igb_main.c revision 6ab5f7b2981e842e318ff48c708aaaa2a5a6a43e
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2014 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, see <http://www.gnu.org/licenses/>.
17
18  The full GNU General Public License is included in this distribution in
19  the file called "COPYING".
20
21  Contact Information:
22  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25*******************************************************************************/
26
27#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28
29#include <linux/module.h>
30#include <linux/types.h>
31#include <linux/init.h>
32#include <linux/bitops.h>
33#include <linux/vmalloc.h>
34#include <linux/pagemap.h>
35#include <linux/netdevice.h>
36#include <linux/ipv6.h>
37#include <linux/slab.h>
38#include <net/checksum.h>
39#include <net/ip6_checksum.h>
40#include <linux/net_tstamp.h>
41#include <linux/mii.h>
42#include <linux/ethtool.h>
43#include <linux/if.h>
44#include <linux/if_vlan.h>
45#include <linux/pci.h>
46#include <linux/pci-aspm.h>
47#include <linux/delay.h>
48#include <linux/interrupt.h>
49#include <linux/ip.h>
50#include <linux/tcp.h>
51#include <linux/sctp.h>
52#include <linux/if_ether.h>
53#include <linux/aer.h>
54#include <linux/prefetch.h>
55#include <linux/pm_runtime.h>
56#ifdef CONFIG_IGB_DCA
57#include <linux/dca.h>
58#endif
59#include <linux/i2c.h>
60#include "igb.h"
61
62#define MAJ 5
63#define MIN 0
64#define BUILD 5
65#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66__stringify(BUILD) "-k"
67char igb_driver_name[] = "igb";
68char igb_driver_version[] = DRV_VERSION;
69static const char igb_driver_string[] =
70				"Intel(R) Gigabit Ethernet Network Driver";
71static const char igb_copyright[] =
72				"Copyright (c) 2007-2014 Intel Corporation.";
73
74static const struct e1000_info *igb_info_tbl[] = {
75	[board_82575] = &e1000_82575_info,
76};
77
78static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
79	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
99	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
104	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
105	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
106	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
107	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
108	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
109	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
110	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
111	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
112	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
113	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
114	/* required last entry */
115	{0, }
116};
117
118MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
119
120void igb_reset(struct igb_adapter *);
121static int igb_setup_all_tx_resources(struct igb_adapter *);
122static int igb_setup_all_rx_resources(struct igb_adapter *);
123static void igb_free_all_tx_resources(struct igb_adapter *);
124static void igb_free_all_rx_resources(struct igb_adapter *);
125static void igb_setup_mrqc(struct igb_adapter *);
126static int igb_probe(struct pci_dev *, const struct pci_device_id *);
127static void igb_remove(struct pci_dev *pdev);
128static int igb_sw_init(struct igb_adapter *);
129static int igb_open(struct net_device *);
130static int igb_close(struct net_device *);
131static void igb_configure(struct igb_adapter *);
132static void igb_configure_tx(struct igb_adapter *);
133static void igb_configure_rx(struct igb_adapter *);
134static void igb_clean_all_tx_rings(struct igb_adapter *);
135static void igb_clean_all_rx_rings(struct igb_adapter *);
136static void igb_clean_tx_ring(struct igb_ring *);
137static void igb_clean_rx_ring(struct igb_ring *);
138static void igb_set_rx_mode(struct net_device *);
139static void igb_update_phy_info(unsigned long);
140static void igb_watchdog(unsigned long);
141static void igb_watchdog_task(struct work_struct *);
142static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
143static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
144						 struct rtnl_link_stats64 *stats);
145static int igb_change_mtu(struct net_device *, int);
146static int igb_set_mac(struct net_device *, void *);
147static void igb_set_uta(struct igb_adapter *adapter);
148static irqreturn_t igb_intr(int irq, void *);
149static irqreturn_t igb_intr_msi(int irq, void *);
150static irqreturn_t igb_msix_other(int irq, void *);
151static irqreturn_t igb_msix_ring(int irq, void *);
152#ifdef CONFIG_IGB_DCA
153static void igb_update_dca(struct igb_q_vector *);
154static void igb_setup_dca(struct igb_adapter *);
155#endif /* CONFIG_IGB_DCA */
156static int igb_poll(struct napi_struct *, int);
157static bool igb_clean_tx_irq(struct igb_q_vector *);
158static bool igb_clean_rx_irq(struct igb_q_vector *, int);
159static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
160static void igb_tx_timeout(struct net_device *);
161static void igb_reset_task(struct work_struct *);
162static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
163static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
164static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
165static void igb_restore_vlan(struct igb_adapter *);
166static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
167static void igb_ping_all_vfs(struct igb_adapter *);
168static void igb_msg_task(struct igb_adapter *);
169static void igb_vmm_control(struct igb_adapter *);
170static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
171static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
172static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
173static int igb_ndo_set_vf_vlan(struct net_device *netdev,
174			       int vf, u16 vlan, u8 qos);
175static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
176static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
177				   bool setting);
178static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
179				 struct ifla_vf_info *ivi);
180static void igb_check_vf_rate_limit(struct igb_adapter *);
181
182#ifdef CONFIG_PCI_IOV
183static int igb_vf_configure(struct igb_adapter *adapter, int vf);
184static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
185#endif
186
187#ifdef CONFIG_PM
188#ifdef CONFIG_PM_SLEEP
189static int igb_suspend(struct device *);
190#endif
191static int igb_resume(struct device *);
192#ifdef CONFIG_PM_RUNTIME
193static int igb_runtime_suspend(struct device *dev);
194static int igb_runtime_resume(struct device *dev);
195static int igb_runtime_idle(struct device *dev);
196#endif
197static const struct dev_pm_ops igb_pm_ops = {
198	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
199	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
200			igb_runtime_idle)
201};
202#endif
203static void igb_shutdown(struct pci_dev *);
204static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
205#ifdef CONFIG_IGB_DCA
206static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
207static struct notifier_block dca_notifier = {
208	.notifier_call	= igb_notify_dca,
209	.next		= NULL,
210	.priority	= 0
211};
212#endif
213#ifdef CONFIG_NET_POLL_CONTROLLER
214/* for netdump / net console */
215static void igb_netpoll(struct net_device *);
216#endif
217#ifdef CONFIG_PCI_IOV
218static unsigned int max_vfs = 0;
219module_param(max_vfs, uint, 0);
220MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
221                 "per physical function");
222#endif /* CONFIG_PCI_IOV */
223
224static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
225		     pci_channel_state_t);
226static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
227static void igb_io_resume(struct pci_dev *);
228
229static const struct pci_error_handlers igb_err_handler = {
230	.error_detected = igb_io_error_detected,
231	.slot_reset = igb_io_slot_reset,
232	.resume = igb_io_resume,
233};
234
235static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
236
237static struct pci_driver igb_driver = {
238	.name     = igb_driver_name,
239	.id_table = igb_pci_tbl,
240	.probe    = igb_probe,
241	.remove   = igb_remove,
242#ifdef CONFIG_PM
243	.driver.pm = &igb_pm_ops,
244#endif
245	.shutdown = igb_shutdown,
246	.sriov_configure = igb_pci_sriov_configure,
247	.err_handler = &igb_err_handler
248};
249
250MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
251MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
252MODULE_LICENSE("GPL");
253MODULE_VERSION(DRV_VERSION);
254
255#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
256static int debug = -1;
257module_param(debug, int, 0);
258MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
259
260struct igb_reg_info {
261	u32 ofs;
262	char *name;
263};
264
265static const struct igb_reg_info igb_reg_info_tbl[] = {
266
267	/* General Registers */
268	{E1000_CTRL, "CTRL"},
269	{E1000_STATUS, "STATUS"},
270	{E1000_CTRL_EXT, "CTRL_EXT"},
271
272	/* Interrupt Registers */
273	{E1000_ICR, "ICR"},
274
275	/* RX Registers */
276	{E1000_RCTL, "RCTL"},
277	{E1000_RDLEN(0), "RDLEN"},
278	{E1000_RDH(0), "RDH"},
279	{E1000_RDT(0), "RDT"},
280	{E1000_RXDCTL(0), "RXDCTL"},
281	{E1000_RDBAL(0), "RDBAL"},
282	{E1000_RDBAH(0), "RDBAH"},
283
284	/* TX Registers */
285	{E1000_TCTL, "TCTL"},
286	{E1000_TDBAL(0), "TDBAL"},
287	{E1000_TDBAH(0), "TDBAH"},
288	{E1000_TDLEN(0), "TDLEN"},
289	{E1000_TDH(0), "TDH"},
290	{E1000_TDT(0), "TDT"},
291	{E1000_TXDCTL(0), "TXDCTL"},
292	{E1000_TDFH, "TDFH"},
293	{E1000_TDFT, "TDFT"},
294	{E1000_TDFHS, "TDFHS"},
295	{E1000_TDFPC, "TDFPC"},
296
297	/* List Terminator */
298	{}
299};
300
301/* igb_regdump - register printout routine */
302static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
303{
304	int n = 0;
305	char rname[16];
306	u32 regs[8];
307
308	switch (reginfo->ofs) {
309	case E1000_RDLEN(0):
310		for (n = 0; n < 4; n++)
311			regs[n] = rd32(E1000_RDLEN(n));
312		break;
313	case E1000_RDH(0):
314		for (n = 0; n < 4; n++)
315			regs[n] = rd32(E1000_RDH(n));
316		break;
317	case E1000_RDT(0):
318		for (n = 0; n < 4; n++)
319			regs[n] = rd32(E1000_RDT(n));
320		break;
321	case E1000_RXDCTL(0):
322		for (n = 0; n < 4; n++)
323			regs[n] = rd32(E1000_RXDCTL(n));
324		break;
325	case E1000_RDBAL(0):
326		for (n = 0; n < 4; n++)
327			regs[n] = rd32(E1000_RDBAL(n));
328		break;
329	case E1000_RDBAH(0):
330		for (n = 0; n < 4; n++)
331			regs[n] = rd32(E1000_RDBAH(n));
332		break;
333	case E1000_TDBAL(0):
334		for (n = 0; n < 4; n++)
335			regs[n] = rd32(E1000_RDBAL(n));
336		break;
337	case E1000_TDBAH(0):
338		for (n = 0; n < 4; n++)
339			regs[n] = rd32(E1000_TDBAH(n));
340		break;
341	case E1000_TDLEN(0):
342		for (n = 0; n < 4; n++)
343			regs[n] = rd32(E1000_TDLEN(n));
344		break;
345	case E1000_TDH(0):
346		for (n = 0; n < 4; n++)
347			regs[n] = rd32(E1000_TDH(n));
348		break;
349	case E1000_TDT(0):
350		for (n = 0; n < 4; n++)
351			regs[n] = rd32(E1000_TDT(n));
352		break;
353	case E1000_TXDCTL(0):
354		for (n = 0; n < 4; n++)
355			regs[n] = rd32(E1000_TXDCTL(n));
356		break;
357	default:
358		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
359		return;
360	}
361
362	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
363	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
364		regs[2], regs[3]);
365}
366
367/* igb_dump - Print registers, Tx-rings and Rx-rings */
368static void igb_dump(struct igb_adapter *adapter)
369{
370	struct net_device *netdev = adapter->netdev;
371	struct e1000_hw *hw = &adapter->hw;
372	struct igb_reg_info *reginfo;
373	struct igb_ring *tx_ring;
374	union e1000_adv_tx_desc *tx_desc;
375	struct my_u0 { u64 a; u64 b; } *u0;
376	struct igb_ring *rx_ring;
377	union e1000_adv_rx_desc *rx_desc;
378	u32 staterr;
379	u16 i, n;
380
381	if (!netif_msg_hw(adapter))
382		return;
383
384	/* Print netdevice Info */
385	if (netdev) {
386		dev_info(&adapter->pdev->dev, "Net device Info\n");
387		pr_info("Device Name     state            trans_start      "
388			"last_rx\n");
389		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
390			netdev->state, netdev->trans_start, netdev->last_rx);
391	}
392
393	/* Print Registers */
394	dev_info(&adapter->pdev->dev, "Register Dump\n");
395	pr_info(" Register Name   Value\n");
396	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
397	     reginfo->name; reginfo++) {
398		igb_regdump(hw, reginfo);
399	}
400
401	/* Print TX Ring Summary */
402	if (!netdev || !netif_running(netdev))
403		goto exit;
404
405	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
406	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
407	for (n = 0; n < adapter->num_tx_queues; n++) {
408		struct igb_tx_buffer *buffer_info;
409		tx_ring = adapter->tx_ring[n];
410		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
411		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
412			n, tx_ring->next_to_use, tx_ring->next_to_clean,
413			(u64)dma_unmap_addr(buffer_info, dma),
414			dma_unmap_len(buffer_info, len),
415			buffer_info->next_to_watch,
416			(u64)buffer_info->time_stamp);
417	}
418
419	/* Print TX Rings */
420	if (!netif_msg_tx_done(adapter))
421		goto rx_ring_summary;
422
423	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
424
425	/* Transmit Descriptor Formats
426	 *
427	 * Advanced Transmit Descriptor
428	 *   +--------------------------------------------------------------+
429	 * 0 |         Buffer Address [63:0]                                |
430	 *   +--------------------------------------------------------------+
431	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
432	 *   +--------------------------------------------------------------+
433	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
434	 */
435
436	for (n = 0; n < adapter->num_tx_queues; n++) {
437		tx_ring = adapter->tx_ring[n];
438		pr_info("------------------------------------\n");
439		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
440		pr_info("------------------------------------\n");
441		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
442			"[bi->dma       ] leng  ntw timestamp        "
443			"bi->skb\n");
444
445		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
446			const char *next_desc;
447			struct igb_tx_buffer *buffer_info;
448			tx_desc = IGB_TX_DESC(tx_ring, i);
449			buffer_info = &tx_ring->tx_buffer_info[i];
450			u0 = (struct my_u0 *)tx_desc;
451			if (i == tx_ring->next_to_use &&
452			    i == tx_ring->next_to_clean)
453				next_desc = " NTC/U";
454			else if (i == tx_ring->next_to_use)
455				next_desc = " NTU";
456			else if (i == tx_ring->next_to_clean)
457				next_desc = " NTC";
458			else
459				next_desc = "";
460
461			pr_info("T [0x%03X]    %016llX %016llX %016llX"
462				" %04X  %p %016llX %p%s\n", i,
463				le64_to_cpu(u0->a),
464				le64_to_cpu(u0->b),
465				(u64)dma_unmap_addr(buffer_info, dma),
466				dma_unmap_len(buffer_info, len),
467				buffer_info->next_to_watch,
468				(u64)buffer_info->time_stamp,
469				buffer_info->skb, next_desc);
470
471			if (netif_msg_pktdata(adapter) && buffer_info->skb)
472				print_hex_dump(KERN_INFO, "",
473					DUMP_PREFIX_ADDRESS,
474					16, 1, buffer_info->skb->data,
475					dma_unmap_len(buffer_info, len),
476					true);
477		}
478	}
479
480	/* Print RX Rings Summary */
481rx_ring_summary:
482	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
483	pr_info("Queue [NTU] [NTC]\n");
484	for (n = 0; n < adapter->num_rx_queues; n++) {
485		rx_ring = adapter->rx_ring[n];
486		pr_info(" %5d %5X %5X\n",
487			n, rx_ring->next_to_use, rx_ring->next_to_clean);
488	}
489
490	/* Print RX Rings */
491	if (!netif_msg_rx_status(adapter))
492		goto exit;
493
494	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
495
496	/* Advanced Receive Descriptor (Read) Format
497	 *    63                                           1        0
498	 *    +-----------------------------------------------------+
499	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
500	 *    +----------------------------------------------+------+
501	 *  8 |       Header Buffer Address [63:1]           |  DD  |
502	 *    +-----------------------------------------------------+
503	 *
504	 *
505	 * Advanced Receive Descriptor (Write-Back) Format
506	 *
507	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
508	 *   +------------------------------------------------------+
509	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
510	 *   | Checksum   Ident  |   |           |    | Type | Type |
511	 *   +------------------------------------------------------+
512	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
513	 *   +------------------------------------------------------+
514	 *   63       48 47    32 31            20 19               0
515	 */
516
517	for (n = 0; n < adapter->num_rx_queues; n++) {
518		rx_ring = adapter->rx_ring[n];
519		pr_info("------------------------------------\n");
520		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
521		pr_info("------------------------------------\n");
522		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
523			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
524		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
525			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
526
527		for (i = 0; i < rx_ring->count; i++) {
528			const char *next_desc;
529			struct igb_rx_buffer *buffer_info;
530			buffer_info = &rx_ring->rx_buffer_info[i];
531			rx_desc = IGB_RX_DESC(rx_ring, i);
532			u0 = (struct my_u0 *)rx_desc;
533			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
534
535			if (i == rx_ring->next_to_use)
536				next_desc = " NTU";
537			else if (i == rx_ring->next_to_clean)
538				next_desc = " NTC";
539			else
540				next_desc = "";
541
542			if (staterr & E1000_RXD_STAT_DD) {
543				/* Descriptor Done */
544				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
545					"RWB", i,
546					le64_to_cpu(u0->a),
547					le64_to_cpu(u0->b),
548					next_desc);
549			} else {
550				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
551					"R  ", i,
552					le64_to_cpu(u0->a),
553					le64_to_cpu(u0->b),
554					(u64)buffer_info->dma,
555					next_desc);
556
557				if (netif_msg_pktdata(adapter) &&
558				    buffer_info->dma && buffer_info->page) {
559					print_hex_dump(KERN_INFO, "",
560					  DUMP_PREFIX_ADDRESS,
561					  16, 1,
562					  page_address(buffer_info->page) +
563						      buffer_info->page_offset,
564					  IGB_RX_BUFSZ, true);
565				}
566			}
567		}
568	}
569
570exit:
571	return;
572}
573
574/**
575 *  igb_get_i2c_data - Reads the I2C SDA data bit
576 *  @hw: pointer to hardware structure
577 *  @i2cctl: Current value of I2CCTL register
578 *
579 *  Returns the I2C data bit value
580 **/
581static int igb_get_i2c_data(void *data)
582{
583	struct igb_adapter *adapter = (struct igb_adapter *)data;
584	struct e1000_hw *hw = &adapter->hw;
585	s32 i2cctl = rd32(E1000_I2CPARAMS);
586
587	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
588}
589
590/**
591 *  igb_set_i2c_data - Sets the I2C data bit
592 *  @data: pointer to hardware structure
593 *  @state: I2C data value (0 or 1) to set
594 *
595 *  Sets the I2C data bit
596 **/
597static void igb_set_i2c_data(void *data, int state)
598{
599	struct igb_adapter *adapter = (struct igb_adapter *)data;
600	struct e1000_hw *hw = &adapter->hw;
601	s32 i2cctl = rd32(E1000_I2CPARAMS);
602
603	if (state)
604		i2cctl |= E1000_I2C_DATA_OUT;
605	else
606		i2cctl &= ~E1000_I2C_DATA_OUT;
607
608	i2cctl &= ~E1000_I2C_DATA_OE_N;
609	i2cctl |= E1000_I2C_CLK_OE_N;
610	wr32(E1000_I2CPARAMS, i2cctl);
611	wrfl();
612
613}
614
615/**
616 *  igb_set_i2c_clk - Sets the I2C SCL clock
617 *  @data: pointer to hardware structure
618 *  @state: state to set clock
619 *
620 *  Sets the I2C clock line to state
621 **/
622static void igb_set_i2c_clk(void *data, int state)
623{
624	struct igb_adapter *adapter = (struct igb_adapter *)data;
625	struct e1000_hw *hw = &adapter->hw;
626	s32 i2cctl = rd32(E1000_I2CPARAMS);
627
628	if (state) {
629		i2cctl |= E1000_I2C_CLK_OUT;
630		i2cctl &= ~E1000_I2C_CLK_OE_N;
631	} else {
632		i2cctl &= ~E1000_I2C_CLK_OUT;
633		i2cctl &= ~E1000_I2C_CLK_OE_N;
634	}
635	wr32(E1000_I2CPARAMS, i2cctl);
636	wrfl();
637}
638
639/**
640 *  igb_get_i2c_clk - Gets the I2C SCL clock state
641 *  @data: pointer to hardware structure
642 *
643 *  Gets the I2C clock state
644 **/
645static int igb_get_i2c_clk(void *data)
646{
647	struct igb_adapter *adapter = (struct igb_adapter *)data;
648	struct e1000_hw *hw = &adapter->hw;
649	s32 i2cctl = rd32(E1000_I2CPARAMS);
650
651	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
652}
653
654static const struct i2c_algo_bit_data igb_i2c_algo = {
655	.setsda		= igb_set_i2c_data,
656	.setscl		= igb_set_i2c_clk,
657	.getsda		= igb_get_i2c_data,
658	.getscl		= igb_get_i2c_clk,
659	.udelay		= 5,
660	.timeout	= 20,
661};
662
663/**
664 *  igb_get_hw_dev - return device
665 *  @hw: pointer to hardware structure
666 *
667 *  used by hardware layer to print debugging information
668 **/
669struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
670{
671	struct igb_adapter *adapter = hw->back;
672	return adapter->netdev;
673}
674
675/**
676 *  igb_init_module - Driver Registration Routine
677 *
678 *  igb_init_module is the first routine called when the driver is
679 *  loaded. All it does is register with the PCI subsystem.
680 **/
681static int __init igb_init_module(void)
682{
683	int ret;
684	pr_info("%s - version %s\n",
685	       igb_driver_string, igb_driver_version);
686
687	pr_info("%s\n", igb_copyright);
688
689#ifdef CONFIG_IGB_DCA
690	dca_register_notify(&dca_notifier);
691#endif
692	ret = pci_register_driver(&igb_driver);
693	return ret;
694}
695
696module_init(igb_init_module);
697
698/**
699 *  igb_exit_module - Driver Exit Cleanup Routine
700 *
701 *  igb_exit_module is called just before the driver is removed
702 *  from memory.
703 **/
704static void __exit igb_exit_module(void)
705{
706#ifdef CONFIG_IGB_DCA
707	dca_unregister_notify(&dca_notifier);
708#endif
709	pci_unregister_driver(&igb_driver);
710}
711
712module_exit(igb_exit_module);
713
714#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
715/**
716 *  igb_cache_ring_register - Descriptor ring to register mapping
717 *  @adapter: board private structure to initialize
718 *
719 *  Once we know the feature-set enabled for the device, we'll cache
720 *  the register offset the descriptor ring is assigned to.
721 **/
722static void igb_cache_ring_register(struct igb_adapter *adapter)
723{
724	int i = 0, j = 0;
725	u32 rbase_offset = adapter->vfs_allocated_count;
726
727	switch (adapter->hw.mac.type) {
728	case e1000_82576:
729		/* The queues are allocated for virtualization such that VF 0
730		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
731		 * In order to avoid collision we start at the first free queue
732		 * and continue consuming queues in the same sequence
733		 */
734		if (adapter->vfs_allocated_count) {
735			for (; i < adapter->rss_queues; i++)
736				adapter->rx_ring[i]->reg_idx = rbase_offset +
737							       Q_IDX_82576(i);
738		}
739	case e1000_82575:
740	case e1000_82580:
741	case e1000_i350:
742	case e1000_i354:
743	case e1000_i210:
744	case e1000_i211:
745	default:
746		for (; i < adapter->num_rx_queues; i++)
747			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
748		for (; j < adapter->num_tx_queues; j++)
749			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
750		break;
751	}
752}
753
754/**
755 *  igb_write_ivar - configure ivar for given MSI-X vector
756 *  @hw: pointer to the HW structure
757 *  @msix_vector: vector number we are allocating to a given ring
758 *  @index: row index of IVAR register to write within IVAR table
759 *  @offset: column offset of in IVAR, should be multiple of 8
760 *
761 *  This function is intended to handle the writing of the IVAR register
762 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
763 *  each containing an cause allocation for an Rx and Tx ring, and a
764 *  variable number of rows depending on the number of queues supported.
765 **/
766static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
767			   int index, int offset)
768{
769	u32 ivar = array_rd32(E1000_IVAR0, index);
770
771	/* clear any bits that are currently set */
772	ivar &= ~((u32)0xFF << offset);
773
774	/* write vector and valid bit */
775	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
776
777	array_wr32(E1000_IVAR0, index, ivar);
778}
779
780#define IGB_N0_QUEUE -1
781static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
782{
783	struct igb_adapter *adapter = q_vector->adapter;
784	struct e1000_hw *hw = &adapter->hw;
785	int rx_queue = IGB_N0_QUEUE;
786	int tx_queue = IGB_N0_QUEUE;
787	u32 msixbm = 0;
788
789	if (q_vector->rx.ring)
790		rx_queue = q_vector->rx.ring->reg_idx;
791	if (q_vector->tx.ring)
792		tx_queue = q_vector->tx.ring->reg_idx;
793
794	switch (hw->mac.type) {
795	case e1000_82575:
796		/* The 82575 assigns vectors using a bitmask, which matches the
797		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
798		 * or more queues to a vector, we write the appropriate bits
799		 * into the MSIXBM register for that vector.
800		 */
801		if (rx_queue > IGB_N0_QUEUE)
802			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
803		if (tx_queue > IGB_N0_QUEUE)
804			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
805		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
806			msixbm |= E1000_EIMS_OTHER;
807		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
808		q_vector->eims_value = msixbm;
809		break;
810	case e1000_82576:
811		/* 82576 uses a table that essentially consists of 2 columns
812		 * with 8 rows.  The ordering is column-major so we use the
813		 * lower 3 bits as the row index, and the 4th bit as the
814		 * column offset.
815		 */
816		if (rx_queue > IGB_N0_QUEUE)
817			igb_write_ivar(hw, msix_vector,
818				       rx_queue & 0x7,
819				       (rx_queue & 0x8) << 1);
820		if (tx_queue > IGB_N0_QUEUE)
821			igb_write_ivar(hw, msix_vector,
822				       tx_queue & 0x7,
823				       ((tx_queue & 0x8) << 1) + 8);
824		q_vector->eims_value = 1 << msix_vector;
825		break;
826	case e1000_82580:
827	case e1000_i350:
828	case e1000_i354:
829	case e1000_i210:
830	case e1000_i211:
831		/* On 82580 and newer adapters the scheme is similar to 82576
832		 * however instead of ordering column-major we have things
833		 * ordered row-major.  So we traverse the table by using
834		 * bit 0 as the column offset, and the remaining bits as the
835		 * row index.
836		 */
837		if (rx_queue > IGB_N0_QUEUE)
838			igb_write_ivar(hw, msix_vector,
839				       rx_queue >> 1,
840				       (rx_queue & 0x1) << 4);
841		if (tx_queue > IGB_N0_QUEUE)
842			igb_write_ivar(hw, msix_vector,
843				       tx_queue >> 1,
844				       ((tx_queue & 0x1) << 4) + 8);
845		q_vector->eims_value = 1 << msix_vector;
846		break;
847	default:
848		BUG();
849		break;
850	}
851
852	/* add q_vector eims value to global eims_enable_mask */
853	adapter->eims_enable_mask |= q_vector->eims_value;
854
855	/* configure q_vector to set itr on first interrupt */
856	q_vector->set_itr = 1;
857}
858
859/**
860 *  igb_configure_msix - Configure MSI-X hardware
861 *  @adapter: board private structure to initialize
862 *
863 *  igb_configure_msix sets up the hardware to properly
864 *  generate MSI-X interrupts.
865 **/
866static void igb_configure_msix(struct igb_adapter *adapter)
867{
868	u32 tmp;
869	int i, vector = 0;
870	struct e1000_hw *hw = &adapter->hw;
871
872	adapter->eims_enable_mask = 0;
873
874	/* set vector for other causes, i.e. link changes */
875	switch (hw->mac.type) {
876	case e1000_82575:
877		tmp = rd32(E1000_CTRL_EXT);
878		/* enable MSI-X PBA support*/
879		tmp |= E1000_CTRL_EXT_PBA_CLR;
880
881		/* Auto-Mask interrupts upon ICR read. */
882		tmp |= E1000_CTRL_EXT_EIAME;
883		tmp |= E1000_CTRL_EXT_IRCA;
884
885		wr32(E1000_CTRL_EXT, tmp);
886
887		/* enable msix_other interrupt */
888		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
889		adapter->eims_other = E1000_EIMS_OTHER;
890
891		break;
892
893	case e1000_82576:
894	case e1000_82580:
895	case e1000_i350:
896	case e1000_i354:
897	case e1000_i210:
898	case e1000_i211:
899		/* Turn on MSI-X capability first, or our settings
900		 * won't stick.  And it will take days to debug.
901		 */
902		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
903		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
904		     E1000_GPIE_NSICR);
905
906		/* enable msix_other interrupt */
907		adapter->eims_other = 1 << vector;
908		tmp = (vector++ | E1000_IVAR_VALID) << 8;
909
910		wr32(E1000_IVAR_MISC, tmp);
911		break;
912	default:
913		/* do nothing, since nothing else supports MSI-X */
914		break;
915	} /* switch (hw->mac.type) */
916
917	adapter->eims_enable_mask |= adapter->eims_other;
918
919	for (i = 0; i < adapter->num_q_vectors; i++)
920		igb_assign_vector(adapter->q_vector[i], vector++);
921
922	wrfl();
923}
924
925/**
926 *  igb_request_msix - Initialize MSI-X interrupts
927 *  @adapter: board private structure to initialize
928 *
929 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
930 *  kernel.
931 **/
932static int igb_request_msix(struct igb_adapter *adapter)
933{
934	struct net_device *netdev = adapter->netdev;
935	struct e1000_hw *hw = &adapter->hw;
936	int i, err = 0, vector = 0, free_vector = 0;
937
938	err = request_irq(adapter->msix_entries[vector].vector,
939			  igb_msix_other, 0, netdev->name, adapter);
940	if (err)
941		goto err_out;
942
943	for (i = 0; i < adapter->num_q_vectors; i++) {
944		struct igb_q_vector *q_vector = adapter->q_vector[i];
945
946		vector++;
947
948		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
949
950		if (q_vector->rx.ring && q_vector->tx.ring)
951			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
952				q_vector->rx.ring->queue_index);
953		else if (q_vector->tx.ring)
954			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
955				q_vector->tx.ring->queue_index);
956		else if (q_vector->rx.ring)
957			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
958				q_vector->rx.ring->queue_index);
959		else
960			sprintf(q_vector->name, "%s-unused", netdev->name);
961
962		err = request_irq(adapter->msix_entries[vector].vector,
963				  igb_msix_ring, 0, q_vector->name,
964				  q_vector);
965		if (err)
966			goto err_free;
967	}
968
969	igb_configure_msix(adapter);
970	return 0;
971
972err_free:
973	/* free already assigned IRQs */
974	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
975
976	vector--;
977	for (i = 0; i < vector; i++) {
978		free_irq(adapter->msix_entries[free_vector++].vector,
979			 adapter->q_vector[i]);
980	}
981err_out:
982	return err;
983}
984
985/**
986 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
987 *  @adapter: board private structure to initialize
988 *  @v_idx: Index of vector to be freed
989 *
990 *  This function frees the memory allocated to the q_vector.
991 **/
992static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
993{
994	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
995
996	adapter->q_vector[v_idx] = NULL;
997
998	/* igb_get_stats64() might access the rings on this vector,
999	 * we must wait a grace period before freeing it.
1000	 */
1001	kfree_rcu(q_vector, rcu);
1002}
1003
1004/**
1005 *  igb_reset_q_vector - Reset config for interrupt vector
1006 *  @adapter: board private structure to initialize
1007 *  @v_idx: Index of vector to be reset
1008 *
1009 *  If NAPI is enabled it will delete any references to the
1010 *  NAPI struct. This is preparation for igb_free_q_vector.
1011 **/
1012static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1013{
1014	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1015
1016	if (q_vector->tx.ring)
1017		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1018
1019	if (q_vector->rx.ring)
1020		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1021
1022	netif_napi_del(&q_vector->napi);
1023
1024}
1025
1026static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1027{
1028	int v_idx = adapter->num_q_vectors;
1029
1030	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1031		pci_disable_msix(adapter->pdev);
1032	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1033		pci_disable_msi(adapter->pdev);
1034
1035	while (v_idx--)
1036		igb_reset_q_vector(adapter, v_idx);
1037}
1038
1039/**
1040 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1041 *  @adapter: board private structure to initialize
1042 *
1043 *  This function frees the memory allocated to the q_vectors.  In addition if
1044 *  NAPI is enabled it will delete any references to the NAPI struct prior
1045 *  to freeing the q_vector.
1046 **/
1047static void igb_free_q_vectors(struct igb_adapter *adapter)
1048{
1049	int v_idx = adapter->num_q_vectors;
1050
1051	adapter->num_tx_queues = 0;
1052	adapter->num_rx_queues = 0;
1053	adapter->num_q_vectors = 0;
1054
1055	while (v_idx--) {
1056		igb_reset_q_vector(adapter, v_idx);
1057		igb_free_q_vector(adapter, v_idx);
1058	}
1059}
1060
1061/**
1062 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1063 *  @adapter: board private structure to initialize
1064 *
1065 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1066 *  MSI-X interrupts allocated.
1067 */
1068static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1069{
1070	igb_free_q_vectors(adapter);
1071	igb_reset_interrupt_capability(adapter);
1072}
1073
1074/**
1075 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1076 *  @adapter: board private structure to initialize
1077 *  @msix: boolean value of MSIX capability
1078 *
1079 *  Attempt to configure interrupts using the best available
1080 *  capabilities of the hardware and kernel.
1081 **/
1082static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1083{
1084	int err;
1085	int numvecs, i;
1086
1087	if (!msix)
1088		goto msi_only;
1089	adapter->flags |= IGB_FLAG_HAS_MSIX;
1090
1091	/* Number of supported queues. */
1092	adapter->num_rx_queues = adapter->rss_queues;
1093	if (adapter->vfs_allocated_count)
1094		adapter->num_tx_queues = 1;
1095	else
1096		adapter->num_tx_queues = adapter->rss_queues;
1097
1098	/* start with one vector for every Rx queue */
1099	numvecs = adapter->num_rx_queues;
1100
1101	/* if Tx handler is separate add 1 for every Tx queue */
1102	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1103		numvecs += adapter->num_tx_queues;
1104
1105	/* store the number of vectors reserved for queues */
1106	adapter->num_q_vectors = numvecs;
1107
1108	/* add 1 vector for link status interrupts */
1109	numvecs++;
1110	for (i = 0; i < numvecs; i++)
1111		adapter->msix_entries[i].entry = i;
1112
1113	err = pci_enable_msix_range(adapter->pdev,
1114				    adapter->msix_entries,
1115				    numvecs,
1116				    numvecs);
1117	if (err > 0)
1118		return;
1119
1120	igb_reset_interrupt_capability(adapter);
1121
1122	/* If we can't do MSI-X, try MSI */
1123msi_only:
1124#ifdef CONFIG_PCI_IOV
1125	/* disable SR-IOV for non MSI-X configurations */
1126	if (adapter->vf_data) {
1127		struct e1000_hw *hw = &adapter->hw;
1128		/* disable iov and allow time for transactions to clear */
1129		pci_disable_sriov(adapter->pdev);
1130		msleep(500);
1131
1132		kfree(adapter->vf_data);
1133		adapter->vf_data = NULL;
1134		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1135		wrfl();
1136		msleep(100);
1137		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1138	}
1139#endif
1140	adapter->vfs_allocated_count = 0;
1141	adapter->rss_queues = 1;
1142	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1143	adapter->num_rx_queues = 1;
1144	adapter->num_tx_queues = 1;
1145	adapter->num_q_vectors = 1;
1146	if (!pci_enable_msi(adapter->pdev))
1147		adapter->flags |= IGB_FLAG_HAS_MSI;
1148}
1149
1150static void igb_add_ring(struct igb_ring *ring,
1151			 struct igb_ring_container *head)
1152{
1153	head->ring = ring;
1154	head->count++;
1155}
1156
1157/**
1158 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1159 *  @adapter: board private structure to initialize
1160 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1161 *  @v_idx: index of vector in adapter struct
1162 *  @txr_count: total number of Tx rings to allocate
1163 *  @txr_idx: index of first Tx ring to allocate
1164 *  @rxr_count: total number of Rx rings to allocate
1165 *  @rxr_idx: index of first Rx ring to allocate
1166 *
1167 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1168 **/
1169static int igb_alloc_q_vector(struct igb_adapter *adapter,
1170			      int v_count, int v_idx,
1171			      int txr_count, int txr_idx,
1172			      int rxr_count, int rxr_idx)
1173{
1174	struct igb_q_vector *q_vector;
1175	struct igb_ring *ring;
1176	int ring_count, size;
1177
1178	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1179	if (txr_count > 1 || rxr_count > 1)
1180		return -ENOMEM;
1181
1182	ring_count = txr_count + rxr_count;
1183	size = sizeof(struct igb_q_vector) +
1184	       (sizeof(struct igb_ring) * ring_count);
1185
1186	/* allocate q_vector and rings */
1187	q_vector = adapter->q_vector[v_idx];
1188	if (!q_vector)
1189		q_vector = kzalloc(size, GFP_KERNEL);
1190	if (!q_vector)
1191		return -ENOMEM;
1192
1193	/* initialize NAPI */
1194	netif_napi_add(adapter->netdev, &q_vector->napi,
1195		       igb_poll, 64);
1196
1197	/* tie q_vector and adapter together */
1198	adapter->q_vector[v_idx] = q_vector;
1199	q_vector->adapter = adapter;
1200
1201	/* initialize work limits */
1202	q_vector->tx.work_limit = adapter->tx_work_limit;
1203
1204	/* initialize ITR configuration */
1205	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1206	q_vector->itr_val = IGB_START_ITR;
1207
1208	/* initialize pointer to rings */
1209	ring = q_vector->ring;
1210
1211	/* intialize ITR */
1212	if (rxr_count) {
1213		/* rx or rx/tx vector */
1214		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1215			q_vector->itr_val = adapter->rx_itr_setting;
1216	} else {
1217		/* tx only vector */
1218		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1219			q_vector->itr_val = adapter->tx_itr_setting;
1220	}
1221
1222	if (txr_count) {
1223		/* assign generic ring traits */
1224		ring->dev = &adapter->pdev->dev;
1225		ring->netdev = adapter->netdev;
1226
1227		/* configure backlink on ring */
1228		ring->q_vector = q_vector;
1229
1230		/* update q_vector Tx values */
1231		igb_add_ring(ring, &q_vector->tx);
1232
1233		/* For 82575, context index must be unique per ring. */
1234		if (adapter->hw.mac.type == e1000_82575)
1235			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1236
1237		/* apply Tx specific ring traits */
1238		ring->count = adapter->tx_ring_count;
1239		ring->queue_index = txr_idx;
1240
1241		u64_stats_init(&ring->tx_syncp);
1242		u64_stats_init(&ring->tx_syncp2);
1243
1244		/* assign ring to adapter */
1245		adapter->tx_ring[txr_idx] = ring;
1246
1247		/* push pointer to next ring */
1248		ring++;
1249	}
1250
1251	if (rxr_count) {
1252		/* assign generic ring traits */
1253		ring->dev = &adapter->pdev->dev;
1254		ring->netdev = adapter->netdev;
1255
1256		/* configure backlink on ring */
1257		ring->q_vector = q_vector;
1258
1259		/* update q_vector Rx values */
1260		igb_add_ring(ring, &q_vector->rx);
1261
1262		/* set flag indicating ring supports SCTP checksum offload */
1263		if (adapter->hw.mac.type >= e1000_82576)
1264			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1265
1266		/*
1267		 * On i350, i354, i210, and i211, loopback VLAN packets
1268		 * have the tag byte-swapped.
1269		 */
1270		if (adapter->hw.mac.type >= e1000_i350)
1271			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1272
1273		/* apply Rx specific ring traits */
1274		ring->count = adapter->rx_ring_count;
1275		ring->queue_index = rxr_idx;
1276
1277		u64_stats_init(&ring->rx_syncp);
1278
1279		/* assign ring to adapter */
1280		adapter->rx_ring[rxr_idx] = ring;
1281	}
1282
1283	return 0;
1284}
1285
1286
1287/**
1288 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1289 *  @adapter: board private structure to initialize
1290 *
1291 *  We allocate one q_vector per queue interrupt.  If allocation fails we
1292 *  return -ENOMEM.
1293 **/
1294static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1295{
1296	int q_vectors = adapter->num_q_vectors;
1297	int rxr_remaining = adapter->num_rx_queues;
1298	int txr_remaining = adapter->num_tx_queues;
1299	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1300	int err;
1301
1302	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1303		for (; rxr_remaining; v_idx++) {
1304			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1305						 0, 0, 1, rxr_idx);
1306
1307			if (err)
1308				goto err_out;
1309
1310			/* update counts and index */
1311			rxr_remaining--;
1312			rxr_idx++;
1313		}
1314	}
1315
1316	for (; v_idx < q_vectors; v_idx++) {
1317		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1318		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1319		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1320					 tqpv, txr_idx, rqpv, rxr_idx);
1321
1322		if (err)
1323			goto err_out;
1324
1325		/* update counts and index */
1326		rxr_remaining -= rqpv;
1327		txr_remaining -= tqpv;
1328		rxr_idx++;
1329		txr_idx++;
1330	}
1331
1332	return 0;
1333
1334err_out:
1335	adapter->num_tx_queues = 0;
1336	adapter->num_rx_queues = 0;
1337	adapter->num_q_vectors = 0;
1338
1339	while (v_idx--)
1340		igb_free_q_vector(adapter, v_idx);
1341
1342	return -ENOMEM;
1343}
1344
1345/**
1346 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1347 *  @adapter: board private structure to initialize
1348 *  @msix: boolean value of MSIX capability
1349 *
1350 *  This function initializes the interrupts and allocates all of the queues.
1351 **/
1352static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1353{
1354	struct pci_dev *pdev = adapter->pdev;
1355	int err;
1356
1357	igb_set_interrupt_capability(adapter, msix);
1358
1359	err = igb_alloc_q_vectors(adapter);
1360	if (err) {
1361		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1362		goto err_alloc_q_vectors;
1363	}
1364
1365	igb_cache_ring_register(adapter);
1366
1367	return 0;
1368
1369err_alloc_q_vectors:
1370	igb_reset_interrupt_capability(adapter);
1371	return err;
1372}
1373
1374/**
1375 *  igb_request_irq - initialize interrupts
1376 *  @adapter: board private structure to initialize
1377 *
1378 *  Attempts to configure interrupts using the best available
1379 *  capabilities of the hardware and kernel.
1380 **/
1381static int igb_request_irq(struct igb_adapter *adapter)
1382{
1383	struct net_device *netdev = adapter->netdev;
1384	struct pci_dev *pdev = adapter->pdev;
1385	int err = 0;
1386
1387	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1388		err = igb_request_msix(adapter);
1389		if (!err)
1390			goto request_done;
1391		/* fall back to MSI */
1392		igb_free_all_tx_resources(adapter);
1393		igb_free_all_rx_resources(adapter);
1394
1395		igb_clear_interrupt_scheme(adapter);
1396		err = igb_init_interrupt_scheme(adapter, false);
1397		if (err)
1398			goto request_done;
1399
1400		igb_setup_all_tx_resources(adapter);
1401		igb_setup_all_rx_resources(adapter);
1402		igb_configure(adapter);
1403	}
1404
1405	igb_assign_vector(adapter->q_vector[0], 0);
1406
1407	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1408		err = request_irq(pdev->irq, igb_intr_msi, 0,
1409				  netdev->name, adapter);
1410		if (!err)
1411			goto request_done;
1412
1413		/* fall back to legacy interrupts */
1414		igb_reset_interrupt_capability(adapter);
1415		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1416	}
1417
1418	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1419			  netdev->name, adapter);
1420
1421	if (err)
1422		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1423			err);
1424
1425request_done:
1426	return err;
1427}
1428
1429static void igb_free_irq(struct igb_adapter *adapter)
1430{
1431	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1432		int vector = 0, i;
1433
1434		free_irq(adapter->msix_entries[vector++].vector, adapter);
1435
1436		for (i = 0; i < adapter->num_q_vectors; i++)
1437			free_irq(adapter->msix_entries[vector++].vector,
1438				 adapter->q_vector[i]);
1439	} else {
1440		free_irq(adapter->pdev->irq, adapter);
1441	}
1442}
1443
1444/**
1445 *  igb_irq_disable - Mask off interrupt generation on the NIC
1446 *  @adapter: board private structure
1447 **/
1448static void igb_irq_disable(struct igb_adapter *adapter)
1449{
1450	struct e1000_hw *hw = &adapter->hw;
1451
1452	/* we need to be careful when disabling interrupts.  The VFs are also
1453	 * mapped into these registers and so clearing the bits can cause
1454	 * issues on the VF drivers so we only need to clear what we set
1455	 */
1456	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1457		u32 regval = rd32(E1000_EIAM);
1458		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1459		wr32(E1000_EIMC, adapter->eims_enable_mask);
1460		regval = rd32(E1000_EIAC);
1461		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1462	}
1463
1464	wr32(E1000_IAM, 0);
1465	wr32(E1000_IMC, ~0);
1466	wrfl();
1467	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1468		int i;
1469		for (i = 0; i < adapter->num_q_vectors; i++)
1470			synchronize_irq(adapter->msix_entries[i].vector);
1471	} else {
1472		synchronize_irq(adapter->pdev->irq);
1473	}
1474}
1475
1476/**
1477 *  igb_irq_enable - Enable default interrupt generation settings
1478 *  @adapter: board private structure
1479 **/
1480static void igb_irq_enable(struct igb_adapter *adapter)
1481{
1482	struct e1000_hw *hw = &adapter->hw;
1483
1484	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1486		u32 regval = rd32(E1000_EIAC);
1487		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1488		regval = rd32(E1000_EIAM);
1489		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1490		wr32(E1000_EIMS, adapter->eims_enable_mask);
1491		if (adapter->vfs_allocated_count) {
1492			wr32(E1000_MBVFIMR, 0xFF);
1493			ims |= E1000_IMS_VMMB;
1494		}
1495		wr32(E1000_IMS, ims);
1496	} else {
1497		wr32(E1000_IMS, IMS_ENABLE_MASK |
1498				E1000_IMS_DRSTA);
1499		wr32(E1000_IAM, IMS_ENABLE_MASK |
1500				E1000_IMS_DRSTA);
1501	}
1502}
1503
1504static void igb_update_mng_vlan(struct igb_adapter *adapter)
1505{
1506	struct e1000_hw *hw = &adapter->hw;
1507	u16 vid = adapter->hw.mng_cookie.vlan_id;
1508	u16 old_vid = adapter->mng_vlan_id;
1509
1510	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1511		/* add VID to filter table */
1512		igb_vfta_set(hw, vid, true);
1513		adapter->mng_vlan_id = vid;
1514	} else {
1515		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1516	}
1517
1518	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1519	    (vid != old_vid) &&
1520	    !test_bit(old_vid, adapter->active_vlans)) {
1521		/* remove VID from filter table */
1522		igb_vfta_set(hw, old_vid, false);
1523	}
1524}
1525
1526/**
1527 *  igb_release_hw_control - release control of the h/w to f/w
1528 *  @adapter: address of board private structure
1529 *
1530 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1531 *  For ASF and Pass Through versions of f/w this means that the
1532 *  driver is no longer loaded.
1533 **/
1534static void igb_release_hw_control(struct igb_adapter *adapter)
1535{
1536	struct e1000_hw *hw = &adapter->hw;
1537	u32 ctrl_ext;
1538
1539	/* Let firmware take over control of h/w */
1540	ctrl_ext = rd32(E1000_CTRL_EXT);
1541	wr32(E1000_CTRL_EXT,
1542			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1543}
1544
1545/**
1546 *  igb_get_hw_control - get control of the h/w from f/w
1547 *  @adapter: address of board private structure
1548 *
1549 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1550 *  For ASF and Pass Through versions of f/w this means that
1551 *  the driver is loaded.
1552 **/
1553static void igb_get_hw_control(struct igb_adapter *adapter)
1554{
1555	struct e1000_hw *hw = &adapter->hw;
1556	u32 ctrl_ext;
1557
1558	/* Let firmware know the driver has taken over */
1559	ctrl_ext = rd32(E1000_CTRL_EXT);
1560	wr32(E1000_CTRL_EXT,
1561			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1562}
1563
1564/**
1565 *  igb_configure - configure the hardware for RX and TX
1566 *  @adapter: private board structure
1567 **/
1568static void igb_configure(struct igb_adapter *adapter)
1569{
1570	struct net_device *netdev = adapter->netdev;
1571	int i;
1572
1573	igb_get_hw_control(adapter);
1574	igb_set_rx_mode(netdev);
1575
1576	igb_restore_vlan(adapter);
1577
1578	igb_setup_tctl(adapter);
1579	igb_setup_mrqc(adapter);
1580	igb_setup_rctl(adapter);
1581
1582	igb_configure_tx(adapter);
1583	igb_configure_rx(adapter);
1584
1585	igb_rx_fifo_flush_82575(&adapter->hw);
1586
1587	/* call igb_desc_unused which always leaves
1588	 * at least 1 descriptor unused to make sure
1589	 * next_to_use != next_to_clean
1590	 */
1591	for (i = 0; i < adapter->num_rx_queues; i++) {
1592		struct igb_ring *ring = adapter->rx_ring[i];
1593		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1594	}
1595}
1596
1597/**
1598 *  igb_power_up_link - Power up the phy/serdes link
1599 *  @adapter: address of board private structure
1600 **/
1601void igb_power_up_link(struct igb_adapter *adapter)
1602{
1603	igb_reset_phy(&adapter->hw);
1604
1605	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1606		igb_power_up_phy_copper(&adapter->hw);
1607	else
1608		igb_power_up_serdes_link_82575(&adapter->hw);
1609}
1610
1611/**
1612 *  igb_power_down_link - Power down the phy/serdes link
1613 *  @adapter: address of board private structure
1614 */
1615static void igb_power_down_link(struct igb_adapter *adapter)
1616{
1617	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1618		igb_power_down_phy_copper_82575(&adapter->hw);
1619	else
1620		igb_shutdown_serdes_link_82575(&adapter->hw);
1621}
1622
1623/**
1624 * Detect and switch function for Media Auto Sense
1625 * @adapter: address of the board private structure
1626 **/
1627static void igb_check_swap_media(struct igb_adapter *adapter)
1628{
1629	struct e1000_hw *hw = &adapter->hw;
1630	u32 ctrl_ext, connsw;
1631	bool swap_now = false;
1632
1633	ctrl_ext = rd32(E1000_CTRL_EXT);
1634	connsw = rd32(E1000_CONNSW);
1635
1636	/* need to live swap if current media is copper and we have fiber/serdes
1637	 * to go to.
1638	 */
1639
1640	if ((hw->phy.media_type == e1000_media_type_copper) &&
1641	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1642		swap_now = true;
1643	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
1644		/* copper signal takes time to appear */
1645		if (adapter->copper_tries < 4) {
1646			adapter->copper_tries++;
1647			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1648			wr32(E1000_CONNSW, connsw);
1649			return;
1650		} else {
1651			adapter->copper_tries = 0;
1652			if ((connsw & E1000_CONNSW_PHYSD) &&
1653			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
1654				swap_now = true;
1655				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1656				wr32(E1000_CONNSW, connsw);
1657			}
1658		}
1659	}
1660
1661	if (!swap_now)
1662		return;
1663
1664	switch (hw->phy.media_type) {
1665	case e1000_media_type_copper:
1666		netdev_info(adapter->netdev,
1667			"MAS: changing media to fiber/serdes\n");
1668		ctrl_ext |=
1669			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1670		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1671		adapter->copper_tries = 0;
1672		break;
1673	case e1000_media_type_internal_serdes:
1674	case e1000_media_type_fiber:
1675		netdev_info(adapter->netdev,
1676			"MAS: changing media to copper\n");
1677		ctrl_ext &=
1678			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1679		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1680		break;
1681	default:
1682		/* shouldn't get here during regular operation */
1683		netdev_err(adapter->netdev,
1684			"AMS: Invalid media type found, returning\n");
1685		break;
1686	}
1687	wr32(E1000_CTRL_EXT, ctrl_ext);
1688}
1689
1690/**
1691 *  igb_up - Open the interface and prepare it to handle traffic
1692 *  @adapter: board private structure
1693 **/
1694int igb_up(struct igb_adapter *adapter)
1695{
1696	struct e1000_hw *hw = &adapter->hw;
1697	int i;
1698
1699	/* hardware has been reset, we need to reload some things */
1700	igb_configure(adapter);
1701
1702	clear_bit(__IGB_DOWN, &adapter->state);
1703
1704	for (i = 0; i < adapter->num_q_vectors; i++)
1705		napi_enable(&(adapter->q_vector[i]->napi));
1706
1707	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1708		igb_configure_msix(adapter);
1709	else
1710		igb_assign_vector(adapter->q_vector[0], 0);
1711
1712	/* Clear any pending interrupts. */
1713	rd32(E1000_ICR);
1714	igb_irq_enable(adapter);
1715
1716	/* notify VFs that reset has been completed */
1717	if (adapter->vfs_allocated_count) {
1718		u32 reg_data = rd32(E1000_CTRL_EXT);
1719		reg_data |= E1000_CTRL_EXT_PFRSTD;
1720		wr32(E1000_CTRL_EXT, reg_data);
1721	}
1722
1723	netif_tx_start_all_queues(adapter->netdev);
1724
1725	/* start the watchdog. */
1726	hw->mac.get_link_status = 1;
1727	schedule_work(&adapter->watchdog_task);
1728
1729	if ((adapter->flags & IGB_FLAG_EEE) &&
1730	    (!hw->dev_spec._82575.eee_disable))
1731		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1732
1733	return 0;
1734}
1735
1736void igb_down(struct igb_adapter *adapter)
1737{
1738	struct net_device *netdev = adapter->netdev;
1739	struct e1000_hw *hw = &adapter->hw;
1740	u32 tctl, rctl;
1741	int i;
1742
1743	/* signal that we're down so the interrupt handler does not
1744	 * reschedule our watchdog timer
1745	 */
1746	set_bit(__IGB_DOWN, &adapter->state);
1747
1748	/* disable receives in the hardware */
1749	rctl = rd32(E1000_RCTL);
1750	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1751	/* flush and sleep below */
1752
1753	netif_tx_stop_all_queues(netdev);
1754
1755	/* disable transmits in the hardware */
1756	tctl = rd32(E1000_TCTL);
1757	tctl &= ~E1000_TCTL_EN;
1758	wr32(E1000_TCTL, tctl);
1759	/* flush both disables and wait for them to finish */
1760	wrfl();
1761	msleep(10);
1762
1763	igb_irq_disable(adapter);
1764
1765	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1766
1767	for (i = 0; i < adapter->num_q_vectors; i++) {
1768		napi_synchronize(&(adapter->q_vector[i]->napi));
1769		napi_disable(&(adapter->q_vector[i]->napi));
1770	}
1771
1772
1773	del_timer_sync(&adapter->watchdog_timer);
1774	del_timer_sync(&adapter->phy_info_timer);
1775
1776	netif_carrier_off(netdev);
1777
1778	/* record the stats before reset*/
1779	spin_lock(&adapter->stats64_lock);
1780	igb_update_stats(adapter, &adapter->stats64);
1781	spin_unlock(&adapter->stats64_lock);
1782
1783	adapter->link_speed = 0;
1784	adapter->link_duplex = 0;
1785
1786	if (!pci_channel_offline(adapter->pdev))
1787		igb_reset(adapter);
1788	igb_clean_all_tx_rings(adapter);
1789	igb_clean_all_rx_rings(adapter);
1790#ifdef CONFIG_IGB_DCA
1791
1792	/* since we reset the hardware DCA settings were cleared */
1793	igb_setup_dca(adapter);
1794#endif
1795}
1796
1797void igb_reinit_locked(struct igb_adapter *adapter)
1798{
1799	WARN_ON(in_interrupt());
1800	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1801		msleep(1);
1802	igb_down(adapter);
1803	igb_up(adapter);
1804	clear_bit(__IGB_RESETTING, &adapter->state);
1805}
1806
1807/** igb_enable_mas - Media Autosense re-enable after swap
1808 *
1809 * @adapter: adapter struct
1810 **/
1811static s32 igb_enable_mas(struct igb_adapter *adapter)
1812{
1813	struct e1000_hw *hw = &adapter->hw;
1814	u32 connsw;
1815	s32 ret_val = 0;
1816
1817	connsw = rd32(E1000_CONNSW);
1818	if (!(hw->phy.media_type == e1000_media_type_copper))
1819		return ret_val;
1820
1821	/* configure for SerDes media detect */
1822	if (!(connsw & E1000_CONNSW_SERDESD)) {
1823		connsw |= E1000_CONNSW_ENRGSRC;
1824		connsw |= E1000_CONNSW_AUTOSENSE_EN;
1825		wr32(E1000_CONNSW, connsw);
1826		wrfl();
1827	} else if (connsw & E1000_CONNSW_SERDESD) {
1828		/* already SerDes, no need to enable anything */
1829		return ret_val;
1830	} else {
1831		netdev_info(adapter->netdev,
1832			"MAS: Unable to configure feature, disabling..\n");
1833		adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1834	}
1835	return ret_val;
1836}
1837
1838void igb_reset(struct igb_adapter *adapter)
1839{
1840	struct pci_dev *pdev = adapter->pdev;
1841	struct e1000_hw *hw = &adapter->hw;
1842	struct e1000_mac_info *mac = &hw->mac;
1843	struct e1000_fc_info *fc = &hw->fc;
1844	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1845
1846	/* Repartition Pba for greater than 9k mtu
1847	 * To take effect CTRL.RST is required.
1848	 */
1849	switch (mac->type) {
1850	case e1000_i350:
1851	case e1000_i354:
1852	case e1000_82580:
1853		pba = rd32(E1000_RXPBS);
1854		pba = igb_rxpbs_adjust_82580(pba);
1855		break;
1856	case e1000_82576:
1857		pba = rd32(E1000_RXPBS);
1858		pba &= E1000_RXPBS_SIZE_MASK_82576;
1859		break;
1860	case e1000_82575:
1861	case e1000_i210:
1862	case e1000_i211:
1863	default:
1864		pba = E1000_PBA_34K;
1865		break;
1866	}
1867
1868	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1869	    (mac->type < e1000_82576)) {
1870		/* adjust PBA for jumbo frames */
1871		wr32(E1000_PBA, pba);
1872
1873		/* To maintain wire speed transmits, the Tx FIFO should be
1874		 * large enough to accommodate two full transmit packets,
1875		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1876		 * the Rx FIFO should be large enough to accommodate at least
1877		 * one full receive packet and is similarly rounded up and
1878		 * expressed in KB.
1879		 */
1880		pba = rd32(E1000_PBA);
1881		/* upper 16 bits has Tx packet buffer allocation size in KB */
1882		tx_space = pba >> 16;
1883		/* lower 16 bits has Rx packet buffer allocation size in KB */
1884		pba &= 0xffff;
1885		/* the Tx fifo also stores 16 bytes of information about the Tx
1886		 * but don't include ethernet FCS because hardware appends it
1887		 */
1888		min_tx_space = (adapter->max_frame_size +
1889				sizeof(union e1000_adv_tx_desc) -
1890				ETH_FCS_LEN) * 2;
1891		min_tx_space = ALIGN(min_tx_space, 1024);
1892		min_tx_space >>= 10;
1893		/* software strips receive CRC, so leave room for it */
1894		min_rx_space = adapter->max_frame_size;
1895		min_rx_space = ALIGN(min_rx_space, 1024);
1896		min_rx_space >>= 10;
1897
1898		/* If current Tx allocation is less than the min Tx FIFO size,
1899		 * and the min Tx FIFO size is less than the current Rx FIFO
1900		 * allocation, take space away from current Rx allocation
1901		 */
1902		if (tx_space < min_tx_space &&
1903		    ((min_tx_space - tx_space) < pba)) {
1904			pba = pba - (min_tx_space - tx_space);
1905
1906			/* if short on Rx space, Rx wins and must trump Tx
1907			 * adjustment
1908			 */
1909			if (pba < min_rx_space)
1910				pba = min_rx_space;
1911		}
1912		wr32(E1000_PBA, pba);
1913	}
1914
1915	/* flow control settings */
1916	/* The high water mark must be low enough to fit one full frame
1917	 * (or the size used for early receive) above it in the Rx FIFO.
1918	 * Set it to the lower of:
1919	 * - 90% of the Rx FIFO size, or
1920	 * - the full Rx FIFO size minus one full frame
1921	 */
1922	hwm = min(((pba << 10) * 9 / 10),
1923			((pba << 10) - 2 * adapter->max_frame_size));
1924
1925	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1926	fc->low_water = fc->high_water - 16;
1927	fc->pause_time = 0xFFFF;
1928	fc->send_xon = 1;
1929	fc->current_mode = fc->requested_mode;
1930
1931	/* disable receive for all VFs and wait one second */
1932	if (adapter->vfs_allocated_count) {
1933		int i;
1934		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1935			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1936
1937		/* ping all the active vfs to let them know we are going down */
1938		igb_ping_all_vfs(adapter);
1939
1940		/* disable transmits and receives */
1941		wr32(E1000_VFRE, 0);
1942		wr32(E1000_VFTE, 0);
1943	}
1944
1945	/* Allow time for pending master requests to run */
1946	hw->mac.ops.reset_hw(hw);
1947	wr32(E1000_WUC, 0);
1948
1949	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1950		/* need to resetup here after media swap */
1951		adapter->ei.get_invariants(hw);
1952		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1953	}
1954	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1955		if (igb_enable_mas(adapter))
1956			dev_err(&pdev->dev,
1957				"Error enabling Media Auto Sense\n");
1958	}
1959	if (hw->mac.ops.init_hw(hw))
1960		dev_err(&pdev->dev, "Hardware Error\n");
1961
1962	/* Flow control settings reset on hardware reset, so guarantee flow
1963	 * control is off when forcing speed.
1964	 */
1965	if (!hw->mac.autoneg)
1966		igb_force_mac_fc(hw);
1967
1968	igb_init_dmac(adapter, pba);
1969#ifdef CONFIG_IGB_HWMON
1970	/* Re-initialize the thermal sensor on i350 devices. */
1971	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1972		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1973			/* If present, re-initialize the external thermal sensor
1974			 * interface.
1975			 */
1976			if (adapter->ets)
1977				mac->ops.init_thermal_sensor_thresh(hw);
1978		}
1979	}
1980#endif
1981	/* Re-establish EEE setting */
1982	if (hw->phy.media_type == e1000_media_type_copper) {
1983		switch (mac->type) {
1984		case e1000_i350:
1985		case e1000_i210:
1986		case e1000_i211:
1987			igb_set_eee_i350(hw);
1988			break;
1989		case e1000_i354:
1990			igb_set_eee_i354(hw);
1991			break;
1992		default:
1993			break;
1994		}
1995	}
1996	if (!netif_running(adapter->netdev))
1997		igb_power_down_link(adapter);
1998
1999	igb_update_mng_vlan(adapter);
2000
2001	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2002	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2003
2004	/* Re-enable PTP, where applicable. */
2005	igb_ptp_reset(adapter);
2006
2007	igb_get_phy_info(hw);
2008}
2009
2010static netdev_features_t igb_fix_features(struct net_device *netdev,
2011	netdev_features_t features)
2012{
2013	/* Since there is no support for separate Rx/Tx vlan accel
2014	 * enable/disable make sure Tx flag is always in same state as Rx.
2015	 */
2016	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2017		features |= NETIF_F_HW_VLAN_CTAG_TX;
2018	else
2019		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2020
2021	return features;
2022}
2023
2024static int igb_set_features(struct net_device *netdev,
2025	netdev_features_t features)
2026{
2027	netdev_features_t changed = netdev->features ^ features;
2028	struct igb_adapter *adapter = netdev_priv(netdev);
2029
2030	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2031		igb_vlan_mode(netdev, features);
2032
2033	if (!(changed & NETIF_F_RXALL))
2034		return 0;
2035
2036	netdev->features = features;
2037
2038	if (netif_running(netdev))
2039		igb_reinit_locked(adapter);
2040	else
2041		igb_reset(adapter);
2042
2043	return 0;
2044}
2045
2046static const struct net_device_ops igb_netdev_ops = {
2047	.ndo_open		= igb_open,
2048	.ndo_stop		= igb_close,
2049	.ndo_start_xmit		= igb_xmit_frame,
2050	.ndo_get_stats64	= igb_get_stats64,
2051	.ndo_set_rx_mode	= igb_set_rx_mode,
2052	.ndo_set_mac_address	= igb_set_mac,
2053	.ndo_change_mtu		= igb_change_mtu,
2054	.ndo_do_ioctl		= igb_ioctl,
2055	.ndo_tx_timeout		= igb_tx_timeout,
2056	.ndo_validate_addr	= eth_validate_addr,
2057	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2058	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2059	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2060	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2061	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
2062	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2063	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2064#ifdef CONFIG_NET_POLL_CONTROLLER
2065	.ndo_poll_controller	= igb_netpoll,
2066#endif
2067	.ndo_fix_features	= igb_fix_features,
2068	.ndo_set_features	= igb_set_features,
2069};
2070
2071/**
2072 * igb_set_fw_version - Configure version string for ethtool
2073 * @adapter: adapter struct
2074 **/
2075void igb_set_fw_version(struct igb_adapter *adapter)
2076{
2077	struct e1000_hw *hw = &adapter->hw;
2078	struct e1000_fw_version fw;
2079
2080	igb_get_fw_version(hw, &fw);
2081
2082	switch (hw->mac.type) {
2083	case e1000_i210:
2084	case e1000_i211:
2085		if (!(igb_get_flash_presence_i210(hw))) {
2086			snprintf(adapter->fw_version,
2087				 sizeof(adapter->fw_version),
2088				 "%2d.%2d-%d",
2089				 fw.invm_major, fw.invm_minor,
2090				 fw.invm_img_type);
2091			break;
2092		}
2093		/* fall through */
2094	default:
2095		/* if option is rom valid, display its version too */
2096		if (fw.or_valid) {
2097			snprintf(adapter->fw_version,
2098				 sizeof(adapter->fw_version),
2099				 "%d.%d, 0x%08x, %d.%d.%d",
2100				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2101				 fw.or_major, fw.or_build, fw.or_patch);
2102		/* no option rom */
2103		} else if (fw.etrack_id != 0X0000) {
2104			snprintf(adapter->fw_version,
2105			    sizeof(adapter->fw_version),
2106			    "%d.%d, 0x%08x",
2107			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2108		} else {
2109		snprintf(adapter->fw_version,
2110		    sizeof(adapter->fw_version),
2111		    "%d.%d.%d",
2112		    fw.eep_major, fw.eep_minor, fw.eep_build);
2113		}
2114		break;
2115	}
2116	return;
2117}
2118
2119/**
2120 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2121 *
2122 * @adapter: adapter struct
2123 **/
2124static void igb_init_mas(struct igb_adapter *adapter)
2125{
2126	struct e1000_hw *hw = &adapter->hw;
2127	u16 eeprom_data;
2128
2129	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2130	switch (hw->bus.func) {
2131	case E1000_FUNC_0:
2132		if (eeprom_data & IGB_MAS_ENABLE_0) {
2133			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2134			netdev_info(adapter->netdev,
2135				"MAS: Enabling Media Autosense for port %d\n",
2136				hw->bus.func);
2137		}
2138		break;
2139	case E1000_FUNC_1:
2140		if (eeprom_data & IGB_MAS_ENABLE_1) {
2141			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2142			netdev_info(adapter->netdev,
2143				"MAS: Enabling Media Autosense for port %d\n",
2144				hw->bus.func);
2145		}
2146		break;
2147	case E1000_FUNC_2:
2148		if (eeprom_data & IGB_MAS_ENABLE_2) {
2149			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2150			netdev_info(adapter->netdev,
2151				"MAS: Enabling Media Autosense for port %d\n",
2152				hw->bus.func);
2153		}
2154		break;
2155	case E1000_FUNC_3:
2156		if (eeprom_data & IGB_MAS_ENABLE_3) {
2157			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2158			netdev_info(adapter->netdev,
2159				"MAS: Enabling Media Autosense for port %d\n",
2160				hw->bus.func);
2161		}
2162		break;
2163	default:
2164		/* Shouldn't get here */
2165		netdev_err(adapter->netdev,
2166			"MAS: Invalid port configuration, returning\n");
2167		break;
2168	}
2169}
2170
2171/**
2172 *  igb_init_i2c - Init I2C interface
2173 *  @adapter: pointer to adapter structure
2174 **/
2175static s32 igb_init_i2c(struct igb_adapter *adapter)
2176{
2177	s32 status = E1000_SUCCESS;
2178
2179	/* I2C interface supported on i350 devices */
2180	if (adapter->hw.mac.type != e1000_i350)
2181		return E1000_SUCCESS;
2182
2183	/* Initialize the i2c bus which is controlled by the registers.
2184	 * This bus will use the i2c_algo_bit structue that implements
2185	 * the protocol through toggling of the 4 bits in the register.
2186	 */
2187	adapter->i2c_adap.owner = THIS_MODULE;
2188	adapter->i2c_algo = igb_i2c_algo;
2189	adapter->i2c_algo.data = adapter;
2190	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2191	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2192	strlcpy(adapter->i2c_adap.name, "igb BB",
2193		sizeof(adapter->i2c_adap.name));
2194	status = i2c_bit_add_bus(&adapter->i2c_adap);
2195	return status;
2196}
2197
2198/**
2199 *  igb_probe - Device Initialization Routine
2200 *  @pdev: PCI device information struct
2201 *  @ent: entry in igb_pci_tbl
2202 *
2203 *  Returns 0 on success, negative on failure
2204 *
2205 *  igb_probe initializes an adapter identified by a pci_dev structure.
2206 *  The OS initialization, configuring of the adapter private structure,
2207 *  and a hardware reset occur.
2208 **/
2209static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2210{
2211	struct net_device *netdev;
2212	struct igb_adapter *adapter;
2213	struct e1000_hw *hw;
2214	u16 eeprom_data = 0;
2215	s32 ret_val;
2216	static int global_quad_port_a; /* global quad port a indication */
2217	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2218	int err, pci_using_dac;
2219	u8 part_str[E1000_PBANUM_LENGTH];
2220
2221	/* Catch broken hardware that put the wrong VF device ID in
2222	 * the PCIe SR-IOV capability.
2223	 */
2224	if (pdev->is_virtfn) {
2225		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2226			pci_name(pdev), pdev->vendor, pdev->device);
2227		return -EINVAL;
2228	}
2229
2230	err = pci_enable_device_mem(pdev);
2231	if (err)
2232		return err;
2233
2234	pci_using_dac = 0;
2235	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2236	if (!err) {
2237		pci_using_dac = 1;
2238	} else {
2239		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2240		if (err) {
2241			dev_err(&pdev->dev,
2242				"No usable DMA configuration, aborting\n");
2243			goto err_dma;
2244		}
2245	}
2246
2247	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2248					   IORESOURCE_MEM),
2249					   igb_driver_name);
2250	if (err)
2251		goto err_pci_reg;
2252
2253	pci_enable_pcie_error_reporting(pdev);
2254
2255	pci_set_master(pdev);
2256	pci_save_state(pdev);
2257
2258	err = -ENOMEM;
2259	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2260				   IGB_MAX_TX_QUEUES);
2261	if (!netdev)
2262		goto err_alloc_etherdev;
2263
2264	SET_NETDEV_DEV(netdev, &pdev->dev);
2265
2266	pci_set_drvdata(pdev, netdev);
2267	adapter = netdev_priv(netdev);
2268	adapter->netdev = netdev;
2269	adapter->pdev = pdev;
2270	hw = &adapter->hw;
2271	hw->back = adapter;
2272	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2273
2274	err = -EIO;
2275	hw->hw_addr = pci_iomap(pdev, 0, 0);
2276	if (!hw->hw_addr)
2277		goto err_ioremap;
2278
2279	netdev->netdev_ops = &igb_netdev_ops;
2280	igb_set_ethtool_ops(netdev);
2281	netdev->watchdog_timeo = 5 * HZ;
2282
2283	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2284
2285	netdev->mem_start = pci_resource_start(pdev, 0);
2286	netdev->mem_end = pci_resource_end(pdev, 0);
2287
2288	/* PCI config space info */
2289	hw->vendor_id = pdev->vendor;
2290	hw->device_id = pdev->device;
2291	hw->revision_id = pdev->revision;
2292	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2293	hw->subsystem_device_id = pdev->subsystem_device;
2294
2295	/* Copy the default MAC, PHY and NVM function pointers */
2296	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2297	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2298	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2299	/* Initialize skew-specific constants */
2300	err = ei->get_invariants(hw);
2301	if (err)
2302		goto err_sw_init;
2303
2304	/* setup the private structure */
2305	err = igb_sw_init(adapter);
2306	if (err)
2307		goto err_sw_init;
2308
2309	igb_get_bus_info_pcie(hw);
2310
2311	hw->phy.autoneg_wait_to_complete = false;
2312
2313	/* Copper options */
2314	if (hw->phy.media_type == e1000_media_type_copper) {
2315		hw->phy.mdix = AUTO_ALL_MODES;
2316		hw->phy.disable_polarity_correction = false;
2317		hw->phy.ms_type = e1000_ms_hw_default;
2318	}
2319
2320	if (igb_check_reset_block(hw))
2321		dev_info(&pdev->dev,
2322			"PHY reset is blocked due to SOL/IDER session.\n");
2323
2324	/* features is initialized to 0 in allocation, it might have bits
2325	 * set by igb_sw_init so we should use an or instead of an
2326	 * assignment.
2327	 */
2328	netdev->features |= NETIF_F_SG |
2329			    NETIF_F_IP_CSUM |
2330			    NETIF_F_IPV6_CSUM |
2331			    NETIF_F_TSO |
2332			    NETIF_F_TSO6 |
2333			    NETIF_F_RXHASH |
2334			    NETIF_F_RXCSUM |
2335			    NETIF_F_HW_VLAN_CTAG_RX |
2336			    NETIF_F_HW_VLAN_CTAG_TX;
2337
2338	/* copy netdev features into list of user selectable features */
2339	netdev->hw_features |= netdev->features;
2340	netdev->hw_features |= NETIF_F_RXALL;
2341
2342	/* set this bit last since it cannot be part of hw_features */
2343	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2344
2345	netdev->vlan_features |= NETIF_F_TSO |
2346				 NETIF_F_TSO6 |
2347				 NETIF_F_IP_CSUM |
2348				 NETIF_F_IPV6_CSUM |
2349				 NETIF_F_SG;
2350
2351	netdev->priv_flags |= IFF_SUPP_NOFCS;
2352
2353	if (pci_using_dac) {
2354		netdev->features |= NETIF_F_HIGHDMA;
2355		netdev->vlan_features |= NETIF_F_HIGHDMA;
2356	}
2357
2358	if (hw->mac.type >= e1000_82576) {
2359		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2360		netdev->features |= NETIF_F_SCTP_CSUM;
2361	}
2362
2363	netdev->priv_flags |= IFF_UNICAST_FLT;
2364
2365	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2366
2367	/* before reading the NVM, reset the controller to put the device in a
2368	 * known good starting state
2369	 */
2370	hw->mac.ops.reset_hw(hw);
2371
2372	/* make sure the NVM is good , i211/i210 parts can have special NVM
2373	 * that doesn't contain a checksum
2374	 */
2375	switch (hw->mac.type) {
2376	case e1000_i210:
2377	case e1000_i211:
2378		if (igb_get_flash_presence_i210(hw)) {
2379			if (hw->nvm.ops.validate(hw) < 0) {
2380				dev_err(&pdev->dev,
2381					"The NVM Checksum Is Not Valid\n");
2382				err = -EIO;
2383				goto err_eeprom;
2384			}
2385		}
2386		break;
2387	default:
2388		if (hw->nvm.ops.validate(hw) < 0) {
2389			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2390			err = -EIO;
2391			goto err_eeprom;
2392		}
2393		break;
2394	}
2395
2396	/* copy the MAC address out of the NVM */
2397	if (hw->mac.ops.read_mac_addr(hw))
2398		dev_err(&pdev->dev, "NVM Read Error\n");
2399
2400	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2401
2402	if (!is_valid_ether_addr(netdev->dev_addr)) {
2403		dev_err(&pdev->dev, "Invalid MAC Address\n");
2404		err = -EIO;
2405		goto err_eeprom;
2406	}
2407
2408	/* get firmware version for ethtool -i */
2409	igb_set_fw_version(adapter);
2410
2411	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2412		    (unsigned long) adapter);
2413	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2414		    (unsigned long) adapter);
2415
2416	INIT_WORK(&adapter->reset_task, igb_reset_task);
2417	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2418
2419	/* Initialize link properties that are user-changeable */
2420	adapter->fc_autoneg = true;
2421	hw->mac.autoneg = true;
2422	hw->phy.autoneg_advertised = 0x2f;
2423
2424	hw->fc.requested_mode = e1000_fc_default;
2425	hw->fc.current_mode = e1000_fc_default;
2426
2427	igb_validate_mdi_setting(hw);
2428
2429	/* By default, support wake on port A */
2430	if (hw->bus.func == 0)
2431		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2432
2433	/* Check the NVM for wake support on non-port A ports */
2434	if (hw->mac.type >= e1000_82580)
2435		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2436				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2437				 &eeprom_data);
2438	else if (hw->bus.func == 1)
2439		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2440
2441	if (eeprom_data & IGB_EEPROM_APME)
2442		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2443
2444	/* now that we have the eeprom settings, apply the special cases where
2445	 * the eeprom may be wrong or the board simply won't support wake on
2446	 * lan on a particular port
2447	 */
2448	switch (pdev->device) {
2449	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2450		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2451		break;
2452	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2453	case E1000_DEV_ID_82576_FIBER:
2454	case E1000_DEV_ID_82576_SERDES:
2455		/* Wake events only supported on port A for dual fiber
2456		 * regardless of eeprom setting
2457		 */
2458		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2459			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2460		break;
2461	case E1000_DEV_ID_82576_QUAD_COPPER:
2462	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2463		/* if quad port adapter, disable WoL on all but port A */
2464		if (global_quad_port_a != 0)
2465			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2466		else
2467			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2468		/* Reset for multiple quad port adapters */
2469		if (++global_quad_port_a == 4)
2470			global_quad_port_a = 0;
2471		break;
2472	default:
2473		/* If the device can't wake, don't set software support */
2474		if (!device_can_wakeup(&adapter->pdev->dev))
2475			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2476	}
2477
2478	/* initialize the wol settings based on the eeprom settings */
2479	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2480		adapter->wol |= E1000_WUFC_MAG;
2481
2482	/* Some vendors want WoL disabled by default, but still supported */
2483	if ((hw->mac.type == e1000_i350) &&
2484	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2485		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2486		adapter->wol = 0;
2487	}
2488
2489	device_set_wakeup_enable(&adapter->pdev->dev,
2490				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2491
2492	/* reset the hardware with the new settings */
2493	igb_reset(adapter);
2494
2495	/* Init the I2C interface */
2496	err = igb_init_i2c(adapter);
2497	if (err) {
2498		dev_err(&pdev->dev, "failed to init i2c interface\n");
2499		goto err_eeprom;
2500	}
2501
2502	/* let the f/w know that the h/w is now under the control of the
2503	 * driver. */
2504	igb_get_hw_control(adapter);
2505
2506	strcpy(netdev->name, "eth%d");
2507	err = register_netdev(netdev);
2508	if (err)
2509		goto err_register;
2510
2511	/* carrier off reporting is important to ethtool even BEFORE open */
2512	netif_carrier_off(netdev);
2513
2514#ifdef CONFIG_IGB_DCA
2515	if (dca_add_requester(&pdev->dev) == 0) {
2516		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2517		dev_info(&pdev->dev, "DCA enabled\n");
2518		igb_setup_dca(adapter);
2519	}
2520
2521#endif
2522#ifdef CONFIG_IGB_HWMON
2523	/* Initialize the thermal sensor on i350 devices. */
2524	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2525		u16 ets_word;
2526
2527		/* Read the NVM to determine if this i350 device supports an
2528		 * external thermal sensor.
2529		 */
2530		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2531		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2532			adapter->ets = true;
2533		else
2534			adapter->ets = false;
2535		if (igb_sysfs_init(adapter))
2536			dev_err(&pdev->dev,
2537				"failed to allocate sysfs resources\n");
2538	} else {
2539		adapter->ets = false;
2540	}
2541#endif
2542	/* Check if Media Autosense is enabled */
2543	adapter->ei = *ei;
2544	if (hw->dev_spec._82575.mas_capable)
2545		igb_init_mas(adapter);
2546
2547	/* do hw tstamp init after resetting */
2548	igb_ptp_init(adapter);
2549
2550	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2551	/* print bus type/speed/width info, not applicable to i354 */
2552	if (hw->mac.type != e1000_i354) {
2553		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2554			 netdev->name,
2555			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2556			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2557			   "unknown"),
2558			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2559			  "Width x4" :
2560			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2561			  "Width x2" :
2562			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2563			  "Width x1" : "unknown"), netdev->dev_addr);
2564	}
2565
2566	if ((hw->mac.type >= e1000_i210 ||
2567	     igb_get_flash_presence_i210(hw))) {
2568		ret_val = igb_read_part_string(hw, part_str,
2569					       E1000_PBANUM_LENGTH);
2570	} else {
2571		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2572	}
2573
2574	if (ret_val)
2575		strcpy(part_str, "Unknown");
2576	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2577	dev_info(&pdev->dev,
2578		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2579		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2580		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2581		adapter->num_rx_queues, adapter->num_tx_queues);
2582	if (hw->phy.media_type == e1000_media_type_copper) {
2583		switch (hw->mac.type) {
2584		case e1000_i350:
2585		case e1000_i210:
2586		case e1000_i211:
2587			/* Enable EEE for internal copper PHY devices */
2588			err = igb_set_eee_i350(hw);
2589			if ((!err) &&
2590			    (!hw->dev_spec._82575.eee_disable)) {
2591				adapter->eee_advert =
2592					MDIO_EEE_100TX | MDIO_EEE_1000T;
2593				adapter->flags |= IGB_FLAG_EEE;
2594			}
2595			break;
2596		case e1000_i354:
2597			if ((rd32(E1000_CTRL_EXT) &
2598			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2599				err = igb_set_eee_i354(hw);
2600				if ((!err) &&
2601					(!hw->dev_spec._82575.eee_disable)) {
2602					adapter->eee_advert =
2603					   MDIO_EEE_100TX | MDIO_EEE_1000T;
2604					adapter->flags |= IGB_FLAG_EEE;
2605				}
2606			}
2607			break;
2608		default:
2609			break;
2610		}
2611	}
2612	pm_runtime_put_noidle(&pdev->dev);
2613	return 0;
2614
2615err_register:
2616	igb_release_hw_control(adapter);
2617	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2618err_eeprom:
2619	if (!igb_check_reset_block(hw))
2620		igb_reset_phy(hw);
2621
2622	if (hw->flash_address)
2623		iounmap(hw->flash_address);
2624err_sw_init:
2625	igb_clear_interrupt_scheme(adapter);
2626	iounmap(hw->hw_addr);
2627err_ioremap:
2628	free_netdev(netdev);
2629err_alloc_etherdev:
2630	pci_release_selected_regions(pdev,
2631				     pci_select_bars(pdev, IORESOURCE_MEM));
2632err_pci_reg:
2633err_dma:
2634	pci_disable_device(pdev);
2635	return err;
2636}
2637
2638#ifdef CONFIG_PCI_IOV
2639static int igb_disable_sriov(struct pci_dev *pdev)
2640{
2641	struct net_device *netdev = pci_get_drvdata(pdev);
2642	struct igb_adapter *adapter = netdev_priv(netdev);
2643	struct e1000_hw *hw = &adapter->hw;
2644
2645	/* reclaim resources allocated to VFs */
2646	if (adapter->vf_data) {
2647		/* disable iov and allow time for transactions to clear */
2648		if (pci_vfs_assigned(pdev)) {
2649			dev_warn(&pdev->dev,
2650				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2651			return -EPERM;
2652		} else {
2653			pci_disable_sriov(pdev);
2654			msleep(500);
2655		}
2656
2657		kfree(adapter->vf_data);
2658		adapter->vf_data = NULL;
2659		adapter->vfs_allocated_count = 0;
2660		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2661		wrfl();
2662		msleep(100);
2663		dev_info(&pdev->dev, "IOV Disabled\n");
2664
2665		/* Re-enable DMA Coalescing flag since IOV is turned off */
2666		adapter->flags |= IGB_FLAG_DMAC;
2667	}
2668
2669	return 0;
2670}
2671
2672static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2673{
2674	struct net_device *netdev = pci_get_drvdata(pdev);
2675	struct igb_adapter *adapter = netdev_priv(netdev);
2676	int old_vfs = pci_num_vf(pdev);
2677	int err = 0;
2678	int i;
2679
2680	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2681		err = -EPERM;
2682		goto out;
2683	}
2684	if (!num_vfs)
2685		goto out;
2686
2687	if (old_vfs) {
2688		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2689			 old_vfs, max_vfs);
2690		adapter->vfs_allocated_count = old_vfs;
2691	} else
2692		adapter->vfs_allocated_count = num_vfs;
2693
2694	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2695				sizeof(struct vf_data_storage), GFP_KERNEL);
2696
2697	/* if allocation failed then we do not support SR-IOV */
2698	if (!adapter->vf_data) {
2699		adapter->vfs_allocated_count = 0;
2700		dev_err(&pdev->dev,
2701			"Unable to allocate memory for VF Data Storage\n");
2702		err = -ENOMEM;
2703		goto out;
2704	}
2705
2706	/* only call pci_enable_sriov() if no VFs are allocated already */
2707	if (!old_vfs) {
2708		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2709		if (err)
2710			goto err_out;
2711	}
2712	dev_info(&pdev->dev, "%d VFs allocated\n",
2713		 adapter->vfs_allocated_count);
2714	for (i = 0; i < adapter->vfs_allocated_count; i++)
2715		igb_vf_configure(adapter, i);
2716
2717	/* DMA Coalescing is not supported in IOV mode. */
2718	adapter->flags &= ~IGB_FLAG_DMAC;
2719	goto out;
2720
2721err_out:
2722	kfree(adapter->vf_data);
2723	adapter->vf_data = NULL;
2724	adapter->vfs_allocated_count = 0;
2725out:
2726	return err;
2727}
2728
2729#endif
2730/**
2731 *  igb_remove_i2c - Cleanup  I2C interface
2732 *  @adapter: pointer to adapter structure
2733 **/
2734static void igb_remove_i2c(struct igb_adapter *adapter)
2735{
2736	/* free the adapter bus structure */
2737	i2c_del_adapter(&adapter->i2c_adap);
2738}
2739
2740/**
2741 *  igb_remove - Device Removal Routine
2742 *  @pdev: PCI device information struct
2743 *
2744 *  igb_remove is called by the PCI subsystem to alert the driver
2745 *  that it should release a PCI device.  The could be caused by a
2746 *  Hot-Plug event, or because the driver is going to be removed from
2747 *  memory.
2748 **/
2749static void igb_remove(struct pci_dev *pdev)
2750{
2751	struct net_device *netdev = pci_get_drvdata(pdev);
2752	struct igb_adapter *adapter = netdev_priv(netdev);
2753	struct e1000_hw *hw = &adapter->hw;
2754
2755	pm_runtime_get_noresume(&pdev->dev);
2756#ifdef CONFIG_IGB_HWMON
2757	igb_sysfs_exit(adapter);
2758#endif
2759	igb_remove_i2c(adapter);
2760	igb_ptp_stop(adapter);
2761	/* The watchdog timer may be rescheduled, so explicitly
2762	 * disable watchdog from being rescheduled.
2763	 */
2764	set_bit(__IGB_DOWN, &adapter->state);
2765	del_timer_sync(&adapter->watchdog_timer);
2766	del_timer_sync(&adapter->phy_info_timer);
2767
2768	cancel_work_sync(&adapter->reset_task);
2769	cancel_work_sync(&adapter->watchdog_task);
2770
2771#ifdef CONFIG_IGB_DCA
2772	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2773		dev_info(&pdev->dev, "DCA disabled\n");
2774		dca_remove_requester(&pdev->dev);
2775		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2776		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2777	}
2778#endif
2779
2780	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2781	 * would have already happened in close and is redundant.
2782	 */
2783	igb_release_hw_control(adapter);
2784
2785	unregister_netdev(netdev);
2786
2787	igb_clear_interrupt_scheme(adapter);
2788
2789#ifdef CONFIG_PCI_IOV
2790	igb_disable_sriov(pdev);
2791#endif
2792
2793	iounmap(hw->hw_addr);
2794	if (hw->flash_address)
2795		iounmap(hw->flash_address);
2796	pci_release_selected_regions(pdev,
2797				     pci_select_bars(pdev, IORESOURCE_MEM));
2798
2799	kfree(adapter->shadow_vfta);
2800	free_netdev(netdev);
2801
2802	pci_disable_pcie_error_reporting(pdev);
2803
2804	pci_disable_device(pdev);
2805}
2806
2807/**
2808 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2809 *  @adapter: board private structure to initialize
2810 *
2811 *  This function initializes the vf specific data storage and then attempts to
2812 *  allocate the VFs.  The reason for ordering it this way is because it is much
2813 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2814 *  the memory for the VFs.
2815 **/
2816static void igb_probe_vfs(struct igb_adapter *adapter)
2817{
2818#ifdef CONFIG_PCI_IOV
2819	struct pci_dev *pdev = adapter->pdev;
2820	struct e1000_hw *hw = &adapter->hw;
2821
2822	/* Virtualization features not supported on i210 family. */
2823	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2824		return;
2825
2826	pci_sriov_set_totalvfs(pdev, 7);
2827	igb_pci_enable_sriov(pdev, max_vfs);
2828
2829#endif /* CONFIG_PCI_IOV */
2830}
2831
2832static void igb_init_queue_configuration(struct igb_adapter *adapter)
2833{
2834	struct e1000_hw *hw = &adapter->hw;
2835	u32 max_rss_queues;
2836
2837	/* Determine the maximum number of RSS queues supported. */
2838	switch (hw->mac.type) {
2839	case e1000_i211:
2840		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2841		break;
2842	case e1000_82575:
2843	case e1000_i210:
2844		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2845		break;
2846	case e1000_i350:
2847		/* I350 cannot do RSS and SR-IOV at the same time */
2848		if (!!adapter->vfs_allocated_count) {
2849			max_rss_queues = 1;
2850			break;
2851		}
2852		/* fall through */
2853	case e1000_82576:
2854		if (!!adapter->vfs_allocated_count) {
2855			max_rss_queues = 2;
2856			break;
2857		}
2858		/* fall through */
2859	case e1000_82580:
2860	case e1000_i354:
2861	default:
2862		max_rss_queues = IGB_MAX_RX_QUEUES;
2863		break;
2864	}
2865
2866	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2867
2868	/* Determine if we need to pair queues. */
2869	switch (hw->mac.type) {
2870	case e1000_82575:
2871	case e1000_i211:
2872		/* Device supports enough interrupts without queue pairing. */
2873		break;
2874	case e1000_82576:
2875		/* If VFs are going to be allocated with RSS queues then we
2876		 * should pair the queues in order to conserve interrupts due
2877		 * to limited supply.
2878		 */
2879		if ((adapter->rss_queues > 1) &&
2880		    (adapter->vfs_allocated_count > 6))
2881			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2882		/* fall through */
2883	case e1000_82580:
2884	case e1000_i350:
2885	case e1000_i354:
2886	case e1000_i210:
2887	default:
2888		/* If rss_queues > half of max_rss_queues, pair the queues in
2889		 * order to conserve interrupts due to limited supply.
2890		 */
2891		if (adapter->rss_queues > (max_rss_queues / 2))
2892			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2893		break;
2894	}
2895}
2896
2897/**
2898 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2899 *  @adapter: board private structure to initialize
2900 *
2901 *  igb_sw_init initializes the Adapter private data structure.
2902 *  Fields are initialized based on PCI device information and
2903 *  OS network device settings (MTU size).
2904 **/
2905static int igb_sw_init(struct igb_adapter *adapter)
2906{
2907	struct e1000_hw *hw = &adapter->hw;
2908	struct net_device *netdev = adapter->netdev;
2909	struct pci_dev *pdev = adapter->pdev;
2910
2911	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2912
2913	/* set default ring sizes */
2914	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2915	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2916
2917	/* set default ITR values */
2918	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2919	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2920
2921	/* set default work limits */
2922	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2923
2924	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2925				  VLAN_HLEN;
2926	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2927
2928	spin_lock_init(&adapter->stats64_lock);
2929#ifdef CONFIG_PCI_IOV
2930	switch (hw->mac.type) {
2931	case e1000_82576:
2932	case e1000_i350:
2933		if (max_vfs > 7) {
2934			dev_warn(&pdev->dev,
2935				 "Maximum of 7 VFs per PF, using max\n");
2936			max_vfs = adapter->vfs_allocated_count = 7;
2937		} else
2938			adapter->vfs_allocated_count = max_vfs;
2939		if (adapter->vfs_allocated_count)
2940			dev_warn(&pdev->dev,
2941				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2942		break;
2943	default:
2944		break;
2945	}
2946#endif /* CONFIG_PCI_IOV */
2947
2948	igb_init_queue_configuration(adapter);
2949
2950	/* Setup and initialize a copy of the hw vlan table array */
2951	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2952				       GFP_ATOMIC);
2953
2954	/* This call may decrease the number of queues */
2955	if (igb_init_interrupt_scheme(adapter, true)) {
2956		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2957		return -ENOMEM;
2958	}
2959
2960	igb_probe_vfs(adapter);
2961
2962	/* Explicitly disable IRQ since the NIC can be in any state. */
2963	igb_irq_disable(adapter);
2964
2965	if (hw->mac.type >= e1000_i350)
2966		adapter->flags &= ~IGB_FLAG_DMAC;
2967
2968	set_bit(__IGB_DOWN, &adapter->state);
2969	return 0;
2970}
2971
2972/**
2973 *  igb_open - Called when a network interface is made active
2974 *  @netdev: network interface device structure
2975 *
2976 *  Returns 0 on success, negative value on failure
2977 *
2978 *  The open entry point is called when a network interface is made
2979 *  active by the system (IFF_UP).  At this point all resources needed
2980 *  for transmit and receive operations are allocated, the interrupt
2981 *  handler is registered with the OS, the watchdog timer is started,
2982 *  and the stack is notified that the interface is ready.
2983 **/
2984static int __igb_open(struct net_device *netdev, bool resuming)
2985{
2986	struct igb_adapter *adapter = netdev_priv(netdev);
2987	struct e1000_hw *hw = &adapter->hw;
2988	struct pci_dev *pdev = adapter->pdev;
2989	int err;
2990	int i;
2991
2992	/* disallow open during test */
2993	if (test_bit(__IGB_TESTING, &adapter->state)) {
2994		WARN_ON(resuming);
2995		return -EBUSY;
2996	}
2997
2998	if (!resuming)
2999		pm_runtime_get_sync(&pdev->dev);
3000
3001	netif_carrier_off(netdev);
3002
3003	/* allocate transmit descriptors */
3004	err = igb_setup_all_tx_resources(adapter);
3005	if (err)
3006		goto err_setup_tx;
3007
3008	/* allocate receive descriptors */
3009	err = igb_setup_all_rx_resources(adapter);
3010	if (err)
3011		goto err_setup_rx;
3012
3013	igb_power_up_link(adapter);
3014
3015	/* before we allocate an interrupt, we must be ready to handle it.
3016	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3017	 * as soon as we call pci_request_irq, so we have to setup our
3018	 * clean_rx handler before we do so.
3019	 */
3020	igb_configure(adapter);
3021
3022	err = igb_request_irq(adapter);
3023	if (err)
3024		goto err_req_irq;
3025
3026	/* Notify the stack of the actual queue counts. */
3027	err = netif_set_real_num_tx_queues(adapter->netdev,
3028					   adapter->num_tx_queues);
3029	if (err)
3030		goto err_set_queues;
3031
3032	err = netif_set_real_num_rx_queues(adapter->netdev,
3033					   adapter->num_rx_queues);
3034	if (err)
3035		goto err_set_queues;
3036
3037	/* From here on the code is the same as igb_up() */
3038	clear_bit(__IGB_DOWN, &adapter->state);
3039
3040	for (i = 0; i < adapter->num_q_vectors; i++)
3041		napi_enable(&(adapter->q_vector[i]->napi));
3042
3043	/* Clear any pending interrupts. */
3044	rd32(E1000_ICR);
3045
3046	igb_irq_enable(adapter);
3047
3048	/* notify VFs that reset has been completed */
3049	if (adapter->vfs_allocated_count) {
3050		u32 reg_data = rd32(E1000_CTRL_EXT);
3051		reg_data |= E1000_CTRL_EXT_PFRSTD;
3052		wr32(E1000_CTRL_EXT, reg_data);
3053	}
3054
3055	netif_tx_start_all_queues(netdev);
3056
3057	if (!resuming)
3058		pm_runtime_put(&pdev->dev);
3059
3060	/* start the watchdog. */
3061	hw->mac.get_link_status = 1;
3062	schedule_work(&adapter->watchdog_task);
3063
3064	return 0;
3065
3066err_set_queues:
3067	igb_free_irq(adapter);
3068err_req_irq:
3069	igb_release_hw_control(adapter);
3070	igb_power_down_link(adapter);
3071	igb_free_all_rx_resources(adapter);
3072err_setup_rx:
3073	igb_free_all_tx_resources(adapter);
3074err_setup_tx:
3075	igb_reset(adapter);
3076	if (!resuming)
3077		pm_runtime_put(&pdev->dev);
3078
3079	return err;
3080}
3081
3082static int igb_open(struct net_device *netdev)
3083{
3084	return __igb_open(netdev, false);
3085}
3086
3087/**
3088 *  igb_close - Disables a network interface
3089 *  @netdev: network interface device structure
3090 *
3091 *  Returns 0, this is not allowed to fail
3092 *
3093 *  The close entry point is called when an interface is de-activated
3094 *  by the OS.  The hardware is still under the driver's control, but
3095 *  needs to be disabled.  A global MAC reset is issued to stop the
3096 *  hardware, and all transmit and receive resources are freed.
3097 **/
3098static int __igb_close(struct net_device *netdev, bool suspending)
3099{
3100	struct igb_adapter *adapter = netdev_priv(netdev);
3101	struct pci_dev *pdev = adapter->pdev;
3102
3103	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3104
3105	if (!suspending)
3106		pm_runtime_get_sync(&pdev->dev);
3107
3108	igb_down(adapter);
3109	igb_free_irq(adapter);
3110
3111	igb_free_all_tx_resources(adapter);
3112	igb_free_all_rx_resources(adapter);
3113
3114	if (!suspending)
3115		pm_runtime_put_sync(&pdev->dev);
3116	return 0;
3117}
3118
3119static int igb_close(struct net_device *netdev)
3120{
3121	return __igb_close(netdev, false);
3122}
3123
3124/**
3125 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3126 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3127 *
3128 *  Return 0 on success, negative on failure
3129 **/
3130int igb_setup_tx_resources(struct igb_ring *tx_ring)
3131{
3132	struct device *dev = tx_ring->dev;
3133	int size;
3134
3135	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3136
3137	tx_ring->tx_buffer_info = vzalloc(size);
3138	if (!tx_ring->tx_buffer_info)
3139		goto err;
3140
3141	/* round up to nearest 4K */
3142	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3143	tx_ring->size = ALIGN(tx_ring->size, 4096);
3144
3145	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3146					   &tx_ring->dma, GFP_KERNEL);
3147	if (!tx_ring->desc)
3148		goto err;
3149
3150	tx_ring->next_to_use = 0;
3151	tx_ring->next_to_clean = 0;
3152
3153	return 0;
3154
3155err:
3156	vfree(tx_ring->tx_buffer_info);
3157	tx_ring->tx_buffer_info = NULL;
3158	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3159	return -ENOMEM;
3160}
3161
3162/**
3163 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3164 *				 (Descriptors) for all queues
3165 *  @adapter: board private structure
3166 *
3167 *  Return 0 on success, negative on failure
3168 **/
3169static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3170{
3171	struct pci_dev *pdev = adapter->pdev;
3172	int i, err = 0;
3173
3174	for (i = 0; i < adapter->num_tx_queues; i++) {
3175		err = igb_setup_tx_resources(adapter->tx_ring[i]);
3176		if (err) {
3177			dev_err(&pdev->dev,
3178				"Allocation for Tx Queue %u failed\n", i);
3179			for (i--; i >= 0; i--)
3180				igb_free_tx_resources(adapter->tx_ring[i]);
3181			break;
3182		}
3183	}
3184
3185	return err;
3186}
3187
3188/**
3189 *  igb_setup_tctl - configure the transmit control registers
3190 *  @adapter: Board private structure
3191 **/
3192void igb_setup_tctl(struct igb_adapter *adapter)
3193{
3194	struct e1000_hw *hw = &adapter->hw;
3195	u32 tctl;
3196
3197	/* disable queue 0 which is enabled by default on 82575 and 82576 */
3198	wr32(E1000_TXDCTL(0), 0);
3199
3200	/* Program the Transmit Control Register */
3201	tctl = rd32(E1000_TCTL);
3202	tctl &= ~E1000_TCTL_CT;
3203	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3204		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3205
3206	igb_config_collision_dist(hw);
3207
3208	/* Enable transmits */
3209	tctl |= E1000_TCTL_EN;
3210
3211	wr32(E1000_TCTL, tctl);
3212}
3213
3214/**
3215 *  igb_configure_tx_ring - Configure transmit ring after Reset
3216 *  @adapter: board private structure
3217 *  @ring: tx ring to configure
3218 *
3219 *  Configure a transmit ring after a reset.
3220 **/
3221void igb_configure_tx_ring(struct igb_adapter *adapter,
3222                           struct igb_ring *ring)
3223{
3224	struct e1000_hw *hw = &adapter->hw;
3225	u32 txdctl = 0;
3226	u64 tdba = ring->dma;
3227	int reg_idx = ring->reg_idx;
3228
3229	/* disable the queue */
3230	wr32(E1000_TXDCTL(reg_idx), 0);
3231	wrfl();
3232	mdelay(10);
3233
3234	wr32(E1000_TDLEN(reg_idx),
3235	     ring->count * sizeof(union e1000_adv_tx_desc));
3236	wr32(E1000_TDBAL(reg_idx),
3237	     tdba & 0x00000000ffffffffULL);
3238	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3239
3240	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3241	wr32(E1000_TDH(reg_idx), 0);
3242	writel(0, ring->tail);
3243
3244	txdctl |= IGB_TX_PTHRESH;
3245	txdctl |= IGB_TX_HTHRESH << 8;
3246	txdctl |= IGB_TX_WTHRESH << 16;
3247
3248	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3249	wr32(E1000_TXDCTL(reg_idx), txdctl);
3250}
3251
3252/**
3253 *  igb_configure_tx - Configure transmit Unit after Reset
3254 *  @adapter: board private structure
3255 *
3256 *  Configure the Tx unit of the MAC after a reset.
3257 **/
3258static void igb_configure_tx(struct igb_adapter *adapter)
3259{
3260	int i;
3261
3262	for (i = 0; i < adapter->num_tx_queues; i++)
3263		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3264}
3265
3266/**
3267 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3268 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3269 *
3270 *  Returns 0 on success, negative on failure
3271 **/
3272int igb_setup_rx_resources(struct igb_ring *rx_ring)
3273{
3274	struct device *dev = rx_ring->dev;
3275	int size;
3276
3277	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3278
3279	rx_ring->rx_buffer_info = vzalloc(size);
3280	if (!rx_ring->rx_buffer_info)
3281		goto err;
3282
3283	/* Round up to nearest 4K */
3284	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3285	rx_ring->size = ALIGN(rx_ring->size, 4096);
3286
3287	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3288					   &rx_ring->dma, GFP_KERNEL);
3289	if (!rx_ring->desc)
3290		goto err;
3291
3292	rx_ring->next_to_alloc = 0;
3293	rx_ring->next_to_clean = 0;
3294	rx_ring->next_to_use = 0;
3295
3296	return 0;
3297
3298err:
3299	vfree(rx_ring->rx_buffer_info);
3300	rx_ring->rx_buffer_info = NULL;
3301	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3302	return -ENOMEM;
3303}
3304
3305/**
3306 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3307 *				 (Descriptors) for all queues
3308 *  @adapter: board private structure
3309 *
3310 *  Return 0 on success, negative on failure
3311 **/
3312static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3313{
3314	struct pci_dev *pdev = adapter->pdev;
3315	int i, err = 0;
3316
3317	for (i = 0; i < adapter->num_rx_queues; i++) {
3318		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3319		if (err) {
3320			dev_err(&pdev->dev,
3321				"Allocation for Rx Queue %u failed\n", i);
3322			for (i--; i >= 0; i--)
3323				igb_free_rx_resources(adapter->rx_ring[i]);
3324			break;
3325		}
3326	}
3327
3328	return err;
3329}
3330
3331/**
3332 *  igb_setup_mrqc - configure the multiple receive queue control registers
3333 *  @adapter: Board private structure
3334 **/
3335static void igb_setup_mrqc(struct igb_adapter *adapter)
3336{
3337	struct e1000_hw *hw = &adapter->hw;
3338	u32 mrqc, rxcsum;
3339	u32 j, num_rx_queues;
3340	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3341					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3342					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3343					0xFA01ACBE };
3344
3345	/* Fill out hash function seeds */
3346	for (j = 0; j < 10; j++)
3347		wr32(E1000_RSSRK(j), rsskey[j]);
3348
3349	num_rx_queues = adapter->rss_queues;
3350
3351	switch (hw->mac.type) {
3352	case e1000_82576:
3353		/* 82576 supports 2 RSS queues for SR-IOV */
3354		if (adapter->vfs_allocated_count)
3355			num_rx_queues = 2;
3356		break;
3357	default:
3358		break;
3359	}
3360
3361	if (adapter->rss_indir_tbl_init != num_rx_queues) {
3362		for (j = 0; j < IGB_RETA_SIZE; j++)
3363			adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
3364		adapter->rss_indir_tbl_init = num_rx_queues;
3365	}
3366	igb_write_rss_indir_tbl(adapter);
3367
3368	/* Disable raw packet checksumming so that RSS hash is placed in
3369	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3370	 * offloads as they are enabled by default
3371	 */
3372	rxcsum = rd32(E1000_RXCSUM);
3373	rxcsum |= E1000_RXCSUM_PCSD;
3374
3375	if (adapter->hw.mac.type >= e1000_82576)
3376		/* Enable Receive Checksum Offload for SCTP */
3377		rxcsum |= E1000_RXCSUM_CRCOFL;
3378
3379	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3380	wr32(E1000_RXCSUM, rxcsum);
3381
3382	/* Generate RSS hash based on packet types, TCP/UDP
3383	 * port numbers and/or IPv4/v6 src and dst addresses
3384	 */
3385	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3386	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3387	       E1000_MRQC_RSS_FIELD_IPV6 |
3388	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3389	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3390
3391	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3392		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3393	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3394		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3395
3396	/* If VMDq is enabled then we set the appropriate mode for that, else
3397	 * we default to RSS so that an RSS hash is calculated per packet even
3398	 * if we are only using one queue
3399	 */
3400	if (adapter->vfs_allocated_count) {
3401		if (hw->mac.type > e1000_82575) {
3402			/* Set the default pool for the PF's first queue */
3403			u32 vtctl = rd32(E1000_VT_CTL);
3404			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3405				   E1000_VT_CTL_DISABLE_DEF_POOL);
3406			vtctl |= adapter->vfs_allocated_count <<
3407				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3408			wr32(E1000_VT_CTL, vtctl);
3409		}
3410		if (adapter->rss_queues > 1)
3411			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3412		else
3413			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3414	} else {
3415		if (hw->mac.type != e1000_i211)
3416			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3417	}
3418	igb_vmm_control(adapter);
3419
3420	wr32(E1000_MRQC, mrqc);
3421}
3422
3423/**
3424 *  igb_setup_rctl - configure the receive control registers
3425 *  @adapter: Board private structure
3426 **/
3427void igb_setup_rctl(struct igb_adapter *adapter)
3428{
3429	struct e1000_hw *hw = &adapter->hw;
3430	u32 rctl;
3431
3432	rctl = rd32(E1000_RCTL);
3433
3434	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3435	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3436
3437	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3438		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3439
3440	/* enable stripping of CRC. It's unlikely this will break BMC
3441	 * redirection as it did with e1000. Newer features require
3442	 * that the HW strips the CRC.
3443	 */
3444	rctl |= E1000_RCTL_SECRC;
3445
3446	/* disable store bad packets and clear size bits. */
3447	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3448
3449	/* enable LPE to prevent packets larger than max_frame_size */
3450	rctl |= E1000_RCTL_LPE;
3451
3452	/* disable queue 0 to prevent tail write w/o re-config */
3453	wr32(E1000_RXDCTL(0), 0);
3454
3455	/* Attention!!!  For SR-IOV PF driver operations you must enable
3456	 * queue drop for all VF and PF queues to prevent head of line blocking
3457	 * if an un-trusted VF does not provide descriptors to hardware.
3458	 */
3459	if (adapter->vfs_allocated_count) {
3460		/* set all queue drop enable bits */
3461		wr32(E1000_QDE, ALL_QUEUES);
3462	}
3463
3464	/* This is useful for sniffing bad packets. */
3465	if (adapter->netdev->features & NETIF_F_RXALL) {
3466		/* UPE and MPE will be handled by normal PROMISC logic
3467		 * in e1000e_set_rx_mode
3468		 */
3469		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3470			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3471			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3472
3473		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3474			  E1000_RCTL_DPF | /* Allow filtered pause */
3475			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3476		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3477		 * and that breaks VLANs.
3478		 */
3479	}
3480
3481	wr32(E1000_RCTL, rctl);
3482}
3483
3484static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3485                                   int vfn)
3486{
3487	struct e1000_hw *hw = &adapter->hw;
3488	u32 vmolr;
3489
3490	/* if it isn't the PF check to see if VFs are enabled and
3491	 * increase the size to support vlan tags
3492	 */
3493	if (vfn < adapter->vfs_allocated_count &&
3494	    adapter->vf_data[vfn].vlans_enabled)
3495		size += VLAN_TAG_SIZE;
3496
3497	vmolr = rd32(E1000_VMOLR(vfn));
3498	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3499	vmolr |= size | E1000_VMOLR_LPE;
3500	wr32(E1000_VMOLR(vfn), vmolr);
3501
3502	return 0;
3503}
3504
3505/**
3506 *  igb_rlpml_set - set maximum receive packet size
3507 *  @adapter: board private structure
3508 *
3509 *  Configure maximum receivable packet size.
3510 **/
3511static void igb_rlpml_set(struct igb_adapter *adapter)
3512{
3513	u32 max_frame_size = adapter->max_frame_size;
3514	struct e1000_hw *hw = &adapter->hw;
3515	u16 pf_id = adapter->vfs_allocated_count;
3516
3517	if (pf_id) {
3518		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3519		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3520		 * to our max jumbo frame size, in case we need to enable
3521		 * jumbo frames on one of the rings later.
3522		 * This will not pass over-length frames into the default
3523		 * queue because it's gated by the VMOLR.RLPML.
3524		 */
3525		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3526	}
3527
3528	wr32(E1000_RLPML, max_frame_size);
3529}
3530
3531static inline void igb_set_vmolr(struct igb_adapter *adapter,
3532				 int vfn, bool aupe)
3533{
3534	struct e1000_hw *hw = &adapter->hw;
3535	u32 vmolr;
3536
3537	/* This register exists only on 82576 and newer so if we are older then
3538	 * we should exit and do nothing
3539	 */
3540	if (hw->mac.type < e1000_82576)
3541		return;
3542
3543	vmolr = rd32(E1000_VMOLR(vfn));
3544	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3545	if (hw->mac.type == e1000_i350) {
3546		u32 dvmolr;
3547
3548		dvmolr = rd32(E1000_DVMOLR(vfn));
3549		dvmolr |= E1000_DVMOLR_STRVLAN;
3550		wr32(E1000_DVMOLR(vfn), dvmolr);
3551	}
3552	if (aupe)
3553		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3554	else
3555		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3556
3557	/* clear all bits that might not be set */
3558	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3559
3560	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3561		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3562	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3563	 * multicast packets
3564	 */
3565	if (vfn <= adapter->vfs_allocated_count)
3566		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3567
3568	wr32(E1000_VMOLR(vfn), vmolr);
3569}
3570
3571/**
3572 *  igb_configure_rx_ring - Configure a receive ring after Reset
3573 *  @adapter: board private structure
3574 *  @ring: receive ring to be configured
3575 *
3576 *  Configure the Rx unit of the MAC after a reset.
3577 **/
3578void igb_configure_rx_ring(struct igb_adapter *adapter,
3579			   struct igb_ring *ring)
3580{
3581	struct e1000_hw *hw = &adapter->hw;
3582	u64 rdba = ring->dma;
3583	int reg_idx = ring->reg_idx;
3584	u32 srrctl = 0, rxdctl = 0;
3585
3586	/* disable the queue */
3587	wr32(E1000_RXDCTL(reg_idx), 0);
3588
3589	/* Set DMA base address registers */
3590	wr32(E1000_RDBAL(reg_idx),
3591	     rdba & 0x00000000ffffffffULL);
3592	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3593	wr32(E1000_RDLEN(reg_idx),
3594	     ring->count * sizeof(union e1000_adv_rx_desc));
3595
3596	/* initialize head and tail */
3597	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3598	wr32(E1000_RDH(reg_idx), 0);
3599	writel(0, ring->tail);
3600
3601	/* set descriptor configuration */
3602	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3603	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3604	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3605	if (hw->mac.type >= e1000_82580)
3606		srrctl |= E1000_SRRCTL_TIMESTAMP;
3607	/* Only set Drop Enable if we are supporting multiple queues */
3608	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3609		srrctl |= E1000_SRRCTL_DROP_EN;
3610
3611	wr32(E1000_SRRCTL(reg_idx), srrctl);
3612
3613	/* set filtering for VMDQ pools */
3614	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3615
3616	rxdctl |= IGB_RX_PTHRESH;
3617	rxdctl |= IGB_RX_HTHRESH << 8;
3618	rxdctl |= IGB_RX_WTHRESH << 16;
3619
3620	/* enable receive descriptor fetching */
3621	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3622	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3623}
3624
3625/**
3626 *  igb_configure_rx - Configure receive Unit after Reset
3627 *  @adapter: board private structure
3628 *
3629 *  Configure the Rx unit of the MAC after a reset.
3630 **/
3631static void igb_configure_rx(struct igb_adapter *adapter)
3632{
3633	int i;
3634
3635	/* set UTA to appropriate mode */
3636	igb_set_uta(adapter);
3637
3638	/* set the correct pool for the PF default MAC address in entry 0 */
3639	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3640			 adapter->vfs_allocated_count);
3641
3642	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3643	 * the Base and Length of the Rx Descriptor Ring
3644	 */
3645	for (i = 0; i < adapter->num_rx_queues; i++)
3646		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3647}
3648
3649/**
3650 *  igb_free_tx_resources - Free Tx Resources per Queue
3651 *  @tx_ring: Tx descriptor ring for a specific queue
3652 *
3653 *  Free all transmit software resources
3654 **/
3655void igb_free_tx_resources(struct igb_ring *tx_ring)
3656{
3657	igb_clean_tx_ring(tx_ring);
3658
3659	vfree(tx_ring->tx_buffer_info);
3660	tx_ring->tx_buffer_info = NULL;
3661
3662	/* if not set, then don't free */
3663	if (!tx_ring->desc)
3664		return;
3665
3666	dma_free_coherent(tx_ring->dev, tx_ring->size,
3667			  tx_ring->desc, tx_ring->dma);
3668
3669	tx_ring->desc = NULL;
3670}
3671
3672/**
3673 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3674 *  @adapter: board private structure
3675 *
3676 *  Free all transmit software resources
3677 **/
3678static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3679{
3680	int i;
3681
3682	for (i = 0; i < adapter->num_tx_queues; i++)
3683		igb_free_tx_resources(adapter->tx_ring[i]);
3684}
3685
3686void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3687				    struct igb_tx_buffer *tx_buffer)
3688{
3689	if (tx_buffer->skb) {
3690		dev_kfree_skb_any(tx_buffer->skb);
3691		if (dma_unmap_len(tx_buffer, len))
3692			dma_unmap_single(ring->dev,
3693					 dma_unmap_addr(tx_buffer, dma),
3694					 dma_unmap_len(tx_buffer, len),
3695					 DMA_TO_DEVICE);
3696	} else if (dma_unmap_len(tx_buffer, len)) {
3697		dma_unmap_page(ring->dev,
3698			       dma_unmap_addr(tx_buffer, dma),
3699			       dma_unmap_len(tx_buffer, len),
3700			       DMA_TO_DEVICE);
3701	}
3702	tx_buffer->next_to_watch = NULL;
3703	tx_buffer->skb = NULL;
3704	dma_unmap_len_set(tx_buffer, len, 0);
3705	/* buffer_info must be completely set up in the transmit path */
3706}
3707
3708/**
3709 *  igb_clean_tx_ring - Free Tx Buffers
3710 *  @tx_ring: ring to be cleaned
3711 **/
3712static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3713{
3714	struct igb_tx_buffer *buffer_info;
3715	unsigned long size;
3716	u16 i;
3717
3718	if (!tx_ring->tx_buffer_info)
3719		return;
3720	/* Free all the Tx ring sk_buffs */
3721
3722	for (i = 0; i < tx_ring->count; i++) {
3723		buffer_info = &tx_ring->tx_buffer_info[i];
3724		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3725	}
3726
3727	netdev_tx_reset_queue(txring_txq(tx_ring));
3728
3729	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3730	memset(tx_ring->tx_buffer_info, 0, size);
3731
3732	/* Zero out the descriptor ring */
3733	memset(tx_ring->desc, 0, tx_ring->size);
3734
3735	tx_ring->next_to_use = 0;
3736	tx_ring->next_to_clean = 0;
3737}
3738
3739/**
3740 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3741 *  @adapter: board private structure
3742 **/
3743static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3744{
3745	int i;
3746
3747	for (i = 0; i < adapter->num_tx_queues; i++)
3748		igb_clean_tx_ring(adapter->tx_ring[i]);
3749}
3750
3751/**
3752 *  igb_free_rx_resources - Free Rx Resources
3753 *  @rx_ring: ring to clean the resources from
3754 *
3755 *  Free all receive software resources
3756 **/
3757void igb_free_rx_resources(struct igb_ring *rx_ring)
3758{
3759	igb_clean_rx_ring(rx_ring);
3760
3761	vfree(rx_ring->rx_buffer_info);
3762	rx_ring->rx_buffer_info = NULL;
3763
3764	/* if not set, then don't free */
3765	if (!rx_ring->desc)
3766		return;
3767
3768	dma_free_coherent(rx_ring->dev, rx_ring->size,
3769			  rx_ring->desc, rx_ring->dma);
3770
3771	rx_ring->desc = NULL;
3772}
3773
3774/**
3775 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3776 *  @adapter: board private structure
3777 *
3778 *  Free all receive software resources
3779 **/
3780static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3781{
3782	int i;
3783
3784	for (i = 0; i < adapter->num_rx_queues; i++)
3785		igb_free_rx_resources(adapter->rx_ring[i]);
3786}
3787
3788/**
3789 *  igb_clean_rx_ring - Free Rx Buffers per Queue
3790 *  @rx_ring: ring to free buffers from
3791 **/
3792static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3793{
3794	unsigned long size;
3795	u16 i;
3796
3797	if (rx_ring->skb)
3798		dev_kfree_skb(rx_ring->skb);
3799	rx_ring->skb = NULL;
3800
3801	if (!rx_ring->rx_buffer_info)
3802		return;
3803
3804	/* Free all the Rx ring sk_buffs */
3805	for (i = 0; i < rx_ring->count; i++) {
3806		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3807
3808		if (!buffer_info->page)
3809			continue;
3810
3811		dma_unmap_page(rx_ring->dev,
3812			       buffer_info->dma,
3813			       PAGE_SIZE,
3814			       DMA_FROM_DEVICE);
3815		__free_page(buffer_info->page);
3816
3817		buffer_info->page = NULL;
3818	}
3819
3820	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3821	memset(rx_ring->rx_buffer_info, 0, size);
3822
3823	/* Zero out the descriptor ring */
3824	memset(rx_ring->desc, 0, rx_ring->size);
3825
3826	rx_ring->next_to_alloc = 0;
3827	rx_ring->next_to_clean = 0;
3828	rx_ring->next_to_use = 0;
3829}
3830
3831/**
3832 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3833 *  @adapter: board private structure
3834 **/
3835static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3836{
3837	int i;
3838
3839	for (i = 0; i < adapter->num_rx_queues; i++)
3840		igb_clean_rx_ring(adapter->rx_ring[i]);
3841}
3842
3843/**
3844 *  igb_set_mac - Change the Ethernet Address of the NIC
3845 *  @netdev: network interface device structure
3846 *  @p: pointer to an address structure
3847 *
3848 *  Returns 0 on success, negative on failure
3849 **/
3850static int igb_set_mac(struct net_device *netdev, void *p)
3851{
3852	struct igb_adapter *adapter = netdev_priv(netdev);
3853	struct e1000_hw *hw = &adapter->hw;
3854	struct sockaddr *addr = p;
3855
3856	if (!is_valid_ether_addr(addr->sa_data))
3857		return -EADDRNOTAVAIL;
3858
3859	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3860	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3861
3862	/* set the correct pool for the new PF MAC address in entry 0 */
3863	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3864			 adapter->vfs_allocated_count);
3865
3866	return 0;
3867}
3868
3869/**
3870 *  igb_write_mc_addr_list - write multicast addresses to MTA
3871 *  @netdev: network interface device structure
3872 *
3873 *  Writes multicast address list to the MTA hash table.
3874 *  Returns: -ENOMEM on failure
3875 *           0 on no addresses written
3876 *           X on writing X addresses to MTA
3877 **/
3878static int igb_write_mc_addr_list(struct net_device *netdev)
3879{
3880	struct igb_adapter *adapter = netdev_priv(netdev);
3881	struct e1000_hw *hw = &adapter->hw;
3882	struct netdev_hw_addr *ha;
3883	u8  *mta_list;
3884	int i;
3885
3886	if (netdev_mc_empty(netdev)) {
3887		/* nothing to program, so clear mc list */
3888		igb_update_mc_addr_list(hw, NULL, 0);
3889		igb_restore_vf_multicasts(adapter);
3890		return 0;
3891	}
3892
3893	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3894	if (!mta_list)
3895		return -ENOMEM;
3896
3897	/* The shared function expects a packed array of only addresses. */
3898	i = 0;
3899	netdev_for_each_mc_addr(ha, netdev)
3900		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3901
3902	igb_update_mc_addr_list(hw, mta_list, i);
3903	kfree(mta_list);
3904
3905	return netdev_mc_count(netdev);
3906}
3907
3908/**
3909 *  igb_write_uc_addr_list - write unicast addresses to RAR table
3910 *  @netdev: network interface device structure
3911 *
3912 *  Writes unicast address list to the RAR table.
3913 *  Returns: -ENOMEM on failure/insufficient address space
3914 *           0 on no addresses written
3915 *           X on writing X addresses to the RAR table
3916 **/
3917static int igb_write_uc_addr_list(struct net_device *netdev)
3918{
3919	struct igb_adapter *adapter = netdev_priv(netdev);
3920	struct e1000_hw *hw = &adapter->hw;
3921	unsigned int vfn = adapter->vfs_allocated_count;
3922	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3923	int count = 0;
3924
3925	/* return ENOMEM indicating insufficient memory for addresses */
3926	if (netdev_uc_count(netdev) > rar_entries)
3927		return -ENOMEM;
3928
3929	if (!netdev_uc_empty(netdev) && rar_entries) {
3930		struct netdev_hw_addr *ha;
3931
3932		netdev_for_each_uc_addr(ha, netdev) {
3933			if (!rar_entries)
3934				break;
3935			igb_rar_set_qsel(adapter, ha->addr,
3936					 rar_entries--,
3937					 vfn);
3938			count++;
3939		}
3940	}
3941	/* write the addresses in reverse order to avoid write combining */
3942	for (; rar_entries > 0 ; rar_entries--) {
3943		wr32(E1000_RAH(rar_entries), 0);
3944		wr32(E1000_RAL(rar_entries), 0);
3945	}
3946	wrfl();
3947
3948	return count;
3949}
3950
3951/**
3952 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3953 *  @netdev: network interface device structure
3954 *
3955 *  The set_rx_mode entry point is called whenever the unicast or multicast
3956 *  address lists or the network interface flags are updated.  This routine is
3957 *  responsible for configuring the hardware for proper unicast, multicast,
3958 *  promiscuous mode, and all-multi behavior.
3959 **/
3960static void igb_set_rx_mode(struct net_device *netdev)
3961{
3962	struct igb_adapter *adapter = netdev_priv(netdev);
3963	struct e1000_hw *hw = &adapter->hw;
3964	unsigned int vfn = adapter->vfs_allocated_count;
3965	u32 rctl, vmolr = 0;
3966	int count;
3967
3968	/* Check for Promiscuous and All Multicast modes */
3969	rctl = rd32(E1000_RCTL);
3970
3971	/* clear the effected bits */
3972	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3973
3974	if (netdev->flags & IFF_PROMISC) {
3975		/* retain VLAN HW filtering if in VT mode */
3976		if (adapter->vfs_allocated_count)
3977			rctl |= E1000_RCTL_VFE;
3978		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3979		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3980	} else {
3981		if (netdev->flags & IFF_ALLMULTI) {
3982			rctl |= E1000_RCTL_MPE;
3983			vmolr |= E1000_VMOLR_MPME;
3984		} else {
3985			/* Write addresses to the MTA, if the attempt fails
3986			 * then we should just turn on promiscuous mode so
3987			 * that we can at least receive multicast traffic
3988			 */
3989			count = igb_write_mc_addr_list(netdev);
3990			if (count < 0) {
3991				rctl |= E1000_RCTL_MPE;
3992				vmolr |= E1000_VMOLR_MPME;
3993			} else if (count) {
3994				vmolr |= E1000_VMOLR_ROMPE;
3995			}
3996		}
3997		/* Write addresses to available RAR registers, if there is not
3998		 * sufficient space to store all the addresses then enable
3999		 * unicast promiscuous mode
4000		 */
4001		count = igb_write_uc_addr_list(netdev);
4002		if (count < 0) {
4003			rctl |= E1000_RCTL_UPE;
4004			vmolr |= E1000_VMOLR_ROPE;
4005		}
4006		rctl |= E1000_RCTL_VFE;
4007	}
4008	wr32(E1000_RCTL, rctl);
4009
4010	/* In order to support SR-IOV and eventually VMDq it is necessary to set
4011	 * the VMOLR to enable the appropriate modes.  Without this workaround
4012	 * we will have issues with VLAN tag stripping not being done for frames
4013	 * that are only arriving because we are the default pool
4014	 */
4015	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4016		return;
4017
4018	vmolr |= rd32(E1000_VMOLR(vfn)) &
4019		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4020	wr32(E1000_VMOLR(vfn), vmolr);
4021	igb_restore_vf_multicasts(adapter);
4022}
4023
4024static void igb_check_wvbr(struct igb_adapter *adapter)
4025{
4026	struct e1000_hw *hw = &adapter->hw;
4027	u32 wvbr = 0;
4028
4029	switch (hw->mac.type) {
4030	case e1000_82576:
4031	case e1000_i350:
4032		if (!(wvbr = rd32(E1000_WVBR)))
4033			return;
4034		break;
4035	default:
4036		break;
4037	}
4038
4039	adapter->wvbr |= wvbr;
4040}
4041
4042#define IGB_STAGGERED_QUEUE_OFFSET 8
4043
4044static void igb_spoof_check(struct igb_adapter *adapter)
4045{
4046	int j;
4047
4048	if (!adapter->wvbr)
4049		return;
4050
4051	for(j = 0; j < adapter->vfs_allocated_count; j++) {
4052		if (adapter->wvbr & (1 << j) ||
4053		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4054			dev_warn(&adapter->pdev->dev,
4055				"Spoof event(s) detected on VF %d\n", j);
4056			adapter->wvbr &=
4057				~((1 << j) |
4058				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4059		}
4060	}
4061}
4062
4063/* Need to wait a few seconds after link up to get diagnostic information from
4064 * the phy
4065 */
4066static void igb_update_phy_info(unsigned long data)
4067{
4068	struct igb_adapter *adapter = (struct igb_adapter *) data;
4069	igb_get_phy_info(&adapter->hw);
4070}
4071
4072/**
4073 *  igb_has_link - check shared code for link and determine up/down
4074 *  @adapter: pointer to driver private info
4075 **/
4076bool igb_has_link(struct igb_adapter *adapter)
4077{
4078	struct e1000_hw *hw = &adapter->hw;
4079	bool link_active = false;
4080
4081	/* get_link_status is set on LSC (link status) interrupt or
4082	 * rx sequence error interrupt.  get_link_status will stay
4083	 * false until the e1000_check_for_link establishes link
4084	 * for copper adapters ONLY
4085	 */
4086	switch (hw->phy.media_type) {
4087	case e1000_media_type_copper:
4088		if (!hw->mac.get_link_status)
4089			return true;
4090	case e1000_media_type_internal_serdes:
4091		hw->mac.ops.check_for_link(hw);
4092		link_active = !hw->mac.get_link_status;
4093		break;
4094	default:
4095	case e1000_media_type_unknown:
4096		break;
4097	}
4098
4099	if (((hw->mac.type == e1000_i210) ||
4100	     (hw->mac.type == e1000_i211)) &&
4101	     (hw->phy.id == I210_I_PHY_ID)) {
4102		if (!netif_carrier_ok(adapter->netdev)) {
4103			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4104		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4105			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4106			adapter->link_check_timeout = jiffies;
4107		}
4108	}
4109
4110	return link_active;
4111}
4112
4113static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4114{
4115	bool ret = false;
4116	u32 ctrl_ext, thstat;
4117
4118	/* check for thermal sensor event on i350 copper only */
4119	if (hw->mac.type == e1000_i350) {
4120		thstat = rd32(E1000_THSTAT);
4121		ctrl_ext = rd32(E1000_CTRL_EXT);
4122
4123		if ((hw->phy.media_type == e1000_media_type_copper) &&
4124		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4125			ret = !!(thstat & event);
4126	}
4127
4128	return ret;
4129}
4130
4131/**
4132 *  igb_watchdog - Timer Call-back
4133 *  @data: pointer to adapter cast into an unsigned long
4134 **/
4135static void igb_watchdog(unsigned long data)
4136{
4137	struct igb_adapter *adapter = (struct igb_adapter *)data;
4138	/* Do the rest outside of interrupt context */
4139	schedule_work(&adapter->watchdog_task);
4140}
4141
4142static void igb_watchdog_task(struct work_struct *work)
4143{
4144	struct igb_adapter *adapter = container_of(work,
4145						   struct igb_adapter,
4146						   watchdog_task);
4147	struct e1000_hw *hw = &adapter->hw;
4148	struct e1000_phy_info *phy = &hw->phy;
4149	struct net_device *netdev = adapter->netdev;
4150	u32 link;
4151	int i;
4152	u32 connsw;
4153
4154	link = igb_has_link(adapter);
4155
4156	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4157		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4158			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4159		else
4160			link = false;
4161	}
4162
4163	/* Force link down if we have fiber to swap to */
4164	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4165		if (hw->phy.media_type == e1000_media_type_copper) {
4166			connsw = rd32(E1000_CONNSW);
4167			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4168				link = 0;
4169		}
4170	}
4171	if (link) {
4172		/* Perform a reset if the media type changed. */
4173		if (hw->dev_spec._82575.media_changed) {
4174			hw->dev_spec._82575.media_changed = false;
4175			adapter->flags |= IGB_FLAG_MEDIA_RESET;
4176			igb_reset(adapter);
4177		}
4178		/* Cancel scheduled suspend requests. */
4179		pm_runtime_resume(netdev->dev.parent);
4180
4181		if (!netif_carrier_ok(netdev)) {
4182			u32 ctrl;
4183			hw->mac.ops.get_speed_and_duplex(hw,
4184							 &adapter->link_speed,
4185							 &adapter->link_duplex);
4186
4187			ctrl = rd32(E1000_CTRL);
4188			/* Links status message must follow this format */
4189			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
4190			       "Duplex, Flow Control: %s\n",
4191			       netdev->name,
4192			       adapter->link_speed,
4193			       adapter->link_duplex == FULL_DUPLEX ?
4194			       "Full" : "Half",
4195			       (ctrl & E1000_CTRL_TFCE) &&
4196			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4197			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4198			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4199
4200			/* disable EEE if enabled */
4201			if ((adapter->flags & IGB_FLAG_EEE) &&
4202				(adapter->link_duplex == HALF_DUPLEX)) {
4203				dev_info(&adapter->pdev->dev,
4204				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4205				adapter->hw.dev_spec._82575.eee_disable = true;
4206				adapter->flags &= ~IGB_FLAG_EEE;
4207			}
4208
4209			/* check if SmartSpeed worked */
4210			igb_check_downshift(hw);
4211			if (phy->speed_downgraded)
4212				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4213
4214			/* check for thermal sensor event */
4215			if (igb_thermal_sensor_event(hw,
4216			    E1000_THSTAT_LINK_THROTTLE)) {
4217				netdev_info(netdev, "The network adapter link "
4218					    "speed was downshifted because it "
4219					    "overheated\n");
4220			}
4221
4222			/* adjust timeout factor according to speed/duplex */
4223			adapter->tx_timeout_factor = 1;
4224			switch (adapter->link_speed) {
4225			case SPEED_10:
4226				adapter->tx_timeout_factor = 14;
4227				break;
4228			case SPEED_100:
4229				/* maybe add some timeout factor ? */
4230				break;
4231			}
4232
4233			netif_carrier_on(netdev);
4234
4235			igb_ping_all_vfs(adapter);
4236			igb_check_vf_rate_limit(adapter);
4237
4238			/* link state has changed, schedule phy info update */
4239			if (!test_bit(__IGB_DOWN, &adapter->state))
4240				mod_timer(&adapter->phy_info_timer,
4241					  round_jiffies(jiffies + 2 * HZ));
4242		}
4243	} else {
4244		if (netif_carrier_ok(netdev)) {
4245			adapter->link_speed = 0;
4246			adapter->link_duplex = 0;
4247
4248			/* check for thermal sensor event */
4249			if (igb_thermal_sensor_event(hw,
4250			    E1000_THSTAT_PWR_DOWN)) {
4251				netdev_err(netdev, "The network adapter was "
4252					   "stopped because it overheated\n");
4253			}
4254
4255			/* Links status message must follow this format */
4256			printk(KERN_INFO "igb: %s NIC Link is Down\n",
4257			       netdev->name);
4258			netif_carrier_off(netdev);
4259
4260			igb_ping_all_vfs(adapter);
4261
4262			/* link state has changed, schedule phy info update */
4263			if (!test_bit(__IGB_DOWN, &adapter->state))
4264				mod_timer(&adapter->phy_info_timer,
4265					  round_jiffies(jiffies + 2 * HZ));
4266
4267			/* link is down, time to check for alternate media */
4268			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4269				igb_check_swap_media(adapter);
4270				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4271					schedule_work(&adapter->reset_task);
4272					/* return immediately */
4273					return;
4274				}
4275			}
4276			pm_schedule_suspend(netdev->dev.parent,
4277					    MSEC_PER_SEC * 5);
4278
4279		/* also check for alternate media here */
4280		} else if (!netif_carrier_ok(netdev) &&
4281			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4282			igb_check_swap_media(adapter);
4283			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4284				schedule_work(&adapter->reset_task);
4285				/* return immediately */
4286				return;
4287			}
4288		}
4289	}
4290
4291	spin_lock(&adapter->stats64_lock);
4292	igb_update_stats(adapter, &adapter->stats64);
4293	spin_unlock(&adapter->stats64_lock);
4294
4295	for (i = 0; i < adapter->num_tx_queues; i++) {
4296		struct igb_ring *tx_ring = adapter->tx_ring[i];
4297		if (!netif_carrier_ok(netdev)) {
4298			/* We've lost link, so the controller stops DMA,
4299			 * but we've got queued Tx work that's never going
4300			 * to get done, so reset controller to flush Tx.
4301			 * (Do the reset outside of interrupt context).
4302			 */
4303			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4304				adapter->tx_timeout_count++;
4305				schedule_work(&adapter->reset_task);
4306				/* return immediately since reset is imminent */
4307				return;
4308			}
4309		}
4310
4311		/* Force detection of hung controller every watchdog period */
4312		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4313	}
4314
4315	/* Cause software interrupt to ensure Rx ring is cleaned */
4316	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4317		u32 eics = 0;
4318		for (i = 0; i < adapter->num_q_vectors; i++)
4319			eics |= adapter->q_vector[i]->eims_value;
4320		wr32(E1000_EICS, eics);
4321	} else {
4322		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4323	}
4324
4325	igb_spoof_check(adapter);
4326	igb_ptp_rx_hang(adapter);
4327
4328	/* Reset the timer */
4329	if (!test_bit(__IGB_DOWN, &adapter->state)) {
4330		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4331			mod_timer(&adapter->watchdog_timer,
4332				  round_jiffies(jiffies +  HZ));
4333		else
4334			mod_timer(&adapter->watchdog_timer,
4335				  round_jiffies(jiffies + 2 * HZ));
4336	}
4337}
4338
4339enum latency_range {
4340	lowest_latency = 0,
4341	low_latency = 1,
4342	bulk_latency = 2,
4343	latency_invalid = 255
4344};
4345
4346/**
4347 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4348 *  @q_vector: pointer to q_vector
4349 *
4350 *  Stores a new ITR value based on strictly on packet size.  This
4351 *  algorithm is less sophisticated than that used in igb_update_itr,
4352 *  due to the difficulty of synchronizing statistics across multiple
4353 *  receive rings.  The divisors and thresholds used by this function
4354 *  were determined based on theoretical maximum wire speed and testing
4355 *  data, in order to minimize response time while increasing bulk
4356 *  throughput.
4357 *  This functionality is controlled by ethtool's coalescing settings.
4358 *  NOTE:  This function is called only when operating in a multiqueue
4359 *         receive environment.
4360 **/
4361static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4362{
4363	int new_val = q_vector->itr_val;
4364	int avg_wire_size = 0;
4365	struct igb_adapter *adapter = q_vector->adapter;
4366	unsigned int packets;
4367
4368	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4369	 * ints/sec - ITR timer value of 120 ticks.
4370	 */
4371	if (adapter->link_speed != SPEED_1000) {
4372		new_val = IGB_4K_ITR;
4373		goto set_itr_val;
4374	}
4375
4376	packets = q_vector->rx.total_packets;
4377	if (packets)
4378		avg_wire_size = q_vector->rx.total_bytes / packets;
4379
4380	packets = q_vector->tx.total_packets;
4381	if (packets)
4382		avg_wire_size = max_t(u32, avg_wire_size,
4383				      q_vector->tx.total_bytes / packets);
4384
4385	/* if avg_wire_size isn't set no work was done */
4386	if (!avg_wire_size)
4387		goto clear_counts;
4388
4389	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4390	avg_wire_size += 24;
4391
4392	/* Don't starve jumbo frames */
4393	avg_wire_size = min(avg_wire_size, 3000);
4394
4395	/* Give a little boost to mid-size frames */
4396	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4397		new_val = avg_wire_size / 3;
4398	else
4399		new_val = avg_wire_size / 2;
4400
4401	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4402	if (new_val < IGB_20K_ITR &&
4403	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4404	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4405		new_val = IGB_20K_ITR;
4406
4407set_itr_val:
4408	if (new_val != q_vector->itr_val) {
4409		q_vector->itr_val = new_val;
4410		q_vector->set_itr = 1;
4411	}
4412clear_counts:
4413	q_vector->rx.total_bytes = 0;
4414	q_vector->rx.total_packets = 0;
4415	q_vector->tx.total_bytes = 0;
4416	q_vector->tx.total_packets = 0;
4417}
4418
4419/**
4420 *  igb_update_itr - update the dynamic ITR value based on statistics
4421 *  @q_vector: pointer to q_vector
4422 *  @ring_container: ring info to update the itr for
4423 *
4424 *  Stores a new ITR value based on packets and byte
4425 *  counts during the last interrupt.  The advantage of per interrupt
4426 *  computation is faster updates and more accurate ITR for the current
4427 *  traffic pattern.  Constants in this function were computed
4428 *  based on theoretical maximum wire speed and thresholds were set based
4429 *  on testing data as well as attempting to minimize response time
4430 *  while increasing bulk throughput.
4431 *  This functionality is controlled by ethtool's coalescing settings.
4432 *  NOTE:  These calculations are only valid when operating in a single-
4433 *         queue environment.
4434 **/
4435static void igb_update_itr(struct igb_q_vector *q_vector,
4436			   struct igb_ring_container *ring_container)
4437{
4438	unsigned int packets = ring_container->total_packets;
4439	unsigned int bytes = ring_container->total_bytes;
4440	u8 itrval = ring_container->itr;
4441
4442	/* no packets, exit with status unchanged */
4443	if (packets == 0)
4444		return;
4445
4446	switch (itrval) {
4447	case lowest_latency:
4448		/* handle TSO and jumbo frames */
4449		if (bytes/packets > 8000)
4450			itrval = bulk_latency;
4451		else if ((packets < 5) && (bytes > 512))
4452			itrval = low_latency;
4453		break;
4454	case low_latency:  /* 50 usec aka 20000 ints/s */
4455		if (bytes > 10000) {
4456			/* this if handles the TSO accounting */
4457			if (bytes/packets > 8000) {
4458				itrval = bulk_latency;
4459			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4460				itrval = bulk_latency;
4461			} else if ((packets > 35)) {
4462				itrval = lowest_latency;
4463			}
4464		} else if (bytes/packets > 2000) {
4465			itrval = bulk_latency;
4466		} else if (packets <= 2 && bytes < 512) {
4467			itrval = lowest_latency;
4468		}
4469		break;
4470	case bulk_latency: /* 250 usec aka 4000 ints/s */
4471		if (bytes > 25000) {
4472			if (packets > 35)
4473				itrval = low_latency;
4474		} else if (bytes < 1500) {
4475			itrval = low_latency;
4476		}
4477		break;
4478	}
4479
4480	/* clear work counters since we have the values we need */
4481	ring_container->total_bytes = 0;
4482	ring_container->total_packets = 0;
4483
4484	/* write updated itr to ring container */
4485	ring_container->itr = itrval;
4486}
4487
4488static void igb_set_itr(struct igb_q_vector *q_vector)
4489{
4490	struct igb_adapter *adapter = q_vector->adapter;
4491	u32 new_itr = q_vector->itr_val;
4492	u8 current_itr = 0;
4493
4494	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4495	if (adapter->link_speed != SPEED_1000) {
4496		current_itr = 0;
4497		new_itr = IGB_4K_ITR;
4498		goto set_itr_now;
4499	}
4500
4501	igb_update_itr(q_vector, &q_vector->tx);
4502	igb_update_itr(q_vector, &q_vector->rx);
4503
4504	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4505
4506	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4507	if (current_itr == lowest_latency &&
4508	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4509	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4510		current_itr = low_latency;
4511
4512	switch (current_itr) {
4513	/* counts and packets in update_itr are dependent on these numbers */
4514	case lowest_latency:
4515		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4516		break;
4517	case low_latency:
4518		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4519		break;
4520	case bulk_latency:
4521		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4522		break;
4523	default:
4524		break;
4525	}
4526
4527set_itr_now:
4528	if (new_itr != q_vector->itr_val) {
4529		/* this attempts to bias the interrupt rate towards Bulk
4530		 * by adding intermediate steps when interrupt rate is
4531		 * increasing
4532		 */
4533		new_itr = new_itr > q_vector->itr_val ?
4534			  max((new_itr * q_vector->itr_val) /
4535			  (new_itr + (q_vector->itr_val >> 2)),
4536			  new_itr) : new_itr;
4537		/* Don't write the value here; it resets the adapter's
4538		 * internal timer, and causes us to delay far longer than
4539		 * we should between interrupts.  Instead, we write the ITR
4540		 * value at the beginning of the next interrupt so the timing
4541		 * ends up being correct.
4542		 */
4543		q_vector->itr_val = new_itr;
4544		q_vector->set_itr = 1;
4545	}
4546}
4547
4548static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4549			    u32 type_tucmd, u32 mss_l4len_idx)
4550{
4551	struct e1000_adv_tx_context_desc *context_desc;
4552	u16 i = tx_ring->next_to_use;
4553
4554	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4555
4556	i++;
4557	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4558
4559	/* set bits to identify this as an advanced context descriptor */
4560	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4561
4562	/* For 82575, context index must be unique per ring. */
4563	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4564		mss_l4len_idx |= tx_ring->reg_idx << 4;
4565
4566	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4567	context_desc->seqnum_seed	= 0;
4568	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4569	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4570}
4571
4572static int igb_tso(struct igb_ring *tx_ring,
4573		   struct igb_tx_buffer *first,
4574		   u8 *hdr_len)
4575{
4576	struct sk_buff *skb = first->skb;
4577	u32 vlan_macip_lens, type_tucmd;
4578	u32 mss_l4len_idx, l4len;
4579
4580	if (skb->ip_summed != CHECKSUM_PARTIAL)
4581		return 0;
4582
4583	if (!skb_is_gso(skb))
4584		return 0;
4585
4586	if (skb_header_cloned(skb)) {
4587		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4588		if (err)
4589			return err;
4590	}
4591
4592	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4593	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4594
4595	if (first->protocol == htons(ETH_P_IP)) {
4596		struct iphdr *iph = ip_hdr(skb);
4597		iph->tot_len = 0;
4598		iph->check = 0;
4599		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4600							 iph->daddr, 0,
4601							 IPPROTO_TCP,
4602							 0);
4603		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4604		first->tx_flags |= IGB_TX_FLAGS_TSO |
4605				   IGB_TX_FLAGS_CSUM |
4606				   IGB_TX_FLAGS_IPV4;
4607	} else if (skb_is_gso_v6(skb)) {
4608		ipv6_hdr(skb)->payload_len = 0;
4609		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4610						       &ipv6_hdr(skb)->daddr,
4611						       0, IPPROTO_TCP, 0);
4612		first->tx_flags |= IGB_TX_FLAGS_TSO |
4613				   IGB_TX_FLAGS_CSUM;
4614	}
4615
4616	/* compute header lengths */
4617	l4len = tcp_hdrlen(skb);
4618	*hdr_len = skb_transport_offset(skb) + l4len;
4619
4620	/* update gso size and bytecount with header size */
4621	first->gso_segs = skb_shinfo(skb)->gso_segs;
4622	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4623
4624	/* MSS L4LEN IDX */
4625	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4626	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4627
4628	/* VLAN MACLEN IPLEN */
4629	vlan_macip_lens = skb_network_header_len(skb);
4630	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4631	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4632
4633	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4634
4635	return 1;
4636}
4637
4638static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4639{
4640	struct sk_buff *skb = first->skb;
4641	u32 vlan_macip_lens = 0;
4642	u32 mss_l4len_idx = 0;
4643	u32 type_tucmd = 0;
4644
4645	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4646		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4647			return;
4648	} else {
4649		u8 l4_hdr = 0;
4650		switch (first->protocol) {
4651		case htons(ETH_P_IP):
4652			vlan_macip_lens |= skb_network_header_len(skb);
4653			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4654			l4_hdr = ip_hdr(skb)->protocol;
4655			break;
4656		case htons(ETH_P_IPV6):
4657			vlan_macip_lens |= skb_network_header_len(skb);
4658			l4_hdr = ipv6_hdr(skb)->nexthdr;
4659			break;
4660		default:
4661			if (unlikely(net_ratelimit())) {
4662				dev_warn(tx_ring->dev,
4663					 "partial checksum but proto=%x!\n",
4664					 first->protocol);
4665			}
4666			break;
4667		}
4668
4669		switch (l4_hdr) {
4670		case IPPROTO_TCP:
4671			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4672			mss_l4len_idx = tcp_hdrlen(skb) <<
4673					E1000_ADVTXD_L4LEN_SHIFT;
4674			break;
4675		case IPPROTO_SCTP:
4676			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4677			mss_l4len_idx = sizeof(struct sctphdr) <<
4678					E1000_ADVTXD_L4LEN_SHIFT;
4679			break;
4680		case IPPROTO_UDP:
4681			mss_l4len_idx = sizeof(struct udphdr) <<
4682					E1000_ADVTXD_L4LEN_SHIFT;
4683			break;
4684		default:
4685			if (unlikely(net_ratelimit())) {
4686				dev_warn(tx_ring->dev,
4687					 "partial checksum but l4 proto=%x!\n",
4688					 l4_hdr);
4689			}
4690			break;
4691		}
4692
4693		/* update TX checksum flag */
4694		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4695	}
4696
4697	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4698	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4699
4700	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4701}
4702
4703#define IGB_SET_FLAG(_input, _flag, _result) \
4704	((_flag <= _result) ? \
4705	 ((u32)(_input & _flag) * (_result / _flag)) : \
4706	 ((u32)(_input & _flag) / (_flag / _result)))
4707
4708static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4709{
4710	/* set type for advanced descriptor with frame checksum insertion */
4711	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4712		       E1000_ADVTXD_DCMD_DEXT |
4713		       E1000_ADVTXD_DCMD_IFCS;
4714
4715	/* set HW vlan bit if vlan is present */
4716	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4717				 (E1000_ADVTXD_DCMD_VLE));
4718
4719	/* set segmentation bits for TSO */
4720	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4721				 (E1000_ADVTXD_DCMD_TSE));
4722
4723	/* set timestamp bit if present */
4724	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4725				 (E1000_ADVTXD_MAC_TSTAMP));
4726
4727	/* insert frame checksum */
4728	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4729
4730	return cmd_type;
4731}
4732
4733static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4734				 union e1000_adv_tx_desc *tx_desc,
4735				 u32 tx_flags, unsigned int paylen)
4736{
4737	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4738
4739	/* 82575 requires a unique index per ring */
4740	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4741		olinfo_status |= tx_ring->reg_idx << 4;
4742
4743	/* insert L4 checksum */
4744	olinfo_status |= IGB_SET_FLAG(tx_flags,
4745				      IGB_TX_FLAGS_CSUM,
4746				      (E1000_TXD_POPTS_TXSM << 8));
4747
4748	/* insert IPv4 checksum */
4749	olinfo_status |= IGB_SET_FLAG(tx_flags,
4750				      IGB_TX_FLAGS_IPV4,
4751				      (E1000_TXD_POPTS_IXSM << 8));
4752
4753	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4754}
4755
4756static void igb_tx_map(struct igb_ring *tx_ring,
4757		       struct igb_tx_buffer *first,
4758		       const u8 hdr_len)
4759{
4760	struct sk_buff *skb = first->skb;
4761	struct igb_tx_buffer *tx_buffer;
4762	union e1000_adv_tx_desc *tx_desc;
4763	struct skb_frag_struct *frag;
4764	dma_addr_t dma;
4765	unsigned int data_len, size;
4766	u32 tx_flags = first->tx_flags;
4767	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4768	u16 i = tx_ring->next_to_use;
4769
4770	tx_desc = IGB_TX_DESC(tx_ring, i);
4771
4772	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4773
4774	size = skb_headlen(skb);
4775	data_len = skb->data_len;
4776
4777	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4778
4779	tx_buffer = first;
4780
4781	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4782		if (dma_mapping_error(tx_ring->dev, dma))
4783			goto dma_error;
4784
4785		/* record length, and DMA address */
4786		dma_unmap_len_set(tx_buffer, len, size);
4787		dma_unmap_addr_set(tx_buffer, dma, dma);
4788
4789		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4790
4791		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4792			tx_desc->read.cmd_type_len =
4793				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4794
4795			i++;
4796			tx_desc++;
4797			if (i == tx_ring->count) {
4798				tx_desc = IGB_TX_DESC(tx_ring, 0);
4799				i = 0;
4800			}
4801			tx_desc->read.olinfo_status = 0;
4802
4803			dma += IGB_MAX_DATA_PER_TXD;
4804			size -= IGB_MAX_DATA_PER_TXD;
4805
4806			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4807		}
4808
4809		if (likely(!data_len))
4810			break;
4811
4812		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4813
4814		i++;
4815		tx_desc++;
4816		if (i == tx_ring->count) {
4817			tx_desc = IGB_TX_DESC(tx_ring, 0);
4818			i = 0;
4819		}
4820		tx_desc->read.olinfo_status = 0;
4821
4822		size = skb_frag_size(frag);
4823		data_len -= size;
4824
4825		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4826				       size, DMA_TO_DEVICE);
4827
4828		tx_buffer = &tx_ring->tx_buffer_info[i];
4829	}
4830
4831	/* write last descriptor with RS and EOP bits */
4832	cmd_type |= size | IGB_TXD_DCMD;
4833	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4834
4835	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4836
4837	/* set the timestamp */
4838	first->time_stamp = jiffies;
4839
4840	/* Force memory writes to complete before letting h/w know there
4841	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4842	 * memory model archs, such as IA-64).
4843	 *
4844	 * We also need this memory barrier to make certain all of the
4845	 * status bits have been updated before next_to_watch is written.
4846	 */
4847	wmb();
4848
4849	/* set next_to_watch value indicating a packet is present */
4850	first->next_to_watch = tx_desc;
4851
4852	i++;
4853	if (i == tx_ring->count)
4854		i = 0;
4855
4856	tx_ring->next_to_use = i;
4857
4858	writel(i, tx_ring->tail);
4859
4860	/* we need this if more than one processor can write to our tail
4861	 * at a time, it synchronizes IO on IA64/Altix systems
4862	 */
4863	mmiowb();
4864
4865	return;
4866
4867dma_error:
4868	dev_err(tx_ring->dev, "TX DMA map failed\n");
4869
4870	/* clear dma mappings for failed tx_buffer_info map */
4871	for (;;) {
4872		tx_buffer = &tx_ring->tx_buffer_info[i];
4873		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4874		if (tx_buffer == first)
4875			break;
4876		if (i == 0)
4877			i = tx_ring->count;
4878		i--;
4879	}
4880
4881	tx_ring->next_to_use = i;
4882}
4883
4884static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4885{
4886	struct net_device *netdev = tx_ring->netdev;
4887
4888	netif_stop_subqueue(netdev, tx_ring->queue_index);
4889
4890	/* Herbert's original patch had:
4891	 *  smp_mb__after_netif_stop_queue();
4892	 * but since that doesn't exist yet, just open code it.
4893	 */
4894	smp_mb();
4895
4896	/* We need to check again in a case another CPU has just
4897	 * made room available.
4898	 */
4899	if (igb_desc_unused(tx_ring) < size)
4900		return -EBUSY;
4901
4902	/* A reprieve! */
4903	netif_wake_subqueue(netdev, tx_ring->queue_index);
4904
4905	u64_stats_update_begin(&tx_ring->tx_syncp2);
4906	tx_ring->tx_stats.restart_queue2++;
4907	u64_stats_update_end(&tx_ring->tx_syncp2);
4908
4909	return 0;
4910}
4911
4912static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4913{
4914	if (igb_desc_unused(tx_ring) >= size)
4915		return 0;
4916	return __igb_maybe_stop_tx(tx_ring, size);
4917}
4918
4919netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4920				struct igb_ring *tx_ring)
4921{
4922	struct igb_tx_buffer *first;
4923	int tso;
4924	u32 tx_flags = 0;
4925	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4926	__be16 protocol = vlan_get_protocol(skb);
4927	u8 hdr_len = 0;
4928
4929	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4930	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4931	 *       + 2 desc gap to keep tail from touching head,
4932	 *       + 1 desc for context descriptor,
4933	 * otherwise try next time
4934	 */
4935	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4936		unsigned short f;
4937		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4938			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4939	} else {
4940		count += skb_shinfo(skb)->nr_frags;
4941	}
4942
4943	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4944		/* this is a hard error */
4945		return NETDEV_TX_BUSY;
4946	}
4947
4948	/* record the location of the first descriptor for this packet */
4949	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4950	first->skb = skb;
4951	first->bytecount = skb->len;
4952	first->gso_segs = 1;
4953
4954	skb_tx_timestamp(skb);
4955
4956	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4957		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4958
4959		if (!(adapter->ptp_tx_skb)) {
4960			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4961			tx_flags |= IGB_TX_FLAGS_TSTAMP;
4962
4963			adapter->ptp_tx_skb = skb_get(skb);
4964			adapter->ptp_tx_start = jiffies;
4965			if (adapter->hw.mac.type == e1000_82576)
4966				schedule_work(&adapter->ptp_tx_work);
4967		}
4968	}
4969
4970	if (vlan_tx_tag_present(skb)) {
4971		tx_flags |= IGB_TX_FLAGS_VLAN;
4972		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4973	}
4974
4975	/* record initial flags and protocol */
4976	first->tx_flags = tx_flags;
4977	first->protocol = protocol;
4978
4979	tso = igb_tso(tx_ring, first, &hdr_len);
4980	if (tso < 0)
4981		goto out_drop;
4982	else if (!tso)
4983		igb_tx_csum(tx_ring, first);
4984
4985	igb_tx_map(tx_ring, first, hdr_len);
4986
4987	/* Make sure there is space in the ring for the next send. */
4988	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4989
4990	return NETDEV_TX_OK;
4991
4992out_drop:
4993	igb_unmap_and_free_tx_resource(tx_ring, first);
4994
4995	return NETDEV_TX_OK;
4996}
4997
4998static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4999						    struct sk_buff *skb)
5000{
5001	unsigned int r_idx = skb->queue_mapping;
5002
5003	if (r_idx >= adapter->num_tx_queues)
5004		r_idx = r_idx % adapter->num_tx_queues;
5005
5006	return adapter->tx_ring[r_idx];
5007}
5008
5009static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5010				  struct net_device *netdev)
5011{
5012	struct igb_adapter *adapter = netdev_priv(netdev);
5013
5014	if (test_bit(__IGB_DOWN, &adapter->state)) {
5015		dev_kfree_skb_any(skb);
5016		return NETDEV_TX_OK;
5017	}
5018
5019	if (skb->len <= 0) {
5020		dev_kfree_skb_any(skb);
5021		return NETDEV_TX_OK;
5022	}
5023
5024	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5025	 * in order to meet this minimum size requirement.
5026	 */
5027	if (unlikely(skb->len < 17)) {
5028		if (skb_pad(skb, 17 - skb->len))
5029			return NETDEV_TX_OK;
5030		skb->len = 17;
5031		skb_set_tail_pointer(skb, 17);
5032	}
5033
5034	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5035}
5036
5037/**
5038 *  igb_tx_timeout - Respond to a Tx Hang
5039 *  @netdev: network interface device structure
5040 **/
5041static void igb_tx_timeout(struct net_device *netdev)
5042{
5043	struct igb_adapter *adapter = netdev_priv(netdev);
5044	struct e1000_hw *hw = &adapter->hw;
5045
5046	/* Do the reset outside of interrupt context */
5047	adapter->tx_timeout_count++;
5048
5049	if (hw->mac.type >= e1000_82580)
5050		hw->dev_spec._82575.global_device_reset = true;
5051
5052	schedule_work(&adapter->reset_task);
5053	wr32(E1000_EICS,
5054	     (adapter->eims_enable_mask & ~adapter->eims_other));
5055}
5056
5057static void igb_reset_task(struct work_struct *work)
5058{
5059	struct igb_adapter *adapter;
5060	adapter = container_of(work, struct igb_adapter, reset_task);
5061
5062	igb_dump(adapter);
5063	netdev_err(adapter->netdev, "Reset adapter\n");
5064	igb_reinit_locked(adapter);
5065}
5066
5067/**
5068 *  igb_get_stats64 - Get System Network Statistics
5069 *  @netdev: network interface device structure
5070 *  @stats: rtnl_link_stats64 pointer
5071 **/
5072static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5073						struct rtnl_link_stats64 *stats)
5074{
5075	struct igb_adapter *adapter = netdev_priv(netdev);
5076
5077	spin_lock(&adapter->stats64_lock);
5078	igb_update_stats(adapter, &adapter->stats64);
5079	memcpy(stats, &adapter->stats64, sizeof(*stats));
5080	spin_unlock(&adapter->stats64_lock);
5081
5082	return stats;
5083}
5084
5085/**
5086 *  igb_change_mtu - Change the Maximum Transfer Unit
5087 *  @netdev: network interface device structure
5088 *  @new_mtu: new value for maximum frame size
5089 *
5090 *  Returns 0 on success, negative on failure
5091 **/
5092static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5093{
5094	struct igb_adapter *adapter = netdev_priv(netdev);
5095	struct pci_dev *pdev = adapter->pdev;
5096	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5097
5098	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5099		dev_err(&pdev->dev, "Invalid MTU setting\n");
5100		return -EINVAL;
5101	}
5102
5103#define MAX_STD_JUMBO_FRAME_SIZE 9238
5104	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5105		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5106		return -EINVAL;
5107	}
5108
5109	/* adjust max frame to be at least the size of a standard frame */
5110	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5111		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5112
5113	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5114		msleep(1);
5115
5116	/* igb_down has a dependency on max_frame_size */
5117	adapter->max_frame_size = max_frame;
5118
5119	if (netif_running(netdev))
5120		igb_down(adapter);
5121
5122	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5123		 netdev->mtu, new_mtu);
5124	netdev->mtu = new_mtu;
5125
5126	if (netif_running(netdev))
5127		igb_up(adapter);
5128	else
5129		igb_reset(adapter);
5130
5131	clear_bit(__IGB_RESETTING, &adapter->state);
5132
5133	return 0;
5134}
5135
5136/**
5137 *  igb_update_stats - Update the board statistics counters
5138 *  @adapter: board private structure
5139 **/
5140void igb_update_stats(struct igb_adapter *adapter,
5141		      struct rtnl_link_stats64 *net_stats)
5142{
5143	struct e1000_hw *hw = &adapter->hw;
5144	struct pci_dev *pdev = adapter->pdev;
5145	u32 reg, mpc;
5146	u16 phy_tmp;
5147	int i;
5148	u64 bytes, packets;
5149	unsigned int start;
5150	u64 _bytes, _packets;
5151
5152#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
5153
5154	/* Prevent stats update while adapter is being reset, or if the pci
5155	 * connection is down.
5156	 */
5157	if (adapter->link_speed == 0)
5158		return;
5159	if (pci_channel_offline(pdev))
5160		return;
5161
5162	bytes = 0;
5163	packets = 0;
5164
5165	rcu_read_lock();
5166	for (i = 0; i < adapter->num_rx_queues; i++) {
5167		u32 rqdpc = rd32(E1000_RQDPC(i));
5168		struct igb_ring *ring = adapter->rx_ring[i];
5169
5170		if (rqdpc) {
5171			ring->rx_stats.drops += rqdpc;
5172			net_stats->rx_fifo_errors += rqdpc;
5173		}
5174
5175		do {
5176			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5177			_bytes = ring->rx_stats.bytes;
5178			_packets = ring->rx_stats.packets;
5179		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5180		bytes += _bytes;
5181		packets += _packets;
5182	}
5183
5184	net_stats->rx_bytes = bytes;
5185	net_stats->rx_packets = packets;
5186
5187	bytes = 0;
5188	packets = 0;
5189	for (i = 0; i < adapter->num_tx_queues; i++) {
5190		struct igb_ring *ring = adapter->tx_ring[i];
5191		do {
5192			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5193			_bytes = ring->tx_stats.bytes;
5194			_packets = ring->tx_stats.packets;
5195		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5196		bytes += _bytes;
5197		packets += _packets;
5198	}
5199	net_stats->tx_bytes = bytes;
5200	net_stats->tx_packets = packets;
5201	rcu_read_unlock();
5202
5203	/* read stats registers */
5204	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5205	adapter->stats.gprc += rd32(E1000_GPRC);
5206	adapter->stats.gorc += rd32(E1000_GORCL);
5207	rd32(E1000_GORCH); /* clear GORCL */
5208	adapter->stats.bprc += rd32(E1000_BPRC);
5209	adapter->stats.mprc += rd32(E1000_MPRC);
5210	adapter->stats.roc += rd32(E1000_ROC);
5211
5212	adapter->stats.prc64 += rd32(E1000_PRC64);
5213	adapter->stats.prc127 += rd32(E1000_PRC127);
5214	adapter->stats.prc255 += rd32(E1000_PRC255);
5215	adapter->stats.prc511 += rd32(E1000_PRC511);
5216	adapter->stats.prc1023 += rd32(E1000_PRC1023);
5217	adapter->stats.prc1522 += rd32(E1000_PRC1522);
5218	adapter->stats.symerrs += rd32(E1000_SYMERRS);
5219	adapter->stats.sec += rd32(E1000_SEC);
5220
5221	mpc = rd32(E1000_MPC);
5222	adapter->stats.mpc += mpc;
5223	net_stats->rx_fifo_errors += mpc;
5224	adapter->stats.scc += rd32(E1000_SCC);
5225	adapter->stats.ecol += rd32(E1000_ECOL);
5226	adapter->stats.mcc += rd32(E1000_MCC);
5227	adapter->stats.latecol += rd32(E1000_LATECOL);
5228	adapter->stats.dc += rd32(E1000_DC);
5229	adapter->stats.rlec += rd32(E1000_RLEC);
5230	adapter->stats.xonrxc += rd32(E1000_XONRXC);
5231	adapter->stats.xontxc += rd32(E1000_XONTXC);
5232	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5233	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5234	adapter->stats.fcruc += rd32(E1000_FCRUC);
5235	adapter->stats.gptc += rd32(E1000_GPTC);
5236	adapter->stats.gotc += rd32(E1000_GOTCL);
5237	rd32(E1000_GOTCH); /* clear GOTCL */
5238	adapter->stats.rnbc += rd32(E1000_RNBC);
5239	adapter->stats.ruc += rd32(E1000_RUC);
5240	adapter->stats.rfc += rd32(E1000_RFC);
5241	adapter->stats.rjc += rd32(E1000_RJC);
5242	adapter->stats.tor += rd32(E1000_TORH);
5243	adapter->stats.tot += rd32(E1000_TOTH);
5244	adapter->stats.tpr += rd32(E1000_TPR);
5245
5246	adapter->stats.ptc64 += rd32(E1000_PTC64);
5247	adapter->stats.ptc127 += rd32(E1000_PTC127);
5248	adapter->stats.ptc255 += rd32(E1000_PTC255);
5249	adapter->stats.ptc511 += rd32(E1000_PTC511);
5250	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5251	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5252
5253	adapter->stats.mptc += rd32(E1000_MPTC);
5254	adapter->stats.bptc += rd32(E1000_BPTC);
5255
5256	adapter->stats.tpt += rd32(E1000_TPT);
5257	adapter->stats.colc += rd32(E1000_COLC);
5258
5259	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5260	/* read internal phy specific stats */
5261	reg = rd32(E1000_CTRL_EXT);
5262	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5263		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5264
5265		/* this stat has invalid values on i210/i211 */
5266		if ((hw->mac.type != e1000_i210) &&
5267		    (hw->mac.type != e1000_i211))
5268			adapter->stats.tncrs += rd32(E1000_TNCRS);
5269	}
5270
5271	adapter->stats.tsctc += rd32(E1000_TSCTC);
5272	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5273
5274	adapter->stats.iac += rd32(E1000_IAC);
5275	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5276	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5277	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5278	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5279	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5280	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5281	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5282	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5283
5284	/* Fill out the OS statistics structure */
5285	net_stats->multicast = adapter->stats.mprc;
5286	net_stats->collisions = adapter->stats.colc;
5287
5288	/* Rx Errors */
5289
5290	/* RLEC on some newer hardware can be incorrect so build
5291	 * our own version based on RUC and ROC
5292	 */
5293	net_stats->rx_errors = adapter->stats.rxerrc +
5294		adapter->stats.crcerrs + adapter->stats.algnerrc +
5295		adapter->stats.ruc + adapter->stats.roc +
5296		adapter->stats.cexterr;
5297	net_stats->rx_length_errors = adapter->stats.ruc +
5298				      adapter->stats.roc;
5299	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5300	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5301	net_stats->rx_missed_errors = adapter->stats.mpc;
5302
5303	/* Tx Errors */
5304	net_stats->tx_errors = adapter->stats.ecol +
5305			       adapter->stats.latecol;
5306	net_stats->tx_aborted_errors = adapter->stats.ecol;
5307	net_stats->tx_window_errors = adapter->stats.latecol;
5308	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5309
5310	/* Tx Dropped needs to be maintained elsewhere */
5311
5312	/* Phy Stats */
5313	if (hw->phy.media_type == e1000_media_type_copper) {
5314		if ((adapter->link_speed == SPEED_1000) &&
5315		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5316			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5317			adapter->phy_stats.idle_errors += phy_tmp;
5318		}
5319	}
5320
5321	/* Management Stats */
5322	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5323	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5324	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5325
5326	/* OS2BMC Stats */
5327	reg = rd32(E1000_MANC);
5328	if (reg & E1000_MANC_EN_BMC2OS) {
5329		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5330		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5331		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5332		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5333	}
5334}
5335
5336static irqreturn_t igb_msix_other(int irq, void *data)
5337{
5338	struct igb_adapter *adapter = data;
5339	struct e1000_hw *hw = &adapter->hw;
5340	u32 icr = rd32(E1000_ICR);
5341	/* reading ICR causes bit 31 of EICR to be cleared */
5342
5343	if (icr & E1000_ICR_DRSTA)
5344		schedule_work(&adapter->reset_task);
5345
5346	if (icr & E1000_ICR_DOUTSYNC) {
5347		/* HW is reporting DMA is out of sync */
5348		adapter->stats.doosync++;
5349		/* The DMA Out of Sync is also indication of a spoof event
5350		 * in IOV mode. Check the Wrong VM Behavior register to
5351		 * see if it is really a spoof event.
5352		 */
5353		igb_check_wvbr(adapter);
5354	}
5355
5356	/* Check for a mailbox event */
5357	if (icr & E1000_ICR_VMMB)
5358		igb_msg_task(adapter);
5359
5360	if (icr & E1000_ICR_LSC) {
5361		hw->mac.get_link_status = 1;
5362		/* guard against interrupt when we're going down */
5363		if (!test_bit(__IGB_DOWN, &adapter->state))
5364			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5365	}
5366
5367	if (icr & E1000_ICR_TS) {
5368		u32 tsicr = rd32(E1000_TSICR);
5369
5370		if (tsicr & E1000_TSICR_TXTS) {
5371			/* acknowledge the interrupt */
5372			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5373			/* retrieve hardware timestamp */
5374			schedule_work(&adapter->ptp_tx_work);
5375		}
5376	}
5377
5378	wr32(E1000_EIMS, adapter->eims_other);
5379
5380	return IRQ_HANDLED;
5381}
5382
5383static void igb_write_itr(struct igb_q_vector *q_vector)
5384{
5385	struct igb_adapter *adapter = q_vector->adapter;
5386	u32 itr_val = q_vector->itr_val & 0x7FFC;
5387
5388	if (!q_vector->set_itr)
5389		return;
5390
5391	if (!itr_val)
5392		itr_val = 0x4;
5393
5394	if (adapter->hw.mac.type == e1000_82575)
5395		itr_val |= itr_val << 16;
5396	else
5397		itr_val |= E1000_EITR_CNT_IGNR;
5398
5399	writel(itr_val, q_vector->itr_register);
5400	q_vector->set_itr = 0;
5401}
5402
5403static irqreturn_t igb_msix_ring(int irq, void *data)
5404{
5405	struct igb_q_vector *q_vector = data;
5406
5407	/* Write the ITR value calculated from the previous interrupt. */
5408	igb_write_itr(q_vector);
5409
5410	napi_schedule(&q_vector->napi);
5411
5412	return IRQ_HANDLED;
5413}
5414
5415#ifdef CONFIG_IGB_DCA
5416static void igb_update_tx_dca(struct igb_adapter *adapter,
5417			      struct igb_ring *tx_ring,
5418			      int cpu)
5419{
5420	struct e1000_hw *hw = &adapter->hw;
5421	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5422
5423	if (hw->mac.type != e1000_82575)
5424		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5425
5426	/* We can enable relaxed ordering for reads, but not writes when
5427	 * DCA is enabled.  This is due to a known issue in some chipsets
5428	 * which will cause the DCA tag to be cleared.
5429	 */
5430	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5431		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5432		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5433
5434	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5435}
5436
5437static void igb_update_rx_dca(struct igb_adapter *adapter,
5438			      struct igb_ring *rx_ring,
5439			      int cpu)
5440{
5441	struct e1000_hw *hw = &adapter->hw;
5442	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5443
5444	if (hw->mac.type != e1000_82575)
5445		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5446
5447	/* We can enable relaxed ordering for reads, but not writes when
5448	 * DCA is enabled.  This is due to a known issue in some chipsets
5449	 * which will cause the DCA tag to be cleared.
5450	 */
5451	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5452		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5453
5454	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5455}
5456
5457static void igb_update_dca(struct igb_q_vector *q_vector)
5458{
5459	struct igb_adapter *adapter = q_vector->adapter;
5460	int cpu = get_cpu();
5461
5462	if (q_vector->cpu == cpu)
5463		goto out_no_update;
5464
5465	if (q_vector->tx.ring)
5466		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5467
5468	if (q_vector->rx.ring)
5469		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5470
5471	q_vector->cpu = cpu;
5472out_no_update:
5473	put_cpu();
5474}
5475
5476static void igb_setup_dca(struct igb_adapter *adapter)
5477{
5478	struct e1000_hw *hw = &adapter->hw;
5479	int i;
5480
5481	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5482		return;
5483
5484	/* Always use CB2 mode, difference is masked in the CB driver. */
5485	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5486
5487	for (i = 0; i < adapter->num_q_vectors; i++) {
5488		adapter->q_vector[i]->cpu = -1;
5489		igb_update_dca(adapter->q_vector[i]);
5490	}
5491}
5492
5493static int __igb_notify_dca(struct device *dev, void *data)
5494{
5495	struct net_device *netdev = dev_get_drvdata(dev);
5496	struct igb_adapter *adapter = netdev_priv(netdev);
5497	struct pci_dev *pdev = adapter->pdev;
5498	struct e1000_hw *hw = &adapter->hw;
5499	unsigned long event = *(unsigned long *)data;
5500
5501	switch (event) {
5502	case DCA_PROVIDER_ADD:
5503		/* if already enabled, don't do it again */
5504		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5505			break;
5506		if (dca_add_requester(dev) == 0) {
5507			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5508			dev_info(&pdev->dev, "DCA enabled\n");
5509			igb_setup_dca(adapter);
5510			break;
5511		}
5512		/* Fall Through since DCA is disabled. */
5513	case DCA_PROVIDER_REMOVE:
5514		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5515			/* without this a class_device is left
5516			 * hanging around in the sysfs model
5517			 */
5518			dca_remove_requester(dev);
5519			dev_info(&pdev->dev, "DCA disabled\n");
5520			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5521			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5522		}
5523		break;
5524	}
5525
5526	return 0;
5527}
5528
5529static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5530			  void *p)
5531{
5532	int ret_val;
5533
5534	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5535					 __igb_notify_dca);
5536
5537	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5538}
5539#endif /* CONFIG_IGB_DCA */
5540
5541#ifdef CONFIG_PCI_IOV
5542static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5543{
5544	unsigned char mac_addr[ETH_ALEN];
5545
5546	eth_zero_addr(mac_addr);
5547	igb_set_vf_mac(adapter, vf, mac_addr);
5548
5549	/* By default spoof check is enabled for all VFs */
5550	adapter->vf_data[vf].spoofchk_enabled = true;
5551
5552	return 0;
5553}
5554
5555#endif
5556static void igb_ping_all_vfs(struct igb_adapter *adapter)
5557{
5558	struct e1000_hw *hw = &adapter->hw;
5559	u32 ping;
5560	int i;
5561
5562	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5563		ping = E1000_PF_CONTROL_MSG;
5564		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5565			ping |= E1000_VT_MSGTYPE_CTS;
5566		igb_write_mbx(hw, &ping, 1, i);
5567	}
5568}
5569
5570static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5571{
5572	struct e1000_hw *hw = &adapter->hw;
5573	u32 vmolr = rd32(E1000_VMOLR(vf));
5574	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5575
5576	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5577			    IGB_VF_FLAG_MULTI_PROMISC);
5578	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5579
5580	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5581		vmolr |= E1000_VMOLR_MPME;
5582		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5583		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5584	} else {
5585		/* if we have hashes and we are clearing a multicast promisc
5586		 * flag we need to write the hashes to the MTA as this step
5587		 * was previously skipped
5588		 */
5589		if (vf_data->num_vf_mc_hashes > 30) {
5590			vmolr |= E1000_VMOLR_MPME;
5591		} else if (vf_data->num_vf_mc_hashes) {
5592			int j;
5593			vmolr |= E1000_VMOLR_ROMPE;
5594			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5595				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5596		}
5597	}
5598
5599	wr32(E1000_VMOLR(vf), vmolr);
5600
5601	/* there are flags left unprocessed, likely not supported */
5602	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5603		return -EINVAL;
5604
5605	return 0;
5606}
5607
5608static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5609				  u32 *msgbuf, u32 vf)
5610{
5611	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5612	u16 *hash_list = (u16 *)&msgbuf[1];
5613	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5614	int i;
5615
5616	/* salt away the number of multicast addresses assigned
5617	 * to this VF for later use to restore when the PF multi cast
5618	 * list changes
5619	 */
5620	vf_data->num_vf_mc_hashes = n;
5621
5622	/* only up to 30 hash values supported */
5623	if (n > 30)
5624		n = 30;
5625
5626	/* store the hashes for later use */
5627	for (i = 0; i < n; i++)
5628		vf_data->vf_mc_hashes[i] = hash_list[i];
5629
5630	/* Flush and reset the mta with the new values */
5631	igb_set_rx_mode(adapter->netdev);
5632
5633	return 0;
5634}
5635
5636static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5637{
5638	struct e1000_hw *hw = &adapter->hw;
5639	struct vf_data_storage *vf_data;
5640	int i, j;
5641
5642	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5643		u32 vmolr = rd32(E1000_VMOLR(i));
5644		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5645
5646		vf_data = &adapter->vf_data[i];
5647
5648		if ((vf_data->num_vf_mc_hashes > 30) ||
5649		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5650			vmolr |= E1000_VMOLR_MPME;
5651		} else if (vf_data->num_vf_mc_hashes) {
5652			vmolr |= E1000_VMOLR_ROMPE;
5653			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5654				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5655		}
5656		wr32(E1000_VMOLR(i), vmolr);
5657	}
5658}
5659
5660static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5661{
5662	struct e1000_hw *hw = &adapter->hw;
5663	u32 pool_mask, reg, vid;
5664	int i;
5665
5666	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5667
5668	/* Find the vlan filter for this id */
5669	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5670		reg = rd32(E1000_VLVF(i));
5671
5672		/* remove the vf from the pool */
5673		reg &= ~pool_mask;
5674
5675		/* if pool is empty then remove entry from vfta */
5676		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5677		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5678			reg = 0;
5679			vid = reg & E1000_VLVF_VLANID_MASK;
5680			igb_vfta_set(hw, vid, false);
5681		}
5682
5683		wr32(E1000_VLVF(i), reg);
5684	}
5685
5686	adapter->vf_data[vf].vlans_enabled = 0;
5687}
5688
5689static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5690{
5691	struct e1000_hw *hw = &adapter->hw;
5692	u32 reg, i;
5693
5694	/* The vlvf table only exists on 82576 hardware and newer */
5695	if (hw->mac.type < e1000_82576)
5696		return -1;
5697
5698	/* we only need to do this if VMDq is enabled */
5699	if (!adapter->vfs_allocated_count)
5700		return -1;
5701
5702	/* Find the vlan filter for this id */
5703	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5704		reg = rd32(E1000_VLVF(i));
5705		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5706		    vid == (reg & E1000_VLVF_VLANID_MASK))
5707			break;
5708	}
5709
5710	if (add) {
5711		if (i == E1000_VLVF_ARRAY_SIZE) {
5712			/* Did not find a matching VLAN ID entry that was
5713			 * enabled.  Search for a free filter entry, i.e.
5714			 * one without the enable bit set
5715			 */
5716			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5717				reg = rd32(E1000_VLVF(i));
5718				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5719					break;
5720			}
5721		}
5722		if (i < E1000_VLVF_ARRAY_SIZE) {
5723			/* Found an enabled/available entry */
5724			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5725
5726			/* if !enabled we need to set this up in vfta */
5727			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5728				/* add VID to filter table */
5729				igb_vfta_set(hw, vid, true);
5730				reg |= E1000_VLVF_VLANID_ENABLE;
5731			}
5732			reg &= ~E1000_VLVF_VLANID_MASK;
5733			reg |= vid;
5734			wr32(E1000_VLVF(i), reg);
5735
5736			/* do not modify RLPML for PF devices */
5737			if (vf >= adapter->vfs_allocated_count)
5738				return 0;
5739
5740			if (!adapter->vf_data[vf].vlans_enabled) {
5741				u32 size;
5742				reg = rd32(E1000_VMOLR(vf));
5743				size = reg & E1000_VMOLR_RLPML_MASK;
5744				size += 4;
5745				reg &= ~E1000_VMOLR_RLPML_MASK;
5746				reg |= size;
5747				wr32(E1000_VMOLR(vf), reg);
5748			}
5749
5750			adapter->vf_data[vf].vlans_enabled++;
5751		}
5752	} else {
5753		if (i < E1000_VLVF_ARRAY_SIZE) {
5754			/* remove vf from the pool */
5755			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5756			/* if pool is empty then remove entry from vfta */
5757			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5758				reg = 0;
5759				igb_vfta_set(hw, vid, false);
5760			}
5761			wr32(E1000_VLVF(i), reg);
5762
5763			/* do not modify RLPML for PF devices */
5764			if (vf >= adapter->vfs_allocated_count)
5765				return 0;
5766
5767			adapter->vf_data[vf].vlans_enabled--;
5768			if (!adapter->vf_data[vf].vlans_enabled) {
5769				u32 size;
5770				reg = rd32(E1000_VMOLR(vf));
5771				size = reg & E1000_VMOLR_RLPML_MASK;
5772				size -= 4;
5773				reg &= ~E1000_VMOLR_RLPML_MASK;
5774				reg |= size;
5775				wr32(E1000_VMOLR(vf), reg);
5776			}
5777		}
5778	}
5779	return 0;
5780}
5781
5782static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5783{
5784	struct e1000_hw *hw = &adapter->hw;
5785
5786	if (vid)
5787		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5788	else
5789		wr32(E1000_VMVIR(vf), 0);
5790}
5791
5792static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5793			       int vf, u16 vlan, u8 qos)
5794{
5795	int err = 0;
5796	struct igb_adapter *adapter = netdev_priv(netdev);
5797
5798	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5799		return -EINVAL;
5800	if (vlan || qos) {
5801		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5802		if (err)
5803			goto out;
5804		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5805		igb_set_vmolr(adapter, vf, !vlan);
5806		adapter->vf_data[vf].pf_vlan = vlan;
5807		adapter->vf_data[vf].pf_qos = qos;
5808		dev_info(&adapter->pdev->dev,
5809			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5810		if (test_bit(__IGB_DOWN, &adapter->state)) {
5811			dev_warn(&adapter->pdev->dev,
5812				 "The VF VLAN has been set, but the PF device is not up.\n");
5813			dev_warn(&adapter->pdev->dev,
5814				 "Bring the PF device up before attempting to use the VF device.\n");
5815		}
5816	} else {
5817		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5818			     false, vf);
5819		igb_set_vmvir(adapter, vlan, vf);
5820		igb_set_vmolr(adapter, vf, true);
5821		adapter->vf_data[vf].pf_vlan = 0;
5822		adapter->vf_data[vf].pf_qos = 0;
5823	}
5824out:
5825	return err;
5826}
5827
5828static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5829{
5830	struct e1000_hw *hw = &adapter->hw;
5831	int i;
5832	u32 reg;
5833
5834	/* Find the vlan filter for this id */
5835	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5836		reg = rd32(E1000_VLVF(i));
5837		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5838		    vid == (reg & E1000_VLVF_VLANID_MASK))
5839			break;
5840	}
5841
5842	if (i >= E1000_VLVF_ARRAY_SIZE)
5843		i = -1;
5844
5845	return i;
5846}
5847
5848static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5849{
5850	struct e1000_hw *hw = &adapter->hw;
5851	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5852	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5853	int err = 0;
5854
5855	/* If in promiscuous mode we need to make sure the PF also has
5856	 * the VLAN filter set.
5857	 */
5858	if (add && (adapter->netdev->flags & IFF_PROMISC))
5859		err = igb_vlvf_set(adapter, vid, add,
5860				   adapter->vfs_allocated_count);
5861	if (err)
5862		goto out;
5863
5864	err = igb_vlvf_set(adapter, vid, add, vf);
5865
5866	if (err)
5867		goto out;
5868
5869	/* Go through all the checks to see if the VLAN filter should
5870	 * be wiped completely.
5871	 */
5872	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5873		u32 vlvf, bits;
5874
5875		int regndx = igb_find_vlvf_entry(adapter, vid);
5876		if (regndx < 0)
5877			goto out;
5878		/* See if any other pools are set for this VLAN filter
5879		 * entry other than the PF.
5880		 */
5881		vlvf = bits = rd32(E1000_VLVF(regndx));
5882		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5883			      adapter->vfs_allocated_count);
5884		/* If the filter was removed then ensure PF pool bit
5885		 * is cleared if the PF only added itself to the pool
5886		 * because the PF is in promiscuous mode.
5887		 */
5888		if ((vlvf & VLAN_VID_MASK) == vid &&
5889		    !test_bit(vid, adapter->active_vlans) &&
5890		    !bits)
5891			igb_vlvf_set(adapter, vid, add,
5892				     adapter->vfs_allocated_count);
5893	}
5894
5895out:
5896	return err;
5897}
5898
5899static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5900{
5901	/* clear flags - except flag that indicates PF has set the MAC */
5902	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5903	adapter->vf_data[vf].last_nack = jiffies;
5904
5905	/* reset offloads to defaults */
5906	igb_set_vmolr(adapter, vf, true);
5907
5908	/* reset vlans for device */
5909	igb_clear_vf_vfta(adapter, vf);
5910	if (adapter->vf_data[vf].pf_vlan)
5911		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5912				    adapter->vf_data[vf].pf_vlan,
5913				    adapter->vf_data[vf].pf_qos);
5914	else
5915		igb_clear_vf_vfta(adapter, vf);
5916
5917	/* reset multicast table array for vf */
5918	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5919
5920	/* Flush and reset the mta with the new values */
5921	igb_set_rx_mode(adapter->netdev);
5922}
5923
5924static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5925{
5926	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5927
5928	/* clear mac address as we were hotplug removed/added */
5929	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5930		eth_zero_addr(vf_mac);
5931
5932	/* process remaining reset events */
5933	igb_vf_reset(adapter, vf);
5934}
5935
5936static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5937{
5938	struct e1000_hw *hw = &adapter->hw;
5939	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5940	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5941	u32 reg, msgbuf[3];
5942	u8 *addr = (u8 *)(&msgbuf[1]);
5943
5944	/* process all the same items cleared in a function level reset */
5945	igb_vf_reset(adapter, vf);
5946
5947	/* set vf mac address */
5948	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5949
5950	/* enable transmit and receive for vf */
5951	reg = rd32(E1000_VFTE);
5952	wr32(E1000_VFTE, reg | (1 << vf));
5953	reg = rd32(E1000_VFRE);
5954	wr32(E1000_VFRE, reg | (1 << vf));
5955
5956	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5957
5958	/* reply to reset with ack and vf mac address */
5959	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5960	memcpy(addr, vf_mac, ETH_ALEN);
5961	igb_write_mbx(hw, msgbuf, 3, vf);
5962}
5963
5964static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5965{
5966	/* The VF MAC Address is stored in a packed array of bytes
5967	 * starting at the second 32 bit word of the msg array
5968	 */
5969	unsigned char *addr = (char *)&msg[1];
5970	int err = -1;
5971
5972	if (is_valid_ether_addr(addr))
5973		err = igb_set_vf_mac(adapter, vf, addr);
5974
5975	return err;
5976}
5977
5978static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5979{
5980	struct e1000_hw *hw = &adapter->hw;
5981	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5982	u32 msg = E1000_VT_MSGTYPE_NACK;
5983
5984	/* if device isn't clear to send it shouldn't be reading either */
5985	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5986	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5987		igb_write_mbx(hw, &msg, 1, vf);
5988		vf_data->last_nack = jiffies;
5989	}
5990}
5991
5992static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5993{
5994	struct pci_dev *pdev = adapter->pdev;
5995	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5996	struct e1000_hw *hw = &adapter->hw;
5997	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5998	s32 retval;
5999
6000	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6001
6002	if (retval) {
6003		/* if receive failed revoke VF CTS stats and restart init */
6004		dev_err(&pdev->dev, "Error receiving message from VF\n");
6005		vf_data->flags &= ~IGB_VF_FLAG_CTS;
6006		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6007			return;
6008		goto out;
6009	}
6010
6011	/* this is a message we already processed, do nothing */
6012	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6013		return;
6014
6015	/* until the vf completes a reset it should not be
6016	 * allowed to start any configuration.
6017	 */
6018	if (msgbuf[0] == E1000_VF_RESET) {
6019		igb_vf_reset_msg(adapter, vf);
6020		return;
6021	}
6022
6023	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6024		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6025			return;
6026		retval = -1;
6027		goto out;
6028	}
6029
6030	switch ((msgbuf[0] & 0xFFFF)) {
6031	case E1000_VF_SET_MAC_ADDR:
6032		retval = -EINVAL;
6033		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6034			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6035		else
6036			dev_warn(&pdev->dev,
6037				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6038				 vf);
6039		break;
6040	case E1000_VF_SET_PROMISC:
6041		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6042		break;
6043	case E1000_VF_SET_MULTICAST:
6044		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6045		break;
6046	case E1000_VF_SET_LPE:
6047		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6048		break;
6049	case E1000_VF_SET_VLAN:
6050		retval = -1;
6051		if (vf_data->pf_vlan)
6052			dev_warn(&pdev->dev,
6053				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6054				 vf);
6055		else
6056			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6057		break;
6058	default:
6059		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6060		retval = -1;
6061		break;
6062	}
6063
6064	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6065out:
6066	/* notify the VF of the results of what it sent us */
6067	if (retval)
6068		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6069	else
6070		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6071
6072	igb_write_mbx(hw, msgbuf, 1, vf);
6073}
6074
6075static void igb_msg_task(struct igb_adapter *adapter)
6076{
6077	struct e1000_hw *hw = &adapter->hw;
6078	u32 vf;
6079
6080	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6081		/* process any reset requests */
6082		if (!igb_check_for_rst(hw, vf))
6083			igb_vf_reset_event(adapter, vf);
6084
6085		/* process any messages pending */
6086		if (!igb_check_for_msg(hw, vf))
6087			igb_rcv_msg_from_vf(adapter, vf);
6088
6089		/* process any acks */
6090		if (!igb_check_for_ack(hw, vf))
6091			igb_rcv_ack_from_vf(adapter, vf);
6092	}
6093}
6094
6095/**
6096 *  igb_set_uta - Set unicast filter table address
6097 *  @adapter: board private structure
6098 *
6099 *  The unicast table address is a register array of 32-bit registers.
6100 *  The table is meant to be used in a way similar to how the MTA is used
6101 *  however due to certain limitations in the hardware it is necessary to
6102 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6103 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6104 **/
6105static void igb_set_uta(struct igb_adapter *adapter)
6106{
6107	struct e1000_hw *hw = &adapter->hw;
6108	int i;
6109
6110	/* The UTA table only exists on 82576 hardware and newer */
6111	if (hw->mac.type < e1000_82576)
6112		return;
6113
6114	/* we only need to do this if VMDq is enabled */
6115	if (!adapter->vfs_allocated_count)
6116		return;
6117
6118	for (i = 0; i < hw->mac.uta_reg_count; i++)
6119		array_wr32(E1000_UTA, i, ~0);
6120}
6121
6122/**
6123 *  igb_intr_msi - Interrupt Handler
6124 *  @irq: interrupt number
6125 *  @data: pointer to a network interface device structure
6126 **/
6127static irqreturn_t igb_intr_msi(int irq, void *data)
6128{
6129	struct igb_adapter *adapter = data;
6130	struct igb_q_vector *q_vector = adapter->q_vector[0];
6131	struct e1000_hw *hw = &adapter->hw;
6132	/* read ICR disables interrupts using IAM */
6133	u32 icr = rd32(E1000_ICR);
6134
6135	igb_write_itr(q_vector);
6136
6137	if (icr & E1000_ICR_DRSTA)
6138		schedule_work(&adapter->reset_task);
6139
6140	if (icr & E1000_ICR_DOUTSYNC) {
6141		/* HW is reporting DMA is out of sync */
6142		adapter->stats.doosync++;
6143	}
6144
6145	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6146		hw->mac.get_link_status = 1;
6147		if (!test_bit(__IGB_DOWN, &adapter->state))
6148			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6149	}
6150
6151	if (icr & E1000_ICR_TS) {
6152		u32 tsicr = rd32(E1000_TSICR);
6153
6154		if (tsicr & E1000_TSICR_TXTS) {
6155			/* acknowledge the interrupt */
6156			wr32(E1000_TSICR, E1000_TSICR_TXTS);
6157			/* retrieve hardware timestamp */
6158			schedule_work(&adapter->ptp_tx_work);
6159		}
6160	}
6161
6162	napi_schedule(&q_vector->napi);
6163
6164	return IRQ_HANDLED;
6165}
6166
6167/**
6168 *  igb_intr - Legacy Interrupt Handler
6169 *  @irq: interrupt number
6170 *  @data: pointer to a network interface device structure
6171 **/
6172static irqreturn_t igb_intr(int irq, void *data)
6173{
6174	struct igb_adapter *adapter = data;
6175	struct igb_q_vector *q_vector = adapter->q_vector[0];
6176	struct e1000_hw *hw = &adapter->hw;
6177	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6178	 * need for the IMC write
6179	 */
6180	u32 icr = rd32(E1000_ICR);
6181
6182	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6183	 * not set, then the adapter didn't send an interrupt
6184	 */
6185	if (!(icr & E1000_ICR_INT_ASSERTED))
6186		return IRQ_NONE;
6187
6188	igb_write_itr(q_vector);
6189
6190	if (icr & E1000_ICR_DRSTA)
6191		schedule_work(&adapter->reset_task);
6192
6193	if (icr & E1000_ICR_DOUTSYNC) {
6194		/* HW is reporting DMA is out of sync */
6195		adapter->stats.doosync++;
6196	}
6197
6198	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6199		hw->mac.get_link_status = 1;
6200		/* guard against interrupt when we're going down */
6201		if (!test_bit(__IGB_DOWN, &adapter->state))
6202			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6203	}
6204
6205	if (icr & E1000_ICR_TS) {
6206		u32 tsicr = rd32(E1000_TSICR);
6207
6208		if (tsicr & E1000_TSICR_TXTS) {
6209			/* acknowledge the interrupt */
6210			wr32(E1000_TSICR, E1000_TSICR_TXTS);
6211			/* retrieve hardware timestamp */
6212			schedule_work(&adapter->ptp_tx_work);
6213		}
6214	}
6215
6216	napi_schedule(&q_vector->napi);
6217
6218	return IRQ_HANDLED;
6219}
6220
6221static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6222{
6223	struct igb_adapter *adapter = q_vector->adapter;
6224	struct e1000_hw *hw = &adapter->hw;
6225
6226	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6227	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6228		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6229			igb_set_itr(q_vector);
6230		else
6231			igb_update_ring_itr(q_vector);
6232	}
6233
6234	if (!test_bit(__IGB_DOWN, &adapter->state)) {
6235		if (adapter->flags & IGB_FLAG_HAS_MSIX)
6236			wr32(E1000_EIMS, q_vector->eims_value);
6237		else
6238			igb_irq_enable(adapter);
6239	}
6240}
6241
6242/**
6243 *  igb_poll - NAPI Rx polling callback
6244 *  @napi: napi polling structure
6245 *  @budget: count of how many packets we should handle
6246 **/
6247static int igb_poll(struct napi_struct *napi, int budget)
6248{
6249	struct igb_q_vector *q_vector = container_of(napi,
6250						     struct igb_q_vector,
6251						     napi);
6252	bool clean_complete = true;
6253
6254#ifdef CONFIG_IGB_DCA
6255	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6256		igb_update_dca(q_vector);
6257#endif
6258	if (q_vector->tx.ring)
6259		clean_complete = igb_clean_tx_irq(q_vector);
6260
6261	if (q_vector->rx.ring)
6262		clean_complete &= igb_clean_rx_irq(q_vector, budget);
6263
6264	/* If all work not completed, return budget and keep polling */
6265	if (!clean_complete)
6266		return budget;
6267
6268	/* If not enough Rx work done, exit the polling mode */
6269	napi_complete(napi);
6270	igb_ring_irq_enable(q_vector);
6271
6272	return 0;
6273}
6274
6275/**
6276 *  igb_clean_tx_irq - Reclaim resources after transmit completes
6277 *  @q_vector: pointer to q_vector containing needed info
6278 *
6279 *  returns true if ring is completely cleaned
6280 **/
6281static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6282{
6283	struct igb_adapter *adapter = q_vector->adapter;
6284	struct igb_ring *tx_ring = q_vector->tx.ring;
6285	struct igb_tx_buffer *tx_buffer;
6286	union e1000_adv_tx_desc *tx_desc;
6287	unsigned int total_bytes = 0, total_packets = 0;
6288	unsigned int budget = q_vector->tx.work_limit;
6289	unsigned int i = tx_ring->next_to_clean;
6290
6291	if (test_bit(__IGB_DOWN, &adapter->state))
6292		return true;
6293
6294	tx_buffer = &tx_ring->tx_buffer_info[i];
6295	tx_desc = IGB_TX_DESC(tx_ring, i);
6296	i -= tx_ring->count;
6297
6298	do {
6299		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6300
6301		/* if next_to_watch is not set then there is no work pending */
6302		if (!eop_desc)
6303			break;
6304
6305		/* prevent any other reads prior to eop_desc */
6306		read_barrier_depends();
6307
6308		/* if DD is not set pending work has not been completed */
6309		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6310			break;
6311
6312		/* clear next_to_watch to prevent false hangs */
6313		tx_buffer->next_to_watch = NULL;
6314
6315		/* update the statistics for this packet */
6316		total_bytes += tx_buffer->bytecount;
6317		total_packets += tx_buffer->gso_segs;
6318
6319		/* free the skb */
6320		dev_kfree_skb_any(tx_buffer->skb);
6321
6322		/* unmap skb header data */
6323		dma_unmap_single(tx_ring->dev,
6324				 dma_unmap_addr(tx_buffer, dma),
6325				 dma_unmap_len(tx_buffer, len),
6326				 DMA_TO_DEVICE);
6327
6328		/* clear tx_buffer data */
6329		tx_buffer->skb = NULL;
6330		dma_unmap_len_set(tx_buffer, len, 0);
6331
6332		/* clear last DMA location and unmap remaining buffers */
6333		while (tx_desc != eop_desc) {
6334			tx_buffer++;
6335			tx_desc++;
6336			i++;
6337			if (unlikely(!i)) {
6338				i -= tx_ring->count;
6339				tx_buffer = tx_ring->tx_buffer_info;
6340				tx_desc = IGB_TX_DESC(tx_ring, 0);
6341			}
6342
6343			/* unmap any remaining paged data */
6344			if (dma_unmap_len(tx_buffer, len)) {
6345				dma_unmap_page(tx_ring->dev,
6346					       dma_unmap_addr(tx_buffer, dma),
6347					       dma_unmap_len(tx_buffer, len),
6348					       DMA_TO_DEVICE);
6349				dma_unmap_len_set(tx_buffer, len, 0);
6350			}
6351		}
6352
6353		/* move us one more past the eop_desc for start of next pkt */
6354		tx_buffer++;
6355		tx_desc++;
6356		i++;
6357		if (unlikely(!i)) {
6358			i -= tx_ring->count;
6359			tx_buffer = tx_ring->tx_buffer_info;
6360			tx_desc = IGB_TX_DESC(tx_ring, 0);
6361		}
6362
6363		/* issue prefetch for next Tx descriptor */
6364		prefetch(tx_desc);
6365
6366		/* update budget accounting */
6367		budget--;
6368	} while (likely(budget));
6369
6370	netdev_tx_completed_queue(txring_txq(tx_ring),
6371				  total_packets, total_bytes);
6372	i += tx_ring->count;
6373	tx_ring->next_to_clean = i;
6374	u64_stats_update_begin(&tx_ring->tx_syncp);
6375	tx_ring->tx_stats.bytes += total_bytes;
6376	tx_ring->tx_stats.packets += total_packets;
6377	u64_stats_update_end(&tx_ring->tx_syncp);
6378	q_vector->tx.total_bytes += total_bytes;
6379	q_vector->tx.total_packets += total_packets;
6380
6381	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6382		struct e1000_hw *hw = &adapter->hw;
6383
6384		/* Detect a transmit hang in hardware, this serializes the
6385		 * check with the clearing of time_stamp and movement of i
6386		 */
6387		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6388		if (tx_buffer->next_to_watch &&
6389		    time_after(jiffies, tx_buffer->time_stamp +
6390			       (adapter->tx_timeout_factor * HZ)) &&
6391		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6392
6393			/* detected Tx unit hang */
6394			dev_err(tx_ring->dev,
6395				"Detected Tx Unit Hang\n"
6396				"  Tx Queue             <%d>\n"
6397				"  TDH                  <%x>\n"
6398				"  TDT                  <%x>\n"
6399				"  next_to_use          <%x>\n"
6400				"  next_to_clean        <%x>\n"
6401				"buffer_info[next_to_clean]\n"
6402				"  time_stamp           <%lx>\n"
6403				"  next_to_watch        <%p>\n"
6404				"  jiffies              <%lx>\n"
6405				"  desc.status          <%x>\n",
6406				tx_ring->queue_index,
6407				rd32(E1000_TDH(tx_ring->reg_idx)),
6408				readl(tx_ring->tail),
6409				tx_ring->next_to_use,
6410				tx_ring->next_to_clean,
6411				tx_buffer->time_stamp,
6412				tx_buffer->next_to_watch,
6413				jiffies,
6414				tx_buffer->next_to_watch->wb.status);
6415			netif_stop_subqueue(tx_ring->netdev,
6416					    tx_ring->queue_index);
6417
6418			/* we are about to reset, no point in enabling stuff */
6419			return true;
6420		}
6421	}
6422
6423#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6424	if (unlikely(total_packets &&
6425	    netif_carrier_ok(tx_ring->netdev) &&
6426	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6427		/* Make sure that anybody stopping the queue after this
6428		 * sees the new next_to_clean.
6429		 */
6430		smp_mb();
6431		if (__netif_subqueue_stopped(tx_ring->netdev,
6432					     tx_ring->queue_index) &&
6433		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6434			netif_wake_subqueue(tx_ring->netdev,
6435					    tx_ring->queue_index);
6436
6437			u64_stats_update_begin(&tx_ring->tx_syncp);
6438			tx_ring->tx_stats.restart_queue++;
6439			u64_stats_update_end(&tx_ring->tx_syncp);
6440		}
6441	}
6442
6443	return !!budget;
6444}
6445
6446/**
6447 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6448 *  @rx_ring: rx descriptor ring to store buffers on
6449 *  @old_buff: donor buffer to have page reused
6450 *
6451 *  Synchronizes page for reuse by the adapter
6452 **/
6453static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6454			      struct igb_rx_buffer *old_buff)
6455{
6456	struct igb_rx_buffer *new_buff;
6457	u16 nta = rx_ring->next_to_alloc;
6458
6459	new_buff = &rx_ring->rx_buffer_info[nta];
6460
6461	/* update, and store next to alloc */
6462	nta++;
6463	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6464
6465	/* transfer page from old buffer to new buffer */
6466	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6467
6468	/* sync the buffer for use by the device */
6469	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6470					 old_buff->page_offset,
6471					 IGB_RX_BUFSZ,
6472					 DMA_FROM_DEVICE);
6473}
6474
6475static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6476				  struct page *page,
6477				  unsigned int truesize)
6478{
6479	/* avoid re-using remote pages */
6480	if (unlikely(page_to_nid(page) != numa_node_id()))
6481		return false;
6482
6483#if (PAGE_SIZE < 8192)
6484	/* if we are only owner of page we can reuse it */
6485	if (unlikely(page_count(page) != 1))
6486		return false;
6487
6488	/* flip page offset to other buffer */
6489	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6490
6491	/* since we are the only owner of the page and we need to
6492	 * increment it, just set the value to 2 in order to avoid
6493	 * an unnecessary locked operation
6494	 */
6495	atomic_set(&page->_count, 2);
6496#else
6497	/* move offset up to the next cache line */
6498	rx_buffer->page_offset += truesize;
6499
6500	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6501		return false;
6502
6503	/* bump ref count on page before it is given to the stack */
6504	get_page(page);
6505#endif
6506
6507	return true;
6508}
6509
6510/**
6511 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6512 *  @rx_ring: rx descriptor ring to transact packets on
6513 *  @rx_buffer: buffer containing page to add
6514 *  @rx_desc: descriptor containing length of buffer written by hardware
6515 *  @skb: sk_buff to place the data into
6516 *
6517 *  This function will add the data contained in rx_buffer->page to the skb.
6518 *  This is done either through a direct copy if the data in the buffer is
6519 *  less than the skb header size, otherwise it will just attach the page as
6520 *  a frag to the skb.
6521 *
6522 *  The function will then update the page offset if necessary and return
6523 *  true if the buffer can be reused by the adapter.
6524 **/
6525static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6526			    struct igb_rx_buffer *rx_buffer,
6527			    union e1000_adv_rx_desc *rx_desc,
6528			    struct sk_buff *skb)
6529{
6530	struct page *page = rx_buffer->page;
6531	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6532#if (PAGE_SIZE < 8192)
6533	unsigned int truesize = IGB_RX_BUFSZ;
6534#else
6535	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6536#endif
6537
6538	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6539		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6540
6541		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6542			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6543			va += IGB_TS_HDR_LEN;
6544			size -= IGB_TS_HDR_LEN;
6545		}
6546
6547		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6548
6549		/* we can reuse buffer as-is, just make sure it is local */
6550		if (likely(page_to_nid(page) == numa_node_id()))
6551			return true;
6552
6553		/* this page cannot be reused so discard it */
6554		put_page(page);
6555		return false;
6556	}
6557
6558	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6559			rx_buffer->page_offset, size, truesize);
6560
6561	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6562}
6563
6564static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6565					   union e1000_adv_rx_desc *rx_desc,
6566					   struct sk_buff *skb)
6567{
6568	struct igb_rx_buffer *rx_buffer;
6569	struct page *page;
6570
6571	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6572
6573	page = rx_buffer->page;
6574	prefetchw(page);
6575
6576	if (likely(!skb)) {
6577		void *page_addr = page_address(page) +
6578				  rx_buffer->page_offset;
6579
6580		/* prefetch first cache line of first page */
6581		prefetch(page_addr);
6582#if L1_CACHE_BYTES < 128
6583		prefetch(page_addr + L1_CACHE_BYTES);
6584#endif
6585
6586		/* allocate a skb to store the frags */
6587		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6588						IGB_RX_HDR_LEN);
6589		if (unlikely(!skb)) {
6590			rx_ring->rx_stats.alloc_failed++;
6591			return NULL;
6592		}
6593
6594		/* we will be copying header into skb->data in
6595		 * pskb_may_pull so it is in our interest to prefetch
6596		 * it now to avoid a possible cache miss
6597		 */
6598		prefetchw(skb->data);
6599	}
6600
6601	/* we are reusing so sync this buffer for CPU use */
6602	dma_sync_single_range_for_cpu(rx_ring->dev,
6603				      rx_buffer->dma,
6604				      rx_buffer->page_offset,
6605				      IGB_RX_BUFSZ,
6606				      DMA_FROM_DEVICE);
6607
6608	/* pull page into skb */
6609	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6610		/* hand second half of page back to the ring */
6611		igb_reuse_rx_page(rx_ring, rx_buffer);
6612	} else {
6613		/* we are not reusing the buffer so unmap it */
6614		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6615			       PAGE_SIZE, DMA_FROM_DEVICE);
6616	}
6617
6618	/* clear contents of rx_buffer */
6619	rx_buffer->page = NULL;
6620
6621	return skb;
6622}
6623
6624static inline void igb_rx_checksum(struct igb_ring *ring,
6625				   union e1000_adv_rx_desc *rx_desc,
6626				   struct sk_buff *skb)
6627{
6628	skb_checksum_none_assert(skb);
6629
6630	/* Ignore Checksum bit is set */
6631	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6632		return;
6633
6634	/* Rx checksum disabled via ethtool */
6635	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6636		return;
6637
6638	/* TCP/UDP checksum error bit is set */
6639	if (igb_test_staterr(rx_desc,
6640			     E1000_RXDEXT_STATERR_TCPE |
6641			     E1000_RXDEXT_STATERR_IPE)) {
6642		/* work around errata with sctp packets where the TCPE aka
6643		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6644		 * packets, (aka let the stack check the crc32c)
6645		 */
6646		if (!((skb->len == 60) &&
6647		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6648			u64_stats_update_begin(&ring->rx_syncp);
6649			ring->rx_stats.csum_err++;
6650			u64_stats_update_end(&ring->rx_syncp);
6651		}
6652		/* let the stack verify checksum errors */
6653		return;
6654	}
6655	/* It must be a TCP or UDP packet with a valid checksum */
6656	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6657				      E1000_RXD_STAT_UDPCS))
6658		skb->ip_summed = CHECKSUM_UNNECESSARY;
6659
6660	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6661		le32_to_cpu(rx_desc->wb.upper.status_error));
6662}
6663
6664static inline void igb_rx_hash(struct igb_ring *ring,
6665			       union e1000_adv_rx_desc *rx_desc,
6666			       struct sk_buff *skb)
6667{
6668	if (ring->netdev->features & NETIF_F_RXHASH)
6669		skb_set_hash(skb,
6670			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6671			     PKT_HASH_TYPE_L3);
6672}
6673
6674/**
6675 *  igb_is_non_eop - process handling of non-EOP buffers
6676 *  @rx_ring: Rx ring being processed
6677 *  @rx_desc: Rx descriptor for current buffer
6678 *  @skb: current socket buffer containing buffer in progress
6679 *
6680 *  This function updates next to clean.  If the buffer is an EOP buffer
6681 *  this function exits returning false, otherwise it will place the
6682 *  sk_buff in the next buffer to be chained and return true indicating
6683 *  that this is in fact a non-EOP buffer.
6684 **/
6685static bool igb_is_non_eop(struct igb_ring *rx_ring,
6686			   union e1000_adv_rx_desc *rx_desc)
6687{
6688	u32 ntc = rx_ring->next_to_clean + 1;
6689
6690	/* fetch, update, and store next to clean */
6691	ntc = (ntc < rx_ring->count) ? ntc : 0;
6692	rx_ring->next_to_clean = ntc;
6693
6694	prefetch(IGB_RX_DESC(rx_ring, ntc));
6695
6696	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6697		return false;
6698
6699	return true;
6700}
6701
6702/**
6703 *  igb_get_headlen - determine size of header for LRO/GRO
6704 *  @data: pointer to the start of the headers
6705 *  @max_len: total length of section to find headers in
6706 *
6707 *  This function is meant to determine the length of headers that will
6708 *  be recognized by hardware for LRO, and GRO offloads.  The main
6709 *  motivation of doing this is to only perform one pull for IPv4 TCP
6710 *  packets so that we can do basic things like calculating the gso_size
6711 *  based on the average data per packet.
6712 **/
6713static unsigned int igb_get_headlen(unsigned char *data,
6714				    unsigned int max_len)
6715{
6716	union {
6717		unsigned char *network;
6718		/* l2 headers */
6719		struct ethhdr *eth;
6720		struct vlan_hdr *vlan;
6721		/* l3 headers */
6722		struct iphdr *ipv4;
6723		struct ipv6hdr *ipv6;
6724	} hdr;
6725	__be16 protocol;
6726	u8 nexthdr = 0;	/* default to not TCP */
6727	u8 hlen;
6728
6729	/* this should never happen, but better safe than sorry */
6730	if (max_len < ETH_HLEN)
6731		return max_len;
6732
6733	/* initialize network frame pointer */
6734	hdr.network = data;
6735
6736	/* set first protocol and move network header forward */
6737	protocol = hdr.eth->h_proto;
6738	hdr.network += ETH_HLEN;
6739
6740	/* handle any vlan tag if present */
6741	if (protocol == htons(ETH_P_8021Q)) {
6742		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6743			return max_len;
6744
6745		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6746		hdr.network += VLAN_HLEN;
6747	}
6748
6749	/* handle L3 protocols */
6750	if (protocol == htons(ETH_P_IP)) {
6751		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6752			return max_len;
6753
6754		/* access ihl as a u8 to avoid unaligned access on ia64 */
6755		hlen = (hdr.network[0] & 0x0F) << 2;
6756
6757		/* verify hlen meets minimum size requirements */
6758		if (hlen < sizeof(struct iphdr))
6759			return hdr.network - data;
6760
6761		/* record next protocol if header is present */
6762		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6763			nexthdr = hdr.ipv4->protocol;
6764	} else if (protocol == htons(ETH_P_IPV6)) {
6765		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6766			return max_len;
6767
6768		/* record next protocol */
6769		nexthdr = hdr.ipv6->nexthdr;
6770		hlen = sizeof(struct ipv6hdr);
6771	} else {
6772		return hdr.network - data;
6773	}
6774
6775	/* relocate pointer to start of L4 header */
6776	hdr.network += hlen;
6777
6778	/* finally sort out TCP */
6779	if (nexthdr == IPPROTO_TCP) {
6780		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6781			return max_len;
6782
6783		/* access doff as a u8 to avoid unaligned access on ia64 */
6784		hlen = (hdr.network[12] & 0xF0) >> 2;
6785
6786		/* verify hlen meets minimum size requirements */
6787		if (hlen < sizeof(struct tcphdr))
6788			return hdr.network - data;
6789
6790		hdr.network += hlen;
6791	} else if (nexthdr == IPPROTO_UDP) {
6792		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6793			return max_len;
6794
6795		hdr.network += sizeof(struct udphdr);
6796	}
6797
6798	/* If everything has gone correctly hdr.network should be the
6799	 * data section of the packet and will be the end of the header.
6800	 * If not then it probably represents the end of the last recognized
6801	 * header.
6802	 */
6803	if ((hdr.network - data) < max_len)
6804		return hdr.network - data;
6805	else
6806		return max_len;
6807}
6808
6809/**
6810 *  igb_pull_tail - igb specific version of skb_pull_tail
6811 *  @rx_ring: rx descriptor ring packet is being transacted on
6812 *  @rx_desc: pointer to the EOP Rx descriptor
6813 *  @skb: pointer to current skb being adjusted
6814 *
6815 *  This function is an igb specific version of __pskb_pull_tail.  The
6816 *  main difference between this version and the original function is that
6817 *  this function can make several assumptions about the state of things
6818 *  that allow for significant optimizations versus the standard function.
6819 *  As a result we can do things like drop a frag and maintain an accurate
6820 *  truesize for the skb.
6821 */
6822static void igb_pull_tail(struct igb_ring *rx_ring,
6823			  union e1000_adv_rx_desc *rx_desc,
6824			  struct sk_buff *skb)
6825{
6826	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6827	unsigned char *va;
6828	unsigned int pull_len;
6829
6830	/* it is valid to use page_address instead of kmap since we are
6831	 * working with pages allocated out of the lomem pool per
6832	 * alloc_page(GFP_ATOMIC)
6833	 */
6834	va = skb_frag_address(frag);
6835
6836	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6837		/* retrieve timestamp from buffer */
6838		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6839
6840		/* update pointers to remove timestamp header */
6841		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6842		frag->page_offset += IGB_TS_HDR_LEN;
6843		skb->data_len -= IGB_TS_HDR_LEN;
6844		skb->len -= IGB_TS_HDR_LEN;
6845
6846		/* move va to start of packet data */
6847		va += IGB_TS_HDR_LEN;
6848	}
6849
6850	/* we need the header to contain the greater of either ETH_HLEN or
6851	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6852	 */
6853	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6854
6855	/* align pull length to size of long to optimize memcpy performance */
6856	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6857
6858	/* update all of the pointers */
6859	skb_frag_size_sub(frag, pull_len);
6860	frag->page_offset += pull_len;
6861	skb->data_len -= pull_len;
6862	skb->tail += pull_len;
6863}
6864
6865/**
6866 *  igb_cleanup_headers - Correct corrupted or empty headers
6867 *  @rx_ring: rx descriptor ring packet is being transacted on
6868 *  @rx_desc: pointer to the EOP Rx descriptor
6869 *  @skb: pointer to current skb being fixed
6870 *
6871 *  Address the case where we are pulling data in on pages only
6872 *  and as such no data is present in the skb header.
6873 *
6874 *  In addition if skb is not at least 60 bytes we need to pad it so that
6875 *  it is large enough to qualify as a valid Ethernet frame.
6876 *
6877 *  Returns true if an error was encountered and skb was freed.
6878 **/
6879static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6880				union e1000_adv_rx_desc *rx_desc,
6881				struct sk_buff *skb)
6882{
6883	if (unlikely((igb_test_staterr(rx_desc,
6884				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6885		struct net_device *netdev = rx_ring->netdev;
6886		if (!(netdev->features & NETIF_F_RXALL)) {
6887			dev_kfree_skb_any(skb);
6888			return true;
6889		}
6890	}
6891
6892	/* place header in linear portion of buffer */
6893	if (skb_is_nonlinear(skb))
6894		igb_pull_tail(rx_ring, rx_desc, skb);
6895
6896	/* if skb_pad returns an error the skb was freed */
6897	if (unlikely(skb->len < 60)) {
6898		int pad_len = 60 - skb->len;
6899
6900		if (skb_pad(skb, pad_len))
6901			return true;
6902		__skb_put(skb, pad_len);
6903	}
6904
6905	return false;
6906}
6907
6908/**
6909 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6910 *  @rx_ring: rx descriptor ring packet is being transacted on
6911 *  @rx_desc: pointer to the EOP Rx descriptor
6912 *  @skb: pointer to current skb being populated
6913 *
6914 *  This function checks the ring, descriptor, and packet information in
6915 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6916 *  other fields within the skb.
6917 **/
6918static void igb_process_skb_fields(struct igb_ring *rx_ring,
6919				   union e1000_adv_rx_desc *rx_desc,
6920				   struct sk_buff *skb)
6921{
6922	struct net_device *dev = rx_ring->netdev;
6923
6924	igb_rx_hash(rx_ring, rx_desc, skb);
6925
6926	igb_rx_checksum(rx_ring, rx_desc, skb);
6927
6928	igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
6929
6930	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6931	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6932		u16 vid;
6933		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6934		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6935			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6936		else
6937			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6938
6939		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6940	}
6941
6942	skb_record_rx_queue(skb, rx_ring->queue_index);
6943
6944	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6945}
6946
6947static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6948{
6949	struct igb_ring *rx_ring = q_vector->rx.ring;
6950	struct sk_buff *skb = rx_ring->skb;
6951	unsigned int total_bytes = 0, total_packets = 0;
6952	u16 cleaned_count = igb_desc_unused(rx_ring);
6953
6954	while (likely(total_packets < budget)) {
6955		union e1000_adv_rx_desc *rx_desc;
6956
6957		/* return some buffers to hardware, one at a time is too slow */
6958		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6959			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6960			cleaned_count = 0;
6961		}
6962
6963		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6964
6965		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6966			break;
6967
6968		/* This memory barrier is needed to keep us from reading
6969		 * any other fields out of the rx_desc until we know the
6970		 * RXD_STAT_DD bit is set
6971		 */
6972		rmb();
6973
6974		/* retrieve a buffer from the ring */
6975		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6976
6977		/* exit if we failed to retrieve a buffer */
6978		if (!skb)
6979			break;
6980
6981		cleaned_count++;
6982
6983		/* fetch next buffer in frame if non-eop */
6984		if (igb_is_non_eop(rx_ring, rx_desc))
6985			continue;
6986
6987		/* verify the packet layout is correct */
6988		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6989			skb = NULL;
6990			continue;
6991		}
6992
6993		/* probably a little skewed due to removing CRC */
6994		total_bytes += skb->len;
6995
6996		/* populate checksum, timestamp, VLAN, and protocol */
6997		igb_process_skb_fields(rx_ring, rx_desc, skb);
6998
6999		napi_gro_receive(&q_vector->napi, skb);
7000
7001		/* reset skb pointer */
7002		skb = NULL;
7003
7004		/* update budget accounting */
7005		total_packets++;
7006	}
7007
7008	/* place incomplete frames back on ring for completion */
7009	rx_ring->skb = skb;
7010
7011	u64_stats_update_begin(&rx_ring->rx_syncp);
7012	rx_ring->rx_stats.packets += total_packets;
7013	rx_ring->rx_stats.bytes += total_bytes;
7014	u64_stats_update_end(&rx_ring->rx_syncp);
7015	q_vector->rx.total_packets += total_packets;
7016	q_vector->rx.total_bytes += total_bytes;
7017
7018	if (cleaned_count)
7019		igb_alloc_rx_buffers(rx_ring, cleaned_count);
7020
7021	return (total_packets < budget);
7022}
7023
7024static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7025				  struct igb_rx_buffer *bi)
7026{
7027	struct page *page = bi->page;
7028	dma_addr_t dma;
7029
7030	/* since we are recycling buffers we should seldom need to alloc */
7031	if (likely(page))
7032		return true;
7033
7034	/* alloc new page for storage */
7035	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
7036	if (unlikely(!page)) {
7037		rx_ring->rx_stats.alloc_failed++;
7038		return false;
7039	}
7040
7041	/* map page for use */
7042	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7043
7044	/* if mapping failed free memory back to system since
7045	 * there isn't much point in holding memory we can't use
7046	 */
7047	if (dma_mapping_error(rx_ring->dev, dma)) {
7048		__free_page(page);
7049
7050		rx_ring->rx_stats.alloc_failed++;
7051		return false;
7052	}
7053
7054	bi->dma = dma;
7055	bi->page = page;
7056	bi->page_offset = 0;
7057
7058	return true;
7059}
7060
7061/**
7062 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7063 *  @adapter: address of board private structure
7064 **/
7065void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7066{
7067	union e1000_adv_rx_desc *rx_desc;
7068	struct igb_rx_buffer *bi;
7069	u16 i = rx_ring->next_to_use;
7070
7071	/* nothing to do */
7072	if (!cleaned_count)
7073		return;
7074
7075	rx_desc = IGB_RX_DESC(rx_ring, i);
7076	bi = &rx_ring->rx_buffer_info[i];
7077	i -= rx_ring->count;
7078
7079	do {
7080		if (!igb_alloc_mapped_page(rx_ring, bi))
7081			break;
7082
7083		/* Refresh the desc even if buffer_addrs didn't change
7084		 * because each write-back erases this info.
7085		 */
7086		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7087
7088		rx_desc++;
7089		bi++;
7090		i++;
7091		if (unlikely(!i)) {
7092			rx_desc = IGB_RX_DESC(rx_ring, 0);
7093			bi = rx_ring->rx_buffer_info;
7094			i -= rx_ring->count;
7095		}
7096
7097		/* clear the hdr_addr for the next_to_use descriptor */
7098		rx_desc->read.hdr_addr = 0;
7099
7100		cleaned_count--;
7101	} while (cleaned_count);
7102
7103	i += rx_ring->count;
7104
7105	if (rx_ring->next_to_use != i) {
7106		/* record the next descriptor to use */
7107		rx_ring->next_to_use = i;
7108
7109		/* update next to alloc since we have filled the ring */
7110		rx_ring->next_to_alloc = i;
7111
7112		/* Force memory writes to complete before letting h/w
7113		 * know there are new descriptors to fetch.  (Only
7114		 * applicable for weak-ordered memory model archs,
7115		 * such as IA-64).
7116		 */
7117		wmb();
7118		writel(i, rx_ring->tail);
7119	}
7120}
7121
7122/**
7123 * igb_mii_ioctl -
7124 * @netdev:
7125 * @ifreq:
7126 * @cmd:
7127 **/
7128static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7129{
7130	struct igb_adapter *adapter = netdev_priv(netdev);
7131	struct mii_ioctl_data *data = if_mii(ifr);
7132
7133	if (adapter->hw.phy.media_type != e1000_media_type_copper)
7134		return -EOPNOTSUPP;
7135
7136	switch (cmd) {
7137	case SIOCGMIIPHY:
7138		data->phy_id = adapter->hw.phy.addr;
7139		break;
7140	case SIOCGMIIREG:
7141		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7142		                     &data->val_out))
7143			return -EIO;
7144		break;
7145	case SIOCSMIIREG:
7146	default:
7147		return -EOPNOTSUPP;
7148	}
7149	return 0;
7150}
7151
7152/**
7153 * igb_ioctl -
7154 * @netdev:
7155 * @ifreq:
7156 * @cmd:
7157 **/
7158static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7159{
7160	switch (cmd) {
7161	case SIOCGMIIPHY:
7162	case SIOCGMIIREG:
7163	case SIOCSMIIREG:
7164		return igb_mii_ioctl(netdev, ifr, cmd);
7165	case SIOCGHWTSTAMP:
7166		return igb_ptp_get_ts_config(netdev, ifr);
7167	case SIOCSHWTSTAMP:
7168		return igb_ptp_set_ts_config(netdev, ifr);
7169	default:
7170		return -EOPNOTSUPP;
7171	}
7172}
7173
7174s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7175{
7176	struct igb_adapter *adapter = hw->back;
7177
7178	if (pcie_capability_read_word(adapter->pdev, reg, value))
7179		return -E1000_ERR_CONFIG;
7180
7181	return 0;
7182}
7183
7184s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7185{
7186	struct igb_adapter *adapter = hw->back;
7187
7188	if (pcie_capability_write_word(adapter->pdev, reg, *value))
7189		return -E1000_ERR_CONFIG;
7190
7191	return 0;
7192}
7193
7194static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7195{
7196	struct igb_adapter *adapter = netdev_priv(netdev);
7197	struct e1000_hw *hw = &adapter->hw;
7198	u32 ctrl, rctl;
7199	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7200
7201	if (enable) {
7202		/* enable VLAN tag insert/strip */
7203		ctrl = rd32(E1000_CTRL);
7204		ctrl |= E1000_CTRL_VME;
7205		wr32(E1000_CTRL, ctrl);
7206
7207		/* Disable CFI check */
7208		rctl = rd32(E1000_RCTL);
7209		rctl &= ~E1000_RCTL_CFIEN;
7210		wr32(E1000_RCTL, rctl);
7211	} else {
7212		/* disable VLAN tag insert/strip */
7213		ctrl = rd32(E1000_CTRL);
7214		ctrl &= ~E1000_CTRL_VME;
7215		wr32(E1000_CTRL, ctrl);
7216	}
7217
7218	igb_rlpml_set(adapter);
7219}
7220
7221static int igb_vlan_rx_add_vid(struct net_device *netdev,
7222			       __be16 proto, u16 vid)
7223{
7224	struct igb_adapter *adapter = netdev_priv(netdev);
7225	struct e1000_hw *hw = &adapter->hw;
7226	int pf_id = adapter->vfs_allocated_count;
7227
7228	/* attempt to add filter to vlvf array */
7229	igb_vlvf_set(adapter, vid, true, pf_id);
7230
7231	/* add the filter since PF can receive vlans w/o entry in vlvf */
7232	igb_vfta_set(hw, vid, true);
7233
7234	set_bit(vid, adapter->active_vlans);
7235
7236	return 0;
7237}
7238
7239static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7240				__be16 proto, u16 vid)
7241{
7242	struct igb_adapter *adapter = netdev_priv(netdev);
7243	struct e1000_hw *hw = &adapter->hw;
7244	int pf_id = adapter->vfs_allocated_count;
7245	s32 err;
7246
7247	/* remove vlan from VLVF table array */
7248	err = igb_vlvf_set(adapter, vid, false, pf_id);
7249
7250	/* if vid was not present in VLVF just remove it from table */
7251	if (err)
7252		igb_vfta_set(hw, vid, false);
7253
7254	clear_bit(vid, adapter->active_vlans);
7255
7256	return 0;
7257}
7258
7259static void igb_restore_vlan(struct igb_adapter *adapter)
7260{
7261	u16 vid;
7262
7263	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7264
7265	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7266		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7267}
7268
7269int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7270{
7271	struct pci_dev *pdev = adapter->pdev;
7272	struct e1000_mac_info *mac = &adapter->hw.mac;
7273
7274	mac->autoneg = 0;
7275
7276	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7277	 * for the switch() below to work
7278	 */
7279	if ((spd & 1) || (dplx & ~1))
7280		goto err_inval;
7281
7282	/* Fiber NIC's only allow 1000 gbps Full duplex
7283	 * and 100Mbps Full duplex for 100baseFx sfp
7284	 */
7285	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7286		switch (spd + dplx) {
7287		case SPEED_10 + DUPLEX_HALF:
7288		case SPEED_10 + DUPLEX_FULL:
7289		case SPEED_100 + DUPLEX_HALF:
7290			goto err_inval;
7291		default:
7292			break;
7293		}
7294	}
7295
7296	switch (spd + dplx) {
7297	case SPEED_10 + DUPLEX_HALF:
7298		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7299		break;
7300	case SPEED_10 + DUPLEX_FULL:
7301		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7302		break;
7303	case SPEED_100 + DUPLEX_HALF:
7304		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7305		break;
7306	case SPEED_100 + DUPLEX_FULL:
7307		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7308		break;
7309	case SPEED_1000 + DUPLEX_FULL:
7310		mac->autoneg = 1;
7311		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7312		break;
7313	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7314	default:
7315		goto err_inval;
7316	}
7317
7318	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7319	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7320
7321	return 0;
7322
7323err_inval:
7324	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7325	return -EINVAL;
7326}
7327
7328static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7329			  bool runtime)
7330{
7331	struct net_device *netdev = pci_get_drvdata(pdev);
7332	struct igb_adapter *adapter = netdev_priv(netdev);
7333	struct e1000_hw *hw = &adapter->hw;
7334	u32 ctrl, rctl, status;
7335	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7336#ifdef CONFIG_PM
7337	int retval = 0;
7338#endif
7339
7340	netif_device_detach(netdev);
7341
7342	if (netif_running(netdev))
7343		__igb_close(netdev, true);
7344
7345	igb_clear_interrupt_scheme(adapter);
7346
7347#ifdef CONFIG_PM
7348	retval = pci_save_state(pdev);
7349	if (retval)
7350		return retval;
7351#endif
7352
7353	status = rd32(E1000_STATUS);
7354	if (status & E1000_STATUS_LU)
7355		wufc &= ~E1000_WUFC_LNKC;
7356
7357	if (wufc) {
7358		igb_setup_rctl(adapter);
7359		igb_set_rx_mode(netdev);
7360
7361		/* turn on all-multi mode if wake on multicast is enabled */
7362		if (wufc & E1000_WUFC_MC) {
7363			rctl = rd32(E1000_RCTL);
7364			rctl |= E1000_RCTL_MPE;
7365			wr32(E1000_RCTL, rctl);
7366		}
7367
7368		ctrl = rd32(E1000_CTRL);
7369		/* advertise wake from D3Cold */
7370		#define E1000_CTRL_ADVD3WUC 0x00100000
7371		/* phy power management enable */
7372		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7373		ctrl |= E1000_CTRL_ADVD3WUC;
7374		wr32(E1000_CTRL, ctrl);
7375
7376		/* Allow time for pending master requests to run */
7377		igb_disable_pcie_master(hw);
7378
7379		wr32(E1000_WUC, E1000_WUC_PME_EN);
7380		wr32(E1000_WUFC, wufc);
7381	} else {
7382		wr32(E1000_WUC, 0);
7383		wr32(E1000_WUFC, 0);
7384	}
7385
7386	*enable_wake = wufc || adapter->en_mng_pt;
7387	if (!*enable_wake)
7388		igb_power_down_link(adapter);
7389	else
7390		igb_power_up_link(adapter);
7391
7392	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7393	 * would have already happened in close and is redundant.
7394	 */
7395	igb_release_hw_control(adapter);
7396
7397	pci_disable_device(pdev);
7398
7399	return 0;
7400}
7401
7402#ifdef CONFIG_PM
7403#ifdef CONFIG_PM_SLEEP
7404static int igb_suspend(struct device *dev)
7405{
7406	int retval;
7407	bool wake;
7408	struct pci_dev *pdev = to_pci_dev(dev);
7409
7410	retval = __igb_shutdown(pdev, &wake, 0);
7411	if (retval)
7412		return retval;
7413
7414	if (wake) {
7415		pci_prepare_to_sleep(pdev);
7416	} else {
7417		pci_wake_from_d3(pdev, false);
7418		pci_set_power_state(pdev, PCI_D3hot);
7419	}
7420
7421	return 0;
7422}
7423#endif /* CONFIG_PM_SLEEP */
7424
7425static int igb_resume(struct device *dev)
7426{
7427	struct pci_dev *pdev = to_pci_dev(dev);
7428	struct net_device *netdev = pci_get_drvdata(pdev);
7429	struct igb_adapter *adapter = netdev_priv(netdev);
7430	struct e1000_hw *hw = &adapter->hw;
7431	u32 err;
7432
7433	pci_set_power_state(pdev, PCI_D0);
7434	pci_restore_state(pdev);
7435	pci_save_state(pdev);
7436
7437	err = pci_enable_device_mem(pdev);
7438	if (err) {
7439		dev_err(&pdev->dev,
7440			"igb: Cannot enable PCI device from suspend\n");
7441		return err;
7442	}
7443	pci_set_master(pdev);
7444
7445	pci_enable_wake(pdev, PCI_D3hot, 0);
7446	pci_enable_wake(pdev, PCI_D3cold, 0);
7447
7448	if (igb_init_interrupt_scheme(adapter, true)) {
7449		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7450		return -ENOMEM;
7451	}
7452
7453	igb_reset(adapter);
7454
7455	/* let the f/w know that the h/w is now under the control of the
7456	 * driver.
7457	 */
7458	igb_get_hw_control(adapter);
7459
7460	wr32(E1000_WUS, ~0);
7461
7462	if (netdev->flags & IFF_UP) {
7463		rtnl_lock();
7464		err = __igb_open(netdev, true);
7465		rtnl_unlock();
7466		if (err)
7467			return err;
7468	}
7469
7470	netif_device_attach(netdev);
7471	return 0;
7472}
7473
7474#ifdef CONFIG_PM_RUNTIME
7475static int igb_runtime_idle(struct device *dev)
7476{
7477	struct pci_dev *pdev = to_pci_dev(dev);
7478	struct net_device *netdev = pci_get_drvdata(pdev);
7479	struct igb_adapter *adapter = netdev_priv(netdev);
7480
7481	if (!igb_has_link(adapter))
7482		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7483
7484	return -EBUSY;
7485}
7486
7487static int igb_runtime_suspend(struct device *dev)
7488{
7489	struct pci_dev *pdev = to_pci_dev(dev);
7490	int retval;
7491	bool wake;
7492
7493	retval = __igb_shutdown(pdev, &wake, 1);
7494	if (retval)
7495		return retval;
7496
7497	if (wake) {
7498		pci_prepare_to_sleep(pdev);
7499	} else {
7500		pci_wake_from_d3(pdev, false);
7501		pci_set_power_state(pdev, PCI_D3hot);
7502	}
7503
7504	return 0;
7505}
7506
7507static int igb_runtime_resume(struct device *dev)
7508{
7509	return igb_resume(dev);
7510}
7511#endif /* CONFIG_PM_RUNTIME */
7512#endif
7513
7514static void igb_shutdown(struct pci_dev *pdev)
7515{
7516	bool wake;
7517
7518	__igb_shutdown(pdev, &wake, 0);
7519
7520	if (system_state == SYSTEM_POWER_OFF) {
7521		pci_wake_from_d3(pdev, wake);
7522		pci_set_power_state(pdev, PCI_D3hot);
7523	}
7524}
7525
7526#ifdef CONFIG_PCI_IOV
7527static int igb_sriov_reinit(struct pci_dev *dev)
7528{
7529	struct net_device *netdev = pci_get_drvdata(dev);
7530	struct igb_adapter *adapter = netdev_priv(netdev);
7531	struct pci_dev *pdev = adapter->pdev;
7532
7533	rtnl_lock();
7534
7535	if (netif_running(netdev))
7536		igb_close(netdev);
7537
7538	igb_clear_interrupt_scheme(adapter);
7539
7540	igb_init_queue_configuration(adapter);
7541
7542	if (igb_init_interrupt_scheme(adapter, true)) {
7543		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7544		return -ENOMEM;
7545	}
7546
7547	if (netif_running(netdev))
7548		igb_open(netdev);
7549
7550	rtnl_unlock();
7551
7552	return 0;
7553}
7554
7555static int igb_pci_disable_sriov(struct pci_dev *dev)
7556{
7557	int err = igb_disable_sriov(dev);
7558
7559	if (!err)
7560		err = igb_sriov_reinit(dev);
7561
7562	return err;
7563}
7564
7565static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7566{
7567	int err = igb_enable_sriov(dev, num_vfs);
7568
7569	if (err)
7570		goto out;
7571
7572	err = igb_sriov_reinit(dev);
7573	if (!err)
7574		return num_vfs;
7575
7576out:
7577	return err;
7578}
7579
7580#endif
7581static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7582{
7583#ifdef CONFIG_PCI_IOV
7584	if (num_vfs == 0)
7585		return igb_pci_disable_sriov(dev);
7586	else
7587		return igb_pci_enable_sriov(dev, num_vfs);
7588#endif
7589	return 0;
7590}
7591
7592#ifdef CONFIG_NET_POLL_CONTROLLER
7593/* Polling 'interrupt' - used by things like netconsole to send skbs
7594 * without having to re-enable interrupts. It's not called while
7595 * the interrupt routine is executing.
7596 */
7597static void igb_netpoll(struct net_device *netdev)
7598{
7599	struct igb_adapter *adapter = netdev_priv(netdev);
7600	struct e1000_hw *hw = &adapter->hw;
7601	struct igb_q_vector *q_vector;
7602	int i;
7603
7604	for (i = 0; i < adapter->num_q_vectors; i++) {
7605		q_vector = adapter->q_vector[i];
7606		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7607			wr32(E1000_EIMC, q_vector->eims_value);
7608		else
7609			igb_irq_disable(adapter);
7610		napi_schedule(&q_vector->napi);
7611	}
7612}
7613#endif /* CONFIG_NET_POLL_CONTROLLER */
7614
7615/**
7616 *  igb_io_error_detected - called when PCI error is detected
7617 *  @pdev: Pointer to PCI device
7618 *  @state: The current pci connection state
7619 *
7620 *  This function is called after a PCI bus error affecting
7621 *  this device has been detected.
7622 **/
7623static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7624					      pci_channel_state_t state)
7625{
7626	struct net_device *netdev = pci_get_drvdata(pdev);
7627	struct igb_adapter *adapter = netdev_priv(netdev);
7628
7629	netif_device_detach(netdev);
7630
7631	if (state == pci_channel_io_perm_failure)
7632		return PCI_ERS_RESULT_DISCONNECT;
7633
7634	if (netif_running(netdev))
7635		igb_down(adapter);
7636	pci_disable_device(pdev);
7637
7638	/* Request a slot slot reset. */
7639	return PCI_ERS_RESULT_NEED_RESET;
7640}
7641
7642/**
7643 *  igb_io_slot_reset - called after the pci bus has been reset.
7644 *  @pdev: Pointer to PCI device
7645 *
7646 *  Restart the card from scratch, as if from a cold-boot. Implementation
7647 *  resembles the first-half of the igb_resume routine.
7648 **/
7649static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7650{
7651	struct net_device *netdev = pci_get_drvdata(pdev);
7652	struct igb_adapter *adapter = netdev_priv(netdev);
7653	struct e1000_hw *hw = &adapter->hw;
7654	pci_ers_result_t result;
7655	int err;
7656
7657	if (pci_enable_device_mem(pdev)) {
7658		dev_err(&pdev->dev,
7659			"Cannot re-enable PCI device after reset.\n");
7660		result = PCI_ERS_RESULT_DISCONNECT;
7661	} else {
7662		pci_set_master(pdev);
7663		pci_restore_state(pdev);
7664		pci_save_state(pdev);
7665
7666		pci_enable_wake(pdev, PCI_D3hot, 0);
7667		pci_enable_wake(pdev, PCI_D3cold, 0);
7668
7669		igb_reset(adapter);
7670		wr32(E1000_WUS, ~0);
7671		result = PCI_ERS_RESULT_RECOVERED;
7672	}
7673
7674	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7675	if (err) {
7676		dev_err(&pdev->dev,
7677			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7678			err);
7679		/* non-fatal, continue */
7680	}
7681
7682	return result;
7683}
7684
7685/**
7686 *  igb_io_resume - called when traffic can start flowing again.
7687 *  @pdev: Pointer to PCI device
7688 *
7689 *  This callback is called when the error recovery driver tells us that
7690 *  its OK to resume normal operation. Implementation resembles the
7691 *  second-half of the igb_resume routine.
7692 */
7693static void igb_io_resume(struct pci_dev *pdev)
7694{
7695	struct net_device *netdev = pci_get_drvdata(pdev);
7696	struct igb_adapter *adapter = netdev_priv(netdev);
7697
7698	if (netif_running(netdev)) {
7699		if (igb_up(adapter)) {
7700			dev_err(&pdev->dev, "igb_up failed after reset\n");
7701			return;
7702		}
7703	}
7704
7705	netif_device_attach(netdev);
7706
7707	/* let the f/w know that the h/w is now under the control of the
7708	 * driver.
7709	 */
7710	igb_get_hw_control(adapter);
7711}
7712
7713static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7714			     u8 qsel)
7715{
7716	u32 rar_low, rar_high;
7717	struct e1000_hw *hw = &adapter->hw;
7718
7719	/* HW expects these in little endian so we reverse the byte order
7720	 * from network order (big endian) to little endian
7721	 */
7722	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7723		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7724	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7725
7726	/* Indicate to hardware the Address is Valid. */
7727	rar_high |= E1000_RAH_AV;
7728
7729	if (hw->mac.type == e1000_82575)
7730		rar_high |= E1000_RAH_POOL_1 * qsel;
7731	else
7732		rar_high |= E1000_RAH_POOL_1 << qsel;
7733
7734	wr32(E1000_RAL(index), rar_low);
7735	wrfl();
7736	wr32(E1000_RAH(index), rar_high);
7737	wrfl();
7738}
7739
7740static int igb_set_vf_mac(struct igb_adapter *adapter,
7741			  int vf, unsigned char *mac_addr)
7742{
7743	struct e1000_hw *hw = &adapter->hw;
7744	/* VF MAC addresses start at end of receive addresses and moves
7745	 * towards the first, as a result a collision should not be possible
7746	 */
7747	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7748
7749	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7750
7751	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7752
7753	return 0;
7754}
7755
7756static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7757{
7758	struct igb_adapter *adapter = netdev_priv(netdev);
7759	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7760		return -EINVAL;
7761	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7762	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7763	dev_info(&adapter->pdev->dev,
7764		 "Reload the VF driver to make this change effective.");
7765	if (test_bit(__IGB_DOWN, &adapter->state)) {
7766		dev_warn(&adapter->pdev->dev,
7767			 "The VF MAC address has been set, but the PF device is not up.\n");
7768		dev_warn(&adapter->pdev->dev,
7769			 "Bring the PF device up before attempting to use the VF device.\n");
7770	}
7771	return igb_set_vf_mac(adapter, vf, mac);
7772}
7773
7774static int igb_link_mbps(int internal_link_speed)
7775{
7776	switch (internal_link_speed) {
7777	case SPEED_100:
7778		return 100;
7779	case SPEED_1000:
7780		return 1000;
7781	default:
7782		return 0;
7783	}
7784}
7785
7786static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7787				  int link_speed)
7788{
7789	int rf_dec, rf_int;
7790	u32 bcnrc_val;
7791
7792	if (tx_rate != 0) {
7793		/* Calculate the rate factor values to set */
7794		rf_int = link_speed / tx_rate;
7795		rf_dec = (link_speed - (rf_int * tx_rate));
7796		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7797			 tx_rate;
7798
7799		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7800		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7801			      E1000_RTTBCNRC_RF_INT_MASK);
7802		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7803	} else {
7804		bcnrc_val = 0;
7805	}
7806
7807	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7808	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7809	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7810	 */
7811	wr32(E1000_RTTBCNRM, 0x14);
7812	wr32(E1000_RTTBCNRC, bcnrc_val);
7813}
7814
7815static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7816{
7817	int actual_link_speed, i;
7818	bool reset_rate = false;
7819
7820	/* VF TX rate limit was not set or not supported */
7821	if ((adapter->vf_rate_link_speed == 0) ||
7822	    (adapter->hw.mac.type != e1000_82576))
7823		return;
7824
7825	actual_link_speed = igb_link_mbps(adapter->link_speed);
7826	if (actual_link_speed != adapter->vf_rate_link_speed) {
7827		reset_rate = true;
7828		adapter->vf_rate_link_speed = 0;
7829		dev_info(&adapter->pdev->dev,
7830			 "Link speed has been changed. VF Transmit rate is disabled\n");
7831	}
7832
7833	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7834		if (reset_rate)
7835			adapter->vf_data[i].tx_rate = 0;
7836
7837		igb_set_vf_rate_limit(&adapter->hw, i,
7838				      adapter->vf_data[i].tx_rate,
7839				      actual_link_speed);
7840	}
7841}
7842
7843static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7844{
7845	struct igb_adapter *adapter = netdev_priv(netdev);
7846	struct e1000_hw *hw = &adapter->hw;
7847	int actual_link_speed;
7848
7849	if (hw->mac.type != e1000_82576)
7850		return -EOPNOTSUPP;
7851
7852	actual_link_speed = igb_link_mbps(adapter->link_speed);
7853	if ((vf >= adapter->vfs_allocated_count) ||
7854	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7855	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7856		return -EINVAL;
7857
7858	adapter->vf_rate_link_speed = actual_link_speed;
7859	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7860	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7861
7862	return 0;
7863}
7864
7865static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7866				   bool setting)
7867{
7868	struct igb_adapter *adapter = netdev_priv(netdev);
7869	struct e1000_hw *hw = &adapter->hw;
7870	u32 reg_val, reg_offset;
7871
7872	if (!adapter->vfs_allocated_count)
7873		return -EOPNOTSUPP;
7874
7875	if (vf >= adapter->vfs_allocated_count)
7876		return -EINVAL;
7877
7878	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7879	reg_val = rd32(reg_offset);
7880	if (setting)
7881		reg_val |= ((1 << vf) |
7882			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7883	else
7884		reg_val &= ~((1 << vf) |
7885			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7886	wr32(reg_offset, reg_val);
7887
7888	adapter->vf_data[vf].spoofchk_enabled = setting;
7889	return E1000_SUCCESS;
7890}
7891
7892static int igb_ndo_get_vf_config(struct net_device *netdev,
7893				 int vf, struct ifla_vf_info *ivi)
7894{
7895	struct igb_adapter *adapter = netdev_priv(netdev);
7896	if (vf >= adapter->vfs_allocated_count)
7897		return -EINVAL;
7898	ivi->vf = vf;
7899	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7900	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7901	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7902	ivi->qos = adapter->vf_data[vf].pf_qos;
7903	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7904	return 0;
7905}
7906
7907static void igb_vmm_control(struct igb_adapter *adapter)
7908{
7909	struct e1000_hw *hw = &adapter->hw;
7910	u32 reg;
7911
7912	switch (hw->mac.type) {
7913	case e1000_82575:
7914	case e1000_i210:
7915	case e1000_i211:
7916	case e1000_i354:
7917	default:
7918		/* replication is not supported for 82575 */
7919		return;
7920	case e1000_82576:
7921		/* notify HW that the MAC is adding vlan tags */
7922		reg = rd32(E1000_DTXCTL);
7923		reg |= E1000_DTXCTL_VLAN_ADDED;
7924		wr32(E1000_DTXCTL, reg);
7925	case e1000_82580:
7926		/* enable replication vlan tag stripping */
7927		reg = rd32(E1000_RPLOLR);
7928		reg |= E1000_RPLOLR_STRVLAN;
7929		wr32(E1000_RPLOLR, reg);
7930	case e1000_i350:
7931		/* none of the above registers are supported by i350 */
7932		break;
7933	}
7934
7935	if (adapter->vfs_allocated_count) {
7936		igb_vmdq_set_loopback_pf(hw, true);
7937		igb_vmdq_set_replication_pf(hw, true);
7938		igb_vmdq_set_anti_spoofing_pf(hw, true,
7939					      adapter->vfs_allocated_count);
7940	} else {
7941		igb_vmdq_set_loopback_pf(hw, false);
7942		igb_vmdq_set_replication_pf(hw, false);
7943	}
7944}
7945
7946static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7947{
7948	struct e1000_hw *hw = &adapter->hw;
7949	u32 dmac_thr;
7950	u16 hwm;
7951
7952	if (hw->mac.type > e1000_82580) {
7953		if (adapter->flags & IGB_FLAG_DMAC) {
7954			u32 reg;
7955
7956			/* force threshold to 0. */
7957			wr32(E1000_DMCTXTH, 0);
7958
7959			/* DMA Coalescing high water mark needs to be greater
7960			 * than the Rx threshold. Set hwm to PBA - max frame
7961			 * size in 16B units, capping it at PBA - 6KB.
7962			 */
7963			hwm = 64 * pba - adapter->max_frame_size / 16;
7964			if (hwm < 64 * (pba - 6))
7965				hwm = 64 * (pba - 6);
7966			reg = rd32(E1000_FCRTC);
7967			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7968			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7969				& E1000_FCRTC_RTH_COAL_MASK);
7970			wr32(E1000_FCRTC, reg);
7971
7972			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7973			 * frame size, capping it at PBA - 10KB.
7974			 */
7975			dmac_thr = pba - adapter->max_frame_size / 512;
7976			if (dmac_thr < pba - 10)
7977				dmac_thr = pba - 10;
7978			reg = rd32(E1000_DMACR);
7979			reg &= ~E1000_DMACR_DMACTHR_MASK;
7980			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7981				& E1000_DMACR_DMACTHR_MASK);
7982
7983			/* transition to L0x or L1 if available..*/
7984			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7985
7986			/* watchdog timer= +-1000 usec in 32usec intervals */
7987			reg |= (1000 >> 5);
7988
7989			/* Disable BMC-to-OS Watchdog Enable */
7990			if (hw->mac.type != e1000_i354)
7991				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7992
7993			wr32(E1000_DMACR, reg);
7994
7995			/* no lower threshold to disable
7996			 * coalescing(smart fifb)-UTRESH=0
7997			 */
7998			wr32(E1000_DMCRTRH, 0);
7999
8000			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8001
8002			wr32(E1000_DMCTLX, reg);
8003
8004			/* free space in tx packet buffer to wake from
8005			 * DMA coal
8006			 */
8007			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8008			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8009
8010			/* make low power state decision controlled
8011			 * by DMA coal
8012			 */
8013			reg = rd32(E1000_PCIEMISC);
8014			reg &= ~E1000_PCIEMISC_LX_DECISION;
8015			wr32(E1000_PCIEMISC, reg);
8016		} /* endif adapter->dmac is not disabled */
8017	} else if (hw->mac.type == e1000_82580) {
8018		u32 reg = rd32(E1000_PCIEMISC);
8019		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8020		wr32(E1000_DMACR, 0);
8021	}
8022}
8023
8024/**
8025 *  igb_read_i2c_byte - Reads 8 bit word over I2C
8026 *  @hw: pointer to hardware structure
8027 *  @byte_offset: byte offset to read
8028 *  @dev_addr: device address
8029 *  @data: value read
8030 *
8031 *  Performs byte read operation over I2C interface at
8032 *  a specified device address.
8033 **/
8034s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8035		      u8 dev_addr, u8 *data)
8036{
8037	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8038	struct i2c_client *this_client = adapter->i2c_client;
8039	s32 status;
8040	u16 swfw_mask = 0;
8041
8042	if (!this_client)
8043		return E1000_ERR_I2C;
8044
8045	swfw_mask = E1000_SWFW_PHY0_SM;
8046
8047	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
8048	    != E1000_SUCCESS)
8049		return E1000_ERR_SWFW_SYNC;
8050
8051	status = i2c_smbus_read_byte_data(this_client, byte_offset);
8052	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8053
8054	if (status < 0)
8055		return E1000_ERR_I2C;
8056	else {
8057		*data = status;
8058		return E1000_SUCCESS;
8059	}
8060}
8061
8062/**
8063 *  igb_write_i2c_byte - Writes 8 bit word over I2C
8064 *  @hw: pointer to hardware structure
8065 *  @byte_offset: byte offset to write
8066 *  @dev_addr: device address
8067 *  @data: value to write
8068 *
8069 *  Performs byte write operation over I2C interface at
8070 *  a specified device address.
8071 **/
8072s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8073		       u8 dev_addr, u8 data)
8074{
8075	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8076	struct i2c_client *this_client = adapter->i2c_client;
8077	s32 status;
8078	u16 swfw_mask = E1000_SWFW_PHY0_SM;
8079
8080	if (!this_client)
8081		return E1000_ERR_I2C;
8082
8083	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
8084		return E1000_ERR_SWFW_SYNC;
8085	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8086	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8087
8088	if (status)
8089		return E1000_ERR_I2C;
8090	else
8091		return E1000_SUCCESS;
8092
8093}
8094
8095int igb_reinit_queues(struct igb_adapter *adapter)
8096{
8097	struct net_device *netdev = adapter->netdev;
8098	struct pci_dev *pdev = adapter->pdev;
8099	int err = 0;
8100
8101	if (netif_running(netdev))
8102		igb_close(netdev);
8103
8104	igb_reset_interrupt_capability(adapter);
8105
8106	if (igb_init_interrupt_scheme(adapter, true)) {
8107		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8108		return -ENOMEM;
8109	}
8110
8111	if (netif_running(netdev))
8112		err = igb_open(netdev);
8113
8114	return err;
8115}
8116/* igb_main.c */
8117