapter: address of board private structure
6685 **/
6686void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6687{
6688	union e1000_adv_rx_desc *rx_desc;
6689	struct igb_rx_buffer *bi;
6690	u16 i = rx_ring->next_to_use;
6691
6692	/* nothing to do */
6693	if (!cleaned_count)
6694		return;
6695
6696	rx_desc = IGB_RX_DESC(rx_ring, i);
6697	bi = &rx_ring->rx_buffer_info[i];
6698	i -= rx_ring->count;
6699
6700	do {
6701		if (!igb_alloc_mapped_page(rx_ring, bi))
6702			break;
6703
6704		/*
6705		 * Refresh the desc even if buffer_addrs didn't change
6706		 * because each write-back erases this info.
6707		 */
6708		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6709
6710		rx_desc++;
6711		bi++;
6712		i++;
6713		if (unlikely(!i)) {
6714			rx_desc = IGB_RX_DESC(rx_ring, 0);
6715			bi = rx_ring->rx_buffer_info;
6716			i -= rx_ring->count;
6717		}
6718
6719		/* clear the hdr_addr for the next_to_use descriptor */
6720		rx_desc->read.hdr_addr = 0;
6721
6722		cleaned_count--;
6723	} while (cleaned_count);
6724
6725	i += rx_ring->count;
6726
6727	if (rx_ring->next_to_use != i) {
6728		/* record the next descriptor to use */
6729		rx_ring->next_to_use = i;
6730
6731		/* update next to alloc since we have filled the ring */
6732		rx_ring->next_to_alloc = i;
6733
6734		/*
6735		 * Force memory writes to complete before letting h/w
6736		 * know there are new descriptors to fetch.  (Only
6737		 * applicable for weak-ordered memory model archs,
6738		 * such as IA-64).
6739		 */
6740		wmb();
6741		writel(i, rx_ring->tail);
6742	}
6743}
6744
6745/**
6746 * igb_mii_ioctl -
6747 * @netdev:
6748 * @ifreq:
6749 * @cmd:
6750 **/
6751static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6752{
6753	struct igb_adapter *adapter = netdev_priv(netdev);
6754	struct mii_ioctl_data *data = if_mii(ifr);
6755
6756	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6757		return -EOPNOTSUPP;
6758
6759	switch (cmd) {
6760	case SIOCGMIIPHY:
6761		data->phy_id = adapter->hw.phy.addr;
6762		break;
6763	case SIOCGMIIREG:
6764		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6765		                     &data->val_out))
6766			return -EIO;
6767		break;
6768	case SIOCSMIIREG:
6769	default:
6770		return -EOPNOTSUPP;
6771	}
6772	return 0;
6773}
6774
6775/**
6776 * igb_ioctl -
6777 * @netdev:
6778 * @ifreq:
6779 * @cmd:
6780 **/
6781static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6782{
6783	switch (cmd) {
6784	case SIOCGMIIPHY:
6785	case SIOCGMIIREG:
6786	case SIOCSMIIREG:
6787		return igb_mii_ioctl(netdev, ifr, cmd);
6788	case SIOCSHWTSTAMP:
6789		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6790	default:
6791		return -EOPNOTSUPP;
6792	}
6793}
6794
6795s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6796{
6797	struct igb_adapter *adapter = hw->back;
6798
6799	if (pcie_capability_read_word(adapter->pdev, reg, value))
6800		return -E1000_ERR_CONFIG;
6801
6802	return 0;
6803}
6804
6805s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6806{
6807	struct igb_adapter *adapter = hw->back;
6808
6809	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6810		return -E1000_ERR_CONFIG;
6811
6812	return 0;
6813}
6814
6815static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6816{
6817	struct igb_adapter *adapter = netdev_priv(netdev);
6818	struct e1000_hw *hw = &adapter->hw;
6819	u32 ctrl, rctl;
6820	bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6821
6822	if (enable) {
6823		/* enable VLAN tag insert/strip */
6824		ctrl = rd32(E1000_CTRL);
6825		ctrl |= E1000_CTRL_VME;
6826		wr32(E1000_CTRL, ctrl);
6827
6828		/* Disable CFI check */
6829		rctl = rd32(E1000_RCTL);
6830		rctl &= ~E1000_RCTL_CFIEN;
6831		wr32(E1000_RCTL, rctl);
6832	} else {
6833		/* disable VLAN tag insert/strip */
6834		ctrl = rd32(E1000_CTRL);
6835		ctrl &= ~E1000_CTRL_VME;
6836		wr32(E1000_CTRL, ctrl);
6837	}
6838
6839	igb_rlpml_set(adapter);
6840}
6841
6842static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6843{
6844	struct igb_adapter *adapter = netdev_priv(netdev);
6845	struct e1000_hw *hw = &adapter->hw;
6846	int pf_id = adapter->vfs_allocated_count;
6847
6848	/* attempt to add filter to vlvf array */
6849	igb_vlvf_set(adapter, vid, true, pf_id);
6850
6851	/* add the filter since PF can receive vlans w/o entry in vlvf */
6852	igb_vfta_set(hw, vid, true);
6853
6854	set_bit(vid, adapter->active_vlans);
6855
6856	return 0;
6857}
6858
6859static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6860{
6861	struct igb_adapter *adapter = netdev_priv(netdev);
6862	struct e1000_hw *hw = &adapter->hw;
6863	int pf_id = adapter->vfs_allocated_count;
6864	s32 err;
6865
6866	/* remove vlan from VLVF table array */
6867	err = igb_vlvf_set(adapter, vid, false, pf_id);
6868
6869	/* if vid was not present in VLVF just remove it from table */
6870	if (err)
6871		igb_vfta_set(hw, vid, false);
6872
6873	clear_bit(vid, adapter->active_vlans);
6874
6875	return 0;
6876}
6877
6878static void igb_restore_vlan(struct igb_adapter *adapter)
6879{
6880	u16 vid;
6881
6882	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6883
6884	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6885		igb_vlan_rx_add_vid(adapter->netdev, vid);
6886}
6887
6888int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6889{
6890	struct pci_dev *pdev = adapter->pdev;
6891	struct e1000_mac_info *mac = &adapter->hw.mac;
6892
6893	mac->autoneg = 0;
6894
6895	/* Make sure dplx is at most 1 bit and lsb of speed is not set
6896	 * for the switch() below to work */
6897	if ((spd & 1) || (dplx & ~1))
6898		goto err_inval;
6899
6900	/* Fiber NIC's only allow 1000 Gbps Full duplex */
6901	if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6902	    spd != SPEED_1000 &&
6903	    dplx != DUPLEX_FULL)
6904		goto err_inval;
6905
6906	switch (spd + dplx) {
6907	case SPEED_10 + DUPLEX_HALF:
6908		mac->forced_speed_duplex = ADVERTISE_10_HALF;
6909		break;
6910	case SPEED_10 + DUPLEX_FULL:
6911		mac->forced_speed_duplex = ADVERTISE_10_FULL;
6912		break;
6913	case SPEED_100 + DUPLEX_HALF:
6914		mac->forced_speed_duplex = ADVERTISE_100_HALF;
6915		break;
6916	case SPEED_100 + DUPLEX_FULL:
6917		mac->forced_speed_duplex = ADVERTISE_100_FULL;
6918		break;
6919	case SPEED_1000 + DUPLEX_FULL:
6920		mac->autoneg = 1;
6921		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6922		break;
6923	case SPEED_1000 + DUPLEX_HALF: /* not supported */
6924	default:
6925		goto err_inval;
6926	}
6927
6928	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
6929	adapter->hw.phy.mdix = AUTO_ALL_MODES;
6930
6931	return 0;
6932
6933err_inval:
6934	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6935	return -EINVAL;
6936}
6937
6938static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
6939			  bool runtime)
6940{
6941	struct net_device *netdev = pci_get_drvdata(pdev);
6942	struct igb_adapter *adapter = netdev_priv(netdev);
6943	struct e1000_hw *hw = &adapter->hw;
6944	u32 ctrl, rctl, status;
6945	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6946#ifdef CONFIG_PM
6947	int retval = 0;
6948#endif
6949
6950	netif_device_detach(netdev);
6951
6952	if (netif_running(netdev))
6953		__igb_close(netdev, true);
6954
6955	igb_clear_interrupt_scheme(adapter);
6956
6957#ifdef CONFIG_PM
6958	retval = pci_save_state(pdev);
6959	if (retval)
6960		return retval;
6961#endif
6962
6963	status = rd32(E1000_STATUS);
6964	if (status & E1000_STATUS_LU)
6965		wufc &= ~E1000_WUFC_LNKC;
6966
6967	if (wufc) {
6968		igb_setup_rctl(adapter);
6969		igb_set_rx_mode(netdev);
6970
6971		/* turn on all-multi mode if wake on multicast is enabled */
6972		if (wufc & E1000_WUFC_MC) {
6973			rctl = rd32(E1000_RCTL);
6974			rctl |= E1000_RCTL_MPE;
6975			wr32(E1000_RCTL, rctl);
6976		}
6977
6978		ctrl = rd32(E1000_CTRL);
6979		/* advertise wake from D3Cold */
6980		#define E1000_CTRL_ADVD3WUC 0x00100000
6981		/* phy power management enable */
6982		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6983		ctrl |= E1000_CTRL_ADVD3WUC;
6984		wr32(E1000_CTRL, ctrl);
6985
6986		/* Allow time for pending master requests to run */
6987		igb_disable_pcie_master(hw);
6988
6989		wr32(E1000_WUC, E1000_WUC_PME_EN);
6990		wr32(E1000_WUFC, wufc);
6991	} else {
6992		wr32(E1000_WUC, 0);
6993		wr32(E1000_WUFC, 0);
6994	}
6995
6996	*enable_wake = wufc || adapter->en_mng_pt;
6997	if (!*enable_wake)
6998		igb_power_down_link(adapter);
6999	else
7000		igb_power_up_link(adapter);
7001
7002	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7003	 * would have already happened in close and is redundant. */
7004	igb_release_hw_control(adapter);
7005
7006	pci_disable_device(pdev);
7007
7008	return 0;
7009}
7010
7011#ifdef CONFIG_PM
7012#ifdef CONFIG_PM_SLEEP
7013static int igb_suspend(struct device *dev)
7014{
7015	int retval;
7016	bool wake;
7017	struct pci_dev *pdev = to_pci_dev(dev);
7018
7019	retval = __igb_shutdown(pdev, &wake, 0);
7020	if (retval)
7021		return retval;
7022
7023	if (wake) {
7024		pci_prepare_to_sleep(pdev);
7025	} else {
7026		pci_wake_from_d3(pdev, false);
7027		pci_set_power_state(pdev, PCI_D3hot);
7028	}
7029
7030	return 0;
7031}
7032#endif /* CONFIG_PM_SLEEP */
7033
7034static int igb_resume(struct device *dev)
7035{
7036	struct pci_dev *pdev = to_pci_dev(dev);
7037	struct net_device *netdev = pci_get_drvdata(pdev);
7038	struct igb_adapter *adapter = netdev_priv(netdev);
7039	struct e1000_hw *hw = &adapter->hw;
7040	u32 err;
7041
7042	pci_set_power_state(pdev, PCI_D0);
7043	pci_restore_state(pdev);
7044	pci_save_state(pdev);
7045
7046	err = pci_enable_device_mem(pdev);
7047	if (err) {
7048		dev_err(&pdev->dev,
7049			"igb: Cannot enable PCI device from suspend\n");
7050		return err;
7051	}
7052	pci_set_master(pdev);
7053
7054	pci_enable_wake(pdev, PCI_D3hot, 0);
7055	pci_enable_wake(pdev, PCI_D3cold, 0);
7056
7057	if (igb_init_interrupt_scheme(adapter, true)) {
7058		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7059		return -ENOMEM;
7060	}
7061
7062	igb_reset(adapter);
7063
7064	/* let the f/w know that the h/w is now under the control of the
7065	 * driver. */
7066	igb_get_hw_control(adapter);
7067
7068	wr32(E1000_WUS, ~0);
7069
7070	if (netdev->flags & IFF_UP) {
7071		rtnl_lock();
7072		err = __igb_open(netdev, true);
7073		rtnl_unlock();
7074		if (err)
7075			return err;
7076	}
7077
7078	netif_device_attach(netdev);
7079	return 0;
7080}
7081
7082#ifdef CONFIG_PM_RUNTIME
7083static int igb_runtime_idle(struct device *dev)
7084{
7085	struct pci_dev *pdev = to_pci_dev(dev);
7086	struct net_device *netdev = pci_get_drvdata(pdev);
7087	struct igb_adapter *adapter = netdev_priv(netdev);
7088
7089	if (!igb_has_link(adapter))
7090		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7091
7092	return -EBUSY;
7093}
7094
7095static int igb_runtime_suspend(struct device *dev)
7096{
7097	struct pci_dev *pdev = to_pci_dev(dev);
7098	int retval;
7099	bool wake;
7100
7101	retval = __igb_shutdown(pdev, &wake, 1);
7102	if (retval)
7103		return retval;
7104
7105	if (wake) {
7106		pci_prepare_to_sleep(pdev);
7107	} else {
7108		pci_wake_from_d3(pdev, false);
7109		pci_set_power_state(pdev, PCI_D3hot);
7110	}
7111
7112	return 0;
7113}
7114
7115static int igb_runtime_resume(struct device *dev)
7116{
7117	return igb_resume(dev);
7118}
7119#endif /* CONFIG_PM_RUNTIME */
7120#endif
7121
7122static void igb_shutdown(struct pci_dev *pdev)
7123{
7124	bool wake;
7125
7126	__igb_shutdown(pdev, &wake, 0);
7127
7128	if (system_state == SYSTEM_POWER_OFF) {
7129		pci_wake_from_d3(pdev, wake);
7130		pci_set_power_state(pdev, PCI_D3hot);
7131	}
7132}
7133
7134#ifdef CONFIG_PCI_IOV
7135static int igb_sriov_reinit(struct pci_dev *dev)
7136{
7137	struct net_device *netdev = pci_get_drvdata(dev);
7138	struct igb_adapter *adapter = netdev_priv(netdev);
7139	struct pci_dev *pdev = adapter->pdev;
7140
7141	rtnl_lock();
7142
7143	if (netif_running(netdev))
7144		igb_close(netdev);
7145
7146	igb_clear_interrupt_scheme(adapter);
7147
7148	igb_init_queue_configuration(adapter);
7149
7150	if (igb_init_interrupt_scheme(adapter, true)) {
7151		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7152		return -ENOMEM;
7153	}
7154
7155	if (netif_running(netdev))
7156		igb_open(netdev);
7157
7158	rtnl_unlock();
7159
7160	return 0;
7161}
7162
7163static int igb_pci_disable_sriov(struct pci_dev *dev)
7164{
7165	int err = igb_disable_sriov(dev);
7166
7167	if (!err)
7168		err = igb_sriov_reinit(dev);
7169
7170	return err;
7171}
7172
7173static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7174{
7175	int err = igb_enable_sriov(dev, num_vfs);
7176
7177	if (err)
7178		goto out;
7179
7180	err = igb_sriov_reinit(dev);
7181	if (!err)
7182		return num_vfs;
7183
7184out:
7185	return err;
7186}
7187
7188#endif
7189static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7190{
7191#ifdef CONFIG_PCI_IOV
7192	if (num_vfs == 0)
7193		return igb_pci_disable_sriov(dev);
7194	else
7195		return igb_pci_enable_sriov(dev, num_vfs);
7196#endif
7197	return 0;
7198}
7199
7200#ifdef CONFIG_NET_POLL_CONTROLLER
7201/*
7202 * Polling 'interrupt' - used by things like netconsole to send skbs
7203 * without having to re-enable interrupts. It's not called while
7204 * the interrupt routine is executing.
7205 */
7206static void igb_netpoll(struct net_device *netdev)
7207{
7208	struct igb_adapter *adapter = netdev_priv(netdev);
7209	struct e1000_hw *hw = &adapter->hw;
7210	struct igb_q_vector *q_vector;
7211	int i;
7212
7213	for (i = 0; i < adapter->num_q_vectors; i++) {
7214		q_vector = adapter->q_vector[i];
7215		if (adapter->msix_entries)
7216			wr32(E1000_EIMC, q_vector->eims_value);
7217		else
7218			igb_irq_disable(adapter);
7219		napi_schedule(&q_vector->napi);
7220	}
7221}
7222#endif /* CONFIG_NET_POLL_CONTROLLER */
7223
7224/**
7225 * igb_io_error_detected - called when PCI error is detected
7226 * @pdev: Pointer to PCI device
7227 * @state: The current pci connection state
7228 *
7229 * This function is called after a PCI bus error affecting
7230 * this device has been detected.
7231 */
7232static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7233					      pci_channel_state_t state)
7234{
7235	struct net_device *netdev = pci_get_drvdata(pdev);
7236	struct igb_adapter *adapter = netdev_priv(netdev);
7237
7238	netif_device_detach(netdev);
7239
7240	if (state == pci_channel_io_perm_failure)
7241		return PCI_ERS_RESULT_DISCONNECT;
7242
7243	if (netif_running(netdev))
7244		igb_down(adapter);
7245	pci_disable_device(pdev);
7246
7247	/* Request a slot slot reset. */
7248	return PCI_ERS_RESULT_NEED_RESET;
7249}
7250
7251/**
7252 * igb_io_slot_reset - called after the pci bus has been reset.
7253 * @pdev: Pointer to PCI device
7254 *
7255 * Restart the card from scratch, as if from a cold-boot. Implementation
7256 * resembles the first-half of the igb_resume routine.
7257 */
7258static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7259{
7260	struct net_device *netdev = pci_get_drvdata(pdev);
7261	struct igb_adapter *adapter = netdev_priv(netdev);
7262	struct e1000_hw *hw = &adapter->hw;
7263	pci_ers_result_t result;
7264	int err;
7265
7266	if (pci_enable_device_mem(pdev)) {
7267		dev_err(&pdev->dev,
7268			"Cannot re-enable PCI device after reset.\n");
7269		result = PCI_ERS_RESULT_DISCONNECT;
7270	} else {
7271		pci_set_master(pdev);
7272		pci_restore_state(pdev);
7273		pci_save_state(pdev);
7274
7275		pci_enable_wake(pdev, PCI_D3hot, 0);
7276		pci_enable_wake(pdev, PCI_D3cold, 0);
7277
7278		igb_reset(adapter);
7279		wr32(E1000_WUS, ~0);
7280		result = PCI_ERS_RESULT_RECOVERED;
7281	}
7282
7283	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7284	if (err) {
7285		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
7286		        "failed 0x%0x\n", err);
7287		/* non-fatal, continue */
7288	}
7289
7290	return result;
7291}
7292
7293/**
7294 * igb_io_resume - called when traffic can start flowing again.
7295 * @pdev: Pointer to PCI device
7296 *
7297 * This callback is called when the error recovery driver tells us that
7298 * its OK to resume normal operation. Implementation resembles the
7299 * second-half of the igb_resume routine.
7300 */
7301static void igb_io_resume(struct pci_dev *pdev)
7302{
7303	struct net_device *netdev = pci_get_drvdata(pdev);
7304	struct igb_adapter *adapter = netdev_priv(netdev);
7305
7306	if (netif_running(netdev)) {
7307		if (igb_up(adapter)) {
7308			dev_err(&pdev->dev, "igb_up failed after reset\n");
7309			return;
7310		}
7311	}
7312
7313	netif_device_attach(netdev);
7314
7315	/* let the f/w know that the h/w is now under the control of the
7316	 * driver. */
7317	igb_get_hw_control(adapter);
7318}
7319
7320static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7321                             u8 qsel)
7322{
7323	u32 rar_low, rar_high;
7324	struct e1000_hw *hw = &adapter->hw;
7325
7326	/* HW expects these in little endian so we reverse the byte order
7327	 * from network order (big endian) to little endian
7328	 */
7329	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7330	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7331	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7332
7333	/* Indicate to hardware the Address is Valid. */
7334	rar_high |= E1000_RAH_AV;
7335
7336	if (hw->mac.type == e1000_82575)
7337		rar_high |= E1000_RAH_POOL_1 * qsel;
7338	else
7339		rar_high |= E1000_RAH_POOL_1 << qsel;
7340
7341	wr32(E1000_RAL(index), rar_low);
7342	wrfl();
7343	wr32(E1000_RAH(index), rar_high);
7344	wrfl();
7345}
7346
7347static int igb_set_vf_mac(struct igb_adapter *adapter,
7348                          int vf, unsigned char *mac_addr)
7349{
7350	struct e1000_hw *hw = &adapter->hw;
7351	/* VF MAC addresses start at end of receive addresses and moves
7352	 * torwards the first, as a result a collision should not be possible */
7353	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7354
7355	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7356
7357	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7358
7359	return 0;
7360}
7361
7362static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7363{
7364	struct igb_adapter *adapter = netdev_priv(netdev);
7365	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7366		return -EINVAL;
7367	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7368	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7369	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
7370				      " change effective.");
7371	if (test_bit(__IGB_DOWN, &adapter->state)) {
7372		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
7373			 " but the PF device is not up.\n");
7374		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
7375			 " attempting to use the VF device.\n");
7376	}
7377	return igb_set_vf_mac(adapter, vf, mac);
7378}
7379
7380static int igb_link_mbps(int internal_link_speed)
7381{
7382	switch (internal_link_speed) {
7383	case SPEED_100:
7384		return 100;
7385	case SPEED_1000:
7386		return 1000;
7387	default:
7388		return 0;
7389	}
7390}
7391
7392static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7393				  int link_speed)
7394{
7395	int rf_dec, rf_int;
7396	u32 bcnrc_val;
7397
7398	if (tx_rate != 0) {
7399		/* Calculate the rate factor values to set */
7400		rf_int = link_speed / tx_rate;
7401		rf_dec = (link_speed - (rf_int * tx_rate));
7402		rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
7403
7404		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7405		bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
7406		               E1000_RTTBCNRC_RF_INT_MASK);
7407		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7408	} else {
7409		bcnrc_val = 0;
7410	}
7411
7412	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7413	/*
7414	 * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7415	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7416	 */
7417	wr32(E1000_RTTBCNRM, 0x14);
7418	wr32(E1000_RTTBCNRC, bcnrc_val);
7419}
7420
7421static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7422{
7423	int actual_link_speed, i;
7424	bool reset_rate = false;
7425
7426	/* VF TX rate limit was not set or not supported */
7427	if ((adapter->vf_rate_link_speed == 0) ||
7428	    (adapter->hw.mac.type != e1000_82576))
7429		return;
7430
7431	actual_link_speed = igb_link_mbps(adapter->link_speed);
7432	if (actual_link_speed != adapter->vf_rate_link_speed) {
7433		reset_rate = true;
7434		adapter->vf_rate_link_speed = 0;
7435		dev_info(&adapter->pdev->dev,
7436		         "Link speed has been changed. VF Transmit "
7437		         "rate is disabled\n");
7438	}
7439
7440	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7441		if (reset_rate)
7442			adapter->vf_data[i].tx_rate = 0;
7443
7444		igb_set_vf_rate_limit(&adapter->hw, i,
7445		                      adapter->vf_data[i].tx_rate,
7446		                      actual_link_speed);
7447	}
7448}
7449
7450static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7451{
7452	struct igb_adapter *adapter = netdev_priv(netdev);
7453	struct e1000_hw *hw = &adapter->hw;
7454	int actual_link_speed;
7455
7456	if (hw->mac.type != e1000_82576)
7457		return -EOPNOTSUPP;
7458
7459	actual_link_speed = igb_link_mbps(adapter->link_speed);
7460	if ((vf >= adapter->vfs_allocated_count) ||
7461	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7462	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7463		return -EINVAL;
7464
7465	adapter->vf_rate_link_speed = actual_link_speed;
7466	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7467	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7468
7469	return 0;
7470}
7471
7472static int igb_ndo_get_vf_config(struct net_device *netdev,
7473				 int vf, struct ifla_vf_info *ivi)
7474{
7475	struct igb_adapter *adapter = netdev_priv(netdev);
7476	if (vf >= adapter->vfs_allocated_count)
7477		return -EINVAL;
7478	ivi->vf = vf;
7479	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7480	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7481	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7482	ivi->qos = adapter->vf_data[vf].pf_qos;
7483	return 0;
7484}
7485
7486static void igb_vmm_control(struct igb_adapter *adapter)
7487{
7488	struct e1000_hw *hw = &adapter->hw;
7489	u32 reg;
7490
7491	switch (hw->mac.type) {
7492	case e1000_82575:
7493	case e1000_i210:
7494	case e1000_i211:
7495	default:
7496		/* replication is not supported for 82575 */
7497		return;
7498	case e1000_82576:
7499		/* notify HW that the MAC is adding vlan tags */
7500		reg = rd32(E1000_DTXCTL);
7501		reg |= E1000_DTXCTL_VLAN_ADDED;
7502		wr32(E1000_DTXCTL, reg);
7503	case e1000_82580:
7504		/* enable replication vlan tag stripping */
7505		reg = rd32(E1000_RPLOLR);
7506		reg |= E1000_RPLOLR_STRVLAN;
7507		wr32(E1000_RPLOLR, reg);
7508	case e1000_i350:
7509		/* none of the above registers are supported by i350 */
7510		break;
7511	}
7512
7513	if (adapter->vfs_allocated_count) {
7514		igb_vmdq_set_loopback_pf(hw, true);
7515		igb_vmdq_set_replication_pf(hw, true);
7516		igb_vmdq_set_anti_spoofing_pf(hw, true,
7517						adapter->vfs_allocated_count);
7518	} else {
7519		igb_vmdq_set_loopback_pf(hw, false);
7520		igb_vmdq_set_replication_pf(hw, false);
7521	}
7522}
7523
7524static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7525{
7526	struct e1000_hw *hw = &adapter->hw;
7527	u32 dmac_thr;
7528	u16 hwm;
7529
7530	if (hw->mac.type > e1000_82580) {
7531		if (adapter->flags & IGB_FLAG_DMAC) {
7532			u32 reg;
7533
7534			/* force threshold to 0. */
7535			wr32(E1000_DMCTXTH, 0);
7536
7537			/*
7538			 * DMA Coalescing high water mark needs to be greater
7539			 * than the Rx threshold. Set hwm to PBA - max frame
7540			 * size in 16B units, capping it at PBA - 6KB.
7541			 */
7542			hwm = 64 * pba - adapter->max_frame_size / 16;
7543			if (hwm < 64 * (pba - 6))
7544				hwm = 64 * (pba - 6);
7545			reg = rd32(E1000_FCRTC);
7546			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7547			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7548				& E1000_FCRTC_RTH_COAL_MASK);
7549			wr32(E1000_FCRTC, reg);
7550
7551			/*
7552			 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
7553			 * frame size, capping it at PBA - 10KB.
7554			 */
7555			dmac_thr = pba - adapter->max_frame_size / 512;
7556			if (dmac_thr < pba - 10)
7557				dmac_thr = pba - 10;
7558			reg = rd32(E1000_DMACR);
7559			reg &= ~E1000_DMACR_DMACTHR_MASK;
7560			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7561				& E1000_DMACR_DMACTHR_MASK);
7562
7563			/* transition to L0x or L1 if available..*/
7564			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7565
7566			/* watchdog timer= +-1000 usec in 32usec intervals */
7567			reg |= (1000 >> 5);
7568
7569			/* Disable BMC-to-OS Watchdog Enable */
7570			reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7571			wr32(E1000_DMACR, reg);
7572
7573			/*
7574			 * no lower threshold to disable
7575			 * coalescing(smart fifb)-UTRESH=0
7576			 */
7577			wr32(E1000_DMCRTRH, 0);
7578
7579			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7580
7581			wr32(E1000_DMCTLX, reg);
7582
7583			/*
7584			 * free space in tx packet buffer to wake from
7585			 * DMA coal
7586			 */
7587			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7588			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7589
7590			/*
7591			 * make low power state decision controlled
7592			 * by DMA coal
7593			 */
7594			reg = rd32(E1000_PCIEMISC);
7595			reg &= ~E1000_PCIEMISC_LX_DECISION;
7596			wr32(E1000_PCIEMISC, reg);
7597		} /* endif adapter->dmac is not disabled */
7598	} else if (hw->mac.type == e1000_82580) {
7599		u32 reg = rd32(E1000_PCIEMISC);
7600		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7601		wr32(E1000_DMACR, 0);
7602	}
7603}
7604
7605static DEFINE_SPINLOCK(i2c_clients_lock);
7606
7607/*  igb_get_i2c_client - returns matching client
7608 *  in adapters's client list.
7609 *  @adapter: adapter struct
7610 *  @dev_addr: device address of i2c needed.
7611 */
7612struct i2c_client *
7613igb_get_i2c_client(struct igb_adapter *adapter, u8 dev_addr)
7614{
7615	ulong flags;
7616	struct igb_i2c_client_list *client_list;
7617	struct i2c_client *client = NULL;
7618	struct i2c_board_info client_info = {
7619		I2C_BOARD_INFO("igb", 0x00),
7620	};
7621
7622	spin_lock_irqsave(&i2c_clients_lock, flags);
7623	client_list = adapter->i2c_clients;
7624
7625	/* See if we already have an i2c_client */
7626	while (client_list) {
7627		if (client_list->client->addr == (dev_addr >> 1)) {
7628			client = client_list->client;
7629			goto exit;
7630		} else {
7631			client_list = client_list->next;
7632		}
7633	}
7634
7635	/* no client_list found, create a new one as long as
7636	 * irqs are not disabled
7637	 */
7638	if (unlikely(irqs_disabled()))
7639		goto exit;
7640
7641	client_list = kzalloc(sizeof(*client_list), GFP_KERNEL);
7642	if (client_list == NULL)
7643		goto exit;
7644
7645	/* dev_addr passed to us is left-shifted by 1 bit
7646	 * i2c_new_device call expects it to be flush to the right.
7647	 */
7648	client_info.addr = dev_addr >> 1;
7649	client_info.platform_data = adapter;
7650	client_list->client = i2c_new_device(&adapter->i2c_adap, &client_info);
7651	if (client_list->client == NULL) {
7652		dev_info(&adapter->pdev->dev,
7653			"Failed to create new i2c device..\n");
7654		goto err_no_client;
7655	}
7656
7657	/* insert new client at head of list */
7658	client_list->next = adapter->i2c_clients;
7659	adapter->i2c_clients = client_list;
7660
7661	client = client_list->client;
7662	goto exit;
7663
7664err_no_client:
7665	kfree(client_list);
7666exit:
7667	spin_unlock_irqrestore(&i2c_clients_lock, flags);
7668	return client;
7669}
7670
7671/*  igb_read_i2c_byte - Reads 8 bit word over I2C
7672 *  @hw: pointer to hardware structure
7673 *  @byte_offset: byte offset to read
7674 *  @dev_addr: device address
7675 *  @data: value read
7676 *
7677 *  Performs byte read operation over I2C interface at
7678 *  a specified device address.
7679 */
7680s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7681				u8 dev_addr, u8 *data)
7682{
7683	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7684	struct i2c_client *this_client = igb_get_i2c_client(adapter, dev_addr);
7685	s32 status;
7686	u16 swfw_mask = 0;
7687
7688	if (!this_client)
7689		return E1000_ERR_I2C;
7690
7691	swfw_mask = E1000_SWFW_PHY0_SM;
7692
7693	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7694	    != E1000_SUCCESS)
7695		return E1000_ERR_SWFW_SYNC;
7696
7697	status = i2c_smbus_read_byte_data(this_client, byte_offset);
7698	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7699
7700	if (status < 0)
7701		return E1000_ERR_I2C;
7702	else {
7703		*data = status;
7704		return E1000_SUCCESS;
7705	}
7706}
7707
7708/*  igb_write_i2c_byte - Writes 8 bit word over I2C
7709 *  @hw: pointer to hardware structure
7710 *  @byte_offset: byte offset to write
7711 *  @dev_addr: device address
7712 *  @data: value to write
7713 *
7714 *  Performs byte write operation over I2C interface at
7715 *  a specified device address.
7716 */
7717s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7718				 u8 dev_addr, u8 data)
7719{
7720	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7721	struct i2c_client *this_client = igb_get_i2c_client(adapter, dev_addr);
7722	s32 status;
7723	u16 swfw_mask = E1000_SWFW_PHY0_SM;
7724
7725	if (!this_client)
7726		return E1000_ERR_I2C;
7727
7728	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7729		return E1000_ERR_SWFW_SYNC;
7730	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7731	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7732
7733	if (status)
7734		return E1000_ERR_I2C;
7735	else
7736		return E1000_SUCCESS;
7737
7738}
7739/* igb_main.c */
7740