igb_main.c revision 67b1b9033607fa237fb69519ddb4cb4979a651fc
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2013 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
33#include <linux/bitops.h>
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/netdevice.h>
37#include <linux/ipv6.h>
38#include <linux/slab.h>
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
41#include <linux/net_tstamp.h>
42#include <linux/mii.h>
43#include <linux/ethtool.h>
44#include <linux/if.h>
45#include <linux/if_vlan.h>
46#include <linux/pci.h>
47#include <linux/pci-aspm.h>
48#include <linux/delay.h>
49#include <linux/interrupt.h>
50#include <linux/ip.h>
51#include <linux/tcp.h>
52#include <linux/sctp.h>
53#include <linux/if_ether.h>
54#include <linux/aer.h>
55#include <linux/prefetch.h>
56#include <linux/pm_runtime.h>
57#ifdef CONFIG_IGB_DCA
58#include <linux/dca.h>
59#endif
60#include <linux/i2c.h>
61#include "igb.h"
62
63#define MAJ 5
64#define MIN 0
65#define BUILD 3
66#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67__stringify(BUILD) "-k"
68char igb_driver_name[] = "igb";
69char igb_driver_version[] = DRV_VERSION;
70static const char igb_driver_string[] =
71				"Intel(R) Gigabit Ethernet Network Driver";
72static const char igb_copyright[] =
73				"Copyright (c) 2007-2013 Intel Corporation.";
74
75static const struct e1000_info *igb_info_tbl[] = {
76	[board_82575] = &e1000_82575_info,
77};
78
79static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
99	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
104	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
105	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
106	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
107	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
108	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
109	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
110	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
111	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
112	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
113	/* required last entry */
114	{0, }
115};
116
117MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
118
119void igb_reset(struct igb_adapter *);
120static int igb_setup_all_tx_resources(struct igb_adapter *);
121static int igb_setup_all_rx_resources(struct igb_adapter *);
122static void igb_free_all_tx_resources(struct igb_adapter *);
123static void igb_free_all_rx_resources(struct igb_adapter *);
124static void igb_setup_mrqc(struct igb_adapter *);
125static int igb_probe(struct pci_dev *, const struct pci_device_id *);
126static void igb_remove(struct pci_dev *pdev);
127static int igb_sw_init(struct igb_adapter *);
128static int igb_open(struct net_device *);
129static int igb_close(struct net_device *);
130static void igb_configure(struct igb_adapter *);
131static void igb_configure_tx(struct igb_adapter *);
132static void igb_configure_rx(struct igb_adapter *);
133static void igb_clean_all_tx_rings(struct igb_adapter *);
134static void igb_clean_all_rx_rings(struct igb_adapter *);
135static void igb_clean_tx_ring(struct igb_ring *);
136static void igb_clean_rx_ring(struct igb_ring *);
137static void igb_set_rx_mode(struct net_device *);
138static void igb_update_phy_info(unsigned long);
139static void igb_watchdog(unsigned long);
140static void igb_watchdog_task(struct work_struct *);
141static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
142static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
143						 struct rtnl_link_stats64 *stats);
144static int igb_change_mtu(struct net_device *, int);
145static int igb_set_mac(struct net_device *, void *);
146static void igb_set_uta(struct igb_adapter *adapter);
147static irqreturn_t igb_intr(int irq, void *);
148static irqreturn_t igb_intr_msi(int irq, void *);
149static irqreturn_t igb_msix_other(int irq, void *);
150static irqreturn_t igb_msix_ring(int irq, void *);
151#ifdef CONFIG_IGB_DCA
152static void igb_update_dca(struct igb_q_vector *);
153static void igb_setup_dca(struct igb_adapter *);
154#endif /* CONFIG_IGB_DCA */
155static int igb_poll(struct napi_struct *, int);
156static bool igb_clean_tx_irq(struct igb_q_vector *);
157static bool igb_clean_rx_irq(struct igb_q_vector *, int);
158static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
159static void igb_tx_timeout(struct net_device *);
160static void igb_reset_task(struct work_struct *);
161static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
162static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
163static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
164static void igb_restore_vlan(struct igb_adapter *);
165static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
166static void igb_ping_all_vfs(struct igb_adapter *);
167static void igb_msg_task(struct igb_adapter *);
168static void igb_vmm_control(struct igb_adapter *);
169static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
170static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
171static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
172static int igb_ndo_set_vf_vlan(struct net_device *netdev,
173			       int vf, u16 vlan, u8 qos);
174static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
175static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
176				   bool setting);
177static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
178				 struct ifla_vf_info *ivi);
179static void igb_check_vf_rate_limit(struct igb_adapter *);
180
181#ifdef CONFIG_PCI_IOV
182static int igb_vf_configure(struct igb_adapter *adapter, int vf);
183#endif
184
185#ifdef CONFIG_PM
186#ifdef CONFIG_PM_SLEEP
187static int igb_suspend(struct device *);
188#endif
189static int igb_resume(struct device *);
190#ifdef CONFIG_PM_RUNTIME
191static int igb_runtime_suspend(struct device *dev);
192static int igb_runtime_resume(struct device *dev);
193static int igb_runtime_idle(struct device *dev);
194#endif
195static const struct dev_pm_ops igb_pm_ops = {
196	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
197	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
198			igb_runtime_idle)
199};
200#endif
201static void igb_shutdown(struct pci_dev *);
202static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
203#ifdef CONFIG_IGB_DCA
204static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
205static struct notifier_block dca_notifier = {
206	.notifier_call	= igb_notify_dca,
207	.next		= NULL,
208	.priority	= 0
209};
210#endif
211#ifdef CONFIG_NET_POLL_CONTROLLER
212/* for netdump / net console */
213static void igb_netpoll(struct net_device *);
214#endif
215#ifdef CONFIG_PCI_IOV
216static unsigned int max_vfs = 0;
217module_param(max_vfs, uint, 0);
218MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
219                 "per physical function");
220#endif /* CONFIG_PCI_IOV */
221
222static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
223		     pci_channel_state_t);
224static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
225static void igb_io_resume(struct pci_dev *);
226
227static const struct pci_error_handlers igb_err_handler = {
228	.error_detected = igb_io_error_detected,
229	.slot_reset = igb_io_slot_reset,
230	.resume = igb_io_resume,
231};
232
233static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
234
235static struct pci_driver igb_driver = {
236	.name     = igb_driver_name,
237	.id_table = igb_pci_tbl,
238	.probe    = igb_probe,
239	.remove   = igb_remove,
240#ifdef CONFIG_PM
241	.driver.pm = &igb_pm_ops,
242#endif
243	.shutdown = igb_shutdown,
244	.sriov_configure = igb_pci_sriov_configure,
245	.err_handler = &igb_err_handler
246};
247
248MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
249MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
250MODULE_LICENSE("GPL");
251MODULE_VERSION(DRV_VERSION);
252
253#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
254static int debug = -1;
255module_param(debug, int, 0);
256MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
257
258struct igb_reg_info {
259	u32 ofs;
260	char *name;
261};
262
263static const struct igb_reg_info igb_reg_info_tbl[] = {
264
265	/* General Registers */
266	{E1000_CTRL, "CTRL"},
267	{E1000_STATUS, "STATUS"},
268	{E1000_CTRL_EXT, "CTRL_EXT"},
269
270	/* Interrupt Registers */
271	{E1000_ICR, "ICR"},
272
273	/* RX Registers */
274	{E1000_RCTL, "RCTL"},
275	{E1000_RDLEN(0), "RDLEN"},
276	{E1000_RDH(0), "RDH"},
277	{E1000_RDT(0), "RDT"},
278	{E1000_RXDCTL(0), "RXDCTL"},
279	{E1000_RDBAL(0), "RDBAL"},
280	{E1000_RDBAH(0), "RDBAH"},
281
282	/* TX Registers */
283	{E1000_TCTL, "TCTL"},
284	{E1000_TDBAL(0), "TDBAL"},
285	{E1000_TDBAH(0), "TDBAH"},
286	{E1000_TDLEN(0), "TDLEN"},
287	{E1000_TDH(0), "TDH"},
288	{E1000_TDT(0), "TDT"},
289	{E1000_TXDCTL(0), "TXDCTL"},
290	{E1000_TDFH, "TDFH"},
291	{E1000_TDFT, "TDFT"},
292	{E1000_TDFHS, "TDFHS"},
293	{E1000_TDFPC, "TDFPC"},
294
295	/* List Terminator */
296	{}
297};
298
299/* igb_regdump - register printout routine */
300static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
301{
302	int n = 0;
303	char rname[16];
304	u32 regs[8];
305
306	switch (reginfo->ofs) {
307	case E1000_RDLEN(0):
308		for (n = 0; n < 4; n++)
309			regs[n] = rd32(E1000_RDLEN(n));
310		break;
311	case E1000_RDH(0):
312		for (n = 0; n < 4; n++)
313			regs[n] = rd32(E1000_RDH(n));
314		break;
315	case E1000_RDT(0):
316		for (n = 0; n < 4; n++)
317			regs[n] = rd32(E1000_RDT(n));
318		break;
319	case E1000_RXDCTL(0):
320		for (n = 0; n < 4; n++)
321			regs[n] = rd32(E1000_RXDCTL(n));
322		break;
323	case E1000_RDBAL(0):
324		for (n = 0; n < 4; n++)
325			regs[n] = rd32(E1000_RDBAL(n));
326		break;
327	case E1000_RDBAH(0):
328		for (n = 0; n < 4; n++)
329			regs[n] = rd32(E1000_RDBAH(n));
330		break;
331	case E1000_TDBAL(0):
332		for (n = 0; n < 4; n++)
333			regs[n] = rd32(E1000_RDBAL(n));
334		break;
335	case E1000_TDBAH(0):
336		for (n = 0; n < 4; n++)
337			regs[n] = rd32(E1000_TDBAH(n));
338		break;
339	case E1000_TDLEN(0):
340		for (n = 0; n < 4; n++)
341			regs[n] = rd32(E1000_TDLEN(n));
342		break;
343	case E1000_TDH(0):
344		for (n = 0; n < 4; n++)
345			regs[n] = rd32(E1000_TDH(n));
346		break;
347	case E1000_TDT(0):
348		for (n = 0; n < 4; n++)
349			regs[n] = rd32(E1000_TDT(n));
350		break;
351	case E1000_TXDCTL(0):
352		for (n = 0; n < 4; n++)
353			regs[n] = rd32(E1000_TXDCTL(n));
354		break;
355	default:
356		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
357		return;
358	}
359
360	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
361	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
362		regs[2], regs[3]);
363}
364
365/* igb_dump - Print registers, Tx-rings and Rx-rings */
366static void igb_dump(struct igb_adapter *adapter)
367{
368	struct net_device *netdev = adapter->netdev;
369	struct e1000_hw *hw = &adapter->hw;
370	struct igb_reg_info *reginfo;
371	struct igb_ring *tx_ring;
372	union e1000_adv_tx_desc *tx_desc;
373	struct my_u0 { u64 a; u64 b; } *u0;
374	struct igb_ring *rx_ring;
375	union e1000_adv_rx_desc *rx_desc;
376	u32 staterr;
377	u16 i, n;
378
379	if (!netif_msg_hw(adapter))
380		return;
381
382	/* Print netdevice Info */
383	if (netdev) {
384		dev_info(&adapter->pdev->dev, "Net device Info\n");
385		pr_info("Device Name     state            trans_start      "
386			"last_rx\n");
387		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
388			netdev->state, netdev->trans_start, netdev->last_rx);
389	}
390
391	/* Print Registers */
392	dev_info(&adapter->pdev->dev, "Register Dump\n");
393	pr_info(" Register Name   Value\n");
394	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395	     reginfo->name; reginfo++) {
396		igb_regdump(hw, reginfo);
397	}
398
399	/* Print TX Ring Summary */
400	if (!netdev || !netif_running(netdev))
401		goto exit;
402
403	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
404	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
405	for (n = 0; n < adapter->num_tx_queues; n++) {
406		struct igb_tx_buffer *buffer_info;
407		tx_ring = adapter->tx_ring[n];
408		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
409		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410			n, tx_ring->next_to_use, tx_ring->next_to_clean,
411			(u64)dma_unmap_addr(buffer_info, dma),
412			dma_unmap_len(buffer_info, len),
413			buffer_info->next_to_watch,
414			(u64)buffer_info->time_stamp);
415	}
416
417	/* Print TX Rings */
418	if (!netif_msg_tx_done(adapter))
419		goto rx_ring_summary;
420
421	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422
423	/* Transmit Descriptor Formats
424	 *
425	 * Advanced Transmit Descriptor
426	 *   +--------------------------------------------------------------+
427	 * 0 |         Buffer Address [63:0]                                |
428	 *   +--------------------------------------------------------------+
429	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
430	 *   +--------------------------------------------------------------+
431	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
432	 */
433
434	for (n = 0; n < adapter->num_tx_queues; n++) {
435		tx_ring = adapter->tx_ring[n];
436		pr_info("------------------------------------\n");
437		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438		pr_info("------------------------------------\n");
439		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
440			"[bi->dma       ] leng  ntw timestamp        "
441			"bi->skb\n");
442
443		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
444			const char *next_desc;
445			struct igb_tx_buffer *buffer_info;
446			tx_desc = IGB_TX_DESC(tx_ring, i);
447			buffer_info = &tx_ring->tx_buffer_info[i];
448			u0 = (struct my_u0 *)tx_desc;
449			if (i == tx_ring->next_to_use &&
450			    i == tx_ring->next_to_clean)
451				next_desc = " NTC/U";
452			else if (i == tx_ring->next_to_use)
453				next_desc = " NTU";
454			else if (i == tx_ring->next_to_clean)
455				next_desc = " NTC";
456			else
457				next_desc = "";
458
459			pr_info("T [0x%03X]    %016llX %016llX %016llX"
460				" %04X  %p %016llX %p%s\n", i,
461				le64_to_cpu(u0->a),
462				le64_to_cpu(u0->b),
463				(u64)dma_unmap_addr(buffer_info, dma),
464				dma_unmap_len(buffer_info, len),
465				buffer_info->next_to_watch,
466				(u64)buffer_info->time_stamp,
467				buffer_info->skb, next_desc);
468
469			if (netif_msg_pktdata(adapter) && buffer_info->skb)
470				print_hex_dump(KERN_INFO, "",
471					DUMP_PREFIX_ADDRESS,
472					16, 1, buffer_info->skb->data,
473					dma_unmap_len(buffer_info, len),
474					true);
475		}
476	}
477
478	/* Print RX Rings Summary */
479rx_ring_summary:
480	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
481	pr_info("Queue [NTU] [NTC]\n");
482	for (n = 0; n < adapter->num_rx_queues; n++) {
483		rx_ring = adapter->rx_ring[n];
484		pr_info(" %5d %5X %5X\n",
485			n, rx_ring->next_to_use, rx_ring->next_to_clean);
486	}
487
488	/* Print RX Rings */
489	if (!netif_msg_rx_status(adapter))
490		goto exit;
491
492	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
493
494	/* Advanced Receive Descriptor (Read) Format
495	 *    63                                           1        0
496	 *    +-----------------------------------------------------+
497	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
498	 *    +----------------------------------------------+------+
499	 *  8 |       Header Buffer Address [63:1]           |  DD  |
500	 *    +-----------------------------------------------------+
501	 *
502	 *
503	 * Advanced Receive Descriptor (Write-Back) Format
504	 *
505	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
506	 *   +------------------------------------------------------+
507	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
508	 *   | Checksum   Ident  |   |           |    | Type | Type |
509	 *   +------------------------------------------------------+
510	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
511	 *   +------------------------------------------------------+
512	 *   63       48 47    32 31            20 19               0
513	 */
514
515	for (n = 0; n < adapter->num_rx_queues; n++) {
516		rx_ring = adapter->rx_ring[n];
517		pr_info("------------------------------------\n");
518		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
519		pr_info("------------------------------------\n");
520		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
521			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
522		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
523			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
524
525		for (i = 0; i < rx_ring->count; i++) {
526			const char *next_desc;
527			struct igb_rx_buffer *buffer_info;
528			buffer_info = &rx_ring->rx_buffer_info[i];
529			rx_desc = IGB_RX_DESC(rx_ring, i);
530			u0 = (struct my_u0 *)rx_desc;
531			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
532
533			if (i == rx_ring->next_to_use)
534				next_desc = " NTU";
535			else if (i == rx_ring->next_to_clean)
536				next_desc = " NTC";
537			else
538				next_desc = "";
539
540			if (staterr & E1000_RXD_STAT_DD) {
541				/* Descriptor Done */
542				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
543					"RWB", i,
544					le64_to_cpu(u0->a),
545					le64_to_cpu(u0->b),
546					next_desc);
547			} else {
548				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
549					"R  ", i,
550					le64_to_cpu(u0->a),
551					le64_to_cpu(u0->b),
552					(u64)buffer_info->dma,
553					next_desc);
554
555				if (netif_msg_pktdata(adapter) &&
556				    buffer_info->dma && buffer_info->page) {
557					print_hex_dump(KERN_INFO, "",
558					  DUMP_PREFIX_ADDRESS,
559					  16, 1,
560					  page_address(buffer_info->page) +
561						      buffer_info->page_offset,
562					  IGB_RX_BUFSZ, true);
563				}
564			}
565		}
566	}
567
568exit:
569	return;
570}
571
572/**
573 *  igb_get_i2c_data - Reads the I2C SDA data bit
574 *  @hw: pointer to hardware structure
575 *  @i2cctl: Current value of I2CCTL register
576 *
577 *  Returns the I2C data bit value
578 **/
579static int igb_get_i2c_data(void *data)
580{
581	struct igb_adapter *adapter = (struct igb_adapter *)data;
582	struct e1000_hw *hw = &adapter->hw;
583	s32 i2cctl = rd32(E1000_I2CPARAMS);
584
585	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
586}
587
588/**
589 *  igb_set_i2c_data - Sets the I2C data bit
590 *  @data: pointer to hardware structure
591 *  @state: I2C data value (0 or 1) to set
592 *
593 *  Sets the I2C data bit
594 **/
595static void igb_set_i2c_data(void *data, int state)
596{
597	struct igb_adapter *adapter = (struct igb_adapter *)data;
598	struct e1000_hw *hw = &adapter->hw;
599	s32 i2cctl = rd32(E1000_I2CPARAMS);
600
601	if (state)
602		i2cctl |= E1000_I2C_DATA_OUT;
603	else
604		i2cctl &= ~E1000_I2C_DATA_OUT;
605
606	i2cctl &= ~E1000_I2C_DATA_OE_N;
607	i2cctl |= E1000_I2C_CLK_OE_N;
608	wr32(E1000_I2CPARAMS, i2cctl);
609	wrfl();
610
611}
612
613/**
614 *  igb_set_i2c_clk - Sets the I2C SCL clock
615 *  @data: pointer to hardware structure
616 *  @state: state to set clock
617 *
618 *  Sets the I2C clock line to state
619 **/
620static void igb_set_i2c_clk(void *data, int state)
621{
622	struct igb_adapter *adapter = (struct igb_adapter *)data;
623	struct e1000_hw *hw = &adapter->hw;
624	s32 i2cctl = rd32(E1000_I2CPARAMS);
625
626	if (state) {
627		i2cctl |= E1000_I2C_CLK_OUT;
628		i2cctl &= ~E1000_I2C_CLK_OE_N;
629	} else {
630		i2cctl &= ~E1000_I2C_CLK_OUT;
631		i2cctl &= ~E1000_I2C_CLK_OE_N;
632	}
633	wr32(E1000_I2CPARAMS, i2cctl);
634	wrfl();
635}
636
637/**
638 *  igb_get_i2c_clk - Gets the I2C SCL clock state
639 *  @data: pointer to hardware structure
640 *
641 *  Gets the I2C clock state
642 **/
643static int igb_get_i2c_clk(void *data)
644{
645	struct igb_adapter *adapter = (struct igb_adapter *)data;
646	struct e1000_hw *hw = &adapter->hw;
647	s32 i2cctl = rd32(E1000_I2CPARAMS);
648
649	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
650}
651
652static const struct i2c_algo_bit_data igb_i2c_algo = {
653	.setsda		= igb_set_i2c_data,
654	.setscl		= igb_set_i2c_clk,
655	.getsda		= igb_get_i2c_data,
656	.getscl		= igb_get_i2c_clk,
657	.udelay		= 5,
658	.timeout	= 20,
659};
660
661/**
662 *  igb_get_hw_dev - return device
663 *  @hw: pointer to hardware structure
664 *
665 *  used by hardware layer to print debugging information
666 **/
667struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
668{
669	struct igb_adapter *adapter = hw->back;
670	return adapter->netdev;
671}
672
673/**
674 *  igb_init_module - Driver Registration Routine
675 *
676 *  igb_init_module is the first routine called when the driver is
677 *  loaded. All it does is register with the PCI subsystem.
678 **/
679static int __init igb_init_module(void)
680{
681	int ret;
682	pr_info("%s - version %s\n",
683	       igb_driver_string, igb_driver_version);
684
685	pr_info("%s\n", igb_copyright);
686
687#ifdef CONFIG_IGB_DCA
688	dca_register_notify(&dca_notifier);
689#endif
690	ret = pci_register_driver(&igb_driver);
691	return ret;
692}
693
694module_init(igb_init_module);
695
696/**
697 *  igb_exit_module - Driver Exit Cleanup Routine
698 *
699 *  igb_exit_module is called just before the driver is removed
700 *  from memory.
701 **/
702static void __exit igb_exit_module(void)
703{
704#ifdef CONFIG_IGB_DCA
705	dca_unregister_notify(&dca_notifier);
706#endif
707	pci_unregister_driver(&igb_driver);
708}
709
710module_exit(igb_exit_module);
711
712#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
713/**
714 *  igb_cache_ring_register - Descriptor ring to register mapping
715 *  @adapter: board private structure to initialize
716 *
717 *  Once we know the feature-set enabled for the device, we'll cache
718 *  the register offset the descriptor ring is assigned to.
719 **/
720static void igb_cache_ring_register(struct igb_adapter *adapter)
721{
722	int i = 0, j = 0;
723	u32 rbase_offset = adapter->vfs_allocated_count;
724
725	switch (adapter->hw.mac.type) {
726	case e1000_82576:
727		/* The queues are allocated for virtualization such that VF 0
728		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
729		 * In order to avoid collision we start at the first free queue
730		 * and continue consuming queues in the same sequence
731		 */
732		if (adapter->vfs_allocated_count) {
733			for (; i < adapter->rss_queues; i++)
734				adapter->rx_ring[i]->reg_idx = rbase_offset +
735							       Q_IDX_82576(i);
736		}
737	case e1000_82575:
738	case e1000_82580:
739	case e1000_i350:
740	case e1000_i354:
741	case e1000_i210:
742	case e1000_i211:
743	default:
744		for (; i < adapter->num_rx_queues; i++)
745			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
746		for (; j < adapter->num_tx_queues; j++)
747			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
748		break;
749	}
750}
751
752/**
753 *  igb_write_ivar - configure ivar for given MSI-X vector
754 *  @hw: pointer to the HW structure
755 *  @msix_vector: vector number we are allocating to a given ring
756 *  @index: row index of IVAR register to write within IVAR table
757 *  @offset: column offset of in IVAR, should be multiple of 8
758 *
759 *  This function is intended to handle the writing of the IVAR register
760 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
761 *  each containing an cause allocation for an Rx and Tx ring, and a
762 *  variable number of rows depending on the number of queues supported.
763 **/
764static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
765			   int index, int offset)
766{
767	u32 ivar = array_rd32(E1000_IVAR0, index);
768
769	/* clear any bits that are currently set */
770	ivar &= ~((u32)0xFF << offset);
771
772	/* write vector and valid bit */
773	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
774
775	array_wr32(E1000_IVAR0, index, ivar);
776}
777
778#define IGB_N0_QUEUE -1
779static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
780{
781	struct igb_adapter *adapter = q_vector->adapter;
782	struct e1000_hw *hw = &adapter->hw;
783	int rx_queue = IGB_N0_QUEUE;
784	int tx_queue = IGB_N0_QUEUE;
785	u32 msixbm = 0;
786
787	if (q_vector->rx.ring)
788		rx_queue = q_vector->rx.ring->reg_idx;
789	if (q_vector->tx.ring)
790		tx_queue = q_vector->tx.ring->reg_idx;
791
792	switch (hw->mac.type) {
793	case e1000_82575:
794		/* The 82575 assigns vectors using a bitmask, which matches the
795		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
796		 * or more queues to a vector, we write the appropriate bits
797		 * into the MSIXBM register for that vector.
798		 */
799		if (rx_queue > IGB_N0_QUEUE)
800			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
801		if (tx_queue > IGB_N0_QUEUE)
802			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
803		if (!adapter->msix_entries && msix_vector == 0)
804			msixbm |= E1000_EIMS_OTHER;
805		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
806		q_vector->eims_value = msixbm;
807		break;
808	case e1000_82576:
809		/* 82576 uses a table that essentially consists of 2 columns
810		 * with 8 rows.  The ordering is column-major so we use the
811		 * lower 3 bits as the row index, and the 4th bit as the
812		 * column offset.
813		 */
814		if (rx_queue > IGB_N0_QUEUE)
815			igb_write_ivar(hw, msix_vector,
816				       rx_queue & 0x7,
817				       (rx_queue & 0x8) << 1);
818		if (tx_queue > IGB_N0_QUEUE)
819			igb_write_ivar(hw, msix_vector,
820				       tx_queue & 0x7,
821				       ((tx_queue & 0x8) << 1) + 8);
822		q_vector->eims_value = 1 << msix_vector;
823		break;
824	case e1000_82580:
825	case e1000_i350:
826	case e1000_i354:
827	case e1000_i210:
828	case e1000_i211:
829		/* On 82580 and newer adapters the scheme is similar to 82576
830		 * however instead of ordering column-major we have things
831		 * ordered row-major.  So we traverse the table by using
832		 * bit 0 as the column offset, and the remaining bits as the
833		 * row index.
834		 */
835		if (rx_queue > IGB_N0_QUEUE)
836			igb_write_ivar(hw, msix_vector,
837				       rx_queue >> 1,
838				       (rx_queue & 0x1) << 4);
839		if (tx_queue > IGB_N0_QUEUE)
840			igb_write_ivar(hw, msix_vector,
841				       tx_queue >> 1,
842				       ((tx_queue & 0x1) << 4) + 8);
843		q_vector->eims_value = 1 << msix_vector;
844		break;
845	default:
846		BUG();
847		break;
848	}
849
850	/* add q_vector eims value to global eims_enable_mask */
851	adapter->eims_enable_mask |= q_vector->eims_value;
852
853	/* configure q_vector to set itr on first interrupt */
854	q_vector->set_itr = 1;
855}
856
857/**
858 *  igb_configure_msix - Configure MSI-X hardware
859 *  @adapter: board private structure to initialize
860 *
861 *  igb_configure_msix sets up the hardware to properly
862 *  generate MSI-X interrupts.
863 **/
864static void igb_configure_msix(struct igb_adapter *adapter)
865{
866	u32 tmp;
867	int i, vector = 0;
868	struct e1000_hw *hw = &adapter->hw;
869
870	adapter->eims_enable_mask = 0;
871
872	/* set vector for other causes, i.e. link changes */
873	switch (hw->mac.type) {
874	case e1000_82575:
875		tmp = rd32(E1000_CTRL_EXT);
876		/* enable MSI-X PBA support*/
877		tmp |= E1000_CTRL_EXT_PBA_CLR;
878
879		/* Auto-Mask interrupts upon ICR read. */
880		tmp |= E1000_CTRL_EXT_EIAME;
881		tmp |= E1000_CTRL_EXT_IRCA;
882
883		wr32(E1000_CTRL_EXT, tmp);
884
885		/* enable msix_other interrupt */
886		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
887		adapter->eims_other = E1000_EIMS_OTHER;
888
889		break;
890
891	case e1000_82576:
892	case e1000_82580:
893	case e1000_i350:
894	case e1000_i354:
895	case e1000_i210:
896	case e1000_i211:
897		/* Turn on MSI-X capability first, or our settings
898		 * won't stick.  And it will take days to debug.
899		 */
900		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
901		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
902		     E1000_GPIE_NSICR);
903
904		/* enable msix_other interrupt */
905		adapter->eims_other = 1 << vector;
906		tmp = (vector++ | E1000_IVAR_VALID) << 8;
907
908		wr32(E1000_IVAR_MISC, tmp);
909		break;
910	default:
911		/* do nothing, since nothing else supports MSI-X */
912		break;
913	} /* switch (hw->mac.type) */
914
915	adapter->eims_enable_mask |= adapter->eims_other;
916
917	for (i = 0; i < adapter->num_q_vectors; i++)
918		igb_assign_vector(adapter->q_vector[i], vector++);
919
920	wrfl();
921}
922
923/**
924 *  igb_request_msix - Initialize MSI-X interrupts
925 *  @adapter: board private structure to initialize
926 *
927 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
928 *  kernel.
929 **/
930static int igb_request_msix(struct igb_adapter *adapter)
931{
932	struct net_device *netdev = adapter->netdev;
933	struct e1000_hw *hw = &adapter->hw;
934	int i, err = 0, vector = 0, free_vector = 0;
935
936	err = request_irq(adapter->msix_entries[vector].vector,
937			  igb_msix_other, 0, netdev->name, adapter);
938	if (err)
939		goto err_out;
940
941	for (i = 0; i < adapter->num_q_vectors; i++) {
942		struct igb_q_vector *q_vector = adapter->q_vector[i];
943
944		vector++;
945
946		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
947
948		if (q_vector->rx.ring && q_vector->tx.ring)
949			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
950				q_vector->rx.ring->queue_index);
951		else if (q_vector->tx.ring)
952			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
953				q_vector->tx.ring->queue_index);
954		else if (q_vector->rx.ring)
955			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
956				q_vector->rx.ring->queue_index);
957		else
958			sprintf(q_vector->name, "%s-unused", netdev->name);
959
960		err = request_irq(adapter->msix_entries[vector].vector,
961				  igb_msix_ring, 0, q_vector->name,
962				  q_vector);
963		if (err)
964			goto err_free;
965	}
966
967	igb_configure_msix(adapter);
968	return 0;
969
970err_free:
971	/* free already assigned IRQs */
972	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
973
974	vector--;
975	for (i = 0; i < vector; i++) {
976		free_irq(adapter->msix_entries[free_vector++].vector,
977			 adapter->q_vector[i]);
978	}
979err_out:
980	return err;
981}
982
983static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
984{
985	if (adapter->msix_entries) {
986		pci_disable_msix(adapter->pdev);
987		kfree(adapter->msix_entries);
988		adapter->msix_entries = NULL;
989	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
990		pci_disable_msi(adapter->pdev);
991	}
992}
993
994/**
995 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
996 *  @adapter: board private structure to initialize
997 *  @v_idx: Index of vector to be freed
998 *
999 *  This function frees the memory allocated to the q_vector.  In addition if
1000 *  NAPI is enabled it will delete any references to the NAPI struct prior
1001 *  to freeing the q_vector.
1002 **/
1003static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1004{
1005	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1006
1007	if (q_vector->tx.ring)
1008		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1009
1010	if (q_vector->rx.ring)
1011		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1012
1013	adapter->q_vector[v_idx] = NULL;
1014	netif_napi_del(&q_vector->napi);
1015
1016	/* ixgbe_get_stats64() might access the rings on this vector,
1017	 * we must wait a grace period before freeing it.
1018	 */
1019	kfree_rcu(q_vector, rcu);
1020}
1021
1022/**
1023 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1024 *  @adapter: board private structure to initialize
1025 *
1026 *  This function frees the memory allocated to the q_vectors.  In addition if
1027 *  NAPI is enabled it will delete any references to the NAPI struct prior
1028 *  to freeing the q_vector.
1029 **/
1030static void igb_free_q_vectors(struct igb_adapter *adapter)
1031{
1032	int v_idx = adapter->num_q_vectors;
1033
1034	adapter->num_tx_queues = 0;
1035	adapter->num_rx_queues = 0;
1036	adapter->num_q_vectors = 0;
1037
1038	while (v_idx--)
1039		igb_free_q_vector(adapter, v_idx);
1040}
1041
1042/**
1043 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1044 *  @adapter: board private structure to initialize
1045 *
1046 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1047 *  MSI-X interrupts allocated.
1048 */
1049static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1050{
1051	igb_free_q_vectors(adapter);
1052	igb_reset_interrupt_capability(adapter);
1053}
1054
1055/**
1056 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1057 *  @adapter: board private structure to initialize
1058 *  @msix: boolean value of MSIX capability
1059 *
1060 *  Attempt to configure interrupts using the best available
1061 *  capabilities of the hardware and kernel.
1062 **/
1063static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1064{
1065	int err;
1066	int numvecs, i;
1067
1068	if (!msix)
1069		goto msi_only;
1070
1071	/* Number of supported queues. */
1072	adapter->num_rx_queues = adapter->rss_queues;
1073	if (adapter->vfs_allocated_count)
1074		adapter->num_tx_queues = 1;
1075	else
1076		adapter->num_tx_queues = adapter->rss_queues;
1077
1078	/* start with one vector for every Rx queue */
1079	numvecs = adapter->num_rx_queues;
1080
1081	/* if Tx handler is separate add 1 for every Tx queue */
1082	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1083		numvecs += adapter->num_tx_queues;
1084
1085	/* store the number of vectors reserved for queues */
1086	adapter->num_q_vectors = numvecs;
1087
1088	/* add 1 vector for link status interrupts */
1089	numvecs++;
1090	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1091					GFP_KERNEL);
1092
1093	if (!adapter->msix_entries)
1094		goto msi_only;
1095
1096	for (i = 0; i < numvecs; i++)
1097		adapter->msix_entries[i].entry = i;
1098
1099	err = pci_enable_msix(adapter->pdev,
1100			      adapter->msix_entries,
1101			      numvecs);
1102	if (err == 0)
1103		return;
1104
1105	igb_reset_interrupt_capability(adapter);
1106
1107	/* If we can't do MSI-X, try MSI */
1108msi_only:
1109#ifdef CONFIG_PCI_IOV
1110	/* disable SR-IOV for non MSI-X configurations */
1111	if (adapter->vf_data) {
1112		struct e1000_hw *hw = &adapter->hw;
1113		/* disable iov and allow time for transactions to clear */
1114		pci_disable_sriov(adapter->pdev);
1115		msleep(500);
1116
1117		kfree(adapter->vf_data);
1118		adapter->vf_data = NULL;
1119		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1120		wrfl();
1121		msleep(100);
1122		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1123	}
1124#endif
1125	adapter->vfs_allocated_count = 0;
1126	adapter->rss_queues = 1;
1127	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1128	adapter->num_rx_queues = 1;
1129	adapter->num_tx_queues = 1;
1130	adapter->num_q_vectors = 1;
1131	if (!pci_enable_msi(adapter->pdev))
1132		adapter->flags |= IGB_FLAG_HAS_MSI;
1133}
1134
1135static void igb_add_ring(struct igb_ring *ring,
1136			 struct igb_ring_container *head)
1137{
1138	head->ring = ring;
1139	head->count++;
1140}
1141
1142/**
1143 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1144 *  @adapter: board private structure to initialize
1145 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1146 *  @v_idx: index of vector in adapter struct
1147 *  @txr_count: total number of Tx rings to allocate
1148 *  @txr_idx: index of first Tx ring to allocate
1149 *  @rxr_count: total number of Rx rings to allocate
1150 *  @rxr_idx: index of first Rx ring to allocate
1151 *
1152 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1153 **/
1154static int igb_alloc_q_vector(struct igb_adapter *adapter,
1155			      int v_count, int v_idx,
1156			      int txr_count, int txr_idx,
1157			      int rxr_count, int rxr_idx)
1158{
1159	struct igb_q_vector *q_vector;
1160	struct igb_ring *ring;
1161	int ring_count, size;
1162
1163	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1164	if (txr_count > 1 || rxr_count > 1)
1165		return -ENOMEM;
1166
1167	ring_count = txr_count + rxr_count;
1168	size = sizeof(struct igb_q_vector) +
1169	       (sizeof(struct igb_ring) * ring_count);
1170
1171	/* allocate q_vector and rings */
1172	q_vector = kzalloc(size, GFP_KERNEL);
1173	if (!q_vector)
1174		return -ENOMEM;
1175
1176	/* initialize NAPI */
1177	netif_napi_add(adapter->netdev, &q_vector->napi,
1178		       igb_poll, 64);
1179
1180	/* tie q_vector and adapter together */
1181	adapter->q_vector[v_idx] = q_vector;
1182	q_vector->adapter = adapter;
1183
1184	/* initialize work limits */
1185	q_vector->tx.work_limit = adapter->tx_work_limit;
1186
1187	/* initialize ITR configuration */
1188	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1189	q_vector->itr_val = IGB_START_ITR;
1190
1191	/* initialize pointer to rings */
1192	ring = q_vector->ring;
1193
1194	/* intialize ITR */
1195	if (rxr_count) {
1196		/* rx or rx/tx vector */
1197		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1198			q_vector->itr_val = adapter->rx_itr_setting;
1199	} else {
1200		/* tx only vector */
1201		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1202			q_vector->itr_val = adapter->tx_itr_setting;
1203	}
1204
1205	if (txr_count) {
1206		/* assign generic ring traits */
1207		ring->dev = &adapter->pdev->dev;
1208		ring->netdev = adapter->netdev;
1209
1210		/* configure backlink on ring */
1211		ring->q_vector = q_vector;
1212
1213		/* update q_vector Tx values */
1214		igb_add_ring(ring, &q_vector->tx);
1215
1216		/* For 82575, context index must be unique per ring. */
1217		if (adapter->hw.mac.type == e1000_82575)
1218			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1219
1220		/* apply Tx specific ring traits */
1221		ring->count = adapter->tx_ring_count;
1222		ring->queue_index = txr_idx;
1223
1224		/* assign ring to adapter */
1225		adapter->tx_ring[txr_idx] = ring;
1226
1227		/* push pointer to next ring */
1228		ring++;
1229	}
1230
1231	if (rxr_count) {
1232		/* assign generic ring traits */
1233		ring->dev = &adapter->pdev->dev;
1234		ring->netdev = adapter->netdev;
1235
1236		/* configure backlink on ring */
1237		ring->q_vector = q_vector;
1238
1239		/* update q_vector Rx values */
1240		igb_add_ring(ring, &q_vector->rx);
1241
1242		/* set flag indicating ring supports SCTP checksum offload */
1243		if (adapter->hw.mac.type >= e1000_82576)
1244			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1245
1246		/*
1247		 * On i350, i354, i210, and i211, loopback VLAN packets
1248		 * have the tag byte-swapped.
1249		 */
1250		if (adapter->hw.mac.type >= e1000_i350)
1251			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1252
1253		/* apply Rx specific ring traits */
1254		ring->count = adapter->rx_ring_count;
1255		ring->queue_index = rxr_idx;
1256
1257		/* assign ring to adapter */
1258		adapter->rx_ring[rxr_idx] = ring;
1259	}
1260
1261	return 0;
1262}
1263
1264
1265/**
1266 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1267 *  @adapter: board private structure to initialize
1268 *
1269 *  We allocate one q_vector per queue interrupt.  If allocation fails we
1270 *  return -ENOMEM.
1271 **/
1272static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1273{
1274	int q_vectors = adapter->num_q_vectors;
1275	int rxr_remaining = adapter->num_rx_queues;
1276	int txr_remaining = adapter->num_tx_queues;
1277	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1278	int err;
1279
1280	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1281		for (; rxr_remaining; v_idx++) {
1282			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1283						 0, 0, 1, rxr_idx);
1284
1285			if (err)
1286				goto err_out;
1287
1288			/* update counts and index */
1289			rxr_remaining--;
1290			rxr_idx++;
1291		}
1292	}
1293
1294	for (; v_idx < q_vectors; v_idx++) {
1295		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1296		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1297		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1298					 tqpv, txr_idx, rqpv, rxr_idx);
1299
1300		if (err)
1301			goto err_out;
1302
1303		/* update counts and index */
1304		rxr_remaining -= rqpv;
1305		txr_remaining -= tqpv;
1306		rxr_idx++;
1307		txr_idx++;
1308	}
1309
1310	return 0;
1311
1312err_out:
1313	adapter->num_tx_queues = 0;
1314	adapter->num_rx_queues = 0;
1315	adapter->num_q_vectors = 0;
1316
1317	while (v_idx--)
1318		igb_free_q_vector(adapter, v_idx);
1319
1320	return -ENOMEM;
1321}
1322
1323/**
1324 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1325 *  @adapter: board private structure to initialize
1326 *  @msix: boolean value of MSIX capability
1327 *
1328 *  This function initializes the interrupts and allocates all of the queues.
1329 **/
1330static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1331{
1332	struct pci_dev *pdev = adapter->pdev;
1333	int err;
1334
1335	igb_set_interrupt_capability(adapter, msix);
1336
1337	err = igb_alloc_q_vectors(adapter);
1338	if (err) {
1339		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1340		goto err_alloc_q_vectors;
1341	}
1342
1343	igb_cache_ring_register(adapter);
1344
1345	return 0;
1346
1347err_alloc_q_vectors:
1348	igb_reset_interrupt_capability(adapter);
1349	return err;
1350}
1351
1352/**
1353 *  igb_request_irq - initialize interrupts
1354 *  @adapter: board private structure to initialize
1355 *
1356 *  Attempts to configure interrupts using the best available
1357 *  capabilities of the hardware and kernel.
1358 **/
1359static int igb_request_irq(struct igb_adapter *adapter)
1360{
1361	struct net_device *netdev = adapter->netdev;
1362	struct pci_dev *pdev = adapter->pdev;
1363	int err = 0;
1364
1365	if (adapter->msix_entries) {
1366		err = igb_request_msix(adapter);
1367		if (!err)
1368			goto request_done;
1369		/* fall back to MSI */
1370		igb_free_all_tx_resources(adapter);
1371		igb_free_all_rx_resources(adapter);
1372
1373		igb_clear_interrupt_scheme(adapter);
1374		err = igb_init_interrupt_scheme(adapter, false);
1375		if (err)
1376			goto request_done;
1377
1378		igb_setup_all_tx_resources(adapter);
1379		igb_setup_all_rx_resources(adapter);
1380		igb_configure(adapter);
1381	}
1382
1383	igb_assign_vector(adapter->q_vector[0], 0);
1384
1385	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1386		err = request_irq(pdev->irq, igb_intr_msi, 0,
1387				  netdev->name, adapter);
1388		if (!err)
1389			goto request_done;
1390
1391		/* fall back to legacy interrupts */
1392		igb_reset_interrupt_capability(adapter);
1393		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1394	}
1395
1396	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1397			  netdev->name, adapter);
1398
1399	if (err)
1400		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1401			err);
1402
1403request_done:
1404	return err;
1405}
1406
1407static void igb_free_irq(struct igb_adapter *adapter)
1408{
1409	if (adapter->msix_entries) {
1410		int vector = 0, i;
1411
1412		free_irq(adapter->msix_entries[vector++].vector, adapter);
1413
1414		for (i = 0; i < adapter->num_q_vectors; i++)
1415			free_irq(adapter->msix_entries[vector++].vector,
1416				 adapter->q_vector[i]);
1417	} else {
1418		free_irq(adapter->pdev->irq, adapter);
1419	}
1420}
1421
1422/**
1423 *  igb_irq_disable - Mask off interrupt generation on the NIC
1424 *  @adapter: board private structure
1425 **/
1426static void igb_irq_disable(struct igb_adapter *adapter)
1427{
1428	struct e1000_hw *hw = &adapter->hw;
1429
1430	/* we need to be careful when disabling interrupts.  The VFs are also
1431	 * mapped into these registers and so clearing the bits can cause
1432	 * issues on the VF drivers so we only need to clear what we set
1433	 */
1434	if (adapter->msix_entries) {
1435		u32 regval = rd32(E1000_EIAM);
1436		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1437		wr32(E1000_EIMC, adapter->eims_enable_mask);
1438		regval = rd32(E1000_EIAC);
1439		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1440	}
1441
1442	wr32(E1000_IAM, 0);
1443	wr32(E1000_IMC, ~0);
1444	wrfl();
1445	if (adapter->msix_entries) {
1446		int i;
1447		for (i = 0; i < adapter->num_q_vectors; i++)
1448			synchronize_irq(adapter->msix_entries[i].vector);
1449	} else {
1450		synchronize_irq(adapter->pdev->irq);
1451	}
1452}
1453
1454/**
1455 *  igb_irq_enable - Enable default interrupt generation settings
1456 *  @adapter: board private structure
1457 **/
1458static void igb_irq_enable(struct igb_adapter *adapter)
1459{
1460	struct e1000_hw *hw = &adapter->hw;
1461
1462	if (adapter->msix_entries) {
1463		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1464		u32 regval = rd32(E1000_EIAC);
1465		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1466		regval = rd32(E1000_EIAM);
1467		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1468		wr32(E1000_EIMS, adapter->eims_enable_mask);
1469		if (adapter->vfs_allocated_count) {
1470			wr32(E1000_MBVFIMR, 0xFF);
1471			ims |= E1000_IMS_VMMB;
1472		}
1473		wr32(E1000_IMS, ims);
1474	} else {
1475		wr32(E1000_IMS, IMS_ENABLE_MASK |
1476				E1000_IMS_DRSTA);
1477		wr32(E1000_IAM, IMS_ENABLE_MASK |
1478				E1000_IMS_DRSTA);
1479	}
1480}
1481
1482static void igb_update_mng_vlan(struct igb_adapter *adapter)
1483{
1484	struct e1000_hw *hw = &adapter->hw;
1485	u16 vid = adapter->hw.mng_cookie.vlan_id;
1486	u16 old_vid = adapter->mng_vlan_id;
1487
1488	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1489		/* add VID to filter table */
1490		igb_vfta_set(hw, vid, true);
1491		adapter->mng_vlan_id = vid;
1492	} else {
1493		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1494	}
1495
1496	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1497	    (vid != old_vid) &&
1498	    !test_bit(old_vid, adapter->active_vlans)) {
1499		/* remove VID from filter table */
1500		igb_vfta_set(hw, old_vid, false);
1501	}
1502}
1503
1504/**
1505 *  igb_release_hw_control - release control of the h/w to f/w
1506 *  @adapter: address of board private structure
1507 *
1508 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1509 *  For ASF and Pass Through versions of f/w this means that the
1510 *  driver is no longer loaded.
1511 **/
1512static void igb_release_hw_control(struct igb_adapter *adapter)
1513{
1514	struct e1000_hw *hw = &adapter->hw;
1515	u32 ctrl_ext;
1516
1517	/* Let firmware take over control of h/w */
1518	ctrl_ext = rd32(E1000_CTRL_EXT);
1519	wr32(E1000_CTRL_EXT,
1520			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1521}
1522
1523/**
1524 *  igb_get_hw_control - get control of the h/w from f/w
1525 *  @adapter: address of board private structure
1526 *
1527 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1528 *  For ASF and Pass Through versions of f/w this means that
1529 *  the driver is loaded.
1530 **/
1531static void igb_get_hw_control(struct igb_adapter *adapter)
1532{
1533	struct e1000_hw *hw = &adapter->hw;
1534	u32 ctrl_ext;
1535
1536	/* Let firmware know the driver has taken over */
1537	ctrl_ext = rd32(E1000_CTRL_EXT);
1538	wr32(E1000_CTRL_EXT,
1539			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1540}
1541
1542/**
1543 *  igb_configure - configure the hardware for RX and TX
1544 *  @adapter: private board structure
1545 **/
1546static void igb_configure(struct igb_adapter *adapter)
1547{
1548	struct net_device *netdev = adapter->netdev;
1549	int i;
1550
1551	igb_get_hw_control(adapter);
1552	igb_set_rx_mode(netdev);
1553
1554	igb_restore_vlan(adapter);
1555
1556	igb_setup_tctl(adapter);
1557	igb_setup_mrqc(adapter);
1558	igb_setup_rctl(adapter);
1559
1560	igb_configure_tx(adapter);
1561	igb_configure_rx(adapter);
1562
1563	igb_rx_fifo_flush_82575(&adapter->hw);
1564
1565	/* call igb_desc_unused which always leaves
1566	 * at least 1 descriptor unused to make sure
1567	 * next_to_use != next_to_clean
1568	 */
1569	for (i = 0; i < adapter->num_rx_queues; i++) {
1570		struct igb_ring *ring = adapter->rx_ring[i];
1571		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1572	}
1573}
1574
1575/**
1576 *  igb_power_up_link - Power up the phy/serdes link
1577 *  @adapter: address of board private structure
1578 **/
1579void igb_power_up_link(struct igb_adapter *adapter)
1580{
1581	igb_reset_phy(&adapter->hw);
1582
1583	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1584		igb_power_up_phy_copper(&adapter->hw);
1585	else
1586		igb_power_up_serdes_link_82575(&adapter->hw);
1587}
1588
1589/**
1590 *  igb_power_down_link - Power down the phy/serdes link
1591 *  @adapter: address of board private structure
1592 */
1593static void igb_power_down_link(struct igb_adapter *adapter)
1594{
1595	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1596		igb_power_down_phy_copper_82575(&adapter->hw);
1597	else
1598		igb_shutdown_serdes_link_82575(&adapter->hw);
1599}
1600
1601/**
1602 *  igb_up - Open the interface and prepare it to handle traffic
1603 *  @adapter: board private structure
1604 **/
1605int igb_up(struct igb_adapter *adapter)
1606{
1607	struct e1000_hw *hw = &adapter->hw;
1608	int i;
1609
1610	/* hardware has been reset, we need to reload some things */
1611	igb_configure(adapter);
1612
1613	clear_bit(__IGB_DOWN, &adapter->state);
1614
1615	for (i = 0; i < adapter->num_q_vectors; i++)
1616		napi_enable(&(adapter->q_vector[i]->napi));
1617
1618	if (adapter->msix_entries)
1619		igb_configure_msix(adapter);
1620	else
1621		igb_assign_vector(adapter->q_vector[0], 0);
1622
1623	/* Clear any pending interrupts. */
1624	rd32(E1000_ICR);
1625	igb_irq_enable(adapter);
1626
1627	/* notify VFs that reset has been completed */
1628	if (adapter->vfs_allocated_count) {
1629		u32 reg_data = rd32(E1000_CTRL_EXT);
1630		reg_data |= E1000_CTRL_EXT_PFRSTD;
1631		wr32(E1000_CTRL_EXT, reg_data);
1632	}
1633
1634	netif_tx_start_all_queues(adapter->netdev);
1635
1636	/* start the watchdog. */
1637	hw->mac.get_link_status = 1;
1638	schedule_work(&adapter->watchdog_task);
1639
1640	return 0;
1641}
1642
1643void igb_down(struct igb_adapter *adapter)
1644{
1645	struct net_device *netdev = adapter->netdev;
1646	struct e1000_hw *hw = &adapter->hw;
1647	u32 tctl, rctl;
1648	int i;
1649
1650	/* signal that we're down so the interrupt handler does not
1651	 * reschedule our watchdog timer
1652	 */
1653	set_bit(__IGB_DOWN, &adapter->state);
1654
1655	/* disable receives in the hardware */
1656	rctl = rd32(E1000_RCTL);
1657	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1658	/* flush and sleep below */
1659
1660	netif_tx_stop_all_queues(netdev);
1661
1662	/* disable transmits in the hardware */
1663	tctl = rd32(E1000_TCTL);
1664	tctl &= ~E1000_TCTL_EN;
1665	wr32(E1000_TCTL, tctl);
1666	/* flush both disables and wait for them to finish */
1667	wrfl();
1668	msleep(10);
1669
1670	for (i = 0; i < adapter->num_q_vectors; i++)
1671		napi_disable(&(adapter->q_vector[i]->napi));
1672
1673	igb_irq_disable(adapter);
1674
1675	del_timer_sync(&adapter->watchdog_timer);
1676	del_timer_sync(&adapter->phy_info_timer);
1677
1678	netif_carrier_off(netdev);
1679
1680	/* record the stats before reset*/
1681	spin_lock(&adapter->stats64_lock);
1682	igb_update_stats(adapter, &adapter->stats64);
1683	spin_unlock(&adapter->stats64_lock);
1684
1685	adapter->link_speed = 0;
1686	adapter->link_duplex = 0;
1687
1688	if (!pci_channel_offline(adapter->pdev))
1689		igb_reset(adapter);
1690	igb_clean_all_tx_rings(adapter);
1691	igb_clean_all_rx_rings(adapter);
1692#ifdef CONFIG_IGB_DCA
1693
1694	/* since we reset the hardware DCA settings were cleared */
1695	igb_setup_dca(adapter);
1696#endif
1697}
1698
1699void igb_reinit_locked(struct igb_adapter *adapter)
1700{
1701	WARN_ON(in_interrupt());
1702	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1703		msleep(1);
1704	igb_down(adapter);
1705	igb_up(adapter);
1706	clear_bit(__IGB_RESETTING, &adapter->state);
1707}
1708
1709void igb_reset(struct igb_adapter *adapter)
1710{
1711	struct pci_dev *pdev = adapter->pdev;
1712	struct e1000_hw *hw = &adapter->hw;
1713	struct e1000_mac_info *mac = &hw->mac;
1714	struct e1000_fc_info *fc = &hw->fc;
1715	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1716
1717	/* Repartition Pba for greater than 9k mtu
1718	 * To take effect CTRL.RST is required.
1719	 */
1720	switch (mac->type) {
1721	case e1000_i350:
1722	case e1000_i354:
1723	case e1000_82580:
1724		pba = rd32(E1000_RXPBS);
1725		pba = igb_rxpbs_adjust_82580(pba);
1726		break;
1727	case e1000_82576:
1728		pba = rd32(E1000_RXPBS);
1729		pba &= E1000_RXPBS_SIZE_MASK_82576;
1730		break;
1731	case e1000_82575:
1732	case e1000_i210:
1733	case e1000_i211:
1734	default:
1735		pba = E1000_PBA_34K;
1736		break;
1737	}
1738
1739	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1740	    (mac->type < e1000_82576)) {
1741		/* adjust PBA for jumbo frames */
1742		wr32(E1000_PBA, pba);
1743
1744		/* To maintain wire speed transmits, the Tx FIFO should be
1745		 * large enough to accommodate two full transmit packets,
1746		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1747		 * the Rx FIFO should be large enough to accommodate at least
1748		 * one full receive packet and is similarly rounded up and
1749		 * expressed in KB.
1750		 */
1751		pba = rd32(E1000_PBA);
1752		/* upper 16 bits has Tx packet buffer allocation size in KB */
1753		tx_space = pba >> 16;
1754		/* lower 16 bits has Rx packet buffer allocation size in KB */
1755		pba &= 0xffff;
1756		/* the Tx fifo also stores 16 bytes of information about the Tx
1757		 * but don't include ethernet FCS because hardware appends it
1758		 */
1759		min_tx_space = (adapter->max_frame_size +
1760				sizeof(union e1000_adv_tx_desc) -
1761				ETH_FCS_LEN) * 2;
1762		min_tx_space = ALIGN(min_tx_space, 1024);
1763		min_tx_space >>= 10;
1764		/* software strips receive CRC, so leave room for it */
1765		min_rx_space = adapter->max_frame_size;
1766		min_rx_space = ALIGN(min_rx_space, 1024);
1767		min_rx_space >>= 10;
1768
1769		/* If current Tx allocation is less than the min Tx FIFO size,
1770		 * and the min Tx FIFO size is less than the current Rx FIFO
1771		 * allocation, take space away from current Rx allocation
1772		 */
1773		if (tx_space < min_tx_space &&
1774		    ((min_tx_space - tx_space) < pba)) {
1775			pba = pba - (min_tx_space - tx_space);
1776
1777			/* if short on Rx space, Rx wins and must trump Tx
1778			 * adjustment
1779			 */
1780			if (pba < min_rx_space)
1781				pba = min_rx_space;
1782		}
1783		wr32(E1000_PBA, pba);
1784	}
1785
1786	/* flow control settings */
1787	/* The high water mark must be low enough to fit one full frame
1788	 * (or the size used for early receive) above it in the Rx FIFO.
1789	 * Set it to the lower of:
1790	 * - 90% of the Rx FIFO size, or
1791	 * - the full Rx FIFO size minus one full frame
1792	 */
1793	hwm = min(((pba << 10) * 9 / 10),
1794			((pba << 10) - 2 * adapter->max_frame_size));
1795
1796	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1797	fc->low_water = fc->high_water - 16;
1798	fc->pause_time = 0xFFFF;
1799	fc->send_xon = 1;
1800	fc->current_mode = fc->requested_mode;
1801
1802	/* disable receive for all VFs and wait one second */
1803	if (adapter->vfs_allocated_count) {
1804		int i;
1805		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1806			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1807
1808		/* ping all the active vfs to let them know we are going down */
1809		igb_ping_all_vfs(adapter);
1810
1811		/* disable transmits and receives */
1812		wr32(E1000_VFRE, 0);
1813		wr32(E1000_VFTE, 0);
1814	}
1815
1816	/* Allow time for pending master requests to run */
1817	hw->mac.ops.reset_hw(hw);
1818	wr32(E1000_WUC, 0);
1819
1820	if (hw->mac.ops.init_hw(hw))
1821		dev_err(&pdev->dev, "Hardware Error\n");
1822
1823	/* Flow control settings reset on hardware reset, so guarantee flow
1824	 * control is off when forcing speed.
1825	 */
1826	if (!hw->mac.autoneg)
1827		igb_force_mac_fc(hw);
1828
1829	igb_init_dmac(adapter, pba);
1830#ifdef CONFIG_IGB_HWMON
1831	/* Re-initialize the thermal sensor on i350 devices. */
1832	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1833		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1834			/* If present, re-initialize the external thermal sensor
1835			 * interface.
1836			 */
1837			if (adapter->ets)
1838				mac->ops.init_thermal_sensor_thresh(hw);
1839		}
1840	}
1841#endif
1842	if (!netif_running(adapter->netdev))
1843		igb_power_down_link(adapter);
1844
1845	igb_update_mng_vlan(adapter);
1846
1847	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1848	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1849
1850	/* Re-enable PTP, where applicable. */
1851	igb_ptp_reset(adapter);
1852
1853	igb_get_phy_info(hw);
1854}
1855
1856static netdev_features_t igb_fix_features(struct net_device *netdev,
1857	netdev_features_t features)
1858{
1859	/* Since there is no support for separate Rx/Tx vlan accel
1860	 * enable/disable make sure Tx flag is always in same state as Rx.
1861	 */
1862	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1863		features |= NETIF_F_HW_VLAN_CTAG_TX;
1864	else
1865		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1866
1867	return features;
1868}
1869
1870static int igb_set_features(struct net_device *netdev,
1871	netdev_features_t features)
1872{
1873	netdev_features_t changed = netdev->features ^ features;
1874	struct igb_adapter *adapter = netdev_priv(netdev);
1875
1876	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1877		igb_vlan_mode(netdev, features);
1878
1879	if (!(changed & NETIF_F_RXALL))
1880		return 0;
1881
1882	netdev->features = features;
1883
1884	if (netif_running(netdev))
1885		igb_reinit_locked(adapter);
1886	else
1887		igb_reset(adapter);
1888
1889	return 0;
1890}
1891
1892static const struct net_device_ops igb_netdev_ops = {
1893	.ndo_open		= igb_open,
1894	.ndo_stop		= igb_close,
1895	.ndo_start_xmit		= igb_xmit_frame,
1896	.ndo_get_stats64	= igb_get_stats64,
1897	.ndo_set_rx_mode	= igb_set_rx_mode,
1898	.ndo_set_mac_address	= igb_set_mac,
1899	.ndo_change_mtu		= igb_change_mtu,
1900	.ndo_do_ioctl		= igb_ioctl,
1901	.ndo_tx_timeout		= igb_tx_timeout,
1902	.ndo_validate_addr	= eth_validate_addr,
1903	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
1904	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1905	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
1906	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
1907	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
1908	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
1909	.ndo_get_vf_config	= igb_ndo_get_vf_config,
1910#ifdef CONFIG_NET_POLL_CONTROLLER
1911	.ndo_poll_controller	= igb_netpoll,
1912#endif
1913	.ndo_fix_features	= igb_fix_features,
1914	.ndo_set_features	= igb_set_features,
1915};
1916
1917/**
1918 * igb_set_fw_version - Configure version string for ethtool
1919 * @adapter: adapter struct
1920 **/
1921void igb_set_fw_version(struct igb_adapter *adapter)
1922{
1923	struct e1000_hw *hw = &adapter->hw;
1924	struct e1000_fw_version fw;
1925
1926	igb_get_fw_version(hw, &fw);
1927
1928	switch (hw->mac.type) {
1929	case e1000_i211:
1930		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1931			 "%2d.%2d-%d",
1932			 fw.invm_major, fw.invm_minor, fw.invm_img_type);
1933		break;
1934
1935	default:
1936		/* if option is rom valid, display its version too */
1937		if (fw.or_valid) {
1938			snprintf(adapter->fw_version,
1939				 sizeof(adapter->fw_version),
1940				 "%d.%d, 0x%08x, %d.%d.%d",
1941				 fw.eep_major, fw.eep_minor, fw.etrack_id,
1942				 fw.or_major, fw.or_build, fw.or_patch);
1943		/* no option rom */
1944		} else {
1945			snprintf(adapter->fw_version,
1946				 sizeof(adapter->fw_version),
1947				 "%d.%d, 0x%08x",
1948				 fw.eep_major, fw.eep_minor, fw.etrack_id);
1949		}
1950		break;
1951	}
1952	return;
1953}
1954
1955/**
1956 *  igb_init_i2c - Init I2C interface
1957 *  @adapter: pointer to adapter structure
1958 **/
1959static s32 igb_init_i2c(struct igb_adapter *adapter)
1960{
1961	s32 status = E1000_SUCCESS;
1962
1963	/* I2C interface supported on i350 devices */
1964	if (adapter->hw.mac.type != e1000_i350)
1965		return E1000_SUCCESS;
1966
1967	/* Initialize the i2c bus which is controlled by the registers.
1968	 * This bus will use the i2c_algo_bit structue that implements
1969	 * the protocol through toggling of the 4 bits in the register.
1970	 */
1971	adapter->i2c_adap.owner = THIS_MODULE;
1972	adapter->i2c_algo = igb_i2c_algo;
1973	adapter->i2c_algo.data = adapter;
1974	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1975	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1976	strlcpy(adapter->i2c_adap.name, "igb BB",
1977		sizeof(adapter->i2c_adap.name));
1978	status = i2c_bit_add_bus(&adapter->i2c_adap);
1979	return status;
1980}
1981
1982/**
1983 *  igb_probe - Device Initialization Routine
1984 *  @pdev: PCI device information struct
1985 *  @ent: entry in igb_pci_tbl
1986 *
1987 *  Returns 0 on success, negative on failure
1988 *
1989 *  igb_probe initializes an adapter identified by a pci_dev structure.
1990 *  The OS initialization, configuring of the adapter private structure,
1991 *  and a hardware reset occur.
1992 **/
1993static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1994{
1995	struct net_device *netdev;
1996	struct igb_adapter *adapter;
1997	struct e1000_hw *hw;
1998	u16 eeprom_data = 0;
1999	s32 ret_val;
2000	static int global_quad_port_a; /* global quad port a indication */
2001	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2002	unsigned long mmio_start, mmio_len;
2003	int err, pci_using_dac;
2004	u8 part_str[E1000_PBANUM_LENGTH];
2005
2006	/* Catch broken hardware that put the wrong VF device ID in
2007	 * the PCIe SR-IOV capability.
2008	 */
2009	if (pdev->is_virtfn) {
2010		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2011			pci_name(pdev), pdev->vendor, pdev->device);
2012		return -EINVAL;
2013	}
2014
2015	err = pci_enable_device_mem(pdev);
2016	if (err)
2017		return err;
2018
2019	pci_using_dac = 0;
2020	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2021	if (!err) {
2022		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2023		if (!err)
2024			pci_using_dac = 1;
2025	} else {
2026		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2027		if (err) {
2028			err = dma_set_coherent_mask(&pdev->dev,
2029						    DMA_BIT_MASK(32));
2030			if (err) {
2031				dev_err(&pdev->dev,
2032					"No usable DMA configuration, aborting\n");
2033				goto err_dma;
2034			}
2035		}
2036	}
2037
2038	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2039					   IORESOURCE_MEM),
2040					   igb_driver_name);
2041	if (err)
2042		goto err_pci_reg;
2043
2044	pci_enable_pcie_error_reporting(pdev);
2045
2046	pci_set_master(pdev);
2047	pci_save_state(pdev);
2048
2049	err = -ENOMEM;
2050	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2051				   IGB_MAX_TX_QUEUES);
2052	if (!netdev)
2053		goto err_alloc_etherdev;
2054
2055	SET_NETDEV_DEV(netdev, &pdev->dev);
2056
2057	pci_set_drvdata(pdev, netdev);
2058	adapter = netdev_priv(netdev);
2059	adapter->netdev = netdev;
2060	adapter->pdev = pdev;
2061	hw = &adapter->hw;
2062	hw->back = adapter;
2063	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2064
2065	mmio_start = pci_resource_start(pdev, 0);
2066	mmio_len = pci_resource_len(pdev, 0);
2067
2068	err = -EIO;
2069	hw->hw_addr = ioremap(mmio_start, mmio_len);
2070	if (!hw->hw_addr)
2071		goto err_ioremap;
2072
2073	netdev->netdev_ops = &igb_netdev_ops;
2074	igb_set_ethtool_ops(netdev);
2075	netdev->watchdog_timeo = 5 * HZ;
2076
2077	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2078
2079	netdev->mem_start = mmio_start;
2080	netdev->mem_end = mmio_start + mmio_len;
2081
2082	/* PCI config space info */
2083	hw->vendor_id = pdev->vendor;
2084	hw->device_id = pdev->device;
2085	hw->revision_id = pdev->revision;
2086	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2087	hw->subsystem_device_id = pdev->subsystem_device;
2088
2089	/* Copy the default MAC, PHY and NVM function pointers */
2090	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2091	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2092	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2093	/* Initialize skew-specific constants */
2094	err = ei->get_invariants(hw);
2095	if (err)
2096		goto err_sw_init;
2097
2098	/* setup the private structure */
2099	err = igb_sw_init(adapter);
2100	if (err)
2101		goto err_sw_init;
2102
2103	igb_get_bus_info_pcie(hw);
2104
2105	hw->phy.autoneg_wait_to_complete = false;
2106
2107	/* Copper options */
2108	if (hw->phy.media_type == e1000_media_type_copper) {
2109		hw->phy.mdix = AUTO_ALL_MODES;
2110		hw->phy.disable_polarity_correction = false;
2111		hw->phy.ms_type = e1000_ms_hw_default;
2112	}
2113
2114	if (igb_check_reset_block(hw))
2115		dev_info(&pdev->dev,
2116			"PHY reset is blocked due to SOL/IDER session.\n");
2117
2118	/* features is initialized to 0 in allocation, it might have bits
2119	 * set by igb_sw_init so we should use an or instead of an
2120	 * assignment.
2121	 */
2122	netdev->features |= NETIF_F_SG |
2123			    NETIF_F_IP_CSUM |
2124			    NETIF_F_IPV6_CSUM |
2125			    NETIF_F_TSO |
2126			    NETIF_F_TSO6 |
2127			    NETIF_F_RXHASH |
2128			    NETIF_F_RXCSUM |
2129			    NETIF_F_HW_VLAN_CTAG_RX |
2130			    NETIF_F_HW_VLAN_CTAG_TX;
2131
2132	/* copy netdev features into list of user selectable features */
2133	netdev->hw_features |= netdev->features;
2134	netdev->hw_features |= NETIF_F_RXALL;
2135
2136	/* set this bit last since it cannot be part of hw_features */
2137	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2138
2139	netdev->vlan_features |= NETIF_F_TSO |
2140				 NETIF_F_TSO6 |
2141				 NETIF_F_IP_CSUM |
2142				 NETIF_F_IPV6_CSUM |
2143				 NETIF_F_SG;
2144
2145	netdev->priv_flags |= IFF_SUPP_NOFCS;
2146
2147	if (pci_using_dac) {
2148		netdev->features |= NETIF_F_HIGHDMA;
2149		netdev->vlan_features |= NETIF_F_HIGHDMA;
2150	}
2151
2152	if (hw->mac.type >= e1000_82576) {
2153		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2154		netdev->features |= NETIF_F_SCTP_CSUM;
2155	}
2156
2157	netdev->priv_flags |= IFF_UNICAST_FLT;
2158
2159	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2160
2161	/* before reading the NVM, reset the controller to put the device in a
2162	 * known good starting state
2163	 */
2164	hw->mac.ops.reset_hw(hw);
2165
2166	/* make sure the NVM is good , i211 parts have special NVM that
2167	 * doesn't contain a checksum
2168	 */
2169	if (hw->mac.type != e1000_i211) {
2170		if (hw->nvm.ops.validate(hw) < 0) {
2171			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2172			err = -EIO;
2173			goto err_eeprom;
2174		}
2175	}
2176
2177	/* copy the MAC address out of the NVM */
2178	if (hw->mac.ops.read_mac_addr(hw))
2179		dev_err(&pdev->dev, "NVM Read Error\n");
2180
2181	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2182
2183	if (!is_valid_ether_addr(netdev->dev_addr)) {
2184		dev_err(&pdev->dev, "Invalid MAC Address\n");
2185		err = -EIO;
2186		goto err_eeprom;
2187	}
2188
2189	/* get firmware version for ethtool -i */
2190	igb_set_fw_version(adapter);
2191
2192	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2193		    (unsigned long) adapter);
2194	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2195		    (unsigned long) adapter);
2196
2197	INIT_WORK(&adapter->reset_task, igb_reset_task);
2198	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2199
2200	/* Initialize link properties that are user-changeable */
2201	adapter->fc_autoneg = true;
2202	hw->mac.autoneg = true;
2203	hw->phy.autoneg_advertised = 0x2f;
2204
2205	hw->fc.requested_mode = e1000_fc_default;
2206	hw->fc.current_mode = e1000_fc_default;
2207
2208	igb_validate_mdi_setting(hw);
2209
2210	/* By default, support wake on port A */
2211	if (hw->bus.func == 0)
2212		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2213
2214	/* Check the NVM for wake support on non-port A ports */
2215	if (hw->mac.type >= e1000_82580)
2216		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2217				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2218				 &eeprom_data);
2219	else if (hw->bus.func == 1)
2220		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2221
2222	if (eeprom_data & IGB_EEPROM_APME)
2223		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2224
2225	/* now that we have the eeprom settings, apply the special cases where
2226	 * the eeprom may be wrong or the board simply won't support wake on
2227	 * lan on a particular port
2228	 */
2229	switch (pdev->device) {
2230	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2231		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2232		break;
2233	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2234	case E1000_DEV_ID_82576_FIBER:
2235	case E1000_DEV_ID_82576_SERDES:
2236		/* Wake events only supported on port A for dual fiber
2237		 * regardless of eeprom setting
2238		 */
2239		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2240			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2241		break;
2242	case E1000_DEV_ID_82576_QUAD_COPPER:
2243	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2244		/* if quad port adapter, disable WoL on all but port A */
2245		if (global_quad_port_a != 0)
2246			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2247		else
2248			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2249		/* Reset for multiple quad port adapters */
2250		if (++global_quad_port_a == 4)
2251			global_quad_port_a = 0;
2252		break;
2253	default:
2254		/* If the device can't wake, don't set software support */
2255		if (!device_can_wakeup(&adapter->pdev->dev))
2256			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2257	}
2258
2259	/* initialize the wol settings based on the eeprom settings */
2260	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2261		adapter->wol |= E1000_WUFC_MAG;
2262
2263	/* Some vendors want WoL disabled by default, but still supported */
2264	if ((hw->mac.type == e1000_i350) &&
2265	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2266		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2267		adapter->wol = 0;
2268	}
2269
2270	device_set_wakeup_enable(&adapter->pdev->dev,
2271				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2272
2273	/* reset the hardware with the new settings */
2274	igb_reset(adapter);
2275
2276	/* Init the I2C interface */
2277	err = igb_init_i2c(adapter);
2278	if (err) {
2279		dev_err(&pdev->dev, "failed to init i2c interface\n");
2280		goto err_eeprom;
2281	}
2282
2283	/* let the f/w know that the h/w is now under the control of the
2284	 * driver. */
2285	igb_get_hw_control(adapter);
2286
2287	strcpy(netdev->name, "eth%d");
2288	err = register_netdev(netdev);
2289	if (err)
2290		goto err_register;
2291
2292	/* carrier off reporting is important to ethtool even BEFORE open */
2293	netif_carrier_off(netdev);
2294
2295#ifdef CONFIG_IGB_DCA
2296	if (dca_add_requester(&pdev->dev) == 0) {
2297		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2298		dev_info(&pdev->dev, "DCA enabled\n");
2299		igb_setup_dca(adapter);
2300	}
2301
2302#endif
2303#ifdef CONFIG_IGB_HWMON
2304	/* Initialize the thermal sensor on i350 devices. */
2305	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2306		u16 ets_word;
2307
2308		/* Read the NVM to determine if this i350 device supports an
2309		 * external thermal sensor.
2310		 */
2311		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2312		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2313			adapter->ets = true;
2314		else
2315			adapter->ets = false;
2316		if (igb_sysfs_init(adapter))
2317			dev_err(&pdev->dev,
2318				"failed to allocate sysfs resources\n");
2319	} else {
2320		adapter->ets = false;
2321	}
2322#endif
2323	/* do hw tstamp init after resetting */
2324	igb_ptp_init(adapter);
2325
2326	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2327	/* print bus type/speed/width info, not applicable to i354 */
2328	if (hw->mac.type != e1000_i354) {
2329		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2330			 netdev->name,
2331			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2332			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2333			   "unknown"),
2334			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2335			  "Width x4" :
2336			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2337			  "Width x2" :
2338			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2339			  "Width x1" : "unknown"), netdev->dev_addr);
2340	}
2341
2342	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2343	if (ret_val)
2344		strcpy(part_str, "Unknown");
2345	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2346	dev_info(&pdev->dev,
2347		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2348		adapter->msix_entries ? "MSI-X" :
2349		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2350		adapter->num_rx_queues, adapter->num_tx_queues);
2351	switch (hw->mac.type) {
2352	case e1000_i350:
2353	case e1000_i210:
2354	case e1000_i211:
2355		igb_set_eee_i350(hw);
2356		break;
2357	case e1000_i354:
2358		if (hw->phy.media_type == e1000_media_type_copper) {
2359			if ((rd32(E1000_CTRL_EXT) &
2360			    E1000_CTRL_EXT_LINK_MODE_SGMII))
2361				igb_set_eee_i354(hw);
2362		}
2363		break;
2364	default:
2365		break;
2366	}
2367
2368	pm_runtime_put_noidle(&pdev->dev);
2369	return 0;
2370
2371err_register:
2372	igb_release_hw_control(adapter);
2373	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2374err_eeprom:
2375	if (!igb_check_reset_block(hw))
2376		igb_reset_phy(hw);
2377
2378	if (hw->flash_address)
2379		iounmap(hw->flash_address);
2380err_sw_init:
2381	igb_clear_interrupt_scheme(adapter);
2382	iounmap(hw->hw_addr);
2383err_ioremap:
2384	free_netdev(netdev);
2385err_alloc_etherdev:
2386	pci_release_selected_regions(pdev,
2387				     pci_select_bars(pdev, IORESOURCE_MEM));
2388err_pci_reg:
2389err_dma:
2390	pci_disable_device(pdev);
2391	return err;
2392}
2393
2394#ifdef CONFIG_PCI_IOV
2395static int  igb_disable_sriov(struct pci_dev *pdev)
2396{
2397	struct net_device *netdev = pci_get_drvdata(pdev);
2398	struct igb_adapter *adapter = netdev_priv(netdev);
2399	struct e1000_hw *hw = &adapter->hw;
2400
2401	/* reclaim resources allocated to VFs */
2402	if (adapter->vf_data) {
2403		/* disable iov and allow time for transactions to clear */
2404		if (pci_vfs_assigned(pdev)) {
2405			dev_warn(&pdev->dev,
2406				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2407			return -EPERM;
2408		} else {
2409			pci_disable_sriov(pdev);
2410			msleep(500);
2411		}
2412
2413		kfree(adapter->vf_data);
2414		adapter->vf_data = NULL;
2415		adapter->vfs_allocated_count = 0;
2416		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2417		wrfl();
2418		msleep(100);
2419		dev_info(&pdev->dev, "IOV Disabled\n");
2420
2421		/* Re-enable DMA Coalescing flag since IOV is turned off */
2422		adapter->flags |= IGB_FLAG_DMAC;
2423	}
2424
2425	return 0;
2426}
2427
2428static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2429{
2430	struct net_device *netdev = pci_get_drvdata(pdev);
2431	struct igb_adapter *adapter = netdev_priv(netdev);
2432	int old_vfs = pci_num_vf(pdev);
2433	int err = 0;
2434	int i;
2435
2436	if (!num_vfs)
2437		goto out;
2438	else if (old_vfs && old_vfs == num_vfs)
2439		goto out;
2440	else if (old_vfs && old_vfs != num_vfs)
2441		err = igb_disable_sriov(pdev);
2442
2443	if (err)
2444		goto out;
2445
2446	if (num_vfs > 7) {
2447		err = -EPERM;
2448		goto out;
2449	}
2450
2451	adapter->vfs_allocated_count = num_vfs;
2452
2453	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2454				sizeof(struct vf_data_storage), GFP_KERNEL);
2455
2456	/* if allocation failed then we do not support SR-IOV */
2457	if (!adapter->vf_data) {
2458		adapter->vfs_allocated_count = 0;
2459		dev_err(&pdev->dev,
2460			"Unable to allocate memory for VF Data Storage\n");
2461		err = -ENOMEM;
2462		goto out;
2463	}
2464
2465	err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2466	if (err)
2467		goto err_out;
2468
2469	dev_info(&pdev->dev, "%d VFs allocated\n",
2470		 adapter->vfs_allocated_count);
2471	for (i = 0; i < adapter->vfs_allocated_count; i++)
2472		igb_vf_configure(adapter, i);
2473
2474	/* DMA Coalescing is not supported in IOV mode. */
2475	adapter->flags &= ~IGB_FLAG_DMAC;
2476	goto out;
2477
2478err_out:
2479	kfree(adapter->vf_data);
2480	adapter->vf_data = NULL;
2481	adapter->vfs_allocated_count = 0;
2482out:
2483	return err;
2484}
2485
2486#endif
2487/**
2488 *  igb_remove_i2c - Cleanup  I2C interface
2489 *  @adapter: pointer to adapter structure
2490 **/
2491static void igb_remove_i2c(struct igb_adapter *adapter)
2492{
2493	/* free the adapter bus structure */
2494	i2c_del_adapter(&adapter->i2c_adap);
2495}
2496
2497/**
2498 *  igb_remove - Device Removal Routine
2499 *  @pdev: PCI device information struct
2500 *
2501 *  igb_remove is called by the PCI subsystem to alert the driver
2502 *  that it should release a PCI device.  The could be caused by a
2503 *  Hot-Plug event, or because the driver is going to be removed from
2504 *  memory.
2505 **/
2506static void igb_remove(struct pci_dev *pdev)
2507{
2508	struct net_device *netdev = pci_get_drvdata(pdev);
2509	struct igb_adapter *adapter = netdev_priv(netdev);
2510	struct e1000_hw *hw = &adapter->hw;
2511
2512	pm_runtime_get_noresume(&pdev->dev);
2513#ifdef CONFIG_IGB_HWMON
2514	igb_sysfs_exit(adapter);
2515#endif
2516	igb_remove_i2c(adapter);
2517	igb_ptp_stop(adapter);
2518	/* The watchdog timer may be rescheduled, so explicitly
2519	 * disable watchdog from being rescheduled.
2520	 */
2521	set_bit(__IGB_DOWN, &adapter->state);
2522	del_timer_sync(&adapter->watchdog_timer);
2523	del_timer_sync(&adapter->phy_info_timer);
2524
2525	cancel_work_sync(&adapter->reset_task);
2526	cancel_work_sync(&adapter->watchdog_task);
2527
2528#ifdef CONFIG_IGB_DCA
2529	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2530		dev_info(&pdev->dev, "DCA disabled\n");
2531		dca_remove_requester(&pdev->dev);
2532		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2533		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2534	}
2535#endif
2536
2537	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2538	 * would have already happened in close and is redundant.
2539	 */
2540	igb_release_hw_control(adapter);
2541
2542	unregister_netdev(netdev);
2543
2544	igb_clear_interrupt_scheme(adapter);
2545
2546#ifdef CONFIG_PCI_IOV
2547	igb_disable_sriov(pdev);
2548#endif
2549
2550	iounmap(hw->hw_addr);
2551	if (hw->flash_address)
2552		iounmap(hw->flash_address);
2553	pci_release_selected_regions(pdev,
2554				     pci_select_bars(pdev, IORESOURCE_MEM));
2555
2556	kfree(adapter->shadow_vfta);
2557	free_netdev(netdev);
2558
2559	pci_disable_pcie_error_reporting(pdev);
2560
2561	pci_disable_device(pdev);
2562}
2563
2564/**
2565 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2566 *  @adapter: board private structure to initialize
2567 *
2568 *  This function initializes the vf specific data storage and then attempts to
2569 *  allocate the VFs.  The reason for ordering it this way is because it is much
2570 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2571 *  the memory for the VFs.
2572 **/
2573static void igb_probe_vfs(struct igb_adapter *adapter)
2574{
2575#ifdef CONFIG_PCI_IOV
2576	struct pci_dev *pdev = adapter->pdev;
2577	struct e1000_hw *hw = &adapter->hw;
2578
2579	/* Virtualization features not supported on i210 family. */
2580	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2581		return;
2582
2583	pci_sriov_set_totalvfs(pdev, 7);
2584	igb_enable_sriov(pdev, max_vfs);
2585
2586#endif /* CONFIG_PCI_IOV */
2587}
2588
2589static void igb_init_queue_configuration(struct igb_adapter *adapter)
2590{
2591	struct e1000_hw *hw = &adapter->hw;
2592	u32 max_rss_queues;
2593
2594	/* Determine the maximum number of RSS queues supported. */
2595	switch (hw->mac.type) {
2596	case e1000_i211:
2597		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2598		break;
2599	case e1000_82575:
2600	case e1000_i210:
2601		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2602		break;
2603	case e1000_i350:
2604		/* I350 cannot do RSS and SR-IOV at the same time */
2605		if (!!adapter->vfs_allocated_count) {
2606			max_rss_queues = 1;
2607			break;
2608		}
2609		/* fall through */
2610	case e1000_82576:
2611		if (!!adapter->vfs_allocated_count) {
2612			max_rss_queues = 2;
2613			break;
2614		}
2615		/* fall through */
2616	case e1000_82580:
2617	case e1000_i354:
2618	default:
2619		max_rss_queues = IGB_MAX_RX_QUEUES;
2620		break;
2621	}
2622
2623	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2624
2625	/* Determine if we need to pair queues. */
2626	switch (hw->mac.type) {
2627	case e1000_82575:
2628	case e1000_i211:
2629		/* Device supports enough interrupts without queue pairing. */
2630		break;
2631	case e1000_82576:
2632		/* If VFs are going to be allocated with RSS queues then we
2633		 * should pair the queues in order to conserve interrupts due
2634		 * to limited supply.
2635		 */
2636		if ((adapter->rss_queues > 1) &&
2637		    (adapter->vfs_allocated_count > 6))
2638			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2639		/* fall through */
2640	case e1000_82580:
2641	case e1000_i350:
2642	case e1000_i354:
2643	case e1000_i210:
2644	default:
2645		/* If rss_queues > half of max_rss_queues, pair the queues in
2646		 * order to conserve interrupts due to limited supply.
2647		 */
2648		if (adapter->rss_queues > (max_rss_queues / 2))
2649			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2650		break;
2651	}
2652}
2653
2654/**
2655 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2656 *  @adapter: board private structure to initialize
2657 *
2658 *  igb_sw_init initializes the Adapter private data structure.
2659 *  Fields are initialized based on PCI device information and
2660 *  OS network device settings (MTU size).
2661 **/
2662static int igb_sw_init(struct igb_adapter *adapter)
2663{
2664	struct e1000_hw *hw = &adapter->hw;
2665	struct net_device *netdev = adapter->netdev;
2666	struct pci_dev *pdev = adapter->pdev;
2667
2668	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2669
2670	/* set default ring sizes */
2671	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2672	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2673
2674	/* set default ITR values */
2675	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2676	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2677
2678	/* set default work limits */
2679	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2680
2681	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2682				  VLAN_HLEN;
2683	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2684
2685	spin_lock_init(&adapter->stats64_lock);
2686#ifdef CONFIG_PCI_IOV
2687	switch (hw->mac.type) {
2688	case e1000_82576:
2689	case e1000_i350:
2690		if (max_vfs > 7) {
2691			dev_warn(&pdev->dev,
2692				 "Maximum of 7 VFs per PF, using max\n");
2693			max_vfs = adapter->vfs_allocated_count = 7;
2694		} else
2695			adapter->vfs_allocated_count = max_vfs;
2696		if (adapter->vfs_allocated_count)
2697			dev_warn(&pdev->dev,
2698				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2699		break;
2700	default:
2701		break;
2702	}
2703#endif /* CONFIG_PCI_IOV */
2704
2705	igb_init_queue_configuration(adapter);
2706
2707	/* Setup and initialize a copy of the hw vlan table array */
2708	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2709				       GFP_ATOMIC);
2710
2711	/* This call may decrease the number of queues */
2712	if (igb_init_interrupt_scheme(adapter, true)) {
2713		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2714		return -ENOMEM;
2715	}
2716
2717	igb_probe_vfs(adapter);
2718
2719	/* Explicitly disable IRQ since the NIC can be in any state. */
2720	igb_irq_disable(adapter);
2721
2722	if (hw->mac.type >= e1000_i350)
2723		adapter->flags &= ~IGB_FLAG_DMAC;
2724
2725	set_bit(__IGB_DOWN, &adapter->state);
2726	return 0;
2727}
2728
2729/**
2730 *  igb_open - Called when a network interface is made active
2731 *  @netdev: network interface device structure
2732 *
2733 *  Returns 0 on success, negative value on failure
2734 *
2735 *  The open entry point is called when a network interface is made
2736 *  active by the system (IFF_UP).  At this point all resources needed
2737 *  for transmit and receive operations are allocated, the interrupt
2738 *  handler is registered with the OS, the watchdog timer is started,
2739 *  and the stack is notified that the interface is ready.
2740 **/
2741static int __igb_open(struct net_device *netdev, bool resuming)
2742{
2743	struct igb_adapter *adapter = netdev_priv(netdev);
2744	struct e1000_hw *hw = &adapter->hw;
2745	struct pci_dev *pdev = adapter->pdev;
2746	int err;
2747	int i;
2748
2749	/* disallow open during test */
2750	if (test_bit(__IGB_TESTING, &adapter->state)) {
2751		WARN_ON(resuming);
2752		return -EBUSY;
2753	}
2754
2755	if (!resuming)
2756		pm_runtime_get_sync(&pdev->dev);
2757
2758	netif_carrier_off(netdev);
2759
2760	/* allocate transmit descriptors */
2761	err = igb_setup_all_tx_resources(adapter);
2762	if (err)
2763		goto err_setup_tx;
2764
2765	/* allocate receive descriptors */
2766	err = igb_setup_all_rx_resources(adapter);
2767	if (err)
2768		goto err_setup_rx;
2769
2770	igb_power_up_link(adapter);
2771
2772	/* before we allocate an interrupt, we must be ready to handle it.
2773	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2774	 * as soon as we call pci_request_irq, so we have to setup our
2775	 * clean_rx handler before we do so.
2776	 */
2777	igb_configure(adapter);
2778
2779	err = igb_request_irq(adapter);
2780	if (err)
2781		goto err_req_irq;
2782
2783	/* Notify the stack of the actual queue counts. */
2784	err = netif_set_real_num_tx_queues(adapter->netdev,
2785					   adapter->num_tx_queues);
2786	if (err)
2787		goto err_set_queues;
2788
2789	err = netif_set_real_num_rx_queues(adapter->netdev,
2790					   adapter->num_rx_queues);
2791	if (err)
2792		goto err_set_queues;
2793
2794	/* From here on the code is the same as igb_up() */
2795	clear_bit(__IGB_DOWN, &adapter->state);
2796
2797	for (i = 0; i < adapter->num_q_vectors; i++)
2798		napi_enable(&(adapter->q_vector[i]->napi));
2799
2800	/* Clear any pending interrupts. */
2801	rd32(E1000_ICR);
2802
2803	igb_irq_enable(adapter);
2804
2805	/* notify VFs that reset has been completed */
2806	if (adapter->vfs_allocated_count) {
2807		u32 reg_data = rd32(E1000_CTRL_EXT);
2808		reg_data |= E1000_CTRL_EXT_PFRSTD;
2809		wr32(E1000_CTRL_EXT, reg_data);
2810	}
2811
2812	netif_tx_start_all_queues(netdev);
2813
2814	if (!resuming)
2815		pm_runtime_put(&pdev->dev);
2816
2817	/* start the watchdog. */
2818	hw->mac.get_link_status = 1;
2819	schedule_work(&adapter->watchdog_task);
2820
2821	return 0;
2822
2823err_set_queues:
2824	igb_free_irq(adapter);
2825err_req_irq:
2826	igb_release_hw_control(adapter);
2827	igb_power_down_link(adapter);
2828	igb_free_all_rx_resources(adapter);
2829err_setup_rx:
2830	igb_free_all_tx_resources(adapter);
2831err_setup_tx:
2832	igb_reset(adapter);
2833	if (!resuming)
2834		pm_runtime_put(&pdev->dev);
2835
2836	return err;
2837}
2838
2839static int igb_open(struct net_device *netdev)
2840{
2841	return __igb_open(netdev, false);
2842}
2843
2844/**
2845 *  igb_close - Disables a network interface
2846 *  @netdev: network interface device structure
2847 *
2848 *  Returns 0, this is not allowed to fail
2849 *
2850 *  The close entry point is called when an interface is de-activated
2851 *  by the OS.  The hardware is still under the driver's control, but
2852 *  needs to be disabled.  A global MAC reset is issued to stop the
2853 *  hardware, and all transmit and receive resources are freed.
2854 **/
2855static int __igb_close(struct net_device *netdev, bool suspending)
2856{
2857	struct igb_adapter *adapter = netdev_priv(netdev);
2858	struct pci_dev *pdev = adapter->pdev;
2859
2860	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2861
2862	if (!suspending)
2863		pm_runtime_get_sync(&pdev->dev);
2864
2865	igb_down(adapter);
2866	igb_free_irq(adapter);
2867
2868	igb_free_all_tx_resources(adapter);
2869	igb_free_all_rx_resources(adapter);
2870
2871	if (!suspending)
2872		pm_runtime_put_sync(&pdev->dev);
2873	return 0;
2874}
2875
2876static int igb_close(struct net_device *netdev)
2877{
2878	return __igb_close(netdev, false);
2879}
2880
2881/**
2882 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
2883 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
2884 *
2885 *  Return 0 on success, negative on failure
2886 **/
2887int igb_setup_tx_resources(struct igb_ring *tx_ring)
2888{
2889	struct device *dev = tx_ring->dev;
2890	int size;
2891
2892	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2893
2894	tx_ring->tx_buffer_info = vzalloc(size);
2895	if (!tx_ring->tx_buffer_info)
2896		goto err;
2897
2898	/* round up to nearest 4K */
2899	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2900	tx_ring->size = ALIGN(tx_ring->size, 4096);
2901
2902	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2903					   &tx_ring->dma, GFP_KERNEL);
2904	if (!tx_ring->desc)
2905		goto err;
2906
2907	tx_ring->next_to_use = 0;
2908	tx_ring->next_to_clean = 0;
2909
2910	return 0;
2911
2912err:
2913	vfree(tx_ring->tx_buffer_info);
2914	tx_ring->tx_buffer_info = NULL;
2915	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2916	return -ENOMEM;
2917}
2918
2919/**
2920 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
2921 *				 (Descriptors) for all queues
2922 *  @adapter: board private structure
2923 *
2924 *  Return 0 on success, negative on failure
2925 **/
2926static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2927{
2928	struct pci_dev *pdev = adapter->pdev;
2929	int i, err = 0;
2930
2931	for (i = 0; i < adapter->num_tx_queues; i++) {
2932		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2933		if (err) {
2934			dev_err(&pdev->dev,
2935				"Allocation for Tx Queue %u failed\n", i);
2936			for (i--; i >= 0; i--)
2937				igb_free_tx_resources(adapter->tx_ring[i]);
2938			break;
2939		}
2940	}
2941
2942	return err;
2943}
2944
2945/**
2946 *  igb_setup_tctl - configure the transmit control registers
2947 *  @adapter: Board private structure
2948 **/
2949void igb_setup_tctl(struct igb_adapter *adapter)
2950{
2951	struct e1000_hw *hw = &adapter->hw;
2952	u32 tctl;
2953
2954	/* disable queue 0 which is enabled by default on 82575 and 82576 */
2955	wr32(E1000_TXDCTL(0), 0);
2956
2957	/* Program the Transmit Control Register */
2958	tctl = rd32(E1000_TCTL);
2959	tctl &= ~E1000_TCTL_CT;
2960	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2961		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2962
2963	igb_config_collision_dist(hw);
2964
2965	/* Enable transmits */
2966	tctl |= E1000_TCTL_EN;
2967
2968	wr32(E1000_TCTL, tctl);
2969}
2970
2971/**
2972 *  igb_configure_tx_ring - Configure transmit ring after Reset
2973 *  @adapter: board private structure
2974 *  @ring: tx ring to configure
2975 *
2976 *  Configure a transmit ring after a reset.
2977 **/
2978void igb_configure_tx_ring(struct igb_adapter *adapter,
2979                           struct igb_ring *ring)
2980{
2981	struct e1000_hw *hw = &adapter->hw;
2982	u32 txdctl = 0;
2983	u64 tdba = ring->dma;
2984	int reg_idx = ring->reg_idx;
2985
2986	/* disable the queue */
2987	wr32(E1000_TXDCTL(reg_idx), 0);
2988	wrfl();
2989	mdelay(10);
2990
2991	wr32(E1000_TDLEN(reg_idx),
2992	     ring->count * sizeof(union e1000_adv_tx_desc));
2993	wr32(E1000_TDBAL(reg_idx),
2994	     tdba & 0x00000000ffffffffULL);
2995	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2996
2997	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2998	wr32(E1000_TDH(reg_idx), 0);
2999	writel(0, ring->tail);
3000
3001	txdctl |= IGB_TX_PTHRESH;
3002	txdctl |= IGB_TX_HTHRESH << 8;
3003	txdctl |= IGB_TX_WTHRESH << 16;
3004
3005	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3006	wr32(E1000_TXDCTL(reg_idx), txdctl);
3007}
3008
3009/**
3010 *  igb_configure_tx - Configure transmit Unit after Reset
3011 *  @adapter: board private structure
3012 *
3013 *  Configure the Tx unit of the MAC after a reset.
3014 **/
3015static void igb_configure_tx(struct igb_adapter *adapter)
3016{
3017	int i;
3018
3019	for (i = 0; i < adapter->num_tx_queues; i++)
3020		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3021}
3022
3023/**
3024 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3025 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3026 *
3027 *  Returns 0 on success, negative on failure
3028 **/
3029int igb_setup_rx_resources(struct igb_ring *rx_ring)
3030{
3031	struct device *dev = rx_ring->dev;
3032	int size;
3033
3034	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3035
3036	rx_ring->rx_buffer_info = vzalloc(size);
3037	if (!rx_ring->rx_buffer_info)
3038		goto err;
3039
3040	/* Round up to nearest 4K */
3041	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3042	rx_ring->size = ALIGN(rx_ring->size, 4096);
3043
3044	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3045					   &rx_ring->dma, GFP_KERNEL);
3046	if (!rx_ring->desc)
3047		goto err;
3048
3049	rx_ring->next_to_alloc = 0;
3050	rx_ring->next_to_clean = 0;
3051	rx_ring->next_to_use = 0;
3052
3053	return 0;
3054
3055err:
3056	vfree(rx_ring->rx_buffer_info);
3057	rx_ring->rx_buffer_info = NULL;
3058	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3059	return -ENOMEM;
3060}
3061
3062/**
3063 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3064 *				 (Descriptors) for all queues
3065 *  @adapter: board private structure
3066 *
3067 *  Return 0 on success, negative on failure
3068 **/
3069static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3070{
3071	struct pci_dev *pdev = adapter->pdev;
3072	int i, err = 0;
3073
3074	for (i = 0; i < adapter->num_rx_queues; i++) {
3075		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3076		if (err) {
3077			dev_err(&pdev->dev,
3078				"Allocation for Rx Queue %u failed\n", i);
3079			for (i--; i >= 0; i--)
3080				igb_free_rx_resources(adapter->rx_ring[i]);
3081			break;
3082		}
3083	}
3084
3085	return err;
3086}
3087
3088/**
3089 *  igb_setup_mrqc - configure the multiple receive queue control registers
3090 *  @adapter: Board private structure
3091 **/
3092static void igb_setup_mrqc(struct igb_adapter *adapter)
3093{
3094	struct e1000_hw *hw = &adapter->hw;
3095	u32 mrqc, rxcsum;
3096	u32 j, num_rx_queues, shift = 0;
3097	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3098					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3099					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3100					0xFA01ACBE };
3101
3102	/* Fill out hash function seeds */
3103	for (j = 0; j < 10; j++)
3104		wr32(E1000_RSSRK(j), rsskey[j]);
3105
3106	num_rx_queues = adapter->rss_queues;
3107
3108	switch (hw->mac.type) {
3109	case e1000_82575:
3110		shift = 6;
3111		break;
3112	case e1000_82576:
3113		/* 82576 supports 2 RSS queues for SR-IOV */
3114		if (adapter->vfs_allocated_count) {
3115			shift = 3;
3116			num_rx_queues = 2;
3117		}
3118		break;
3119	default:
3120		break;
3121	}
3122
3123	/* Populate the indirection table 4 entries at a time.  To do this
3124	 * we are generating the results for n and n+2 and then interleaving
3125	 * those with the results with n+1 and n+3.
3126	 */
3127	for (j = 0; j < 32; j++) {
3128		/* first pass generates n and n+2 */
3129		u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
3130		u32 reta = (base & 0x07800780) >> (7 - shift);
3131
3132		/* second pass generates n+1 and n+3 */
3133		base += 0x00010001 * num_rx_queues;
3134		reta |= (base & 0x07800780) << (1 + shift);
3135
3136		wr32(E1000_RETA(j), reta);
3137	}
3138
3139	/* Disable raw packet checksumming so that RSS hash is placed in
3140	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3141	 * offloads as they are enabled by default
3142	 */
3143	rxcsum = rd32(E1000_RXCSUM);
3144	rxcsum |= E1000_RXCSUM_PCSD;
3145
3146	if (adapter->hw.mac.type >= e1000_82576)
3147		/* Enable Receive Checksum Offload for SCTP */
3148		rxcsum |= E1000_RXCSUM_CRCOFL;
3149
3150	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3151	wr32(E1000_RXCSUM, rxcsum);
3152
3153	/* Generate RSS hash based on packet types, TCP/UDP
3154	 * port numbers and/or IPv4/v6 src and dst addresses
3155	 */
3156	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3157	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3158	       E1000_MRQC_RSS_FIELD_IPV6 |
3159	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3160	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3161
3162	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3163		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3164	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3165		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3166
3167	/* If VMDq is enabled then we set the appropriate mode for that, else
3168	 * we default to RSS so that an RSS hash is calculated per packet even
3169	 * if we are only using one queue
3170	 */
3171	if (adapter->vfs_allocated_count) {
3172		if (hw->mac.type > e1000_82575) {
3173			/* Set the default pool for the PF's first queue */
3174			u32 vtctl = rd32(E1000_VT_CTL);
3175			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3176				   E1000_VT_CTL_DISABLE_DEF_POOL);
3177			vtctl |= adapter->vfs_allocated_count <<
3178				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3179			wr32(E1000_VT_CTL, vtctl);
3180		}
3181		if (adapter->rss_queues > 1)
3182			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3183		else
3184			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3185	} else {
3186		if (hw->mac.type != e1000_i211)
3187			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3188	}
3189	igb_vmm_control(adapter);
3190
3191	wr32(E1000_MRQC, mrqc);
3192}
3193
3194/**
3195 *  igb_setup_rctl - configure the receive control registers
3196 *  @adapter: Board private structure
3197 **/
3198void igb_setup_rctl(struct igb_adapter *adapter)
3199{
3200	struct e1000_hw *hw = &adapter->hw;
3201	u32 rctl;
3202
3203	rctl = rd32(E1000_RCTL);
3204
3205	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3206	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3207
3208	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3209		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3210
3211	/* enable stripping of CRC. It's unlikely this will break BMC
3212	 * redirection as it did with e1000. Newer features require
3213	 * that the HW strips the CRC.
3214	 */
3215	rctl |= E1000_RCTL_SECRC;
3216
3217	/* disable store bad packets and clear size bits. */
3218	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3219
3220	/* enable LPE to prevent packets larger than max_frame_size */
3221	rctl |= E1000_RCTL_LPE;
3222
3223	/* disable queue 0 to prevent tail write w/o re-config */
3224	wr32(E1000_RXDCTL(0), 0);
3225
3226	/* Attention!!!  For SR-IOV PF driver operations you must enable
3227	 * queue drop for all VF and PF queues to prevent head of line blocking
3228	 * if an un-trusted VF does not provide descriptors to hardware.
3229	 */
3230	if (adapter->vfs_allocated_count) {
3231		/* set all queue drop enable bits */
3232		wr32(E1000_QDE, ALL_QUEUES);
3233	}
3234
3235	/* This is useful for sniffing bad packets. */
3236	if (adapter->netdev->features & NETIF_F_RXALL) {
3237		/* UPE and MPE will be handled by normal PROMISC logic
3238		 * in e1000e_set_rx_mode
3239		 */
3240		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3241			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3242			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3243
3244		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3245			  E1000_RCTL_DPF | /* Allow filtered pause */
3246			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3247		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3248		 * and that breaks VLANs.
3249		 */
3250	}
3251
3252	wr32(E1000_RCTL, rctl);
3253}
3254
3255static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3256                                   int vfn)
3257{
3258	struct e1000_hw *hw = &adapter->hw;
3259	u32 vmolr;
3260
3261	/* if it isn't the PF check to see if VFs are enabled and
3262	 * increase the size to support vlan tags
3263	 */
3264	if (vfn < adapter->vfs_allocated_count &&
3265	    adapter->vf_data[vfn].vlans_enabled)
3266		size += VLAN_TAG_SIZE;
3267
3268	vmolr = rd32(E1000_VMOLR(vfn));
3269	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3270	vmolr |= size | E1000_VMOLR_LPE;
3271	wr32(E1000_VMOLR(vfn), vmolr);
3272
3273	return 0;
3274}
3275
3276/**
3277 *  igb_rlpml_set - set maximum receive packet size
3278 *  @adapter: board private structure
3279 *
3280 *  Configure maximum receivable packet size.
3281 **/
3282static void igb_rlpml_set(struct igb_adapter *adapter)
3283{
3284	u32 max_frame_size = adapter->max_frame_size;
3285	struct e1000_hw *hw = &adapter->hw;
3286	u16 pf_id = adapter->vfs_allocated_count;
3287
3288	if (pf_id) {
3289		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3290		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3291		 * to our max jumbo frame size, in case we need to enable
3292		 * jumbo frames on one of the rings later.
3293		 * This will not pass over-length frames into the default
3294		 * queue because it's gated by the VMOLR.RLPML.
3295		 */
3296		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3297	}
3298
3299	wr32(E1000_RLPML, max_frame_size);
3300}
3301
3302static inline void igb_set_vmolr(struct igb_adapter *adapter,
3303				 int vfn, bool aupe)
3304{
3305	struct e1000_hw *hw = &adapter->hw;
3306	u32 vmolr;
3307
3308	/* This register exists only on 82576 and newer so if we are older then
3309	 * we should exit and do nothing
3310	 */
3311	if (hw->mac.type < e1000_82576)
3312		return;
3313
3314	vmolr = rd32(E1000_VMOLR(vfn));
3315	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3316	if (aupe)
3317		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3318	else
3319		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3320
3321	/* clear all bits that might not be set */
3322	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3323
3324	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3325		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3326	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3327	 * multicast packets
3328	 */
3329	if (vfn <= adapter->vfs_allocated_count)
3330		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3331
3332	wr32(E1000_VMOLR(vfn), vmolr);
3333}
3334
3335/**
3336 *  igb_configure_rx_ring - Configure a receive ring after Reset
3337 *  @adapter: board private structure
3338 *  @ring: receive ring to be configured
3339 *
3340 *  Configure the Rx unit of the MAC after a reset.
3341 **/
3342void igb_configure_rx_ring(struct igb_adapter *adapter,
3343			   struct igb_ring *ring)
3344{
3345	struct e1000_hw *hw = &adapter->hw;
3346	u64 rdba = ring->dma;
3347	int reg_idx = ring->reg_idx;
3348	u32 srrctl = 0, rxdctl = 0;
3349
3350	/* disable the queue */
3351	wr32(E1000_RXDCTL(reg_idx), 0);
3352
3353	/* Set DMA base address registers */
3354	wr32(E1000_RDBAL(reg_idx),
3355	     rdba & 0x00000000ffffffffULL);
3356	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3357	wr32(E1000_RDLEN(reg_idx),
3358	     ring->count * sizeof(union e1000_adv_rx_desc));
3359
3360	/* initialize head and tail */
3361	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3362	wr32(E1000_RDH(reg_idx), 0);
3363	writel(0, ring->tail);
3364
3365	/* set descriptor configuration */
3366	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3367	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3368	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3369	if (hw->mac.type >= e1000_82580)
3370		srrctl |= E1000_SRRCTL_TIMESTAMP;
3371	/* Only set Drop Enable if we are supporting multiple queues */
3372	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3373		srrctl |= E1000_SRRCTL_DROP_EN;
3374
3375	wr32(E1000_SRRCTL(reg_idx), srrctl);
3376
3377	/* set filtering for VMDQ pools */
3378	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3379
3380	rxdctl |= IGB_RX_PTHRESH;
3381	rxdctl |= IGB_RX_HTHRESH << 8;
3382	rxdctl |= IGB_RX_WTHRESH << 16;
3383
3384	/* enable receive descriptor fetching */
3385	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3386	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3387}
3388
3389/**
3390 *  igb_configure_rx - Configure receive Unit after Reset
3391 *  @adapter: board private structure
3392 *
3393 *  Configure the Rx unit of the MAC after a reset.
3394 **/
3395static void igb_configure_rx(struct igb_adapter *adapter)
3396{
3397	int i;
3398
3399	/* set UTA to appropriate mode */
3400	igb_set_uta(adapter);
3401
3402	/* set the correct pool for the PF default MAC address in entry 0 */
3403	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3404			 adapter->vfs_allocated_count);
3405
3406	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3407	 * the Base and Length of the Rx Descriptor Ring
3408	 */
3409	for (i = 0; i < adapter->num_rx_queues; i++)
3410		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3411}
3412
3413/**
3414 *  igb_free_tx_resources - Free Tx Resources per Queue
3415 *  @tx_ring: Tx descriptor ring for a specific queue
3416 *
3417 *  Free all transmit software resources
3418 **/
3419void igb_free_tx_resources(struct igb_ring *tx_ring)
3420{
3421	igb_clean_tx_ring(tx_ring);
3422
3423	vfree(tx_ring->tx_buffer_info);
3424	tx_ring->tx_buffer_info = NULL;
3425
3426	/* if not set, then don't free */
3427	if (!tx_ring->desc)
3428		return;
3429
3430	dma_free_coherent(tx_ring->dev, tx_ring->size,
3431			  tx_ring->desc, tx_ring->dma);
3432
3433	tx_ring->desc = NULL;
3434}
3435
3436/**
3437 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3438 *  @adapter: board private structure
3439 *
3440 *  Free all transmit software resources
3441 **/
3442static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3443{
3444	int i;
3445
3446	for (i = 0; i < adapter->num_tx_queues; i++)
3447		igb_free_tx_resources(adapter->tx_ring[i]);
3448}
3449
3450void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3451				    struct igb_tx_buffer *tx_buffer)
3452{
3453	if (tx_buffer->skb) {
3454		dev_kfree_skb_any(tx_buffer->skb);
3455		if (dma_unmap_len(tx_buffer, len))
3456			dma_unmap_single(ring->dev,
3457					 dma_unmap_addr(tx_buffer, dma),
3458					 dma_unmap_len(tx_buffer, len),
3459					 DMA_TO_DEVICE);
3460	} else if (dma_unmap_len(tx_buffer, len)) {
3461		dma_unmap_page(ring->dev,
3462			       dma_unmap_addr(tx_buffer, dma),
3463			       dma_unmap_len(tx_buffer, len),
3464			       DMA_TO_DEVICE);
3465	}
3466	tx_buffer->next_to_watch = NULL;
3467	tx_buffer->skb = NULL;
3468	dma_unmap_len_set(tx_buffer, len, 0);
3469	/* buffer_info must be completely set up in the transmit path */
3470}
3471
3472/**
3473 *  igb_clean_tx_ring - Free Tx Buffers
3474 *  @tx_ring: ring to be cleaned
3475 **/
3476static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3477{
3478	struct igb_tx_buffer *buffer_info;
3479	unsigned long size;
3480	u16 i;
3481
3482	if (!tx_ring->tx_buffer_info)
3483		return;
3484	/* Free all the Tx ring sk_buffs */
3485
3486	for (i = 0; i < tx_ring->count; i++) {
3487		buffer_info = &tx_ring->tx_buffer_info[i];
3488		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3489	}
3490
3491	netdev_tx_reset_queue(txring_txq(tx_ring));
3492
3493	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3494	memset(tx_ring->tx_buffer_info, 0, size);
3495
3496	/* Zero out the descriptor ring */
3497	memset(tx_ring->desc, 0, tx_ring->size);
3498
3499	tx_ring->next_to_use = 0;
3500	tx_ring->next_to_clean = 0;
3501}
3502
3503/**
3504 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3505 *  @adapter: board private structure
3506 **/
3507static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3508{
3509	int i;
3510
3511	for (i = 0; i < adapter->num_tx_queues; i++)
3512		igb_clean_tx_ring(adapter->tx_ring[i]);
3513}
3514
3515/**
3516 *  igb_free_rx_resources - Free Rx Resources
3517 *  @rx_ring: ring to clean the resources from
3518 *
3519 *  Free all receive software resources
3520 **/
3521void igb_free_rx_resources(struct igb_ring *rx_ring)
3522{
3523	igb_clean_rx_ring(rx_ring);
3524
3525	vfree(rx_ring->rx_buffer_info);
3526	rx_ring->rx_buffer_info = NULL;
3527
3528	/* if not set, then don't free */
3529	if (!rx_ring->desc)
3530		return;
3531
3532	dma_free_coherent(rx_ring->dev, rx_ring->size,
3533			  rx_ring->desc, rx_ring->dma);
3534
3535	rx_ring->desc = NULL;
3536}
3537
3538/**
3539 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3540 *  @adapter: board private structure
3541 *
3542 *  Free all receive software resources
3543 **/
3544static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3545{
3546	int i;
3547
3548	for (i = 0; i < adapter->num_rx_queues; i++)
3549		igb_free_rx_resources(adapter->rx_ring[i]);
3550}
3551
3552/**
3553 *  igb_clean_rx_ring - Free Rx Buffers per Queue
3554 *  @rx_ring: ring to free buffers from
3555 **/
3556static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3557{
3558	unsigned long size;
3559	u16 i;
3560
3561	if (rx_ring->skb)
3562		dev_kfree_skb(rx_ring->skb);
3563	rx_ring->skb = NULL;
3564
3565	if (!rx_ring->rx_buffer_info)
3566		return;
3567
3568	/* Free all the Rx ring sk_buffs */
3569	for (i = 0; i < rx_ring->count; i++) {
3570		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3571
3572		if (!buffer_info->page)
3573			continue;
3574
3575		dma_unmap_page(rx_ring->dev,
3576			       buffer_info->dma,
3577			       PAGE_SIZE,
3578			       DMA_FROM_DEVICE);
3579		__free_page(buffer_info->page);
3580
3581		buffer_info->page = NULL;
3582	}
3583
3584	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3585	memset(rx_ring->rx_buffer_info, 0, size);
3586
3587	/* Zero out the descriptor ring */
3588	memset(rx_ring->desc, 0, rx_ring->size);
3589
3590	rx_ring->next_to_alloc = 0;
3591	rx_ring->next_to_clean = 0;
3592	rx_ring->next_to_use = 0;
3593}
3594
3595/**
3596 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3597 *  @adapter: board private structure
3598 **/
3599static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3600{
3601	int i;
3602
3603	for (i = 0; i < adapter->num_rx_queues; i++)
3604		igb_clean_rx_ring(adapter->rx_ring[i]);
3605}
3606
3607/**
3608 *  igb_set_mac - Change the Ethernet Address of the NIC
3609 *  @netdev: network interface device structure
3610 *  @p: pointer to an address structure
3611 *
3612 *  Returns 0 on success, negative on failure
3613 **/
3614static int igb_set_mac(struct net_device *netdev, void *p)
3615{
3616	struct igb_adapter *adapter = netdev_priv(netdev);
3617	struct e1000_hw *hw = &adapter->hw;
3618	struct sockaddr *addr = p;
3619
3620	if (!is_valid_ether_addr(addr->sa_data))
3621		return -EADDRNOTAVAIL;
3622
3623	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3624	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3625
3626	/* set the correct pool for the new PF MAC address in entry 0 */
3627	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3628			 adapter->vfs_allocated_count);
3629
3630	return 0;
3631}
3632
3633/**
3634 *  igb_write_mc_addr_list - write multicast addresses to MTA
3635 *  @netdev: network interface device structure
3636 *
3637 *  Writes multicast address list to the MTA hash table.
3638 *  Returns: -ENOMEM on failure
3639 *           0 on no addresses written
3640 *           X on writing X addresses to MTA
3641 **/
3642static int igb_write_mc_addr_list(struct net_device *netdev)
3643{
3644	struct igb_adapter *adapter = netdev_priv(netdev);
3645	struct e1000_hw *hw = &adapter->hw;
3646	struct netdev_hw_addr *ha;
3647	u8  *mta_list;
3648	int i;
3649
3650	if (netdev_mc_empty(netdev)) {
3651		/* nothing to program, so clear mc list */
3652		igb_update_mc_addr_list(hw, NULL, 0);
3653		igb_restore_vf_multicasts(adapter);
3654		return 0;
3655	}
3656
3657	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3658	if (!mta_list)
3659		return -ENOMEM;
3660
3661	/* The shared function expects a packed array of only addresses. */
3662	i = 0;
3663	netdev_for_each_mc_addr(ha, netdev)
3664		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3665
3666	igb_update_mc_addr_list(hw, mta_list, i);
3667	kfree(mta_list);
3668
3669	return netdev_mc_count(netdev);
3670}
3671
3672/**
3673 *  igb_write_uc_addr_list - write unicast addresses to RAR table
3674 *  @netdev: network interface device structure
3675 *
3676 *  Writes unicast address list to the RAR table.
3677 *  Returns: -ENOMEM on failure/insufficient address space
3678 *           0 on no addresses written
3679 *           X on writing X addresses to the RAR table
3680 **/
3681static int igb_write_uc_addr_list(struct net_device *netdev)
3682{
3683	struct igb_adapter *adapter = netdev_priv(netdev);
3684	struct e1000_hw *hw = &adapter->hw;
3685	unsigned int vfn = adapter->vfs_allocated_count;
3686	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3687	int count = 0;
3688
3689	/* return ENOMEM indicating insufficient memory for addresses */
3690	if (netdev_uc_count(netdev) > rar_entries)
3691		return -ENOMEM;
3692
3693	if (!netdev_uc_empty(netdev) && rar_entries) {
3694		struct netdev_hw_addr *ha;
3695
3696		netdev_for_each_uc_addr(ha, netdev) {
3697			if (!rar_entries)
3698				break;
3699			igb_rar_set_qsel(adapter, ha->addr,
3700					 rar_entries--,
3701					 vfn);
3702			count++;
3703		}
3704	}
3705	/* write the addresses in reverse order to avoid write combining */
3706	for (; rar_entries > 0 ; rar_entries--) {
3707		wr32(E1000_RAH(rar_entries), 0);
3708		wr32(E1000_RAL(rar_entries), 0);
3709	}
3710	wrfl();
3711
3712	return count;
3713}
3714
3715/**
3716 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3717 *  @netdev: network interface device structure
3718 *
3719 *  The set_rx_mode entry point is called whenever the unicast or multicast
3720 *  address lists or the network interface flags are updated.  This routine is
3721 *  responsible for configuring the hardware for proper unicast, multicast,
3722 *  promiscuous mode, and all-multi behavior.
3723 **/
3724static void igb_set_rx_mode(struct net_device *netdev)
3725{
3726	struct igb_adapter *adapter = netdev_priv(netdev);
3727	struct e1000_hw *hw = &adapter->hw;
3728	unsigned int vfn = adapter->vfs_allocated_count;
3729	u32 rctl, vmolr = 0;
3730	int count;
3731
3732	/* Check for Promiscuous and All Multicast modes */
3733	rctl = rd32(E1000_RCTL);
3734
3735	/* clear the effected bits */
3736	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3737
3738	if (netdev->flags & IFF_PROMISC) {
3739		u32 mrqc = rd32(E1000_MRQC);
3740		/* retain VLAN HW filtering if in VT mode */
3741		if (mrqc & E1000_MRQC_ENABLE_VMDQ)
3742			rctl |= E1000_RCTL_VFE;
3743		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3744		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3745	} else {
3746		if (netdev->flags & IFF_ALLMULTI) {
3747			rctl |= E1000_RCTL_MPE;
3748			vmolr |= E1000_VMOLR_MPME;
3749		} else {
3750			/* Write addresses to the MTA, if the attempt fails
3751			 * then we should just turn on promiscuous mode so
3752			 * that we can at least receive multicast traffic
3753			 */
3754			count = igb_write_mc_addr_list(netdev);
3755			if (count < 0) {
3756				rctl |= E1000_RCTL_MPE;
3757				vmolr |= E1000_VMOLR_MPME;
3758			} else if (count) {
3759				vmolr |= E1000_VMOLR_ROMPE;
3760			}
3761		}
3762		/* Write addresses to available RAR registers, if there is not
3763		 * sufficient space to store all the addresses then enable
3764		 * unicast promiscuous mode
3765		 */
3766		count = igb_write_uc_addr_list(netdev);
3767		if (count < 0) {
3768			rctl |= E1000_RCTL_UPE;
3769			vmolr |= E1000_VMOLR_ROPE;
3770		}
3771		rctl |= E1000_RCTL_VFE;
3772	}
3773	wr32(E1000_RCTL, rctl);
3774
3775	/* In order to support SR-IOV and eventually VMDq it is necessary to set
3776	 * the VMOLR to enable the appropriate modes.  Without this workaround
3777	 * we will have issues with VLAN tag stripping not being done for frames
3778	 * that are only arriving because we are the default pool
3779	 */
3780	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3781		return;
3782
3783	vmolr |= rd32(E1000_VMOLR(vfn)) &
3784		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3785	wr32(E1000_VMOLR(vfn), vmolr);
3786	igb_restore_vf_multicasts(adapter);
3787}
3788
3789static void igb_check_wvbr(struct igb_adapter *adapter)
3790{
3791	struct e1000_hw *hw = &adapter->hw;
3792	u32 wvbr = 0;
3793
3794	switch (hw->mac.type) {
3795	case e1000_82576:
3796	case e1000_i350:
3797		if (!(wvbr = rd32(E1000_WVBR)))
3798			return;
3799		break;
3800	default:
3801		break;
3802	}
3803
3804	adapter->wvbr |= wvbr;
3805}
3806
3807#define IGB_STAGGERED_QUEUE_OFFSET 8
3808
3809static void igb_spoof_check(struct igb_adapter *adapter)
3810{
3811	int j;
3812
3813	if (!adapter->wvbr)
3814		return;
3815
3816	for(j = 0; j < adapter->vfs_allocated_count; j++) {
3817		if (adapter->wvbr & (1 << j) ||
3818		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3819			dev_warn(&adapter->pdev->dev,
3820				"Spoof event(s) detected on VF %d\n", j);
3821			adapter->wvbr &=
3822				~((1 << j) |
3823				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3824		}
3825	}
3826}
3827
3828/* Need to wait a few seconds after link up to get diagnostic information from
3829 * the phy
3830 */
3831static void igb_update_phy_info(unsigned long data)
3832{
3833	struct igb_adapter *adapter = (struct igb_adapter *) data;
3834	igb_get_phy_info(&adapter->hw);
3835}
3836
3837/**
3838 *  igb_has_link - check shared code for link and determine up/down
3839 *  @adapter: pointer to driver private info
3840 **/
3841bool igb_has_link(struct igb_adapter *adapter)
3842{
3843	struct e1000_hw *hw = &adapter->hw;
3844	bool link_active = false;
3845	s32 ret_val = 0;
3846
3847	/* get_link_status is set on LSC (link status) interrupt or
3848	 * rx sequence error interrupt.  get_link_status will stay
3849	 * false until the e1000_check_for_link establishes link
3850	 * for copper adapters ONLY
3851	 */
3852	switch (hw->phy.media_type) {
3853	case e1000_media_type_copper:
3854		if (hw->mac.get_link_status) {
3855			ret_val = hw->mac.ops.check_for_link(hw);
3856			link_active = !hw->mac.get_link_status;
3857		} else {
3858			link_active = true;
3859		}
3860		break;
3861	case e1000_media_type_internal_serdes:
3862		ret_val = hw->mac.ops.check_for_link(hw);
3863		link_active = hw->mac.serdes_has_link;
3864		break;
3865	default:
3866	case e1000_media_type_unknown:
3867		break;
3868	}
3869
3870	return link_active;
3871}
3872
3873static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3874{
3875	bool ret = false;
3876	u32 ctrl_ext, thstat;
3877
3878	/* check for thermal sensor event on i350 copper only */
3879	if (hw->mac.type == e1000_i350) {
3880		thstat = rd32(E1000_THSTAT);
3881		ctrl_ext = rd32(E1000_CTRL_EXT);
3882
3883		if ((hw->phy.media_type == e1000_media_type_copper) &&
3884		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
3885			ret = !!(thstat & event);
3886	}
3887
3888	return ret;
3889}
3890
3891/**
3892 *  igb_watchdog - Timer Call-back
3893 *  @data: pointer to adapter cast into an unsigned long
3894 **/
3895static void igb_watchdog(unsigned long data)
3896{
3897	struct igb_adapter *adapter = (struct igb_adapter *)data;
3898	/* Do the rest outside of interrupt context */
3899	schedule_work(&adapter->watchdog_task);
3900}
3901
3902static void igb_watchdog_task(struct work_struct *work)
3903{
3904	struct igb_adapter *adapter = container_of(work,
3905						   struct igb_adapter,
3906						   watchdog_task);
3907	struct e1000_hw *hw = &adapter->hw;
3908	struct e1000_phy_info *phy = &hw->phy;
3909	struct net_device *netdev = adapter->netdev;
3910	u32 link;
3911	int i;
3912
3913	link = igb_has_link(adapter);
3914	if (link) {
3915		/* Cancel scheduled suspend requests. */
3916		pm_runtime_resume(netdev->dev.parent);
3917
3918		if (!netif_carrier_ok(netdev)) {
3919			u32 ctrl;
3920			hw->mac.ops.get_speed_and_duplex(hw,
3921							 &adapter->link_speed,
3922							 &adapter->link_duplex);
3923
3924			ctrl = rd32(E1000_CTRL);
3925			/* Links status message must follow this format */
3926			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3927			       "Duplex, Flow Control: %s\n",
3928			       netdev->name,
3929			       adapter->link_speed,
3930			       adapter->link_duplex == FULL_DUPLEX ?
3931			       "Full" : "Half",
3932			       (ctrl & E1000_CTRL_TFCE) &&
3933			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3934			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
3935			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3936
3937			/* check if SmartSpeed worked */
3938			igb_check_downshift(hw);
3939			if (phy->speed_downgraded)
3940				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
3941
3942			/* check for thermal sensor event */
3943			if (igb_thermal_sensor_event(hw,
3944			    E1000_THSTAT_LINK_THROTTLE)) {
3945				netdev_info(netdev, "The network adapter link "
3946					    "speed was downshifted because it "
3947					    "overheated\n");
3948			}
3949
3950			/* adjust timeout factor according to speed/duplex */
3951			adapter->tx_timeout_factor = 1;
3952			switch (adapter->link_speed) {
3953			case SPEED_10:
3954				adapter->tx_timeout_factor = 14;
3955				break;
3956			case SPEED_100:
3957				/* maybe add some timeout factor ? */
3958				break;
3959			}
3960
3961			netif_carrier_on(netdev);
3962
3963			igb_ping_all_vfs(adapter);
3964			igb_check_vf_rate_limit(adapter);
3965
3966			/* link state has changed, schedule phy info update */
3967			if (!test_bit(__IGB_DOWN, &adapter->state))
3968				mod_timer(&adapter->phy_info_timer,
3969					  round_jiffies(jiffies + 2 * HZ));
3970		}
3971	} else {
3972		if (netif_carrier_ok(netdev)) {
3973			adapter->link_speed = 0;
3974			adapter->link_duplex = 0;
3975
3976			/* check for thermal sensor event */
3977			if (igb_thermal_sensor_event(hw,
3978			    E1000_THSTAT_PWR_DOWN)) {
3979				netdev_err(netdev, "The network adapter was "
3980					   "stopped because it overheated\n");
3981			}
3982
3983			/* Links status message must follow this format */
3984			printk(KERN_INFO "igb: %s NIC Link is Down\n",
3985			       netdev->name);
3986			netif_carrier_off(netdev);
3987
3988			igb_ping_all_vfs(adapter);
3989
3990			/* link state has changed, schedule phy info update */
3991			if (!test_bit(__IGB_DOWN, &adapter->state))
3992				mod_timer(&adapter->phy_info_timer,
3993					  round_jiffies(jiffies + 2 * HZ));
3994
3995			pm_schedule_suspend(netdev->dev.parent,
3996					    MSEC_PER_SEC * 5);
3997		}
3998	}
3999
4000	spin_lock(&adapter->stats64_lock);
4001	igb_update_stats(adapter, &adapter->stats64);
4002	spin_unlock(&adapter->stats64_lock);
4003
4004	for (i = 0; i < adapter->num_tx_queues; i++) {
4005		struct igb_ring *tx_ring = adapter->tx_ring[i];
4006		if (!netif_carrier_ok(netdev)) {
4007			/* We've lost link, so the controller stops DMA,
4008			 * but we've got queued Tx work that's never going
4009			 * to get done, so reset controller to flush Tx.
4010			 * (Do the reset outside of interrupt context).
4011			 */
4012			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4013				adapter->tx_timeout_count++;
4014				schedule_work(&adapter->reset_task);
4015				/* return immediately since reset is imminent */
4016				return;
4017			}
4018		}
4019
4020		/* Force detection of hung controller every watchdog period */
4021		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4022	}
4023
4024	/* Cause software interrupt to ensure Rx ring is cleaned */
4025	if (adapter->msix_entries) {
4026		u32 eics = 0;
4027		for (i = 0; i < adapter->num_q_vectors; i++)
4028			eics |= adapter->q_vector[i]->eims_value;
4029		wr32(E1000_EICS, eics);
4030	} else {
4031		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4032	}
4033
4034	igb_spoof_check(adapter);
4035	igb_ptp_rx_hang(adapter);
4036
4037	/* Reset the timer */
4038	if (!test_bit(__IGB_DOWN, &adapter->state))
4039		mod_timer(&adapter->watchdog_timer,
4040			  round_jiffies(jiffies + 2 * HZ));
4041}
4042
4043enum latency_range {
4044	lowest_latency = 0,
4045	low_latency = 1,
4046	bulk_latency = 2,
4047	latency_invalid = 255
4048};
4049
4050/**
4051 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4052 *  @q_vector: pointer to q_vector
4053 *
4054 *  Stores a new ITR value based on strictly on packet size.  This
4055 *  algorithm is less sophisticated than that used in igb_update_itr,
4056 *  due to the difficulty of synchronizing statistics across multiple
4057 *  receive rings.  The divisors and thresholds used by this function
4058 *  were determined based on theoretical maximum wire speed and testing
4059 *  data, in order to minimize response time while increasing bulk
4060 *  throughput.
4061 *  This functionality is controlled by the InterruptThrottleRate module
4062 *  parameter (see igb_param.c)
4063 *  NOTE:  This function is called only when operating in a multiqueue
4064 *         receive environment.
4065 **/
4066static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4067{
4068	int new_val = q_vector->itr_val;
4069	int avg_wire_size = 0;
4070	struct igb_adapter *adapter = q_vector->adapter;
4071	unsigned int packets;
4072
4073	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4074	 * ints/sec - ITR timer value of 120 ticks.
4075	 */
4076	if (adapter->link_speed != SPEED_1000) {
4077		new_val = IGB_4K_ITR;
4078		goto set_itr_val;
4079	}
4080
4081	packets = q_vector->rx.total_packets;
4082	if (packets)
4083		avg_wire_size = q_vector->rx.total_bytes / packets;
4084
4085	packets = q_vector->tx.total_packets;
4086	if (packets)
4087		avg_wire_size = max_t(u32, avg_wire_size,
4088				      q_vector->tx.total_bytes / packets);
4089
4090	/* if avg_wire_size isn't set no work was done */
4091	if (!avg_wire_size)
4092		goto clear_counts;
4093
4094	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4095	avg_wire_size += 24;
4096
4097	/* Don't starve jumbo frames */
4098	avg_wire_size = min(avg_wire_size, 3000);
4099
4100	/* Give a little boost to mid-size frames */
4101	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4102		new_val = avg_wire_size / 3;
4103	else
4104		new_val = avg_wire_size / 2;
4105
4106	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4107	if (new_val < IGB_20K_ITR &&
4108	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4109	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4110		new_val = IGB_20K_ITR;
4111
4112set_itr_val:
4113	if (new_val != q_vector->itr_val) {
4114		q_vector->itr_val = new_val;
4115		q_vector->set_itr = 1;
4116	}
4117clear_counts:
4118	q_vector->rx.total_bytes = 0;
4119	q_vector->rx.total_packets = 0;
4120	q_vector->tx.total_bytes = 0;
4121	q_vector->tx.total_packets = 0;
4122}
4123
4124/**
4125 *  igb_update_itr - update the dynamic ITR value based on statistics
4126 *  @q_vector: pointer to q_vector
4127 *  @ring_container: ring info to update the itr for
4128 *
4129 *  Stores a new ITR value based on packets and byte
4130 *  counts during the last interrupt.  The advantage of per interrupt
4131 *  computation is faster updates and more accurate ITR for the current
4132 *  traffic pattern.  Constants in this function were computed
4133 *  based on theoretical maximum wire speed and thresholds were set based
4134 *  on testing data as well as attempting to minimize response time
4135 *  while increasing bulk throughput.
4136 *  this functionality is controlled by the InterruptThrottleRate module
4137 *  parameter (see igb_param.c)
4138 *  NOTE:  These calculations are only valid when operating in a single-
4139 *         queue environment.
4140 **/
4141static void igb_update_itr(struct igb_q_vector *q_vector,
4142			   struct igb_ring_container *ring_container)
4143{
4144	unsigned int packets = ring_container->total_packets;
4145	unsigned int bytes = ring_container->total_bytes;
4146	u8 itrval = ring_container->itr;
4147
4148	/* no packets, exit with status unchanged */
4149	if (packets == 0)
4150		return;
4151
4152	switch (itrval) {
4153	case lowest_latency:
4154		/* handle TSO and jumbo frames */
4155		if (bytes/packets > 8000)
4156			itrval = bulk_latency;
4157		else if ((packets < 5) && (bytes > 512))
4158			itrval = low_latency;
4159		break;
4160	case low_latency:  /* 50 usec aka 20000 ints/s */
4161		if (bytes > 10000) {
4162			/* this if handles the TSO accounting */
4163			if (bytes/packets > 8000) {
4164				itrval = bulk_latency;
4165			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4166				itrval = bulk_latency;
4167			} else if ((packets > 35)) {
4168				itrval = lowest_latency;
4169			}
4170		} else if (bytes/packets > 2000) {
4171			itrval = bulk_latency;
4172		} else if (packets <= 2 && bytes < 512) {
4173			itrval = lowest_latency;
4174		}
4175		break;
4176	case bulk_latency: /* 250 usec aka 4000 ints/s */
4177		if (bytes > 25000) {
4178			if (packets > 35)
4179				itrval = low_latency;
4180		} else if (bytes < 1500) {
4181			itrval = low_latency;
4182		}
4183		break;
4184	}
4185
4186	/* clear work counters since we have the values we need */
4187	ring_container->total_bytes = 0;
4188	ring_container->total_packets = 0;
4189
4190	/* write updated itr to ring container */
4191	ring_container->itr = itrval;
4192}
4193
4194static void igb_set_itr(struct igb_q_vector *q_vector)
4195{
4196	struct igb_adapter *adapter = q_vector->adapter;
4197	u32 new_itr = q_vector->itr_val;
4198	u8 current_itr = 0;
4199
4200	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4201	if (adapter->link_speed != SPEED_1000) {
4202		current_itr = 0;
4203		new_itr = IGB_4K_ITR;
4204		goto set_itr_now;
4205	}
4206
4207	igb_update_itr(q_vector, &q_vector->tx);
4208	igb_update_itr(q_vector, &q_vector->rx);
4209
4210	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4211
4212	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4213	if (current_itr == lowest_latency &&
4214	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4215	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4216		current_itr = low_latency;
4217
4218	switch (current_itr) {
4219	/* counts and packets in update_itr are dependent on these numbers */
4220	case lowest_latency:
4221		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4222		break;
4223	case low_latency:
4224		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4225		break;
4226	case bulk_latency:
4227		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4228		break;
4229	default:
4230		break;
4231	}
4232
4233set_itr_now:
4234	if (new_itr != q_vector->itr_val) {
4235		/* this attempts to bias the interrupt rate towards Bulk
4236		 * by adding intermediate steps when interrupt rate is
4237		 * increasing
4238		 */
4239		new_itr = new_itr > q_vector->itr_val ?
4240			  max((new_itr * q_vector->itr_val) /
4241			  (new_itr + (q_vector->itr_val >> 2)),
4242			  new_itr) : new_itr;
4243		/* Don't write the value here; it resets the adapter's
4244		 * internal timer, and causes us to delay far longer than
4245		 * we should between interrupts.  Instead, we write the ITR
4246		 * value at the beginning of the next interrupt so the timing
4247		 * ends up being correct.
4248		 */
4249		q_vector->itr_val = new_itr;
4250		q_vector->set_itr = 1;
4251	}
4252}
4253
4254static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4255			    u32 type_tucmd, u32 mss_l4len_idx)
4256{
4257	struct e1000_adv_tx_context_desc *context_desc;
4258	u16 i = tx_ring->next_to_use;
4259
4260	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4261
4262	i++;
4263	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4264
4265	/* set bits to identify this as an advanced context descriptor */
4266	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4267
4268	/* For 82575, context index must be unique per ring. */
4269	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4270		mss_l4len_idx |= tx_ring->reg_idx << 4;
4271
4272	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4273	context_desc->seqnum_seed	= 0;
4274	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4275	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4276}
4277
4278static int igb_tso(struct igb_ring *tx_ring,
4279		   struct igb_tx_buffer *first,
4280		   u8 *hdr_len)
4281{
4282	struct sk_buff *skb = first->skb;
4283	u32 vlan_macip_lens, type_tucmd;
4284	u32 mss_l4len_idx, l4len;
4285
4286	if (skb->ip_summed != CHECKSUM_PARTIAL)
4287		return 0;
4288
4289	if (!skb_is_gso(skb))
4290		return 0;
4291
4292	if (skb_header_cloned(skb)) {
4293		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4294		if (err)
4295			return err;
4296	}
4297
4298	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4299	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4300
4301	if (first->protocol == __constant_htons(ETH_P_IP)) {
4302		struct iphdr *iph = ip_hdr(skb);
4303		iph->tot_len = 0;
4304		iph->check = 0;
4305		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4306							 iph->daddr, 0,
4307							 IPPROTO_TCP,
4308							 0);
4309		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4310		first->tx_flags |= IGB_TX_FLAGS_TSO |
4311				   IGB_TX_FLAGS_CSUM |
4312				   IGB_TX_FLAGS_IPV4;
4313	} else if (skb_is_gso_v6(skb)) {
4314		ipv6_hdr(skb)->payload_len = 0;
4315		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4316						       &ipv6_hdr(skb)->daddr,
4317						       0, IPPROTO_TCP, 0);
4318		first->tx_flags |= IGB_TX_FLAGS_TSO |
4319				   IGB_TX_FLAGS_CSUM;
4320	}
4321
4322	/* compute header lengths */
4323	l4len = tcp_hdrlen(skb);
4324	*hdr_len = skb_transport_offset(skb) + l4len;
4325
4326	/* update gso size and bytecount with header size */
4327	first->gso_segs = skb_shinfo(skb)->gso_segs;
4328	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4329
4330	/* MSS L4LEN IDX */
4331	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4332	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4333
4334	/* VLAN MACLEN IPLEN */
4335	vlan_macip_lens = skb_network_header_len(skb);
4336	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4337	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4338
4339	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4340
4341	return 1;
4342}
4343
4344static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4345{
4346	struct sk_buff *skb = first->skb;
4347	u32 vlan_macip_lens = 0;
4348	u32 mss_l4len_idx = 0;
4349	u32 type_tucmd = 0;
4350
4351	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4352		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4353			return;
4354	} else {
4355		u8 l4_hdr = 0;
4356		switch (first->protocol) {
4357		case __constant_htons(ETH_P_IP):
4358			vlan_macip_lens |= skb_network_header_len(skb);
4359			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4360			l4_hdr = ip_hdr(skb)->protocol;
4361			break;
4362		case __constant_htons(ETH_P_IPV6):
4363			vlan_macip_lens |= skb_network_header_len(skb);
4364			l4_hdr = ipv6_hdr(skb)->nexthdr;
4365			break;
4366		default:
4367			if (unlikely(net_ratelimit())) {
4368				dev_warn(tx_ring->dev,
4369					 "partial checksum but proto=%x!\n",
4370					 first->protocol);
4371			}
4372			break;
4373		}
4374
4375		switch (l4_hdr) {
4376		case IPPROTO_TCP:
4377			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4378			mss_l4len_idx = tcp_hdrlen(skb) <<
4379					E1000_ADVTXD_L4LEN_SHIFT;
4380			break;
4381		case IPPROTO_SCTP:
4382			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4383			mss_l4len_idx = sizeof(struct sctphdr) <<
4384					E1000_ADVTXD_L4LEN_SHIFT;
4385			break;
4386		case IPPROTO_UDP:
4387			mss_l4len_idx = sizeof(struct udphdr) <<
4388					E1000_ADVTXD_L4LEN_SHIFT;
4389			break;
4390		default:
4391			if (unlikely(net_ratelimit())) {
4392				dev_warn(tx_ring->dev,
4393					 "partial checksum but l4 proto=%x!\n",
4394					 l4_hdr);
4395			}
4396			break;
4397		}
4398
4399		/* update TX checksum flag */
4400		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4401	}
4402
4403	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4404	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4405
4406	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4407}
4408
4409#define IGB_SET_FLAG(_input, _flag, _result) \
4410	((_flag <= _result) ? \
4411	 ((u32)(_input & _flag) * (_result / _flag)) : \
4412	 ((u32)(_input & _flag) / (_flag / _result)))
4413
4414static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4415{
4416	/* set type for advanced descriptor with frame checksum insertion */
4417	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4418		       E1000_ADVTXD_DCMD_DEXT |
4419		       E1000_ADVTXD_DCMD_IFCS;
4420
4421	/* set HW vlan bit if vlan is present */
4422	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4423				 (E1000_ADVTXD_DCMD_VLE));
4424
4425	/* set segmentation bits for TSO */
4426	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4427				 (E1000_ADVTXD_DCMD_TSE));
4428
4429	/* set timestamp bit if present */
4430	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4431				 (E1000_ADVTXD_MAC_TSTAMP));
4432
4433	/* insert frame checksum */
4434	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4435
4436	return cmd_type;
4437}
4438
4439static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4440				 union e1000_adv_tx_desc *tx_desc,
4441				 u32 tx_flags, unsigned int paylen)
4442{
4443	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4444
4445	/* 82575 requires a unique index per ring */
4446	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4447		olinfo_status |= tx_ring->reg_idx << 4;
4448
4449	/* insert L4 checksum */
4450	olinfo_status |= IGB_SET_FLAG(tx_flags,
4451				      IGB_TX_FLAGS_CSUM,
4452				      (E1000_TXD_POPTS_TXSM << 8));
4453
4454	/* insert IPv4 checksum */
4455	olinfo_status |= IGB_SET_FLAG(tx_flags,
4456				      IGB_TX_FLAGS_IPV4,
4457				      (E1000_TXD_POPTS_IXSM << 8));
4458
4459	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4460}
4461
4462static void igb_tx_map(struct igb_ring *tx_ring,
4463		       struct igb_tx_buffer *first,
4464		       const u8 hdr_len)
4465{
4466	struct sk_buff *skb = first->skb;
4467	struct igb_tx_buffer *tx_buffer;
4468	union e1000_adv_tx_desc *tx_desc;
4469	struct skb_frag_struct *frag;
4470	dma_addr_t dma;
4471	unsigned int data_len, size;
4472	u32 tx_flags = first->tx_flags;
4473	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4474	u16 i = tx_ring->next_to_use;
4475
4476	tx_desc = IGB_TX_DESC(tx_ring, i);
4477
4478	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4479
4480	size = skb_headlen(skb);
4481	data_len = skb->data_len;
4482
4483	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4484
4485	tx_buffer = first;
4486
4487	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4488		if (dma_mapping_error(tx_ring->dev, dma))
4489			goto dma_error;
4490
4491		/* record length, and DMA address */
4492		dma_unmap_len_set(tx_buffer, len, size);
4493		dma_unmap_addr_set(tx_buffer, dma, dma);
4494
4495		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4496
4497		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4498			tx_desc->read.cmd_type_len =
4499				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4500
4501			i++;
4502			tx_desc++;
4503			if (i == tx_ring->count) {
4504				tx_desc = IGB_TX_DESC(tx_ring, 0);
4505				i = 0;
4506			}
4507			tx_desc->read.olinfo_status = 0;
4508
4509			dma += IGB_MAX_DATA_PER_TXD;
4510			size -= IGB_MAX_DATA_PER_TXD;
4511
4512			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4513		}
4514
4515		if (likely(!data_len))
4516			break;
4517
4518		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4519
4520		i++;
4521		tx_desc++;
4522		if (i == tx_ring->count) {
4523			tx_desc = IGB_TX_DESC(tx_ring, 0);
4524			i = 0;
4525		}
4526		tx_desc->read.olinfo_status = 0;
4527
4528		size = skb_frag_size(frag);
4529		data_len -= size;
4530
4531		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4532				       size, DMA_TO_DEVICE);
4533
4534		tx_buffer = &tx_ring->tx_buffer_info[i];
4535	}
4536
4537	/* write last descriptor with RS and EOP bits */
4538	cmd_type |= size | IGB_TXD_DCMD;
4539	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4540
4541	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4542
4543	/* set the timestamp */
4544	first->time_stamp = jiffies;
4545
4546	/* Force memory writes to complete before letting h/w know there
4547	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4548	 * memory model archs, such as IA-64).
4549	 *
4550	 * We also need this memory barrier to make certain all of the
4551	 * status bits have been updated before next_to_watch is written.
4552	 */
4553	wmb();
4554
4555	/* set next_to_watch value indicating a packet is present */
4556	first->next_to_watch = tx_desc;
4557
4558	i++;
4559	if (i == tx_ring->count)
4560		i = 0;
4561
4562	tx_ring->next_to_use = i;
4563
4564	writel(i, tx_ring->tail);
4565
4566	/* we need this if more than one processor can write to our tail
4567	 * at a time, it synchronizes IO on IA64/Altix systems
4568	 */
4569	mmiowb();
4570
4571	return;
4572
4573dma_error:
4574	dev_err(tx_ring->dev, "TX DMA map failed\n");
4575
4576	/* clear dma mappings for failed tx_buffer_info map */
4577	for (;;) {
4578		tx_buffer = &tx_ring->tx_buffer_info[i];
4579		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4580		if (tx_buffer == first)
4581			break;
4582		if (i == 0)
4583			i = tx_ring->count;
4584		i--;
4585	}
4586
4587	tx_ring->next_to_use = i;
4588}
4589
4590static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4591{
4592	struct net_device *netdev = tx_ring->netdev;
4593
4594	netif_stop_subqueue(netdev, tx_ring->queue_index);
4595
4596	/* Herbert's original patch had:
4597	 *  smp_mb__after_netif_stop_queue();
4598	 * but since that doesn't exist yet, just open code it.
4599	 */
4600	smp_mb();
4601
4602	/* We need to check again in a case another CPU has just
4603	 * made room available.
4604	 */
4605	if (igb_desc_unused(tx_ring) < size)
4606		return -EBUSY;
4607
4608	/* A reprieve! */
4609	netif_wake_subqueue(netdev, tx_ring->queue_index);
4610
4611	u64_stats_update_begin(&tx_ring->tx_syncp2);
4612	tx_ring->tx_stats.restart_queue2++;
4613	u64_stats_update_end(&tx_ring->tx_syncp2);
4614
4615	return 0;
4616}
4617
4618static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4619{
4620	if (igb_desc_unused(tx_ring) >= size)
4621		return 0;
4622	return __igb_maybe_stop_tx(tx_ring, size);
4623}
4624
4625netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4626				struct igb_ring *tx_ring)
4627{
4628	struct igb_tx_buffer *first;
4629	int tso;
4630	u32 tx_flags = 0;
4631	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4632	__be16 protocol = vlan_get_protocol(skb);
4633	u8 hdr_len = 0;
4634
4635	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4636	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4637	 *       + 2 desc gap to keep tail from touching head,
4638	 *       + 1 desc for context descriptor,
4639	 * otherwise try next time
4640	 */
4641	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4642		unsigned short f;
4643		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4644			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4645	} else {
4646		count += skb_shinfo(skb)->nr_frags;
4647	}
4648
4649	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4650		/* this is a hard error */
4651		return NETDEV_TX_BUSY;
4652	}
4653
4654	/* record the location of the first descriptor for this packet */
4655	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4656	first->skb = skb;
4657	first->bytecount = skb->len;
4658	first->gso_segs = 1;
4659
4660	skb_tx_timestamp(skb);
4661
4662	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4663		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4664
4665		if (!(adapter->ptp_tx_skb)) {
4666			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4667			tx_flags |= IGB_TX_FLAGS_TSTAMP;
4668
4669			adapter->ptp_tx_skb = skb_get(skb);
4670			adapter->ptp_tx_start = jiffies;
4671			if (adapter->hw.mac.type == e1000_82576)
4672				schedule_work(&adapter->ptp_tx_work);
4673		}
4674	}
4675
4676	if (vlan_tx_tag_present(skb)) {
4677		tx_flags |= IGB_TX_FLAGS_VLAN;
4678		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4679	}
4680
4681	/* record initial flags and protocol */
4682	first->tx_flags = tx_flags;
4683	first->protocol = protocol;
4684
4685	tso = igb_tso(tx_ring, first, &hdr_len);
4686	if (tso < 0)
4687		goto out_drop;
4688	else if (!tso)
4689		igb_tx_csum(tx_ring, first);
4690
4691	igb_tx_map(tx_ring, first, hdr_len);
4692
4693	/* Make sure there is space in the ring for the next send. */
4694	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4695
4696	return NETDEV_TX_OK;
4697
4698out_drop:
4699	igb_unmap_and_free_tx_resource(tx_ring, first);
4700
4701	return NETDEV_TX_OK;
4702}
4703
4704static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4705						    struct sk_buff *skb)
4706{
4707	unsigned int r_idx = skb->queue_mapping;
4708
4709	if (r_idx >= adapter->num_tx_queues)
4710		r_idx = r_idx % adapter->num_tx_queues;
4711
4712	return adapter->tx_ring[r_idx];
4713}
4714
4715static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4716				  struct net_device *netdev)
4717{
4718	struct igb_adapter *adapter = netdev_priv(netdev);
4719
4720	if (test_bit(__IGB_DOWN, &adapter->state)) {
4721		dev_kfree_skb_any(skb);
4722		return NETDEV_TX_OK;
4723	}
4724
4725	if (skb->len <= 0) {
4726		dev_kfree_skb_any(skb);
4727		return NETDEV_TX_OK;
4728	}
4729
4730	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4731	 * in order to meet this minimum size requirement.
4732	 */
4733	if (unlikely(skb->len < 17)) {
4734		if (skb_pad(skb, 17 - skb->len))
4735			return NETDEV_TX_OK;
4736		skb->len = 17;
4737		skb_set_tail_pointer(skb, 17);
4738	}
4739
4740	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4741}
4742
4743/**
4744 *  igb_tx_timeout - Respond to a Tx Hang
4745 *  @netdev: network interface device structure
4746 **/
4747static void igb_tx_timeout(struct net_device *netdev)
4748{
4749	struct igb_adapter *adapter = netdev_priv(netdev);
4750	struct e1000_hw *hw = &adapter->hw;
4751
4752	/* Do the reset outside of interrupt context */
4753	adapter->tx_timeout_count++;
4754
4755	if (hw->mac.type >= e1000_82580)
4756		hw->dev_spec._82575.global_device_reset = true;
4757
4758	schedule_work(&adapter->reset_task);
4759	wr32(E1000_EICS,
4760	     (adapter->eims_enable_mask & ~adapter->eims_other));
4761}
4762
4763static void igb_reset_task(struct work_struct *work)
4764{
4765	struct igb_adapter *adapter;
4766	adapter = container_of(work, struct igb_adapter, reset_task);
4767
4768	igb_dump(adapter);
4769	netdev_err(adapter->netdev, "Reset adapter\n");
4770	igb_reinit_locked(adapter);
4771}
4772
4773/**
4774 *  igb_get_stats64 - Get System Network Statistics
4775 *  @netdev: network interface device structure
4776 *  @stats: rtnl_link_stats64 pointer
4777 **/
4778static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4779						struct rtnl_link_stats64 *stats)
4780{
4781	struct igb_adapter *adapter = netdev_priv(netdev);
4782
4783	spin_lock(&adapter->stats64_lock);
4784	igb_update_stats(adapter, &adapter->stats64);
4785	memcpy(stats, &adapter->stats64, sizeof(*stats));
4786	spin_unlock(&adapter->stats64_lock);
4787
4788	return stats;
4789}
4790
4791/**
4792 *  igb_change_mtu - Change the Maximum Transfer Unit
4793 *  @netdev: network interface device structure
4794 *  @new_mtu: new value for maximum frame size
4795 *
4796 *  Returns 0 on success, negative on failure
4797 **/
4798static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4799{
4800	struct igb_adapter *adapter = netdev_priv(netdev);
4801	struct pci_dev *pdev = adapter->pdev;
4802	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4803
4804	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4805		dev_err(&pdev->dev, "Invalid MTU setting\n");
4806		return -EINVAL;
4807	}
4808
4809#define MAX_STD_JUMBO_FRAME_SIZE 9238
4810	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4811		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4812		return -EINVAL;
4813	}
4814
4815	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4816		msleep(1);
4817
4818	/* igb_down has a dependency on max_frame_size */
4819	adapter->max_frame_size = max_frame;
4820
4821	if (netif_running(netdev))
4822		igb_down(adapter);
4823
4824	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4825		 netdev->mtu, new_mtu);
4826	netdev->mtu = new_mtu;
4827
4828	if (netif_running(netdev))
4829		igb_up(adapter);
4830	else
4831		igb_reset(adapter);
4832
4833	clear_bit(__IGB_RESETTING, &adapter->state);
4834
4835	return 0;
4836}
4837
4838/**
4839 *  igb_update_stats - Update the board statistics counters
4840 *  @adapter: board private structure
4841 **/
4842void igb_update_stats(struct igb_adapter *adapter,
4843		      struct rtnl_link_stats64 *net_stats)
4844{
4845	struct e1000_hw *hw = &adapter->hw;
4846	struct pci_dev *pdev = adapter->pdev;
4847	u32 reg, mpc;
4848	u16 phy_tmp;
4849	int i;
4850	u64 bytes, packets;
4851	unsigned int start;
4852	u64 _bytes, _packets;
4853
4854#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4855
4856	/* Prevent stats update while adapter is being reset, or if the pci
4857	 * connection is down.
4858	 */
4859	if (adapter->link_speed == 0)
4860		return;
4861	if (pci_channel_offline(pdev))
4862		return;
4863
4864	bytes = 0;
4865	packets = 0;
4866	for (i = 0; i < adapter->num_rx_queues; i++) {
4867		u32 rqdpc = rd32(E1000_RQDPC(i));
4868		struct igb_ring *ring = adapter->rx_ring[i];
4869
4870		if (rqdpc) {
4871			ring->rx_stats.drops += rqdpc;
4872			net_stats->rx_fifo_errors += rqdpc;
4873		}
4874
4875		do {
4876			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4877			_bytes = ring->rx_stats.bytes;
4878			_packets = ring->rx_stats.packets;
4879		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4880		bytes += _bytes;
4881		packets += _packets;
4882	}
4883
4884	net_stats->rx_bytes = bytes;
4885	net_stats->rx_packets = packets;
4886
4887	bytes = 0;
4888	packets = 0;
4889	for (i = 0; i < adapter->num_tx_queues; i++) {
4890		struct igb_ring *ring = adapter->tx_ring[i];
4891		do {
4892			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4893			_bytes = ring->tx_stats.bytes;
4894			_packets = ring->tx_stats.packets;
4895		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4896		bytes += _bytes;
4897		packets += _packets;
4898	}
4899	net_stats->tx_bytes = bytes;
4900	net_stats->tx_packets = packets;
4901
4902	/* read stats registers */
4903	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4904	adapter->stats.gprc += rd32(E1000_GPRC);
4905	adapter->stats.gorc += rd32(E1000_GORCL);
4906	rd32(E1000_GORCH); /* clear GORCL */
4907	adapter->stats.bprc += rd32(E1000_BPRC);
4908	adapter->stats.mprc += rd32(E1000_MPRC);
4909	adapter->stats.roc += rd32(E1000_ROC);
4910
4911	adapter->stats.prc64 += rd32(E1000_PRC64);
4912	adapter->stats.prc127 += rd32(E1000_PRC127);
4913	adapter->stats.prc255 += rd32(E1000_PRC255);
4914	adapter->stats.prc511 += rd32(E1000_PRC511);
4915	adapter->stats.prc1023 += rd32(E1000_PRC1023);
4916	adapter->stats.prc1522 += rd32(E1000_PRC1522);
4917	adapter->stats.symerrs += rd32(E1000_SYMERRS);
4918	adapter->stats.sec += rd32(E1000_SEC);
4919
4920	mpc = rd32(E1000_MPC);
4921	adapter->stats.mpc += mpc;
4922	net_stats->rx_fifo_errors += mpc;
4923	adapter->stats.scc += rd32(E1000_SCC);
4924	adapter->stats.ecol += rd32(E1000_ECOL);
4925	adapter->stats.mcc += rd32(E1000_MCC);
4926	adapter->stats.latecol += rd32(E1000_LATECOL);
4927	adapter->stats.dc += rd32(E1000_DC);
4928	adapter->stats.rlec += rd32(E1000_RLEC);
4929	adapter->stats.xonrxc += rd32(E1000_XONRXC);
4930	adapter->stats.xontxc += rd32(E1000_XONTXC);
4931	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4932	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4933	adapter->stats.fcruc += rd32(E1000_FCRUC);
4934	adapter->stats.gptc += rd32(E1000_GPTC);
4935	adapter->stats.gotc += rd32(E1000_GOTCL);
4936	rd32(E1000_GOTCH); /* clear GOTCL */
4937	adapter->stats.rnbc += rd32(E1000_RNBC);
4938	adapter->stats.ruc += rd32(E1000_RUC);
4939	adapter->stats.rfc += rd32(E1000_RFC);
4940	adapter->stats.rjc += rd32(E1000_RJC);
4941	adapter->stats.tor += rd32(E1000_TORH);
4942	adapter->stats.tot += rd32(E1000_TOTH);
4943	adapter->stats.tpr += rd32(E1000_TPR);
4944
4945	adapter->stats.ptc64 += rd32(E1000_PTC64);
4946	adapter->stats.ptc127 += rd32(E1000_PTC127);
4947	adapter->stats.ptc255 += rd32(E1000_PTC255);
4948	adapter->stats.ptc511 += rd32(E1000_PTC511);
4949	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4950	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4951
4952	adapter->stats.mptc += rd32(E1000_MPTC);
4953	adapter->stats.bptc += rd32(E1000_BPTC);
4954
4955	adapter->stats.tpt += rd32(E1000_TPT);
4956	adapter->stats.colc += rd32(E1000_COLC);
4957
4958	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4959	/* read internal phy specific stats */
4960	reg = rd32(E1000_CTRL_EXT);
4961	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4962		adapter->stats.rxerrc += rd32(E1000_RXERRC);
4963
4964		/* this stat has invalid values on i210/i211 */
4965		if ((hw->mac.type != e1000_i210) &&
4966		    (hw->mac.type != e1000_i211))
4967			adapter->stats.tncrs += rd32(E1000_TNCRS);
4968	}
4969
4970	adapter->stats.tsctc += rd32(E1000_TSCTC);
4971	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4972
4973	adapter->stats.iac += rd32(E1000_IAC);
4974	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4975	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4976	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4977	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4978	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4979	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4980	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4981	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4982
4983	/* Fill out the OS statistics structure */
4984	net_stats->multicast = adapter->stats.mprc;
4985	net_stats->collisions = adapter->stats.colc;
4986
4987	/* Rx Errors */
4988
4989	/* RLEC on some newer hardware can be incorrect so build
4990	 * our own version based on RUC and ROC
4991	 */
4992	net_stats->rx_errors = adapter->stats.rxerrc +
4993		adapter->stats.crcerrs + adapter->stats.algnerrc +
4994		adapter->stats.ruc + adapter->stats.roc +
4995		adapter->stats.cexterr;
4996	net_stats->rx_length_errors = adapter->stats.ruc +
4997				      adapter->stats.roc;
4998	net_stats->rx_crc_errors = adapter->stats.crcerrs;
4999	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5000	net_stats->rx_missed_errors = adapter->stats.mpc;
5001
5002	/* Tx Errors */
5003	net_stats->tx_errors = adapter->stats.ecol +
5004			       adapter->stats.latecol;
5005	net_stats->tx_aborted_errors = adapter->stats.ecol;
5006	net_stats->tx_window_errors = adapter->stats.latecol;
5007	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5008
5009	/* Tx Dropped needs to be maintained elsewhere */
5010
5011	/* Phy Stats */
5012	if (hw->phy.media_type == e1000_media_type_copper) {
5013		if ((adapter->link_speed == SPEED_1000) &&
5014		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5015			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5016			adapter->phy_stats.idle_errors += phy_tmp;
5017		}
5018	}
5019
5020	/* Management Stats */
5021	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5022	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5023	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5024
5025	/* OS2BMC Stats */
5026	reg = rd32(E1000_MANC);
5027	if (reg & E1000_MANC_EN_BMC2OS) {
5028		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5029		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5030		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5031		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5032	}
5033}
5034
5035static irqreturn_t igb_msix_other(int irq, void *data)
5036{
5037	struct igb_adapter *adapter = data;
5038	struct e1000_hw *hw = &adapter->hw;
5039	u32 icr = rd32(E1000_ICR);
5040	/* reading ICR causes bit 31 of EICR to be cleared */
5041
5042	if (icr & E1000_ICR_DRSTA)
5043		schedule_work(&adapter->reset_task);
5044
5045	if (icr & E1000_ICR_DOUTSYNC) {
5046		/* HW is reporting DMA is out of sync */
5047		adapter->stats.doosync++;
5048		/* The DMA Out of Sync is also indication of a spoof event
5049		 * in IOV mode. Check the Wrong VM Behavior register to
5050		 * see if it is really a spoof event.
5051		 */
5052		igb_check_wvbr(adapter);
5053	}
5054
5055	/* Check for a mailbox event */
5056	if (icr & E1000_ICR_VMMB)
5057		igb_msg_task(adapter);
5058
5059	if (icr & E1000_ICR_LSC) {
5060		hw->mac.get_link_status = 1;
5061		/* guard against interrupt when we're going down */
5062		if (!test_bit(__IGB_DOWN, &adapter->state))
5063			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5064	}
5065
5066	if (icr & E1000_ICR_TS) {
5067		u32 tsicr = rd32(E1000_TSICR);
5068
5069		if (tsicr & E1000_TSICR_TXTS) {
5070			/* acknowledge the interrupt */
5071			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5072			/* retrieve hardware timestamp */
5073			schedule_work(&adapter->ptp_tx_work);
5074		}
5075	}
5076
5077	wr32(E1000_EIMS, adapter->eims_other);
5078
5079	return IRQ_HANDLED;
5080}
5081
5082static void igb_write_itr(struct igb_q_vector *q_vector)
5083{
5084	struct igb_adapter *adapter = q_vector->adapter;
5085	u32 itr_val = q_vector->itr_val & 0x7FFC;
5086
5087	if (!q_vector->set_itr)
5088		return;
5089
5090	if (!itr_val)
5091		itr_val = 0x4;
5092
5093	if (adapter->hw.mac.type == e1000_82575)
5094		itr_val |= itr_val << 16;
5095	else
5096		itr_val |= E1000_EITR_CNT_IGNR;
5097
5098	writel(itr_val, q_vector->itr_register);
5099	q_vector->set_itr = 0;
5100}
5101
5102static irqreturn_t igb_msix_ring(int irq, void *data)
5103{
5104	struct igb_q_vector *q_vector = data;
5105
5106	/* Write the ITR value calculated from the previous interrupt. */
5107	igb_write_itr(q_vector);
5108
5109	napi_schedule(&q_vector->napi);
5110
5111	return IRQ_HANDLED;
5112}
5113
5114#ifdef CONFIG_IGB_DCA
5115static void igb_update_tx_dca(struct igb_adapter *adapter,
5116			      struct igb_ring *tx_ring,
5117			      int cpu)
5118{
5119	struct e1000_hw *hw = &adapter->hw;
5120	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5121
5122	if (hw->mac.type != e1000_82575)
5123		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5124
5125	/* We can enable relaxed ordering for reads, but not writes when
5126	 * DCA is enabled.  This is due to a known issue in some chipsets
5127	 * which will cause the DCA tag to be cleared.
5128	 */
5129	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5130		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5131		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5132
5133	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5134}
5135
5136static void igb_update_rx_dca(struct igb_adapter *adapter,
5137			      struct igb_ring *rx_ring,
5138			      int cpu)
5139{
5140	struct e1000_hw *hw = &adapter->hw;
5141	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5142
5143	if (hw->mac.type != e1000_82575)
5144		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5145
5146	/* We can enable relaxed ordering for reads, but not writes when
5147	 * DCA is enabled.  This is due to a known issue in some chipsets
5148	 * which will cause the DCA tag to be cleared.
5149	 */
5150	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5151		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5152
5153	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5154}
5155
5156static void igb_update_dca(struct igb_q_vector *q_vector)
5157{
5158	struct igb_adapter *adapter = q_vector->adapter;
5159	int cpu = get_cpu();
5160
5161	if (q_vector->cpu == cpu)
5162		goto out_no_update;
5163
5164	if (q_vector->tx.ring)
5165		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5166
5167	if (q_vector->rx.ring)
5168		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5169
5170	q_vector->cpu = cpu;
5171out_no_update:
5172	put_cpu();
5173}
5174
5175static void igb_setup_dca(struct igb_adapter *adapter)
5176{
5177	struct e1000_hw *hw = &adapter->hw;
5178	int i;
5179
5180	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5181		return;
5182
5183	/* Always use CB2 mode, difference is masked in the CB driver. */
5184	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5185
5186	for (i = 0; i < adapter->num_q_vectors; i++) {
5187		adapter->q_vector[i]->cpu = -1;
5188		igb_update_dca(adapter->q_vector[i]);
5189	}
5190}
5191
5192static int __igb_notify_dca(struct device *dev, void *data)
5193{
5194	struct net_device *netdev = dev_get_drvdata(dev);
5195	struct igb_adapter *adapter = netdev_priv(netdev);
5196	struct pci_dev *pdev = adapter->pdev;
5197	struct e1000_hw *hw = &adapter->hw;
5198	unsigned long event = *(unsigned long *)data;
5199
5200	switch (event) {
5201	case DCA_PROVIDER_ADD:
5202		/* if already enabled, don't do it again */
5203		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5204			break;
5205		if (dca_add_requester(dev) == 0) {
5206			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5207			dev_info(&pdev->dev, "DCA enabled\n");
5208			igb_setup_dca(adapter);
5209			break;
5210		}
5211		/* Fall Through since DCA is disabled. */
5212	case DCA_PROVIDER_REMOVE:
5213		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5214			/* without this a class_device is left
5215			 * hanging around in the sysfs model
5216			 */
5217			dca_remove_requester(dev);
5218			dev_info(&pdev->dev, "DCA disabled\n");
5219			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5220			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5221		}
5222		break;
5223	}
5224
5225	return 0;
5226}
5227
5228static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5229			  void *p)
5230{
5231	int ret_val;
5232
5233	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5234					 __igb_notify_dca);
5235
5236	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5237}
5238#endif /* CONFIG_IGB_DCA */
5239
5240#ifdef CONFIG_PCI_IOV
5241static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5242{
5243	unsigned char mac_addr[ETH_ALEN];
5244
5245	eth_zero_addr(mac_addr);
5246	igb_set_vf_mac(adapter, vf, mac_addr);
5247
5248	/* By default spoof check is enabled for all VFs */
5249	adapter->vf_data[vf].spoofchk_enabled = true;
5250
5251	return 0;
5252}
5253
5254#endif
5255static void igb_ping_all_vfs(struct igb_adapter *adapter)
5256{
5257	struct e1000_hw *hw = &adapter->hw;
5258	u32 ping;
5259	int i;
5260
5261	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5262		ping = E1000_PF_CONTROL_MSG;
5263		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5264			ping |= E1000_VT_MSGTYPE_CTS;
5265		igb_write_mbx(hw, &ping, 1, i);
5266	}
5267}
5268
5269static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5270{
5271	struct e1000_hw *hw = &adapter->hw;
5272	u32 vmolr = rd32(E1000_VMOLR(vf));
5273	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5274
5275	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5276			    IGB_VF_FLAG_MULTI_PROMISC);
5277	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5278
5279	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5280		vmolr |= E1000_VMOLR_MPME;
5281		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5282		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5283	} else {
5284		/* if we have hashes and we are clearing a multicast promisc
5285		 * flag we need to write the hashes to the MTA as this step
5286		 * was previously skipped
5287		 */
5288		if (vf_data->num_vf_mc_hashes > 30) {
5289			vmolr |= E1000_VMOLR_MPME;
5290		} else if (vf_data->num_vf_mc_hashes) {
5291			int j;
5292			vmolr |= E1000_VMOLR_ROMPE;
5293			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5294				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5295		}
5296	}
5297
5298	wr32(E1000_VMOLR(vf), vmolr);
5299
5300	/* there are flags left unprocessed, likely not supported */
5301	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5302		return -EINVAL;
5303
5304	return 0;
5305}
5306
5307static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5308				  u32 *msgbuf, u32 vf)
5309{
5310	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5311	u16 *hash_list = (u16 *)&msgbuf[1];
5312	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5313	int i;
5314
5315	/* salt away the number of multicast addresses assigned
5316	 * to this VF for later use to restore when the PF multi cast
5317	 * list changes
5318	 */
5319	vf_data->num_vf_mc_hashes = n;
5320
5321	/* only up to 30 hash values supported */
5322	if (n > 30)
5323		n = 30;
5324
5325	/* store the hashes for later use */
5326	for (i = 0; i < n; i++)
5327		vf_data->vf_mc_hashes[i] = hash_list[i];
5328
5329	/* Flush and reset the mta with the new values */
5330	igb_set_rx_mode(adapter->netdev);
5331
5332	return 0;
5333}
5334
5335static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5336{
5337	struct e1000_hw *hw = &adapter->hw;
5338	struct vf_data_storage *vf_data;
5339	int i, j;
5340
5341	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5342		u32 vmolr = rd32(E1000_VMOLR(i));
5343		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5344
5345		vf_data = &adapter->vf_data[i];
5346
5347		if ((vf_data->num_vf_mc_hashes > 30) ||
5348		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5349			vmolr |= E1000_VMOLR_MPME;
5350		} else if (vf_data->num_vf_mc_hashes) {
5351			vmolr |= E1000_VMOLR_ROMPE;
5352			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5353				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5354		}
5355		wr32(E1000_VMOLR(i), vmolr);
5356	}
5357}
5358
5359static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5360{
5361	struct e1000_hw *hw = &adapter->hw;
5362	u32 pool_mask, reg, vid;
5363	int i;
5364
5365	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5366
5367	/* Find the vlan filter for this id */
5368	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5369		reg = rd32(E1000_VLVF(i));
5370
5371		/* remove the vf from the pool */
5372		reg &= ~pool_mask;
5373
5374		/* if pool is empty then remove entry from vfta */
5375		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5376		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5377			reg = 0;
5378			vid = reg & E1000_VLVF_VLANID_MASK;
5379			igb_vfta_set(hw, vid, false);
5380		}
5381
5382		wr32(E1000_VLVF(i), reg);
5383	}
5384
5385	adapter->vf_data[vf].vlans_enabled = 0;
5386}
5387
5388static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5389{
5390	struct e1000_hw *hw = &adapter->hw;
5391	u32 reg, i;
5392
5393	/* The vlvf table only exists on 82576 hardware and newer */
5394	if (hw->mac.type < e1000_82576)
5395		return -1;
5396
5397	/* we only need to do this if VMDq is enabled */
5398	if (!adapter->vfs_allocated_count)
5399		return -1;
5400
5401	/* Find the vlan filter for this id */
5402	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5403		reg = rd32(E1000_VLVF(i));
5404		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5405		    vid == (reg & E1000_VLVF_VLANID_MASK))
5406			break;
5407	}
5408
5409	if (add) {
5410		if (i == E1000_VLVF_ARRAY_SIZE) {
5411			/* Did not find a matching VLAN ID entry that was
5412			 * enabled.  Search for a free filter entry, i.e.
5413			 * one without the enable bit set
5414			 */
5415			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5416				reg = rd32(E1000_VLVF(i));
5417				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5418					break;
5419			}
5420		}
5421		if (i < E1000_VLVF_ARRAY_SIZE) {
5422			/* Found an enabled/available entry */
5423			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5424
5425			/* if !enabled we need to set this up in vfta */
5426			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5427				/* add VID to filter table */
5428				igb_vfta_set(hw, vid, true);
5429				reg |= E1000_VLVF_VLANID_ENABLE;
5430			}
5431			reg &= ~E1000_VLVF_VLANID_MASK;
5432			reg |= vid;
5433			wr32(E1000_VLVF(i), reg);
5434
5435			/* do not modify RLPML for PF devices */
5436			if (vf >= adapter->vfs_allocated_count)
5437				return 0;
5438
5439			if (!adapter->vf_data[vf].vlans_enabled) {
5440				u32 size;
5441				reg = rd32(E1000_VMOLR(vf));
5442				size = reg & E1000_VMOLR_RLPML_MASK;
5443				size += 4;
5444				reg &= ~E1000_VMOLR_RLPML_MASK;
5445				reg |= size;
5446				wr32(E1000_VMOLR(vf), reg);
5447			}
5448
5449			adapter->vf_data[vf].vlans_enabled++;
5450		}
5451	} else {
5452		if (i < E1000_VLVF_ARRAY_SIZE) {
5453			/* remove vf from the pool */
5454			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5455			/* if pool is empty then remove entry from vfta */
5456			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5457				reg = 0;
5458				igb_vfta_set(hw, vid, false);
5459			}
5460			wr32(E1000_VLVF(i), reg);
5461
5462			/* do not modify RLPML for PF devices */
5463			if (vf >= adapter->vfs_allocated_count)
5464				return 0;
5465
5466			adapter->vf_data[vf].vlans_enabled--;
5467			if (!adapter->vf_data[vf].vlans_enabled) {
5468				u32 size;
5469				reg = rd32(E1000_VMOLR(vf));
5470				size = reg & E1000_VMOLR_RLPML_MASK;
5471				size -= 4;
5472				reg &= ~E1000_VMOLR_RLPML_MASK;
5473				reg |= size;
5474				wr32(E1000_VMOLR(vf), reg);
5475			}
5476		}
5477	}
5478	return 0;
5479}
5480
5481static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5482{
5483	struct e1000_hw *hw = &adapter->hw;
5484
5485	if (vid)
5486		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5487	else
5488		wr32(E1000_VMVIR(vf), 0);
5489}
5490
5491static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5492			       int vf, u16 vlan, u8 qos)
5493{
5494	int err = 0;
5495	struct igb_adapter *adapter = netdev_priv(netdev);
5496
5497	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5498		return -EINVAL;
5499	if (vlan || qos) {
5500		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5501		if (err)
5502			goto out;
5503		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5504		igb_set_vmolr(adapter, vf, !vlan);
5505		adapter->vf_data[vf].pf_vlan = vlan;
5506		adapter->vf_data[vf].pf_qos = qos;
5507		dev_info(&adapter->pdev->dev,
5508			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5509		if (test_bit(__IGB_DOWN, &adapter->state)) {
5510			dev_warn(&adapter->pdev->dev,
5511				 "The VF VLAN has been set, but the PF device is not up.\n");
5512			dev_warn(&adapter->pdev->dev,
5513				 "Bring the PF device up before attempting to use the VF device.\n");
5514		}
5515	} else {
5516		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5517			     false, vf);
5518		igb_set_vmvir(adapter, vlan, vf);
5519		igb_set_vmolr(adapter, vf, true);
5520		adapter->vf_data[vf].pf_vlan = 0;
5521		adapter->vf_data[vf].pf_qos = 0;
5522	}
5523out:
5524	return err;
5525}
5526
5527static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5528{
5529	struct e1000_hw *hw = &adapter->hw;
5530	int i;
5531	u32 reg;
5532
5533	/* Find the vlan filter for this id */
5534	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5535		reg = rd32(E1000_VLVF(i));
5536		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5537		    vid == (reg & E1000_VLVF_VLANID_MASK))
5538			break;
5539	}
5540
5541	if (i >= E1000_VLVF_ARRAY_SIZE)
5542		i = -1;
5543
5544	return i;
5545}
5546
5547static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5548{
5549	struct e1000_hw *hw = &adapter->hw;
5550	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5551	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5552	int err = 0;
5553
5554	/* If in promiscuous mode we need to make sure the PF also has
5555	 * the VLAN filter set.
5556	 */
5557	if (add && (adapter->netdev->flags & IFF_PROMISC))
5558		err = igb_vlvf_set(adapter, vid, add,
5559				   adapter->vfs_allocated_count);
5560	if (err)
5561		goto out;
5562
5563	err = igb_vlvf_set(adapter, vid, add, vf);
5564
5565	if (err)
5566		goto out;
5567
5568	/* Go through all the checks to see if the VLAN filter should
5569	 * be wiped completely.
5570	 */
5571	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5572		u32 vlvf, bits;
5573
5574		int regndx = igb_find_vlvf_entry(adapter, vid);
5575		if (regndx < 0)
5576			goto out;
5577		/* See if any other pools are set for this VLAN filter
5578		 * entry other than the PF.
5579		 */
5580		vlvf = bits = rd32(E1000_VLVF(regndx));
5581		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5582			      adapter->vfs_allocated_count);
5583		/* If the filter was removed then ensure PF pool bit
5584		 * is cleared if the PF only added itself to the pool
5585		 * because the PF is in promiscuous mode.
5586		 */
5587		if ((vlvf & VLAN_VID_MASK) == vid &&
5588		    !test_bit(vid, adapter->active_vlans) &&
5589		    !bits)
5590			igb_vlvf_set(adapter, vid, add,
5591				     adapter->vfs_allocated_count);
5592	}
5593
5594out:
5595	return err;
5596}
5597
5598static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5599{
5600	/* clear flags - except flag that indicates PF has set the MAC */
5601	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5602	adapter->vf_data[vf].last_nack = jiffies;
5603
5604	/* reset offloads to defaults */
5605	igb_set_vmolr(adapter, vf, true);
5606
5607	/* reset vlans for device */
5608	igb_clear_vf_vfta(adapter, vf);
5609	if (adapter->vf_data[vf].pf_vlan)
5610		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5611				    adapter->vf_data[vf].pf_vlan,
5612				    adapter->vf_data[vf].pf_qos);
5613	else
5614		igb_clear_vf_vfta(adapter, vf);
5615
5616	/* reset multicast table array for vf */
5617	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5618
5619	/* Flush and reset the mta with the new values */
5620	igb_set_rx_mode(adapter->netdev);
5621}
5622
5623static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5624{
5625	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5626
5627	/* clear mac address as we were hotplug removed/added */
5628	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5629		eth_zero_addr(vf_mac);
5630
5631	/* process remaining reset events */
5632	igb_vf_reset(adapter, vf);
5633}
5634
5635static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5636{
5637	struct e1000_hw *hw = &adapter->hw;
5638	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5639	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5640	u32 reg, msgbuf[3];
5641	u8 *addr = (u8 *)(&msgbuf[1]);
5642
5643	/* process all the same items cleared in a function level reset */
5644	igb_vf_reset(adapter, vf);
5645
5646	/* set vf mac address */
5647	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5648
5649	/* enable transmit and receive for vf */
5650	reg = rd32(E1000_VFTE);
5651	wr32(E1000_VFTE, reg | (1 << vf));
5652	reg = rd32(E1000_VFRE);
5653	wr32(E1000_VFRE, reg | (1 << vf));
5654
5655	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5656
5657	/* reply to reset with ack and vf mac address */
5658	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5659	memcpy(addr, vf_mac, 6);
5660	igb_write_mbx(hw, msgbuf, 3, vf);
5661}
5662
5663static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5664{
5665	/* The VF MAC Address is stored in a packed array of bytes
5666	 * starting at the second 32 bit word of the msg array
5667	 */
5668	unsigned char *addr = (char *)&msg[1];
5669	int err = -1;
5670
5671	if (is_valid_ether_addr(addr))
5672		err = igb_set_vf_mac(adapter, vf, addr);
5673
5674	return err;
5675}
5676
5677static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5678{
5679	struct e1000_hw *hw = &adapter->hw;
5680	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5681	u32 msg = E1000_VT_MSGTYPE_NACK;
5682
5683	/* if device isn't clear to send it shouldn't be reading either */
5684	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5685	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5686		igb_write_mbx(hw, &msg, 1, vf);
5687		vf_data->last_nack = jiffies;
5688	}
5689}
5690
5691static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5692{
5693	struct pci_dev *pdev = adapter->pdev;
5694	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5695	struct e1000_hw *hw = &adapter->hw;
5696	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5697	s32 retval;
5698
5699	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5700
5701	if (retval) {
5702		/* if receive failed revoke VF CTS stats and restart init */
5703		dev_err(&pdev->dev, "Error receiving message from VF\n");
5704		vf_data->flags &= ~IGB_VF_FLAG_CTS;
5705		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5706			return;
5707		goto out;
5708	}
5709
5710	/* this is a message we already processed, do nothing */
5711	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5712		return;
5713
5714	/* until the vf completes a reset it should not be
5715	 * allowed to start any configuration.
5716	 */
5717	if (msgbuf[0] == E1000_VF_RESET) {
5718		igb_vf_reset_msg(adapter, vf);
5719		return;
5720	}
5721
5722	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5723		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5724			return;
5725		retval = -1;
5726		goto out;
5727	}
5728
5729	switch ((msgbuf[0] & 0xFFFF)) {
5730	case E1000_VF_SET_MAC_ADDR:
5731		retval = -EINVAL;
5732		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5733			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5734		else
5735			dev_warn(&pdev->dev,
5736				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
5737				 vf);
5738		break;
5739	case E1000_VF_SET_PROMISC:
5740		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5741		break;
5742	case E1000_VF_SET_MULTICAST:
5743		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5744		break;
5745	case E1000_VF_SET_LPE:
5746		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5747		break;
5748	case E1000_VF_SET_VLAN:
5749		retval = -1;
5750		if (vf_data->pf_vlan)
5751			dev_warn(&pdev->dev,
5752				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
5753				 vf);
5754		else
5755			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5756		break;
5757	default:
5758		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5759		retval = -1;
5760		break;
5761	}
5762
5763	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5764out:
5765	/* notify the VF of the results of what it sent us */
5766	if (retval)
5767		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5768	else
5769		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5770
5771	igb_write_mbx(hw, msgbuf, 1, vf);
5772}
5773
5774static void igb_msg_task(struct igb_adapter *adapter)
5775{
5776	struct e1000_hw *hw = &adapter->hw;
5777	u32 vf;
5778
5779	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5780		/* process any reset requests */
5781		if (!igb_check_for_rst(hw, vf))
5782			igb_vf_reset_event(adapter, vf);
5783
5784		/* process any messages pending */
5785		if (!igb_check_for_msg(hw, vf))
5786			igb_rcv_msg_from_vf(adapter, vf);
5787
5788		/* process any acks */
5789		if (!igb_check_for_ack(hw, vf))
5790			igb_rcv_ack_from_vf(adapter, vf);
5791	}
5792}
5793
5794/**
5795 *  igb_set_uta - Set unicast filter table address
5796 *  @adapter: board private structure
5797 *
5798 *  The unicast table address is a register array of 32-bit registers.
5799 *  The table is meant to be used in a way similar to how the MTA is used
5800 *  however due to certain limitations in the hardware it is necessary to
5801 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5802 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5803 **/
5804static void igb_set_uta(struct igb_adapter *adapter)
5805{
5806	struct e1000_hw *hw = &adapter->hw;
5807	int i;
5808
5809	/* The UTA table only exists on 82576 hardware and newer */
5810	if (hw->mac.type < e1000_82576)
5811		return;
5812
5813	/* we only need to do this if VMDq is enabled */
5814	if (!adapter->vfs_allocated_count)
5815		return;
5816
5817	for (i = 0; i < hw->mac.uta_reg_count; i++)
5818		array_wr32(E1000_UTA, i, ~0);
5819}
5820
5821/**
5822 *  igb_intr_msi - Interrupt Handler
5823 *  @irq: interrupt number
5824 *  @data: pointer to a network interface device structure
5825 **/
5826static irqreturn_t igb_intr_msi(int irq, void *data)
5827{
5828	struct igb_adapter *adapter = data;
5829	struct igb_q_vector *q_vector = adapter->q_vector[0];
5830	struct e1000_hw *hw = &adapter->hw;
5831	/* read ICR disables interrupts using IAM */
5832	u32 icr = rd32(E1000_ICR);
5833
5834	igb_write_itr(q_vector);
5835
5836	if (icr & E1000_ICR_DRSTA)
5837		schedule_work(&adapter->reset_task);
5838
5839	if (icr & E1000_ICR_DOUTSYNC) {
5840		/* HW is reporting DMA is out of sync */
5841		adapter->stats.doosync++;
5842	}
5843
5844	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5845		hw->mac.get_link_status = 1;
5846		if (!test_bit(__IGB_DOWN, &adapter->state))
5847			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5848	}
5849
5850	if (icr & E1000_ICR_TS) {
5851		u32 tsicr = rd32(E1000_TSICR);
5852
5853		if (tsicr & E1000_TSICR_TXTS) {
5854			/* acknowledge the interrupt */
5855			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5856			/* retrieve hardware timestamp */
5857			schedule_work(&adapter->ptp_tx_work);
5858		}
5859	}
5860
5861	napi_schedule(&q_vector->napi);
5862
5863	return IRQ_HANDLED;
5864}
5865
5866/**
5867 *  igb_intr - Legacy Interrupt Handler
5868 *  @irq: interrupt number
5869 *  @data: pointer to a network interface device structure
5870 **/
5871static irqreturn_t igb_intr(int irq, void *data)
5872{
5873	struct igb_adapter *adapter = data;
5874	struct igb_q_vector *q_vector = adapter->q_vector[0];
5875	struct e1000_hw *hw = &adapter->hw;
5876	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5877	 * need for the IMC write
5878	 */
5879	u32 icr = rd32(E1000_ICR);
5880
5881	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5882	 * not set, then the adapter didn't send an interrupt
5883	 */
5884	if (!(icr & E1000_ICR_INT_ASSERTED))
5885		return IRQ_NONE;
5886
5887	igb_write_itr(q_vector);
5888
5889	if (icr & E1000_ICR_DRSTA)
5890		schedule_work(&adapter->reset_task);
5891
5892	if (icr & E1000_ICR_DOUTSYNC) {
5893		/* HW is reporting DMA is out of sync */
5894		adapter->stats.doosync++;
5895	}
5896
5897	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5898		hw->mac.get_link_status = 1;
5899		/* guard against interrupt when we're going down */
5900		if (!test_bit(__IGB_DOWN, &adapter->state))
5901			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5902	}
5903
5904	if (icr & E1000_ICR_TS) {
5905		u32 tsicr = rd32(E1000_TSICR);
5906
5907		if (tsicr & E1000_TSICR_TXTS) {
5908			/* acknowledge the interrupt */
5909			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5910			/* retrieve hardware timestamp */
5911			schedule_work(&adapter->ptp_tx_work);
5912		}
5913	}
5914
5915	napi_schedule(&q_vector->napi);
5916
5917	return IRQ_HANDLED;
5918}
5919
5920static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5921{
5922	struct igb_adapter *adapter = q_vector->adapter;
5923	struct e1000_hw *hw = &adapter->hw;
5924
5925	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5926	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5927		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5928			igb_set_itr(q_vector);
5929		else
5930			igb_update_ring_itr(q_vector);
5931	}
5932
5933	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5934		if (adapter->msix_entries)
5935			wr32(E1000_EIMS, q_vector->eims_value);
5936		else
5937			igb_irq_enable(adapter);
5938	}
5939}
5940
5941/**
5942 *  igb_poll - NAPI Rx polling callback
5943 *  @napi: napi polling structure
5944 *  @budget: count of how many packets we should handle
5945 **/
5946static int igb_poll(struct napi_struct *napi, int budget)
5947{
5948	struct igb_q_vector *q_vector = container_of(napi,
5949						     struct igb_q_vector,
5950						     napi);
5951	bool clean_complete = true;
5952
5953#ifdef CONFIG_IGB_DCA
5954	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5955		igb_update_dca(q_vector);
5956#endif
5957	if (q_vector->tx.ring)
5958		clean_complete = igb_clean_tx_irq(q_vector);
5959
5960	if (q_vector->rx.ring)
5961		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5962
5963	/* If all work not completed, return budget and keep polling */
5964	if (!clean_complete)
5965		return budget;
5966
5967	/* If not enough Rx work done, exit the polling mode */
5968	napi_complete(napi);
5969	igb_ring_irq_enable(q_vector);
5970
5971	return 0;
5972}
5973
5974/**
5975 *  igb_clean_tx_irq - Reclaim resources after transmit completes
5976 *  @q_vector: pointer to q_vector containing needed info
5977 *
5978 *  returns true if ring is completely cleaned
5979 **/
5980static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5981{
5982	struct igb_adapter *adapter = q_vector->adapter;
5983	struct igb_ring *tx_ring = q_vector->tx.ring;
5984	struct igb_tx_buffer *tx_buffer;
5985	union e1000_adv_tx_desc *tx_desc;
5986	unsigned int total_bytes = 0, total_packets = 0;
5987	unsigned int budget = q_vector->tx.work_limit;
5988	unsigned int i = tx_ring->next_to_clean;
5989
5990	if (test_bit(__IGB_DOWN, &adapter->state))
5991		return true;
5992
5993	tx_buffer = &tx_ring->tx_buffer_info[i];
5994	tx_desc = IGB_TX_DESC(tx_ring, i);
5995	i -= tx_ring->count;
5996
5997	do {
5998		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5999
6000		/* if next_to_watch is not set then there is no work pending */
6001		if (!eop_desc)
6002			break;
6003
6004		/* prevent any other reads prior to eop_desc */
6005		read_barrier_depends();
6006
6007		/* if DD is not set pending work has not been completed */
6008		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6009			break;
6010
6011		/* clear next_to_watch to prevent false hangs */
6012		tx_buffer->next_to_watch = NULL;
6013
6014		/* update the statistics for this packet */
6015		total_bytes += tx_buffer->bytecount;
6016		total_packets += tx_buffer->gso_segs;
6017
6018		/* free the skb */
6019		dev_kfree_skb_any(tx_buffer->skb);
6020
6021		/* unmap skb header data */
6022		dma_unmap_single(tx_ring->dev,
6023				 dma_unmap_addr(tx_buffer, dma),
6024				 dma_unmap_len(tx_buffer, len),
6025				 DMA_TO_DEVICE);
6026
6027		/* clear tx_buffer data */
6028		tx_buffer->skb = NULL;
6029		dma_unmap_len_set(tx_buffer, len, 0);
6030
6031		/* clear last DMA location and unmap remaining buffers */
6032		while (tx_desc != eop_desc) {
6033			tx_buffer++;
6034			tx_desc++;
6035			i++;
6036			if (unlikely(!i)) {
6037				i -= tx_ring->count;
6038				tx_buffer = tx_ring->tx_buffer_info;
6039				tx_desc = IGB_TX_DESC(tx_ring, 0);
6040			}
6041
6042			/* unmap any remaining paged data */
6043			if (dma_unmap_len(tx_buffer, len)) {
6044				dma_unmap_page(tx_ring->dev,
6045					       dma_unmap_addr(tx_buffer, dma),
6046					       dma_unmap_len(tx_buffer, len),
6047					       DMA_TO_DEVICE);
6048				dma_unmap_len_set(tx_buffer, len, 0);
6049			}
6050		}
6051
6052		/* move us one more past the eop_desc for start of next pkt */
6053		tx_buffer++;
6054		tx_desc++;
6055		i++;
6056		if (unlikely(!i)) {
6057			i -= tx_ring->count;
6058			tx_buffer = tx_ring->tx_buffer_info;
6059			tx_desc = IGB_TX_DESC(tx_ring, 0);
6060		}
6061
6062		/* issue prefetch for next Tx descriptor */
6063		prefetch(tx_desc);
6064
6065		/* update budget accounting */
6066		budget--;
6067	} while (likely(budget));
6068
6069	netdev_tx_completed_queue(txring_txq(tx_ring),
6070				  total_packets, total_bytes);
6071	i += tx_ring->count;
6072	tx_ring->next_to_clean = i;
6073	u64_stats_update_begin(&tx_ring->tx_syncp);
6074	tx_ring->tx_stats.bytes += total_bytes;
6075	tx_ring->tx_stats.packets += total_packets;
6076	u64_stats_update_end(&tx_ring->tx_syncp);
6077	q_vector->tx.total_bytes += total_bytes;
6078	q_vector->tx.total_packets += total_packets;
6079
6080	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6081		struct e1000_hw *hw = &adapter->hw;
6082
6083		/* Detect a transmit hang in hardware, this serializes the
6084		 * check with the clearing of time_stamp and movement of i
6085		 */
6086		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6087		if (tx_buffer->next_to_watch &&
6088		    time_after(jiffies, tx_buffer->time_stamp +
6089			       (adapter->tx_timeout_factor * HZ)) &&
6090		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6091
6092			/* detected Tx unit hang */
6093			dev_err(tx_ring->dev,
6094				"Detected Tx Unit Hang\n"
6095				"  Tx Queue             <%d>\n"
6096				"  TDH                  <%x>\n"
6097				"  TDT                  <%x>\n"
6098				"  next_to_use          <%x>\n"
6099				"  next_to_clean        <%x>\n"
6100				"buffer_info[next_to_clean]\n"
6101				"  time_stamp           <%lx>\n"
6102				"  next_to_watch        <%p>\n"
6103				"  jiffies              <%lx>\n"
6104				"  desc.status          <%x>\n",
6105				tx_ring->queue_index,
6106				rd32(E1000_TDH(tx_ring->reg_idx)),
6107				readl(tx_ring->tail),
6108				tx_ring->next_to_use,
6109				tx_ring->next_to_clean,
6110				tx_buffer->time_stamp,
6111				tx_buffer->next_to_watch,
6112				jiffies,
6113				tx_buffer->next_to_watch->wb.status);
6114			netif_stop_subqueue(tx_ring->netdev,
6115					    tx_ring->queue_index);
6116
6117			/* we are about to reset, no point in enabling stuff */
6118			return true;
6119		}
6120	}
6121
6122#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6123	if (unlikely(total_packets &&
6124	    netif_carrier_ok(tx_ring->netdev) &&
6125	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6126		/* Make sure that anybody stopping the queue after this
6127		 * sees the new next_to_clean.
6128		 */
6129		smp_mb();
6130		if (__netif_subqueue_stopped(tx_ring->netdev,
6131					     tx_ring->queue_index) &&
6132		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6133			netif_wake_subqueue(tx_ring->netdev,
6134					    tx_ring->queue_index);
6135
6136			u64_stats_update_begin(&tx_ring->tx_syncp);
6137			tx_ring->tx_stats.restart_queue++;
6138			u64_stats_update_end(&tx_ring->tx_syncp);
6139		}
6140	}
6141
6142	return !!budget;
6143}
6144
6145/**
6146 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6147 *  @rx_ring: rx descriptor ring to store buffers on
6148 *  @old_buff: donor buffer to have page reused
6149 *
6150 *  Synchronizes page for reuse by the adapter
6151 **/
6152static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6153			      struct igb_rx_buffer *old_buff)
6154{
6155	struct igb_rx_buffer *new_buff;
6156	u16 nta = rx_ring->next_to_alloc;
6157
6158	new_buff = &rx_ring->rx_buffer_info[nta];
6159
6160	/* update, and store next to alloc */
6161	nta++;
6162	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6163
6164	/* transfer page from old buffer to new buffer */
6165	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6166
6167	/* sync the buffer for use by the device */
6168	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6169					 old_buff->page_offset,
6170					 IGB_RX_BUFSZ,
6171					 DMA_FROM_DEVICE);
6172}
6173
6174static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6175				  struct page *page,
6176				  unsigned int truesize)
6177{
6178	/* avoid re-using remote pages */
6179	if (unlikely(page_to_nid(page) != numa_node_id()))
6180		return false;
6181
6182#if (PAGE_SIZE < 8192)
6183	/* if we are only owner of page we can reuse it */
6184	if (unlikely(page_count(page) != 1))
6185		return false;
6186
6187	/* flip page offset to other buffer */
6188	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6189
6190	/* since we are the only owner of the page and we need to
6191	 * increment it, just set the value to 2 in order to avoid
6192	 * an unnecessary locked operation
6193	 */
6194	atomic_set(&page->_count, 2);
6195#else
6196	/* move offset up to the next cache line */
6197	rx_buffer->page_offset += truesize;
6198
6199	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6200		return false;
6201
6202	/* bump ref count on page before it is given to the stack */
6203	get_page(page);
6204#endif
6205
6206	return true;
6207}
6208
6209/**
6210 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6211 *  @rx_ring: rx descriptor ring to transact packets on
6212 *  @rx_buffer: buffer containing page to add
6213 *  @rx_desc: descriptor containing length of buffer written by hardware
6214 *  @skb: sk_buff to place the data into
6215 *
6216 *  This function will add the data contained in rx_buffer->page to the skb.
6217 *  This is done either through a direct copy if the data in the buffer is
6218 *  less than the skb header size, otherwise it will just attach the page as
6219 *  a frag to the skb.
6220 *
6221 *  The function will then update the page offset if necessary and return
6222 *  true if the buffer can be reused by the adapter.
6223 **/
6224static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6225			    struct igb_rx_buffer *rx_buffer,
6226			    union e1000_adv_rx_desc *rx_desc,
6227			    struct sk_buff *skb)
6228{
6229	struct page *page = rx_buffer->page;
6230	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6231#if (PAGE_SIZE < 8192)
6232	unsigned int truesize = IGB_RX_BUFSZ;
6233#else
6234	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6235#endif
6236
6237	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6238		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6239
6240		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6241			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6242			va += IGB_TS_HDR_LEN;
6243			size -= IGB_TS_HDR_LEN;
6244		}
6245
6246		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6247
6248		/* we can reuse buffer as-is, just make sure it is local */
6249		if (likely(page_to_nid(page) == numa_node_id()))
6250			return true;
6251
6252		/* this page cannot be reused so discard it */
6253		put_page(page);
6254		return false;
6255	}
6256
6257	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6258			rx_buffer->page_offset, size, truesize);
6259
6260	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6261}
6262
6263static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6264					   union e1000_adv_rx_desc *rx_desc,
6265					   struct sk_buff *skb)
6266{
6267	struct igb_rx_buffer *rx_buffer;
6268	struct page *page;
6269
6270	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6271
6272	page = rx_buffer->page;
6273	prefetchw(page);
6274
6275	if (likely(!skb)) {
6276		void *page_addr = page_address(page) +
6277				  rx_buffer->page_offset;
6278
6279		/* prefetch first cache line of first page */
6280		prefetch(page_addr);
6281#if L1_CACHE_BYTES < 128
6282		prefetch(page_addr + L1_CACHE_BYTES);
6283#endif
6284
6285		/* allocate a skb to store the frags */
6286		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6287						IGB_RX_HDR_LEN);
6288		if (unlikely(!skb)) {
6289			rx_ring->rx_stats.alloc_failed++;
6290			return NULL;
6291		}
6292
6293		/* we will be copying header into skb->data in
6294		 * pskb_may_pull so it is in our interest to prefetch
6295		 * it now to avoid a possible cache miss
6296		 */
6297		prefetchw(skb->data);
6298	}
6299
6300	/* we are reusing so sync this buffer for CPU use */
6301	dma_sync_single_range_for_cpu(rx_ring->dev,
6302				      rx_buffer->dma,
6303				      rx_buffer->page_offset,
6304				      IGB_RX_BUFSZ,
6305				      DMA_FROM_DEVICE);
6306
6307	/* pull page into skb */
6308	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6309		/* hand second half of page back to the ring */
6310		igb_reuse_rx_page(rx_ring, rx_buffer);
6311	} else {
6312		/* we are not reusing the buffer so unmap it */
6313		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6314			       PAGE_SIZE, DMA_FROM_DEVICE);
6315	}
6316
6317	/* clear contents of rx_buffer */
6318	rx_buffer->page = NULL;
6319
6320	return skb;
6321}
6322
6323static inline void igb_rx_checksum(struct igb_ring *ring,
6324				   union e1000_adv_rx_desc *rx_desc,
6325				   struct sk_buff *skb)
6326{
6327	skb_checksum_none_assert(skb);
6328
6329	/* Ignore Checksum bit is set */
6330	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6331		return;
6332
6333	/* Rx checksum disabled via ethtool */
6334	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6335		return;
6336
6337	/* TCP/UDP checksum error bit is set */
6338	if (igb_test_staterr(rx_desc,
6339			     E1000_RXDEXT_STATERR_TCPE |
6340			     E1000_RXDEXT_STATERR_IPE)) {
6341		/* work around errata with sctp packets where the TCPE aka
6342		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6343		 * packets, (aka let the stack check the crc32c)
6344		 */
6345		if (!((skb->len == 60) &&
6346		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6347			u64_stats_update_begin(&ring->rx_syncp);
6348			ring->rx_stats.csum_err++;
6349			u64_stats_update_end(&ring->rx_syncp);
6350		}
6351		/* let the stack verify checksum errors */
6352		return;
6353	}
6354	/* It must be a TCP or UDP packet with a valid checksum */
6355	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6356				      E1000_RXD_STAT_UDPCS))
6357		skb->ip_summed = CHECKSUM_UNNECESSARY;
6358
6359	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6360		le32_to_cpu(rx_desc->wb.upper.status_error));
6361}
6362
6363static inline void igb_rx_hash(struct igb_ring *ring,
6364			       union e1000_adv_rx_desc *rx_desc,
6365			       struct sk_buff *skb)
6366{
6367	if (ring->netdev->features & NETIF_F_RXHASH)
6368		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6369}
6370
6371/**
6372 *  igb_is_non_eop - process handling of non-EOP buffers
6373 *  @rx_ring: Rx ring being processed
6374 *  @rx_desc: Rx descriptor for current buffer
6375 *  @skb: current socket buffer containing buffer in progress
6376 *
6377 *  This function updates next to clean.  If the buffer is an EOP buffer
6378 *  this function exits returning false, otherwise it will place the
6379 *  sk_buff in the next buffer to be chained and return true indicating
6380 *  that this is in fact a non-EOP buffer.
6381 **/
6382static bool igb_is_non_eop(struct igb_ring *rx_ring,
6383			   union e1000_adv_rx_desc *rx_desc)
6384{
6385	u32 ntc = rx_ring->next_to_clean + 1;
6386
6387	/* fetch, update, and store next to clean */
6388	ntc = (ntc < rx_ring->count) ? ntc : 0;
6389	rx_ring->next_to_clean = ntc;
6390
6391	prefetch(IGB_RX_DESC(rx_ring, ntc));
6392
6393	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6394		return false;
6395
6396	return true;
6397}
6398
6399/**
6400 *  igb_get_headlen - determine size of header for LRO/GRO
6401 *  @data: pointer to the start of the headers
6402 *  @max_len: total length of section to find headers in
6403 *
6404 *  This function is meant to determine the length of headers that will
6405 *  be recognized by hardware for LRO, and GRO offloads.  The main
6406 *  motivation of doing this is to only perform one pull for IPv4 TCP
6407 *  packets so that we can do basic things like calculating the gso_size
6408 *  based on the average data per packet.
6409 **/
6410static unsigned int igb_get_headlen(unsigned char *data,
6411				    unsigned int max_len)
6412{
6413	union {
6414		unsigned char *network;
6415		/* l2 headers */
6416		struct ethhdr *eth;
6417		struct vlan_hdr *vlan;
6418		/* l3 headers */
6419		struct iphdr *ipv4;
6420		struct ipv6hdr *ipv6;
6421	} hdr;
6422	__be16 protocol;
6423	u8 nexthdr = 0;	/* default to not TCP */
6424	u8 hlen;
6425
6426	/* this should never happen, but better safe than sorry */
6427	if (max_len < ETH_HLEN)
6428		return max_len;
6429
6430	/* initialize network frame pointer */
6431	hdr.network = data;
6432
6433	/* set first protocol and move network header forward */
6434	protocol = hdr.eth->h_proto;
6435	hdr.network += ETH_HLEN;
6436
6437	/* handle any vlan tag if present */
6438	if (protocol == __constant_htons(ETH_P_8021Q)) {
6439		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6440			return max_len;
6441
6442		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6443		hdr.network += VLAN_HLEN;
6444	}
6445
6446	/* handle L3 protocols */
6447	if (protocol == __constant_htons(ETH_P_IP)) {
6448		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6449			return max_len;
6450
6451		/* access ihl as a u8 to avoid unaligned access on ia64 */
6452		hlen = (hdr.network[0] & 0x0F) << 2;
6453
6454		/* verify hlen meets minimum size requirements */
6455		if (hlen < sizeof(struct iphdr))
6456			return hdr.network - data;
6457
6458		/* record next protocol if header is present */
6459		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6460			nexthdr = hdr.ipv4->protocol;
6461	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
6462		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6463			return max_len;
6464
6465		/* record next protocol */
6466		nexthdr = hdr.ipv6->nexthdr;
6467		hlen = sizeof(struct ipv6hdr);
6468	} else {
6469		return hdr.network - data;
6470	}
6471
6472	/* relocate pointer to start of L4 header */
6473	hdr.network += hlen;
6474
6475	/* finally sort out TCP */
6476	if (nexthdr == IPPROTO_TCP) {
6477		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6478			return max_len;
6479
6480		/* access doff as a u8 to avoid unaligned access on ia64 */
6481		hlen = (hdr.network[12] & 0xF0) >> 2;
6482
6483		/* verify hlen meets minimum size requirements */
6484		if (hlen < sizeof(struct tcphdr))
6485			return hdr.network - data;
6486
6487		hdr.network += hlen;
6488	} else if (nexthdr == IPPROTO_UDP) {
6489		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6490			return max_len;
6491
6492		hdr.network += sizeof(struct udphdr);
6493	}
6494
6495	/* If everything has gone correctly hdr.network should be the
6496	 * data section of the packet and will be the end of the header.
6497	 * If not then it probably represents the end of the last recognized
6498	 * header.
6499	 */
6500	if ((hdr.network - data) < max_len)
6501		return hdr.network - data;
6502	else
6503		return max_len;
6504}
6505
6506/**
6507 *  igb_pull_tail - igb specific version of skb_pull_tail
6508 *  @rx_ring: rx descriptor ring packet is being transacted on
6509 *  @rx_desc: pointer to the EOP Rx descriptor
6510 *  @skb: pointer to current skb being adjusted
6511 *
6512 *  This function is an igb specific version of __pskb_pull_tail.  The
6513 *  main difference between this version and the original function is that
6514 *  this function can make several assumptions about the state of things
6515 *  that allow for significant optimizations versus the standard function.
6516 *  As a result we can do things like drop a frag and maintain an accurate
6517 *  truesize for the skb.
6518 */
6519static void igb_pull_tail(struct igb_ring *rx_ring,
6520			  union e1000_adv_rx_desc *rx_desc,
6521			  struct sk_buff *skb)
6522{
6523	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6524	unsigned char *va;
6525	unsigned int pull_len;
6526
6527	/* it is valid to use page_address instead of kmap since we are
6528	 * working with pages allocated out of the lomem pool per
6529	 * alloc_page(GFP_ATOMIC)
6530	 */
6531	va = skb_frag_address(frag);
6532
6533	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6534		/* retrieve timestamp from buffer */
6535		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6536
6537		/* update pointers to remove timestamp header */
6538		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6539		frag->page_offset += IGB_TS_HDR_LEN;
6540		skb->data_len -= IGB_TS_HDR_LEN;
6541		skb->len -= IGB_TS_HDR_LEN;
6542
6543		/* move va to start of packet data */
6544		va += IGB_TS_HDR_LEN;
6545	}
6546
6547	/* we need the header to contain the greater of either ETH_HLEN or
6548	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6549	 */
6550	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6551
6552	/* align pull length to size of long to optimize memcpy performance */
6553	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6554
6555	/* update all of the pointers */
6556	skb_frag_size_sub(frag, pull_len);
6557	frag->page_offset += pull_len;
6558	skb->data_len -= pull_len;
6559	skb->tail += pull_len;
6560}
6561
6562/**
6563 *  igb_cleanup_headers - Correct corrupted or empty headers
6564 *  @rx_ring: rx descriptor ring packet is being transacted on
6565 *  @rx_desc: pointer to the EOP Rx descriptor
6566 *  @skb: pointer to current skb being fixed
6567 *
6568 *  Address the case where we are pulling data in on pages only
6569 *  and as such no data is present in the skb header.
6570 *
6571 *  In addition if skb is not at least 60 bytes we need to pad it so that
6572 *  it is large enough to qualify as a valid Ethernet frame.
6573 *
6574 *  Returns true if an error was encountered and skb was freed.
6575 **/
6576static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6577				union e1000_adv_rx_desc *rx_desc,
6578				struct sk_buff *skb)
6579{
6580	if (unlikely((igb_test_staterr(rx_desc,
6581				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6582		struct net_device *netdev = rx_ring->netdev;
6583		if (!(netdev->features & NETIF_F_RXALL)) {
6584			dev_kfree_skb_any(skb);
6585			return true;
6586		}
6587	}
6588
6589	/* place header in linear portion of buffer */
6590	if (skb_is_nonlinear(skb))
6591		igb_pull_tail(rx_ring, rx_desc, skb);
6592
6593	/* if skb_pad returns an error the skb was freed */
6594	if (unlikely(skb->len < 60)) {
6595		int pad_len = 60 - skb->len;
6596
6597		if (skb_pad(skb, pad_len))
6598			return true;
6599		__skb_put(skb, pad_len);
6600	}
6601
6602	return false;
6603}
6604
6605/**
6606 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6607 *  @rx_ring: rx descriptor ring packet is being transacted on
6608 *  @rx_desc: pointer to the EOP Rx descriptor
6609 *  @skb: pointer to current skb being populated
6610 *
6611 *  This function checks the ring, descriptor, and packet information in
6612 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6613 *  other fields within the skb.
6614 **/
6615static void igb_process_skb_fields(struct igb_ring *rx_ring,
6616				   union e1000_adv_rx_desc *rx_desc,
6617				   struct sk_buff *skb)
6618{
6619	struct net_device *dev = rx_ring->netdev;
6620
6621	igb_rx_hash(rx_ring, rx_desc, skb);
6622
6623	igb_rx_checksum(rx_ring, rx_desc, skb);
6624
6625	igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);
6626
6627	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6628	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6629		u16 vid;
6630		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6631		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6632			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6633		else
6634			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6635
6636		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6637	}
6638
6639	skb_record_rx_queue(skb, rx_ring->queue_index);
6640
6641	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6642}
6643
6644static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6645{
6646	struct igb_ring *rx_ring = q_vector->rx.ring;
6647	struct sk_buff *skb = rx_ring->skb;
6648	unsigned int total_bytes = 0, total_packets = 0;
6649	u16 cleaned_count = igb_desc_unused(rx_ring);
6650
6651	do {
6652		union e1000_adv_rx_desc *rx_desc;
6653
6654		/* return some buffers to hardware, one at a time is too slow */
6655		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6656			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6657			cleaned_count = 0;
6658		}
6659
6660		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6661
6662		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6663			break;
6664
6665		/* This memory barrier is needed to keep us from reading
6666		 * any other fields out of the rx_desc until we know the
6667		 * RXD_STAT_DD bit is set
6668		 */
6669		rmb();
6670
6671		/* retrieve a buffer from the ring */
6672		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6673
6674		/* exit if we failed to retrieve a buffer */
6675		if (!skb)
6676			break;
6677
6678		cleaned_count++;
6679
6680		/* fetch next buffer in frame if non-eop */
6681		if (igb_is_non_eop(rx_ring, rx_desc))
6682			continue;
6683
6684		/* verify the packet layout is correct */
6685		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6686			skb = NULL;
6687			continue;
6688		}
6689
6690		/* probably a little skewed due to removing CRC */
6691		total_bytes += skb->len;
6692
6693		/* populate checksum, timestamp, VLAN, and protocol */
6694		igb_process_skb_fields(rx_ring, rx_desc, skb);
6695
6696		napi_gro_receive(&q_vector->napi, skb);
6697
6698		/* reset skb pointer */
6699		skb = NULL;
6700
6701		/* update budget accounting */
6702		total_packets++;
6703	} while (likely(total_packets < budget));
6704
6705	/* place incomplete frames back on ring for completion */
6706	rx_ring->skb = skb;
6707
6708	u64_stats_update_begin(&rx_ring->rx_syncp);
6709	rx_ring->rx_stats.packets += total_packets;
6710	rx_ring->rx_stats.bytes += total_bytes;
6711	u64_stats_update_end(&rx_ring->rx_syncp);
6712	q_vector->rx.total_packets += total_packets;
6713	q_vector->rx.total_bytes += total_bytes;
6714
6715	if (cleaned_count)
6716		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6717
6718	return (total_packets < budget);
6719}
6720
6721static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6722				  struct igb_rx_buffer *bi)
6723{
6724	struct page *page = bi->page;
6725	dma_addr_t dma;
6726
6727	/* since we are recycling buffers we should seldom need to alloc */
6728	if (likely(page))
6729		return true;
6730
6731	/* alloc new page for storage */
6732	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6733	if (unlikely(!page)) {
6734		rx_ring->rx_stats.alloc_failed++;
6735		return false;
6736	}
6737
6738	/* map page for use */
6739	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6740
6741	/* if mapping failed free memory back to system since
6742	 * there isn't much point in holding memory we can't use
6743	 */
6744	if (dma_mapping_error(rx_ring->dev, dma)) {
6745		__free_page(page);
6746
6747		rx_ring->rx_stats.alloc_failed++;
6748		return false;
6749	}
6750
6751	bi->dma = dma;
6752	bi->page = page;
6753	bi->page_offset = 0;
6754
6755	return true;
6756}
6757
6758/**
6759 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
6760 *  @adapter: address of board private structure
6761 **/
6762void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6763{
6764	union e1000_adv_rx_desc *rx_desc;
6765	struct igb_rx_buffer *bi;
6766	u16 i = rx_ring->next_to_use;
6767
6768	/* nothing to do */
6769	if (!cleaned_count)
6770		return;
6771
6772	rx_desc = IGB_RX_DESC(rx_ring, i);
6773	bi = &rx_ring->rx_buffer_info[i];
6774	i -= rx_ring->count;
6775
6776	do {
6777		if (!igb_alloc_mapped_page(rx_ring, bi))
6778			break;
6779
6780		/* Refresh the desc even if buffer_addrs didn't change
6781		 * because each write-back erases this info.
6782		 */
6783		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6784
6785		rx_desc++;
6786		bi++;
6787		i++;
6788		if (unlikely(!i)) {
6789			rx_desc = IGB_RX_DESC(rx_ring, 0);
6790			bi = rx_ring->rx_buffer_info;
6791			i -= rx_ring->count;
6792		}
6793
6794		/* clear the hdr_addr for the next_to_use descriptor */
6795		rx_desc->read.hdr_addr = 0;
6796
6797		cleaned_count--;
6798	} while (cleaned_count);
6799
6800	i += rx_ring->count;
6801
6802	if (rx_ring->next_to_use != i) {
6803		/* record the next descriptor to use */
6804		rx_ring->next_to_use = i;
6805
6806		/* update next to alloc since we have filled the ring */
6807		rx_ring->next_to_alloc = i;
6808
6809		/* Force memory writes to complete before letting h/w
6810		 * know there are new descriptors to fetch.  (Only
6811		 * applicable for weak-ordered memory model archs,
6812		 * such as IA-64).
6813		 */
6814		wmb();
6815		writel(i, rx_ring->tail);
6816	}
6817}
6818
6819/**
6820 * igb_mii_ioctl -
6821 * @netdev:
6822 * @ifreq:
6823 * @cmd:
6824 **/
6825static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6826{
6827	struct igb_adapter *adapter = netdev_priv(netdev);
6828	struct mii_ioctl_data *data = if_mii(ifr);
6829
6830	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6831		return -EOPNOTSUPP;
6832
6833	switch (cmd) {
6834	case SIOCGMIIPHY:
6835		data->phy_id = adapter->hw.phy.addr;
6836		break;
6837	case SIOCGMIIREG:
6838		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6839		                     &data->val_out))
6840			return -EIO;
6841		break;
6842	case SIOCSMIIREG:
6843	default:
6844		return -EOPNOTSUPP;
6845	}
6846	return 0;
6847}
6848
6849/**
6850 * igb_ioctl -
6851 * @netdev:
6852 * @ifreq:
6853 * @cmd:
6854 **/
6855static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6856{
6857	switch (cmd) {
6858	case SIOCGMIIPHY:
6859	case SIOCGMIIREG:
6860	case SIOCSMIIREG:
6861		return igb_mii_ioctl(netdev, ifr, cmd);
6862	case SIOCSHWTSTAMP:
6863		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6864	default:
6865		return -EOPNOTSUPP;
6866	}
6867}
6868
6869s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6870{
6871	struct igb_adapter *adapter = hw->back;
6872
6873	if (pcie_capability_read_word(adapter->pdev, reg, value))
6874		return -E1000_ERR_CONFIG;
6875
6876	return 0;
6877}
6878
6879s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6880{
6881	struct igb_adapter *adapter = hw->back;
6882
6883	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6884		return -E1000_ERR_CONFIG;
6885
6886	return 0;
6887}
6888
6889static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6890{
6891	struct igb_adapter *adapter = netdev_priv(netdev);
6892	struct e1000_hw *hw = &adapter->hw;
6893	u32 ctrl, rctl;
6894	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
6895
6896	if (enable) {
6897		/* enable VLAN tag insert/strip */
6898		ctrl = rd32(E1000_CTRL);
6899		ctrl |= E1000_CTRL_VME;
6900		wr32(E1000_CTRL, ctrl);
6901
6902		/* Disable CFI check */
6903		rctl = rd32(E1000_RCTL);
6904		rctl &= ~E1000_RCTL_CFIEN;
6905		wr32(E1000_RCTL, rctl);
6906	} else {
6907		/* disable VLAN tag insert/strip */
6908		ctrl = rd32(E1000_CTRL);
6909		ctrl &= ~E1000_CTRL_VME;
6910		wr32(E1000_CTRL, ctrl);
6911	}
6912
6913	igb_rlpml_set(adapter);
6914}
6915
6916static int igb_vlan_rx_add_vid(struct net_device *netdev,
6917			       __be16 proto, u16 vid)
6918{
6919	struct igb_adapter *adapter = netdev_priv(netdev);
6920	struct e1000_hw *hw = &adapter->hw;
6921	int pf_id = adapter->vfs_allocated_count;
6922
6923	/* attempt to add filter to vlvf array */
6924	igb_vlvf_set(adapter, vid, true, pf_id);
6925
6926	/* add the filter since PF can receive vlans w/o entry in vlvf */
6927	igb_vfta_set(hw, vid, true);
6928
6929	set_bit(vid, adapter->active_vlans);
6930
6931	return 0;
6932}
6933
6934static int igb_vlan_rx_kill_vid(struct net_device *netdev,
6935				__be16 proto, u16 vid)
6936{
6937	struct igb_adapter *adapter = netdev_priv(netdev);
6938	struct e1000_hw *hw = &adapter->hw;
6939	int pf_id = adapter->vfs_allocated_count;
6940	s32 err;
6941
6942	/* remove vlan from VLVF table array */
6943	err = igb_vlvf_set(adapter, vid, false, pf_id);
6944
6945	/* if vid was not present in VLVF just remove it from table */
6946	if (err)
6947		igb_vfta_set(hw, vid, false);
6948
6949	clear_bit(vid, adapter->active_vlans);
6950
6951	return 0;
6952}
6953
6954static void igb_restore_vlan(struct igb_adapter *adapter)
6955{
6956	u16 vid;
6957
6958	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6959
6960	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6961		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
6962}
6963
6964int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6965{
6966	struct pci_dev *pdev = adapter->pdev;
6967	struct e1000_mac_info *mac = &adapter->hw.mac;
6968
6969	mac->autoneg = 0;
6970
6971	/* Make sure dplx is at most 1 bit and lsb of speed is not set
6972	 * for the switch() below to work
6973	 */
6974	if ((spd & 1) || (dplx & ~1))
6975		goto err_inval;
6976
6977	/* Fiber NIC's only allow 1000 gbps Full duplex
6978	 * and 100Mbps Full duplex for 100baseFx sfp
6979	 */
6980	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
6981		switch (spd + dplx) {
6982		case SPEED_10 + DUPLEX_HALF:
6983		case SPEED_10 + DUPLEX_FULL:
6984		case SPEED_100 + DUPLEX_HALF:
6985			goto err_inval;
6986		default:
6987			break;
6988		}
6989	}
6990
6991	switch (spd + dplx) {
6992	case SPEED_10 + DUPLEX_HALF:
6993		mac->forced_speed_duplex = ADVERTISE_10_HALF;
6994		break;
6995	case SPEED_10 + DUPLEX_FULL:
6996		mac->forced_speed_duplex = ADVERTISE_10_FULL;
6997		break;
6998	case SPEED_100 + DUPLEX_HALF:
6999		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7000		break;
7001	case SPEED_100 + DUPLEX_FULL:
7002		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7003		break;
7004	case SPEED_1000 + DUPLEX_FULL:
7005		mac->autoneg = 1;
7006		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7007		break;
7008	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7009	default:
7010		goto err_inval;
7011	}
7012
7013	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7014	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7015
7016	return 0;
7017
7018err_inval:
7019	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7020	return -EINVAL;
7021}
7022
7023static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7024			  bool runtime)
7025{
7026	struct net_device *netdev = pci_get_drvdata(pdev);
7027	struct igb_adapter *adapter = netdev_priv(netdev);
7028	struct e1000_hw *hw = &adapter->hw;
7029	u32 ctrl, rctl, status;
7030	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7031#ifdef CONFIG_PM
7032	int retval = 0;
7033#endif
7034
7035	netif_device_detach(netdev);
7036
7037	if (netif_running(netdev))
7038		__igb_close(netdev, true);
7039
7040	igb_clear_interrupt_scheme(adapter);
7041
7042#ifdef CONFIG_PM
7043	retval = pci_save_state(pdev);
7044	if (retval)
7045		return retval;
7046#endif
7047
7048	status = rd32(E1000_STATUS);
7049	if (status & E1000_STATUS_LU)
7050		wufc &= ~E1000_WUFC_LNKC;
7051
7052	if (wufc) {
7053		igb_setup_rctl(adapter);
7054		igb_set_rx_mode(netdev);
7055
7056		/* turn on all-multi mode if wake on multicast is enabled */
7057		if (wufc & E1000_WUFC_MC) {
7058			rctl = rd32(E1000_RCTL);
7059			rctl |= E1000_RCTL_MPE;
7060			wr32(E1000_RCTL, rctl);
7061		}
7062
7063		ctrl = rd32(E1000_CTRL);
7064		/* advertise wake from D3Cold */
7065		#define E1000_CTRL_ADVD3WUC 0x00100000
7066		/* phy power management enable */
7067		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7068		ctrl |= E1000_CTRL_ADVD3WUC;
7069		wr32(E1000_CTRL, ctrl);
7070
7071		/* Allow time for pending master requests to run */
7072		igb_disable_pcie_master(hw);
7073
7074		wr32(E1000_WUC, E1000_WUC_PME_EN);
7075		wr32(E1000_WUFC, wufc);
7076	} else {
7077		wr32(E1000_WUC, 0);
7078		wr32(E1000_WUFC, 0);
7079	}
7080
7081	*enable_wake = wufc || adapter->en_mng_pt;
7082	if (!*enable_wake)
7083		igb_power_down_link(adapter);
7084	else
7085		igb_power_up_link(adapter);
7086
7087	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7088	 * would have already happened in close and is redundant.
7089	 */
7090	igb_release_hw_control(adapter);
7091
7092	pci_disable_device(pdev);
7093
7094	return 0;
7095}
7096
7097#ifdef CONFIG_PM
7098#ifdef CONFIG_PM_SLEEP
7099static int igb_suspend(struct device *dev)
7100{
7101	int retval;
7102	bool wake;
7103	struct pci_dev *pdev = to_pci_dev(dev);
7104
7105	retval = __igb_shutdown(pdev, &wake, 0);
7106	if (retval)
7107		return retval;
7108
7109	if (wake) {
7110		pci_prepare_to_sleep(pdev);
7111	} else {
7112		pci_wake_from_d3(pdev, false);
7113		pci_set_power_state(pdev, PCI_D3hot);
7114	}
7115
7116	return 0;
7117}
7118#endif /* CONFIG_PM_SLEEP */
7119
7120static int igb_resume(struct device *dev)
7121{
7122	struct pci_dev *pdev = to_pci_dev(dev);
7123	struct net_device *netdev = pci_get_drvdata(pdev);
7124	struct igb_adapter *adapter = netdev_priv(netdev);
7125	struct e1000_hw *hw = &adapter->hw;
7126	u32 err;
7127
7128	pci_set_power_state(pdev, PCI_D0);
7129	pci_restore_state(pdev);
7130	pci_save_state(pdev);
7131
7132	err = pci_enable_device_mem(pdev);
7133	if (err) {
7134		dev_err(&pdev->dev,
7135			"igb: Cannot enable PCI device from suspend\n");
7136		return err;
7137	}
7138	pci_set_master(pdev);
7139
7140	pci_enable_wake(pdev, PCI_D3hot, 0);
7141	pci_enable_wake(pdev, PCI_D3cold, 0);
7142
7143	if (igb_init_interrupt_scheme(adapter, true)) {
7144		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7145		return -ENOMEM;
7146	}
7147
7148	igb_reset(adapter);
7149
7150	/* let the f/w know that the h/w is now under the control of the
7151	 * driver.
7152	 */
7153	igb_get_hw_control(adapter);
7154
7155	wr32(E1000_WUS, ~0);
7156
7157	if (netdev->flags & IFF_UP) {
7158		rtnl_lock();
7159		err = __igb_open(netdev, true);
7160		rtnl_unlock();
7161		if (err)
7162			return err;
7163	}
7164
7165	netif_device_attach(netdev);
7166	return 0;
7167}
7168
7169#ifdef CONFIG_PM_RUNTIME
7170static int igb_runtime_idle(struct device *dev)
7171{
7172	struct pci_dev *pdev = to_pci_dev(dev);
7173	struct net_device *netdev = pci_get_drvdata(pdev);
7174	struct igb_adapter *adapter = netdev_priv(netdev);
7175
7176	if (!igb_has_link(adapter))
7177		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7178
7179	return -EBUSY;
7180}
7181
7182static int igb_runtime_suspend(struct device *dev)
7183{
7184	struct pci_dev *pdev = to_pci_dev(dev);
7185	int retval;
7186	bool wake;
7187
7188	retval = __igb_shutdown(pdev, &wake, 1);
7189	if (retval)
7190		return retval;
7191
7192	if (wake) {
7193		pci_prepare_to_sleep(pdev);
7194	} else {
7195		pci_wake_from_d3(pdev, false);
7196		pci_set_power_state(pdev, PCI_D3hot);
7197	}
7198
7199	return 0;
7200}
7201
7202static int igb_runtime_resume(struct device *dev)
7203{
7204	return igb_resume(dev);
7205}
7206#endif /* CONFIG_PM_RUNTIME */
7207#endif
7208
7209static void igb_shutdown(struct pci_dev *pdev)
7210{
7211	bool wake;
7212
7213	__igb_shutdown(pdev, &wake, 0);
7214
7215	if (system_state == SYSTEM_POWER_OFF) {
7216		pci_wake_from_d3(pdev, wake);
7217		pci_set_power_state(pdev, PCI_D3hot);
7218	}
7219}
7220
7221#ifdef CONFIG_PCI_IOV
7222static int igb_sriov_reinit(struct pci_dev *dev)
7223{
7224	struct net_device *netdev = pci_get_drvdata(dev);
7225	struct igb_adapter *adapter = netdev_priv(netdev);
7226	struct pci_dev *pdev = adapter->pdev;
7227
7228	rtnl_lock();
7229
7230	if (netif_running(netdev))
7231		igb_close(netdev);
7232
7233	igb_clear_interrupt_scheme(adapter);
7234
7235	igb_init_queue_configuration(adapter);
7236
7237	if (igb_init_interrupt_scheme(adapter, true)) {
7238		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7239		return -ENOMEM;
7240	}
7241
7242	if (netif_running(netdev))
7243		igb_open(netdev);
7244
7245	rtnl_unlock();
7246
7247	return 0;
7248}
7249
7250static int igb_pci_disable_sriov(struct pci_dev *dev)
7251{
7252	int err = igb_disable_sriov(dev);
7253
7254	if (!err)
7255		err = igb_sriov_reinit(dev);
7256
7257	return err;
7258}
7259
7260static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7261{
7262	int err = igb_enable_sriov(dev, num_vfs);
7263
7264	if (err)
7265		goto out;
7266
7267	err = igb_sriov_reinit(dev);
7268	if (!err)
7269		return num_vfs;
7270
7271out:
7272	return err;
7273}
7274
7275#endif
7276static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7277{
7278#ifdef CONFIG_PCI_IOV
7279	if (num_vfs == 0)
7280		return igb_pci_disable_sriov(dev);
7281	else
7282		return igb_pci_enable_sriov(dev, num_vfs);
7283#endif
7284	return 0;
7285}
7286
7287#ifdef CONFIG_NET_POLL_CONTROLLER
7288/* Polling 'interrupt' - used by things like netconsole to send skbs
7289 * without having to re-enable interrupts. It's not called while
7290 * the interrupt routine is executing.
7291 */
7292static void igb_netpoll(struct net_device *netdev)
7293{
7294	struct igb_adapter *adapter = netdev_priv(netdev);
7295	struct e1000_hw *hw = &adapter->hw;
7296	struct igb_q_vector *q_vector;
7297	int i;
7298
7299	for (i = 0; i < adapter->num_q_vectors; i++) {
7300		q_vector = adapter->q_vector[i];
7301		if (adapter->msix_entries)
7302			wr32(E1000_EIMC, q_vector->eims_value);
7303		else
7304			igb_irq_disable(adapter);
7305		napi_schedule(&q_vector->napi);
7306	}
7307}
7308#endif /* CONFIG_NET_POLL_CONTROLLER */
7309
7310/**
7311 *  igb_io_error_detected - called when PCI error is detected
7312 *  @pdev: Pointer to PCI device
7313 *  @state: The current pci connection state
7314 *
7315 *  This function is called after a PCI bus error affecting
7316 *  this device has been detected.
7317 **/
7318static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7319					      pci_channel_state_t state)
7320{
7321	struct net_device *netdev = pci_get_drvdata(pdev);
7322	struct igb_adapter *adapter = netdev_priv(netdev);
7323
7324	netif_device_detach(netdev);
7325
7326	if (state == pci_channel_io_perm_failure)
7327		return PCI_ERS_RESULT_DISCONNECT;
7328
7329	if (netif_running(netdev))
7330		igb_down(adapter);
7331	pci_disable_device(pdev);
7332
7333	/* Request a slot slot reset. */
7334	return PCI_ERS_RESULT_NEED_RESET;
7335}
7336
7337/**
7338 *  igb_io_slot_reset - called after the pci bus has been reset.
7339 *  @pdev: Pointer to PCI device
7340 *
7341 *  Restart the card from scratch, as if from a cold-boot. Implementation
7342 *  resembles the first-half of the igb_resume routine.
7343 **/
7344static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7345{
7346	struct net_device *netdev = pci_get_drvdata(pdev);
7347	struct igb_adapter *adapter = netdev_priv(netdev);
7348	struct e1000_hw *hw = &adapter->hw;
7349	pci_ers_result_t result;
7350	int err;
7351
7352	if (pci_enable_device_mem(pdev)) {
7353		dev_err(&pdev->dev,
7354			"Cannot re-enable PCI device after reset.\n");
7355		result = PCI_ERS_RESULT_DISCONNECT;
7356	} else {
7357		pci_set_master(pdev);
7358		pci_restore_state(pdev);
7359		pci_save_state(pdev);
7360
7361		pci_enable_wake(pdev, PCI_D3hot, 0);
7362		pci_enable_wake(pdev, PCI_D3cold, 0);
7363
7364		igb_reset(adapter);
7365		wr32(E1000_WUS, ~0);
7366		result = PCI_ERS_RESULT_RECOVERED;
7367	}
7368
7369	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7370	if (err) {
7371		dev_err(&pdev->dev,
7372			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7373			err);
7374		/* non-fatal, continue */
7375	}
7376
7377	return result;
7378}
7379
7380/**
7381 *  igb_io_resume - called when traffic can start flowing again.
7382 *  @pdev: Pointer to PCI device
7383 *
7384 *  This callback is called when the error recovery driver tells us that
7385 *  its OK to resume normal operation. Implementation resembles the
7386 *  second-half of the igb_resume routine.
7387 */
7388static void igb_io_resume(struct pci_dev *pdev)
7389{
7390	struct net_device *netdev = pci_get_drvdata(pdev);
7391	struct igb_adapter *adapter = netdev_priv(netdev);
7392
7393	if (netif_running(netdev)) {
7394		if (igb_up(adapter)) {
7395			dev_err(&pdev->dev, "igb_up failed after reset\n");
7396			return;
7397		}
7398	}
7399
7400	netif_device_attach(netdev);
7401
7402	/* let the f/w know that the h/w is now under the control of the
7403	 * driver.
7404	 */
7405	igb_get_hw_control(adapter);
7406}
7407
7408static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7409			     u8 qsel)
7410{
7411	u32 rar_low, rar_high;
7412	struct e1000_hw *hw = &adapter->hw;
7413
7414	/* HW expects these in little endian so we reverse the byte order
7415	 * from network order (big endian) to little endian
7416	 */
7417	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7418		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7419	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7420
7421	/* Indicate to hardware the Address is Valid. */
7422	rar_high |= E1000_RAH_AV;
7423
7424	if (hw->mac.type == e1000_82575)
7425		rar_high |= E1000_RAH_POOL_1 * qsel;
7426	else
7427		rar_high |= E1000_RAH_POOL_1 << qsel;
7428
7429	wr32(E1000_RAL(index), rar_low);
7430	wrfl();
7431	wr32(E1000_RAH(index), rar_high);
7432	wrfl();
7433}
7434
7435static int igb_set_vf_mac(struct igb_adapter *adapter,
7436			  int vf, unsigned char *mac_addr)
7437{
7438	struct e1000_hw *hw = &adapter->hw;
7439	/* VF MAC addresses start at end of receive addresses and moves
7440	 * towards the first, as a result a collision should not be possible
7441	 */
7442	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7443
7444	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7445
7446	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7447
7448	return 0;
7449}
7450
7451static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7452{
7453	struct igb_adapter *adapter = netdev_priv(netdev);
7454	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7455		return -EINVAL;
7456	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7457	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7458	dev_info(&adapter->pdev->dev,
7459		 "Reload the VF driver to make this change effective.");
7460	if (test_bit(__IGB_DOWN, &adapter->state)) {
7461		dev_warn(&adapter->pdev->dev,
7462			 "The VF MAC address has been set, but the PF device is not up.\n");
7463		dev_warn(&adapter->pdev->dev,
7464			 "Bring the PF device up before attempting to use the VF device.\n");
7465	}
7466	return igb_set_vf_mac(adapter, vf, mac);
7467}
7468
7469static int igb_link_mbps(int internal_link_speed)
7470{
7471	switch (internal_link_speed) {
7472	case SPEED_100:
7473		return 100;
7474	case SPEED_1000:
7475		return 1000;
7476	default:
7477		return 0;
7478	}
7479}
7480
7481static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7482				  int link_speed)
7483{
7484	int rf_dec, rf_int;
7485	u32 bcnrc_val;
7486
7487	if (tx_rate != 0) {
7488		/* Calculate the rate factor values to set */
7489		rf_int = link_speed / tx_rate;
7490		rf_dec = (link_speed - (rf_int * tx_rate));
7491		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7492			 tx_rate;
7493
7494		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7495		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7496			      E1000_RTTBCNRC_RF_INT_MASK);
7497		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7498	} else {
7499		bcnrc_val = 0;
7500	}
7501
7502	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7503	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7504	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7505	 */
7506	wr32(E1000_RTTBCNRM, 0x14);
7507	wr32(E1000_RTTBCNRC, bcnrc_val);
7508}
7509
7510static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7511{
7512	int actual_link_speed, i;
7513	bool reset_rate = false;
7514
7515	/* VF TX rate limit was not set or not supported */
7516	if ((adapter->vf_rate_link_speed == 0) ||
7517	    (adapter->hw.mac.type != e1000_82576))
7518		return;
7519
7520	actual_link_speed = igb_link_mbps(adapter->link_speed);
7521	if (actual_link_speed != adapter->vf_rate_link_speed) {
7522		reset_rate = true;
7523		adapter->vf_rate_link_speed = 0;
7524		dev_info(&adapter->pdev->dev,
7525			 "Link speed has been changed. VF Transmit rate is disabled\n");
7526	}
7527
7528	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7529		if (reset_rate)
7530			adapter->vf_data[i].tx_rate = 0;
7531
7532		igb_set_vf_rate_limit(&adapter->hw, i,
7533				      adapter->vf_data[i].tx_rate,
7534				      actual_link_speed);
7535	}
7536}
7537
7538static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7539{
7540	struct igb_adapter *adapter = netdev_priv(netdev);
7541	struct e1000_hw *hw = &adapter->hw;
7542	int actual_link_speed;
7543
7544	if (hw->mac.type != e1000_82576)
7545		return -EOPNOTSUPP;
7546
7547	actual_link_speed = igb_link_mbps(adapter->link_speed);
7548	if ((vf >= adapter->vfs_allocated_count) ||
7549	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7550	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7551		return -EINVAL;
7552
7553	adapter->vf_rate_link_speed = actual_link_speed;
7554	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7555	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7556
7557	return 0;
7558}
7559
7560static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7561				   bool setting)
7562{
7563	struct igb_adapter *adapter = netdev_priv(netdev);
7564	struct e1000_hw *hw = &adapter->hw;
7565	u32 reg_val, reg_offset;
7566
7567	if (!adapter->vfs_allocated_count)
7568		return -EOPNOTSUPP;
7569
7570	if (vf >= adapter->vfs_allocated_count)
7571		return -EINVAL;
7572
7573	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7574	reg_val = rd32(reg_offset);
7575	if (setting)
7576		reg_val |= ((1 << vf) |
7577			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7578	else
7579		reg_val &= ~((1 << vf) |
7580			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7581	wr32(reg_offset, reg_val);
7582
7583	adapter->vf_data[vf].spoofchk_enabled = setting;
7584	return E1000_SUCCESS;
7585}
7586
7587static int igb_ndo_get_vf_config(struct net_device *netdev,
7588				 int vf, struct ifla_vf_info *ivi)
7589{
7590	struct igb_adapter *adapter = netdev_priv(netdev);
7591	if (vf >= adapter->vfs_allocated_count)
7592		return -EINVAL;
7593	ivi->vf = vf;
7594	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7595	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7596	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7597	ivi->qos = adapter->vf_data[vf].pf_qos;
7598	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7599	return 0;
7600}
7601
7602static void igb_vmm_control(struct igb_adapter *adapter)
7603{
7604	struct e1000_hw *hw = &adapter->hw;
7605	u32 reg;
7606
7607	switch (hw->mac.type) {
7608	case e1000_82575:
7609	case e1000_i210:
7610	case e1000_i211:
7611	case e1000_i354:
7612	default:
7613		/* replication is not supported for 82575 */
7614		return;
7615	case e1000_82576:
7616		/* notify HW that the MAC is adding vlan tags */
7617		reg = rd32(E1000_DTXCTL);
7618		reg |= E1000_DTXCTL_VLAN_ADDED;
7619		wr32(E1000_DTXCTL, reg);
7620	case e1000_82580:
7621		/* enable replication vlan tag stripping */
7622		reg = rd32(E1000_RPLOLR);
7623		reg |= E1000_RPLOLR_STRVLAN;
7624		wr32(E1000_RPLOLR, reg);
7625	case e1000_i350:
7626		/* none of the above registers are supported by i350 */
7627		break;
7628	}
7629
7630	if (adapter->vfs_allocated_count) {
7631		igb_vmdq_set_loopback_pf(hw, true);
7632		igb_vmdq_set_replication_pf(hw, true);
7633		igb_vmdq_set_anti_spoofing_pf(hw, true,
7634					      adapter->vfs_allocated_count);
7635	} else {
7636		igb_vmdq_set_loopback_pf(hw, false);
7637		igb_vmdq_set_replication_pf(hw, false);
7638	}
7639}
7640
7641static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7642{
7643	struct e1000_hw *hw = &adapter->hw;
7644	u32 dmac_thr;
7645	u16 hwm;
7646
7647	if (hw->mac.type > e1000_82580) {
7648		if (adapter->flags & IGB_FLAG_DMAC) {
7649			u32 reg;
7650
7651			/* force threshold to 0. */
7652			wr32(E1000_DMCTXTH, 0);
7653
7654			/* DMA Coalescing high water mark needs to be greater
7655			 * than the Rx threshold. Set hwm to PBA - max frame
7656			 * size in 16B units, capping it at PBA - 6KB.
7657			 */
7658			hwm = 64 * pba - adapter->max_frame_size / 16;
7659			if (hwm < 64 * (pba - 6))
7660				hwm = 64 * (pba - 6);
7661			reg = rd32(E1000_FCRTC);
7662			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7663			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7664				& E1000_FCRTC_RTH_COAL_MASK);
7665			wr32(E1000_FCRTC, reg);
7666
7667			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7668			 * frame size, capping it at PBA - 10KB.
7669			 */
7670			dmac_thr = pba - adapter->max_frame_size / 512;
7671			if (dmac_thr < pba - 10)
7672				dmac_thr = pba - 10;
7673			reg = rd32(E1000_DMACR);
7674			reg &= ~E1000_DMACR_DMACTHR_MASK;
7675			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7676				& E1000_DMACR_DMACTHR_MASK);
7677
7678			/* transition to L0x or L1 if available..*/
7679			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7680
7681			/* watchdog timer= +-1000 usec in 32usec intervals */
7682			reg |= (1000 >> 5);
7683
7684			/* Disable BMC-to-OS Watchdog Enable */
7685			if (hw->mac.type != e1000_i354)
7686				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7687
7688			wr32(E1000_DMACR, reg);
7689
7690			/* no lower threshold to disable
7691			 * coalescing(smart fifb)-UTRESH=0
7692			 */
7693			wr32(E1000_DMCRTRH, 0);
7694
7695			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7696
7697			wr32(E1000_DMCTLX, reg);
7698
7699			/* free space in tx packet buffer to wake from
7700			 * DMA coal
7701			 */
7702			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7703			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7704
7705			/* make low power state decision controlled
7706			 * by DMA coal
7707			 */
7708			reg = rd32(E1000_PCIEMISC);
7709			reg &= ~E1000_PCIEMISC_LX_DECISION;
7710			wr32(E1000_PCIEMISC, reg);
7711		} /* endif adapter->dmac is not disabled */
7712	} else if (hw->mac.type == e1000_82580) {
7713		u32 reg = rd32(E1000_PCIEMISC);
7714		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7715		wr32(E1000_DMACR, 0);
7716	}
7717}
7718
7719/**
7720 *  igb_read_i2c_byte - Reads 8 bit word over I2C
7721 *  @hw: pointer to hardware structure
7722 *  @byte_offset: byte offset to read
7723 *  @dev_addr: device address
7724 *  @data: value read
7725 *
7726 *  Performs byte read operation over I2C interface at
7727 *  a specified device address.
7728 **/
7729s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7730		      u8 dev_addr, u8 *data)
7731{
7732	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7733	struct i2c_client *this_client = adapter->i2c_client;
7734	s32 status;
7735	u16 swfw_mask = 0;
7736
7737	if (!this_client)
7738		return E1000_ERR_I2C;
7739
7740	swfw_mask = E1000_SWFW_PHY0_SM;
7741
7742	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7743	    != E1000_SUCCESS)
7744		return E1000_ERR_SWFW_SYNC;
7745
7746	status = i2c_smbus_read_byte_data(this_client, byte_offset);
7747	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7748
7749	if (status < 0)
7750		return E1000_ERR_I2C;
7751	else {
7752		*data = status;
7753		return E1000_SUCCESS;
7754	}
7755}
7756
7757/**
7758 *  igb_write_i2c_byte - Writes 8 bit word over I2C
7759 *  @hw: pointer to hardware structure
7760 *  @byte_offset: byte offset to write
7761 *  @dev_addr: device address
7762 *  @data: value to write
7763 *
7764 *  Performs byte write operation over I2C interface at
7765 *  a specified device address.
7766 **/
7767s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7768		       u8 dev_addr, u8 data)
7769{
7770	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7771	struct i2c_client *this_client = adapter->i2c_client;
7772	s32 status;
7773	u16 swfw_mask = E1000_SWFW_PHY0_SM;
7774
7775	if (!this_client)
7776		return E1000_ERR_I2C;
7777
7778	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7779		return E1000_ERR_SWFW_SYNC;
7780	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7781	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7782
7783	if (status)
7784		return E1000_ERR_I2C;
7785	else
7786		return E1000_SUCCESS;
7787
7788}
7789/* igb_main.c */
7790