igb_main.c revision 76252723e88681628a3dbb9c09c963e095476f73
1/* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26#include <linux/module.h>
27#include <linux/types.h>
28#include <linux/init.h>
29#include <linux/bitops.h>
30#include <linux/vmalloc.h>
31#include <linux/pagemap.h>
32#include <linux/netdevice.h>
33#include <linux/ipv6.h>
34#include <linux/slab.h>
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
37#include <linux/net_tstamp.h>
38#include <linux/mii.h>
39#include <linux/ethtool.h>
40#include <linux/if.h>
41#include <linux/if_vlan.h>
42#include <linux/pci.h>
43#include <linux/pci-aspm.h>
44#include <linux/delay.h>
45#include <linux/interrupt.h>
46#include <linux/ip.h>
47#include <linux/tcp.h>
48#include <linux/sctp.h>
49#include <linux/if_ether.h>
50#include <linux/aer.h>
51#include <linux/prefetch.h>
52#include <linux/pm_runtime.h>
53#ifdef CONFIG_IGB_DCA
54#include <linux/dca.h>
55#endif
56#include <linux/i2c.h>
57#include "igb.h"
58
59#define MAJ 5
60#define MIN 0
61#define BUILD 5
62#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63__stringify(BUILD) "-k"
64char igb_driver_name[] = "igb";
65char igb_driver_version[] = DRV_VERSION;
66static const char igb_driver_string[] =
67				"Intel(R) Gigabit Ethernet Network Driver";
68static const char igb_copyright[] =
69				"Copyright (c) 2007-2014 Intel Corporation.";
70
71static const struct e1000_info *igb_info_tbl[] = {
72	[board_82575] = &e1000_82575_info,
73};
74
75static const struct pci_device_id igb_pci_tbl[] = {
76	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
77	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
78	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
79	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
99	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
104	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
105	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
106	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
107	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
108	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
109	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
110	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
111	/* required last entry */
112	{0, }
113};
114
115MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
116
117static int igb_setup_all_tx_resources(struct igb_adapter *);
118static int igb_setup_all_rx_resources(struct igb_adapter *);
119static void igb_free_all_tx_resources(struct igb_adapter *);
120static void igb_free_all_rx_resources(struct igb_adapter *);
121static void igb_setup_mrqc(struct igb_adapter *);
122static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123static void igb_remove(struct pci_dev *pdev);
124static int igb_sw_init(struct igb_adapter *);
125static int igb_open(struct net_device *);
126static int igb_close(struct net_device *);
127static void igb_configure(struct igb_adapter *);
128static void igb_configure_tx(struct igb_adapter *);
129static void igb_configure_rx(struct igb_adapter *);
130static void igb_clean_all_tx_rings(struct igb_adapter *);
131static void igb_clean_all_rx_rings(struct igb_adapter *);
132static void igb_clean_tx_ring(struct igb_ring *);
133static void igb_clean_rx_ring(struct igb_ring *);
134static void igb_set_rx_mode(struct net_device *);
135static void igb_update_phy_info(unsigned long);
136static void igb_watchdog(unsigned long);
137static void igb_watchdog_task(struct work_struct *);
138static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140					  struct rtnl_link_stats64 *stats);
141static int igb_change_mtu(struct net_device *, int);
142static int igb_set_mac(struct net_device *, void *);
143static void igb_set_uta(struct igb_adapter *adapter);
144static irqreturn_t igb_intr(int irq, void *);
145static irqreturn_t igb_intr_msi(int irq, void *);
146static irqreturn_t igb_msix_other(int irq, void *);
147static irqreturn_t igb_msix_ring(int irq, void *);
148#ifdef CONFIG_IGB_DCA
149static void igb_update_dca(struct igb_q_vector *);
150static void igb_setup_dca(struct igb_adapter *);
151#endif /* CONFIG_IGB_DCA */
152static int igb_poll(struct napi_struct *, int);
153static bool igb_clean_tx_irq(struct igb_q_vector *);
154static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156static void igb_tx_timeout(struct net_device *);
157static void igb_reset_task(struct work_struct *);
158static void igb_vlan_mode(struct net_device *netdev,
159			  netdev_features_t features);
160static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
161static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
162static void igb_restore_vlan(struct igb_adapter *);
163static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
164static void igb_ping_all_vfs(struct igb_adapter *);
165static void igb_msg_task(struct igb_adapter *);
166static void igb_vmm_control(struct igb_adapter *);
167static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
168static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
169static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
170static int igb_ndo_set_vf_vlan(struct net_device *netdev,
171			       int vf, u16 vlan, u8 qos);
172static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
173static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
174				   bool setting);
175static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176				 struct ifla_vf_info *ivi);
177static void igb_check_vf_rate_limit(struct igb_adapter *);
178
179#ifdef CONFIG_PCI_IOV
180static int igb_vf_configure(struct igb_adapter *adapter, int vf);
181static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
182#endif
183
184#ifdef CONFIG_PM
185#ifdef CONFIG_PM_SLEEP
186static int igb_suspend(struct device *);
187#endif
188static int igb_resume(struct device *);
189#ifdef CONFIG_PM_RUNTIME
190static int igb_runtime_suspend(struct device *dev);
191static int igb_runtime_resume(struct device *dev);
192static int igb_runtime_idle(struct device *dev);
193#endif
194static const struct dev_pm_ops igb_pm_ops = {
195	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
196	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
197			igb_runtime_idle)
198};
199#endif
200static void igb_shutdown(struct pci_dev *);
201static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
202#ifdef CONFIG_IGB_DCA
203static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
204static struct notifier_block dca_notifier = {
205	.notifier_call	= igb_notify_dca,
206	.next		= NULL,
207	.priority	= 0
208};
209#endif
210#ifdef CONFIG_NET_POLL_CONTROLLER
211/* for netdump / net console */
212static void igb_netpoll(struct net_device *);
213#endif
214#ifdef CONFIG_PCI_IOV
215static unsigned int max_vfs;
216module_param(max_vfs, uint, 0);
217MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
218#endif /* CONFIG_PCI_IOV */
219
220static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
221		     pci_channel_state_t);
222static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
223static void igb_io_resume(struct pci_dev *);
224
225static const struct pci_error_handlers igb_err_handler = {
226	.error_detected = igb_io_error_detected,
227	.slot_reset = igb_io_slot_reset,
228	.resume = igb_io_resume,
229};
230
231static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
232
233static struct pci_driver igb_driver = {
234	.name     = igb_driver_name,
235	.id_table = igb_pci_tbl,
236	.probe    = igb_probe,
237	.remove   = igb_remove,
238#ifdef CONFIG_PM
239	.driver.pm = &igb_pm_ops,
240#endif
241	.shutdown = igb_shutdown,
242	.sriov_configure = igb_pci_sriov_configure,
243	.err_handler = &igb_err_handler
244};
245
246MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
247MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
248MODULE_LICENSE("GPL");
249MODULE_VERSION(DRV_VERSION);
250
251#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
252static int debug = -1;
253module_param(debug, int, 0);
254MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
255
256struct igb_reg_info {
257	u32 ofs;
258	char *name;
259};
260
261static const struct igb_reg_info igb_reg_info_tbl[] = {
262
263	/* General Registers */
264	{E1000_CTRL, "CTRL"},
265	{E1000_STATUS, "STATUS"},
266	{E1000_CTRL_EXT, "CTRL_EXT"},
267
268	/* Interrupt Registers */
269	{E1000_ICR, "ICR"},
270
271	/* RX Registers */
272	{E1000_RCTL, "RCTL"},
273	{E1000_RDLEN(0), "RDLEN"},
274	{E1000_RDH(0), "RDH"},
275	{E1000_RDT(0), "RDT"},
276	{E1000_RXDCTL(0), "RXDCTL"},
277	{E1000_RDBAL(0), "RDBAL"},
278	{E1000_RDBAH(0), "RDBAH"},
279
280	/* TX Registers */
281	{E1000_TCTL, "TCTL"},
282	{E1000_TDBAL(0), "TDBAL"},
283	{E1000_TDBAH(0), "TDBAH"},
284	{E1000_TDLEN(0), "TDLEN"},
285	{E1000_TDH(0), "TDH"},
286	{E1000_TDT(0), "TDT"},
287	{E1000_TXDCTL(0), "TXDCTL"},
288	{E1000_TDFH, "TDFH"},
289	{E1000_TDFT, "TDFT"},
290	{E1000_TDFHS, "TDFHS"},
291	{E1000_TDFPC, "TDFPC"},
292
293	/* List Terminator */
294	{}
295};
296
297/* igb_regdump - register printout routine */
298static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
299{
300	int n = 0;
301	char rname[16];
302	u32 regs[8];
303
304	switch (reginfo->ofs) {
305	case E1000_RDLEN(0):
306		for (n = 0; n < 4; n++)
307			regs[n] = rd32(E1000_RDLEN(n));
308		break;
309	case E1000_RDH(0):
310		for (n = 0; n < 4; n++)
311			regs[n] = rd32(E1000_RDH(n));
312		break;
313	case E1000_RDT(0):
314		for (n = 0; n < 4; n++)
315			regs[n] = rd32(E1000_RDT(n));
316		break;
317	case E1000_RXDCTL(0):
318		for (n = 0; n < 4; n++)
319			regs[n] = rd32(E1000_RXDCTL(n));
320		break;
321	case E1000_RDBAL(0):
322		for (n = 0; n < 4; n++)
323			regs[n] = rd32(E1000_RDBAL(n));
324		break;
325	case E1000_RDBAH(0):
326		for (n = 0; n < 4; n++)
327			regs[n] = rd32(E1000_RDBAH(n));
328		break;
329	case E1000_TDBAL(0):
330		for (n = 0; n < 4; n++)
331			regs[n] = rd32(E1000_RDBAL(n));
332		break;
333	case E1000_TDBAH(0):
334		for (n = 0; n < 4; n++)
335			regs[n] = rd32(E1000_TDBAH(n));
336		break;
337	case E1000_TDLEN(0):
338		for (n = 0; n < 4; n++)
339			regs[n] = rd32(E1000_TDLEN(n));
340		break;
341	case E1000_TDH(0):
342		for (n = 0; n < 4; n++)
343			regs[n] = rd32(E1000_TDH(n));
344		break;
345	case E1000_TDT(0):
346		for (n = 0; n < 4; n++)
347			regs[n] = rd32(E1000_TDT(n));
348		break;
349	case E1000_TXDCTL(0):
350		for (n = 0; n < 4; n++)
351			regs[n] = rd32(E1000_TXDCTL(n));
352		break;
353	default:
354		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
355		return;
356	}
357
358	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
359	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
360		regs[2], regs[3]);
361}
362
363/* igb_dump - Print registers, Tx-rings and Rx-rings */
364static void igb_dump(struct igb_adapter *adapter)
365{
366	struct net_device *netdev = adapter->netdev;
367	struct e1000_hw *hw = &adapter->hw;
368	struct igb_reg_info *reginfo;
369	struct igb_ring *tx_ring;
370	union e1000_adv_tx_desc *tx_desc;
371	struct my_u0 { u64 a; u64 b; } *u0;
372	struct igb_ring *rx_ring;
373	union e1000_adv_rx_desc *rx_desc;
374	u32 staterr;
375	u16 i, n;
376
377	if (!netif_msg_hw(adapter))
378		return;
379
380	/* Print netdevice Info */
381	if (netdev) {
382		dev_info(&adapter->pdev->dev, "Net device Info\n");
383		pr_info("Device Name     state            trans_start      last_rx\n");
384		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
385			netdev->state, netdev->trans_start, netdev->last_rx);
386	}
387
388	/* Print Registers */
389	dev_info(&adapter->pdev->dev, "Register Dump\n");
390	pr_info(" Register Name   Value\n");
391	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
392	     reginfo->name; reginfo++) {
393		igb_regdump(hw, reginfo);
394	}
395
396	/* Print TX Ring Summary */
397	if (!netdev || !netif_running(netdev))
398		goto exit;
399
400	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
401	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
402	for (n = 0; n < adapter->num_tx_queues; n++) {
403		struct igb_tx_buffer *buffer_info;
404		tx_ring = adapter->tx_ring[n];
405		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
406		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
407			n, tx_ring->next_to_use, tx_ring->next_to_clean,
408			(u64)dma_unmap_addr(buffer_info, dma),
409			dma_unmap_len(buffer_info, len),
410			buffer_info->next_to_watch,
411			(u64)buffer_info->time_stamp);
412	}
413
414	/* Print TX Rings */
415	if (!netif_msg_tx_done(adapter))
416		goto rx_ring_summary;
417
418	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
419
420	/* Transmit Descriptor Formats
421	 *
422	 * Advanced Transmit Descriptor
423	 *   +--------------------------------------------------------------+
424	 * 0 |         Buffer Address [63:0]                                |
425	 *   +--------------------------------------------------------------+
426	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
427	 *   +--------------------------------------------------------------+
428	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
429	 */
430
431	for (n = 0; n < adapter->num_tx_queues; n++) {
432		tx_ring = adapter->tx_ring[n];
433		pr_info("------------------------------------\n");
434		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
435		pr_info("------------------------------------\n");
436		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
437
438		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
439			const char *next_desc;
440			struct igb_tx_buffer *buffer_info;
441			tx_desc = IGB_TX_DESC(tx_ring, i);
442			buffer_info = &tx_ring->tx_buffer_info[i];
443			u0 = (struct my_u0 *)tx_desc;
444			if (i == tx_ring->next_to_use &&
445			    i == tx_ring->next_to_clean)
446				next_desc = " NTC/U";
447			else if (i == tx_ring->next_to_use)
448				next_desc = " NTU";
449			else if (i == tx_ring->next_to_clean)
450				next_desc = " NTC";
451			else
452				next_desc = "";
453
454			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
455				i, le64_to_cpu(u0->a),
456				le64_to_cpu(u0->b),
457				(u64)dma_unmap_addr(buffer_info, dma),
458				dma_unmap_len(buffer_info, len),
459				buffer_info->next_to_watch,
460				(u64)buffer_info->time_stamp,
461				buffer_info->skb, next_desc);
462
463			if (netif_msg_pktdata(adapter) && buffer_info->skb)
464				print_hex_dump(KERN_INFO, "",
465					DUMP_PREFIX_ADDRESS,
466					16, 1, buffer_info->skb->data,
467					dma_unmap_len(buffer_info, len),
468					true);
469		}
470	}
471
472	/* Print RX Rings Summary */
473rx_ring_summary:
474	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
475	pr_info("Queue [NTU] [NTC]\n");
476	for (n = 0; n < adapter->num_rx_queues; n++) {
477		rx_ring = adapter->rx_ring[n];
478		pr_info(" %5d %5X %5X\n",
479			n, rx_ring->next_to_use, rx_ring->next_to_clean);
480	}
481
482	/* Print RX Rings */
483	if (!netif_msg_rx_status(adapter))
484		goto exit;
485
486	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
487
488	/* Advanced Receive Descriptor (Read) Format
489	 *    63                                           1        0
490	 *    +-----------------------------------------------------+
491	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
492	 *    +----------------------------------------------+------+
493	 *  8 |       Header Buffer Address [63:1]           |  DD  |
494	 *    +-----------------------------------------------------+
495	 *
496	 *
497	 * Advanced Receive Descriptor (Write-Back) Format
498	 *
499	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
500	 *   +------------------------------------------------------+
501	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
502	 *   | Checksum   Ident  |   |           |    | Type | Type |
503	 *   +------------------------------------------------------+
504	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
505	 *   +------------------------------------------------------+
506	 *   63       48 47    32 31            20 19               0
507	 */
508
509	for (n = 0; n < adapter->num_rx_queues; n++) {
510		rx_ring = adapter->rx_ring[n];
511		pr_info("------------------------------------\n");
512		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
513		pr_info("------------------------------------\n");
514		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
515		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
516
517		for (i = 0; i < rx_ring->count; i++) {
518			const char *next_desc;
519			struct igb_rx_buffer *buffer_info;
520			buffer_info = &rx_ring->rx_buffer_info[i];
521			rx_desc = IGB_RX_DESC(rx_ring, i);
522			u0 = (struct my_u0 *)rx_desc;
523			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
524
525			if (i == rx_ring->next_to_use)
526				next_desc = " NTU";
527			else if (i == rx_ring->next_to_clean)
528				next_desc = " NTC";
529			else
530				next_desc = "";
531
532			if (staterr & E1000_RXD_STAT_DD) {
533				/* Descriptor Done */
534				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
535					"RWB", i,
536					le64_to_cpu(u0->a),
537					le64_to_cpu(u0->b),
538					next_desc);
539			} else {
540				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
541					"R  ", i,
542					le64_to_cpu(u0->a),
543					le64_to_cpu(u0->b),
544					(u64)buffer_info->dma,
545					next_desc);
546
547				if (netif_msg_pktdata(adapter) &&
548				    buffer_info->dma && buffer_info->page) {
549					print_hex_dump(KERN_INFO, "",
550					  DUMP_PREFIX_ADDRESS,
551					  16, 1,
552					  page_address(buffer_info->page) +
553						      buffer_info->page_offset,
554					  IGB_RX_BUFSZ, true);
555				}
556			}
557		}
558	}
559
560exit:
561	return;
562}
563
564/**
565 *  igb_get_i2c_data - Reads the I2C SDA data bit
566 *  @hw: pointer to hardware structure
567 *  @i2cctl: Current value of I2CCTL register
568 *
569 *  Returns the I2C data bit value
570 **/
571static int igb_get_i2c_data(void *data)
572{
573	struct igb_adapter *adapter = (struct igb_adapter *)data;
574	struct e1000_hw *hw = &adapter->hw;
575	s32 i2cctl = rd32(E1000_I2CPARAMS);
576
577	return !!(i2cctl & E1000_I2C_DATA_IN);
578}
579
580/**
581 *  igb_set_i2c_data - Sets the I2C data bit
582 *  @data: pointer to hardware structure
583 *  @state: I2C data value (0 or 1) to set
584 *
585 *  Sets the I2C data bit
586 **/
587static void igb_set_i2c_data(void *data, int state)
588{
589	struct igb_adapter *adapter = (struct igb_adapter *)data;
590	struct e1000_hw *hw = &adapter->hw;
591	s32 i2cctl = rd32(E1000_I2CPARAMS);
592
593	if (state)
594		i2cctl |= E1000_I2C_DATA_OUT;
595	else
596		i2cctl &= ~E1000_I2C_DATA_OUT;
597
598	i2cctl &= ~E1000_I2C_DATA_OE_N;
599	i2cctl |= E1000_I2C_CLK_OE_N;
600	wr32(E1000_I2CPARAMS, i2cctl);
601	wrfl();
602
603}
604
605/**
606 *  igb_set_i2c_clk - Sets the I2C SCL clock
607 *  @data: pointer to hardware structure
608 *  @state: state to set clock
609 *
610 *  Sets the I2C clock line to state
611 **/
612static void igb_set_i2c_clk(void *data, int state)
613{
614	struct igb_adapter *adapter = (struct igb_adapter *)data;
615	struct e1000_hw *hw = &adapter->hw;
616	s32 i2cctl = rd32(E1000_I2CPARAMS);
617
618	if (state) {
619		i2cctl |= E1000_I2C_CLK_OUT;
620		i2cctl &= ~E1000_I2C_CLK_OE_N;
621	} else {
622		i2cctl &= ~E1000_I2C_CLK_OUT;
623		i2cctl &= ~E1000_I2C_CLK_OE_N;
624	}
625	wr32(E1000_I2CPARAMS, i2cctl);
626	wrfl();
627}
628
629/**
630 *  igb_get_i2c_clk - Gets the I2C SCL clock state
631 *  @data: pointer to hardware structure
632 *
633 *  Gets the I2C clock state
634 **/
635static int igb_get_i2c_clk(void *data)
636{
637	struct igb_adapter *adapter = (struct igb_adapter *)data;
638	struct e1000_hw *hw = &adapter->hw;
639	s32 i2cctl = rd32(E1000_I2CPARAMS);
640
641	return !!(i2cctl & E1000_I2C_CLK_IN);
642}
643
644static const struct i2c_algo_bit_data igb_i2c_algo = {
645	.setsda		= igb_set_i2c_data,
646	.setscl		= igb_set_i2c_clk,
647	.getsda		= igb_get_i2c_data,
648	.getscl		= igb_get_i2c_clk,
649	.udelay		= 5,
650	.timeout	= 20,
651};
652
653/**
654 *  igb_get_hw_dev - return device
655 *  @hw: pointer to hardware structure
656 *
657 *  used by hardware layer to print debugging information
658 **/
659struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
660{
661	struct igb_adapter *adapter = hw->back;
662	return adapter->netdev;
663}
664
665/**
666 *  igb_init_module - Driver Registration Routine
667 *
668 *  igb_init_module is the first routine called when the driver is
669 *  loaded. All it does is register with the PCI subsystem.
670 **/
671static int __init igb_init_module(void)
672{
673	int ret;
674
675	pr_info("%s - version %s\n",
676	       igb_driver_string, igb_driver_version);
677	pr_info("%s\n", igb_copyright);
678
679#ifdef CONFIG_IGB_DCA
680	dca_register_notify(&dca_notifier);
681#endif
682	ret = pci_register_driver(&igb_driver);
683	return ret;
684}
685
686module_init(igb_init_module);
687
688/**
689 *  igb_exit_module - Driver Exit Cleanup Routine
690 *
691 *  igb_exit_module is called just before the driver is removed
692 *  from memory.
693 **/
694static void __exit igb_exit_module(void)
695{
696#ifdef CONFIG_IGB_DCA
697	dca_unregister_notify(&dca_notifier);
698#endif
699	pci_unregister_driver(&igb_driver);
700}
701
702module_exit(igb_exit_module);
703
704#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
705/**
706 *  igb_cache_ring_register - Descriptor ring to register mapping
707 *  @adapter: board private structure to initialize
708 *
709 *  Once we know the feature-set enabled for the device, we'll cache
710 *  the register offset the descriptor ring is assigned to.
711 **/
712static void igb_cache_ring_register(struct igb_adapter *adapter)
713{
714	int i = 0, j = 0;
715	u32 rbase_offset = adapter->vfs_allocated_count;
716
717	switch (adapter->hw.mac.type) {
718	case e1000_82576:
719		/* The queues are allocated for virtualization such that VF 0
720		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
721		 * In order to avoid collision we start at the first free queue
722		 * and continue consuming queues in the same sequence
723		 */
724		if (adapter->vfs_allocated_count) {
725			for (; i < adapter->rss_queues; i++)
726				adapter->rx_ring[i]->reg_idx = rbase_offset +
727							       Q_IDX_82576(i);
728		}
729		/* Fall through */
730	case e1000_82575:
731	case e1000_82580:
732	case e1000_i350:
733	case e1000_i354:
734	case e1000_i210:
735	case e1000_i211:
736		/* Fall through */
737	default:
738		for (; i < adapter->num_rx_queues; i++)
739			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
740		for (; j < adapter->num_tx_queues; j++)
741			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
742		break;
743	}
744}
745
746u32 igb_rd32(struct e1000_hw *hw, u32 reg)
747{
748	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
749	u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
750	u32 value = 0;
751
752	if (E1000_REMOVED(hw_addr))
753		return ~value;
754
755	value = readl(&hw_addr[reg]);
756
757	/* reads should not return all F's */
758	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
759		struct net_device *netdev = igb->netdev;
760		hw->hw_addr = NULL;
761		netif_device_detach(netdev);
762		netdev_err(netdev, "PCIe link lost, device now detached\n");
763	}
764
765	return value;
766}
767
768/**
769 *  igb_write_ivar - configure ivar for given MSI-X vector
770 *  @hw: pointer to the HW structure
771 *  @msix_vector: vector number we are allocating to a given ring
772 *  @index: row index of IVAR register to write within IVAR table
773 *  @offset: column offset of in IVAR, should be multiple of 8
774 *
775 *  This function is intended to handle the writing of the IVAR register
776 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
777 *  each containing an cause allocation for an Rx and Tx ring, and a
778 *  variable number of rows depending on the number of queues supported.
779 **/
780static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
781			   int index, int offset)
782{
783	u32 ivar = array_rd32(E1000_IVAR0, index);
784
785	/* clear any bits that are currently set */
786	ivar &= ~((u32)0xFF << offset);
787
788	/* write vector and valid bit */
789	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
790
791	array_wr32(E1000_IVAR0, index, ivar);
792}
793
794#define IGB_N0_QUEUE -1
795static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
796{
797	struct igb_adapter *adapter = q_vector->adapter;
798	struct e1000_hw *hw = &adapter->hw;
799	int rx_queue = IGB_N0_QUEUE;
800	int tx_queue = IGB_N0_QUEUE;
801	u32 msixbm = 0;
802
803	if (q_vector->rx.ring)
804		rx_queue = q_vector->rx.ring->reg_idx;
805	if (q_vector->tx.ring)
806		tx_queue = q_vector->tx.ring->reg_idx;
807
808	switch (hw->mac.type) {
809	case e1000_82575:
810		/* The 82575 assigns vectors using a bitmask, which matches the
811		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
812		 * or more queues to a vector, we write the appropriate bits
813		 * into the MSIXBM register for that vector.
814		 */
815		if (rx_queue > IGB_N0_QUEUE)
816			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
817		if (tx_queue > IGB_N0_QUEUE)
818			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
819		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
820			msixbm |= E1000_EIMS_OTHER;
821		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
822		q_vector->eims_value = msixbm;
823		break;
824	case e1000_82576:
825		/* 82576 uses a table that essentially consists of 2 columns
826		 * with 8 rows.  The ordering is column-major so we use the
827		 * lower 3 bits as the row index, and the 4th bit as the
828		 * column offset.
829		 */
830		if (rx_queue > IGB_N0_QUEUE)
831			igb_write_ivar(hw, msix_vector,
832				       rx_queue & 0x7,
833				       (rx_queue & 0x8) << 1);
834		if (tx_queue > IGB_N0_QUEUE)
835			igb_write_ivar(hw, msix_vector,
836				       tx_queue & 0x7,
837				       ((tx_queue & 0x8) << 1) + 8);
838		q_vector->eims_value = 1 << msix_vector;
839		break;
840	case e1000_82580:
841	case e1000_i350:
842	case e1000_i354:
843	case e1000_i210:
844	case e1000_i211:
845		/* On 82580 and newer adapters the scheme is similar to 82576
846		 * however instead of ordering column-major we have things
847		 * ordered row-major.  So we traverse the table by using
848		 * bit 0 as the column offset, and the remaining bits as the
849		 * row index.
850		 */
851		if (rx_queue > IGB_N0_QUEUE)
852			igb_write_ivar(hw, msix_vector,
853				       rx_queue >> 1,
854				       (rx_queue & 0x1) << 4);
855		if (tx_queue > IGB_N0_QUEUE)
856			igb_write_ivar(hw, msix_vector,
857				       tx_queue >> 1,
858				       ((tx_queue & 0x1) << 4) + 8);
859		q_vector->eims_value = 1 << msix_vector;
860		break;
861	default:
862		BUG();
863		break;
864	}
865
866	/* add q_vector eims value to global eims_enable_mask */
867	adapter->eims_enable_mask |= q_vector->eims_value;
868
869	/* configure q_vector to set itr on first interrupt */
870	q_vector->set_itr = 1;
871}
872
873/**
874 *  igb_configure_msix - Configure MSI-X hardware
875 *  @adapter: board private structure to initialize
876 *
877 *  igb_configure_msix sets up the hardware to properly
878 *  generate MSI-X interrupts.
879 **/
880static void igb_configure_msix(struct igb_adapter *adapter)
881{
882	u32 tmp;
883	int i, vector = 0;
884	struct e1000_hw *hw = &adapter->hw;
885
886	adapter->eims_enable_mask = 0;
887
888	/* set vector for other causes, i.e. link changes */
889	switch (hw->mac.type) {
890	case e1000_82575:
891		tmp = rd32(E1000_CTRL_EXT);
892		/* enable MSI-X PBA support*/
893		tmp |= E1000_CTRL_EXT_PBA_CLR;
894
895		/* Auto-Mask interrupts upon ICR read. */
896		tmp |= E1000_CTRL_EXT_EIAME;
897		tmp |= E1000_CTRL_EXT_IRCA;
898
899		wr32(E1000_CTRL_EXT, tmp);
900
901		/* enable msix_other interrupt */
902		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
903		adapter->eims_other = E1000_EIMS_OTHER;
904
905		break;
906
907	case e1000_82576:
908	case e1000_82580:
909	case e1000_i350:
910	case e1000_i354:
911	case e1000_i210:
912	case e1000_i211:
913		/* Turn on MSI-X capability first, or our settings
914		 * won't stick.  And it will take days to debug.
915		 */
916		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
917		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
918		     E1000_GPIE_NSICR);
919
920		/* enable msix_other interrupt */
921		adapter->eims_other = 1 << vector;
922		tmp = (vector++ | E1000_IVAR_VALID) << 8;
923
924		wr32(E1000_IVAR_MISC, tmp);
925		break;
926	default:
927		/* do nothing, since nothing else supports MSI-X */
928		break;
929	} /* switch (hw->mac.type) */
930
931	adapter->eims_enable_mask |= adapter->eims_other;
932
933	for (i = 0; i < adapter->num_q_vectors; i++)
934		igb_assign_vector(adapter->q_vector[i], vector++);
935
936	wrfl();
937}
938
939/**
940 *  igb_request_msix - Initialize MSI-X interrupts
941 *  @adapter: board private structure to initialize
942 *
943 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
944 *  kernel.
945 **/
946static int igb_request_msix(struct igb_adapter *adapter)
947{
948	struct net_device *netdev = adapter->netdev;
949	struct e1000_hw *hw = &adapter->hw;
950	int i, err = 0, vector = 0, free_vector = 0;
951
952	err = request_irq(adapter->msix_entries[vector].vector,
953			  igb_msix_other, 0, netdev->name, adapter);
954	if (err)
955		goto err_out;
956
957	for (i = 0; i < adapter->num_q_vectors; i++) {
958		struct igb_q_vector *q_vector = adapter->q_vector[i];
959
960		vector++;
961
962		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
963
964		if (q_vector->rx.ring && q_vector->tx.ring)
965			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
966				q_vector->rx.ring->queue_index);
967		else if (q_vector->tx.ring)
968			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
969				q_vector->tx.ring->queue_index);
970		else if (q_vector->rx.ring)
971			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
972				q_vector->rx.ring->queue_index);
973		else
974			sprintf(q_vector->name, "%s-unused", netdev->name);
975
976		err = request_irq(adapter->msix_entries[vector].vector,
977				  igb_msix_ring, 0, q_vector->name,
978				  q_vector);
979		if (err)
980			goto err_free;
981	}
982
983	igb_configure_msix(adapter);
984	return 0;
985
986err_free:
987	/* free already assigned IRQs */
988	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
989
990	vector--;
991	for (i = 0; i < vector; i++) {
992		free_irq(adapter->msix_entries[free_vector++].vector,
993			 adapter->q_vector[i]);
994	}
995err_out:
996	return err;
997}
998
999/**
1000 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1001 *  @adapter: board private structure to initialize
1002 *  @v_idx: Index of vector to be freed
1003 *
1004 *  This function frees the memory allocated to the q_vector.
1005 **/
1006static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1007{
1008	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1009
1010	adapter->q_vector[v_idx] = NULL;
1011
1012	/* igb_get_stats64() might access the rings on this vector,
1013	 * we must wait a grace period before freeing it.
1014	 */
1015	kfree_rcu(q_vector, rcu);
1016}
1017
1018/**
1019 *  igb_reset_q_vector - Reset config for interrupt vector
1020 *  @adapter: board private structure to initialize
1021 *  @v_idx: Index of vector to be reset
1022 *
1023 *  If NAPI is enabled it will delete any references to the
1024 *  NAPI struct. This is preparation for igb_free_q_vector.
1025 **/
1026static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1027{
1028	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1029
1030	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1031	 * allocated. So, q_vector is NULL so we should stop here.
1032	 */
1033	if (!q_vector)
1034		return;
1035
1036	if (q_vector->tx.ring)
1037		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1038
1039	if (q_vector->rx.ring)
1040		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1041
1042	netif_napi_del(&q_vector->napi);
1043
1044}
1045
1046static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1047{
1048	int v_idx = adapter->num_q_vectors;
1049
1050	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1051		pci_disable_msix(adapter->pdev);
1052	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1053		pci_disable_msi(adapter->pdev);
1054
1055	while (v_idx--)
1056		igb_reset_q_vector(adapter, v_idx);
1057}
1058
1059/**
1060 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1061 *  @adapter: board private structure to initialize
1062 *
1063 *  This function frees the memory allocated to the q_vectors.  In addition if
1064 *  NAPI is enabled it will delete any references to the NAPI struct prior
1065 *  to freeing the q_vector.
1066 **/
1067static void igb_free_q_vectors(struct igb_adapter *adapter)
1068{
1069	int v_idx = adapter->num_q_vectors;
1070
1071	adapter->num_tx_queues = 0;
1072	adapter->num_rx_queues = 0;
1073	adapter->num_q_vectors = 0;
1074
1075	while (v_idx--) {
1076		igb_reset_q_vector(adapter, v_idx);
1077		igb_free_q_vector(adapter, v_idx);
1078	}
1079}
1080
1081/**
1082 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1083 *  @adapter: board private structure to initialize
1084 *
1085 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1086 *  MSI-X interrupts allocated.
1087 */
1088static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1089{
1090	igb_free_q_vectors(adapter);
1091	igb_reset_interrupt_capability(adapter);
1092}
1093
1094/**
1095 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1096 *  @adapter: board private structure to initialize
1097 *  @msix: boolean value of MSIX capability
1098 *
1099 *  Attempt to configure interrupts using the best available
1100 *  capabilities of the hardware and kernel.
1101 **/
1102static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1103{
1104	int err;
1105	int numvecs, i;
1106
1107	if (!msix)
1108		goto msi_only;
1109	adapter->flags |= IGB_FLAG_HAS_MSIX;
1110
1111	/* Number of supported queues. */
1112	adapter->num_rx_queues = adapter->rss_queues;
1113	if (adapter->vfs_allocated_count)
1114		adapter->num_tx_queues = 1;
1115	else
1116		adapter->num_tx_queues = adapter->rss_queues;
1117
1118	/* start with one vector for every Rx queue */
1119	numvecs = adapter->num_rx_queues;
1120
1121	/* if Tx handler is separate add 1 for every Tx queue */
1122	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1123		numvecs += adapter->num_tx_queues;
1124
1125	/* store the number of vectors reserved for queues */
1126	adapter->num_q_vectors = numvecs;
1127
1128	/* add 1 vector for link status interrupts */
1129	numvecs++;
1130	for (i = 0; i < numvecs; i++)
1131		adapter->msix_entries[i].entry = i;
1132
1133	err = pci_enable_msix_range(adapter->pdev,
1134				    adapter->msix_entries,
1135				    numvecs,
1136				    numvecs);
1137	if (err > 0)
1138		return;
1139
1140	igb_reset_interrupt_capability(adapter);
1141
1142	/* If we can't do MSI-X, try MSI */
1143msi_only:
1144	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1145#ifdef CONFIG_PCI_IOV
1146	/* disable SR-IOV for non MSI-X configurations */
1147	if (adapter->vf_data) {
1148		struct e1000_hw *hw = &adapter->hw;
1149		/* disable iov and allow time for transactions to clear */
1150		pci_disable_sriov(adapter->pdev);
1151		msleep(500);
1152
1153		kfree(adapter->vf_data);
1154		adapter->vf_data = NULL;
1155		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1156		wrfl();
1157		msleep(100);
1158		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1159	}
1160#endif
1161	adapter->vfs_allocated_count = 0;
1162	adapter->rss_queues = 1;
1163	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1164	adapter->num_rx_queues = 1;
1165	adapter->num_tx_queues = 1;
1166	adapter->num_q_vectors = 1;
1167	if (!pci_enable_msi(adapter->pdev))
1168		adapter->flags |= IGB_FLAG_HAS_MSI;
1169}
1170
1171static void igb_add_ring(struct igb_ring *ring,
1172			 struct igb_ring_container *head)
1173{
1174	head->ring = ring;
1175	head->count++;
1176}
1177
1178/**
1179 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1180 *  @adapter: board private structure to initialize
1181 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1182 *  @v_idx: index of vector in adapter struct
1183 *  @txr_count: total number of Tx rings to allocate
1184 *  @txr_idx: index of first Tx ring to allocate
1185 *  @rxr_count: total number of Rx rings to allocate
1186 *  @rxr_idx: index of first Rx ring to allocate
1187 *
1188 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1189 **/
1190static int igb_alloc_q_vector(struct igb_adapter *adapter,
1191			      int v_count, int v_idx,
1192			      int txr_count, int txr_idx,
1193			      int rxr_count, int rxr_idx)
1194{
1195	struct igb_q_vector *q_vector;
1196	struct igb_ring *ring;
1197	int ring_count, size;
1198
1199	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1200	if (txr_count > 1 || rxr_count > 1)
1201		return -ENOMEM;
1202
1203	ring_count = txr_count + rxr_count;
1204	size = sizeof(struct igb_q_vector) +
1205	       (sizeof(struct igb_ring) * ring_count);
1206
1207	/* allocate q_vector and rings */
1208	q_vector = adapter->q_vector[v_idx];
1209	if (!q_vector)
1210		q_vector = kzalloc(size, GFP_KERNEL);
1211	if (!q_vector)
1212		return -ENOMEM;
1213
1214	/* initialize NAPI */
1215	netif_napi_add(adapter->netdev, &q_vector->napi,
1216		       igb_poll, 64);
1217
1218	/* tie q_vector and adapter together */
1219	adapter->q_vector[v_idx] = q_vector;
1220	q_vector->adapter = adapter;
1221
1222	/* initialize work limits */
1223	q_vector->tx.work_limit = adapter->tx_work_limit;
1224
1225	/* initialize ITR configuration */
1226	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1227	q_vector->itr_val = IGB_START_ITR;
1228
1229	/* initialize pointer to rings */
1230	ring = q_vector->ring;
1231
1232	/* intialize ITR */
1233	if (rxr_count) {
1234		/* rx or rx/tx vector */
1235		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1236			q_vector->itr_val = adapter->rx_itr_setting;
1237	} else {
1238		/* tx only vector */
1239		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1240			q_vector->itr_val = adapter->tx_itr_setting;
1241	}
1242
1243	if (txr_count) {
1244		/* assign generic ring traits */
1245		ring->dev = &adapter->pdev->dev;
1246		ring->netdev = adapter->netdev;
1247
1248		/* configure backlink on ring */
1249		ring->q_vector = q_vector;
1250
1251		/* update q_vector Tx values */
1252		igb_add_ring(ring, &q_vector->tx);
1253
1254		/* For 82575, context index must be unique per ring. */
1255		if (adapter->hw.mac.type == e1000_82575)
1256			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1257
1258		/* apply Tx specific ring traits */
1259		ring->count = adapter->tx_ring_count;
1260		ring->queue_index = txr_idx;
1261
1262		u64_stats_init(&ring->tx_syncp);
1263		u64_stats_init(&ring->tx_syncp2);
1264
1265		/* assign ring to adapter */
1266		adapter->tx_ring[txr_idx] = ring;
1267
1268		/* push pointer to next ring */
1269		ring++;
1270	}
1271
1272	if (rxr_count) {
1273		/* assign generic ring traits */
1274		ring->dev = &adapter->pdev->dev;
1275		ring->netdev = adapter->netdev;
1276
1277		/* configure backlink on ring */
1278		ring->q_vector = q_vector;
1279
1280		/* update q_vector Rx values */
1281		igb_add_ring(ring, &q_vector->rx);
1282
1283		/* set flag indicating ring supports SCTP checksum offload */
1284		if (adapter->hw.mac.type >= e1000_82576)
1285			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1286
1287		/* On i350, i354, i210, and i211, loopback VLAN packets
1288		 * have the tag byte-swapped.
1289		 */
1290		if (adapter->hw.mac.type >= e1000_i350)
1291			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1292
1293		/* apply Rx specific ring traits */
1294		ring->count = adapter->rx_ring_count;
1295		ring->queue_index = rxr_idx;
1296
1297		u64_stats_init(&ring->rx_syncp);
1298
1299		/* assign ring to adapter */
1300		adapter->rx_ring[rxr_idx] = ring;
1301	}
1302
1303	return 0;
1304}
1305
1306
1307/**
1308 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1309 *  @adapter: board private structure to initialize
1310 *
1311 *  We allocate one q_vector per queue interrupt.  If allocation fails we
1312 *  return -ENOMEM.
1313 **/
1314static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1315{
1316	int q_vectors = adapter->num_q_vectors;
1317	int rxr_remaining = adapter->num_rx_queues;
1318	int txr_remaining = adapter->num_tx_queues;
1319	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1320	int err;
1321
1322	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1323		for (; rxr_remaining; v_idx++) {
1324			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1325						 0, 0, 1, rxr_idx);
1326
1327			if (err)
1328				goto err_out;
1329
1330			/* update counts and index */
1331			rxr_remaining--;
1332			rxr_idx++;
1333		}
1334	}
1335
1336	for (; v_idx < q_vectors; v_idx++) {
1337		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1338		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1339
1340		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1341					 tqpv, txr_idx, rqpv, rxr_idx);
1342
1343		if (err)
1344			goto err_out;
1345
1346		/* update counts and index */
1347		rxr_remaining -= rqpv;
1348		txr_remaining -= tqpv;
1349		rxr_idx++;
1350		txr_idx++;
1351	}
1352
1353	return 0;
1354
1355err_out:
1356	adapter->num_tx_queues = 0;
1357	adapter->num_rx_queues = 0;
1358	adapter->num_q_vectors = 0;
1359
1360	while (v_idx--)
1361		igb_free_q_vector(adapter, v_idx);
1362
1363	return -ENOMEM;
1364}
1365
1366/**
1367 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1368 *  @adapter: board private structure to initialize
1369 *  @msix: boolean value of MSIX capability
1370 *
1371 *  This function initializes the interrupts and allocates all of the queues.
1372 **/
1373static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1374{
1375	struct pci_dev *pdev = adapter->pdev;
1376	int err;
1377
1378	igb_set_interrupt_capability(adapter, msix);
1379
1380	err = igb_alloc_q_vectors(adapter);
1381	if (err) {
1382		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1383		goto err_alloc_q_vectors;
1384	}
1385
1386	igb_cache_ring_register(adapter);
1387
1388	return 0;
1389
1390err_alloc_q_vectors:
1391	igb_reset_interrupt_capability(adapter);
1392	return err;
1393}
1394
1395/**
1396 *  igb_request_irq - initialize interrupts
1397 *  @adapter: board private structure to initialize
1398 *
1399 *  Attempts to configure interrupts using the best available
1400 *  capabilities of the hardware and kernel.
1401 **/
1402static int igb_request_irq(struct igb_adapter *adapter)
1403{
1404	struct net_device *netdev = adapter->netdev;
1405	struct pci_dev *pdev = adapter->pdev;
1406	int err = 0;
1407
1408	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1409		err = igb_request_msix(adapter);
1410		if (!err)
1411			goto request_done;
1412		/* fall back to MSI */
1413		igb_free_all_tx_resources(adapter);
1414		igb_free_all_rx_resources(adapter);
1415
1416		igb_clear_interrupt_scheme(adapter);
1417		err = igb_init_interrupt_scheme(adapter, false);
1418		if (err)
1419			goto request_done;
1420
1421		igb_setup_all_tx_resources(adapter);
1422		igb_setup_all_rx_resources(adapter);
1423		igb_configure(adapter);
1424	}
1425
1426	igb_assign_vector(adapter->q_vector[0], 0);
1427
1428	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1429		err = request_irq(pdev->irq, igb_intr_msi, 0,
1430				  netdev->name, adapter);
1431		if (!err)
1432			goto request_done;
1433
1434		/* fall back to legacy interrupts */
1435		igb_reset_interrupt_capability(adapter);
1436		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1437	}
1438
1439	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1440			  netdev->name, adapter);
1441
1442	if (err)
1443		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1444			err);
1445
1446request_done:
1447	return err;
1448}
1449
1450static void igb_free_irq(struct igb_adapter *adapter)
1451{
1452	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1453		int vector = 0, i;
1454
1455		free_irq(adapter->msix_entries[vector++].vector, adapter);
1456
1457		for (i = 0; i < adapter->num_q_vectors; i++)
1458			free_irq(adapter->msix_entries[vector++].vector,
1459				 adapter->q_vector[i]);
1460	} else {
1461		free_irq(adapter->pdev->irq, adapter);
1462	}
1463}
1464
1465/**
1466 *  igb_irq_disable - Mask off interrupt generation on the NIC
1467 *  @adapter: board private structure
1468 **/
1469static void igb_irq_disable(struct igb_adapter *adapter)
1470{
1471	struct e1000_hw *hw = &adapter->hw;
1472
1473	/* we need to be careful when disabling interrupts.  The VFs are also
1474	 * mapped into these registers and so clearing the bits can cause
1475	 * issues on the VF drivers so we only need to clear what we set
1476	 */
1477	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1478		u32 regval = rd32(E1000_EIAM);
1479
1480		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1481		wr32(E1000_EIMC, adapter->eims_enable_mask);
1482		regval = rd32(E1000_EIAC);
1483		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1484	}
1485
1486	wr32(E1000_IAM, 0);
1487	wr32(E1000_IMC, ~0);
1488	wrfl();
1489	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1490		int i;
1491
1492		for (i = 0; i < adapter->num_q_vectors; i++)
1493			synchronize_irq(adapter->msix_entries[i].vector);
1494	} else {
1495		synchronize_irq(adapter->pdev->irq);
1496	}
1497}
1498
1499/**
1500 *  igb_irq_enable - Enable default interrupt generation settings
1501 *  @adapter: board private structure
1502 **/
1503static void igb_irq_enable(struct igb_adapter *adapter)
1504{
1505	struct e1000_hw *hw = &adapter->hw;
1506
1507	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1508		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1509		u32 regval = rd32(E1000_EIAC);
1510
1511		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1512		regval = rd32(E1000_EIAM);
1513		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1514		wr32(E1000_EIMS, adapter->eims_enable_mask);
1515		if (adapter->vfs_allocated_count) {
1516			wr32(E1000_MBVFIMR, 0xFF);
1517			ims |= E1000_IMS_VMMB;
1518		}
1519		wr32(E1000_IMS, ims);
1520	} else {
1521		wr32(E1000_IMS, IMS_ENABLE_MASK |
1522				E1000_IMS_DRSTA);
1523		wr32(E1000_IAM, IMS_ENABLE_MASK |
1524				E1000_IMS_DRSTA);
1525	}
1526}
1527
1528static void igb_update_mng_vlan(struct igb_adapter *adapter)
1529{
1530	struct e1000_hw *hw = &adapter->hw;
1531	u16 vid = adapter->hw.mng_cookie.vlan_id;
1532	u16 old_vid = adapter->mng_vlan_id;
1533
1534	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1535		/* add VID to filter table */
1536		igb_vfta_set(hw, vid, true);
1537		adapter->mng_vlan_id = vid;
1538	} else {
1539		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1540	}
1541
1542	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1543	    (vid != old_vid) &&
1544	    !test_bit(old_vid, adapter->active_vlans)) {
1545		/* remove VID from filter table */
1546		igb_vfta_set(hw, old_vid, false);
1547	}
1548}
1549
1550/**
1551 *  igb_release_hw_control - release control of the h/w to f/w
1552 *  @adapter: address of board private structure
1553 *
1554 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1555 *  For ASF and Pass Through versions of f/w this means that the
1556 *  driver is no longer loaded.
1557 **/
1558static void igb_release_hw_control(struct igb_adapter *adapter)
1559{
1560	struct e1000_hw *hw = &adapter->hw;
1561	u32 ctrl_ext;
1562
1563	/* Let firmware take over control of h/w */
1564	ctrl_ext = rd32(E1000_CTRL_EXT);
1565	wr32(E1000_CTRL_EXT,
1566			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1567}
1568
1569/**
1570 *  igb_get_hw_control - get control of the h/w from f/w
1571 *  @adapter: address of board private structure
1572 *
1573 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1574 *  For ASF and Pass Through versions of f/w this means that
1575 *  the driver is loaded.
1576 **/
1577static void igb_get_hw_control(struct igb_adapter *adapter)
1578{
1579	struct e1000_hw *hw = &adapter->hw;
1580	u32 ctrl_ext;
1581
1582	/* Let firmware know the driver has taken over */
1583	ctrl_ext = rd32(E1000_CTRL_EXT);
1584	wr32(E1000_CTRL_EXT,
1585			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1586}
1587
1588/**
1589 *  igb_configure - configure the hardware for RX and TX
1590 *  @adapter: private board structure
1591 **/
1592static void igb_configure(struct igb_adapter *adapter)
1593{
1594	struct net_device *netdev = adapter->netdev;
1595	int i;
1596
1597	igb_get_hw_control(adapter);
1598	igb_set_rx_mode(netdev);
1599
1600	igb_restore_vlan(adapter);
1601
1602	igb_setup_tctl(adapter);
1603	igb_setup_mrqc(adapter);
1604	igb_setup_rctl(adapter);
1605
1606	igb_configure_tx(adapter);
1607	igb_configure_rx(adapter);
1608
1609	igb_rx_fifo_flush_82575(&adapter->hw);
1610
1611	/* call igb_desc_unused which always leaves
1612	 * at least 1 descriptor unused to make sure
1613	 * next_to_use != next_to_clean
1614	 */
1615	for (i = 0; i < adapter->num_rx_queues; i++) {
1616		struct igb_ring *ring = adapter->rx_ring[i];
1617		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1618	}
1619}
1620
1621/**
1622 *  igb_power_up_link - Power up the phy/serdes link
1623 *  @adapter: address of board private structure
1624 **/
1625void igb_power_up_link(struct igb_adapter *adapter)
1626{
1627	igb_reset_phy(&adapter->hw);
1628
1629	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1630		igb_power_up_phy_copper(&adapter->hw);
1631	else
1632		igb_power_up_serdes_link_82575(&adapter->hw);
1633}
1634
1635/**
1636 *  igb_power_down_link - Power down the phy/serdes link
1637 *  @adapter: address of board private structure
1638 */
1639static void igb_power_down_link(struct igb_adapter *adapter)
1640{
1641	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1642		igb_power_down_phy_copper_82575(&adapter->hw);
1643	else
1644		igb_shutdown_serdes_link_82575(&adapter->hw);
1645}
1646
1647/**
1648 * Detect and switch function for Media Auto Sense
1649 * @adapter: address of the board private structure
1650 **/
1651static void igb_check_swap_media(struct igb_adapter *adapter)
1652{
1653	struct e1000_hw *hw = &adapter->hw;
1654	u32 ctrl_ext, connsw;
1655	bool swap_now = false;
1656
1657	ctrl_ext = rd32(E1000_CTRL_EXT);
1658	connsw = rd32(E1000_CONNSW);
1659
1660	/* need to live swap if current media is copper and we have fiber/serdes
1661	 * to go to.
1662	 */
1663
1664	if ((hw->phy.media_type == e1000_media_type_copper) &&
1665	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1666		swap_now = true;
1667	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
1668		/* copper signal takes time to appear */
1669		if (adapter->copper_tries < 4) {
1670			adapter->copper_tries++;
1671			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1672			wr32(E1000_CONNSW, connsw);
1673			return;
1674		} else {
1675			adapter->copper_tries = 0;
1676			if ((connsw & E1000_CONNSW_PHYSD) &&
1677			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
1678				swap_now = true;
1679				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1680				wr32(E1000_CONNSW, connsw);
1681			}
1682		}
1683	}
1684
1685	if (!swap_now)
1686		return;
1687
1688	switch (hw->phy.media_type) {
1689	case e1000_media_type_copper:
1690		netdev_info(adapter->netdev,
1691			"MAS: changing media to fiber/serdes\n");
1692		ctrl_ext |=
1693			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1694		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1695		adapter->copper_tries = 0;
1696		break;
1697	case e1000_media_type_internal_serdes:
1698	case e1000_media_type_fiber:
1699		netdev_info(adapter->netdev,
1700			"MAS: changing media to copper\n");
1701		ctrl_ext &=
1702			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1703		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1704		break;
1705	default:
1706		/* shouldn't get here during regular operation */
1707		netdev_err(adapter->netdev,
1708			"AMS: Invalid media type found, returning\n");
1709		break;
1710	}
1711	wr32(E1000_CTRL_EXT, ctrl_ext);
1712}
1713
1714/**
1715 *  igb_up - Open the interface and prepare it to handle traffic
1716 *  @adapter: board private structure
1717 **/
1718int igb_up(struct igb_adapter *adapter)
1719{
1720	struct e1000_hw *hw = &adapter->hw;
1721	int i;
1722
1723	/* hardware has been reset, we need to reload some things */
1724	igb_configure(adapter);
1725
1726	clear_bit(__IGB_DOWN, &adapter->state);
1727
1728	for (i = 0; i < adapter->num_q_vectors; i++)
1729		napi_enable(&(adapter->q_vector[i]->napi));
1730
1731	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1732		igb_configure_msix(adapter);
1733	else
1734		igb_assign_vector(adapter->q_vector[0], 0);
1735
1736	/* Clear any pending interrupts. */
1737	rd32(E1000_ICR);
1738	igb_irq_enable(adapter);
1739
1740	/* notify VFs that reset has been completed */
1741	if (adapter->vfs_allocated_count) {
1742		u32 reg_data = rd32(E1000_CTRL_EXT);
1743
1744		reg_data |= E1000_CTRL_EXT_PFRSTD;
1745		wr32(E1000_CTRL_EXT, reg_data);
1746	}
1747
1748	netif_tx_start_all_queues(adapter->netdev);
1749
1750	/* start the watchdog. */
1751	hw->mac.get_link_status = 1;
1752	schedule_work(&adapter->watchdog_task);
1753
1754	if ((adapter->flags & IGB_FLAG_EEE) &&
1755	    (!hw->dev_spec._82575.eee_disable))
1756		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1757
1758	return 0;
1759}
1760
1761void igb_down(struct igb_adapter *adapter)
1762{
1763	struct net_device *netdev = adapter->netdev;
1764	struct e1000_hw *hw = &adapter->hw;
1765	u32 tctl, rctl;
1766	int i;
1767
1768	/* signal that we're down so the interrupt handler does not
1769	 * reschedule our watchdog timer
1770	 */
1771	set_bit(__IGB_DOWN, &adapter->state);
1772
1773	/* disable receives in the hardware */
1774	rctl = rd32(E1000_RCTL);
1775	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1776	/* flush and sleep below */
1777
1778	netif_tx_stop_all_queues(netdev);
1779
1780	/* disable transmits in the hardware */
1781	tctl = rd32(E1000_TCTL);
1782	tctl &= ~E1000_TCTL_EN;
1783	wr32(E1000_TCTL, tctl);
1784	/* flush both disables and wait for them to finish */
1785	wrfl();
1786	usleep_range(10000, 11000);
1787
1788	igb_irq_disable(adapter);
1789
1790	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1791
1792	for (i = 0; i < adapter->num_q_vectors; i++) {
1793		napi_synchronize(&(adapter->q_vector[i]->napi));
1794		napi_disable(&(adapter->q_vector[i]->napi));
1795	}
1796
1797
1798	del_timer_sync(&adapter->watchdog_timer);
1799	del_timer_sync(&adapter->phy_info_timer);
1800
1801	netif_carrier_off(netdev);
1802
1803	/* record the stats before reset*/
1804	spin_lock(&adapter->stats64_lock);
1805	igb_update_stats(adapter, &adapter->stats64);
1806	spin_unlock(&adapter->stats64_lock);
1807
1808	adapter->link_speed = 0;
1809	adapter->link_duplex = 0;
1810
1811	if (!pci_channel_offline(adapter->pdev))
1812		igb_reset(adapter);
1813	igb_clean_all_tx_rings(adapter);
1814	igb_clean_all_rx_rings(adapter);
1815#ifdef CONFIG_IGB_DCA
1816
1817	/* since we reset the hardware DCA settings were cleared */
1818	igb_setup_dca(adapter);
1819#endif
1820}
1821
1822void igb_reinit_locked(struct igb_adapter *adapter)
1823{
1824	WARN_ON(in_interrupt());
1825	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1826		usleep_range(1000, 2000);
1827	igb_down(adapter);
1828	igb_up(adapter);
1829	clear_bit(__IGB_RESETTING, &adapter->state);
1830}
1831
1832/** igb_enable_mas - Media Autosense re-enable after swap
1833 *
1834 * @adapter: adapter struct
1835 **/
1836static s32 igb_enable_mas(struct igb_adapter *adapter)
1837{
1838	struct e1000_hw *hw = &adapter->hw;
1839	u32 connsw;
1840	s32 ret_val = 0;
1841
1842	connsw = rd32(E1000_CONNSW);
1843	if (!(hw->phy.media_type == e1000_media_type_copper))
1844		return ret_val;
1845
1846	/* configure for SerDes media detect */
1847	if (!(connsw & E1000_CONNSW_SERDESD)) {
1848		connsw |= E1000_CONNSW_ENRGSRC;
1849		connsw |= E1000_CONNSW_AUTOSENSE_EN;
1850		wr32(E1000_CONNSW, connsw);
1851		wrfl();
1852	} else if (connsw & E1000_CONNSW_SERDESD) {
1853		/* already SerDes, no need to enable anything */
1854		return ret_val;
1855	} else {
1856		netdev_info(adapter->netdev,
1857			"MAS: Unable to configure feature, disabling..\n");
1858		adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1859	}
1860	return ret_val;
1861}
1862
1863void igb_reset(struct igb_adapter *adapter)
1864{
1865	struct pci_dev *pdev = adapter->pdev;
1866	struct e1000_hw *hw = &adapter->hw;
1867	struct e1000_mac_info *mac = &hw->mac;
1868	struct e1000_fc_info *fc = &hw->fc;
1869	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1870
1871	/* Repartition Pba for greater than 9k mtu
1872	 * To take effect CTRL.RST is required.
1873	 */
1874	switch (mac->type) {
1875	case e1000_i350:
1876	case e1000_i354:
1877	case e1000_82580:
1878		pba = rd32(E1000_RXPBS);
1879		pba = igb_rxpbs_adjust_82580(pba);
1880		break;
1881	case e1000_82576:
1882		pba = rd32(E1000_RXPBS);
1883		pba &= E1000_RXPBS_SIZE_MASK_82576;
1884		break;
1885	case e1000_82575:
1886	case e1000_i210:
1887	case e1000_i211:
1888	default:
1889		pba = E1000_PBA_34K;
1890		break;
1891	}
1892
1893	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1894	    (mac->type < e1000_82576)) {
1895		/* adjust PBA for jumbo frames */
1896		wr32(E1000_PBA, pba);
1897
1898		/* To maintain wire speed transmits, the Tx FIFO should be
1899		 * large enough to accommodate two full transmit packets,
1900		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1901		 * the Rx FIFO should be large enough to accommodate at least
1902		 * one full receive packet and is similarly rounded up and
1903		 * expressed in KB.
1904		 */
1905		pba = rd32(E1000_PBA);
1906		/* upper 16 bits has Tx packet buffer allocation size in KB */
1907		tx_space = pba >> 16;
1908		/* lower 16 bits has Rx packet buffer allocation size in KB */
1909		pba &= 0xffff;
1910		/* the Tx fifo also stores 16 bytes of information about the Tx
1911		 * but don't include ethernet FCS because hardware appends it
1912		 */
1913		min_tx_space = (adapter->max_frame_size +
1914				sizeof(union e1000_adv_tx_desc) -
1915				ETH_FCS_LEN) * 2;
1916		min_tx_space = ALIGN(min_tx_space, 1024);
1917		min_tx_space >>= 10;
1918		/* software strips receive CRC, so leave room for it */
1919		min_rx_space = adapter->max_frame_size;
1920		min_rx_space = ALIGN(min_rx_space, 1024);
1921		min_rx_space >>= 10;
1922
1923		/* If current Tx allocation is less than the min Tx FIFO size,
1924		 * and the min Tx FIFO size is less than the current Rx FIFO
1925		 * allocation, take space away from current Rx allocation
1926		 */
1927		if (tx_space < min_tx_space &&
1928		    ((min_tx_space - tx_space) < pba)) {
1929			pba = pba - (min_tx_space - tx_space);
1930
1931			/* if short on Rx space, Rx wins and must trump Tx
1932			 * adjustment
1933			 */
1934			if (pba < min_rx_space)
1935				pba = min_rx_space;
1936		}
1937		wr32(E1000_PBA, pba);
1938	}
1939
1940	/* flow control settings */
1941	/* The high water mark must be low enough to fit one full frame
1942	 * (or the size used for early receive) above it in the Rx FIFO.
1943	 * Set it to the lower of:
1944	 * - 90% of the Rx FIFO size, or
1945	 * - the full Rx FIFO size minus one full frame
1946	 */
1947	hwm = min(((pba << 10) * 9 / 10),
1948			((pba << 10) - 2 * adapter->max_frame_size));
1949
1950	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1951	fc->low_water = fc->high_water - 16;
1952	fc->pause_time = 0xFFFF;
1953	fc->send_xon = 1;
1954	fc->current_mode = fc->requested_mode;
1955
1956	/* disable receive for all VFs and wait one second */
1957	if (adapter->vfs_allocated_count) {
1958		int i;
1959
1960		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1961			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1962
1963		/* ping all the active vfs to let them know we are going down */
1964		igb_ping_all_vfs(adapter);
1965
1966		/* disable transmits and receives */
1967		wr32(E1000_VFRE, 0);
1968		wr32(E1000_VFTE, 0);
1969	}
1970
1971	/* Allow time for pending master requests to run */
1972	hw->mac.ops.reset_hw(hw);
1973	wr32(E1000_WUC, 0);
1974
1975	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1976		/* need to resetup here after media swap */
1977		adapter->ei.get_invariants(hw);
1978		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1979	}
1980	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1981		if (igb_enable_mas(adapter))
1982			dev_err(&pdev->dev,
1983				"Error enabling Media Auto Sense\n");
1984	}
1985	if (hw->mac.ops.init_hw(hw))
1986		dev_err(&pdev->dev, "Hardware Error\n");
1987
1988	/* Flow control settings reset on hardware reset, so guarantee flow
1989	 * control is off when forcing speed.
1990	 */
1991	if (!hw->mac.autoneg)
1992		igb_force_mac_fc(hw);
1993
1994	igb_init_dmac(adapter, pba);
1995#ifdef CONFIG_IGB_HWMON
1996	/* Re-initialize the thermal sensor on i350 devices. */
1997	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1998		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1999			/* If present, re-initialize the external thermal sensor
2000			 * interface.
2001			 */
2002			if (adapter->ets)
2003				mac->ops.init_thermal_sensor_thresh(hw);
2004		}
2005	}
2006#endif
2007	/* Re-establish EEE setting */
2008	if (hw->phy.media_type == e1000_media_type_copper) {
2009		switch (mac->type) {
2010		case e1000_i350:
2011		case e1000_i210:
2012		case e1000_i211:
2013			igb_set_eee_i350(hw);
2014			break;
2015		case e1000_i354:
2016			igb_set_eee_i354(hw);
2017			break;
2018		default:
2019			break;
2020		}
2021	}
2022	if (!netif_running(adapter->netdev))
2023		igb_power_down_link(adapter);
2024
2025	igb_update_mng_vlan(adapter);
2026
2027	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2028	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2029
2030	/* Re-enable PTP, where applicable. */
2031	igb_ptp_reset(adapter);
2032
2033	igb_get_phy_info(hw);
2034}
2035
2036static netdev_features_t igb_fix_features(struct net_device *netdev,
2037	netdev_features_t features)
2038{
2039	/* Since there is no support for separate Rx/Tx vlan accel
2040	 * enable/disable make sure Tx flag is always in same state as Rx.
2041	 */
2042	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2043		features |= NETIF_F_HW_VLAN_CTAG_TX;
2044	else
2045		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2046
2047	return features;
2048}
2049
2050static int igb_set_features(struct net_device *netdev,
2051	netdev_features_t features)
2052{
2053	netdev_features_t changed = netdev->features ^ features;
2054	struct igb_adapter *adapter = netdev_priv(netdev);
2055
2056	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2057		igb_vlan_mode(netdev, features);
2058
2059	if (!(changed & NETIF_F_RXALL))
2060		return 0;
2061
2062	netdev->features = features;
2063
2064	if (netif_running(netdev))
2065		igb_reinit_locked(adapter);
2066	else
2067		igb_reset(adapter);
2068
2069	return 0;
2070}
2071
2072static const struct net_device_ops igb_netdev_ops = {
2073	.ndo_open		= igb_open,
2074	.ndo_stop		= igb_close,
2075	.ndo_start_xmit		= igb_xmit_frame,
2076	.ndo_get_stats64	= igb_get_stats64,
2077	.ndo_set_rx_mode	= igb_set_rx_mode,
2078	.ndo_set_mac_address	= igb_set_mac,
2079	.ndo_change_mtu		= igb_change_mtu,
2080	.ndo_do_ioctl		= igb_ioctl,
2081	.ndo_tx_timeout		= igb_tx_timeout,
2082	.ndo_validate_addr	= eth_validate_addr,
2083	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2084	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2085	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2086	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2087	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
2088	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2089	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2090#ifdef CONFIG_NET_POLL_CONTROLLER
2091	.ndo_poll_controller	= igb_netpoll,
2092#endif
2093	.ndo_fix_features	= igb_fix_features,
2094	.ndo_set_features	= igb_set_features,
2095};
2096
2097/**
2098 * igb_set_fw_version - Configure version string for ethtool
2099 * @adapter: adapter struct
2100 **/
2101void igb_set_fw_version(struct igb_adapter *adapter)
2102{
2103	struct e1000_hw *hw = &adapter->hw;
2104	struct e1000_fw_version fw;
2105
2106	igb_get_fw_version(hw, &fw);
2107
2108	switch (hw->mac.type) {
2109	case e1000_i210:
2110	case e1000_i211:
2111		if (!(igb_get_flash_presence_i210(hw))) {
2112			snprintf(adapter->fw_version,
2113				 sizeof(adapter->fw_version),
2114				 "%2d.%2d-%d",
2115				 fw.invm_major, fw.invm_minor,
2116				 fw.invm_img_type);
2117			break;
2118		}
2119		/* fall through */
2120	default:
2121		/* if option is rom valid, display its version too */
2122		if (fw.or_valid) {
2123			snprintf(adapter->fw_version,
2124				 sizeof(adapter->fw_version),
2125				 "%d.%d, 0x%08x, %d.%d.%d",
2126				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2127				 fw.or_major, fw.or_build, fw.or_patch);
2128		/* no option rom */
2129		} else if (fw.etrack_id != 0X0000) {
2130			snprintf(adapter->fw_version,
2131			    sizeof(adapter->fw_version),
2132			    "%d.%d, 0x%08x",
2133			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2134		} else {
2135		snprintf(adapter->fw_version,
2136		    sizeof(adapter->fw_version),
2137		    "%d.%d.%d",
2138		    fw.eep_major, fw.eep_minor, fw.eep_build);
2139		}
2140		break;
2141	}
2142}
2143
2144/**
2145 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2146 *
2147 * @adapter: adapter struct
2148 **/
2149static void igb_init_mas(struct igb_adapter *adapter)
2150{
2151	struct e1000_hw *hw = &adapter->hw;
2152	u16 eeprom_data;
2153
2154	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2155	switch (hw->bus.func) {
2156	case E1000_FUNC_0:
2157		if (eeprom_data & IGB_MAS_ENABLE_0) {
2158			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2159			netdev_info(adapter->netdev,
2160				"MAS: Enabling Media Autosense for port %d\n",
2161				hw->bus.func);
2162		}
2163		break;
2164	case E1000_FUNC_1:
2165		if (eeprom_data & IGB_MAS_ENABLE_1) {
2166			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2167			netdev_info(adapter->netdev,
2168				"MAS: Enabling Media Autosense for port %d\n",
2169				hw->bus.func);
2170		}
2171		break;
2172	case E1000_FUNC_2:
2173		if (eeprom_data & IGB_MAS_ENABLE_2) {
2174			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2175			netdev_info(adapter->netdev,
2176				"MAS: Enabling Media Autosense for port %d\n",
2177				hw->bus.func);
2178		}
2179		break;
2180	case E1000_FUNC_3:
2181		if (eeprom_data & IGB_MAS_ENABLE_3) {
2182			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2183			netdev_info(adapter->netdev,
2184				"MAS: Enabling Media Autosense for port %d\n",
2185				hw->bus.func);
2186		}
2187		break;
2188	default:
2189		/* Shouldn't get here */
2190		netdev_err(adapter->netdev,
2191			"MAS: Invalid port configuration, returning\n");
2192		break;
2193	}
2194}
2195
2196/**
2197 *  igb_init_i2c - Init I2C interface
2198 *  @adapter: pointer to adapter structure
2199 **/
2200static s32 igb_init_i2c(struct igb_adapter *adapter)
2201{
2202	s32 status = 0;
2203
2204	/* I2C interface supported on i350 devices */
2205	if (adapter->hw.mac.type != e1000_i350)
2206		return 0;
2207
2208	/* Initialize the i2c bus which is controlled by the registers.
2209	 * This bus will use the i2c_algo_bit structue that implements
2210	 * the protocol through toggling of the 4 bits in the register.
2211	 */
2212	adapter->i2c_adap.owner = THIS_MODULE;
2213	adapter->i2c_algo = igb_i2c_algo;
2214	adapter->i2c_algo.data = adapter;
2215	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2216	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2217	strlcpy(adapter->i2c_adap.name, "igb BB",
2218		sizeof(adapter->i2c_adap.name));
2219	status = i2c_bit_add_bus(&adapter->i2c_adap);
2220	return status;
2221}
2222
2223/**
2224 *  igb_probe - Device Initialization Routine
2225 *  @pdev: PCI device information struct
2226 *  @ent: entry in igb_pci_tbl
2227 *
2228 *  Returns 0 on success, negative on failure
2229 *
2230 *  igb_probe initializes an adapter identified by a pci_dev structure.
2231 *  The OS initialization, configuring of the adapter private structure,
2232 *  and a hardware reset occur.
2233 **/
2234static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2235{
2236	struct net_device *netdev;
2237	struct igb_adapter *adapter;
2238	struct e1000_hw *hw;
2239	u16 eeprom_data = 0;
2240	s32 ret_val;
2241	static int global_quad_port_a; /* global quad port a indication */
2242	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2243	int err, pci_using_dac;
2244	u8 part_str[E1000_PBANUM_LENGTH];
2245
2246	/* Catch broken hardware that put the wrong VF device ID in
2247	 * the PCIe SR-IOV capability.
2248	 */
2249	if (pdev->is_virtfn) {
2250		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2251			pci_name(pdev), pdev->vendor, pdev->device);
2252		return -EINVAL;
2253	}
2254
2255	err = pci_enable_device_mem(pdev);
2256	if (err)
2257		return err;
2258
2259	pci_using_dac = 0;
2260	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2261	if (!err) {
2262		pci_using_dac = 1;
2263	} else {
2264		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2265		if (err) {
2266			dev_err(&pdev->dev,
2267				"No usable DMA configuration, aborting\n");
2268			goto err_dma;
2269		}
2270	}
2271
2272	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2273					   IORESOURCE_MEM),
2274					   igb_driver_name);
2275	if (err)
2276		goto err_pci_reg;
2277
2278	pci_enable_pcie_error_reporting(pdev);
2279
2280	pci_set_master(pdev);
2281	pci_save_state(pdev);
2282
2283	err = -ENOMEM;
2284	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2285				   IGB_MAX_TX_QUEUES);
2286	if (!netdev)
2287		goto err_alloc_etherdev;
2288
2289	SET_NETDEV_DEV(netdev, &pdev->dev);
2290
2291	pci_set_drvdata(pdev, netdev);
2292	adapter = netdev_priv(netdev);
2293	adapter->netdev = netdev;
2294	adapter->pdev = pdev;
2295	hw = &adapter->hw;
2296	hw->back = adapter;
2297	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2298
2299	err = -EIO;
2300	hw->hw_addr = pci_iomap(pdev, 0, 0);
2301	if (!hw->hw_addr)
2302		goto err_ioremap;
2303
2304	netdev->netdev_ops = &igb_netdev_ops;
2305	igb_set_ethtool_ops(netdev);
2306	netdev->watchdog_timeo = 5 * HZ;
2307
2308	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2309
2310	netdev->mem_start = pci_resource_start(pdev, 0);
2311	netdev->mem_end = pci_resource_end(pdev, 0);
2312
2313	/* PCI config space info */
2314	hw->vendor_id = pdev->vendor;
2315	hw->device_id = pdev->device;
2316	hw->revision_id = pdev->revision;
2317	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2318	hw->subsystem_device_id = pdev->subsystem_device;
2319
2320	/* Copy the default MAC, PHY and NVM function pointers */
2321	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2322	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2323	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2324	/* Initialize skew-specific constants */
2325	err = ei->get_invariants(hw);
2326	if (err)
2327		goto err_sw_init;
2328
2329	/* setup the private structure */
2330	err = igb_sw_init(adapter);
2331	if (err)
2332		goto err_sw_init;
2333
2334	igb_get_bus_info_pcie(hw);
2335
2336	hw->phy.autoneg_wait_to_complete = false;
2337
2338	/* Copper options */
2339	if (hw->phy.media_type == e1000_media_type_copper) {
2340		hw->phy.mdix = AUTO_ALL_MODES;
2341		hw->phy.disable_polarity_correction = false;
2342		hw->phy.ms_type = e1000_ms_hw_default;
2343	}
2344
2345	if (igb_check_reset_block(hw))
2346		dev_info(&pdev->dev,
2347			"PHY reset is blocked due to SOL/IDER session.\n");
2348
2349	/* features is initialized to 0 in allocation, it might have bits
2350	 * set by igb_sw_init so we should use an or instead of an
2351	 * assignment.
2352	 */
2353	netdev->features |= NETIF_F_SG |
2354			    NETIF_F_IP_CSUM |
2355			    NETIF_F_IPV6_CSUM |
2356			    NETIF_F_TSO |
2357			    NETIF_F_TSO6 |
2358			    NETIF_F_RXHASH |
2359			    NETIF_F_RXCSUM |
2360			    NETIF_F_HW_VLAN_CTAG_RX |
2361			    NETIF_F_HW_VLAN_CTAG_TX;
2362
2363	/* copy netdev features into list of user selectable features */
2364	netdev->hw_features |= netdev->features;
2365	netdev->hw_features |= NETIF_F_RXALL;
2366
2367	/* set this bit last since it cannot be part of hw_features */
2368	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2369
2370	netdev->vlan_features |= NETIF_F_TSO |
2371				 NETIF_F_TSO6 |
2372				 NETIF_F_IP_CSUM |
2373				 NETIF_F_IPV6_CSUM |
2374				 NETIF_F_SG;
2375
2376	netdev->priv_flags |= IFF_SUPP_NOFCS;
2377
2378	if (pci_using_dac) {
2379		netdev->features |= NETIF_F_HIGHDMA;
2380		netdev->vlan_features |= NETIF_F_HIGHDMA;
2381	}
2382
2383	if (hw->mac.type >= e1000_82576) {
2384		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2385		netdev->features |= NETIF_F_SCTP_CSUM;
2386	}
2387
2388	netdev->priv_flags |= IFF_UNICAST_FLT;
2389
2390	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2391
2392	/* before reading the NVM, reset the controller to put the device in a
2393	 * known good starting state
2394	 */
2395	hw->mac.ops.reset_hw(hw);
2396
2397	/* make sure the NVM is good , i211/i210 parts can have special NVM
2398	 * that doesn't contain a checksum
2399	 */
2400	switch (hw->mac.type) {
2401	case e1000_i210:
2402	case e1000_i211:
2403		if (igb_get_flash_presence_i210(hw)) {
2404			if (hw->nvm.ops.validate(hw) < 0) {
2405				dev_err(&pdev->dev,
2406					"The NVM Checksum Is Not Valid\n");
2407				err = -EIO;
2408				goto err_eeprom;
2409			}
2410		}
2411		break;
2412	default:
2413		if (hw->nvm.ops.validate(hw) < 0) {
2414			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2415			err = -EIO;
2416			goto err_eeprom;
2417		}
2418		break;
2419	}
2420
2421	/* copy the MAC address out of the NVM */
2422	if (hw->mac.ops.read_mac_addr(hw))
2423		dev_err(&pdev->dev, "NVM Read Error\n");
2424
2425	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2426
2427	if (!is_valid_ether_addr(netdev->dev_addr)) {
2428		dev_err(&pdev->dev, "Invalid MAC Address\n");
2429		err = -EIO;
2430		goto err_eeprom;
2431	}
2432
2433	/* get firmware version for ethtool -i */
2434	igb_set_fw_version(adapter);
2435
2436	/* configure RXPBSIZE and TXPBSIZE */
2437	if (hw->mac.type == e1000_i210) {
2438		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2439		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2440	}
2441
2442	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2443		    (unsigned long) adapter);
2444	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2445		    (unsigned long) adapter);
2446
2447	INIT_WORK(&adapter->reset_task, igb_reset_task);
2448	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2449
2450	/* Initialize link properties that are user-changeable */
2451	adapter->fc_autoneg = true;
2452	hw->mac.autoneg = true;
2453	hw->phy.autoneg_advertised = 0x2f;
2454
2455	hw->fc.requested_mode = e1000_fc_default;
2456	hw->fc.current_mode = e1000_fc_default;
2457
2458	igb_validate_mdi_setting(hw);
2459
2460	/* By default, support wake on port A */
2461	if (hw->bus.func == 0)
2462		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2463
2464	/* Check the NVM for wake support on non-port A ports */
2465	if (hw->mac.type >= e1000_82580)
2466		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2467				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2468				 &eeprom_data);
2469	else if (hw->bus.func == 1)
2470		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2471
2472	if (eeprom_data & IGB_EEPROM_APME)
2473		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2474
2475	/* now that we have the eeprom settings, apply the special cases where
2476	 * the eeprom may be wrong or the board simply won't support wake on
2477	 * lan on a particular port
2478	 */
2479	switch (pdev->device) {
2480	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2481		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2482		break;
2483	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2484	case E1000_DEV_ID_82576_FIBER:
2485	case E1000_DEV_ID_82576_SERDES:
2486		/* Wake events only supported on port A for dual fiber
2487		 * regardless of eeprom setting
2488		 */
2489		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2490			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2491		break;
2492	case E1000_DEV_ID_82576_QUAD_COPPER:
2493	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2494		/* if quad port adapter, disable WoL on all but port A */
2495		if (global_quad_port_a != 0)
2496			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2497		else
2498			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2499		/* Reset for multiple quad port adapters */
2500		if (++global_quad_port_a == 4)
2501			global_quad_port_a = 0;
2502		break;
2503	default:
2504		/* If the device can't wake, don't set software support */
2505		if (!device_can_wakeup(&adapter->pdev->dev))
2506			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2507	}
2508
2509	/* initialize the wol settings based on the eeprom settings */
2510	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2511		adapter->wol |= E1000_WUFC_MAG;
2512
2513	/* Some vendors want WoL disabled by default, but still supported */
2514	if ((hw->mac.type == e1000_i350) &&
2515	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2516		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2517		adapter->wol = 0;
2518	}
2519
2520	device_set_wakeup_enable(&adapter->pdev->dev,
2521				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2522
2523	/* reset the hardware with the new settings */
2524	igb_reset(adapter);
2525
2526	/* Init the I2C interface */
2527	err = igb_init_i2c(adapter);
2528	if (err) {
2529		dev_err(&pdev->dev, "failed to init i2c interface\n");
2530		goto err_eeprom;
2531	}
2532
2533	/* let the f/w know that the h/w is now under the control of the
2534	 * driver.
2535	 */
2536	igb_get_hw_control(adapter);
2537
2538	strcpy(netdev->name, "eth%d");
2539	err = register_netdev(netdev);
2540	if (err)
2541		goto err_register;
2542
2543	/* carrier off reporting is important to ethtool even BEFORE open */
2544	netif_carrier_off(netdev);
2545
2546#ifdef CONFIG_IGB_DCA
2547	if (dca_add_requester(&pdev->dev) == 0) {
2548		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2549		dev_info(&pdev->dev, "DCA enabled\n");
2550		igb_setup_dca(adapter);
2551	}
2552
2553#endif
2554#ifdef CONFIG_IGB_HWMON
2555	/* Initialize the thermal sensor on i350 devices. */
2556	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2557		u16 ets_word;
2558
2559		/* Read the NVM to determine if this i350 device supports an
2560		 * external thermal sensor.
2561		 */
2562		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2563		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2564			adapter->ets = true;
2565		else
2566			adapter->ets = false;
2567		if (igb_sysfs_init(adapter))
2568			dev_err(&pdev->dev,
2569				"failed to allocate sysfs resources\n");
2570	} else {
2571		adapter->ets = false;
2572	}
2573#endif
2574	/* Check if Media Autosense is enabled */
2575	adapter->ei = *ei;
2576	if (hw->dev_spec._82575.mas_capable)
2577		igb_init_mas(adapter);
2578
2579	/* do hw tstamp init after resetting */
2580	igb_ptp_init(adapter);
2581
2582	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2583	/* print bus type/speed/width info, not applicable to i354 */
2584	if (hw->mac.type != e1000_i354) {
2585		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2586			 netdev->name,
2587			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2588			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2589			   "unknown"),
2590			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2591			  "Width x4" :
2592			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2593			  "Width x2" :
2594			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2595			  "Width x1" : "unknown"), netdev->dev_addr);
2596	}
2597
2598	if ((hw->mac.type >= e1000_i210 ||
2599	     igb_get_flash_presence_i210(hw))) {
2600		ret_val = igb_read_part_string(hw, part_str,
2601					       E1000_PBANUM_LENGTH);
2602	} else {
2603		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2604	}
2605
2606	if (ret_val)
2607		strcpy(part_str, "Unknown");
2608	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2609	dev_info(&pdev->dev,
2610		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2611		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2612		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2613		adapter->num_rx_queues, adapter->num_tx_queues);
2614	if (hw->phy.media_type == e1000_media_type_copper) {
2615		switch (hw->mac.type) {
2616		case e1000_i350:
2617		case e1000_i210:
2618		case e1000_i211:
2619			/* Enable EEE for internal copper PHY devices */
2620			err = igb_set_eee_i350(hw);
2621			if ((!err) &&
2622			    (!hw->dev_spec._82575.eee_disable)) {
2623				adapter->eee_advert =
2624					MDIO_EEE_100TX | MDIO_EEE_1000T;
2625				adapter->flags |= IGB_FLAG_EEE;
2626			}
2627			break;
2628		case e1000_i354:
2629			if ((rd32(E1000_CTRL_EXT) &
2630			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2631				err = igb_set_eee_i354(hw);
2632				if ((!err) &&
2633					(!hw->dev_spec._82575.eee_disable)) {
2634					adapter->eee_advert =
2635					   MDIO_EEE_100TX | MDIO_EEE_1000T;
2636					adapter->flags |= IGB_FLAG_EEE;
2637				}
2638			}
2639			break;
2640		default:
2641			break;
2642		}
2643	}
2644	pm_runtime_put_noidle(&pdev->dev);
2645	return 0;
2646
2647err_register:
2648	igb_release_hw_control(adapter);
2649	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2650err_eeprom:
2651	if (!igb_check_reset_block(hw))
2652		igb_reset_phy(hw);
2653
2654	if (hw->flash_address)
2655		iounmap(hw->flash_address);
2656err_sw_init:
2657	igb_clear_interrupt_scheme(adapter);
2658	pci_iounmap(pdev, hw->hw_addr);
2659err_ioremap:
2660	free_netdev(netdev);
2661err_alloc_etherdev:
2662	pci_release_selected_regions(pdev,
2663				     pci_select_bars(pdev, IORESOURCE_MEM));
2664err_pci_reg:
2665err_dma:
2666	pci_disable_device(pdev);
2667	return err;
2668}
2669
2670#ifdef CONFIG_PCI_IOV
2671static int igb_disable_sriov(struct pci_dev *pdev)
2672{
2673	struct net_device *netdev = pci_get_drvdata(pdev);
2674	struct igb_adapter *adapter = netdev_priv(netdev);
2675	struct e1000_hw *hw = &adapter->hw;
2676
2677	/* reclaim resources allocated to VFs */
2678	if (adapter->vf_data) {
2679		/* disable iov and allow time for transactions to clear */
2680		if (pci_vfs_assigned(pdev)) {
2681			dev_warn(&pdev->dev,
2682				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2683			return -EPERM;
2684		} else {
2685			pci_disable_sriov(pdev);
2686			msleep(500);
2687		}
2688
2689		kfree(adapter->vf_data);
2690		adapter->vf_data = NULL;
2691		adapter->vfs_allocated_count = 0;
2692		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2693		wrfl();
2694		msleep(100);
2695		dev_info(&pdev->dev, "IOV Disabled\n");
2696
2697		/* Re-enable DMA Coalescing flag since IOV is turned off */
2698		adapter->flags |= IGB_FLAG_DMAC;
2699	}
2700
2701	return 0;
2702}
2703
2704static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2705{
2706	struct net_device *netdev = pci_get_drvdata(pdev);
2707	struct igb_adapter *adapter = netdev_priv(netdev);
2708	int old_vfs = pci_num_vf(pdev);
2709	int err = 0;
2710	int i;
2711
2712	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2713		err = -EPERM;
2714		goto out;
2715	}
2716	if (!num_vfs)
2717		goto out;
2718
2719	if (old_vfs) {
2720		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2721			 old_vfs, max_vfs);
2722		adapter->vfs_allocated_count = old_vfs;
2723	} else
2724		adapter->vfs_allocated_count = num_vfs;
2725
2726	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2727				sizeof(struct vf_data_storage), GFP_KERNEL);
2728
2729	/* if allocation failed then we do not support SR-IOV */
2730	if (!adapter->vf_data) {
2731		adapter->vfs_allocated_count = 0;
2732		dev_err(&pdev->dev,
2733			"Unable to allocate memory for VF Data Storage\n");
2734		err = -ENOMEM;
2735		goto out;
2736	}
2737
2738	/* only call pci_enable_sriov() if no VFs are allocated already */
2739	if (!old_vfs) {
2740		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2741		if (err)
2742			goto err_out;
2743	}
2744	dev_info(&pdev->dev, "%d VFs allocated\n",
2745		 adapter->vfs_allocated_count);
2746	for (i = 0; i < adapter->vfs_allocated_count; i++)
2747		igb_vf_configure(adapter, i);
2748
2749	/* DMA Coalescing is not supported in IOV mode. */
2750	adapter->flags &= ~IGB_FLAG_DMAC;
2751	goto out;
2752
2753err_out:
2754	kfree(adapter->vf_data);
2755	adapter->vf_data = NULL;
2756	adapter->vfs_allocated_count = 0;
2757out:
2758	return err;
2759}
2760
2761#endif
2762/**
2763 *  igb_remove_i2c - Cleanup  I2C interface
2764 *  @adapter: pointer to adapter structure
2765 **/
2766static void igb_remove_i2c(struct igb_adapter *adapter)
2767{
2768	/* free the adapter bus structure */
2769	i2c_del_adapter(&adapter->i2c_adap);
2770}
2771
2772/**
2773 *  igb_remove - Device Removal Routine
2774 *  @pdev: PCI device information struct
2775 *
2776 *  igb_remove is called by the PCI subsystem to alert the driver
2777 *  that it should release a PCI device.  The could be caused by a
2778 *  Hot-Plug event, or because the driver is going to be removed from
2779 *  memory.
2780 **/
2781static void igb_remove(struct pci_dev *pdev)
2782{
2783	struct net_device *netdev = pci_get_drvdata(pdev);
2784	struct igb_adapter *adapter = netdev_priv(netdev);
2785	struct e1000_hw *hw = &adapter->hw;
2786
2787	pm_runtime_get_noresume(&pdev->dev);
2788#ifdef CONFIG_IGB_HWMON
2789	igb_sysfs_exit(adapter);
2790#endif
2791	igb_remove_i2c(adapter);
2792	igb_ptp_stop(adapter);
2793	/* The watchdog timer may be rescheduled, so explicitly
2794	 * disable watchdog from being rescheduled.
2795	 */
2796	set_bit(__IGB_DOWN, &adapter->state);
2797	del_timer_sync(&adapter->watchdog_timer);
2798	del_timer_sync(&adapter->phy_info_timer);
2799
2800	cancel_work_sync(&adapter->reset_task);
2801	cancel_work_sync(&adapter->watchdog_task);
2802
2803#ifdef CONFIG_IGB_DCA
2804	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2805		dev_info(&pdev->dev, "DCA disabled\n");
2806		dca_remove_requester(&pdev->dev);
2807		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2808		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2809	}
2810#endif
2811
2812	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2813	 * would have already happened in close and is redundant.
2814	 */
2815	igb_release_hw_control(adapter);
2816
2817	unregister_netdev(netdev);
2818
2819	igb_clear_interrupt_scheme(adapter);
2820
2821#ifdef CONFIG_PCI_IOV
2822	igb_disable_sriov(pdev);
2823#endif
2824
2825	pci_iounmap(pdev, hw->hw_addr);
2826	if (hw->flash_address)
2827		iounmap(hw->flash_address);
2828	pci_release_selected_regions(pdev,
2829				     pci_select_bars(pdev, IORESOURCE_MEM));
2830
2831	kfree(adapter->shadow_vfta);
2832	free_netdev(netdev);
2833
2834	pci_disable_pcie_error_reporting(pdev);
2835
2836	pci_disable_device(pdev);
2837}
2838
2839/**
2840 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2841 *  @adapter: board private structure to initialize
2842 *
2843 *  This function initializes the vf specific data storage and then attempts to
2844 *  allocate the VFs.  The reason for ordering it this way is because it is much
2845 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2846 *  the memory for the VFs.
2847 **/
2848static void igb_probe_vfs(struct igb_adapter *adapter)
2849{
2850#ifdef CONFIG_PCI_IOV
2851	struct pci_dev *pdev = adapter->pdev;
2852	struct e1000_hw *hw = &adapter->hw;
2853
2854	/* Virtualization features not supported on i210 family. */
2855	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2856		return;
2857
2858	pci_sriov_set_totalvfs(pdev, 7);
2859	igb_pci_enable_sriov(pdev, max_vfs);
2860
2861#endif /* CONFIG_PCI_IOV */
2862}
2863
2864static void igb_init_queue_configuration(struct igb_adapter *adapter)
2865{
2866	struct e1000_hw *hw = &adapter->hw;
2867	u32 max_rss_queues;
2868
2869	/* Determine the maximum number of RSS queues supported. */
2870	switch (hw->mac.type) {
2871	case e1000_i211:
2872		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2873		break;
2874	case e1000_82575:
2875	case e1000_i210:
2876		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2877		break;
2878	case e1000_i350:
2879		/* I350 cannot do RSS and SR-IOV at the same time */
2880		if (!!adapter->vfs_allocated_count) {
2881			max_rss_queues = 1;
2882			break;
2883		}
2884		/* fall through */
2885	case e1000_82576:
2886		if (!!adapter->vfs_allocated_count) {
2887			max_rss_queues = 2;
2888			break;
2889		}
2890		/* fall through */
2891	case e1000_82580:
2892	case e1000_i354:
2893	default:
2894		max_rss_queues = IGB_MAX_RX_QUEUES;
2895		break;
2896	}
2897
2898	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2899
2900	/* Determine if we need to pair queues. */
2901	switch (hw->mac.type) {
2902	case e1000_82575:
2903	case e1000_i211:
2904		/* Device supports enough interrupts without queue pairing. */
2905		break;
2906	case e1000_82576:
2907		/* If VFs are going to be allocated with RSS queues then we
2908		 * should pair the queues in order to conserve interrupts due
2909		 * to limited supply.
2910		 */
2911		if ((adapter->rss_queues > 1) &&
2912		    (adapter->vfs_allocated_count > 6))
2913			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2914		/* fall through */
2915	case e1000_82580:
2916	case e1000_i350:
2917	case e1000_i354:
2918	case e1000_i210:
2919	default:
2920		/* If rss_queues > half of max_rss_queues, pair the queues in
2921		 * order to conserve interrupts due to limited supply.
2922		 */
2923		if (adapter->rss_queues > (max_rss_queues / 2))
2924			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2925		break;
2926	}
2927}
2928
2929/**
2930 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2931 *  @adapter: board private structure to initialize
2932 *
2933 *  igb_sw_init initializes the Adapter private data structure.
2934 *  Fields are initialized based on PCI device information and
2935 *  OS network device settings (MTU size).
2936 **/
2937static int igb_sw_init(struct igb_adapter *adapter)
2938{
2939	struct e1000_hw *hw = &adapter->hw;
2940	struct net_device *netdev = adapter->netdev;
2941	struct pci_dev *pdev = adapter->pdev;
2942
2943	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2944
2945	/* set default ring sizes */
2946	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2947	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2948
2949	/* set default ITR values */
2950	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2951	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2952
2953	/* set default work limits */
2954	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2955
2956	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2957				  VLAN_HLEN;
2958	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2959
2960	spin_lock_init(&adapter->stats64_lock);
2961#ifdef CONFIG_PCI_IOV
2962	switch (hw->mac.type) {
2963	case e1000_82576:
2964	case e1000_i350:
2965		if (max_vfs > 7) {
2966			dev_warn(&pdev->dev,
2967				 "Maximum of 7 VFs per PF, using max\n");
2968			max_vfs = adapter->vfs_allocated_count = 7;
2969		} else
2970			adapter->vfs_allocated_count = max_vfs;
2971		if (adapter->vfs_allocated_count)
2972			dev_warn(&pdev->dev,
2973				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2974		break;
2975	default:
2976		break;
2977	}
2978#endif /* CONFIG_PCI_IOV */
2979
2980	igb_init_queue_configuration(adapter);
2981
2982	/* Setup and initialize a copy of the hw vlan table array */
2983	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2984				       GFP_ATOMIC);
2985
2986	/* This call may decrease the number of queues */
2987	if (igb_init_interrupt_scheme(adapter, true)) {
2988		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2989		return -ENOMEM;
2990	}
2991
2992	igb_probe_vfs(adapter);
2993
2994	/* Explicitly disable IRQ since the NIC can be in any state. */
2995	igb_irq_disable(adapter);
2996
2997	if (hw->mac.type >= e1000_i350)
2998		adapter->flags &= ~IGB_FLAG_DMAC;
2999
3000	set_bit(__IGB_DOWN, &adapter->state);
3001	return 0;
3002}
3003
3004/**
3005 *  igb_open - Called when a network interface is made active
3006 *  @netdev: network interface device structure
3007 *
3008 *  Returns 0 on success, negative value on failure
3009 *
3010 *  The open entry point is called when a network interface is made
3011 *  active by the system (IFF_UP).  At this point all resources needed
3012 *  for transmit and receive operations are allocated, the interrupt
3013 *  handler is registered with the OS, the watchdog timer is started,
3014 *  and the stack is notified that the interface is ready.
3015 **/
3016static int __igb_open(struct net_device *netdev, bool resuming)
3017{
3018	struct igb_adapter *adapter = netdev_priv(netdev);
3019	struct e1000_hw *hw = &adapter->hw;
3020	struct pci_dev *pdev = adapter->pdev;
3021	int err;
3022	int i;
3023
3024	/* disallow open during test */
3025	if (test_bit(__IGB_TESTING, &adapter->state)) {
3026		WARN_ON(resuming);
3027		return -EBUSY;
3028	}
3029
3030	if (!resuming)
3031		pm_runtime_get_sync(&pdev->dev);
3032
3033	netif_carrier_off(netdev);
3034
3035	/* allocate transmit descriptors */
3036	err = igb_setup_all_tx_resources(adapter);
3037	if (err)
3038		goto err_setup_tx;
3039
3040	/* allocate receive descriptors */
3041	err = igb_setup_all_rx_resources(adapter);
3042	if (err)
3043		goto err_setup_rx;
3044
3045	igb_power_up_link(adapter);
3046
3047	/* before we allocate an interrupt, we must be ready to handle it.
3048	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3049	 * as soon as we call pci_request_irq, so we have to setup our
3050	 * clean_rx handler before we do so.
3051	 */
3052	igb_configure(adapter);
3053
3054	err = igb_request_irq(adapter);
3055	if (err)
3056		goto err_req_irq;
3057
3058	/* Notify the stack of the actual queue counts. */
3059	err = netif_set_real_num_tx_queues(adapter->netdev,
3060					   adapter->num_tx_queues);
3061	if (err)
3062		goto err_set_queues;
3063
3064	err = netif_set_real_num_rx_queues(adapter->netdev,
3065					   adapter->num_rx_queues);
3066	if (err)
3067		goto err_set_queues;
3068
3069	/* From here on the code is the same as igb_up() */
3070	clear_bit(__IGB_DOWN, &adapter->state);
3071
3072	for (i = 0; i < adapter->num_q_vectors; i++)
3073		napi_enable(&(adapter->q_vector[i]->napi));
3074
3075	/* Clear any pending interrupts. */
3076	rd32(E1000_ICR);
3077
3078	igb_irq_enable(adapter);
3079
3080	/* notify VFs that reset has been completed */
3081	if (adapter->vfs_allocated_count) {
3082		u32 reg_data = rd32(E1000_CTRL_EXT);
3083
3084		reg_data |= E1000_CTRL_EXT_PFRSTD;
3085		wr32(E1000_CTRL_EXT, reg_data);
3086	}
3087
3088	netif_tx_start_all_queues(netdev);
3089
3090	if (!resuming)
3091		pm_runtime_put(&pdev->dev);
3092
3093	/* start the watchdog. */
3094	hw->mac.get_link_status = 1;
3095	schedule_work(&adapter->watchdog_task);
3096
3097	return 0;
3098
3099err_set_queues:
3100	igb_free_irq(adapter);
3101err_req_irq:
3102	igb_release_hw_control(adapter);
3103	igb_power_down_link(adapter);
3104	igb_free_all_rx_resources(adapter);
3105err_setup_rx:
3106	igb_free_all_tx_resources(adapter);
3107err_setup_tx:
3108	igb_reset(adapter);
3109	if (!resuming)
3110		pm_runtime_put(&pdev->dev);
3111
3112	return err;
3113}
3114
3115static int igb_open(struct net_device *netdev)
3116{
3117	return __igb_open(netdev, false);
3118}
3119
3120/**
3121 *  igb_close - Disables a network interface
3122 *  @netdev: network interface device structure
3123 *
3124 *  Returns 0, this is not allowed to fail
3125 *
3126 *  The close entry point is called when an interface is de-activated
3127 *  by the OS.  The hardware is still under the driver's control, but
3128 *  needs to be disabled.  A global MAC reset is issued to stop the
3129 *  hardware, and all transmit and receive resources are freed.
3130 **/
3131static int __igb_close(struct net_device *netdev, bool suspending)
3132{
3133	struct igb_adapter *adapter = netdev_priv(netdev);
3134	struct pci_dev *pdev = adapter->pdev;
3135
3136	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3137
3138	if (!suspending)
3139		pm_runtime_get_sync(&pdev->dev);
3140
3141	igb_down(adapter);
3142	igb_free_irq(adapter);
3143
3144	igb_free_all_tx_resources(adapter);
3145	igb_free_all_rx_resources(adapter);
3146
3147	if (!suspending)
3148		pm_runtime_put_sync(&pdev->dev);
3149	return 0;
3150}
3151
3152static int igb_close(struct net_device *netdev)
3153{
3154	return __igb_close(netdev, false);
3155}
3156
3157/**
3158 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3159 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3160 *
3161 *  Return 0 on success, negative on failure
3162 **/
3163int igb_setup_tx_resources(struct igb_ring *tx_ring)
3164{
3165	struct device *dev = tx_ring->dev;
3166	int size;
3167
3168	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3169
3170	tx_ring->tx_buffer_info = vzalloc(size);
3171	if (!tx_ring->tx_buffer_info)
3172		goto err;
3173
3174	/* round up to nearest 4K */
3175	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3176	tx_ring->size = ALIGN(tx_ring->size, 4096);
3177
3178	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3179					   &tx_ring->dma, GFP_KERNEL);
3180	if (!tx_ring->desc)
3181		goto err;
3182
3183	tx_ring->next_to_use = 0;
3184	tx_ring->next_to_clean = 0;
3185
3186	return 0;
3187
3188err:
3189	vfree(tx_ring->tx_buffer_info);
3190	tx_ring->tx_buffer_info = NULL;
3191	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3192	return -ENOMEM;
3193}
3194
3195/**
3196 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3197 *				 (Descriptors) for all queues
3198 *  @adapter: board private structure
3199 *
3200 *  Return 0 on success, negative on failure
3201 **/
3202static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3203{
3204	struct pci_dev *pdev = adapter->pdev;
3205	int i, err = 0;
3206
3207	for (i = 0; i < adapter->num_tx_queues; i++) {
3208		err = igb_setup_tx_resources(adapter->tx_ring[i]);
3209		if (err) {
3210			dev_err(&pdev->dev,
3211				"Allocation for Tx Queue %u failed\n", i);
3212			for (i--; i >= 0; i--)
3213				igb_free_tx_resources(adapter->tx_ring[i]);
3214			break;
3215		}
3216	}
3217
3218	return err;
3219}
3220
3221/**
3222 *  igb_setup_tctl - configure the transmit control registers
3223 *  @adapter: Board private structure
3224 **/
3225void igb_setup_tctl(struct igb_adapter *adapter)
3226{
3227	struct e1000_hw *hw = &adapter->hw;
3228	u32 tctl;
3229
3230	/* disable queue 0 which is enabled by default on 82575 and 82576 */
3231	wr32(E1000_TXDCTL(0), 0);
3232
3233	/* Program the Transmit Control Register */
3234	tctl = rd32(E1000_TCTL);
3235	tctl &= ~E1000_TCTL_CT;
3236	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3237		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3238
3239	igb_config_collision_dist(hw);
3240
3241	/* Enable transmits */
3242	tctl |= E1000_TCTL_EN;
3243
3244	wr32(E1000_TCTL, tctl);
3245}
3246
3247/**
3248 *  igb_configure_tx_ring - Configure transmit ring after Reset
3249 *  @adapter: board private structure
3250 *  @ring: tx ring to configure
3251 *
3252 *  Configure a transmit ring after a reset.
3253 **/
3254void igb_configure_tx_ring(struct igb_adapter *adapter,
3255			   struct igb_ring *ring)
3256{
3257	struct e1000_hw *hw = &adapter->hw;
3258	u32 txdctl = 0;
3259	u64 tdba = ring->dma;
3260	int reg_idx = ring->reg_idx;
3261
3262	/* disable the queue */
3263	wr32(E1000_TXDCTL(reg_idx), 0);
3264	wrfl();
3265	mdelay(10);
3266
3267	wr32(E1000_TDLEN(reg_idx),
3268	     ring->count * sizeof(union e1000_adv_tx_desc));
3269	wr32(E1000_TDBAL(reg_idx),
3270	     tdba & 0x00000000ffffffffULL);
3271	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3272
3273	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3274	wr32(E1000_TDH(reg_idx), 0);
3275	writel(0, ring->tail);
3276
3277	txdctl |= IGB_TX_PTHRESH;
3278	txdctl |= IGB_TX_HTHRESH << 8;
3279	txdctl |= IGB_TX_WTHRESH << 16;
3280
3281	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3282	wr32(E1000_TXDCTL(reg_idx), txdctl);
3283}
3284
3285/**
3286 *  igb_configure_tx - Configure transmit Unit after Reset
3287 *  @adapter: board private structure
3288 *
3289 *  Configure the Tx unit of the MAC after a reset.
3290 **/
3291static void igb_configure_tx(struct igb_adapter *adapter)
3292{
3293	int i;
3294
3295	for (i = 0; i < adapter->num_tx_queues; i++)
3296		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3297}
3298
3299/**
3300 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3301 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3302 *
3303 *  Returns 0 on success, negative on failure
3304 **/
3305int igb_setup_rx_resources(struct igb_ring *rx_ring)
3306{
3307	struct device *dev = rx_ring->dev;
3308	int size;
3309
3310	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3311
3312	rx_ring->rx_buffer_info = vzalloc(size);
3313	if (!rx_ring->rx_buffer_info)
3314		goto err;
3315
3316	/* Round up to nearest 4K */
3317	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3318	rx_ring->size = ALIGN(rx_ring->size, 4096);
3319
3320	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3321					   &rx_ring->dma, GFP_KERNEL);
3322	if (!rx_ring->desc)
3323		goto err;
3324
3325	rx_ring->next_to_alloc = 0;
3326	rx_ring->next_to_clean = 0;
3327	rx_ring->next_to_use = 0;
3328
3329	return 0;
3330
3331err:
3332	vfree(rx_ring->rx_buffer_info);
3333	rx_ring->rx_buffer_info = NULL;
3334	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3335	return -ENOMEM;
3336}
3337
3338/**
3339 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3340 *				 (Descriptors) for all queues
3341 *  @adapter: board private structure
3342 *
3343 *  Return 0 on success, negative on failure
3344 **/
3345static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3346{
3347	struct pci_dev *pdev = adapter->pdev;
3348	int i, err = 0;
3349
3350	for (i = 0; i < adapter->num_rx_queues; i++) {
3351		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3352		if (err) {
3353			dev_err(&pdev->dev,
3354				"Allocation for Rx Queue %u failed\n", i);
3355			for (i--; i >= 0; i--)
3356				igb_free_rx_resources(adapter->rx_ring[i]);
3357			break;
3358		}
3359	}
3360
3361	return err;
3362}
3363
3364/**
3365 *  igb_setup_mrqc - configure the multiple receive queue control registers
3366 *  @adapter: Board private structure
3367 **/
3368static void igb_setup_mrqc(struct igb_adapter *adapter)
3369{
3370	struct e1000_hw *hw = &adapter->hw;
3371	u32 mrqc, rxcsum;
3372	u32 j, num_rx_queues;
3373	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3374					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3375					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3376					0xFA01ACBE };
3377
3378	/* Fill out hash function seeds */
3379	for (j = 0; j < 10; j++)
3380		wr32(E1000_RSSRK(j), rsskey[j]);
3381
3382	num_rx_queues = adapter->rss_queues;
3383
3384	switch (hw->mac.type) {
3385	case e1000_82576:
3386		/* 82576 supports 2 RSS queues for SR-IOV */
3387		if (adapter->vfs_allocated_count)
3388			num_rx_queues = 2;
3389		break;
3390	default:
3391		break;
3392	}
3393
3394	if (adapter->rss_indir_tbl_init != num_rx_queues) {
3395		for (j = 0; j < IGB_RETA_SIZE; j++)
3396			adapter->rss_indir_tbl[j] =
3397			(j * num_rx_queues) / IGB_RETA_SIZE;
3398		adapter->rss_indir_tbl_init = num_rx_queues;
3399	}
3400	igb_write_rss_indir_tbl(adapter);
3401
3402	/* Disable raw packet checksumming so that RSS hash is placed in
3403	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3404	 * offloads as they are enabled by default
3405	 */
3406	rxcsum = rd32(E1000_RXCSUM);
3407	rxcsum |= E1000_RXCSUM_PCSD;
3408
3409	if (adapter->hw.mac.type >= e1000_82576)
3410		/* Enable Receive Checksum Offload for SCTP */
3411		rxcsum |= E1000_RXCSUM_CRCOFL;
3412
3413	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3414	wr32(E1000_RXCSUM, rxcsum);
3415
3416	/* Generate RSS hash based on packet types, TCP/UDP
3417	 * port numbers and/or IPv4/v6 src and dst addresses
3418	 */
3419	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3420	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3421	       E1000_MRQC_RSS_FIELD_IPV6 |
3422	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3423	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3424
3425	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3426		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3427	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3428		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3429
3430	/* If VMDq is enabled then we set the appropriate mode for that, else
3431	 * we default to RSS so that an RSS hash is calculated per packet even
3432	 * if we are only using one queue
3433	 */
3434	if (adapter->vfs_allocated_count) {
3435		if (hw->mac.type > e1000_82575) {
3436			/* Set the default pool for the PF's first queue */
3437			u32 vtctl = rd32(E1000_VT_CTL);
3438
3439			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3440				   E1000_VT_CTL_DISABLE_DEF_POOL);
3441			vtctl |= adapter->vfs_allocated_count <<
3442				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3443			wr32(E1000_VT_CTL, vtctl);
3444		}
3445		if (adapter->rss_queues > 1)
3446			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3447		else
3448			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3449	} else {
3450		if (hw->mac.type != e1000_i211)
3451			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3452	}
3453	igb_vmm_control(adapter);
3454
3455	wr32(E1000_MRQC, mrqc);
3456}
3457
3458/**
3459 *  igb_setup_rctl - configure the receive control registers
3460 *  @adapter: Board private structure
3461 **/
3462void igb_setup_rctl(struct igb_adapter *adapter)
3463{
3464	struct e1000_hw *hw = &adapter->hw;
3465	u32 rctl;
3466
3467	rctl = rd32(E1000_RCTL);
3468
3469	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3470	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3471
3472	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3473		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3474
3475	/* enable stripping of CRC. It's unlikely this will break BMC
3476	 * redirection as it did with e1000. Newer features require
3477	 * that the HW strips the CRC.
3478	 */
3479	rctl |= E1000_RCTL_SECRC;
3480
3481	/* disable store bad packets and clear size bits. */
3482	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3483
3484	/* enable LPE to prevent packets larger than max_frame_size */
3485	rctl |= E1000_RCTL_LPE;
3486
3487	/* disable queue 0 to prevent tail write w/o re-config */
3488	wr32(E1000_RXDCTL(0), 0);
3489
3490	/* Attention!!!  For SR-IOV PF driver operations you must enable
3491	 * queue drop for all VF and PF queues to prevent head of line blocking
3492	 * if an un-trusted VF does not provide descriptors to hardware.
3493	 */
3494	if (adapter->vfs_allocated_count) {
3495		/* set all queue drop enable bits */
3496		wr32(E1000_QDE, ALL_QUEUES);
3497	}
3498
3499	/* This is useful for sniffing bad packets. */
3500	if (adapter->netdev->features & NETIF_F_RXALL) {
3501		/* UPE and MPE will be handled by normal PROMISC logic
3502		 * in e1000e_set_rx_mode
3503		 */
3504		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3505			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3506			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3507
3508		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3509			  E1000_RCTL_DPF | /* Allow filtered pause */
3510			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3511		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3512		 * and that breaks VLANs.
3513		 */
3514	}
3515
3516	wr32(E1000_RCTL, rctl);
3517}
3518
3519static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3520				   int vfn)
3521{
3522	struct e1000_hw *hw = &adapter->hw;
3523	u32 vmolr;
3524
3525	/* if it isn't the PF check to see if VFs are enabled and
3526	 * increase the size to support vlan tags
3527	 */
3528	if (vfn < adapter->vfs_allocated_count &&
3529	    adapter->vf_data[vfn].vlans_enabled)
3530		size += VLAN_TAG_SIZE;
3531
3532	vmolr = rd32(E1000_VMOLR(vfn));
3533	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3534	vmolr |= size | E1000_VMOLR_LPE;
3535	wr32(E1000_VMOLR(vfn), vmolr);
3536
3537	return 0;
3538}
3539
3540/**
3541 *  igb_rlpml_set - set maximum receive packet size
3542 *  @adapter: board private structure
3543 *
3544 *  Configure maximum receivable packet size.
3545 **/
3546static void igb_rlpml_set(struct igb_adapter *adapter)
3547{
3548	u32 max_frame_size = adapter->max_frame_size;
3549	struct e1000_hw *hw = &adapter->hw;
3550	u16 pf_id = adapter->vfs_allocated_count;
3551
3552	if (pf_id) {
3553		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3554		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3555		 * to our max jumbo frame size, in case we need to enable
3556		 * jumbo frames on one of the rings later.
3557		 * This will not pass over-length frames into the default
3558		 * queue because it's gated by the VMOLR.RLPML.
3559		 */
3560		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3561	}
3562
3563	wr32(E1000_RLPML, max_frame_size);
3564}
3565
3566static inline void igb_set_vmolr(struct igb_adapter *adapter,
3567				 int vfn, bool aupe)
3568{
3569	struct e1000_hw *hw = &adapter->hw;
3570	u32 vmolr;
3571
3572	/* This register exists only on 82576 and newer so if we are older then
3573	 * we should exit and do nothing
3574	 */
3575	if (hw->mac.type < e1000_82576)
3576		return;
3577
3578	vmolr = rd32(E1000_VMOLR(vfn));
3579	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3580	if (hw->mac.type == e1000_i350) {
3581		u32 dvmolr;
3582
3583		dvmolr = rd32(E1000_DVMOLR(vfn));
3584		dvmolr |= E1000_DVMOLR_STRVLAN;
3585		wr32(E1000_DVMOLR(vfn), dvmolr);
3586	}
3587	if (aupe)
3588		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3589	else
3590		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3591
3592	/* clear all bits that might not be set */
3593	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3594
3595	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3596		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3597	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3598	 * multicast packets
3599	 */
3600	if (vfn <= adapter->vfs_allocated_count)
3601		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3602
3603	wr32(E1000_VMOLR(vfn), vmolr);
3604}
3605
3606/**
3607 *  igb_configure_rx_ring - Configure a receive ring after Reset
3608 *  @adapter: board private structure
3609 *  @ring: receive ring to be configured
3610 *
3611 *  Configure the Rx unit of the MAC after a reset.
3612 **/
3613void igb_configure_rx_ring(struct igb_adapter *adapter,
3614			   struct igb_ring *ring)
3615{
3616	struct e1000_hw *hw = &adapter->hw;
3617	u64 rdba = ring->dma;
3618	int reg_idx = ring->reg_idx;
3619	u32 srrctl = 0, rxdctl = 0;
3620
3621	/* disable the queue */
3622	wr32(E1000_RXDCTL(reg_idx), 0);
3623
3624	/* Set DMA base address registers */
3625	wr32(E1000_RDBAL(reg_idx),
3626	     rdba & 0x00000000ffffffffULL);
3627	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3628	wr32(E1000_RDLEN(reg_idx),
3629	     ring->count * sizeof(union e1000_adv_rx_desc));
3630
3631	/* initialize head and tail */
3632	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3633	wr32(E1000_RDH(reg_idx), 0);
3634	writel(0, ring->tail);
3635
3636	/* set descriptor configuration */
3637	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3638	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3639	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3640	if (hw->mac.type >= e1000_82580)
3641		srrctl |= E1000_SRRCTL_TIMESTAMP;
3642	/* Only set Drop Enable if we are supporting multiple queues */
3643	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3644		srrctl |= E1000_SRRCTL_DROP_EN;
3645
3646	wr32(E1000_SRRCTL(reg_idx), srrctl);
3647
3648	/* set filtering for VMDQ pools */
3649	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3650
3651	rxdctl |= IGB_RX_PTHRESH;
3652	rxdctl |= IGB_RX_HTHRESH << 8;
3653	rxdctl |= IGB_RX_WTHRESH << 16;
3654
3655	/* enable receive descriptor fetching */
3656	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3657	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3658}
3659
3660/**
3661 *  igb_configure_rx - Configure receive Unit after Reset
3662 *  @adapter: board private structure
3663 *
3664 *  Configure the Rx unit of the MAC after a reset.
3665 **/
3666static void igb_configure_rx(struct igb_adapter *adapter)
3667{
3668	int i;
3669
3670	/* set UTA to appropriate mode */
3671	igb_set_uta(adapter);
3672
3673	/* set the correct pool for the PF default MAC address in entry 0 */
3674	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3675			 adapter->vfs_allocated_count);
3676
3677	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3678	 * the Base and Length of the Rx Descriptor Ring
3679	 */
3680	for (i = 0; i < adapter->num_rx_queues; i++)
3681		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3682}
3683
3684/**
3685 *  igb_free_tx_resources - Free Tx Resources per Queue
3686 *  @tx_ring: Tx descriptor ring for a specific queue
3687 *
3688 *  Free all transmit software resources
3689 **/
3690void igb_free_tx_resources(struct igb_ring *tx_ring)
3691{
3692	igb_clean_tx_ring(tx_ring);
3693
3694	vfree(tx_ring->tx_buffer_info);
3695	tx_ring->tx_buffer_info = NULL;
3696
3697	/* if not set, then don't free */
3698	if (!tx_ring->desc)
3699		return;
3700
3701	dma_free_coherent(tx_ring->dev, tx_ring->size,
3702			  tx_ring->desc, tx_ring->dma);
3703
3704	tx_ring->desc = NULL;
3705}
3706
3707/**
3708 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3709 *  @adapter: board private structure
3710 *
3711 *  Free all transmit software resources
3712 **/
3713static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3714{
3715	int i;
3716
3717	for (i = 0; i < adapter->num_tx_queues; i++)
3718		igb_free_tx_resources(adapter->tx_ring[i]);
3719}
3720
3721void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3722				    struct igb_tx_buffer *tx_buffer)
3723{
3724	if (tx_buffer->skb) {
3725		dev_kfree_skb_any(tx_buffer->skb);
3726		if (dma_unmap_len(tx_buffer, len))
3727			dma_unmap_single(ring->dev,
3728					 dma_unmap_addr(tx_buffer, dma),
3729					 dma_unmap_len(tx_buffer, len),
3730					 DMA_TO_DEVICE);
3731	} else if (dma_unmap_len(tx_buffer, len)) {
3732		dma_unmap_page(ring->dev,
3733			       dma_unmap_addr(tx_buffer, dma),
3734			       dma_unmap_len(tx_buffer, len),
3735			       DMA_TO_DEVICE);
3736	}
3737	tx_buffer->next_to_watch = NULL;
3738	tx_buffer->skb = NULL;
3739	dma_unmap_len_set(tx_buffer, len, 0);
3740	/* buffer_info must be completely set up in the transmit path */
3741}
3742
3743/**
3744 *  igb_clean_tx_ring - Free Tx Buffers
3745 *  @tx_ring: ring to be cleaned
3746 **/
3747static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3748{
3749	struct igb_tx_buffer *buffer_info;
3750	unsigned long size;
3751	u16 i;
3752
3753	if (!tx_ring->tx_buffer_info)
3754		return;
3755	/* Free all the Tx ring sk_buffs */
3756
3757	for (i = 0; i < tx_ring->count; i++) {
3758		buffer_info = &tx_ring->tx_buffer_info[i];
3759		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3760	}
3761
3762	netdev_tx_reset_queue(txring_txq(tx_ring));
3763
3764	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3765	memset(tx_ring->tx_buffer_info, 0, size);
3766
3767	/* Zero out the descriptor ring */
3768	memset(tx_ring->desc, 0, tx_ring->size);
3769
3770	tx_ring->next_to_use = 0;
3771	tx_ring->next_to_clean = 0;
3772}
3773
3774/**
3775 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3776 *  @adapter: board private structure
3777 **/
3778static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3779{
3780	int i;
3781
3782	for (i = 0; i < adapter->num_tx_queues; i++)
3783		igb_clean_tx_ring(adapter->tx_ring[i]);
3784}
3785
3786/**
3787 *  igb_free_rx_resources - Free Rx Resources
3788 *  @rx_ring: ring to clean the resources from
3789 *
3790 *  Free all receive software resources
3791 **/
3792void igb_free_rx_resources(struct igb_ring *rx_ring)
3793{
3794	igb_clean_rx_ring(rx_ring);
3795
3796	vfree(rx_ring->rx_buffer_info);
3797	rx_ring->rx_buffer_info = NULL;
3798
3799	/* if not set, then don't free */
3800	if (!rx_ring->desc)
3801		return;
3802
3803	dma_free_coherent(rx_ring->dev, rx_ring->size,
3804			  rx_ring->desc, rx_ring->dma);
3805
3806	rx_ring->desc = NULL;
3807}
3808
3809/**
3810 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3811 *  @adapter: board private structure
3812 *
3813 *  Free all receive software resources
3814 **/
3815static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3816{
3817	int i;
3818
3819	for (i = 0; i < adapter->num_rx_queues; i++)
3820		igb_free_rx_resources(adapter->rx_ring[i]);
3821}
3822
3823/**
3824 *  igb_clean_rx_ring - Free Rx Buffers per Queue
3825 *  @rx_ring: ring to free buffers from
3826 **/
3827static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3828{
3829	unsigned long size;
3830	u16 i;
3831
3832	if (rx_ring->skb)
3833		dev_kfree_skb(rx_ring->skb);
3834	rx_ring->skb = NULL;
3835
3836	if (!rx_ring->rx_buffer_info)
3837		return;
3838
3839	/* Free all the Rx ring sk_buffs */
3840	for (i = 0; i < rx_ring->count; i++) {
3841		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3842
3843		if (!buffer_info->page)
3844			continue;
3845
3846		dma_unmap_page(rx_ring->dev,
3847			       buffer_info->dma,
3848			       PAGE_SIZE,
3849			       DMA_FROM_DEVICE);
3850		__free_page(buffer_info->page);
3851
3852		buffer_info->page = NULL;
3853	}
3854
3855	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3856	memset(rx_ring->rx_buffer_info, 0, size);
3857
3858	/* Zero out the descriptor ring */
3859	memset(rx_ring->desc, 0, rx_ring->size);
3860
3861	rx_ring->next_to_alloc = 0;
3862	rx_ring->next_to_clean = 0;
3863	rx_ring->next_to_use = 0;
3864}
3865
3866/**
3867 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3868 *  @adapter: board private structure
3869 **/
3870static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3871{
3872	int i;
3873
3874	for (i = 0; i < adapter->num_rx_queues; i++)
3875		igb_clean_rx_ring(adapter->rx_ring[i]);
3876}
3877
3878/**
3879 *  igb_set_mac - Change the Ethernet Address of the NIC
3880 *  @netdev: network interface device structure
3881 *  @p: pointer to an address structure
3882 *
3883 *  Returns 0 on success, negative on failure
3884 **/
3885static int igb_set_mac(struct net_device *netdev, void *p)
3886{
3887	struct igb_adapter *adapter = netdev_priv(netdev);
3888	struct e1000_hw *hw = &adapter->hw;
3889	struct sockaddr *addr = p;
3890
3891	if (!is_valid_ether_addr(addr->sa_data))
3892		return -EADDRNOTAVAIL;
3893
3894	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3895	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3896
3897	/* set the correct pool for the new PF MAC address in entry 0 */
3898	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3899			 adapter->vfs_allocated_count);
3900
3901	return 0;
3902}
3903
3904/**
3905 *  igb_write_mc_addr_list - write multicast addresses to MTA
3906 *  @netdev: network interface device structure
3907 *
3908 *  Writes multicast address list to the MTA hash table.
3909 *  Returns: -ENOMEM on failure
3910 *           0 on no addresses written
3911 *           X on writing X addresses to MTA
3912 **/
3913static int igb_write_mc_addr_list(struct net_device *netdev)
3914{
3915	struct igb_adapter *adapter = netdev_priv(netdev);
3916	struct e1000_hw *hw = &adapter->hw;
3917	struct netdev_hw_addr *ha;
3918	u8  *mta_list;
3919	int i;
3920
3921	if (netdev_mc_empty(netdev)) {
3922		/* nothing to program, so clear mc list */
3923		igb_update_mc_addr_list(hw, NULL, 0);
3924		igb_restore_vf_multicasts(adapter);
3925		return 0;
3926	}
3927
3928	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3929	if (!mta_list)
3930		return -ENOMEM;
3931
3932	/* The shared function expects a packed array of only addresses. */
3933	i = 0;
3934	netdev_for_each_mc_addr(ha, netdev)
3935		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3936
3937	igb_update_mc_addr_list(hw, mta_list, i);
3938	kfree(mta_list);
3939
3940	return netdev_mc_count(netdev);
3941}
3942
3943/**
3944 *  igb_write_uc_addr_list - write unicast addresses to RAR table
3945 *  @netdev: network interface device structure
3946 *
3947 *  Writes unicast address list to the RAR table.
3948 *  Returns: -ENOMEM on failure/insufficient address space
3949 *           0 on no addresses written
3950 *           X on writing X addresses to the RAR table
3951 **/
3952static int igb_write_uc_addr_list(struct net_device *netdev)
3953{
3954	struct igb_adapter *adapter = netdev_priv(netdev);
3955	struct e1000_hw *hw = &adapter->hw;
3956	unsigned int vfn = adapter->vfs_allocated_count;
3957	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3958	int count = 0;
3959
3960	/* return ENOMEM indicating insufficient memory for addresses */
3961	if (netdev_uc_count(netdev) > rar_entries)
3962		return -ENOMEM;
3963
3964	if (!netdev_uc_empty(netdev) && rar_entries) {
3965		struct netdev_hw_addr *ha;
3966
3967		netdev_for_each_uc_addr(ha, netdev) {
3968			if (!rar_entries)
3969				break;
3970			igb_rar_set_qsel(adapter, ha->addr,
3971					 rar_entries--,
3972					 vfn);
3973			count++;
3974		}
3975	}
3976	/* write the addresses in reverse order to avoid write combining */
3977	for (; rar_entries > 0 ; rar_entries--) {
3978		wr32(E1000_RAH(rar_entries), 0);
3979		wr32(E1000_RAL(rar_entries), 0);
3980	}
3981	wrfl();
3982
3983	return count;
3984}
3985
3986/**
3987 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3988 *  @netdev: network interface device structure
3989 *
3990 *  The set_rx_mode entry point is called whenever the unicast or multicast
3991 *  address lists or the network interface flags are updated.  This routine is
3992 *  responsible for configuring the hardware for proper unicast, multicast,
3993 *  promiscuous mode, and all-multi behavior.
3994 **/
3995static void igb_set_rx_mode(struct net_device *netdev)
3996{
3997	struct igb_adapter *adapter = netdev_priv(netdev);
3998	struct e1000_hw *hw = &adapter->hw;
3999	unsigned int vfn = adapter->vfs_allocated_count;
4000	u32 rctl, vmolr = 0;
4001	int count;
4002
4003	/* Check for Promiscuous and All Multicast modes */
4004	rctl = rd32(E1000_RCTL);
4005
4006	/* clear the effected bits */
4007	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4008
4009	if (netdev->flags & IFF_PROMISC) {
4010		/* retain VLAN HW filtering if in VT mode */
4011		if (adapter->vfs_allocated_count)
4012			rctl |= E1000_RCTL_VFE;
4013		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4014		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4015	} else {
4016		if (netdev->flags & IFF_ALLMULTI) {
4017			rctl |= E1000_RCTL_MPE;
4018			vmolr |= E1000_VMOLR_MPME;
4019		} else {
4020			/* Write addresses to the MTA, if the attempt fails
4021			 * then we should just turn on promiscuous mode so
4022			 * that we can at least receive multicast traffic
4023			 */
4024			count = igb_write_mc_addr_list(netdev);
4025			if (count < 0) {
4026				rctl |= E1000_RCTL_MPE;
4027				vmolr |= E1000_VMOLR_MPME;
4028			} else if (count) {
4029				vmolr |= E1000_VMOLR_ROMPE;
4030			}
4031		}
4032		/* Write addresses to available RAR registers, if there is not
4033		 * sufficient space to store all the addresses then enable
4034		 * unicast promiscuous mode
4035		 */
4036		count = igb_write_uc_addr_list(netdev);
4037		if (count < 0) {
4038			rctl |= E1000_RCTL_UPE;
4039			vmolr |= E1000_VMOLR_ROPE;
4040		}
4041		rctl |= E1000_RCTL_VFE;
4042	}
4043	wr32(E1000_RCTL, rctl);
4044
4045	/* In order to support SR-IOV and eventually VMDq it is necessary to set
4046	 * the VMOLR to enable the appropriate modes.  Without this workaround
4047	 * we will have issues with VLAN tag stripping not being done for frames
4048	 * that are only arriving because we are the default pool
4049	 */
4050	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4051		return;
4052
4053	vmolr |= rd32(E1000_VMOLR(vfn)) &
4054		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4055	wr32(E1000_VMOLR(vfn), vmolr);
4056	igb_restore_vf_multicasts(adapter);
4057}
4058
4059static void igb_check_wvbr(struct igb_adapter *adapter)
4060{
4061	struct e1000_hw *hw = &adapter->hw;
4062	u32 wvbr = 0;
4063
4064	switch (hw->mac.type) {
4065	case e1000_82576:
4066	case e1000_i350:
4067		wvbr = rd32(E1000_WVBR);
4068		if (!wvbr)
4069			return;
4070		break;
4071	default:
4072		break;
4073	}
4074
4075	adapter->wvbr |= wvbr;
4076}
4077
4078#define IGB_STAGGERED_QUEUE_OFFSET 8
4079
4080static void igb_spoof_check(struct igb_adapter *adapter)
4081{
4082	int j;
4083
4084	if (!adapter->wvbr)
4085		return;
4086
4087	for (j = 0; j < adapter->vfs_allocated_count; j++) {
4088		if (adapter->wvbr & (1 << j) ||
4089		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4090			dev_warn(&adapter->pdev->dev,
4091				"Spoof event(s) detected on VF %d\n", j);
4092			adapter->wvbr &=
4093				~((1 << j) |
4094				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4095		}
4096	}
4097}
4098
4099/* Need to wait a few seconds after link up to get diagnostic information from
4100 * the phy
4101 */
4102static void igb_update_phy_info(unsigned long data)
4103{
4104	struct igb_adapter *adapter = (struct igb_adapter *) data;
4105	igb_get_phy_info(&adapter->hw);
4106}
4107
4108/**
4109 *  igb_has_link - check shared code for link and determine up/down
4110 *  @adapter: pointer to driver private info
4111 **/
4112bool igb_has_link(struct igb_adapter *adapter)
4113{
4114	struct e1000_hw *hw = &adapter->hw;
4115	bool link_active = false;
4116
4117	/* get_link_status is set on LSC (link status) interrupt or
4118	 * rx sequence error interrupt.  get_link_status will stay
4119	 * false until the e1000_check_for_link establishes link
4120	 * for copper adapters ONLY
4121	 */
4122	switch (hw->phy.media_type) {
4123	case e1000_media_type_copper:
4124		if (!hw->mac.get_link_status)
4125			return true;
4126	case e1000_media_type_internal_serdes:
4127		hw->mac.ops.check_for_link(hw);
4128		link_active = !hw->mac.get_link_status;
4129		break;
4130	default:
4131	case e1000_media_type_unknown:
4132		break;
4133	}
4134
4135	if (((hw->mac.type == e1000_i210) ||
4136	     (hw->mac.type == e1000_i211)) &&
4137	     (hw->phy.id == I210_I_PHY_ID)) {
4138		if (!netif_carrier_ok(adapter->netdev)) {
4139			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4140		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4141			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4142			adapter->link_check_timeout = jiffies;
4143		}
4144	}
4145
4146	return link_active;
4147}
4148
4149static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4150{
4151	bool ret = false;
4152	u32 ctrl_ext, thstat;
4153
4154	/* check for thermal sensor event on i350 copper only */
4155	if (hw->mac.type == e1000_i350) {
4156		thstat = rd32(E1000_THSTAT);
4157		ctrl_ext = rd32(E1000_CTRL_EXT);
4158
4159		if ((hw->phy.media_type == e1000_media_type_copper) &&
4160		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4161			ret = !!(thstat & event);
4162	}
4163
4164	return ret;
4165}
4166
4167/**
4168 *  igb_watchdog - Timer Call-back
4169 *  @data: pointer to adapter cast into an unsigned long
4170 **/
4171static void igb_watchdog(unsigned long data)
4172{
4173	struct igb_adapter *adapter = (struct igb_adapter *)data;
4174	/* Do the rest outside of interrupt context */
4175	schedule_work(&adapter->watchdog_task);
4176}
4177
4178static void igb_watchdog_task(struct work_struct *work)
4179{
4180	struct igb_adapter *adapter = container_of(work,
4181						   struct igb_adapter,
4182						   watchdog_task);
4183	struct e1000_hw *hw = &adapter->hw;
4184	struct e1000_phy_info *phy = &hw->phy;
4185	struct net_device *netdev = adapter->netdev;
4186	u32 link;
4187	int i;
4188	u32 connsw;
4189
4190	link = igb_has_link(adapter);
4191
4192	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4193		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4194			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4195		else
4196			link = false;
4197	}
4198
4199	/* Force link down if we have fiber to swap to */
4200	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4201		if (hw->phy.media_type == e1000_media_type_copper) {
4202			connsw = rd32(E1000_CONNSW);
4203			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4204				link = 0;
4205		}
4206	}
4207	if (link) {
4208		/* Perform a reset if the media type changed. */
4209		if (hw->dev_spec._82575.media_changed) {
4210			hw->dev_spec._82575.media_changed = false;
4211			adapter->flags |= IGB_FLAG_MEDIA_RESET;
4212			igb_reset(adapter);
4213		}
4214		/* Cancel scheduled suspend requests. */
4215		pm_runtime_resume(netdev->dev.parent);
4216
4217		if (!netif_carrier_ok(netdev)) {
4218			u32 ctrl;
4219
4220			hw->mac.ops.get_speed_and_duplex(hw,
4221							 &adapter->link_speed,
4222							 &adapter->link_duplex);
4223
4224			ctrl = rd32(E1000_CTRL);
4225			/* Links status message must follow this format */
4226			netdev_info(netdev,
4227			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4228			       netdev->name,
4229			       adapter->link_speed,
4230			       adapter->link_duplex == FULL_DUPLEX ?
4231			       "Full" : "Half",
4232			       (ctrl & E1000_CTRL_TFCE) &&
4233			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4234			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4235			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4236
4237			/* disable EEE if enabled */
4238			if ((adapter->flags & IGB_FLAG_EEE) &&
4239				(adapter->link_duplex == HALF_DUPLEX)) {
4240				dev_info(&adapter->pdev->dev,
4241				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4242				adapter->hw.dev_spec._82575.eee_disable = true;
4243				adapter->flags &= ~IGB_FLAG_EEE;
4244			}
4245
4246			/* check if SmartSpeed worked */
4247			igb_check_downshift(hw);
4248			if (phy->speed_downgraded)
4249				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4250
4251			/* check for thermal sensor event */
4252			if (igb_thermal_sensor_event(hw,
4253			    E1000_THSTAT_LINK_THROTTLE))
4254				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4255
4256			/* adjust timeout factor according to speed/duplex */
4257			adapter->tx_timeout_factor = 1;
4258			switch (adapter->link_speed) {
4259			case SPEED_10:
4260				adapter->tx_timeout_factor = 14;
4261				break;
4262			case SPEED_100:
4263				/* maybe add some timeout factor ? */
4264				break;
4265			}
4266
4267			netif_carrier_on(netdev);
4268
4269			igb_ping_all_vfs(adapter);
4270			igb_check_vf_rate_limit(adapter);
4271
4272			/* link state has changed, schedule phy info update */
4273			if (!test_bit(__IGB_DOWN, &adapter->state))
4274				mod_timer(&adapter->phy_info_timer,
4275					  round_jiffies(jiffies + 2 * HZ));
4276		}
4277	} else {
4278		if (netif_carrier_ok(netdev)) {
4279			adapter->link_speed = 0;
4280			adapter->link_duplex = 0;
4281
4282			/* check for thermal sensor event */
4283			if (igb_thermal_sensor_event(hw,
4284			    E1000_THSTAT_PWR_DOWN)) {
4285				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4286			}
4287
4288			/* Links status message must follow this format */
4289			netdev_info(netdev, "igb: %s NIC Link is Down\n",
4290			       netdev->name);
4291			netif_carrier_off(netdev);
4292
4293			igb_ping_all_vfs(adapter);
4294
4295			/* link state has changed, schedule phy info update */
4296			if (!test_bit(__IGB_DOWN, &adapter->state))
4297				mod_timer(&adapter->phy_info_timer,
4298					  round_jiffies(jiffies + 2 * HZ));
4299
4300			/* link is down, time to check for alternate media */
4301			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4302				igb_check_swap_media(adapter);
4303				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4304					schedule_work(&adapter->reset_task);
4305					/* return immediately */
4306					return;
4307				}
4308			}
4309			pm_schedule_suspend(netdev->dev.parent,
4310					    MSEC_PER_SEC * 5);
4311
4312		/* also check for alternate media here */
4313		} else if (!netif_carrier_ok(netdev) &&
4314			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4315			igb_check_swap_media(adapter);
4316			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4317				schedule_work(&adapter->reset_task);
4318				/* return immediately */
4319				return;
4320			}
4321		}
4322	}
4323
4324	spin_lock(&adapter->stats64_lock);
4325	igb_update_stats(adapter, &adapter->stats64);
4326	spin_unlock(&adapter->stats64_lock);
4327
4328	for (i = 0; i < adapter->num_tx_queues; i++) {
4329		struct igb_ring *tx_ring = adapter->tx_ring[i];
4330		if (!netif_carrier_ok(netdev)) {
4331			/* We've lost link, so the controller stops DMA,
4332			 * but we've got queued Tx work that's never going
4333			 * to get done, so reset controller to flush Tx.
4334			 * (Do the reset outside of interrupt context).
4335			 */
4336			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4337				adapter->tx_timeout_count++;
4338				schedule_work(&adapter->reset_task);
4339				/* return immediately since reset is imminent */
4340				return;
4341			}
4342		}
4343
4344		/* Force detection of hung controller every watchdog period */
4345		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4346	}
4347
4348	/* Cause software interrupt to ensure Rx ring is cleaned */
4349	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4350		u32 eics = 0;
4351
4352		for (i = 0; i < adapter->num_q_vectors; i++)
4353			eics |= adapter->q_vector[i]->eims_value;
4354		wr32(E1000_EICS, eics);
4355	} else {
4356		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4357	}
4358
4359	igb_spoof_check(adapter);
4360	igb_ptp_rx_hang(adapter);
4361
4362	/* Reset the timer */
4363	if (!test_bit(__IGB_DOWN, &adapter->state)) {
4364		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4365			mod_timer(&adapter->watchdog_timer,
4366				  round_jiffies(jiffies +  HZ));
4367		else
4368			mod_timer(&adapter->watchdog_timer,
4369				  round_jiffies(jiffies + 2 * HZ));
4370	}
4371}
4372
4373enum latency_range {
4374	lowest_latency = 0,
4375	low_latency = 1,
4376	bulk_latency = 2,
4377	latency_invalid = 255
4378};
4379
4380/**
4381 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4382 *  @q_vector: pointer to q_vector
4383 *
4384 *  Stores a new ITR value based on strictly on packet size.  This
4385 *  algorithm is less sophisticated than that used in igb_update_itr,
4386 *  due to the difficulty of synchronizing statistics across multiple
4387 *  receive rings.  The divisors and thresholds used by this function
4388 *  were determined based on theoretical maximum wire speed and testing
4389 *  data, in order to minimize response time while increasing bulk
4390 *  throughput.
4391 *  This functionality is controlled by ethtool's coalescing settings.
4392 *  NOTE:  This function is called only when operating in a multiqueue
4393 *         receive environment.
4394 **/
4395static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4396{
4397	int new_val = q_vector->itr_val;
4398	int avg_wire_size = 0;
4399	struct igb_adapter *adapter = q_vector->adapter;
4400	unsigned int packets;
4401
4402	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4403	 * ints/sec - ITR timer value of 120 ticks.
4404	 */
4405	if (adapter->link_speed != SPEED_1000) {
4406		new_val = IGB_4K_ITR;
4407		goto set_itr_val;
4408	}
4409
4410	packets = q_vector->rx.total_packets;
4411	if (packets)
4412		avg_wire_size = q_vector->rx.total_bytes / packets;
4413
4414	packets = q_vector->tx.total_packets;
4415	if (packets)
4416		avg_wire_size = max_t(u32, avg_wire_size,
4417				      q_vector->tx.total_bytes / packets);
4418
4419	/* if avg_wire_size isn't set no work was done */
4420	if (!avg_wire_size)
4421		goto clear_counts;
4422
4423	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4424	avg_wire_size += 24;
4425
4426	/* Don't starve jumbo frames */
4427	avg_wire_size = min(avg_wire_size, 3000);
4428
4429	/* Give a little boost to mid-size frames */
4430	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4431		new_val = avg_wire_size / 3;
4432	else
4433		new_val = avg_wire_size / 2;
4434
4435	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4436	if (new_val < IGB_20K_ITR &&
4437	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4438	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4439		new_val = IGB_20K_ITR;
4440
4441set_itr_val:
4442	if (new_val != q_vector->itr_val) {
4443		q_vector->itr_val = new_val;
4444		q_vector->set_itr = 1;
4445	}
4446clear_counts:
4447	q_vector->rx.total_bytes = 0;
4448	q_vector->rx.total_packets = 0;
4449	q_vector->tx.total_bytes = 0;
4450	q_vector->tx.total_packets = 0;
4451}
4452
4453/**
4454 *  igb_update_itr - update the dynamic ITR value based on statistics
4455 *  @q_vector: pointer to q_vector
4456 *  @ring_container: ring info to update the itr for
4457 *
4458 *  Stores a new ITR value based on packets and byte
4459 *  counts during the last interrupt.  The advantage of per interrupt
4460 *  computation is faster updates and more accurate ITR for the current
4461 *  traffic pattern.  Constants in this function were computed
4462 *  based on theoretical maximum wire speed and thresholds were set based
4463 *  on testing data as well as attempting to minimize response time
4464 *  while increasing bulk throughput.
4465 *  This functionality is controlled by ethtool's coalescing settings.
4466 *  NOTE:  These calculations are only valid when operating in a single-
4467 *         queue environment.
4468 **/
4469static void igb_update_itr(struct igb_q_vector *q_vector,
4470			   struct igb_ring_container *ring_container)
4471{
4472	unsigned int packets = ring_container->total_packets;
4473	unsigned int bytes = ring_container->total_bytes;
4474	u8 itrval = ring_container->itr;
4475
4476	/* no packets, exit with status unchanged */
4477	if (packets == 0)
4478		return;
4479
4480	switch (itrval) {
4481	case lowest_latency:
4482		/* handle TSO and jumbo frames */
4483		if (bytes/packets > 8000)
4484			itrval = bulk_latency;
4485		else if ((packets < 5) && (bytes > 512))
4486			itrval = low_latency;
4487		break;
4488	case low_latency:  /* 50 usec aka 20000 ints/s */
4489		if (bytes > 10000) {
4490			/* this if handles the TSO accounting */
4491			if (bytes/packets > 8000)
4492				itrval = bulk_latency;
4493			else if ((packets < 10) || ((bytes/packets) > 1200))
4494				itrval = bulk_latency;
4495			else if ((packets > 35))
4496				itrval = lowest_latency;
4497		} else if (bytes/packets > 2000) {
4498			itrval = bulk_latency;
4499		} else if (packets <= 2 && bytes < 512) {
4500			itrval = lowest_latency;
4501		}
4502		break;
4503	case bulk_latency: /* 250 usec aka 4000 ints/s */
4504		if (bytes > 25000) {
4505			if (packets > 35)
4506				itrval = low_latency;
4507		} else if (bytes < 1500) {
4508			itrval = low_latency;
4509		}
4510		break;
4511	}
4512
4513	/* clear work counters since we have the values we need */
4514	ring_container->total_bytes = 0;
4515	ring_container->total_packets = 0;
4516
4517	/* write updated itr to ring container */
4518	ring_container->itr = itrval;
4519}
4520
4521static void igb_set_itr(struct igb_q_vector *q_vector)
4522{
4523	struct igb_adapter *adapter = q_vector->adapter;
4524	u32 new_itr = q_vector->itr_val;
4525	u8 current_itr = 0;
4526
4527	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4528	if (adapter->link_speed != SPEED_1000) {
4529		current_itr = 0;
4530		new_itr = IGB_4K_ITR;
4531		goto set_itr_now;
4532	}
4533
4534	igb_update_itr(q_vector, &q_vector->tx);
4535	igb_update_itr(q_vector, &q_vector->rx);
4536
4537	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4538
4539	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4540	if (current_itr == lowest_latency &&
4541	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4542	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4543		current_itr = low_latency;
4544
4545	switch (current_itr) {
4546	/* counts and packets in update_itr are dependent on these numbers */
4547	case lowest_latency:
4548		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4549		break;
4550	case low_latency:
4551		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4552		break;
4553	case bulk_latency:
4554		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4555		break;
4556	default:
4557		break;
4558	}
4559
4560set_itr_now:
4561	if (new_itr != q_vector->itr_val) {
4562		/* this attempts to bias the interrupt rate towards Bulk
4563		 * by adding intermediate steps when interrupt rate is
4564		 * increasing
4565		 */
4566		new_itr = new_itr > q_vector->itr_val ?
4567			  max((new_itr * q_vector->itr_val) /
4568			  (new_itr + (q_vector->itr_val >> 2)),
4569			  new_itr) : new_itr;
4570		/* Don't write the value here; it resets the adapter's
4571		 * internal timer, and causes us to delay far longer than
4572		 * we should between interrupts.  Instead, we write the ITR
4573		 * value at the beginning of the next interrupt so the timing
4574		 * ends up being correct.
4575		 */
4576		q_vector->itr_val = new_itr;
4577		q_vector->set_itr = 1;
4578	}
4579}
4580
4581static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4582			    u32 type_tucmd, u32 mss_l4len_idx)
4583{
4584	struct e1000_adv_tx_context_desc *context_desc;
4585	u16 i = tx_ring->next_to_use;
4586
4587	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4588
4589	i++;
4590	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4591
4592	/* set bits to identify this as an advanced context descriptor */
4593	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4594
4595	/* For 82575, context index must be unique per ring. */
4596	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4597		mss_l4len_idx |= tx_ring->reg_idx << 4;
4598
4599	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4600	context_desc->seqnum_seed	= 0;
4601	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4602	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4603}
4604
4605static int igb_tso(struct igb_ring *tx_ring,
4606		   struct igb_tx_buffer *first,
4607		   u8 *hdr_len)
4608{
4609	struct sk_buff *skb = first->skb;
4610	u32 vlan_macip_lens, type_tucmd;
4611	u32 mss_l4len_idx, l4len;
4612	int err;
4613
4614	if (skb->ip_summed != CHECKSUM_PARTIAL)
4615		return 0;
4616
4617	if (!skb_is_gso(skb))
4618		return 0;
4619
4620	err = skb_cow_head(skb, 0);
4621	if (err < 0)
4622		return err;
4623
4624	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4625	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4626
4627	if (first->protocol == htons(ETH_P_IP)) {
4628		struct iphdr *iph = ip_hdr(skb);
4629		iph->tot_len = 0;
4630		iph->check = 0;
4631		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4632							 iph->daddr, 0,
4633							 IPPROTO_TCP,
4634							 0);
4635		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4636		first->tx_flags |= IGB_TX_FLAGS_TSO |
4637				   IGB_TX_FLAGS_CSUM |
4638				   IGB_TX_FLAGS_IPV4;
4639	} else if (skb_is_gso_v6(skb)) {
4640		ipv6_hdr(skb)->payload_len = 0;
4641		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4642						       &ipv6_hdr(skb)->daddr,
4643						       0, IPPROTO_TCP, 0);
4644		first->tx_flags |= IGB_TX_FLAGS_TSO |
4645				   IGB_TX_FLAGS_CSUM;
4646	}
4647
4648	/* compute header lengths */
4649	l4len = tcp_hdrlen(skb);
4650	*hdr_len = skb_transport_offset(skb) + l4len;
4651
4652	/* update gso size and bytecount with header size */
4653	first->gso_segs = skb_shinfo(skb)->gso_segs;
4654	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4655
4656	/* MSS L4LEN IDX */
4657	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4658	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4659
4660	/* VLAN MACLEN IPLEN */
4661	vlan_macip_lens = skb_network_header_len(skb);
4662	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4663	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4664
4665	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4666
4667	return 1;
4668}
4669
4670static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4671{
4672	struct sk_buff *skb = first->skb;
4673	u32 vlan_macip_lens = 0;
4674	u32 mss_l4len_idx = 0;
4675	u32 type_tucmd = 0;
4676
4677	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4678		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4679			return;
4680	} else {
4681		u8 l4_hdr = 0;
4682
4683		switch (first->protocol) {
4684		case htons(ETH_P_IP):
4685			vlan_macip_lens |= skb_network_header_len(skb);
4686			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4687			l4_hdr = ip_hdr(skb)->protocol;
4688			break;
4689		case htons(ETH_P_IPV6):
4690			vlan_macip_lens |= skb_network_header_len(skb);
4691			l4_hdr = ipv6_hdr(skb)->nexthdr;
4692			break;
4693		default:
4694			if (unlikely(net_ratelimit())) {
4695				dev_warn(tx_ring->dev,
4696					 "partial checksum but proto=%x!\n",
4697					 first->protocol);
4698			}
4699			break;
4700		}
4701
4702		switch (l4_hdr) {
4703		case IPPROTO_TCP:
4704			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4705			mss_l4len_idx = tcp_hdrlen(skb) <<
4706					E1000_ADVTXD_L4LEN_SHIFT;
4707			break;
4708		case IPPROTO_SCTP:
4709			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4710			mss_l4len_idx = sizeof(struct sctphdr) <<
4711					E1000_ADVTXD_L4LEN_SHIFT;
4712			break;
4713		case IPPROTO_UDP:
4714			mss_l4len_idx = sizeof(struct udphdr) <<
4715					E1000_ADVTXD_L4LEN_SHIFT;
4716			break;
4717		default:
4718			if (unlikely(net_ratelimit())) {
4719				dev_warn(tx_ring->dev,
4720					 "partial checksum but l4 proto=%x!\n",
4721					 l4_hdr);
4722			}
4723			break;
4724		}
4725
4726		/* update TX checksum flag */
4727		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4728	}
4729
4730	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4731	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4732
4733	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4734}
4735
4736#define IGB_SET_FLAG(_input, _flag, _result) \
4737	((_flag <= _result) ? \
4738	 ((u32)(_input & _flag) * (_result / _flag)) : \
4739	 ((u32)(_input & _flag) / (_flag / _result)))
4740
4741static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4742{
4743	/* set type for advanced descriptor with frame checksum insertion */
4744	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4745		       E1000_ADVTXD_DCMD_DEXT |
4746		       E1000_ADVTXD_DCMD_IFCS;
4747
4748	/* set HW vlan bit if vlan is present */
4749	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4750				 (E1000_ADVTXD_DCMD_VLE));
4751
4752	/* set segmentation bits for TSO */
4753	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4754				 (E1000_ADVTXD_DCMD_TSE));
4755
4756	/* set timestamp bit if present */
4757	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4758				 (E1000_ADVTXD_MAC_TSTAMP));
4759
4760	/* insert frame checksum */
4761	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4762
4763	return cmd_type;
4764}
4765
4766static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4767				 union e1000_adv_tx_desc *tx_desc,
4768				 u32 tx_flags, unsigned int paylen)
4769{
4770	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4771
4772	/* 82575 requires a unique index per ring */
4773	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4774		olinfo_status |= tx_ring->reg_idx << 4;
4775
4776	/* insert L4 checksum */
4777	olinfo_status |= IGB_SET_FLAG(tx_flags,
4778				      IGB_TX_FLAGS_CSUM,
4779				      (E1000_TXD_POPTS_TXSM << 8));
4780
4781	/* insert IPv4 checksum */
4782	olinfo_status |= IGB_SET_FLAG(tx_flags,
4783				      IGB_TX_FLAGS_IPV4,
4784				      (E1000_TXD_POPTS_IXSM << 8));
4785
4786	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4787}
4788
4789static void igb_tx_map(struct igb_ring *tx_ring,
4790		       struct igb_tx_buffer *first,
4791		       const u8 hdr_len)
4792{
4793	struct sk_buff *skb = first->skb;
4794	struct igb_tx_buffer *tx_buffer;
4795	union e1000_adv_tx_desc *tx_desc;
4796	struct skb_frag_struct *frag;
4797	dma_addr_t dma;
4798	unsigned int data_len, size;
4799	u32 tx_flags = first->tx_flags;
4800	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4801	u16 i = tx_ring->next_to_use;
4802
4803	tx_desc = IGB_TX_DESC(tx_ring, i);
4804
4805	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4806
4807	size = skb_headlen(skb);
4808	data_len = skb->data_len;
4809
4810	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4811
4812	tx_buffer = first;
4813
4814	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4815		if (dma_mapping_error(tx_ring->dev, dma))
4816			goto dma_error;
4817
4818		/* record length, and DMA address */
4819		dma_unmap_len_set(tx_buffer, len, size);
4820		dma_unmap_addr_set(tx_buffer, dma, dma);
4821
4822		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4823
4824		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4825			tx_desc->read.cmd_type_len =
4826				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4827
4828			i++;
4829			tx_desc++;
4830			if (i == tx_ring->count) {
4831				tx_desc = IGB_TX_DESC(tx_ring, 0);
4832				i = 0;
4833			}
4834			tx_desc->read.olinfo_status = 0;
4835
4836			dma += IGB_MAX_DATA_PER_TXD;
4837			size -= IGB_MAX_DATA_PER_TXD;
4838
4839			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4840		}
4841
4842		if (likely(!data_len))
4843			break;
4844
4845		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4846
4847		i++;
4848		tx_desc++;
4849		if (i == tx_ring->count) {
4850			tx_desc = IGB_TX_DESC(tx_ring, 0);
4851			i = 0;
4852		}
4853		tx_desc->read.olinfo_status = 0;
4854
4855		size = skb_frag_size(frag);
4856		data_len -= size;
4857
4858		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4859				       size, DMA_TO_DEVICE);
4860
4861		tx_buffer = &tx_ring->tx_buffer_info[i];
4862	}
4863
4864	/* write last descriptor with RS and EOP bits */
4865	cmd_type |= size | IGB_TXD_DCMD;
4866	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4867
4868	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4869
4870	/* set the timestamp */
4871	first->time_stamp = jiffies;
4872
4873	/* Force memory writes to complete before letting h/w know there
4874	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4875	 * memory model archs, such as IA-64).
4876	 *
4877	 * We also need this memory barrier to make certain all of the
4878	 * status bits have been updated before next_to_watch is written.
4879	 */
4880	wmb();
4881
4882	/* set next_to_watch value indicating a packet is present */
4883	first->next_to_watch = tx_desc;
4884
4885	i++;
4886	if (i == tx_ring->count)
4887		i = 0;
4888
4889	tx_ring->next_to_use = i;
4890
4891	writel(i, tx_ring->tail);
4892
4893	/* we need this if more than one processor can write to our tail
4894	 * at a time, it synchronizes IO on IA64/Altix systems
4895	 */
4896	mmiowb();
4897
4898	return;
4899
4900dma_error:
4901	dev_err(tx_ring->dev, "TX DMA map failed\n");
4902
4903	/* clear dma mappings for failed tx_buffer_info map */
4904	for (;;) {
4905		tx_buffer = &tx_ring->tx_buffer_info[i];
4906		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4907		if (tx_buffer == first)
4908			break;
4909		if (i == 0)
4910			i = tx_ring->count;
4911		i--;
4912	}
4913
4914	tx_ring->next_to_use = i;
4915}
4916
4917static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4918{
4919	struct net_device *netdev = tx_ring->netdev;
4920
4921	netif_stop_subqueue(netdev, tx_ring->queue_index);
4922
4923	/* Herbert's original patch had:
4924	 *  smp_mb__after_netif_stop_queue();
4925	 * but since that doesn't exist yet, just open code it.
4926	 */
4927	smp_mb();
4928
4929	/* We need to check again in a case another CPU has just
4930	 * made room available.
4931	 */
4932	if (igb_desc_unused(tx_ring) < size)
4933		return -EBUSY;
4934
4935	/* A reprieve! */
4936	netif_wake_subqueue(netdev, tx_ring->queue_index);
4937
4938	u64_stats_update_begin(&tx_ring->tx_syncp2);
4939	tx_ring->tx_stats.restart_queue2++;
4940	u64_stats_update_end(&tx_ring->tx_syncp2);
4941
4942	return 0;
4943}
4944
4945static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4946{
4947	if (igb_desc_unused(tx_ring) >= size)
4948		return 0;
4949	return __igb_maybe_stop_tx(tx_ring, size);
4950}
4951
4952netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4953				struct igb_ring *tx_ring)
4954{
4955	struct igb_tx_buffer *first;
4956	int tso;
4957	u32 tx_flags = 0;
4958	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4959	__be16 protocol = vlan_get_protocol(skb);
4960	u8 hdr_len = 0;
4961
4962	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4963	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4964	 *       + 2 desc gap to keep tail from touching head,
4965	 *       + 1 desc for context descriptor,
4966	 * otherwise try next time
4967	 */
4968	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4969		unsigned short f;
4970
4971		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4972			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4973	} else {
4974		count += skb_shinfo(skb)->nr_frags;
4975	}
4976
4977	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4978		/* this is a hard error */
4979		return NETDEV_TX_BUSY;
4980	}
4981
4982	/* record the location of the first descriptor for this packet */
4983	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4984	first->skb = skb;
4985	first->bytecount = skb->len;
4986	first->gso_segs = 1;
4987
4988	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4989		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4990
4991		if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
4992					   &adapter->state)) {
4993			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4994			tx_flags |= IGB_TX_FLAGS_TSTAMP;
4995
4996			adapter->ptp_tx_skb = skb_get(skb);
4997			adapter->ptp_tx_start = jiffies;
4998			if (adapter->hw.mac.type == e1000_82576)
4999				schedule_work(&adapter->ptp_tx_work);
5000		}
5001	}
5002
5003	skb_tx_timestamp(skb);
5004
5005	if (vlan_tx_tag_present(skb)) {
5006		tx_flags |= IGB_TX_FLAGS_VLAN;
5007		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5008	}
5009
5010	/* record initial flags and protocol */
5011	first->tx_flags = tx_flags;
5012	first->protocol = protocol;
5013
5014	tso = igb_tso(tx_ring, first, &hdr_len);
5015	if (tso < 0)
5016		goto out_drop;
5017	else if (!tso)
5018		igb_tx_csum(tx_ring, first);
5019
5020	igb_tx_map(tx_ring, first, hdr_len);
5021
5022	/* Make sure there is space in the ring for the next send. */
5023	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5024
5025	return NETDEV_TX_OK;
5026
5027out_drop:
5028	igb_unmap_and_free_tx_resource(tx_ring, first);
5029
5030	return NETDEV_TX_OK;
5031}
5032
5033static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5034						    struct sk_buff *skb)
5035{
5036	unsigned int r_idx = skb->queue_mapping;
5037
5038	if (r_idx >= adapter->num_tx_queues)
5039		r_idx = r_idx % adapter->num_tx_queues;
5040
5041	return adapter->tx_ring[r_idx];
5042}
5043
5044static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5045				  struct net_device *netdev)
5046{
5047	struct igb_adapter *adapter = netdev_priv(netdev);
5048
5049	if (test_bit(__IGB_DOWN, &adapter->state)) {
5050		dev_kfree_skb_any(skb);
5051		return NETDEV_TX_OK;
5052	}
5053
5054	if (skb->len <= 0) {
5055		dev_kfree_skb_any(skb);
5056		return NETDEV_TX_OK;
5057	}
5058
5059	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5060	 * in order to meet this minimum size requirement.
5061	 */
5062	if (unlikely(skb->len < 17)) {
5063		if (skb_pad(skb, 17 - skb->len))
5064			return NETDEV_TX_OK;
5065		skb->len = 17;
5066		skb_set_tail_pointer(skb, 17);
5067	}
5068
5069	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5070}
5071
5072/**
5073 *  igb_tx_timeout - Respond to a Tx Hang
5074 *  @netdev: network interface device structure
5075 **/
5076static void igb_tx_timeout(struct net_device *netdev)
5077{
5078	struct igb_adapter *adapter = netdev_priv(netdev);
5079	struct e1000_hw *hw = &adapter->hw;
5080
5081	/* Do the reset outside of interrupt context */
5082	adapter->tx_timeout_count++;
5083
5084	if (hw->mac.type >= e1000_82580)
5085		hw->dev_spec._82575.global_device_reset = true;
5086
5087	schedule_work(&adapter->reset_task);
5088	wr32(E1000_EICS,
5089	     (adapter->eims_enable_mask & ~adapter->eims_other));
5090}
5091
5092static void igb_reset_task(struct work_struct *work)
5093{
5094	struct igb_adapter *adapter;
5095	adapter = container_of(work, struct igb_adapter, reset_task);
5096
5097	igb_dump(adapter);
5098	netdev_err(adapter->netdev, "Reset adapter\n");
5099	igb_reinit_locked(adapter);
5100}
5101
5102/**
5103 *  igb_get_stats64 - Get System Network Statistics
5104 *  @netdev: network interface device structure
5105 *  @stats: rtnl_link_stats64 pointer
5106 **/
5107static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5108						struct rtnl_link_stats64 *stats)
5109{
5110	struct igb_adapter *adapter = netdev_priv(netdev);
5111
5112	spin_lock(&adapter->stats64_lock);
5113	igb_update_stats(adapter, &adapter->stats64);
5114	memcpy(stats, &adapter->stats64, sizeof(*stats));
5115	spin_unlock(&adapter->stats64_lock);
5116
5117	return stats;
5118}
5119
5120/**
5121 *  igb_change_mtu - Change the Maximum Transfer Unit
5122 *  @netdev: network interface device structure
5123 *  @new_mtu: new value for maximum frame size
5124 *
5125 *  Returns 0 on success, negative on failure
5126 **/
5127static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5128{
5129	struct igb_adapter *adapter = netdev_priv(netdev);
5130	struct pci_dev *pdev = adapter->pdev;
5131	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5132
5133	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5134		dev_err(&pdev->dev, "Invalid MTU setting\n");
5135		return -EINVAL;
5136	}
5137
5138#define MAX_STD_JUMBO_FRAME_SIZE 9238
5139	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5140		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5141		return -EINVAL;
5142	}
5143
5144	/* adjust max frame to be at least the size of a standard frame */
5145	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5146		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5147
5148	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5149		usleep_range(1000, 2000);
5150
5151	/* igb_down has a dependency on max_frame_size */
5152	adapter->max_frame_size = max_frame;
5153
5154	if (netif_running(netdev))
5155		igb_down(adapter);
5156
5157	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5158		 netdev->mtu, new_mtu);
5159	netdev->mtu = new_mtu;
5160
5161	if (netif_running(netdev))
5162		igb_up(adapter);
5163	else
5164		igb_reset(adapter);
5165
5166	clear_bit(__IGB_RESETTING, &adapter->state);
5167
5168	return 0;
5169}
5170
5171/**
5172 *  igb_update_stats - Update the board statistics counters
5173 *  @adapter: board private structure
5174 **/
5175void igb_update_stats(struct igb_adapter *adapter,
5176		      struct rtnl_link_stats64 *net_stats)
5177{
5178	struct e1000_hw *hw = &adapter->hw;
5179	struct pci_dev *pdev = adapter->pdev;
5180	u32 reg, mpc;
5181	u16 phy_tmp;
5182	int i;
5183	u64 bytes, packets;
5184	unsigned int start;
5185	u64 _bytes, _packets;
5186
5187#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
5188
5189	/* Prevent stats update while adapter is being reset, or if the pci
5190	 * connection is down.
5191	 */
5192	if (adapter->link_speed == 0)
5193		return;
5194	if (pci_channel_offline(pdev))
5195		return;
5196
5197	bytes = 0;
5198	packets = 0;
5199
5200	rcu_read_lock();
5201	for (i = 0; i < adapter->num_rx_queues; i++) {
5202		struct igb_ring *ring = adapter->rx_ring[i];
5203		u32 rqdpc = rd32(E1000_RQDPC(i));
5204		if (hw->mac.type >= e1000_i210)
5205			wr32(E1000_RQDPC(i), 0);
5206
5207		if (rqdpc) {
5208			ring->rx_stats.drops += rqdpc;
5209			net_stats->rx_fifo_errors += rqdpc;
5210		}
5211
5212		do {
5213			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5214			_bytes = ring->rx_stats.bytes;
5215			_packets = ring->rx_stats.packets;
5216		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5217		bytes += _bytes;
5218		packets += _packets;
5219	}
5220
5221	net_stats->rx_bytes = bytes;
5222	net_stats->rx_packets = packets;
5223
5224	bytes = 0;
5225	packets = 0;
5226	for (i = 0; i < adapter->num_tx_queues; i++) {
5227		struct igb_ring *ring = adapter->tx_ring[i];
5228		do {
5229			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5230			_bytes = ring->tx_stats.bytes;
5231			_packets = ring->tx_stats.packets;
5232		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5233		bytes += _bytes;
5234		packets += _packets;
5235	}
5236	net_stats->tx_bytes = bytes;
5237	net_stats->tx_packets = packets;
5238	rcu_read_unlock();
5239
5240	/* read stats registers */
5241	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5242	adapter->stats.gprc += rd32(E1000_GPRC);
5243	adapter->stats.gorc += rd32(E1000_GORCL);
5244	rd32(E1000_GORCH); /* clear GORCL */
5245	adapter->stats.bprc += rd32(E1000_BPRC);
5246	adapter->stats.mprc += rd32(E1000_MPRC);
5247	adapter->stats.roc += rd32(E1000_ROC);
5248
5249	adapter->stats.prc64 += rd32(E1000_PRC64);
5250	adapter->stats.prc127 += rd32(E1000_PRC127);
5251	adapter->stats.prc255 += rd32(E1000_PRC255);
5252	adapter->stats.prc511 += rd32(E1000_PRC511);
5253	adapter->stats.prc1023 += rd32(E1000_PRC1023);
5254	adapter->stats.prc1522 += rd32(E1000_PRC1522);
5255	adapter->stats.symerrs += rd32(E1000_SYMERRS);
5256	adapter->stats.sec += rd32(E1000_SEC);
5257
5258	mpc = rd32(E1000_MPC);
5259	adapter->stats.mpc += mpc;
5260	net_stats->rx_fifo_errors += mpc;
5261	adapter->stats.scc += rd32(E1000_SCC);
5262	adapter->stats.ecol += rd32(E1000_ECOL);
5263	adapter->stats.mcc += rd32(E1000_MCC);
5264	adapter->stats.latecol += rd32(E1000_LATECOL);
5265	adapter->stats.dc += rd32(E1000_DC);
5266	adapter->stats.rlec += rd32(E1000_RLEC);
5267	adapter->stats.xonrxc += rd32(E1000_XONRXC);
5268	adapter->stats.xontxc += rd32(E1000_XONTXC);
5269	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5270	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5271	adapter->stats.fcruc += rd32(E1000_FCRUC);
5272	adapter->stats.gptc += rd32(E1000_GPTC);
5273	adapter->stats.gotc += rd32(E1000_GOTCL);
5274	rd32(E1000_GOTCH); /* clear GOTCL */
5275	adapter->stats.rnbc += rd32(E1000_RNBC);
5276	adapter->stats.ruc += rd32(E1000_RUC);
5277	adapter->stats.rfc += rd32(E1000_RFC);
5278	adapter->stats.rjc += rd32(E1000_RJC);
5279	adapter->stats.tor += rd32(E1000_TORH);
5280	adapter->stats.tot += rd32(E1000_TOTH);
5281	adapter->stats.tpr += rd32(E1000_TPR);
5282
5283	adapter->stats.ptc64 += rd32(E1000_PTC64);
5284	adapter->stats.ptc127 += rd32(E1000_PTC127);
5285	adapter->stats.ptc255 += rd32(E1000_PTC255);
5286	adapter->stats.ptc511 += rd32(E1000_PTC511);
5287	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5288	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5289
5290	adapter->stats.mptc += rd32(E1000_MPTC);
5291	adapter->stats.bptc += rd32(E1000_BPTC);
5292
5293	adapter->stats.tpt += rd32(E1000_TPT);
5294	adapter->stats.colc += rd32(E1000_COLC);
5295
5296	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5297	/* read internal phy specific stats */
5298	reg = rd32(E1000_CTRL_EXT);
5299	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5300		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5301
5302		/* this stat has invalid values on i210/i211 */
5303		if ((hw->mac.type != e1000_i210) &&
5304		    (hw->mac.type != e1000_i211))
5305			adapter->stats.tncrs += rd32(E1000_TNCRS);
5306	}
5307
5308	adapter->stats.tsctc += rd32(E1000_TSCTC);
5309	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5310
5311	adapter->stats.iac += rd32(E1000_IAC);
5312	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5313	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5314	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5315	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5316	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5317	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5318	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5319	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5320
5321	/* Fill out the OS statistics structure */
5322	net_stats->multicast = adapter->stats.mprc;
5323	net_stats->collisions = adapter->stats.colc;
5324
5325	/* Rx Errors */
5326
5327	/* RLEC on some newer hardware can be incorrect so build
5328	 * our own version based on RUC and ROC
5329	 */
5330	net_stats->rx_errors = adapter->stats.rxerrc +
5331		adapter->stats.crcerrs + adapter->stats.algnerrc +
5332		adapter->stats.ruc + adapter->stats.roc +
5333		adapter->stats.cexterr;
5334	net_stats->rx_length_errors = adapter->stats.ruc +
5335				      adapter->stats.roc;
5336	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5337	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5338	net_stats->rx_missed_errors = adapter->stats.mpc;
5339
5340	/* Tx Errors */
5341	net_stats->tx_errors = adapter->stats.ecol +
5342			       adapter->stats.latecol;
5343	net_stats->tx_aborted_errors = adapter->stats.ecol;
5344	net_stats->tx_window_errors = adapter->stats.latecol;
5345	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5346
5347	/* Tx Dropped needs to be maintained elsewhere */
5348
5349	/* Phy Stats */
5350	if (hw->phy.media_type == e1000_media_type_copper) {
5351		if ((adapter->link_speed == SPEED_1000) &&
5352		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5353			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5354			adapter->phy_stats.idle_errors += phy_tmp;
5355		}
5356	}
5357
5358	/* Management Stats */
5359	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5360	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5361	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5362
5363	/* OS2BMC Stats */
5364	reg = rd32(E1000_MANC);
5365	if (reg & E1000_MANC_EN_BMC2OS) {
5366		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5367		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5368		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5369		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5370	}
5371}
5372
5373static irqreturn_t igb_msix_other(int irq, void *data)
5374{
5375	struct igb_adapter *adapter = data;
5376	struct e1000_hw *hw = &adapter->hw;
5377	u32 icr = rd32(E1000_ICR);
5378	/* reading ICR causes bit 31 of EICR to be cleared */
5379
5380	if (icr & E1000_ICR_DRSTA)
5381		schedule_work(&adapter->reset_task);
5382
5383	if (icr & E1000_ICR_DOUTSYNC) {
5384		/* HW is reporting DMA is out of sync */
5385		adapter->stats.doosync++;
5386		/* The DMA Out of Sync is also indication of a spoof event
5387		 * in IOV mode. Check the Wrong VM Behavior register to
5388		 * see if it is really a spoof event.
5389		 */
5390		igb_check_wvbr(adapter);
5391	}
5392
5393	/* Check for a mailbox event */
5394	if (icr & E1000_ICR_VMMB)
5395		igb_msg_task(adapter);
5396
5397	if (icr & E1000_ICR_LSC) {
5398		hw->mac.get_link_status = 1;
5399		/* guard against interrupt when we're going down */
5400		if (!test_bit(__IGB_DOWN, &adapter->state))
5401			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5402	}
5403
5404	if (icr & E1000_ICR_TS) {
5405		u32 tsicr = rd32(E1000_TSICR);
5406
5407		if (tsicr & E1000_TSICR_TXTS) {
5408			/* acknowledge the interrupt */
5409			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5410			/* retrieve hardware timestamp */
5411			schedule_work(&adapter->ptp_tx_work);
5412		}
5413	}
5414
5415	wr32(E1000_EIMS, adapter->eims_other);
5416
5417	return IRQ_HANDLED;
5418}
5419
5420static void igb_write_itr(struct igb_q_vector *q_vector)
5421{
5422	struct igb_adapter *adapter = q_vector->adapter;
5423	u32 itr_val = q_vector->itr_val & 0x7FFC;
5424
5425	if (!q_vector->set_itr)
5426		return;
5427
5428	if (!itr_val)
5429		itr_val = 0x4;
5430
5431	if (adapter->hw.mac.type == e1000_82575)
5432		itr_val |= itr_val << 16;
5433	else
5434		itr_val |= E1000_EITR_CNT_IGNR;
5435
5436	writel(itr_val, q_vector->itr_register);
5437	q_vector->set_itr = 0;
5438}
5439
5440static irqreturn_t igb_msix_ring(int irq, void *data)
5441{
5442	struct igb_q_vector *q_vector = data;
5443
5444	/* Write the ITR value calculated from the previous interrupt. */
5445	igb_write_itr(q_vector);
5446
5447	napi_schedule(&q_vector->napi);
5448
5449	return IRQ_HANDLED;
5450}
5451
5452#ifdef CONFIG_IGB_DCA
5453static void igb_update_tx_dca(struct igb_adapter *adapter,
5454			      struct igb_ring *tx_ring,
5455			      int cpu)
5456{
5457	struct e1000_hw *hw = &adapter->hw;
5458	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5459
5460	if (hw->mac.type != e1000_82575)
5461		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5462
5463	/* We can enable relaxed ordering for reads, but not writes when
5464	 * DCA is enabled.  This is due to a known issue in some chipsets
5465	 * which will cause the DCA tag to be cleared.
5466	 */
5467	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5468		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5469		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5470
5471	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5472}
5473
5474static void igb_update_rx_dca(struct igb_adapter *adapter,
5475			      struct igb_ring *rx_ring,
5476			      int cpu)
5477{
5478	struct e1000_hw *hw = &adapter->hw;
5479	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5480
5481	if (hw->mac.type != e1000_82575)
5482		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5483
5484	/* We can enable relaxed ordering for reads, but not writes when
5485	 * DCA is enabled.  This is due to a known issue in some chipsets
5486	 * which will cause the DCA tag to be cleared.
5487	 */
5488	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5489		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5490
5491	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5492}
5493
5494static void igb_update_dca(struct igb_q_vector *q_vector)
5495{
5496	struct igb_adapter *adapter = q_vector->adapter;
5497	int cpu = get_cpu();
5498
5499	if (q_vector->cpu == cpu)
5500		goto out_no_update;
5501
5502	if (q_vector->tx.ring)
5503		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5504
5505	if (q_vector->rx.ring)
5506		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5507
5508	q_vector->cpu = cpu;
5509out_no_update:
5510	put_cpu();
5511}
5512
5513static void igb_setup_dca(struct igb_adapter *adapter)
5514{
5515	struct e1000_hw *hw = &adapter->hw;
5516	int i;
5517
5518	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5519		return;
5520
5521	/* Always use CB2 mode, difference is masked in the CB driver. */
5522	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5523
5524	for (i = 0; i < adapter->num_q_vectors; i++) {
5525		adapter->q_vector[i]->cpu = -1;
5526		igb_update_dca(adapter->q_vector[i]);
5527	}
5528}
5529
5530static int __igb_notify_dca(struct device *dev, void *data)
5531{
5532	struct net_device *netdev = dev_get_drvdata(dev);
5533	struct igb_adapter *adapter = netdev_priv(netdev);
5534	struct pci_dev *pdev = adapter->pdev;
5535	struct e1000_hw *hw = &adapter->hw;
5536	unsigned long event = *(unsigned long *)data;
5537
5538	switch (event) {
5539	case DCA_PROVIDER_ADD:
5540		/* if already enabled, don't do it again */
5541		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5542			break;
5543		if (dca_add_requester(dev) == 0) {
5544			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5545			dev_info(&pdev->dev, "DCA enabled\n");
5546			igb_setup_dca(adapter);
5547			break;
5548		}
5549		/* Fall Through since DCA is disabled. */
5550	case DCA_PROVIDER_REMOVE:
5551		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5552			/* without this a class_device is left
5553			 * hanging around in the sysfs model
5554			 */
5555			dca_remove_requester(dev);
5556			dev_info(&pdev->dev, "DCA disabled\n");
5557			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5558			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5559		}
5560		break;
5561	}
5562
5563	return 0;
5564}
5565
5566static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5567			  void *p)
5568{
5569	int ret_val;
5570
5571	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5572					 __igb_notify_dca);
5573
5574	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5575}
5576#endif /* CONFIG_IGB_DCA */
5577
5578#ifdef CONFIG_PCI_IOV
5579static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5580{
5581	unsigned char mac_addr[ETH_ALEN];
5582
5583	eth_zero_addr(mac_addr);
5584	igb_set_vf_mac(adapter, vf, mac_addr);
5585
5586	/* By default spoof check is enabled for all VFs */
5587	adapter->vf_data[vf].spoofchk_enabled = true;
5588
5589	return 0;
5590}
5591
5592#endif
5593static void igb_ping_all_vfs(struct igb_adapter *adapter)
5594{
5595	struct e1000_hw *hw = &adapter->hw;
5596	u32 ping;
5597	int i;
5598
5599	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5600		ping = E1000_PF_CONTROL_MSG;
5601		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5602			ping |= E1000_VT_MSGTYPE_CTS;
5603		igb_write_mbx(hw, &ping, 1, i);
5604	}
5605}
5606
5607static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5608{
5609	struct e1000_hw *hw = &adapter->hw;
5610	u32 vmolr = rd32(E1000_VMOLR(vf));
5611	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5612
5613	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5614			    IGB_VF_FLAG_MULTI_PROMISC);
5615	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5616
5617	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5618		vmolr |= E1000_VMOLR_MPME;
5619		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5620		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5621	} else {
5622		/* if we have hashes and we are clearing a multicast promisc
5623		 * flag we need to write the hashes to the MTA as this step
5624		 * was previously skipped
5625		 */
5626		if (vf_data->num_vf_mc_hashes > 30) {
5627			vmolr |= E1000_VMOLR_MPME;
5628		} else if (vf_data->num_vf_mc_hashes) {
5629			int j;
5630
5631			vmolr |= E1000_VMOLR_ROMPE;
5632			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5633				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5634		}
5635	}
5636
5637	wr32(E1000_VMOLR(vf), vmolr);
5638
5639	/* there are flags left unprocessed, likely not supported */
5640	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5641		return -EINVAL;
5642
5643	return 0;
5644}
5645
5646static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5647				  u32 *msgbuf, u32 vf)
5648{
5649	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5650	u16 *hash_list = (u16 *)&msgbuf[1];
5651	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5652	int i;
5653
5654	/* salt away the number of multicast addresses assigned
5655	 * to this VF for later use to restore when the PF multi cast
5656	 * list changes
5657	 */
5658	vf_data->num_vf_mc_hashes = n;
5659
5660	/* only up to 30 hash values supported */
5661	if (n > 30)
5662		n = 30;
5663
5664	/* store the hashes for later use */
5665	for (i = 0; i < n; i++)
5666		vf_data->vf_mc_hashes[i] = hash_list[i];
5667
5668	/* Flush and reset the mta with the new values */
5669	igb_set_rx_mode(adapter->netdev);
5670
5671	return 0;
5672}
5673
5674static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5675{
5676	struct e1000_hw *hw = &adapter->hw;
5677	struct vf_data_storage *vf_data;
5678	int i, j;
5679
5680	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5681		u32 vmolr = rd32(E1000_VMOLR(i));
5682
5683		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5684
5685		vf_data = &adapter->vf_data[i];
5686
5687		if ((vf_data->num_vf_mc_hashes > 30) ||
5688		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5689			vmolr |= E1000_VMOLR_MPME;
5690		} else if (vf_data->num_vf_mc_hashes) {
5691			vmolr |= E1000_VMOLR_ROMPE;
5692			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5693				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5694		}
5695		wr32(E1000_VMOLR(i), vmolr);
5696	}
5697}
5698
5699static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5700{
5701	struct e1000_hw *hw = &adapter->hw;
5702	u32 pool_mask, reg, vid;
5703	int i;
5704
5705	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5706
5707	/* Find the vlan filter for this id */
5708	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5709		reg = rd32(E1000_VLVF(i));
5710
5711		/* remove the vf from the pool */
5712		reg &= ~pool_mask;
5713
5714		/* if pool is empty then remove entry from vfta */
5715		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5716		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5717			reg = 0;
5718			vid = reg & E1000_VLVF_VLANID_MASK;
5719			igb_vfta_set(hw, vid, false);
5720		}
5721
5722		wr32(E1000_VLVF(i), reg);
5723	}
5724
5725	adapter->vf_data[vf].vlans_enabled = 0;
5726}
5727
5728static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5729{
5730	struct e1000_hw *hw = &adapter->hw;
5731	u32 reg, i;
5732
5733	/* The vlvf table only exists on 82576 hardware and newer */
5734	if (hw->mac.type < e1000_82576)
5735		return -1;
5736
5737	/* we only need to do this if VMDq is enabled */
5738	if (!adapter->vfs_allocated_count)
5739		return -1;
5740
5741	/* Find the vlan filter for this id */
5742	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5743		reg = rd32(E1000_VLVF(i));
5744		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5745		    vid == (reg & E1000_VLVF_VLANID_MASK))
5746			break;
5747	}
5748
5749	if (add) {
5750		if (i == E1000_VLVF_ARRAY_SIZE) {
5751			/* Did not find a matching VLAN ID entry that was
5752			 * enabled.  Search for a free filter entry, i.e.
5753			 * one without the enable bit set
5754			 */
5755			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5756				reg = rd32(E1000_VLVF(i));
5757				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5758					break;
5759			}
5760		}
5761		if (i < E1000_VLVF_ARRAY_SIZE) {
5762			/* Found an enabled/available entry */
5763			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5764
5765			/* if !enabled we need to set this up in vfta */
5766			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5767				/* add VID to filter table */
5768				igb_vfta_set(hw, vid, true);
5769				reg |= E1000_VLVF_VLANID_ENABLE;
5770			}
5771			reg &= ~E1000_VLVF_VLANID_MASK;
5772			reg |= vid;
5773			wr32(E1000_VLVF(i), reg);
5774
5775			/* do not modify RLPML for PF devices */
5776			if (vf >= adapter->vfs_allocated_count)
5777				return 0;
5778
5779			if (!adapter->vf_data[vf].vlans_enabled) {
5780				u32 size;
5781
5782				reg = rd32(E1000_VMOLR(vf));
5783				size = reg & E1000_VMOLR_RLPML_MASK;
5784				size += 4;
5785				reg &= ~E1000_VMOLR_RLPML_MASK;
5786				reg |= size;
5787				wr32(E1000_VMOLR(vf), reg);
5788			}
5789
5790			adapter->vf_data[vf].vlans_enabled++;
5791		}
5792	} else {
5793		if (i < E1000_VLVF_ARRAY_SIZE) {
5794			/* remove vf from the pool */
5795			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5796			/* if pool is empty then remove entry from vfta */
5797			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5798				reg = 0;
5799				igb_vfta_set(hw, vid, false);
5800			}
5801			wr32(E1000_VLVF(i), reg);
5802
5803			/* do not modify RLPML for PF devices */
5804			if (vf >= adapter->vfs_allocated_count)
5805				return 0;
5806
5807			adapter->vf_data[vf].vlans_enabled--;
5808			if (!adapter->vf_data[vf].vlans_enabled) {
5809				u32 size;
5810
5811				reg = rd32(E1000_VMOLR(vf));
5812				size = reg & E1000_VMOLR_RLPML_MASK;
5813				size -= 4;
5814				reg &= ~E1000_VMOLR_RLPML_MASK;
5815				reg |= size;
5816				wr32(E1000_VMOLR(vf), reg);
5817			}
5818		}
5819	}
5820	return 0;
5821}
5822
5823static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5824{
5825	struct e1000_hw *hw = &adapter->hw;
5826
5827	if (vid)
5828		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5829	else
5830		wr32(E1000_VMVIR(vf), 0);
5831}
5832
5833static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5834			       int vf, u16 vlan, u8 qos)
5835{
5836	int err = 0;
5837	struct igb_adapter *adapter = netdev_priv(netdev);
5838
5839	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5840		return -EINVAL;
5841	if (vlan || qos) {
5842		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5843		if (err)
5844			goto out;
5845		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5846		igb_set_vmolr(adapter, vf, !vlan);
5847		adapter->vf_data[vf].pf_vlan = vlan;
5848		adapter->vf_data[vf].pf_qos = qos;
5849		dev_info(&adapter->pdev->dev,
5850			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5851		if (test_bit(__IGB_DOWN, &adapter->state)) {
5852			dev_warn(&adapter->pdev->dev,
5853				 "The VF VLAN has been set, but the PF device is not up.\n");
5854			dev_warn(&adapter->pdev->dev,
5855				 "Bring the PF device up before attempting to use the VF device.\n");
5856		}
5857	} else {
5858		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5859			     false, vf);
5860		igb_set_vmvir(adapter, vlan, vf);
5861		igb_set_vmolr(adapter, vf, true);
5862		adapter->vf_data[vf].pf_vlan = 0;
5863		adapter->vf_data[vf].pf_qos = 0;
5864	}
5865out:
5866	return err;
5867}
5868
5869static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5870{
5871	struct e1000_hw *hw = &adapter->hw;
5872	int i;
5873	u32 reg;
5874
5875	/* Find the vlan filter for this id */
5876	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5877		reg = rd32(E1000_VLVF(i));
5878		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5879		    vid == (reg & E1000_VLVF_VLANID_MASK))
5880			break;
5881	}
5882
5883	if (i >= E1000_VLVF_ARRAY_SIZE)
5884		i = -1;
5885
5886	return i;
5887}
5888
5889static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5890{
5891	struct e1000_hw *hw = &adapter->hw;
5892	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5893	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5894	int err = 0;
5895
5896	/* If in promiscuous mode we need to make sure the PF also has
5897	 * the VLAN filter set.
5898	 */
5899	if (add && (adapter->netdev->flags & IFF_PROMISC))
5900		err = igb_vlvf_set(adapter, vid, add,
5901				   adapter->vfs_allocated_count);
5902	if (err)
5903		goto out;
5904
5905	err = igb_vlvf_set(adapter, vid, add, vf);
5906
5907	if (err)
5908		goto out;
5909
5910	/* Go through all the checks to see if the VLAN filter should
5911	 * be wiped completely.
5912	 */
5913	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5914		u32 vlvf, bits;
5915		int regndx = igb_find_vlvf_entry(adapter, vid);
5916
5917		if (regndx < 0)
5918			goto out;
5919		/* See if any other pools are set for this VLAN filter
5920		 * entry other than the PF.
5921		 */
5922		vlvf = bits = rd32(E1000_VLVF(regndx));
5923		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5924			      adapter->vfs_allocated_count);
5925		/* If the filter was removed then ensure PF pool bit
5926		 * is cleared if the PF only added itself to the pool
5927		 * because the PF is in promiscuous mode.
5928		 */
5929		if ((vlvf & VLAN_VID_MASK) == vid &&
5930		    !test_bit(vid, adapter->active_vlans) &&
5931		    !bits)
5932			igb_vlvf_set(adapter, vid, add,
5933				     adapter->vfs_allocated_count);
5934	}
5935
5936out:
5937	return err;
5938}
5939
5940static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5941{
5942	/* clear flags - except flag that indicates PF has set the MAC */
5943	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5944	adapter->vf_data[vf].last_nack = jiffies;
5945
5946	/* reset offloads to defaults */
5947	igb_set_vmolr(adapter, vf, true);
5948
5949	/* reset vlans for device */
5950	igb_clear_vf_vfta(adapter, vf);
5951	if (adapter->vf_data[vf].pf_vlan)
5952		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5953				    adapter->vf_data[vf].pf_vlan,
5954				    adapter->vf_data[vf].pf_qos);
5955	else
5956		igb_clear_vf_vfta(adapter, vf);
5957
5958	/* reset multicast table array for vf */
5959	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5960
5961	/* Flush and reset the mta with the new values */
5962	igb_set_rx_mode(adapter->netdev);
5963}
5964
5965static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5966{
5967	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5968
5969	/* clear mac address as we were hotplug removed/added */
5970	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5971		eth_zero_addr(vf_mac);
5972
5973	/* process remaining reset events */
5974	igb_vf_reset(adapter, vf);
5975}
5976
5977static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5978{
5979	struct e1000_hw *hw = &adapter->hw;
5980	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5981	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5982	u32 reg, msgbuf[3];
5983	u8 *addr = (u8 *)(&msgbuf[1]);
5984
5985	/* process all the same items cleared in a function level reset */
5986	igb_vf_reset(adapter, vf);
5987
5988	/* set vf mac address */
5989	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5990
5991	/* enable transmit and receive for vf */
5992	reg = rd32(E1000_VFTE);
5993	wr32(E1000_VFTE, reg | (1 << vf));
5994	reg = rd32(E1000_VFRE);
5995	wr32(E1000_VFRE, reg | (1 << vf));
5996
5997	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5998
5999	/* reply to reset with ack and vf mac address */
6000	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6001	memcpy(addr, vf_mac, ETH_ALEN);
6002	igb_write_mbx(hw, msgbuf, 3, vf);
6003}
6004
6005static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6006{
6007	/* The VF MAC Address is stored in a packed array of bytes
6008	 * starting at the second 32 bit word of the msg array
6009	 */
6010	unsigned char *addr = (char *)&msg[1];
6011	int err = -1;
6012
6013	if (is_valid_ether_addr(addr))
6014		err = igb_set_vf_mac(adapter, vf, addr);
6015
6016	return err;
6017}
6018
6019static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6020{
6021	struct e1000_hw *hw = &adapter->hw;
6022	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6023	u32 msg = E1000_VT_MSGTYPE_NACK;
6024
6025	/* if device isn't clear to send it shouldn't be reading either */
6026	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6027	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6028		igb_write_mbx(hw, &msg, 1, vf);
6029		vf_data->last_nack = jiffies;
6030	}
6031}
6032
6033static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6034{
6035	struct pci_dev *pdev = adapter->pdev;
6036	u32 msgbuf[E1000_VFMAILBOX_SIZE];
6037	struct e1000_hw *hw = &adapter->hw;
6038	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6039	s32 retval;
6040
6041	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6042
6043	if (retval) {
6044		/* if receive failed revoke VF CTS stats and restart init */
6045		dev_err(&pdev->dev, "Error receiving message from VF\n");
6046		vf_data->flags &= ~IGB_VF_FLAG_CTS;
6047		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6048			return;
6049		goto out;
6050	}
6051
6052	/* this is a message we already processed, do nothing */
6053	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6054		return;
6055
6056	/* until the vf completes a reset it should not be
6057	 * allowed to start any configuration.
6058	 */
6059	if (msgbuf[0] == E1000_VF_RESET) {
6060		igb_vf_reset_msg(adapter, vf);
6061		return;
6062	}
6063
6064	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6065		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6066			return;
6067		retval = -1;
6068		goto out;
6069	}
6070
6071	switch ((msgbuf[0] & 0xFFFF)) {
6072	case E1000_VF_SET_MAC_ADDR:
6073		retval = -EINVAL;
6074		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6075			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6076		else
6077			dev_warn(&pdev->dev,
6078				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6079				 vf);
6080		break;
6081	case E1000_VF_SET_PROMISC:
6082		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6083		break;
6084	case E1000_VF_SET_MULTICAST:
6085		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6086		break;
6087	case E1000_VF_SET_LPE:
6088		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6089		break;
6090	case E1000_VF_SET_VLAN:
6091		retval = -1;
6092		if (vf_data->pf_vlan)
6093			dev_warn(&pdev->dev,
6094				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6095				 vf);
6096		else
6097			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6098		break;
6099	default:
6100		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6101		retval = -1;
6102		break;
6103	}
6104
6105	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6106out:
6107	/* notify the VF of the results of what it sent us */
6108	if (retval)
6109		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6110	else
6111		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6112
6113	igb_write_mbx(hw, msgbuf, 1, vf);
6114}
6115
6116static void igb_msg_task(struct igb_adapter *adapter)
6117{
6118	struct e1000_hw *hw = &adapter->hw;
6119	u32 vf;
6120
6121	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6122		/* process any reset requests */
6123		if (!igb_check_for_rst(hw, vf))
6124			igb_vf_reset_event(adapter, vf);
6125
6126		/* process any messages pending */
6127		if (!igb_check_for_msg(hw, vf))
6128			igb_rcv_msg_from_vf(adapter, vf);
6129
6130		/* process any acks */
6131		if (!igb_check_for_ack(hw, vf))
6132			igb_rcv_ack_from_vf(adapter, vf);
6133	}
6134}
6135
6136/**
6137 *  igb_set_uta - Set unicast filter table address
6138 *  @adapter: board private structure
6139 *
6140 *  The unicast table address is a register array of 32-bit registers.
6141 *  The table is meant to be used in a way similar to how the MTA is used
6142 *  however due to certain limitations in the hardware it is necessary to
6143 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6144 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6145 **/
6146static void igb_set_uta(struct igb_adapter *adapter)
6147{
6148	struct e1000_hw *hw = &adapter->hw;
6149	int i;
6150
6151	/* The UTA table only exists on 82576 hardware and newer */
6152	if (hw->mac.type < e1000_82576)
6153		return;
6154
6155	/* we only need to do this if VMDq is enabled */
6156	if (!adapter->vfs_allocated_count)
6157		return;
6158
6159	for (i = 0; i < hw->mac.uta_reg_count; i++)
6160		array_wr32(E1000_UTA, i, ~0);
6161}
6162
6163/**
6164 *  igb_intr_msi - Interrupt Handler
6165 *  @irq: interrupt number
6166 *  @data: pointer to a network interface device structure
6167 **/
6168static irqreturn_t igb_intr_msi(int irq, void *data)
6169{
6170	struct igb_adapter *adapter = data;
6171	struct igb_q_vector *q_vector = adapter->q_vector[0];
6172	struct e1000_hw *hw = &adapter->hw;
6173	/* read ICR disables interrupts using IAM */
6174	u32 icr = rd32(E1000_ICR);
6175
6176	igb_write_itr(q_vector);
6177
6178	if (icr & E1000_ICR_DRSTA)
6179		schedule_work(&adapter->reset_task);
6180
6181	if (icr & E1000_ICR_DOUTSYNC) {
6182		/* HW is reporting DMA is out of sync */
6183		adapter->stats.doosync++;
6184	}
6185
6186	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6187		hw->mac.get_link_status = 1;
6188		if (!test_bit(__IGB_DOWN, &adapter->state))
6189			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6190	}
6191
6192	if (icr & E1000_ICR_TS) {
6193		u32 tsicr = rd32(E1000_TSICR);
6194
6195		if (tsicr & E1000_TSICR_TXTS) {
6196			/* acknowledge the interrupt */
6197			wr32(E1000_TSICR, E1000_TSICR_TXTS);
6198			/* retrieve hardware timestamp */
6199			schedule_work(&adapter->ptp_tx_work);
6200		}
6201	}
6202
6203	napi_schedule(&q_vector->napi);
6204
6205	return IRQ_HANDLED;
6206}
6207
6208/**
6209 *  igb_intr - Legacy Interrupt Handler
6210 *  @irq: interrupt number
6211 *  @data: pointer to a network interface device structure
6212 **/
6213static irqreturn_t igb_intr(int irq, void *data)
6214{
6215	struct igb_adapter *adapter = data;
6216	struct igb_q_vector *q_vector = adapter->q_vector[0];
6217	struct e1000_hw *hw = &adapter->hw;
6218	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6219	 * need for the IMC write
6220	 */
6221	u32 icr = rd32(E1000_ICR);
6222
6223	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6224	 * not set, then the adapter didn't send an interrupt
6225	 */
6226	if (!(icr & E1000_ICR_INT_ASSERTED))
6227		return IRQ_NONE;
6228
6229	igb_write_itr(q_vector);
6230
6231	if (icr & E1000_ICR_DRSTA)
6232		schedule_work(&adapter->reset_task);
6233
6234	if (icr & E1000_ICR_DOUTSYNC) {
6235		/* HW is reporting DMA is out of sync */
6236		adapter->stats.doosync++;
6237	}
6238
6239	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6240		hw->mac.get_link_status = 1;
6241		/* guard against interrupt when we're going down */
6242		if (!test_bit(__IGB_DOWN, &adapter->state))
6243			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6244	}
6245
6246	if (icr & E1000_ICR_TS) {
6247		u32 tsicr = rd32(E1000_TSICR);
6248
6249		if (tsicr & E1000_TSICR_TXTS) {
6250			/* acknowledge the interrupt */
6251			wr32(E1000_TSICR, E1000_TSICR_TXTS);
6252			/* retrieve hardware timestamp */
6253			schedule_work(&adapter->ptp_tx_work);
6254		}
6255	}
6256
6257	napi_schedule(&q_vector->napi);
6258
6259	return IRQ_HANDLED;
6260}
6261
6262static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6263{
6264	struct igb_adapter *adapter = q_vector->adapter;
6265	struct e1000_hw *hw = &adapter->hw;
6266
6267	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6268	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6269		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6270			igb_set_itr(q_vector);
6271		else
6272			igb_update_ring_itr(q_vector);
6273	}
6274
6275	if (!test_bit(__IGB_DOWN, &adapter->state)) {
6276		if (adapter->flags & IGB_FLAG_HAS_MSIX)
6277			wr32(E1000_EIMS, q_vector->eims_value);
6278		else
6279			igb_irq_enable(adapter);
6280	}
6281}
6282
6283/**
6284 *  igb_poll - NAPI Rx polling callback
6285 *  @napi: napi polling structure
6286 *  @budget: count of how many packets we should handle
6287 **/
6288static int igb_poll(struct napi_struct *napi, int budget)
6289{
6290	struct igb_q_vector *q_vector = container_of(napi,
6291						     struct igb_q_vector,
6292						     napi);
6293	bool clean_complete = true;
6294
6295#ifdef CONFIG_IGB_DCA
6296	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6297		igb_update_dca(q_vector);
6298#endif
6299	if (q_vector->tx.ring)
6300		clean_complete = igb_clean_tx_irq(q_vector);
6301
6302	if (q_vector->rx.ring)
6303		clean_complete &= igb_clean_rx_irq(q_vector, budget);
6304
6305	/* If all work not completed, return budget and keep polling */
6306	if (!clean_complete)
6307		return budget;
6308
6309	/* If not enough Rx work done, exit the polling mode */
6310	napi_complete(napi);
6311	igb_ring_irq_enable(q_vector);
6312
6313	return 0;
6314}
6315
6316/**
6317 *  igb_clean_tx_irq - Reclaim resources after transmit completes
6318 *  @q_vector: pointer to q_vector containing needed info
6319 *
6320 *  returns true if ring is completely cleaned
6321 **/
6322static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6323{
6324	struct igb_adapter *adapter = q_vector->adapter;
6325	struct igb_ring *tx_ring = q_vector->tx.ring;
6326	struct igb_tx_buffer *tx_buffer;
6327	union e1000_adv_tx_desc *tx_desc;
6328	unsigned int total_bytes = 0, total_packets = 0;
6329	unsigned int budget = q_vector->tx.work_limit;
6330	unsigned int i = tx_ring->next_to_clean;
6331
6332	if (test_bit(__IGB_DOWN, &adapter->state))
6333		return true;
6334
6335	tx_buffer = &tx_ring->tx_buffer_info[i];
6336	tx_desc = IGB_TX_DESC(tx_ring, i);
6337	i -= tx_ring->count;
6338
6339	do {
6340		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6341
6342		/* if next_to_watch is not set then there is no work pending */
6343		if (!eop_desc)
6344			break;
6345
6346		/* prevent any other reads prior to eop_desc */
6347		read_barrier_depends();
6348
6349		/* if DD is not set pending work has not been completed */
6350		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6351			break;
6352
6353		/* clear next_to_watch to prevent false hangs */
6354		tx_buffer->next_to_watch = NULL;
6355
6356		/* update the statistics for this packet */
6357		total_bytes += tx_buffer->bytecount;
6358		total_packets += tx_buffer->gso_segs;
6359
6360		/* free the skb */
6361		dev_kfree_skb_any(tx_buffer->skb);
6362
6363		/* unmap skb header data */
6364		dma_unmap_single(tx_ring->dev,
6365				 dma_unmap_addr(tx_buffer, dma),
6366				 dma_unmap_len(tx_buffer, len),
6367				 DMA_TO_DEVICE);
6368
6369		/* clear tx_buffer data */
6370		tx_buffer->skb = NULL;
6371		dma_unmap_len_set(tx_buffer, len, 0);
6372
6373		/* clear last DMA location and unmap remaining buffers */
6374		while (tx_desc != eop_desc) {
6375			tx_buffer++;
6376			tx_desc++;
6377			i++;
6378			if (unlikely(!i)) {
6379				i -= tx_ring->count;
6380				tx_buffer = tx_ring->tx_buffer_info;
6381				tx_desc = IGB_TX_DESC(tx_ring, 0);
6382			}
6383
6384			/* unmap any remaining paged data */
6385			if (dma_unmap_len(tx_buffer, len)) {
6386				dma_unmap_page(tx_ring->dev,
6387					       dma_unmap_addr(tx_buffer, dma),
6388					       dma_unmap_len(tx_buffer, len),
6389					       DMA_TO_DEVICE);
6390				dma_unmap_len_set(tx_buffer, len, 0);
6391			}
6392		}
6393
6394		/* move us one more past the eop_desc for start of next pkt */
6395		tx_buffer++;
6396		tx_desc++;
6397		i++;
6398		if (unlikely(!i)) {
6399			i -= tx_ring->count;
6400			tx_buffer = tx_ring->tx_buffer_info;
6401			tx_desc = IGB_TX_DESC(tx_ring, 0);
6402		}
6403
6404		/* issue prefetch for next Tx descriptor */
6405		prefetch(tx_desc);
6406
6407		/* update budget accounting */
6408		budget--;
6409	} while (likely(budget));
6410
6411	netdev_tx_completed_queue(txring_txq(tx_ring),
6412				  total_packets, total_bytes);
6413	i += tx_ring->count;
6414	tx_ring->next_to_clean = i;
6415	u64_stats_update_begin(&tx_ring->tx_syncp);
6416	tx_ring->tx_stats.bytes += total_bytes;
6417	tx_ring->tx_stats.packets += total_packets;
6418	u64_stats_update_end(&tx_ring->tx_syncp);
6419	q_vector->tx.total_bytes += total_bytes;
6420	q_vector->tx.total_packets += total_packets;
6421
6422	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6423		struct e1000_hw *hw = &adapter->hw;
6424
6425		/* Detect a transmit hang in hardware, this serializes the
6426		 * check with the clearing of time_stamp and movement of i
6427		 */
6428		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6429		if (tx_buffer->next_to_watch &&
6430		    time_after(jiffies, tx_buffer->time_stamp +
6431			       (adapter->tx_timeout_factor * HZ)) &&
6432		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6433
6434			/* detected Tx unit hang */
6435			dev_err(tx_ring->dev,
6436				"Detected Tx Unit Hang\n"
6437				"  Tx Queue             <%d>\n"
6438				"  TDH                  <%x>\n"
6439				"  TDT                  <%x>\n"
6440				"  next_to_use          <%x>\n"
6441				"  next_to_clean        <%x>\n"
6442				"buffer_info[next_to_clean]\n"
6443				"  time_stamp           <%lx>\n"
6444				"  next_to_watch        <%p>\n"
6445				"  jiffies              <%lx>\n"
6446				"  desc.status          <%x>\n",
6447				tx_ring->queue_index,
6448				rd32(E1000_TDH(tx_ring->reg_idx)),
6449				readl(tx_ring->tail),
6450				tx_ring->next_to_use,
6451				tx_ring->next_to_clean,
6452				tx_buffer->time_stamp,
6453				tx_buffer->next_to_watch,
6454				jiffies,
6455				tx_buffer->next_to_watch->wb.status);
6456			netif_stop_subqueue(tx_ring->netdev,
6457					    tx_ring->queue_index);
6458
6459			/* we are about to reset, no point in enabling stuff */
6460			return true;
6461		}
6462	}
6463
6464#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6465	if (unlikely(total_packets &&
6466	    netif_carrier_ok(tx_ring->netdev) &&
6467	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6468		/* Make sure that anybody stopping the queue after this
6469		 * sees the new next_to_clean.
6470		 */
6471		smp_mb();
6472		if (__netif_subqueue_stopped(tx_ring->netdev,
6473					     tx_ring->queue_index) &&
6474		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6475			netif_wake_subqueue(tx_ring->netdev,
6476					    tx_ring->queue_index);
6477
6478			u64_stats_update_begin(&tx_ring->tx_syncp);
6479			tx_ring->tx_stats.restart_queue++;
6480			u64_stats_update_end(&tx_ring->tx_syncp);
6481		}
6482	}
6483
6484	return !!budget;
6485}
6486
6487/**
6488 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6489 *  @rx_ring: rx descriptor ring to store buffers on
6490 *  @old_buff: donor buffer to have page reused
6491 *
6492 *  Synchronizes page for reuse by the adapter
6493 **/
6494static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6495			      struct igb_rx_buffer *old_buff)
6496{
6497	struct igb_rx_buffer *new_buff;
6498	u16 nta = rx_ring->next_to_alloc;
6499
6500	new_buff = &rx_ring->rx_buffer_info[nta];
6501
6502	/* update, and store next to alloc */
6503	nta++;
6504	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6505
6506	/* transfer page from old buffer to new buffer */
6507	*new_buff = *old_buff;
6508
6509	/* sync the buffer for use by the device */
6510	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6511					 old_buff->page_offset,
6512					 IGB_RX_BUFSZ,
6513					 DMA_FROM_DEVICE);
6514}
6515
6516static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6517				  struct page *page,
6518				  unsigned int truesize)
6519{
6520	/* avoid re-using remote pages */
6521	if (unlikely(page_to_nid(page) != numa_node_id()))
6522		return false;
6523
6524#if (PAGE_SIZE < 8192)
6525	/* if we are only owner of page we can reuse it */
6526	if (unlikely(page_count(page) != 1))
6527		return false;
6528
6529	/* flip page offset to other buffer */
6530	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6531
6532	/* since we are the only owner of the page and we need to
6533	 * increment it, just set the value to 2 in order to avoid
6534	 * an unnecessary locked operation
6535	 */
6536	atomic_set(&page->_count, 2);
6537#else
6538	/* move offset up to the next cache line */
6539	rx_buffer->page_offset += truesize;
6540
6541	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6542		return false;
6543
6544	/* bump ref count on page before it is given to the stack */
6545	get_page(page);
6546#endif
6547
6548	return true;
6549}
6550
6551/**
6552 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6553 *  @rx_ring: rx descriptor ring to transact packets on
6554 *  @rx_buffer: buffer containing page to add
6555 *  @rx_desc: descriptor containing length of buffer written by hardware
6556 *  @skb: sk_buff to place the data into
6557 *
6558 *  This function will add the data contained in rx_buffer->page to the skb.
6559 *  This is done either through a direct copy if the data in the buffer is
6560 *  less than the skb header size, otherwise it will just attach the page as
6561 *  a frag to the skb.
6562 *
6563 *  The function will then update the page offset if necessary and return
6564 *  true if the buffer can be reused by the adapter.
6565 **/
6566static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6567			    struct igb_rx_buffer *rx_buffer,
6568			    union e1000_adv_rx_desc *rx_desc,
6569			    struct sk_buff *skb)
6570{
6571	struct page *page = rx_buffer->page;
6572	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6573#if (PAGE_SIZE < 8192)
6574	unsigned int truesize = IGB_RX_BUFSZ;
6575#else
6576	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6577#endif
6578
6579	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6580		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6581
6582		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6583			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6584			va += IGB_TS_HDR_LEN;
6585			size -= IGB_TS_HDR_LEN;
6586		}
6587
6588		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6589
6590		/* we can reuse buffer as-is, just make sure it is local */
6591		if (likely(page_to_nid(page) == numa_node_id()))
6592			return true;
6593
6594		/* this page cannot be reused so discard it */
6595		put_page(page);
6596		return false;
6597	}
6598
6599	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6600			rx_buffer->page_offset, size, truesize);
6601
6602	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6603}
6604
6605static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6606					   union e1000_adv_rx_desc *rx_desc,
6607					   struct sk_buff *skb)
6608{
6609	struct igb_rx_buffer *rx_buffer;
6610	struct page *page;
6611
6612	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6613
6614	page = rx_buffer->page;
6615	prefetchw(page);
6616
6617	if (likely(!skb)) {
6618		void *page_addr = page_address(page) +
6619				  rx_buffer->page_offset;
6620
6621		/* prefetch first cache line of first page */
6622		prefetch(page_addr);
6623#if L1_CACHE_BYTES < 128
6624		prefetch(page_addr + L1_CACHE_BYTES);
6625#endif
6626
6627		/* allocate a skb to store the frags */
6628		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6629						IGB_RX_HDR_LEN);
6630		if (unlikely(!skb)) {
6631			rx_ring->rx_stats.alloc_failed++;
6632			return NULL;
6633		}
6634
6635		/* we will be copying header into skb->data in
6636		 * pskb_may_pull so it is in our interest to prefetch
6637		 * it now to avoid a possible cache miss
6638		 */
6639		prefetchw(skb->data);
6640	}
6641
6642	/* we are reusing so sync this buffer for CPU use */
6643	dma_sync_single_range_for_cpu(rx_ring->dev,
6644				      rx_buffer->dma,
6645				      rx_buffer->page_offset,
6646				      IGB_RX_BUFSZ,
6647				      DMA_FROM_DEVICE);
6648
6649	/* pull page into skb */
6650	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6651		/* hand second half of page back to the ring */
6652		igb_reuse_rx_page(rx_ring, rx_buffer);
6653	} else {
6654		/* we are not reusing the buffer so unmap it */
6655		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6656			       PAGE_SIZE, DMA_FROM_DEVICE);
6657	}
6658
6659	/* clear contents of rx_buffer */
6660	rx_buffer->page = NULL;
6661
6662	return skb;
6663}
6664
6665static inline void igb_rx_checksum(struct igb_ring *ring,
6666				   union e1000_adv_rx_desc *rx_desc,
6667				   struct sk_buff *skb)
6668{
6669	skb_checksum_none_assert(skb);
6670
6671	/* Ignore Checksum bit is set */
6672	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6673		return;
6674
6675	/* Rx checksum disabled via ethtool */
6676	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6677		return;
6678
6679	/* TCP/UDP checksum error bit is set */
6680	if (igb_test_staterr(rx_desc,
6681			     E1000_RXDEXT_STATERR_TCPE |
6682			     E1000_RXDEXT_STATERR_IPE)) {
6683		/* work around errata with sctp packets where the TCPE aka
6684		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6685		 * packets, (aka let the stack check the crc32c)
6686		 */
6687		if (!((skb->len == 60) &&
6688		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6689			u64_stats_update_begin(&ring->rx_syncp);
6690			ring->rx_stats.csum_err++;
6691			u64_stats_update_end(&ring->rx_syncp);
6692		}
6693		/* let the stack verify checksum errors */
6694		return;
6695	}
6696	/* It must be a TCP or UDP packet with a valid checksum */
6697	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6698				      E1000_RXD_STAT_UDPCS))
6699		skb->ip_summed = CHECKSUM_UNNECESSARY;
6700
6701	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6702		le32_to_cpu(rx_desc->wb.upper.status_error));
6703}
6704
6705static inline void igb_rx_hash(struct igb_ring *ring,
6706			       union e1000_adv_rx_desc *rx_desc,
6707			       struct sk_buff *skb)
6708{
6709	if (ring->netdev->features & NETIF_F_RXHASH)
6710		skb_set_hash(skb,
6711			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6712			     PKT_HASH_TYPE_L3);
6713}
6714
6715/**
6716 *  igb_is_non_eop - process handling of non-EOP buffers
6717 *  @rx_ring: Rx ring being processed
6718 *  @rx_desc: Rx descriptor for current buffer
6719 *  @skb: current socket buffer containing buffer in progress
6720 *
6721 *  This function updates next to clean.  If the buffer is an EOP buffer
6722 *  this function exits returning false, otherwise it will place the
6723 *  sk_buff in the next buffer to be chained and return true indicating
6724 *  that this is in fact a non-EOP buffer.
6725 **/
6726static bool igb_is_non_eop(struct igb_ring *rx_ring,
6727			   union e1000_adv_rx_desc *rx_desc)
6728{
6729	u32 ntc = rx_ring->next_to_clean + 1;
6730
6731	/* fetch, update, and store next to clean */
6732	ntc = (ntc < rx_ring->count) ? ntc : 0;
6733	rx_ring->next_to_clean = ntc;
6734
6735	prefetch(IGB_RX_DESC(rx_ring, ntc));
6736
6737	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6738		return false;
6739
6740	return true;
6741}
6742
6743/**
6744 *  igb_get_headlen - determine size of header for LRO/GRO
6745 *  @data: pointer to the start of the headers
6746 *  @max_len: total length of section to find headers in
6747 *
6748 *  This function is meant to determine the length of headers that will
6749 *  be recognized by hardware for LRO, and GRO offloads.  The main
6750 *  motivation of doing this is to only perform one pull for IPv4 TCP
6751 *  packets so that we can do basic things like calculating the gso_size
6752 *  based on the average data per packet.
6753 **/
6754static unsigned int igb_get_headlen(unsigned char *data,
6755				    unsigned int max_len)
6756{
6757	union {
6758		unsigned char *network;
6759		/* l2 headers */
6760		struct ethhdr *eth;
6761		struct vlan_hdr *vlan;
6762		/* l3 headers */
6763		struct iphdr *ipv4;
6764		struct ipv6hdr *ipv6;
6765	} hdr;
6766	__be16 protocol;
6767	u8 nexthdr = 0;	/* default to not TCP */
6768	u8 hlen;
6769
6770	/* this should never happen, but better safe than sorry */
6771	if (max_len < ETH_HLEN)
6772		return max_len;
6773
6774	/* initialize network frame pointer */
6775	hdr.network = data;
6776
6777	/* set first protocol and move network header forward */
6778	protocol = hdr.eth->h_proto;
6779	hdr.network += ETH_HLEN;
6780
6781	/* handle any vlan tag if present */
6782	if (protocol == htons(ETH_P_8021Q)) {
6783		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6784			return max_len;
6785
6786		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6787		hdr.network += VLAN_HLEN;
6788	}
6789
6790	/* handle L3 protocols */
6791	if (protocol == htons(ETH_P_IP)) {
6792		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6793			return max_len;
6794
6795		/* access ihl as a u8 to avoid unaligned access on ia64 */
6796		hlen = (hdr.network[0] & 0x0F) << 2;
6797
6798		/* verify hlen meets minimum size requirements */
6799		if (hlen < sizeof(struct iphdr))
6800			return hdr.network - data;
6801
6802		/* record next protocol if header is present */
6803		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6804			nexthdr = hdr.ipv4->protocol;
6805	} else if (protocol == htons(ETH_P_IPV6)) {
6806		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6807			return max_len;
6808
6809		/* record next protocol */
6810		nexthdr = hdr.ipv6->nexthdr;
6811		hlen = sizeof(struct ipv6hdr);
6812	} else {
6813		return hdr.network - data;
6814	}
6815
6816	/* relocate pointer to start of L4 header */
6817	hdr.network += hlen;
6818
6819	/* finally sort out TCP */
6820	if (nexthdr == IPPROTO_TCP) {
6821		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6822			return max_len;
6823
6824		/* access doff as a u8 to avoid unaligned access on ia64 */
6825		hlen = (hdr.network[12] & 0xF0) >> 2;
6826
6827		/* verify hlen meets minimum size requirements */
6828		if (hlen < sizeof(struct tcphdr))
6829			return hdr.network - data;
6830
6831		hdr.network += hlen;
6832	} else if (nexthdr == IPPROTO_UDP) {
6833		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6834			return max_len;
6835
6836		hdr.network += sizeof(struct udphdr);
6837	}
6838
6839	/* If everything has gone correctly hdr.network should be the
6840	 * data section of the packet and will be the end of the header.
6841	 * If not then it probably represents the end of the last recognized
6842	 * header.
6843	 */
6844	if ((hdr.network - data) < max_len)
6845		return hdr.network - data;
6846	else
6847		return max_len;
6848}
6849
6850/**
6851 *  igb_pull_tail - igb specific version of skb_pull_tail
6852 *  @rx_ring: rx descriptor ring packet is being transacted on
6853 *  @rx_desc: pointer to the EOP Rx descriptor
6854 *  @skb: pointer to current skb being adjusted
6855 *
6856 *  This function is an igb specific version of __pskb_pull_tail.  The
6857 *  main difference between this version and the original function is that
6858 *  this function can make several assumptions about the state of things
6859 *  that allow for significant optimizations versus the standard function.
6860 *  As a result we can do things like drop a frag and maintain an accurate
6861 *  truesize for the skb.
6862 */
6863static void igb_pull_tail(struct igb_ring *rx_ring,
6864			  union e1000_adv_rx_desc *rx_desc,
6865			  struct sk_buff *skb)
6866{
6867	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6868	unsigned char *va;
6869	unsigned int pull_len;
6870
6871	/* it is valid to use page_address instead of kmap since we are
6872	 * working with pages allocated out of the lomem pool per
6873	 * alloc_page(GFP_ATOMIC)
6874	 */
6875	va = skb_frag_address(frag);
6876
6877	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6878		/* retrieve timestamp from buffer */
6879		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6880
6881		/* update pointers to remove timestamp header */
6882		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6883		frag->page_offset += IGB_TS_HDR_LEN;
6884		skb->data_len -= IGB_TS_HDR_LEN;
6885		skb->len -= IGB_TS_HDR_LEN;
6886
6887		/* move va to start of packet data */
6888		va += IGB_TS_HDR_LEN;
6889	}
6890
6891	/* we need the header to contain the greater of either ETH_HLEN or
6892	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6893	 */
6894	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6895
6896	/* align pull length to size of long to optimize memcpy performance */
6897	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6898
6899	/* update all of the pointers */
6900	skb_frag_size_sub(frag, pull_len);
6901	frag->page_offset += pull_len;
6902	skb->data_len -= pull_len;
6903	skb->tail += pull_len;
6904}
6905
6906/**
6907 *  igb_cleanup_headers - Correct corrupted or empty headers
6908 *  @rx_ring: rx descriptor ring packet is being transacted on
6909 *  @rx_desc: pointer to the EOP Rx descriptor
6910 *  @skb: pointer to current skb being fixed
6911 *
6912 *  Address the case where we are pulling data in on pages only
6913 *  and as such no data is present in the skb header.
6914 *
6915 *  In addition if skb is not at least 60 bytes we need to pad it so that
6916 *  it is large enough to qualify as a valid Ethernet frame.
6917 *
6918 *  Returns true if an error was encountered and skb was freed.
6919 **/
6920static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6921				union e1000_adv_rx_desc *rx_desc,
6922				struct sk_buff *skb)
6923{
6924	if (unlikely((igb_test_staterr(rx_desc,
6925				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6926		struct net_device *netdev = rx_ring->netdev;
6927		if (!(netdev->features & NETIF_F_RXALL)) {
6928			dev_kfree_skb_any(skb);
6929			return true;
6930		}
6931	}
6932
6933	/* place header in linear portion of buffer */
6934	if (skb_is_nonlinear(skb))
6935		igb_pull_tail(rx_ring, rx_desc, skb);
6936
6937	/* if skb_pad returns an error the skb was freed */
6938	if (unlikely(skb->len < 60)) {
6939		int pad_len = 60 - skb->len;
6940
6941		if (skb_pad(skb, pad_len))
6942			return true;
6943		__skb_put(skb, pad_len);
6944	}
6945
6946	return false;
6947}
6948
6949/**
6950 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6951 *  @rx_ring: rx descriptor ring packet is being transacted on
6952 *  @rx_desc: pointer to the EOP Rx descriptor
6953 *  @skb: pointer to current skb being populated
6954 *
6955 *  This function checks the ring, descriptor, and packet information in
6956 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6957 *  other fields within the skb.
6958 **/
6959static void igb_process_skb_fields(struct igb_ring *rx_ring,
6960				   union e1000_adv_rx_desc *rx_desc,
6961				   struct sk_buff *skb)
6962{
6963	struct net_device *dev = rx_ring->netdev;
6964
6965	igb_rx_hash(rx_ring, rx_desc, skb);
6966
6967	igb_rx_checksum(rx_ring, rx_desc, skb);
6968
6969	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6970	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6971		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6972
6973	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6974	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6975		u16 vid;
6976
6977		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6978		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6979			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6980		else
6981			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6982
6983		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6984	}
6985
6986	skb_record_rx_queue(skb, rx_ring->queue_index);
6987
6988	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6989}
6990
6991static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6992{
6993	struct igb_ring *rx_ring = q_vector->rx.ring;
6994	struct sk_buff *skb = rx_ring->skb;
6995	unsigned int total_bytes = 0, total_packets = 0;
6996	u16 cleaned_count = igb_desc_unused(rx_ring);
6997
6998	while (likely(total_packets < budget)) {
6999		union e1000_adv_rx_desc *rx_desc;
7000
7001		/* return some buffers to hardware, one at a time is too slow */
7002		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7003			igb_alloc_rx_buffers(rx_ring, cleaned_count);
7004			cleaned_count = 0;
7005		}
7006
7007		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7008
7009		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
7010			break;
7011
7012		/* This memory barrier is needed to keep us from reading
7013		 * any other fields out of the rx_desc until we know the
7014		 * RXD_STAT_DD bit is set
7015		 */
7016		rmb();
7017
7018		/* retrieve a buffer from the ring */
7019		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7020
7021		/* exit if we failed to retrieve a buffer */
7022		if (!skb)
7023			break;
7024
7025		cleaned_count++;
7026
7027		/* fetch next buffer in frame if non-eop */
7028		if (igb_is_non_eop(rx_ring, rx_desc))
7029			continue;
7030
7031		/* verify the packet layout is correct */
7032		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7033			skb = NULL;
7034			continue;
7035		}
7036
7037		/* probably a little skewed due to removing CRC */
7038		total_bytes += skb->len;
7039
7040		/* populate checksum, timestamp, VLAN, and protocol */
7041		igb_process_skb_fields(rx_ring, rx_desc, skb);
7042
7043		napi_gro_receive(&q_vector->napi, skb);
7044
7045		/* reset skb pointer */
7046		skb = NULL;
7047
7048		/* update budget accounting */
7049		total_packets++;
7050	}
7051
7052	/* place incomplete frames back on ring for completion */
7053	rx_ring->skb = skb;
7054
7055	u64_stats_update_begin(&rx_ring->rx_syncp);
7056	rx_ring->rx_stats.packets += total_packets;
7057	rx_ring->rx_stats.bytes += total_bytes;
7058	u64_stats_update_end(&rx_ring->rx_syncp);
7059	q_vector->rx.total_packets += total_packets;
7060	q_vector->rx.total_bytes += total_bytes;
7061
7062	if (cleaned_count)
7063		igb_alloc_rx_buffers(rx_ring, cleaned_count);
7064
7065	return total_packets < budget;
7066}
7067
7068static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7069				  struct igb_rx_buffer *bi)
7070{
7071	struct page *page = bi->page;
7072	dma_addr_t dma;
7073
7074	/* since we are recycling buffers we should seldom need to alloc */
7075	if (likely(page))
7076		return true;
7077
7078	/* alloc new page for storage */
7079	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
7080	if (unlikely(!page)) {
7081		rx_ring->rx_stats.alloc_failed++;
7082		return false;
7083	}
7084
7085	/* map page for use */
7086	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7087
7088	/* if mapping failed free memory back to system since
7089	 * there isn't much point in holding memory we can't use
7090	 */
7091	if (dma_mapping_error(rx_ring->dev, dma)) {
7092		__free_page(page);
7093
7094		rx_ring->rx_stats.alloc_failed++;
7095		return false;
7096	}
7097
7098	bi->dma = dma;
7099	bi->page = page;
7100	bi->page_offset = 0;
7101
7102	return true;
7103}
7104
7105/**
7106 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7107 *  @adapter: address of board private structure
7108 **/
7109void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7110{
7111	union e1000_adv_rx_desc *rx_desc;
7112	struct igb_rx_buffer *bi;
7113	u16 i = rx_ring->next_to_use;
7114
7115	/* nothing to do */
7116	if (!cleaned_count)
7117		return;
7118
7119	rx_desc = IGB_RX_DESC(rx_ring, i);
7120	bi = &rx_ring->rx_buffer_info[i];
7121	i -= rx_ring->count;
7122
7123	do {
7124		if (!igb_alloc_mapped_page(rx_ring, bi))
7125			break;
7126
7127		/* Refresh the desc even if buffer_addrs didn't change
7128		 * because each write-back erases this info.
7129		 */
7130		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7131
7132		rx_desc++;
7133		bi++;
7134		i++;
7135		if (unlikely(!i)) {
7136			rx_desc = IGB_RX_DESC(rx_ring, 0);
7137			bi = rx_ring->rx_buffer_info;
7138			i -= rx_ring->count;
7139		}
7140
7141		/* clear the hdr_addr for the next_to_use descriptor */
7142		rx_desc->read.hdr_addr = 0;
7143
7144		cleaned_count--;
7145	} while (cleaned_count);
7146
7147	i += rx_ring->count;
7148
7149	if (rx_ring->next_to_use != i) {
7150		/* record the next descriptor to use */
7151		rx_ring->next_to_use = i;
7152
7153		/* update next to alloc since we have filled the ring */
7154		rx_ring->next_to_alloc = i;
7155
7156		/* Force memory writes to complete before letting h/w
7157		 * know there are new descriptors to fetch.  (Only
7158		 * applicable for weak-ordered memory model archs,
7159		 * such as IA-64).
7160		 */
7161		wmb();
7162		writel(i, rx_ring->tail);
7163	}
7164}
7165
7166/**
7167 * igb_mii_ioctl -
7168 * @netdev:
7169 * @ifreq:
7170 * @cmd:
7171 **/
7172static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7173{
7174	struct igb_adapter *adapter = netdev_priv(netdev);
7175	struct mii_ioctl_data *data = if_mii(ifr);
7176
7177	if (adapter->hw.phy.media_type != e1000_media_type_copper)
7178		return -EOPNOTSUPP;
7179
7180	switch (cmd) {
7181	case SIOCGMIIPHY:
7182		data->phy_id = adapter->hw.phy.addr;
7183		break;
7184	case SIOCGMIIREG:
7185		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7186				     &data->val_out))
7187			return -EIO;
7188		break;
7189	case SIOCSMIIREG:
7190	default:
7191		return -EOPNOTSUPP;
7192	}
7193	return 0;
7194}
7195
7196/**
7197 * igb_ioctl -
7198 * @netdev:
7199 * @ifreq:
7200 * @cmd:
7201 **/
7202static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7203{
7204	switch (cmd) {
7205	case SIOCGMIIPHY:
7206	case SIOCGMIIREG:
7207	case SIOCSMIIREG:
7208		return igb_mii_ioctl(netdev, ifr, cmd);
7209	case SIOCGHWTSTAMP:
7210		return igb_ptp_get_ts_config(netdev, ifr);
7211	case SIOCSHWTSTAMP:
7212		return igb_ptp_set_ts_config(netdev, ifr);
7213	default:
7214		return -EOPNOTSUPP;
7215	}
7216}
7217
7218void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7219{
7220	struct igb_adapter *adapter = hw->back;
7221
7222	pci_read_config_word(adapter->pdev, reg, value);
7223}
7224
7225void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7226{
7227	struct igb_adapter *adapter = hw->back;
7228
7229	pci_write_config_word(adapter->pdev, reg, *value);
7230}
7231
7232s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7233{
7234	struct igb_adapter *adapter = hw->back;
7235
7236	if (pcie_capability_read_word(adapter->pdev, reg, value))
7237		return -E1000_ERR_CONFIG;
7238
7239	return 0;
7240}
7241
7242s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7243{
7244	struct igb_adapter *adapter = hw->back;
7245
7246	if (pcie_capability_write_word(adapter->pdev, reg, *value))
7247		return -E1000_ERR_CONFIG;
7248
7249	return 0;
7250}
7251
7252static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7253{
7254	struct igb_adapter *adapter = netdev_priv(netdev);
7255	struct e1000_hw *hw = &adapter->hw;
7256	u32 ctrl, rctl;
7257	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7258
7259	if (enable) {
7260		/* enable VLAN tag insert/strip */
7261		ctrl = rd32(E1000_CTRL);
7262		ctrl |= E1000_CTRL_VME;
7263		wr32(E1000_CTRL, ctrl);
7264
7265		/* Disable CFI check */
7266		rctl = rd32(E1000_RCTL);
7267		rctl &= ~E1000_RCTL_CFIEN;
7268		wr32(E1000_RCTL, rctl);
7269	} else {
7270		/* disable VLAN tag insert/strip */
7271		ctrl = rd32(E1000_CTRL);
7272		ctrl &= ~E1000_CTRL_VME;
7273		wr32(E1000_CTRL, ctrl);
7274	}
7275
7276	igb_rlpml_set(adapter);
7277}
7278
7279static int igb_vlan_rx_add_vid(struct net_device *netdev,
7280			       __be16 proto, u16 vid)
7281{
7282	struct igb_adapter *adapter = netdev_priv(netdev);
7283	struct e1000_hw *hw = &adapter->hw;
7284	int pf_id = adapter->vfs_allocated_count;
7285
7286	/* attempt to add filter to vlvf array */
7287	igb_vlvf_set(adapter, vid, true, pf_id);
7288
7289	/* add the filter since PF can receive vlans w/o entry in vlvf */
7290	igb_vfta_set(hw, vid, true);
7291
7292	set_bit(vid, adapter->active_vlans);
7293
7294	return 0;
7295}
7296
7297static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7298				__be16 proto, u16 vid)
7299{
7300	struct igb_adapter *adapter = netdev_priv(netdev);
7301	struct e1000_hw *hw = &adapter->hw;
7302	int pf_id = adapter->vfs_allocated_count;
7303	s32 err;
7304
7305	/* remove vlan from VLVF table array */
7306	err = igb_vlvf_set(adapter, vid, false, pf_id);
7307
7308	/* if vid was not present in VLVF just remove it from table */
7309	if (err)
7310		igb_vfta_set(hw, vid, false);
7311
7312	clear_bit(vid, adapter->active_vlans);
7313
7314	return 0;
7315}
7316
7317static void igb_restore_vlan(struct igb_adapter *adapter)
7318{
7319	u16 vid;
7320
7321	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7322
7323	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7324		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7325}
7326
7327int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7328{
7329	struct pci_dev *pdev = adapter->pdev;
7330	struct e1000_mac_info *mac = &adapter->hw.mac;
7331
7332	mac->autoneg = 0;
7333
7334	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7335	 * for the switch() below to work
7336	 */
7337	if ((spd & 1) || (dplx & ~1))
7338		goto err_inval;
7339
7340	/* Fiber NIC's only allow 1000 gbps Full duplex
7341	 * and 100Mbps Full duplex for 100baseFx sfp
7342	 */
7343	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7344		switch (spd + dplx) {
7345		case SPEED_10 + DUPLEX_HALF:
7346		case SPEED_10 + DUPLEX_FULL:
7347		case SPEED_100 + DUPLEX_HALF:
7348			goto err_inval;
7349		default:
7350			break;
7351		}
7352	}
7353
7354	switch (spd + dplx) {
7355	case SPEED_10 + DUPLEX_HALF:
7356		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7357		break;
7358	case SPEED_10 + DUPLEX_FULL:
7359		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7360		break;
7361	case SPEED_100 + DUPLEX_HALF:
7362		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7363		break;
7364	case SPEED_100 + DUPLEX_FULL:
7365		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7366		break;
7367	case SPEED_1000 + DUPLEX_FULL:
7368		mac->autoneg = 1;
7369		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7370		break;
7371	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7372	default:
7373		goto err_inval;
7374	}
7375
7376	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7377	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7378
7379	return 0;
7380
7381err_inval:
7382	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7383	return -EINVAL;
7384}
7385
7386static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7387			  bool runtime)
7388{
7389	struct net_device *netdev = pci_get_drvdata(pdev);
7390	struct igb_adapter *adapter = netdev_priv(netdev);
7391	struct e1000_hw *hw = &adapter->hw;
7392	u32 ctrl, rctl, status;
7393	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7394#ifdef CONFIG_PM
7395	int retval = 0;
7396#endif
7397
7398	netif_device_detach(netdev);
7399
7400	if (netif_running(netdev))
7401		__igb_close(netdev, true);
7402
7403	igb_clear_interrupt_scheme(adapter);
7404
7405#ifdef CONFIG_PM
7406	retval = pci_save_state(pdev);
7407	if (retval)
7408		return retval;
7409#endif
7410
7411	status = rd32(E1000_STATUS);
7412	if (status & E1000_STATUS_LU)
7413		wufc &= ~E1000_WUFC_LNKC;
7414
7415	if (wufc) {
7416		igb_setup_rctl(adapter);
7417		igb_set_rx_mode(netdev);
7418
7419		/* turn on all-multi mode if wake on multicast is enabled */
7420		if (wufc & E1000_WUFC_MC) {
7421			rctl = rd32(E1000_RCTL);
7422			rctl |= E1000_RCTL_MPE;
7423			wr32(E1000_RCTL, rctl);
7424		}
7425
7426		ctrl = rd32(E1000_CTRL);
7427		/* advertise wake from D3Cold */
7428		#define E1000_CTRL_ADVD3WUC 0x00100000
7429		/* phy power management enable */
7430		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7431		ctrl |= E1000_CTRL_ADVD3WUC;
7432		wr32(E1000_CTRL, ctrl);
7433
7434		/* Allow time for pending master requests to run */
7435		igb_disable_pcie_master(hw);
7436
7437		wr32(E1000_WUC, E1000_WUC_PME_EN);
7438		wr32(E1000_WUFC, wufc);
7439	} else {
7440		wr32(E1000_WUC, 0);
7441		wr32(E1000_WUFC, 0);
7442	}
7443
7444	*enable_wake = wufc || adapter->en_mng_pt;
7445	if (!*enable_wake)
7446		igb_power_down_link(adapter);
7447	else
7448		igb_power_up_link(adapter);
7449
7450	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7451	 * would have already happened in close and is redundant.
7452	 */
7453	igb_release_hw_control(adapter);
7454
7455	pci_disable_device(pdev);
7456
7457	return 0;
7458}
7459
7460#ifdef CONFIG_PM
7461#ifdef CONFIG_PM_SLEEP
7462static int igb_suspend(struct device *dev)
7463{
7464	int retval;
7465	bool wake;
7466	struct pci_dev *pdev = to_pci_dev(dev);
7467
7468	retval = __igb_shutdown(pdev, &wake, 0);
7469	if (retval)
7470		return retval;
7471
7472	if (wake) {
7473		pci_prepare_to_sleep(pdev);
7474	} else {
7475		pci_wake_from_d3(pdev, false);
7476		pci_set_power_state(pdev, PCI_D3hot);
7477	}
7478
7479	return 0;
7480}
7481#endif /* CONFIG_PM_SLEEP */
7482
7483static int igb_resume(struct device *dev)
7484{
7485	struct pci_dev *pdev = to_pci_dev(dev);
7486	struct net_device *netdev = pci_get_drvdata(pdev);
7487	struct igb_adapter *adapter = netdev_priv(netdev);
7488	struct e1000_hw *hw = &adapter->hw;
7489	u32 err;
7490
7491	pci_set_power_state(pdev, PCI_D0);
7492	pci_restore_state(pdev);
7493	pci_save_state(pdev);
7494
7495	err = pci_enable_device_mem(pdev);
7496	if (err) {
7497		dev_err(&pdev->dev,
7498			"igb: Cannot enable PCI device from suspend\n");
7499		return err;
7500	}
7501	pci_set_master(pdev);
7502
7503	pci_enable_wake(pdev, PCI_D3hot, 0);
7504	pci_enable_wake(pdev, PCI_D3cold, 0);
7505
7506	if (igb_init_interrupt_scheme(adapter, true)) {
7507		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7508		return -ENOMEM;
7509	}
7510
7511	igb_reset(adapter);
7512
7513	/* let the f/w know that the h/w is now under the control of the
7514	 * driver.
7515	 */
7516	igb_get_hw_control(adapter);
7517
7518	wr32(E1000_WUS, ~0);
7519
7520	if (netdev->flags & IFF_UP) {
7521		rtnl_lock();
7522		err = __igb_open(netdev, true);
7523		rtnl_unlock();
7524		if (err)
7525			return err;
7526	}
7527
7528	netif_device_attach(netdev);
7529	return 0;
7530}
7531
7532#ifdef CONFIG_PM_RUNTIME
7533static int igb_runtime_idle(struct device *dev)
7534{
7535	struct pci_dev *pdev = to_pci_dev(dev);
7536	struct net_device *netdev = pci_get_drvdata(pdev);
7537	struct igb_adapter *adapter = netdev_priv(netdev);
7538
7539	if (!igb_has_link(adapter))
7540		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7541
7542	return -EBUSY;
7543}
7544
7545static int igb_runtime_suspend(struct device *dev)
7546{
7547	struct pci_dev *pdev = to_pci_dev(dev);
7548	int retval;
7549	bool wake;
7550
7551	retval = __igb_shutdown(pdev, &wake, 1);
7552	if (retval)
7553		return retval;
7554
7555	if (wake) {
7556		pci_prepare_to_sleep(pdev);
7557	} else {
7558		pci_wake_from_d3(pdev, false);
7559		pci_set_power_state(pdev, PCI_D3hot);
7560	}
7561
7562	return 0;
7563}
7564
7565static int igb_runtime_resume(struct device *dev)
7566{
7567	return igb_resume(dev);
7568}
7569#endif /* CONFIG_PM_RUNTIME */
7570#endif
7571
7572static void igb_shutdown(struct pci_dev *pdev)
7573{
7574	bool wake;
7575
7576	__igb_shutdown(pdev, &wake, 0);
7577
7578	if (system_state == SYSTEM_POWER_OFF) {
7579		pci_wake_from_d3(pdev, wake);
7580		pci_set_power_state(pdev, PCI_D3hot);
7581	}
7582}
7583
7584#ifdef CONFIG_PCI_IOV
7585static int igb_sriov_reinit(struct pci_dev *dev)
7586{
7587	struct net_device *netdev = pci_get_drvdata(dev);
7588	struct igb_adapter *adapter = netdev_priv(netdev);
7589	struct pci_dev *pdev = adapter->pdev;
7590
7591	rtnl_lock();
7592
7593	if (netif_running(netdev))
7594		igb_close(netdev);
7595	else
7596		igb_reset(adapter);
7597
7598	igb_clear_interrupt_scheme(adapter);
7599
7600	igb_init_queue_configuration(adapter);
7601
7602	if (igb_init_interrupt_scheme(adapter, true)) {
7603		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7604		return -ENOMEM;
7605	}
7606
7607	if (netif_running(netdev))
7608		igb_open(netdev);
7609
7610	rtnl_unlock();
7611
7612	return 0;
7613}
7614
7615static int igb_pci_disable_sriov(struct pci_dev *dev)
7616{
7617	int err = igb_disable_sriov(dev);
7618
7619	if (!err)
7620		err = igb_sriov_reinit(dev);
7621
7622	return err;
7623}
7624
7625static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7626{
7627	int err = igb_enable_sriov(dev, num_vfs);
7628
7629	if (err)
7630		goto out;
7631
7632	err = igb_sriov_reinit(dev);
7633	if (!err)
7634		return num_vfs;
7635
7636out:
7637	return err;
7638}
7639
7640#endif
7641static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7642{
7643#ifdef CONFIG_PCI_IOV
7644	if (num_vfs == 0)
7645		return igb_pci_disable_sriov(dev);
7646	else
7647		return igb_pci_enable_sriov(dev, num_vfs);
7648#endif
7649	return 0;
7650}
7651
7652#ifdef CONFIG_NET_POLL_CONTROLLER
7653/* Polling 'interrupt' - used by things like netconsole to send skbs
7654 * without having to re-enable interrupts. It's not called while
7655 * the interrupt routine is executing.
7656 */
7657static void igb_netpoll(struct net_device *netdev)
7658{
7659	struct igb_adapter *adapter = netdev_priv(netdev);
7660	struct e1000_hw *hw = &adapter->hw;
7661	struct igb_q_vector *q_vector;
7662	int i;
7663
7664	for (i = 0; i < adapter->num_q_vectors; i++) {
7665		q_vector = adapter->q_vector[i];
7666		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7667			wr32(E1000_EIMC, q_vector->eims_value);
7668		else
7669			igb_irq_disable(adapter);
7670		napi_schedule(&q_vector->napi);
7671	}
7672}
7673#endif /* CONFIG_NET_POLL_CONTROLLER */
7674
7675/**
7676 *  igb_io_error_detected - called when PCI error is detected
7677 *  @pdev: Pointer to PCI device
7678 *  @state: The current pci connection state
7679 *
7680 *  This function is called after a PCI bus error affecting
7681 *  this device has been detected.
7682 **/
7683static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7684					      pci_channel_state_t state)
7685{
7686	struct net_device *netdev = pci_get_drvdata(pdev);
7687	struct igb_adapter *adapter = netdev_priv(netdev);
7688
7689	netif_device_detach(netdev);
7690
7691	if (state == pci_channel_io_perm_failure)
7692		return PCI_ERS_RESULT_DISCONNECT;
7693
7694	if (netif_running(netdev))
7695		igb_down(adapter);
7696	pci_disable_device(pdev);
7697
7698	/* Request a slot slot reset. */
7699	return PCI_ERS_RESULT_NEED_RESET;
7700}
7701
7702/**
7703 *  igb_io_slot_reset - called after the pci bus has been reset.
7704 *  @pdev: Pointer to PCI device
7705 *
7706 *  Restart the card from scratch, as if from a cold-boot. Implementation
7707 *  resembles the first-half of the igb_resume routine.
7708 **/
7709static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7710{
7711	struct net_device *netdev = pci_get_drvdata(pdev);
7712	struct igb_adapter *adapter = netdev_priv(netdev);
7713	struct e1000_hw *hw = &adapter->hw;
7714	pci_ers_result_t result;
7715	int err;
7716
7717	if (pci_enable_device_mem(pdev)) {
7718		dev_err(&pdev->dev,
7719			"Cannot re-enable PCI device after reset.\n");
7720		result = PCI_ERS_RESULT_DISCONNECT;
7721	} else {
7722		pci_set_master(pdev);
7723		pci_restore_state(pdev);
7724		pci_save_state(pdev);
7725
7726		pci_enable_wake(pdev, PCI_D3hot, 0);
7727		pci_enable_wake(pdev, PCI_D3cold, 0);
7728
7729		igb_reset(adapter);
7730		wr32(E1000_WUS, ~0);
7731		result = PCI_ERS_RESULT_RECOVERED;
7732	}
7733
7734	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7735	if (err) {
7736		dev_err(&pdev->dev,
7737			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7738			err);
7739		/* non-fatal, continue */
7740	}
7741
7742	return result;
7743}
7744
7745/**
7746 *  igb_io_resume - called when traffic can start flowing again.
7747 *  @pdev: Pointer to PCI device
7748 *
7749 *  This callback is called when the error recovery driver tells us that
7750 *  its OK to resume normal operation. Implementation resembles the
7751 *  second-half of the igb_resume routine.
7752 */
7753static void igb_io_resume(struct pci_dev *pdev)
7754{
7755	struct net_device *netdev = pci_get_drvdata(pdev);
7756	struct igb_adapter *adapter = netdev_priv(netdev);
7757
7758	if (netif_running(netdev)) {
7759		if (igb_up(adapter)) {
7760			dev_err(&pdev->dev, "igb_up failed after reset\n");
7761			return;
7762		}
7763	}
7764
7765	netif_device_attach(netdev);
7766
7767	/* let the f/w know that the h/w is now under the control of the
7768	 * driver.
7769	 */
7770	igb_get_hw_control(adapter);
7771}
7772
7773static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7774			     u8 qsel)
7775{
7776	u32 rar_low, rar_high;
7777	struct e1000_hw *hw = &adapter->hw;
7778
7779	/* HW expects these in little endian so we reverse the byte order
7780	 * from network order (big endian) to little endian
7781	 */
7782	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7783		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7784	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7785
7786	/* Indicate to hardware the Address is Valid. */
7787	rar_high |= E1000_RAH_AV;
7788
7789	if (hw->mac.type == e1000_82575)
7790		rar_high |= E1000_RAH_POOL_1 * qsel;
7791	else
7792		rar_high |= E1000_RAH_POOL_1 << qsel;
7793
7794	wr32(E1000_RAL(index), rar_low);
7795	wrfl();
7796	wr32(E1000_RAH(index), rar_high);
7797	wrfl();
7798}
7799
7800static int igb_set_vf_mac(struct igb_adapter *adapter,
7801			  int vf, unsigned char *mac_addr)
7802{
7803	struct e1000_hw *hw = &adapter->hw;
7804	/* VF MAC addresses start at end of receive addresses and moves
7805	 * towards the first, as a result a collision should not be possible
7806	 */
7807	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7808
7809	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7810
7811	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7812
7813	return 0;
7814}
7815
7816static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7817{
7818	struct igb_adapter *adapter = netdev_priv(netdev);
7819	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7820		return -EINVAL;
7821	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7822	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7823	dev_info(&adapter->pdev->dev,
7824		 "Reload the VF driver to make this change effective.");
7825	if (test_bit(__IGB_DOWN, &adapter->state)) {
7826		dev_warn(&adapter->pdev->dev,
7827			 "The VF MAC address has been set, but the PF device is not up.\n");
7828		dev_warn(&adapter->pdev->dev,
7829			 "Bring the PF device up before attempting to use the VF device.\n");
7830	}
7831	return igb_set_vf_mac(adapter, vf, mac);
7832}
7833
7834static int igb_link_mbps(int internal_link_speed)
7835{
7836	switch (internal_link_speed) {
7837	case SPEED_100:
7838		return 100;
7839	case SPEED_1000:
7840		return 1000;
7841	default:
7842		return 0;
7843	}
7844}
7845
7846static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7847				  int link_speed)
7848{
7849	int rf_dec, rf_int;
7850	u32 bcnrc_val;
7851
7852	if (tx_rate != 0) {
7853		/* Calculate the rate factor values to set */
7854		rf_int = link_speed / tx_rate;
7855		rf_dec = (link_speed - (rf_int * tx_rate));
7856		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7857			 tx_rate;
7858
7859		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7860		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7861			      E1000_RTTBCNRC_RF_INT_MASK);
7862		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7863	} else {
7864		bcnrc_val = 0;
7865	}
7866
7867	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7868	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7869	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7870	 */
7871	wr32(E1000_RTTBCNRM, 0x14);
7872	wr32(E1000_RTTBCNRC, bcnrc_val);
7873}
7874
7875static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7876{
7877	int actual_link_speed, i;
7878	bool reset_rate = false;
7879
7880	/* VF TX rate limit was not set or not supported */
7881	if ((adapter->vf_rate_link_speed == 0) ||
7882	    (adapter->hw.mac.type != e1000_82576))
7883		return;
7884
7885	actual_link_speed = igb_link_mbps(adapter->link_speed);
7886	if (actual_link_speed != adapter->vf_rate_link_speed) {
7887		reset_rate = true;
7888		adapter->vf_rate_link_speed = 0;
7889		dev_info(&adapter->pdev->dev,
7890			 "Link speed has been changed. VF Transmit rate is disabled\n");
7891	}
7892
7893	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7894		if (reset_rate)
7895			adapter->vf_data[i].tx_rate = 0;
7896
7897		igb_set_vf_rate_limit(&adapter->hw, i,
7898				      adapter->vf_data[i].tx_rate,
7899				      actual_link_speed);
7900	}
7901}
7902
7903static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
7904			     int min_tx_rate, int max_tx_rate)
7905{
7906	struct igb_adapter *adapter = netdev_priv(netdev);
7907	struct e1000_hw *hw = &adapter->hw;
7908	int actual_link_speed;
7909
7910	if (hw->mac.type != e1000_82576)
7911		return -EOPNOTSUPP;
7912
7913	if (min_tx_rate)
7914		return -EINVAL;
7915
7916	actual_link_speed = igb_link_mbps(adapter->link_speed);
7917	if ((vf >= adapter->vfs_allocated_count) ||
7918	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7919	    (max_tx_rate < 0) ||
7920	    (max_tx_rate > actual_link_speed))
7921		return -EINVAL;
7922
7923	adapter->vf_rate_link_speed = actual_link_speed;
7924	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
7925	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
7926
7927	return 0;
7928}
7929
7930static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7931				   bool setting)
7932{
7933	struct igb_adapter *adapter = netdev_priv(netdev);
7934	struct e1000_hw *hw = &adapter->hw;
7935	u32 reg_val, reg_offset;
7936
7937	if (!adapter->vfs_allocated_count)
7938		return -EOPNOTSUPP;
7939
7940	if (vf >= adapter->vfs_allocated_count)
7941		return -EINVAL;
7942
7943	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7944	reg_val = rd32(reg_offset);
7945	if (setting)
7946		reg_val |= ((1 << vf) |
7947			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7948	else
7949		reg_val &= ~((1 << vf) |
7950			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7951	wr32(reg_offset, reg_val);
7952
7953	adapter->vf_data[vf].spoofchk_enabled = setting;
7954	return 0;
7955}
7956
7957static int igb_ndo_get_vf_config(struct net_device *netdev,
7958				 int vf, struct ifla_vf_info *ivi)
7959{
7960	struct igb_adapter *adapter = netdev_priv(netdev);
7961	if (vf >= adapter->vfs_allocated_count)
7962		return -EINVAL;
7963	ivi->vf = vf;
7964	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7965	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
7966	ivi->min_tx_rate = 0;
7967	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7968	ivi->qos = adapter->vf_data[vf].pf_qos;
7969	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7970	return 0;
7971}
7972
7973static void igb_vmm_control(struct igb_adapter *adapter)
7974{
7975	struct e1000_hw *hw = &adapter->hw;
7976	u32 reg;
7977
7978	switch (hw->mac.type) {
7979	case e1000_82575:
7980	case e1000_i210:
7981	case e1000_i211:
7982	case e1000_i354:
7983	default:
7984		/* replication is not supported for 82575 */
7985		return;
7986	case e1000_82576:
7987		/* notify HW that the MAC is adding vlan tags */
7988		reg = rd32(E1000_DTXCTL);
7989		reg |= E1000_DTXCTL_VLAN_ADDED;
7990		wr32(E1000_DTXCTL, reg);
7991		/* Fall through */
7992	case e1000_82580:
7993		/* enable replication vlan tag stripping */
7994		reg = rd32(E1000_RPLOLR);
7995		reg |= E1000_RPLOLR_STRVLAN;
7996		wr32(E1000_RPLOLR, reg);
7997		/* Fall through */
7998	case e1000_i350:
7999		/* none of the above registers are supported by i350 */
8000		break;
8001	}
8002
8003	if (adapter->vfs_allocated_count) {
8004		igb_vmdq_set_loopback_pf(hw, true);
8005		igb_vmdq_set_replication_pf(hw, true);
8006		igb_vmdq_set_anti_spoofing_pf(hw, true,
8007					      adapter->vfs_allocated_count);
8008	} else {
8009		igb_vmdq_set_loopback_pf(hw, false);
8010		igb_vmdq_set_replication_pf(hw, false);
8011	}
8012}
8013
8014static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8015{
8016	struct e1000_hw *hw = &adapter->hw;
8017	u32 dmac_thr;
8018	u16 hwm;
8019
8020	if (hw->mac.type > e1000_82580) {
8021		if (adapter->flags & IGB_FLAG_DMAC) {
8022			u32 reg;
8023
8024			/* force threshold to 0. */
8025			wr32(E1000_DMCTXTH, 0);
8026
8027			/* DMA Coalescing high water mark needs to be greater
8028			 * than the Rx threshold. Set hwm to PBA - max frame
8029			 * size in 16B units, capping it at PBA - 6KB.
8030			 */
8031			hwm = 64 * pba - adapter->max_frame_size / 16;
8032			if (hwm < 64 * (pba - 6))
8033				hwm = 64 * (pba - 6);
8034			reg = rd32(E1000_FCRTC);
8035			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8036			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8037				& E1000_FCRTC_RTH_COAL_MASK);
8038			wr32(E1000_FCRTC, reg);
8039
8040			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8041			 * frame size, capping it at PBA - 10KB.
8042			 */
8043			dmac_thr = pba - adapter->max_frame_size / 512;
8044			if (dmac_thr < pba - 10)
8045				dmac_thr = pba - 10;
8046			reg = rd32(E1000_DMACR);
8047			reg &= ~E1000_DMACR_DMACTHR_MASK;
8048			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8049				& E1000_DMACR_DMACTHR_MASK);
8050
8051			/* transition to L0x or L1 if available..*/
8052			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8053
8054			/* watchdog timer= +-1000 usec in 32usec intervals */
8055			reg |= (1000 >> 5);
8056
8057			/* Disable BMC-to-OS Watchdog Enable */
8058			if (hw->mac.type != e1000_i354)
8059				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8060
8061			wr32(E1000_DMACR, reg);
8062
8063			/* no lower threshold to disable
8064			 * coalescing(smart fifb)-UTRESH=0
8065			 */
8066			wr32(E1000_DMCRTRH, 0);
8067
8068			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8069
8070			wr32(E1000_DMCTLX, reg);
8071
8072			/* free space in tx packet buffer to wake from
8073			 * DMA coal
8074			 */
8075			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8076			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8077
8078			/* make low power state decision controlled
8079			 * by DMA coal
8080			 */
8081			reg = rd32(E1000_PCIEMISC);
8082			reg &= ~E1000_PCIEMISC_LX_DECISION;
8083			wr32(E1000_PCIEMISC, reg);
8084		} /* endif adapter->dmac is not disabled */
8085	} else if (hw->mac.type == e1000_82580) {
8086		u32 reg = rd32(E1000_PCIEMISC);
8087
8088		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8089		wr32(E1000_DMACR, 0);
8090	}
8091}
8092
8093/**
8094 *  igb_read_i2c_byte - Reads 8 bit word over I2C
8095 *  @hw: pointer to hardware structure
8096 *  @byte_offset: byte offset to read
8097 *  @dev_addr: device address
8098 *  @data: value read
8099 *
8100 *  Performs byte read operation over I2C interface at
8101 *  a specified device address.
8102 **/
8103s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8104		      u8 dev_addr, u8 *data)
8105{
8106	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8107	struct i2c_client *this_client = adapter->i2c_client;
8108	s32 status;
8109	u16 swfw_mask = 0;
8110
8111	if (!this_client)
8112		return E1000_ERR_I2C;
8113
8114	swfw_mask = E1000_SWFW_PHY0_SM;
8115
8116	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8117		return E1000_ERR_SWFW_SYNC;
8118
8119	status = i2c_smbus_read_byte_data(this_client, byte_offset);
8120	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8121
8122	if (status < 0)
8123		return E1000_ERR_I2C;
8124	else {
8125		*data = status;
8126		return 0;
8127	}
8128}
8129
8130/**
8131 *  igb_write_i2c_byte - Writes 8 bit word over I2C
8132 *  @hw: pointer to hardware structure
8133 *  @byte_offset: byte offset to write
8134 *  @dev_addr: device address
8135 *  @data: value to write
8136 *
8137 *  Performs byte write operation over I2C interface at
8138 *  a specified device address.
8139 **/
8140s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8141		       u8 dev_addr, u8 data)
8142{
8143	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8144	struct i2c_client *this_client = adapter->i2c_client;
8145	s32 status;
8146	u16 swfw_mask = E1000_SWFW_PHY0_SM;
8147
8148	if (!this_client)
8149		return E1000_ERR_I2C;
8150
8151	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8152		return E1000_ERR_SWFW_SYNC;
8153	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8154	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8155
8156	if (status)
8157		return E1000_ERR_I2C;
8158	else
8159		return 0;
8160
8161}
8162
8163int igb_reinit_queues(struct igb_adapter *adapter)
8164{
8165	struct net_device *netdev = adapter->netdev;
8166	struct pci_dev *pdev = adapter->pdev;
8167	int err = 0;
8168
8169	if (netif_running(netdev))
8170		igb_close(netdev);
8171
8172	igb_reset_interrupt_capability(adapter);
8173
8174	if (igb_init_interrupt_scheme(adapter, true)) {
8175		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8176		return -ENOMEM;
8177	}
8178
8179	if (netif_running(netdev))
8180		err = igb_open(netdev);
8181
8182	return err;
8183}
8184/* igb_main.c */
8185