igb_main.c revision 9005df38615bb3545cb6e4db59db73b27b6c0140
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2014 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, see <http://www.gnu.org/licenses/>.
17
18  The full GNU General Public License is included in this distribution in
19  the file called "COPYING".
20
21  Contact Information:
22  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25*******************************************************************************/
26
27#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28
29#include <linux/module.h>
30#include <linux/types.h>
31#include <linux/init.h>
32#include <linux/bitops.h>
33#include <linux/vmalloc.h>
34#include <linux/pagemap.h>
35#include <linux/netdevice.h>
36#include <linux/ipv6.h>
37#include <linux/slab.h>
38#include <net/checksum.h>
39#include <net/ip6_checksum.h>
40#include <linux/net_tstamp.h>
41#include <linux/mii.h>
42#include <linux/ethtool.h>
43#include <linux/if.h>
44#include <linux/if_vlan.h>
45#include <linux/pci.h>
46#include <linux/pci-aspm.h>
47#include <linux/delay.h>
48#include <linux/interrupt.h>
49#include <linux/ip.h>
50#include <linux/tcp.h>
51#include <linux/sctp.h>
52#include <linux/if_ether.h>
53#include <linux/aer.h>
54#include <linux/prefetch.h>
55#include <linux/pm_runtime.h>
56#ifdef CONFIG_IGB_DCA
57#include <linux/dca.h>
58#endif
59#include <linux/i2c.h>
60#include "igb.h"
61
62#define MAJ 5
63#define MIN 0
64#define BUILD 5
65#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66__stringify(BUILD) "-k"
67char igb_driver_name[] = "igb";
68char igb_driver_version[] = DRV_VERSION;
69static const char igb_driver_string[] =
70				"Intel(R) Gigabit Ethernet Network Driver";
71static const char igb_copyright[] =
72				"Copyright (c) 2007-2014 Intel Corporation.";
73
74static const struct e1000_info *igb_info_tbl[] = {
75	[board_82575] = &e1000_82575_info,
76};
77
78static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
79	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
99	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
104	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
105	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
106	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
107	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
108	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
109	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
110	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
111	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
112	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
113	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
114	/* required last entry */
115	{0, }
116};
117
118MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
119
120void igb_reset(struct igb_adapter *);
121static int igb_setup_all_tx_resources(struct igb_adapter *);
122static int igb_setup_all_rx_resources(struct igb_adapter *);
123static void igb_free_all_tx_resources(struct igb_adapter *);
124static void igb_free_all_rx_resources(struct igb_adapter *);
125static void igb_setup_mrqc(struct igb_adapter *);
126static int igb_probe(struct pci_dev *, const struct pci_device_id *);
127static void igb_remove(struct pci_dev *pdev);
128static int igb_sw_init(struct igb_adapter *);
129static int igb_open(struct net_device *);
130static int igb_close(struct net_device *);
131static void igb_configure(struct igb_adapter *);
132static void igb_configure_tx(struct igb_adapter *);
133static void igb_configure_rx(struct igb_adapter *);
134static void igb_clean_all_tx_rings(struct igb_adapter *);
135static void igb_clean_all_rx_rings(struct igb_adapter *);
136static void igb_clean_tx_ring(struct igb_ring *);
137static void igb_clean_rx_ring(struct igb_ring *);
138static void igb_set_rx_mode(struct net_device *);
139static void igb_update_phy_info(unsigned long);
140static void igb_watchdog(unsigned long);
141static void igb_watchdog_task(struct work_struct *);
142static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
143static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
144						 struct rtnl_link_stats64 *stats);
145static int igb_change_mtu(struct net_device *, int);
146static int igb_set_mac(struct net_device *, void *);
147static void igb_set_uta(struct igb_adapter *adapter);
148static irqreturn_t igb_intr(int irq, void *);
149static irqreturn_t igb_intr_msi(int irq, void *);
150static irqreturn_t igb_msix_other(int irq, void *);
151static irqreturn_t igb_msix_ring(int irq, void *);
152#ifdef CONFIG_IGB_DCA
153static void igb_update_dca(struct igb_q_vector *);
154static void igb_setup_dca(struct igb_adapter *);
155#endif /* CONFIG_IGB_DCA */
156static int igb_poll(struct napi_struct *, int);
157static bool igb_clean_tx_irq(struct igb_q_vector *);
158static bool igb_clean_rx_irq(struct igb_q_vector *, int);
159static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
160static void igb_tx_timeout(struct net_device *);
161static void igb_reset_task(struct work_struct *);
162static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
163static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
164static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
165static void igb_restore_vlan(struct igb_adapter *);
166static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
167static void igb_ping_all_vfs(struct igb_adapter *);
168static void igb_msg_task(struct igb_adapter *);
169static void igb_vmm_control(struct igb_adapter *);
170static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
171static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
172static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
173static int igb_ndo_set_vf_vlan(struct net_device *netdev,
174			       int vf, u16 vlan, u8 qos);
175static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
176static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
177				   bool setting);
178static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
179				 struct ifla_vf_info *ivi);
180static void igb_check_vf_rate_limit(struct igb_adapter *);
181
182#ifdef CONFIG_PCI_IOV
183static int igb_vf_configure(struct igb_adapter *adapter, int vf);
184static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
185#endif
186
187#ifdef CONFIG_PM
188#ifdef CONFIG_PM_SLEEP
189static int igb_suspend(struct device *);
190#endif
191static int igb_resume(struct device *);
192#ifdef CONFIG_PM_RUNTIME
193static int igb_runtime_suspend(struct device *dev);
194static int igb_runtime_resume(struct device *dev);
195static int igb_runtime_idle(struct device *dev);
196#endif
197static const struct dev_pm_ops igb_pm_ops = {
198	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
199	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
200			igb_runtime_idle)
201};
202#endif
203static void igb_shutdown(struct pci_dev *);
204static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
205#ifdef CONFIG_IGB_DCA
206static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
207static struct notifier_block dca_notifier = {
208	.notifier_call	= igb_notify_dca,
209	.next		= NULL,
210	.priority	= 0
211};
212#endif
213#ifdef CONFIG_NET_POLL_CONTROLLER
214/* for netdump / net console */
215static void igb_netpoll(struct net_device *);
216#endif
217#ifdef CONFIG_PCI_IOV
218static unsigned int max_vfs = 0;
219module_param(max_vfs, uint, 0);
220MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
221#endif /* CONFIG_PCI_IOV */
222
223static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
224		     pci_channel_state_t);
225static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
226static void igb_io_resume(struct pci_dev *);
227
228static const struct pci_error_handlers igb_err_handler = {
229	.error_detected = igb_io_error_detected,
230	.slot_reset = igb_io_slot_reset,
231	.resume = igb_io_resume,
232};
233
234static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
235
236static struct pci_driver igb_driver = {
237	.name     = igb_driver_name,
238	.id_table = igb_pci_tbl,
239	.probe    = igb_probe,
240	.remove   = igb_remove,
241#ifdef CONFIG_PM
242	.driver.pm = &igb_pm_ops,
243#endif
244	.shutdown = igb_shutdown,
245	.sriov_configure = igb_pci_sriov_configure,
246	.err_handler = &igb_err_handler
247};
248
249MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
250MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
251MODULE_LICENSE("GPL");
252MODULE_VERSION(DRV_VERSION);
253
254#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
255static int debug = -1;
256module_param(debug, int, 0);
257MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
258
259struct igb_reg_info {
260	u32 ofs;
261	char *name;
262};
263
264static const struct igb_reg_info igb_reg_info_tbl[] = {
265
266	/* General Registers */
267	{E1000_CTRL, "CTRL"},
268	{E1000_STATUS, "STATUS"},
269	{E1000_CTRL_EXT, "CTRL_EXT"},
270
271	/* Interrupt Registers */
272	{E1000_ICR, "ICR"},
273
274	/* RX Registers */
275	{E1000_RCTL, "RCTL"},
276	{E1000_RDLEN(0), "RDLEN"},
277	{E1000_RDH(0), "RDH"},
278	{E1000_RDT(0), "RDT"},
279	{E1000_RXDCTL(0), "RXDCTL"},
280	{E1000_RDBAL(0), "RDBAL"},
281	{E1000_RDBAH(0), "RDBAH"},
282
283	/* TX Registers */
284	{E1000_TCTL, "TCTL"},
285	{E1000_TDBAL(0), "TDBAL"},
286	{E1000_TDBAH(0), "TDBAH"},
287	{E1000_TDLEN(0), "TDLEN"},
288	{E1000_TDH(0), "TDH"},
289	{E1000_TDT(0), "TDT"},
290	{E1000_TXDCTL(0), "TXDCTL"},
291	{E1000_TDFH, "TDFH"},
292	{E1000_TDFT, "TDFT"},
293	{E1000_TDFHS, "TDFHS"},
294	{E1000_TDFPC, "TDFPC"},
295
296	/* List Terminator */
297	{}
298};
299
300/* igb_regdump - register printout routine */
301static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
302{
303	int n = 0;
304	char rname[16];
305	u32 regs[8];
306
307	switch (reginfo->ofs) {
308	case E1000_RDLEN(0):
309		for (n = 0; n < 4; n++)
310			regs[n] = rd32(E1000_RDLEN(n));
311		break;
312	case E1000_RDH(0):
313		for (n = 0; n < 4; n++)
314			regs[n] = rd32(E1000_RDH(n));
315		break;
316	case E1000_RDT(0):
317		for (n = 0; n < 4; n++)
318			regs[n] = rd32(E1000_RDT(n));
319		break;
320	case E1000_RXDCTL(0):
321		for (n = 0; n < 4; n++)
322			regs[n] = rd32(E1000_RXDCTL(n));
323		break;
324	case E1000_RDBAL(0):
325		for (n = 0; n < 4; n++)
326			regs[n] = rd32(E1000_RDBAL(n));
327		break;
328	case E1000_RDBAH(0):
329		for (n = 0; n < 4; n++)
330			regs[n] = rd32(E1000_RDBAH(n));
331		break;
332	case E1000_TDBAL(0):
333		for (n = 0; n < 4; n++)
334			regs[n] = rd32(E1000_RDBAL(n));
335		break;
336	case E1000_TDBAH(0):
337		for (n = 0; n < 4; n++)
338			regs[n] = rd32(E1000_TDBAH(n));
339		break;
340	case E1000_TDLEN(0):
341		for (n = 0; n < 4; n++)
342			regs[n] = rd32(E1000_TDLEN(n));
343		break;
344	case E1000_TDH(0):
345		for (n = 0; n < 4; n++)
346			regs[n] = rd32(E1000_TDH(n));
347		break;
348	case E1000_TDT(0):
349		for (n = 0; n < 4; n++)
350			regs[n] = rd32(E1000_TDT(n));
351		break;
352	case E1000_TXDCTL(0):
353		for (n = 0; n < 4; n++)
354			regs[n] = rd32(E1000_TXDCTL(n));
355		break;
356	default:
357		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
358		return;
359	}
360
361	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
362	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
363		regs[2], regs[3]);
364}
365
366/* igb_dump - Print registers, Tx-rings and Rx-rings */
367static void igb_dump(struct igb_adapter *adapter)
368{
369	struct net_device *netdev = adapter->netdev;
370	struct e1000_hw *hw = &adapter->hw;
371	struct igb_reg_info *reginfo;
372	struct igb_ring *tx_ring;
373	union e1000_adv_tx_desc *tx_desc;
374	struct my_u0 { u64 a; u64 b; } *u0;
375	struct igb_ring *rx_ring;
376	union e1000_adv_rx_desc *rx_desc;
377	u32 staterr;
378	u16 i, n;
379
380	if (!netif_msg_hw(adapter))
381		return;
382
383	/* Print netdevice Info */
384	if (netdev) {
385		dev_info(&adapter->pdev->dev, "Net device Info\n");
386		pr_info("Device Name     state            trans_start      last_rx\n");
387		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
388			netdev->state, netdev->trans_start, netdev->last_rx);
389	}
390
391	/* Print Registers */
392	dev_info(&adapter->pdev->dev, "Register Dump\n");
393	pr_info(" Register Name   Value\n");
394	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395	     reginfo->name; reginfo++) {
396		igb_regdump(hw, reginfo);
397	}
398
399	/* Print TX Ring Summary */
400	if (!netdev || !netif_running(netdev))
401		goto exit;
402
403	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
404	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
405	for (n = 0; n < adapter->num_tx_queues; n++) {
406		struct igb_tx_buffer *buffer_info;
407		tx_ring = adapter->tx_ring[n];
408		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
409		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410			n, tx_ring->next_to_use, tx_ring->next_to_clean,
411			(u64)dma_unmap_addr(buffer_info, dma),
412			dma_unmap_len(buffer_info, len),
413			buffer_info->next_to_watch,
414			(u64)buffer_info->time_stamp);
415	}
416
417	/* Print TX Rings */
418	if (!netif_msg_tx_done(adapter))
419		goto rx_ring_summary;
420
421	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422
423	/* Transmit Descriptor Formats
424	 *
425	 * Advanced Transmit Descriptor
426	 *   +--------------------------------------------------------------+
427	 * 0 |         Buffer Address [63:0]                                |
428	 *   +--------------------------------------------------------------+
429	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
430	 *   +--------------------------------------------------------------+
431	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
432	 */
433
434	for (n = 0; n < adapter->num_tx_queues; n++) {
435		tx_ring = adapter->tx_ring[n];
436		pr_info("------------------------------------\n");
437		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438		pr_info("------------------------------------\n");
439		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
440
441		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
442			const char *next_desc;
443			struct igb_tx_buffer *buffer_info;
444			tx_desc = IGB_TX_DESC(tx_ring, i);
445			buffer_info = &tx_ring->tx_buffer_info[i];
446			u0 = (struct my_u0 *)tx_desc;
447			if (i == tx_ring->next_to_use &&
448			    i == tx_ring->next_to_clean)
449				next_desc = " NTC/U";
450			else if (i == tx_ring->next_to_use)
451				next_desc = " NTU";
452			else if (i == tx_ring->next_to_clean)
453				next_desc = " NTC";
454			else
455				next_desc = "";
456
457			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
458				i, le64_to_cpu(u0->a),
459				le64_to_cpu(u0->b),
460				(u64)dma_unmap_addr(buffer_info, dma),
461				dma_unmap_len(buffer_info, len),
462				buffer_info->next_to_watch,
463				(u64)buffer_info->time_stamp,
464				buffer_info->skb, next_desc);
465
466			if (netif_msg_pktdata(adapter) && buffer_info->skb)
467				print_hex_dump(KERN_INFO, "",
468					DUMP_PREFIX_ADDRESS,
469					16, 1, buffer_info->skb->data,
470					dma_unmap_len(buffer_info, len),
471					true);
472		}
473	}
474
475	/* Print RX Rings Summary */
476rx_ring_summary:
477	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
478	pr_info("Queue [NTU] [NTC]\n");
479	for (n = 0; n < adapter->num_rx_queues; n++) {
480		rx_ring = adapter->rx_ring[n];
481		pr_info(" %5d %5X %5X\n",
482			n, rx_ring->next_to_use, rx_ring->next_to_clean);
483	}
484
485	/* Print RX Rings */
486	if (!netif_msg_rx_status(adapter))
487		goto exit;
488
489	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
490
491	/* Advanced Receive Descriptor (Read) Format
492	 *    63                                           1        0
493	 *    +-----------------------------------------------------+
494	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
495	 *    +----------------------------------------------+------+
496	 *  8 |       Header Buffer Address [63:1]           |  DD  |
497	 *    +-----------------------------------------------------+
498	 *
499	 *
500	 * Advanced Receive Descriptor (Write-Back) Format
501	 *
502	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
503	 *   +------------------------------------------------------+
504	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
505	 *   | Checksum   Ident  |   |           |    | Type | Type |
506	 *   +------------------------------------------------------+
507	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
508	 *   +------------------------------------------------------+
509	 *   63       48 47    32 31            20 19               0
510	 */
511
512	for (n = 0; n < adapter->num_rx_queues; n++) {
513		rx_ring = adapter->rx_ring[n];
514		pr_info("------------------------------------\n");
515		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
516		pr_info("------------------------------------\n");
517		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
518		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
519
520		for (i = 0; i < rx_ring->count; i++) {
521			const char *next_desc;
522			struct igb_rx_buffer *buffer_info;
523			buffer_info = &rx_ring->rx_buffer_info[i];
524			rx_desc = IGB_RX_DESC(rx_ring, i);
525			u0 = (struct my_u0 *)rx_desc;
526			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
527
528			if (i == rx_ring->next_to_use)
529				next_desc = " NTU";
530			else if (i == rx_ring->next_to_clean)
531				next_desc = " NTC";
532			else
533				next_desc = "";
534
535			if (staterr & E1000_RXD_STAT_DD) {
536				/* Descriptor Done */
537				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
538					"RWB", i,
539					le64_to_cpu(u0->a),
540					le64_to_cpu(u0->b),
541					next_desc);
542			} else {
543				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
544					"R  ", i,
545					le64_to_cpu(u0->a),
546					le64_to_cpu(u0->b),
547					(u64)buffer_info->dma,
548					next_desc);
549
550				if (netif_msg_pktdata(adapter) &&
551				    buffer_info->dma && buffer_info->page) {
552					print_hex_dump(KERN_INFO, "",
553					  DUMP_PREFIX_ADDRESS,
554					  16, 1,
555					  page_address(buffer_info->page) +
556						      buffer_info->page_offset,
557					  IGB_RX_BUFSZ, true);
558				}
559			}
560		}
561	}
562
563exit:
564	return;
565}
566
567/**
568 *  igb_get_i2c_data - Reads the I2C SDA data bit
569 *  @hw: pointer to hardware structure
570 *  @i2cctl: Current value of I2CCTL register
571 *
572 *  Returns the I2C data bit value
573 **/
574static int igb_get_i2c_data(void *data)
575{
576	struct igb_adapter *adapter = (struct igb_adapter *)data;
577	struct e1000_hw *hw = &adapter->hw;
578	s32 i2cctl = rd32(E1000_I2CPARAMS);
579
580	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
581}
582
583/**
584 *  igb_set_i2c_data - Sets the I2C data bit
585 *  @data: pointer to hardware structure
586 *  @state: I2C data value (0 or 1) to set
587 *
588 *  Sets the I2C data bit
589 **/
590static void igb_set_i2c_data(void *data, int state)
591{
592	struct igb_adapter *adapter = (struct igb_adapter *)data;
593	struct e1000_hw *hw = &adapter->hw;
594	s32 i2cctl = rd32(E1000_I2CPARAMS);
595
596	if (state)
597		i2cctl |= E1000_I2C_DATA_OUT;
598	else
599		i2cctl &= ~E1000_I2C_DATA_OUT;
600
601	i2cctl &= ~E1000_I2C_DATA_OE_N;
602	i2cctl |= E1000_I2C_CLK_OE_N;
603	wr32(E1000_I2CPARAMS, i2cctl);
604	wrfl();
605
606}
607
608/**
609 *  igb_set_i2c_clk - Sets the I2C SCL clock
610 *  @data: pointer to hardware structure
611 *  @state: state to set clock
612 *
613 *  Sets the I2C clock line to state
614 **/
615static void igb_set_i2c_clk(void *data, int state)
616{
617	struct igb_adapter *adapter = (struct igb_adapter *)data;
618	struct e1000_hw *hw = &adapter->hw;
619	s32 i2cctl = rd32(E1000_I2CPARAMS);
620
621	if (state) {
622		i2cctl |= E1000_I2C_CLK_OUT;
623		i2cctl &= ~E1000_I2C_CLK_OE_N;
624	} else {
625		i2cctl &= ~E1000_I2C_CLK_OUT;
626		i2cctl &= ~E1000_I2C_CLK_OE_N;
627	}
628	wr32(E1000_I2CPARAMS, i2cctl);
629	wrfl();
630}
631
632/**
633 *  igb_get_i2c_clk - Gets the I2C SCL clock state
634 *  @data: pointer to hardware structure
635 *
636 *  Gets the I2C clock state
637 **/
638static int igb_get_i2c_clk(void *data)
639{
640	struct igb_adapter *adapter = (struct igb_adapter *)data;
641	struct e1000_hw *hw = &adapter->hw;
642	s32 i2cctl = rd32(E1000_I2CPARAMS);
643
644	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
645}
646
647static const struct i2c_algo_bit_data igb_i2c_algo = {
648	.setsda		= igb_set_i2c_data,
649	.setscl		= igb_set_i2c_clk,
650	.getsda		= igb_get_i2c_data,
651	.getscl		= igb_get_i2c_clk,
652	.udelay		= 5,
653	.timeout	= 20,
654};
655
656/**
657 *  igb_get_hw_dev - return device
658 *  @hw: pointer to hardware structure
659 *
660 *  used by hardware layer to print debugging information
661 **/
662struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
663{
664	struct igb_adapter *adapter = hw->back;
665	return adapter->netdev;
666}
667
668/**
669 *  igb_init_module - Driver Registration Routine
670 *
671 *  igb_init_module is the first routine called when the driver is
672 *  loaded. All it does is register with the PCI subsystem.
673 **/
674static int __init igb_init_module(void)
675{
676	int ret;
677
678	pr_info("%s - version %s\n",
679	       igb_driver_string, igb_driver_version);
680	pr_info("%s\n", igb_copyright);
681
682#ifdef CONFIG_IGB_DCA
683	dca_register_notify(&dca_notifier);
684#endif
685	ret = pci_register_driver(&igb_driver);
686	return ret;
687}
688
689module_init(igb_init_module);
690
691/**
692 *  igb_exit_module - Driver Exit Cleanup Routine
693 *
694 *  igb_exit_module is called just before the driver is removed
695 *  from memory.
696 **/
697static void __exit igb_exit_module(void)
698{
699#ifdef CONFIG_IGB_DCA
700	dca_unregister_notify(&dca_notifier);
701#endif
702	pci_unregister_driver(&igb_driver);
703}
704
705module_exit(igb_exit_module);
706
707#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
708/**
709 *  igb_cache_ring_register - Descriptor ring to register mapping
710 *  @adapter: board private structure to initialize
711 *
712 *  Once we know the feature-set enabled for the device, we'll cache
713 *  the register offset the descriptor ring is assigned to.
714 **/
715static void igb_cache_ring_register(struct igb_adapter *adapter)
716{
717	int i = 0, j = 0;
718	u32 rbase_offset = adapter->vfs_allocated_count;
719
720	switch (adapter->hw.mac.type) {
721	case e1000_82576:
722		/* The queues are allocated for virtualization such that VF 0
723		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
724		 * In order to avoid collision we start at the first free queue
725		 * and continue consuming queues in the same sequence
726		 */
727		if (adapter->vfs_allocated_count) {
728			for (; i < adapter->rss_queues; i++)
729				adapter->rx_ring[i]->reg_idx = rbase_offset +
730							       Q_IDX_82576(i);
731		}
732	case e1000_82575:
733	case e1000_82580:
734	case e1000_i350:
735	case e1000_i354:
736	case e1000_i210:
737	case e1000_i211:
738	default:
739		for (; i < adapter->num_rx_queues; i++)
740			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
741		for (; j < adapter->num_tx_queues; j++)
742			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
743		break;
744	}
745}
746
747u32 igb_rd32(struct e1000_hw *hw, u32 reg)
748{
749	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
750	u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
751	u32 value = 0;
752
753	if (E1000_REMOVED(hw_addr))
754		return ~value;
755
756	value = readl(&hw_addr[reg]);
757
758	/* reads should not return all F's */
759	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
760		struct net_device *netdev = igb->netdev;
761		hw->hw_addr = NULL;
762		netif_device_detach(netdev);
763		netdev_err(netdev, "PCIe link lost, device now detached\n");
764	}
765
766	return value;
767}
768
769/**
770 *  igb_write_ivar - configure ivar for given MSI-X vector
771 *  @hw: pointer to the HW structure
772 *  @msix_vector: vector number we are allocating to a given ring
773 *  @index: row index of IVAR register to write within IVAR table
774 *  @offset: column offset of in IVAR, should be multiple of 8
775 *
776 *  This function is intended to handle the writing of the IVAR register
777 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
778 *  each containing an cause allocation for an Rx and Tx ring, and a
779 *  variable number of rows depending on the number of queues supported.
780 **/
781static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
782			   int index, int offset)
783{
784	u32 ivar = array_rd32(E1000_IVAR0, index);
785
786	/* clear any bits that are currently set */
787	ivar &= ~((u32)0xFF << offset);
788
789	/* write vector and valid bit */
790	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
791
792	array_wr32(E1000_IVAR0, index, ivar);
793}
794
795#define IGB_N0_QUEUE -1
796static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
797{
798	struct igb_adapter *adapter = q_vector->adapter;
799	struct e1000_hw *hw = &adapter->hw;
800	int rx_queue = IGB_N0_QUEUE;
801	int tx_queue = IGB_N0_QUEUE;
802	u32 msixbm = 0;
803
804	if (q_vector->rx.ring)
805		rx_queue = q_vector->rx.ring->reg_idx;
806	if (q_vector->tx.ring)
807		tx_queue = q_vector->tx.ring->reg_idx;
808
809	switch (hw->mac.type) {
810	case e1000_82575:
811		/* The 82575 assigns vectors using a bitmask, which matches the
812		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
813		 * or more queues to a vector, we write the appropriate bits
814		 * into the MSIXBM register for that vector.
815		 */
816		if (rx_queue > IGB_N0_QUEUE)
817			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
818		if (tx_queue > IGB_N0_QUEUE)
819			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
820		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
821			msixbm |= E1000_EIMS_OTHER;
822		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
823		q_vector->eims_value = msixbm;
824		break;
825	case e1000_82576:
826		/* 82576 uses a table that essentially consists of 2 columns
827		 * with 8 rows.  The ordering is column-major so we use the
828		 * lower 3 bits as the row index, and the 4th bit as the
829		 * column offset.
830		 */
831		if (rx_queue > IGB_N0_QUEUE)
832			igb_write_ivar(hw, msix_vector,
833				       rx_queue & 0x7,
834				       (rx_queue & 0x8) << 1);
835		if (tx_queue > IGB_N0_QUEUE)
836			igb_write_ivar(hw, msix_vector,
837				       tx_queue & 0x7,
838				       ((tx_queue & 0x8) << 1) + 8);
839		q_vector->eims_value = 1 << msix_vector;
840		break;
841	case e1000_82580:
842	case e1000_i350:
843	case e1000_i354:
844	case e1000_i210:
845	case e1000_i211:
846		/* On 82580 and newer adapters the scheme is similar to 82576
847		 * however instead of ordering column-major we have things
848		 * ordered row-major.  So we traverse the table by using
849		 * bit 0 as the column offset, and the remaining bits as the
850		 * row index.
851		 */
852		if (rx_queue > IGB_N0_QUEUE)
853			igb_write_ivar(hw, msix_vector,
854				       rx_queue >> 1,
855				       (rx_queue & 0x1) << 4);
856		if (tx_queue > IGB_N0_QUEUE)
857			igb_write_ivar(hw, msix_vector,
858				       tx_queue >> 1,
859				       ((tx_queue & 0x1) << 4) + 8);
860		q_vector->eims_value = 1 << msix_vector;
861		break;
862	default:
863		BUG();
864		break;
865	}
866
867	/* add q_vector eims value to global eims_enable_mask */
868	adapter->eims_enable_mask |= q_vector->eims_value;
869
870	/* configure q_vector to set itr on first interrupt */
871	q_vector->set_itr = 1;
872}
873
874/**
875 *  igb_configure_msix - Configure MSI-X hardware
876 *  @adapter: board private structure to initialize
877 *
878 *  igb_configure_msix sets up the hardware to properly
879 *  generate MSI-X interrupts.
880 **/
881static void igb_configure_msix(struct igb_adapter *adapter)
882{
883	u32 tmp;
884	int i, vector = 0;
885	struct e1000_hw *hw = &adapter->hw;
886
887	adapter->eims_enable_mask = 0;
888
889	/* set vector for other causes, i.e. link changes */
890	switch (hw->mac.type) {
891	case e1000_82575:
892		tmp = rd32(E1000_CTRL_EXT);
893		/* enable MSI-X PBA support*/
894		tmp |= E1000_CTRL_EXT_PBA_CLR;
895
896		/* Auto-Mask interrupts upon ICR read. */
897		tmp |= E1000_CTRL_EXT_EIAME;
898		tmp |= E1000_CTRL_EXT_IRCA;
899
900		wr32(E1000_CTRL_EXT, tmp);
901
902		/* enable msix_other interrupt */
903		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
904		adapter->eims_other = E1000_EIMS_OTHER;
905
906		break;
907
908	case e1000_82576:
909	case e1000_82580:
910	case e1000_i350:
911	case e1000_i354:
912	case e1000_i210:
913	case e1000_i211:
914		/* Turn on MSI-X capability first, or our settings
915		 * won't stick.  And it will take days to debug.
916		 */
917		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
918		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
919		     E1000_GPIE_NSICR);
920
921		/* enable msix_other interrupt */
922		adapter->eims_other = 1 << vector;
923		tmp = (vector++ | E1000_IVAR_VALID) << 8;
924
925		wr32(E1000_IVAR_MISC, tmp);
926		break;
927	default:
928		/* do nothing, since nothing else supports MSI-X */
929		break;
930	} /* switch (hw->mac.type) */
931
932	adapter->eims_enable_mask |= adapter->eims_other;
933
934	for (i = 0; i < adapter->num_q_vectors; i++)
935		igb_assign_vector(adapter->q_vector[i], vector++);
936
937	wrfl();
938}
939
940/**
941 *  igb_request_msix - Initialize MSI-X interrupts
942 *  @adapter: board private structure to initialize
943 *
944 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
945 *  kernel.
946 **/
947static int igb_request_msix(struct igb_adapter *adapter)
948{
949	struct net_device *netdev = adapter->netdev;
950	struct e1000_hw *hw = &adapter->hw;
951	int i, err = 0, vector = 0, free_vector = 0;
952
953	err = request_irq(adapter->msix_entries[vector].vector,
954			  igb_msix_other, 0, netdev->name, adapter);
955	if (err)
956		goto err_out;
957
958	for (i = 0; i < adapter->num_q_vectors; i++) {
959		struct igb_q_vector *q_vector = adapter->q_vector[i];
960
961		vector++;
962
963		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
964
965		if (q_vector->rx.ring && q_vector->tx.ring)
966			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
967				q_vector->rx.ring->queue_index);
968		else if (q_vector->tx.ring)
969			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
970				q_vector->tx.ring->queue_index);
971		else if (q_vector->rx.ring)
972			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
973				q_vector->rx.ring->queue_index);
974		else
975			sprintf(q_vector->name, "%s-unused", netdev->name);
976
977		err = request_irq(adapter->msix_entries[vector].vector,
978				  igb_msix_ring, 0, q_vector->name,
979				  q_vector);
980		if (err)
981			goto err_free;
982	}
983
984	igb_configure_msix(adapter);
985	return 0;
986
987err_free:
988	/* free already assigned IRQs */
989	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
990
991	vector--;
992	for (i = 0; i < vector; i++) {
993		free_irq(adapter->msix_entries[free_vector++].vector,
994			 adapter->q_vector[i]);
995	}
996err_out:
997	return err;
998}
999
1000/**
1001 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1002 *  @adapter: board private structure to initialize
1003 *  @v_idx: Index of vector to be freed
1004 *
1005 *  This function frees the memory allocated to the q_vector.
1006 **/
1007static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1008{
1009	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1010
1011	adapter->q_vector[v_idx] = NULL;
1012
1013	/* igb_get_stats64() might access the rings on this vector,
1014	 * we must wait a grace period before freeing it.
1015	 */
1016	kfree_rcu(q_vector, rcu);
1017}
1018
1019/**
1020 *  igb_reset_q_vector - Reset config for interrupt vector
1021 *  @adapter: board private structure to initialize
1022 *  @v_idx: Index of vector to be reset
1023 *
1024 *  If NAPI is enabled it will delete any references to the
1025 *  NAPI struct. This is preparation for igb_free_q_vector.
1026 **/
1027static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1028{
1029	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1030
1031	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1032	 * allocated. So, q_vector is NULL so we should stop here.
1033	 */
1034	if (!q_vector)
1035		return;
1036
1037	if (q_vector->tx.ring)
1038		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1039
1040	if (q_vector->rx.ring)
1041		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1042
1043	netif_napi_del(&q_vector->napi);
1044
1045}
1046
1047static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1048{
1049	int v_idx = adapter->num_q_vectors;
1050
1051	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1052		pci_disable_msix(adapter->pdev);
1053	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1054		pci_disable_msi(adapter->pdev);
1055
1056	while (v_idx--)
1057		igb_reset_q_vector(adapter, v_idx);
1058}
1059
1060/**
1061 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1062 *  @adapter: board private structure to initialize
1063 *
1064 *  This function frees the memory allocated to the q_vectors.  In addition if
1065 *  NAPI is enabled it will delete any references to the NAPI struct prior
1066 *  to freeing the q_vector.
1067 **/
1068static void igb_free_q_vectors(struct igb_adapter *adapter)
1069{
1070	int v_idx = adapter->num_q_vectors;
1071
1072	adapter->num_tx_queues = 0;
1073	adapter->num_rx_queues = 0;
1074	adapter->num_q_vectors = 0;
1075
1076	while (v_idx--) {
1077		igb_reset_q_vector(adapter, v_idx);
1078		igb_free_q_vector(adapter, v_idx);
1079	}
1080}
1081
1082/**
1083 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1084 *  @adapter: board private structure to initialize
1085 *
1086 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1087 *  MSI-X interrupts allocated.
1088 */
1089static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1090{
1091	igb_free_q_vectors(adapter);
1092	igb_reset_interrupt_capability(adapter);
1093}
1094
1095/**
1096 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1097 *  @adapter: board private structure to initialize
1098 *  @msix: boolean value of MSIX capability
1099 *
1100 *  Attempt to configure interrupts using the best available
1101 *  capabilities of the hardware and kernel.
1102 **/
1103static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1104{
1105	int err;
1106	int numvecs, i;
1107
1108	if (!msix)
1109		goto msi_only;
1110	adapter->flags |= IGB_FLAG_HAS_MSIX;
1111
1112	/* Number of supported queues. */
1113	adapter->num_rx_queues = adapter->rss_queues;
1114	if (adapter->vfs_allocated_count)
1115		adapter->num_tx_queues = 1;
1116	else
1117		adapter->num_tx_queues = adapter->rss_queues;
1118
1119	/* start with one vector for every Rx queue */
1120	numvecs = adapter->num_rx_queues;
1121
1122	/* if Tx handler is separate add 1 for every Tx queue */
1123	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1124		numvecs += adapter->num_tx_queues;
1125
1126	/* store the number of vectors reserved for queues */
1127	adapter->num_q_vectors = numvecs;
1128
1129	/* add 1 vector for link status interrupts */
1130	numvecs++;
1131	for (i = 0; i < numvecs; i++)
1132		adapter->msix_entries[i].entry = i;
1133
1134	err = pci_enable_msix_range(adapter->pdev,
1135				    adapter->msix_entries,
1136				    numvecs,
1137				    numvecs);
1138	if (err > 0)
1139		return;
1140
1141	igb_reset_interrupt_capability(adapter);
1142
1143	/* If we can't do MSI-X, try MSI */
1144msi_only:
1145	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1146#ifdef CONFIG_PCI_IOV
1147	/* disable SR-IOV for non MSI-X configurations */
1148	if (adapter->vf_data) {
1149		struct e1000_hw *hw = &adapter->hw;
1150		/* disable iov and allow time for transactions to clear */
1151		pci_disable_sriov(adapter->pdev);
1152		msleep(500);
1153
1154		kfree(adapter->vf_data);
1155		adapter->vf_data = NULL;
1156		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1157		wrfl();
1158		msleep(100);
1159		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1160	}
1161#endif
1162	adapter->vfs_allocated_count = 0;
1163	adapter->rss_queues = 1;
1164	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1165	adapter->num_rx_queues = 1;
1166	adapter->num_tx_queues = 1;
1167	adapter->num_q_vectors = 1;
1168	if (!pci_enable_msi(adapter->pdev))
1169		adapter->flags |= IGB_FLAG_HAS_MSI;
1170}
1171
1172static void igb_add_ring(struct igb_ring *ring,
1173			 struct igb_ring_container *head)
1174{
1175	head->ring = ring;
1176	head->count++;
1177}
1178
1179/**
1180 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1181 *  @adapter: board private structure to initialize
1182 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1183 *  @v_idx: index of vector in adapter struct
1184 *  @txr_count: total number of Tx rings to allocate
1185 *  @txr_idx: index of first Tx ring to allocate
1186 *  @rxr_count: total number of Rx rings to allocate
1187 *  @rxr_idx: index of first Rx ring to allocate
1188 *
1189 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1190 **/
1191static int igb_alloc_q_vector(struct igb_adapter *adapter,
1192			      int v_count, int v_idx,
1193			      int txr_count, int txr_idx,
1194			      int rxr_count, int rxr_idx)
1195{
1196	struct igb_q_vector *q_vector;
1197	struct igb_ring *ring;
1198	int ring_count, size;
1199
1200	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1201	if (txr_count > 1 || rxr_count > 1)
1202		return -ENOMEM;
1203
1204	ring_count = txr_count + rxr_count;
1205	size = sizeof(struct igb_q_vector) +
1206	       (sizeof(struct igb_ring) * ring_count);
1207
1208	/* allocate q_vector and rings */
1209	q_vector = adapter->q_vector[v_idx];
1210	if (!q_vector)
1211		q_vector = kzalloc(size, GFP_KERNEL);
1212	if (!q_vector)
1213		return -ENOMEM;
1214
1215	/* initialize NAPI */
1216	netif_napi_add(adapter->netdev, &q_vector->napi,
1217		       igb_poll, 64);
1218
1219	/* tie q_vector and adapter together */
1220	adapter->q_vector[v_idx] = q_vector;
1221	q_vector->adapter = adapter;
1222
1223	/* initialize work limits */
1224	q_vector->tx.work_limit = adapter->tx_work_limit;
1225
1226	/* initialize ITR configuration */
1227	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1228	q_vector->itr_val = IGB_START_ITR;
1229
1230	/* initialize pointer to rings */
1231	ring = q_vector->ring;
1232
1233	/* intialize ITR */
1234	if (rxr_count) {
1235		/* rx or rx/tx vector */
1236		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1237			q_vector->itr_val = adapter->rx_itr_setting;
1238	} else {
1239		/* tx only vector */
1240		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1241			q_vector->itr_val = adapter->tx_itr_setting;
1242	}
1243
1244	if (txr_count) {
1245		/* assign generic ring traits */
1246		ring->dev = &adapter->pdev->dev;
1247		ring->netdev = adapter->netdev;
1248
1249		/* configure backlink on ring */
1250		ring->q_vector = q_vector;
1251
1252		/* update q_vector Tx values */
1253		igb_add_ring(ring, &q_vector->tx);
1254
1255		/* For 82575, context index must be unique per ring. */
1256		if (adapter->hw.mac.type == e1000_82575)
1257			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1258
1259		/* apply Tx specific ring traits */
1260		ring->count = adapter->tx_ring_count;
1261		ring->queue_index = txr_idx;
1262
1263		u64_stats_init(&ring->tx_syncp);
1264		u64_stats_init(&ring->tx_syncp2);
1265
1266		/* assign ring to adapter */
1267		adapter->tx_ring[txr_idx] = ring;
1268
1269		/* push pointer to next ring */
1270		ring++;
1271	}
1272
1273	if (rxr_count) {
1274		/* assign generic ring traits */
1275		ring->dev = &adapter->pdev->dev;
1276		ring->netdev = adapter->netdev;
1277
1278		/* configure backlink on ring */
1279		ring->q_vector = q_vector;
1280
1281		/* update q_vector Rx values */
1282		igb_add_ring(ring, &q_vector->rx);
1283
1284		/* set flag indicating ring supports SCTP checksum offload */
1285		if (adapter->hw.mac.type >= e1000_82576)
1286			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1287
1288		/*
1289		 * On i350, i354, i210, and i211, loopback VLAN packets
1290		 * have the tag byte-swapped.
1291		 */
1292		if (adapter->hw.mac.type >= e1000_i350)
1293			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1294
1295		/* apply Rx specific ring traits */
1296		ring->count = adapter->rx_ring_count;
1297		ring->queue_index = rxr_idx;
1298
1299		u64_stats_init(&ring->rx_syncp);
1300
1301		/* assign ring to adapter */
1302		adapter->rx_ring[rxr_idx] = ring;
1303	}
1304
1305	return 0;
1306}
1307
1308
1309/**
1310 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1311 *  @adapter: board private structure to initialize
1312 *
1313 *  We allocate one q_vector per queue interrupt.  If allocation fails we
1314 *  return -ENOMEM.
1315 **/
1316static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1317{
1318	int q_vectors = adapter->num_q_vectors;
1319	int rxr_remaining = adapter->num_rx_queues;
1320	int txr_remaining = adapter->num_tx_queues;
1321	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1322	int err;
1323
1324	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1325		for (; rxr_remaining; v_idx++) {
1326			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1327						 0, 0, 1, rxr_idx);
1328
1329			if (err)
1330				goto err_out;
1331
1332			/* update counts and index */
1333			rxr_remaining--;
1334			rxr_idx++;
1335		}
1336	}
1337
1338	for (; v_idx < q_vectors; v_idx++) {
1339		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1340		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1341
1342		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1343					 tqpv, txr_idx, rqpv, rxr_idx);
1344
1345		if (err)
1346			goto err_out;
1347
1348		/* update counts and index */
1349		rxr_remaining -= rqpv;
1350		txr_remaining -= tqpv;
1351		rxr_idx++;
1352		txr_idx++;
1353	}
1354
1355	return 0;
1356
1357err_out:
1358	adapter->num_tx_queues = 0;
1359	adapter->num_rx_queues = 0;
1360	adapter->num_q_vectors = 0;
1361
1362	while (v_idx--)
1363		igb_free_q_vector(adapter, v_idx);
1364
1365	return -ENOMEM;
1366}
1367
1368/**
1369 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1370 *  @adapter: board private structure to initialize
1371 *  @msix: boolean value of MSIX capability
1372 *
1373 *  This function initializes the interrupts and allocates all of the queues.
1374 **/
1375static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1376{
1377	struct pci_dev *pdev = adapter->pdev;
1378	int err;
1379
1380	igb_set_interrupt_capability(adapter, msix);
1381
1382	err = igb_alloc_q_vectors(adapter);
1383	if (err) {
1384		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1385		goto err_alloc_q_vectors;
1386	}
1387
1388	igb_cache_ring_register(adapter);
1389
1390	return 0;
1391
1392err_alloc_q_vectors:
1393	igb_reset_interrupt_capability(adapter);
1394	return err;
1395}
1396
1397/**
1398 *  igb_request_irq - initialize interrupts
1399 *  @adapter: board private structure to initialize
1400 *
1401 *  Attempts to configure interrupts using the best available
1402 *  capabilities of the hardware and kernel.
1403 **/
1404static int igb_request_irq(struct igb_adapter *adapter)
1405{
1406	struct net_device *netdev = adapter->netdev;
1407	struct pci_dev *pdev = adapter->pdev;
1408	int err = 0;
1409
1410	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1411		err = igb_request_msix(adapter);
1412		if (!err)
1413			goto request_done;
1414		/* fall back to MSI */
1415		igb_free_all_tx_resources(adapter);
1416		igb_free_all_rx_resources(adapter);
1417
1418		igb_clear_interrupt_scheme(adapter);
1419		err = igb_init_interrupt_scheme(adapter, false);
1420		if (err)
1421			goto request_done;
1422
1423		igb_setup_all_tx_resources(adapter);
1424		igb_setup_all_rx_resources(adapter);
1425		igb_configure(adapter);
1426	}
1427
1428	igb_assign_vector(adapter->q_vector[0], 0);
1429
1430	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1431		err = request_irq(pdev->irq, igb_intr_msi, 0,
1432				  netdev->name, adapter);
1433		if (!err)
1434			goto request_done;
1435
1436		/* fall back to legacy interrupts */
1437		igb_reset_interrupt_capability(adapter);
1438		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1439	}
1440
1441	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1442			  netdev->name, adapter);
1443
1444	if (err)
1445		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1446			err);
1447
1448request_done:
1449	return err;
1450}
1451
1452static void igb_free_irq(struct igb_adapter *adapter)
1453{
1454	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1455		int vector = 0, i;
1456
1457		free_irq(adapter->msix_entries[vector++].vector, adapter);
1458
1459		for (i = 0; i < adapter->num_q_vectors; i++)
1460			free_irq(adapter->msix_entries[vector++].vector,
1461				 adapter->q_vector[i]);
1462	} else {
1463		free_irq(adapter->pdev->irq, adapter);
1464	}
1465}
1466
1467/**
1468 *  igb_irq_disable - Mask off interrupt generation on the NIC
1469 *  @adapter: board private structure
1470 **/
1471static void igb_irq_disable(struct igb_adapter *adapter)
1472{
1473	struct e1000_hw *hw = &adapter->hw;
1474
1475	/* we need to be careful when disabling interrupts.  The VFs are also
1476	 * mapped into these registers and so clearing the bits can cause
1477	 * issues on the VF drivers so we only need to clear what we set
1478	 */
1479	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1480		u32 regval = rd32(E1000_EIAM);
1481
1482		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1483		wr32(E1000_EIMC, adapter->eims_enable_mask);
1484		regval = rd32(E1000_EIAC);
1485		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1486	}
1487
1488	wr32(E1000_IAM, 0);
1489	wr32(E1000_IMC, ~0);
1490	wrfl();
1491	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1492		int i;
1493
1494		for (i = 0; i < adapter->num_q_vectors; i++)
1495			synchronize_irq(adapter->msix_entries[i].vector);
1496	} else {
1497		synchronize_irq(adapter->pdev->irq);
1498	}
1499}
1500
1501/**
1502 *  igb_irq_enable - Enable default interrupt generation settings
1503 *  @adapter: board private structure
1504 **/
1505static void igb_irq_enable(struct igb_adapter *adapter)
1506{
1507	struct e1000_hw *hw = &adapter->hw;
1508
1509	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1510		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1511		u32 regval = rd32(E1000_EIAC);
1512
1513		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1514		regval = rd32(E1000_EIAM);
1515		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1516		wr32(E1000_EIMS, adapter->eims_enable_mask);
1517		if (adapter->vfs_allocated_count) {
1518			wr32(E1000_MBVFIMR, 0xFF);
1519			ims |= E1000_IMS_VMMB;
1520		}
1521		wr32(E1000_IMS, ims);
1522	} else {
1523		wr32(E1000_IMS, IMS_ENABLE_MASK |
1524				E1000_IMS_DRSTA);
1525		wr32(E1000_IAM, IMS_ENABLE_MASK |
1526				E1000_IMS_DRSTA);
1527	}
1528}
1529
1530static void igb_update_mng_vlan(struct igb_adapter *adapter)
1531{
1532	struct e1000_hw *hw = &adapter->hw;
1533	u16 vid = adapter->hw.mng_cookie.vlan_id;
1534	u16 old_vid = adapter->mng_vlan_id;
1535
1536	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1537		/* add VID to filter table */
1538		igb_vfta_set(hw, vid, true);
1539		adapter->mng_vlan_id = vid;
1540	} else {
1541		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1542	}
1543
1544	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1545	    (vid != old_vid) &&
1546	    !test_bit(old_vid, adapter->active_vlans)) {
1547		/* remove VID from filter table */
1548		igb_vfta_set(hw, old_vid, false);
1549	}
1550}
1551
1552/**
1553 *  igb_release_hw_control - release control of the h/w to f/w
1554 *  @adapter: address of board private structure
1555 *
1556 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1557 *  For ASF and Pass Through versions of f/w this means that the
1558 *  driver is no longer loaded.
1559 **/
1560static void igb_release_hw_control(struct igb_adapter *adapter)
1561{
1562	struct e1000_hw *hw = &adapter->hw;
1563	u32 ctrl_ext;
1564
1565	/* Let firmware take over control of h/w */
1566	ctrl_ext = rd32(E1000_CTRL_EXT);
1567	wr32(E1000_CTRL_EXT,
1568			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1569}
1570
1571/**
1572 *  igb_get_hw_control - get control of the h/w from f/w
1573 *  @adapter: address of board private structure
1574 *
1575 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1576 *  For ASF and Pass Through versions of f/w this means that
1577 *  the driver is loaded.
1578 **/
1579static void igb_get_hw_control(struct igb_adapter *adapter)
1580{
1581	struct e1000_hw *hw = &adapter->hw;
1582	u32 ctrl_ext;
1583
1584	/* Let firmware know the driver has taken over */
1585	ctrl_ext = rd32(E1000_CTRL_EXT);
1586	wr32(E1000_CTRL_EXT,
1587			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1588}
1589
1590/**
1591 *  igb_configure - configure the hardware for RX and TX
1592 *  @adapter: private board structure
1593 **/
1594static void igb_configure(struct igb_adapter *adapter)
1595{
1596	struct net_device *netdev = adapter->netdev;
1597	int i;
1598
1599	igb_get_hw_control(adapter);
1600	igb_set_rx_mode(netdev);
1601
1602	igb_restore_vlan(adapter);
1603
1604	igb_setup_tctl(adapter);
1605	igb_setup_mrqc(adapter);
1606	igb_setup_rctl(adapter);
1607
1608	igb_configure_tx(adapter);
1609	igb_configure_rx(adapter);
1610
1611	igb_rx_fifo_flush_82575(&adapter->hw);
1612
1613	/* call igb_desc_unused which always leaves
1614	 * at least 1 descriptor unused to make sure
1615	 * next_to_use != next_to_clean
1616	 */
1617	for (i = 0; i < adapter->num_rx_queues; i++) {
1618		struct igb_ring *ring = adapter->rx_ring[i];
1619		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1620	}
1621}
1622
1623/**
1624 *  igb_power_up_link - Power up the phy/serdes link
1625 *  @adapter: address of board private structure
1626 **/
1627void igb_power_up_link(struct igb_adapter *adapter)
1628{
1629	igb_reset_phy(&adapter->hw);
1630
1631	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1632		igb_power_up_phy_copper(&adapter->hw);
1633	else
1634		igb_power_up_serdes_link_82575(&adapter->hw);
1635}
1636
1637/**
1638 *  igb_power_down_link - Power down the phy/serdes link
1639 *  @adapter: address of board private structure
1640 */
1641static void igb_power_down_link(struct igb_adapter *adapter)
1642{
1643	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1644		igb_power_down_phy_copper_82575(&adapter->hw);
1645	else
1646		igb_shutdown_serdes_link_82575(&adapter->hw);
1647}
1648
1649/**
1650 * Detect and switch function for Media Auto Sense
1651 * @adapter: address of the board private structure
1652 **/
1653static void igb_check_swap_media(struct igb_adapter *adapter)
1654{
1655	struct e1000_hw *hw = &adapter->hw;
1656	u32 ctrl_ext, connsw;
1657	bool swap_now = false;
1658
1659	ctrl_ext = rd32(E1000_CTRL_EXT);
1660	connsw = rd32(E1000_CONNSW);
1661
1662	/* need to live swap if current media is copper and we have fiber/serdes
1663	 * to go to.
1664	 */
1665
1666	if ((hw->phy.media_type == e1000_media_type_copper) &&
1667	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1668		swap_now = true;
1669	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
1670		/* copper signal takes time to appear */
1671		if (adapter->copper_tries < 4) {
1672			adapter->copper_tries++;
1673			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1674			wr32(E1000_CONNSW, connsw);
1675			return;
1676		} else {
1677			adapter->copper_tries = 0;
1678			if ((connsw & E1000_CONNSW_PHYSD) &&
1679			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
1680				swap_now = true;
1681				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1682				wr32(E1000_CONNSW, connsw);
1683			}
1684		}
1685	}
1686
1687	if (!swap_now)
1688		return;
1689
1690	switch (hw->phy.media_type) {
1691	case e1000_media_type_copper:
1692		netdev_info(adapter->netdev,
1693			"MAS: changing media to fiber/serdes\n");
1694		ctrl_ext |=
1695			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1696		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1697		adapter->copper_tries = 0;
1698		break;
1699	case e1000_media_type_internal_serdes:
1700	case e1000_media_type_fiber:
1701		netdev_info(adapter->netdev,
1702			"MAS: changing media to copper\n");
1703		ctrl_ext &=
1704			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1705		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1706		break;
1707	default:
1708		/* shouldn't get here during regular operation */
1709		netdev_err(adapter->netdev,
1710			"AMS: Invalid media type found, returning\n");
1711		break;
1712	}
1713	wr32(E1000_CTRL_EXT, ctrl_ext);
1714}
1715
1716/**
1717 *  igb_up - Open the interface and prepare it to handle traffic
1718 *  @adapter: board private structure
1719 **/
1720int igb_up(struct igb_adapter *adapter)
1721{
1722	struct e1000_hw *hw = &adapter->hw;
1723	int i;
1724
1725	/* hardware has been reset, we need to reload some things */
1726	igb_configure(adapter);
1727
1728	clear_bit(__IGB_DOWN, &adapter->state);
1729
1730	for (i = 0; i < adapter->num_q_vectors; i++)
1731		napi_enable(&(adapter->q_vector[i]->napi));
1732
1733	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1734		igb_configure_msix(adapter);
1735	else
1736		igb_assign_vector(adapter->q_vector[0], 0);
1737
1738	/* Clear any pending interrupts. */
1739	rd32(E1000_ICR);
1740	igb_irq_enable(adapter);
1741
1742	/* notify VFs that reset has been completed */
1743	if (adapter->vfs_allocated_count) {
1744		u32 reg_data = rd32(E1000_CTRL_EXT);
1745
1746		reg_data |= E1000_CTRL_EXT_PFRSTD;
1747		wr32(E1000_CTRL_EXT, reg_data);
1748	}
1749
1750	netif_tx_start_all_queues(adapter->netdev);
1751
1752	/* start the watchdog. */
1753	hw->mac.get_link_status = 1;
1754	schedule_work(&adapter->watchdog_task);
1755
1756	if ((adapter->flags & IGB_FLAG_EEE) &&
1757	    (!hw->dev_spec._82575.eee_disable))
1758		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1759
1760	return 0;
1761}
1762
1763void igb_down(struct igb_adapter *adapter)
1764{
1765	struct net_device *netdev = adapter->netdev;
1766	struct e1000_hw *hw = &adapter->hw;
1767	u32 tctl, rctl;
1768	int i;
1769
1770	/* signal that we're down so the interrupt handler does not
1771	 * reschedule our watchdog timer
1772	 */
1773	set_bit(__IGB_DOWN, &adapter->state);
1774
1775	/* disable receives in the hardware */
1776	rctl = rd32(E1000_RCTL);
1777	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1778	/* flush and sleep below */
1779
1780	netif_tx_stop_all_queues(netdev);
1781
1782	/* disable transmits in the hardware */
1783	tctl = rd32(E1000_TCTL);
1784	tctl &= ~E1000_TCTL_EN;
1785	wr32(E1000_TCTL, tctl);
1786	/* flush both disables and wait for them to finish */
1787	wrfl();
1788	msleep(10);
1789
1790	igb_irq_disable(adapter);
1791
1792	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1793
1794	for (i = 0; i < adapter->num_q_vectors; i++) {
1795		napi_synchronize(&(adapter->q_vector[i]->napi));
1796		napi_disable(&(adapter->q_vector[i]->napi));
1797	}
1798
1799
1800	del_timer_sync(&adapter->watchdog_timer);
1801	del_timer_sync(&adapter->phy_info_timer);
1802
1803	netif_carrier_off(netdev);
1804
1805	/* record the stats before reset*/
1806	spin_lock(&adapter->stats64_lock);
1807	igb_update_stats(adapter, &adapter->stats64);
1808	spin_unlock(&adapter->stats64_lock);
1809
1810	adapter->link_speed = 0;
1811	adapter->link_duplex = 0;
1812
1813	if (!pci_channel_offline(adapter->pdev))
1814		igb_reset(adapter);
1815	igb_clean_all_tx_rings(adapter);
1816	igb_clean_all_rx_rings(adapter);
1817#ifdef CONFIG_IGB_DCA
1818
1819	/* since we reset the hardware DCA settings were cleared */
1820	igb_setup_dca(adapter);
1821#endif
1822}
1823
1824void igb_reinit_locked(struct igb_adapter *adapter)
1825{
1826	WARN_ON(in_interrupt());
1827	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1828		msleep(1);
1829	igb_down(adapter);
1830	igb_up(adapter);
1831	clear_bit(__IGB_RESETTING, &adapter->state);
1832}
1833
1834/** igb_enable_mas - Media Autosense re-enable after swap
1835 *
1836 * @adapter: adapter struct
1837 **/
1838static s32 igb_enable_mas(struct igb_adapter *adapter)
1839{
1840	struct e1000_hw *hw = &adapter->hw;
1841	u32 connsw;
1842	s32 ret_val = 0;
1843
1844	connsw = rd32(E1000_CONNSW);
1845	if (!(hw->phy.media_type == e1000_media_type_copper))
1846		return ret_val;
1847
1848	/* configure for SerDes media detect */
1849	if (!(connsw & E1000_CONNSW_SERDESD)) {
1850		connsw |= E1000_CONNSW_ENRGSRC;
1851		connsw |= E1000_CONNSW_AUTOSENSE_EN;
1852		wr32(E1000_CONNSW, connsw);
1853		wrfl();
1854	} else if (connsw & E1000_CONNSW_SERDESD) {
1855		/* already SerDes, no need to enable anything */
1856		return ret_val;
1857	} else {
1858		netdev_info(adapter->netdev,
1859			"MAS: Unable to configure feature, disabling..\n");
1860		adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1861	}
1862	return ret_val;
1863}
1864
1865void igb_reset(struct igb_adapter *adapter)
1866{
1867	struct pci_dev *pdev = adapter->pdev;
1868	struct e1000_hw *hw = &adapter->hw;
1869	struct e1000_mac_info *mac = &hw->mac;
1870	struct e1000_fc_info *fc = &hw->fc;
1871	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1872
1873	/* Repartition Pba for greater than 9k mtu
1874	 * To take effect CTRL.RST is required.
1875	 */
1876	switch (mac->type) {
1877	case e1000_i350:
1878	case e1000_i354:
1879	case e1000_82580:
1880		pba = rd32(E1000_RXPBS);
1881		pba = igb_rxpbs_adjust_82580(pba);
1882		break;
1883	case e1000_82576:
1884		pba = rd32(E1000_RXPBS);
1885		pba &= E1000_RXPBS_SIZE_MASK_82576;
1886		break;
1887	case e1000_82575:
1888	case e1000_i210:
1889	case e1000_i211:
1890	default:
1891		pba = E1000_PBA_34K;
1892		break;
1893	}
1894
1895	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1896	    (mac->type < e1000_82576)) {
1897		/* adjust PBA for jumbo frames */
1898		wr32(E1000_PBA, pba);
1899
1900		/* To maintain wire speed transmits, the Tx FIFO should be
1901		 * large enough to accommodate two full transmit packets,
1902		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1903		 * the Rx FIFO should be large enough to accommodate at least
1904		 * one full receive packet and is similarly rounded up and
1905		 * expressed in KB.
1906		 */
1907		pba = rd32(E1000_PBA);
1908		/* upper 16 bits has Tx packet buffer allocation size in KB */
1909		tx_space = pba >> 16;
1910		/* lower 16 bits has Rx packet buffer allocation size in KB */
1911		pba &= 0xffff;
1912		/* the Tx fifo also stores 16 bytes of information about the Tx
1913		 * but don't include ethernet FCS because hardware appends it
1914		 */
1915		min_tx_space = (adapter->max_frame_size +
1916				sizeof(union e1000_adv_tx_desc) -
1917				ETH_FCS_LEN) * 2;
1918		min_tx_space = ALIGN(min_tx_space, 1024);
1919		min_tx_space >>= 10;
1920		/* software strips receive CRC, so leave room for it */
1921		min_rx_space = adapter->max_frame_size;
1922		min_rx_space = ALIGN(min_rx_space, 1024);
1923		min_rx_space >>= 10;
1924
1925		/* If current Tx allocation is less than the min Tx FIFO size,
1926		 * and the min Tx FIFO size is less than the current Rx FIFO
1927		 * allocation, take space away from current Rx allocation
1928		 */
1929		if (tx_space < min_tx_space &&
1930		    ((min_tx_space - tx_space) < pba)) {
1931			pba = pba - (min_tx_space - tx_space);
1932
1933			/* if short on Rx space, Rx wins and must trump Tx
1934			 * adjustment
1935			 */
1936			if (pba < min_rx_space)
1937				pba = min_rx_space;
1938		}
1939		wr32(E1000_PBA, pba);
1940	}
1941
1942	/* flow control settings */
1943	/* The high water mark must be low enough to fit one full frame
1944	 * (or the size used for early receive) above it in the Rx FIFO.
1945	 * Set it to the lower of:
1946	 * - 90% of the Rx FIFO size, or
1947	 * - the full Rx FIFO size minus one full frame
1948	 */
1949	hwm = min(((pba << 10) * 9 / 10),
1950			((pba << 10) - 2 * adapter->max_frame_size));
1951
1952	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1953	fc->low_water = fc->high_water - 16;
1954	fc->pause_time = 0xFFFF;
1955	fc->send_xon = 1;
1956	fc->current_mode = fc->requested_mode;
1957
1958	/* disable receive for all VFs and wait one second */
1959	if (adapter->vfs_allocated_count) {
1960		int i;
1961
1962		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1963			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1964
1965		/* ping all the active vfs to let them know we are going down */
1966		igb_ping_all_vfs(adapter);
1967
1968		/* disable transmits and receives */
1969		wr32(E1000_VFRE, 0);
1970		wr32(E1000_VFTE, 0);
1971	}
1972
1973	/* Allow time for pending master requests to run */
1974	hw->mac.ops.reset_hw(hw);
1975	wr32(E1000_WUC, 0);
1976
1977	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1978		/* need to resetup here after media swap */
1979		adapter->ei.get_invariants(hw);
1980		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1981	}
1982	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1983		if (igb_enable_mas(adapter))
1984			dev_err(&pdev->dev,
1985				"Error enabling Media Auto Sense\n");
1986	}
1987	if (hw->mac.ops.init_hw(hw))
1988		dev_err(&pdev->dev, "Hardware Error\n");
1989
1990	/* Flow control settings reset on hardware reset, so guarantee flow
1991	 * control is off when forcing speed.
1992	 */
1993	if (!hw->mac.autoneg)
1994		igb_force_mac_fc(hw);
1995
1996	igb_init_dmac(adapter, pba);
1997#ifdef CONFIG_IGB_HWMON
1998	/* Re-initialize the thermal sensor on i350 devices. */
1999	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2000		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2001			/* If present, re-initialize the external thermal sensor
2002			 * interface.
2003			 */
2004			if (adapter->ets)
2005				mac->ops.init_thermal_sensor_thresh(hw);
2006		}
2007	}
2008#endif
2009	/* Re-establish EEE setting */
2010	if (hw->phy.media_type == e1000_media_type_copper) {
2011		switch (mac->type) {
2012		case e1000_i350:
2013		case e1000_i210:
2014		case e1000_i211:
2015			igb_set_eee_i350(hw);
2016			break;
2017		case e1000_i354:
2018			igb_set_eee_i354(hw);
2019			break;
2020		default:
2021			break;
2022		}
2023	}
2024	if (!netif_running(adapter->netdev))
2025		igb_power_down_link(adapter);
2026
2027	igb_update_mng_vlan(adapter);
2028
2029	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2030	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2031
2032	/* Re-enable PTP, where applicable. */
2033	igb_ptp_reset(adapter);
2034
2035	igb_get_phy_info(hw);
2036}
2037
2038static netdev_features_t igb_fix_features(struct net_device *netdev,
2039	netdev_features_t features)
2040{
2041	/* Since there is no support for separate Rx/Tx vlan accel
2042	 * enable/disable make sure Tx flag is always in same state as Rx.
2043	 */
2044	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2045		features |= NETIF_F_HW_VLAN_CTAG_TX;
2046	else
2047		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2048
2049	return features;
2050}
2051
2052static int igb_set_features(struct net_device *netdev,
2053	netdev_features_t features)
2054{
2055	netdev_features_t changed = netdev->features ^ features;
2056	struct igb_adapter *adapter = netdev_priv(netdev);
2057
2058	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2059		igb_vlan_mode(netdev, features);
2060
2061	if (!(changed & NETIF_F_RXALL))
2062		return 0;
2063
2064	netdev->features = features;
2065
2066	if (netif_running(netdev))
2067		igb_reinit_locked(adapter);
2068	else
2069		igb_reset(adapter);
2070
2071	return 0;
2072}
2073
2074static const struct net_device_ops igb_netdev_ops = {
2075	.ndo_open		= igb_open,
2076	.ndo_stop		= igb_close,
2077	.ndo_start_xmit		= igb_xmit_frame,
2078	.ndo_get_stats64	= igb_get_stats64,
2079	.ndo_set_rx_mode	= igb_set_rx_mode,
2080	.ndo_set_mac_address	= igb_set_mac,
2081	.ndo_change_mtu		= igb_change_mtu,
2082	.ndo_do_ioctl		= igb_ioctl,
2083	.ndo_tx_timeout		= igb_tx_timeout,
2084	.ndo_validate_addr	= eth_validate_addr,
2085	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2086	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2087	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2088	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2089	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
2090	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2091	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2092#ifdef CONFIG_NET_POLL_CONTROLLER
2093	.ndo_poll_controller	= igb_netpoll,
2094#endif
2095	.ndo_fix_features	= igb_fix_features,
2096	.ndo_set_features	= igb_set_features,
2097};
2098
2099/**
2100 * igb_set_fw_version - Configure version string for ethtool
2101 * @adapter: adapter struct
2102 **/
2103void igb_set_fw_version(struct igb_adapter *adapter)
2104{
2105	struct e1000_hw *hw = &adapter->hw;
2106	struct e1000_fw_version fw;
2107
2108	igb_get_fw_version(hw, &fw);
2109
2110	switch (hw->mac.type) {
2111	case e1000_i210:
2112	case e1000_i211:
2113		if (!(igb_get_flash_presence_i210(hw))) {
2114			snprintf(adapter->fw_version,
2115				 sizeof(adapter->fw_version),
2116				 "%2d.%2d-%d",
2117				 fw.invm_major, fw.invm_minor,
2118				 fw.invm_img_type);
2119			break;
2120		}
2121		/* fall through */
2122	default:
2123		/* if option is rom valid, display its version too */
2124		if (fw.or_valid) {
2125			snprintf(adapter->fw_version,
2126				 sizeof(adapter->fw_version),
2127				 "%d.%d, 0x%08x, %d.%d.%d",
2128				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2129				 fw.or_major, fw.or_build, fw.or_patch);
2130		/* no option rom */
2131		} else if (fw.etrack_id != 0X0000) {
2132			snprintf(adapter->fw_version,
2133			    sizeof(adapter->fw_version),
2134			    "%d.%d, 0x%08x",
2135			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2136		} else {
2137		snprintf(adapter->fw_version,
2138		    sizeof(adapter->fw_version),
2139		    "%d.%d.%d",
2140		    fw.eep_major, fw.eep_minor, fw.eep_build);
2141		}
2142		break;
2143	}
2144	return;
2145}
2146
2147/**
2148 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2149 *
2150 * @adapter: adapter struct
2151 **/
2152static void igb_init_mas(struct igb_adapter *adapter)
2153{
2154	struct e1000_hw *hw = &adapter->hw;
2155	u16 eeprom_data;
2156
2157	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2158	switch (hw->bus.func) {
2159	case E1000_FUNC_0:
2160		if (eeprom_data & IGB_MAS_ENABLE_0) {
2161			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2162			netdev_info(adapter->netdev,
2163				"MAS: Enabling Media Autosense for port %d\n",
2164				hw->bus.func);
2165		}
2166		break;
2167	case E1000_FUNC_1:
2168		if (eeprom_data & IGB_MAS_ENABLE_1) {
2169			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2170			netdev_info(adapter->netdev,
2171				"MAS: Enabling Media Autosense for port %d\n",
2172				hw->bus.func);
2173		}
2174		break;
2175	case E1000_FUNC_2:
2176		if (eeprom_data & IGB_MAS_ENABLE_2) {
2177			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2178			netdev_info(adapter->netdev,
2179				"MAS: Enabling Media Autosense for port %d\n",
2180				hw->bus.func);
2181		}
2182		break;
2183	case E1000_FUNC_3:
2184		if (eeprom_data & IGB_MAS_ENABLE_3) {
2185			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2186			netdev_info(adapter->netdev,
2187				"MAS: Enabling Media Autosense for port %d\n",
2188				hw->bus.func);
2189		}
2190		break;
2191	default:
2192		/* Shouldn't get here */
2193		netdev_err(adapter->netdev,
2194			"MAS: Invalid port configuration, returning\n");
2195		break;
2196	}
2197}
2198
2199/**
2200 *  igb_init_i2c - Init I2C interface
2201 *  @adapter: pointer to adapter structure
2202 **/
2203static s32 igb_init_i2c(struct igb_adapter *adapter)
2204{
2205	s32 status = E1000_SUCCESS;
2206
2207	/* I2C interface supported on i350 devices */
2208	if (adapter->hw.mac.type != e1000_i350)
2209		return E1000_SUCCESS;
2210
2211	/* Initialize the i2c bus which is controlled by the registers.
2212	 * This bus will use the i2c_algo_bit structue that implements
2213	 * the protocol through toggling of the 4 bits in the register.
2214	 */
2215	adapter->i2c_adap.owner = THIS_MODULE;
2216	adapter->i2c_algo = igb_i2c_algo;
2217	adapter->i2c_algo.data = adapter;
2218	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2219	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2220	strlcpy(adapter->i2c_adap.name, "igb BB",
2221		sizeof(adapter->i2c_adap.name));
2222	status = i2c_bit_add_bus(&adapter->i2c_adap);
2223	return status;
2224}
2225
2226/**
2227 *  igb_probe - Device Initialization Routine
2228 *  @pdev: PCI device information struct
2229 *  @ent: entry in igb_pci_tbl
2230 *
2231 *  Returns 0 on success, negative on failure
2232 *
2233 *  igb_probe initializes an adapter identified by a pci_dev structure.
2234 *  The OS initialization, configuring of the adapter private structure,
2235 *  and a hardware reset occur.
2236 **/
2237static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2238{
2239	struct net_device *netdev;
2240	struct igb_adapter *adapter;
2241	struct e1000_hw *hw;
2242	u16 eeprom_data = 0;
2243	s32 ret_val;
2244	static int global_quad_port_a; /* global quad port a indication */
2245	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2246	int err, pci_using_dac;
2247	u8 part_str[E1000_PBANUM_LENGTH];
2248
2249	/* Catch broken hardware that put the wrong VF device ID in
2250	 * the PCIe SR-IOV capability.
2251	 */
2252	if (pdev->is_virtfn) {
2253		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2254			pci_name(pdev), pdev->vendor, pdev->device);
2255		return -EINVAL;
2256	}
2257
2258	err = pci_enable_device_mem(pdev);
2259	if (err)
2260		return err;
2261
2262	pci_using_dac = 0;
2263	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2264	if (!err) {
2265		pci_using_dac = 1;
2266	} else {
2267		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2268		if (err) {
2269			dev_err(&pdev->dev,
2270				"No usable DMA configuration, aborting\n");
2271			goto err_dma;
2272		}
2273	}
2274
2275	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2276					   IORESOURCE_MEM),
2277					   igb_driver_name);
2278	if (err)
2279		goto err_pci_reg;
2280
2281	pci_enable_pcie_error_reporting(pdev);
2282
2283	pci_set_master(pdev);
2284	pci_save_state(pdev);
2285
2286	err = -ENOMEM;
2287	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2288				   IGB_MAX_TX_QUEUES);
2289	if (!netdev)
2290		goto err_alloc_etherdev;
2291
2292	SET_NETDEV_DEV(netdev, &pdev->dev);
2293
2294	pci_set_drvdata(pdev, netdev);
2295	adapter = netdev_priv(netdev);
2296	adapter->netdev = netdev;
2297	adapter->pdev = pdev;
2298	hw = &adapter->hw;
2299	hw->back = adapter;
2300	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2301
2302	err = -EIO;
2303	hw->hw_addr = pci_iomap(pdev, 0, 0);
2304	if (!hw->hw_addr)
2305		goto err_ioremap;
2306
2307	netdev->netdev_ops = &igb_netdev_ops;
2308	igb_set_ethtool_ops(netdev);
2309	netdev->watchdog_timeo = 5 * HZ;
2310
2311	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2312
2313	netdev->mem_start = pci_resource_start(pdev, 0);
2314	netdev->mem_end = pci_resource_end(pdev, 0);
2315
2316	/* PCI config space info */
2317	hw->vendor_id = pdev->vendor;
2318	hw->device_id = pdev->device;
2319	hw->revision_id = pdev->revision;
2320	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2321	hw->subsystem_device_id = pdev->subsystem_device;
2322
2323	/* Copy the default MAC, PHY and NVM function pointers */
2324	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2325	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2326	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2327	/* Initialize skew-specific constants */
2328	err = ei->get_invariants(hw);
2329	if (err)
2330		goto err_sw_init;
2331
2332	/* setup the private structure */
2333	err = igb_sw_init(adapter);
2334	if (err)
2335		goto err_sw_init;
2336
2337	igb_get_bus_info_pcie(hw);
2338
2339	hw->phy.autoneg_wait_to_complete = false;
2340
2341	/* Copper options */
2342	if (hw->phy.media_type == e1000_media_type_copper) {
2343		hw->phy.mdix = AUTO_ALL_MODES;
2344		hw->phy.disable_polarity_correction = false;
2345		hw->phy.ms_type = e1000_ms_hw_default;
2346	}
2347
2348	if (igb_check_reset_block(hw))
2349		dev_info(&pdev->dev,
2350			"PHY reset is blocked due to SOL/IDER session.\n");
2351
2352	/* features is initialized to 0 in allocation, it might have bits
2353	 * set by igb_sw_init so we should use an or instead of an
2354	 * assignment.
2355	 */
2356	netdev->features |= NETIF_F_SG |
2357			    NETIF_F_IP_CSUM |
2358			    NETIF_F_IPV6_CSUM |
2359			    NETIF_F_TSO |
2360			    NETIF_F_TSO6 |
2361			    NETIF_F_RXHASH |
2362			    NETIF_F_RXCSUM |
2363			    NETIF_F_HW_VLAN_CTAG_RX |
2364			    NETIF_F_HW_VLAN_CTAG_TX;
2365
2366	/* copy netdev features into list of user selectable features */
2367	netdev->hw_features |= netdev->features;
2368	netdev->hw_features |= NETIF_F_RXALL;
2369
2370	/* set this bit last since it cannot be part of hw_features */
2371	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2372
2373	netdev->vlan_features |= NETIF_F_TSO |
2374				 NETIF_F_TSO6 |
2375				 NETIF_F_IP_CSUM |
2376				 NETIF_F_IPV6_CSUM |
2377				 NETIF_F_SG;
2378
2379	netdev->priv_flags |= IFF_SUPP_NOFCS;
2380
2381	if (pci_using_dac) {
2382		netdev->features |= NETIF_F_HIGHDMA;
2383		netdev->vlan_features |= NETIF_F_HIGHDMA;
2384	}
2385
2386	if (hw->mac.type >= e1000_82576) {
2387		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2388		netdev->features |= NETIF_F_SCTP_CSUM;
2389	}
2390
2391	netdev->priv_flags |= IFF_UNICAST_FLT;
2392
2393	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2394
2395	/* before reading the NVM, reset the controller to put the device in a
2396	 * known good starting state
2397	 */
2398	hw->mac.ops.reset_hw(hw);
2399
2400	/* make sure the NVM is good , i211/i210 parts can have special NVM
2401	 * that doesn't contain a checksum
2402	 */
2403	switch (hw->mac.type) {
2404	case e1000_i210:
2405	case e1000_i211:
2406		if (igb_get_flash_presence_i210(hw)) {
2407			if (hw->nvm.ops.validate(hw) < 0) {
2408				dev_err(&pdev->dev,
2409					"The NVM Checksum Is Not Valid\n");
2410				err = -EIO;
2411				goto err_eeprom;
2412			}
2413		}
2414		break;
2415	default:
2416		if (hw->nvm.ops.validate(hw) < 0) {
2417			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2418			err = -EIO;
2419			goto err_eeprom;
2420		}
2421		break;
2422	}
2423
2424	/* copy the MAC address out of the NVM */
2425	if (hw->mac.ops.read_mac_addr(hw))
2426		dev_err(&pdev->dev, "NVM Read Error\n");
2427
2428	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2429
2430	if (!is_valid_ether_addr(netdev->dev_addr)) {
2431		dev_err(&pdev->dev, "Invalid MAC Address\n");
2432		err = -EIO;
2433		goto err_eeprom;
2434	}
2435
2436	/* get firmware version for ethtool -i */
2437	igb_set_fw_version(adapter);
2438
2439	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2440		    (unsigned long) adapter);
2441	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2442		    (unsigned long) adapter);
2443
2444	INIT_WORK(&adapter->reset_task, igb_reset_task);
2445	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2446
2447	/* Initialize link properties that are user-changeable */
2448	adapter->fc_autoneg = true;
2449	hw->mac.autoneg = true;
2450	hw->phy.autoneg_advertised = 0x2f;
2451
2452	hw->fc.requested_mode = e1000_fc_default;
2453	hw->fc.current_mode = e1000_fc_default;
2454
2455	igb_validate_mdi_setting(hw);
2456
2457	/* By default, support wake on port A */
2458	if (hw->bus.func == 0)
2459		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2460
2461	/* Check the NVM for wake support on non-port A ports */
2462	if (hw->mac.type >= e1000_82580)
2463		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2464				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2465				 &eeprom_data);
2466	else if (hw->bus.func == 1)
2467		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2468
2469	if (eeprom_data & IGB_EEPROM_APME)
2470		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2471
2472	/* now that we have the eeprom settings, apply the special cases where
2473	 * the eeprom may be wrong or the board simply won't support wake on
2474	 * lan on a particular port
2475	 */
2476	switch (pdev->device) {
2477	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2478		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2479		break;
2480	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2481	case E1000_DEV_ID_82576_FIBER:
2482	case E1000_DEV_ID_82576_SERDES:
2483		/* Wake events only supported on port A for dual fiber
2484		 * regardless of eeprom setting
2485		 */
2486		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2487			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2488		break;
2489	case E1000_DEV_ID_82576_QUAD_COPPER:
2490	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2491		/* if quad port adapter, disable WoL on all but port A */
2492		if (global_quad_port_a != 0)
2493			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2494		else
2495			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2496		/* Reset for multiple quad port adapters */
2497		if (++global_quad_port_a == 4)
2498			global_quad_port_a = 0;
2499		break;
2500	default:
2501		/* If the device can't wake, don't set software support */
2502		if (!device_can_wakeup(&adapter->pdev->dev))
2503			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2504	}
2505
2506	/* initialize the wol settings based on the eeprom settings */
2507	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2508		adapter->wol |= E1000_WUFC_MAG;
2509
2510	/* Some vendors want WoL disabled by default, but still supported */
2511	if ((hw->mac.type == e1000_i350) &&
2512	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2513		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2514		adapter->wol = 0;
2515	}
2516
2517	device_set_wakeup_enable(&adapter->pdev->dev,
2518				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2519
2520	/* reset the hardware with the new settings */
2521	igb_reset(adapter);
2522
2523	/* Init the I2C interface */
2524	err = igb_init_i2c(adapter);
2525	if (err) {
2526		dev_err(&pdev->dev, "failed to init i2c interface\n");
2527		goto err_eeprom;
2528	}
2529
2530	/* let the f/w know that the h/w is now under the control of the
2531	 * driver. */
2532	igb_get_hw_control(adapter);
2533
2534	strcpy(netdev->name, "eth%d");
2535	err = register_netdev(netdev);
2536	if (err)
2537		goto err_register;
2538
2539	/* carrier off reporting is important to ethtool even BEFORE open */
2540	netif_carrier_off(netdev);
2541
2542#ifdef CONFIG_IGB_DCA
2543	if (dca_add_requester(&pdev->dev) == 0) {
2544		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2545		dev_info(&pdev->dev, "DCA enabled\n");
2546		igb_setup_dca(adapter);
2547	}
2548
2549#endif
2550#ifdef CONFIG_IGB_HWMON
2551	/* Initialize the thermal sensor on i350 devices. */
2552	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2553		u16 ets_word;
2554
2555		/* Read the NVM to determine if this i350 device supports an
2556		 * external thermal sensor.
2557		 */
2558		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2559		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2560			adapter->ets = true;
2561		else
2562			adapter->ets = false;
2563		if (igb_sysfs_init(adapter))
2564			dev_err(&pdev->dev,
2565				"failed to allocate sysfs resources\n");
2566	} else {
2567		adapter->ets = false;
2568	}
2569#endif
2570	/* Check if Media Autosense is enabled */
2571	adapter->ei = *ei;
2572	if (hw->dev_spec._82575.mas_capable)
2573		igb_init_mas(adapter);
2574
2575	/* do hw tstamp init after resetting */
2576	igb_ptp_init(adapter);
2577
2578	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2579	/* print bus type/speed/width info, not applicable to i354 */
2580	if (hw->mac.type != e1000_i354) {
2581		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2582			 netdev->name,
2583			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2584			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2585			   "unknown"),
2586			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2587			  "Width x4" :
2588			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2589			  "Width x2" :
2590			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2591			  "Width x1" : "unknown"), netdev->dev_addr);
2592	}
2593
2594	if ((hw->mac.type >= e1000_i210 ||
2595	     igb_get_flash_presence_i210(hw))) {
2596		ret_val = igb_read_part_string(hw, part_str,
2597					       E1000_PBANUM_LENGTH);
2598	} else {
2599		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2600	}
2601
2602	if (ret_val)
2603		strcpy(part_str, "Unknown");
2604	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2605	dev_info(&pdev->dev,
2606		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2607		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2608		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2609		adapter->num_rx_queues, adapter->num_tx_queues);
2610	if (hw->phy.media_type == e1000_media_type_copper) {
2611		switch (hw->mac.type) {
2612		case e1000_i350:
2613		case e1000_i210:
2614		case e1000_i211:
2615			/* Enable EEE for internal copper PHY devices */
2616			err = igb_set_eee_i350(hw);
2617			if ((!err) &&
2618			    (!hw->dev_spec._82575.eee_disable)) {
2619				adapter->eee_advert =
2620					MDIO_EEE_100TX | MDIO_EEE_1000T;
2621				adapter->flags |= IGB_FLAG_EEE;
2622			}
2623			break;
2624		case e1000_i354:
2625			if ((rd32(E1000_CTRL_EXT) &
2626			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2627				err = igb_set_eee_i354(hw);
2628				if ((!err) &&
2629					(!hw->dev_spec._82575.eee_disable)) {
2630					adapter->eee_advert =
2631					   MDIO_EEE_100TX | MDIO_EEE_1000T;
2632					adapter->flags |= IGB_FLAG_EEE;
2633				}
2634			}
2635			break;
2636		default:
2637			break;
2638		}
2639	}
2640	pm_runtime_put_noidle(&pdev->dev);
2641	return 0;
2642
2643err_register:
2644	igb_release_hw_control(adapter);
2645	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2646err_eeprom:
2647	if (!igb_check_reset_block(hw))
2648		igb_reset_phy(hw);
2649
2650	if (hw->flash_address)
2651		iounmap(hw->flash_address);
2652err_sw_init:
2653	igb_clear_interrupt_scheme(adapter);
2654	pci_iounmap(pdev, hw->hw_addr);
2655err_ioremap:
2656	free_netdev(netdev);
2657err_alloc_etherdev:
2658	pci_release_selected_regions(pdev,
2659				     pci_select_bars(pdev, IORESOURCE_MEM));
2660err_pci_reg:
2661err_dma:
2662	pci_disable_device(pdev);
2663	return err;
2664}
2665
2666#ifdef CONFIG_PCI_IOV
2667static int igb_disable_sriov(struct pci_dev *pdev)
2668{
2669	struct net_device *netdev = pci_get_drvdata(pdev);
2670	struct igb_adapter *adapter = netdev_priv(netdev);
2671	struct e1000_hw *hw = &adapter->hw;
2672
2673	/* reclaim resources allocated to VFs */
2674	if (adapter->vf_data) {
2675		/* disable iov and allow time for transactions to clear */
2676		if (pci_vfs_assigned(pdev)) {
2677			dev_warn(&pdev->dev,
2678				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2679			return -EPERM;
2680		} else {
2681			pci_disable_sriov(pdev);
2682			msleep(500);
2683		}
2684
2685		kfree(adapter->vf_data);
2686		adapter->vf_data = NULL;
2687		adapter->vfs_allocated_count = 0;
2688		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2689		wrfl();
2690		msleep(100);
2691		dev_info(&pdev->dev, "IOV Disabled\n");
2692
2693		/* Re-enable DMA Coalescing flag since IOV is turned off */
2694		adapter->flags |= IGB_FLAG_DMAC;
2695	}
2696
2697	return 0;
2698}
2699
2700static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2701{
2702	struct net_device *netdev = pci_get_drvdata(pdev);
2703	struct igb_adapter *adapter = netdev_priv(netdev);
2704	int old_vfs = pci_num_vf(pdev);
2705	int err = 0;
2706	int i;
2707
2708	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2709		err = -EPERM;
2710		goto out;
2711	}
2712	if (!num_vfs)
2713		goto out;
2714
2715	if (old_vfs) {
2716		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2717			 old_vfs, max_vfs);
2718		adapter->vfs_allocated_count = old_vfs;
2719	} else
2720		adapter->vfs_allocated_count = num_vfs;
2721
2722	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2723				sizeof(struct vf_data_storage), GFP_KERNEL);
2724
2725	/* if allocation failed then we do not support SR-IOV */
2726	if (!adapter->vf_data) {
2727		adapter->vfs_allocated_count = 0;
2728		dev_err(&pdev->dev,
2729			"Unable to allocate memory for VF Data Storage\n");
2730		err = -ENOMEM;
2731		goto out;
2732	}
2733
2734	/* only call pci_enable_sriov() if no VFs are allocated already */
2735	if (!old_vfs) {
2736		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2737		if (err)
2738			goto err_out;
2739	}
2740	dev_info(&pdev->dev, "%d VFs allocated\n",
2741		 adapter->vfs_allocated_count);
2742	for (i = 0; i < adapter->vfs_allocated_count; i++)
2743		igb_vf_configure(adapter, i);
2744
2745	/* DMA Coalescing is not supported in IOV mode. */
2746	adapter->flags &= ~IGB_FLAG_DMAC;
2747	goto out;
2748
2749err_out:
2750	kfree(adapter->vf_data);
2751	adapter->vf_data = NULL;
2752	adapter->vfs_allocated_count = 0;
2753out:
2754	return err;
2755}
2756
2757#endif
2758/**
2759 *  igb_remove_i2c - Cleanup  I2C interface
2760 *  @adapter: pointer to adapter structure
2761 **/
2762static void igb_remove_i2c(struct igb_adapter *adapter)
2763{
2764	/* free the adapter bus structure */
2765	i2c_del_adapter(&adapter->i2c_adap);
2766}
2767
2768/**
2769 *  igb_remove - Device Removal Routine
2770 *  @pdev: PCI device information struct
2771 *
2772 *  igb_remove is called by the PCI subsystem to alert the driver
2773 *  that it should release a PCI device.  The could be caused by a
2774 *  Hot-Plug event, or because the driver is going to be removed from
2775 *  memory.
2776 **/
2777static void igb_remove(struct pci_dev *pdev)
2778{
2779	struct net_device *netdev = pci_get_drvdata(pdev);
2780	struct igb_adapter *adapter = netdev_priv(netdev);
2781	struct e1000_hw *hw = &adapter->hw;
2782
2783	pm_runtime_get_noresume(&pdev->dev);
2784#ifdef CONFIG_IGB_HWMON
2785	igb_sysfs_exit(adapter);
2786#endif
2787	igb_remove_i2c(adapter);
2788	igb_ptp_stop(adapter);
2789	/* The watchdog timer may be rescheduled, so explicitly
2790	 * disable watchdog from being rescheduled.
2791	 */
2792	set_bit(__IGB_DOWN, &adapter->state);
2793	del_timer_sync(&adapter->watchdog_timer);
2794	del_timer_sync(&adapter->phy_info_timer);
2795
2796	cancel_work_sync(&adapter->reset_task);
2797	cancel_work_sync(&adapter->watchdog_task);
2798
2799#ifdef CONFIG_IGB_DCA
2800	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2801		dev_info(&pdev->dev, "DCA disabled\n");
2802		dca_remove_requester(&pdev->dev);
2803		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2804		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2805	}
2806#endif
2807
2808	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2809	 * would have already happened in close and is redundant.
2810	 */
2811	igb_release_hw_control(adapter);
2812
2813	unregister_netdev(netdev);
2814
2815	igb_clear_interrupt_scheme(adapter);
2816
2817#ifdef CONFIG_PCI_IOV
2818	igb_disable_sriov(pdev);
2819#endif
2820
2821	pci_iounmap(pdev, hw->hw_addr);
2822	if (hw->flash_address)
2823		iounmap(hw->flash_address);
2824	pci_release_selected_regions(pdev,
2825				     pci_select_bars(pdev, IORESOURCE_MEM));
2826
2827	kfree(adapter->shadow_vfta);
2828	free_netdev(netdev);
2829
2830	pci_disable_pcie_error_reporting(pdev);
2831
2832	pci_disable_device(pdev);
2833}
2834
2835/**
2836 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2837 *  @adapter: board private structure to initialize
2838 *
2839 *  This function initializes the vf specific data storage and then attempts to
2840 *  allocate the VFs.  The reason for ordering it this way is because it is much
2841 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2842 *  the memory for the VFs.
2843 **/
2844static void igb_probe_vfs(struct igb_adapter *adapter)
2845{
2846#ifdef CONFIG_PCI_IOV
2847	struct pci_dev *pdev = adapter->pdev;
2848	struct e1000_hw *hw = &adapter->hw;
2849
2850	/* Virtualization features not supported on i210 family. */
2851	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2852		return;
2853
2854	pci_sriov_set_totalvfs(pdev, 7);
2855	igb_pci_enable_sriov(pdev, max_vfs);
2856
2857#endif /* CONFIG_PCI_IOV */
2858}
2859
2860static void igb_init_queue_configuration(struct igb_adapter *adapter)
2861{
2862	struct e1000_hw *hw = &adapter->hw;
2863	u32 max_rss_queues;
2864
2865	/* Determine the maximum number of RSS queues supported. */
2866	switch (hw->mac.type) {
2867	case e1000_i211:
2868		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2869		break;
2870	case e1000_82575:
2871	case e1000_i210:
2872		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2873		break;
2874	case e1000_i350:
2875		/* I350 cannot do RSS and SR-IOV at the same time */
2876		if (!!adapter->vfs_allocated_count) {
2877			max_rss_queues = 1;
2878			break;
2879		}
2880		/* fall through */
2881	case e1000_82576:
2882		if (!!adapter->vfs_allocated_count) {
2883			max_rss_queues = 2;
2884			break;
2885		}
2886		/* fall through */
2887	case e1000_82580:
2888	case e1000_i354:
2889	default:
2890		max_rss_queues = IGB_MAX_RX_QUEUES;
2891		break;
2892	}
2893
2894	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2895
2896	/* Determine if we need to pair queues. */
2897	switch (hw->mac.type) {
2898	case e1000_82575:
2899	case e1000_i211:
2900		/* Device supports enough interrupts without queue pairing. */
2901		break;
2902	case e1000_82576:
2903		/* If VFs are going to be allocated with RSS queues then we
2904		 * should pair the queues in order to conserve interrupts due
2905		 * to limited supply.
2906		 */
2907		if ((adapter->rss_queues > 1) &&
2908		    (adapter->vfs_allocated_count > 6))
2909			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2910		/* fall through */
2911	case e1000_82580:
2912	case e1000_i350:
2913	case e1000_i354:
2914	case e1000_i210:
2915	default:
2916		/* If rss_queues > half of max_rss_queues, pair the queues in
2917		 * order to conserve interrupts due to limited supply.
2918		 */
2919		if (adapter->rss_queues > (max_rss_queues / 2))
2920			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2921		break;
2922	}
2923}
2924
2925/**
2926 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2927 *  @adapter: board private structure to initialize
2928 *
2929 *  igb_sw_init initializes the Adapter private data structure.
2930 *  Fields are initialized based on PCI device information and
2931 *  OS network device settings (MTU size).
2932 **/
2933static int igb_sw_init(struct igb_adapter *adapter)
2934{
2935	struct e1000_hw *hw = &adapter->hw;
2936	struct net_device *netdev = adapter->netdev;
2937	struct pci_dev *pdev = adapter->pdev;
2938
2939	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2940
2941	/* set default ring sizes */
2942	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2943	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2944
2945	/* set default ITR values */
2946	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2947	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2948
2949	/* set default work limits */
2950	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2951
2952	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2953				  VLAN_HLEN;
2954	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2955
2956	spin_lock_init(&adapter->stats64_lock);
2957#ifdef CONFIG_PCI_IOV
2958	switch (hw->mac.type) {
2959	case e1000_82576:
2960	case e1000_i350:
2961		if (max_vfs > 7) {
2962			dev_warn(&pdev->dev,
2963				 "Maximum of 7 VFs per PF, using max\n");
2964			max_vfs = adapter->vfs_allocated_count = 7;
2965		} else
2966			adapter->vfs_allocated_count = max_vfs;
2967		if (adapter->vfs_allocated_count)
2968			dev_warn(&pdev->dev,
2969				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2970		break;
2971	default:
2972		break;
2973	}
2974#endif /* CONFIG_PCI_IOV */
2975
2976	igb_init_queue_configuration(adapter);
2977
2978	/* Setup and initialize a copy of the hw vlan table array */
2979	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2980				       GFP_ATOMIC);
2981
2982	/* This call may decrease the number of queues */
2983	if (igb_init_interrupt_scheme(adapter, true)) {
2984		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2985		return -ENOMEM;
2986	}
2987
2988	igb_probe_vfs(adapter);
2989
2990	/* Explicitly disable IRQ since the NIC can be in any state. */
2991	igb_irq_disable(adapter);
2992
2993	if (hw->mac.type >= e1000_i350)
2994		adapter->flags &= ~IGB_FLAG_DMAC;
2995
2996	set_bit(__IGB_DOWN, &adapter->state);
2997	return 0;
2998}
2999
3000/**
3001 *  igb_open - Called when a network interface is made active
3002 *  @netdev: network interface device structure
3003 *
3004 *  Returns 0 on success, negative value on failure
3005 *
3006 *  The open entry point is called when a network interface is made
3007 *  active by the system (IFF_UP).  At this point all resources needed
3008 *  for transmit and receive operations are allocated, the interrupt
3009 *  handler is registered with the OS, the watchdog timer is started,
3010 *  and the stack is notified that the interface is ready.
3011 **/
3012static int __igb_open(struct net_device *netdev, bool resuming)
3013{
3014	struct igb_adapter *adapter = netdev_priv(netdev);
3015	struct e1000_hw *hw = &adapter->hw;
3016	struct pci_dev *pdev = adapter->pdev;
3017	int err;
3018	int i;
3019
3020	/* disallow open during test */
3021	if (test_bit(__IGB_TESTING, &adapter->state)) {
3022		WARN_ON(resuming);
3023		return -EBUSY;
3024	}
3025
3026	if (!resuming)
3027		pm_runtime_get_sync(&pdev->dev);
3028
3029	netif_carrier_off(netdev);
3030
3031	/* allocate transmit descriptors */
3032	err = igb_setup_all_tx_resources(adapter);
3033	if (err)
3034		goto err_setup_tx;
3035
3036	/* allocate receive descriptors */
3037	err = igb_setup_all_rx_resources(adapter);
3038	if (err)
3039		goto err_setup_rx;
3040
3041	igb_power_up_link(adapter);
3042
3043	/* before we allocate an interrupt, we must be ready to handle it.
3044	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3045	 * as soon as we call pci_request_irq, so we have to setup our
3046	 * clean_rx handler before we do so.
3047	 */
3048	igb_configure(adapter);
3049
3050	err = igb_request_irq(adapter);
3051	if (err)
3052		goto err_req_irq;
3053
3054	/* Notify the stack of the actual queue counts. */
3055	err = netif_set_real_num_tx_queues(adapter->netdev,
3056					   adapter->num_tx_queues);
3057	if (err)
3058		goto err_set_queues;
3059
3060	err = netif_set_real_num_rx_queues(adapter->netdev,
3061					   adapter->num_rx_queues);
3062	if (err)
3063		goto err_set_queues;
3064
3065	/* From here on the code is the same as igb_up() */
3066	clear_bit(__IGB_DOWN, &adapter->state);
3067
3068	for (i = 0; i < adapter->num_q_vectors; i++)
3069		napi_enable(&(adapter->q_vector[i]->napi));
3070
3071	/* Clear any pending interrupts. */
3072	rd32(E1000_ICR);
3073
3074	igb_irq_enable(adapter);
3075
3076	/* notify VFs that reset has been completed */
3077	if (adapter->vfs_allocated_count) {
3078		u32 reg_data = rd32(E1000_CTRL_EXT);
3079
3080		reg_data |= E1000_CTRL_EXT_PFRSTD;
3081		wr32(E1000_CTRL_EXT, reg_data);
3082	}
3083
3084	netif_tx_start_all_queues(netdev);
3085
3086	if (!resuming)
3087		pm_runtime_put(&pdev->dev);
3088
3089	/* start the watchdog. */
3090	hw->mac.get_link_status = 1;
3091	schedule_work(&adapter->watchdog_task);
3092
3093	return 0;
3094
3095err_set_queues:
3096	igb_free_irq(adapter);
3097err_req_irq:
3098	igb_release_hw_control(adapter);
3099	igb_power_down_link(adapter);
3100	igb_free_all_rx_resources(adapter);
3101err_setup_rx:
3102	igb_free_all_tx_resources(adapter);
3103err_setup_tx:
3104	igb_reset(adapter);
3105	if (!resuming)
3106		pm_runtime_put(&pdev->dev);
3107
3108	return err;
3109}
3110
3111static int igb_open(struct net_device *netdev)
3112{
3113	return __igb_open(netdev, false);
3114}
3115
3116/**
3117 *  igb_close - Disables a network interface
3118 *  @netdev: network interface device structure
3119 *
3120 *  Returns 0, this is not allowed to fail
3121 *
3122 *  The close entry point is called when an interface is de-activated
3123 *  by the OS.  The hardware is still under the driver's control, but
3124 *  needs to be disabled.  A global MAC reset is issued to stop the
3125 *  hardware, and all transmit and receive resources are freed.
3126 **/
3127static int __igb_close(struct net_device *netdev, bool suspending)
3128{
3129	struct igb_adapter *adapter = netdev_priv(netdev);
3130	struct pci_dev *pdev = adapter->pdev;
3131
3132	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3133
3134	if (!suspending)
3135		pm_runtime_get_sync(&pdev->dev);
3136
3137	igb_down(adapter);
3138	igb_free_irq(adapter);
3139
3140	igb_free_all_tx_resources(adapter);
3141	igb_free_all_rx_resources(adapter);
3142
3143	if (!suspending)
3144		pm_runtime_put_sync(&pdev->dev);
3145	return 0;
3146}
3147
3148static int igb_close(struct net_device *netdev)
3149{
3150	return __igb_close(netdev, false);
3151}
3152
3153/**
3154 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3155 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3156 *
3157 *  Return 0 on success, negative on failure
3158 **/
3159int igb_setup_tx_resources(struct igb_ring *tx_ring)
3160{
3161	struct device *dev = tx_ring->dev;
3162	int size;
3163
3164	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3165
3166	tx_ring->tx_buffer_info = vzalloc(size);
3167	if (!tx_ring->tx_buffer_info)
3168		goto err;
3169
3170	/* round up to nearest 4K */
3171	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3172	tx_ring->size = ALIGN(tx_ring->size, 4096);
3173
3174	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3175					   &tx_ring->dma, GFP_KERNEL);
3176	if (!tx_ring->desc)
3177		goto err;
3178
3179	tx_ring->next_to_use = 0;
3180	tx_ring->next_to_clean = 0;
3181
3182	return 0;
3183
3184err:
3185	vfree(tx_ring->tx_buffer_info);
3186	tx_ring->tx_buffer_info = NULL;
3187	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3188	return -ENOMEM;
3189}
3190
3191/**
3192 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3193 *				 (Descriptors) for all queues
3194 *  @adapter: board private structure
3195 *
3196 *  Return 0 on success, negative on failure
3197 **/
3198static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3199{
3200	struct pci_dev *pdev = adapter->pdev;
3201	int i, err = 0;
3202
3203	for (i = 0; i < adapter->num_tx_queues; i++) {
3204		err = igb_setup_tx_resources(adapter->tx_ring[i]);
3205		if (err) {
3206			dev_err(&pdev->dev,
3207				"Allocation for Tx Queue %u failed\n", i);
3208			for (i--; i >= 0; i--)
3209				igb_free_tx_resources(adapter->tx_ring[i]);
3210			break;
3211		}
3212	}
3213
3214	return err;
3215}
3216
3217/**
3218 *  igb_setup_tctl - configure the transmit control registers
3219 *  @adapter: Board private structure
3220 **/
3221void igb_setup_tctl(struct igb_adapter *adapter)
3222{
3223	struct e1000_hw *hw = &adapter->hw;
3224	u32 tctl;
3225
3226	/* disable queue 0 which is enabled by default on 82575 and 82576 */
3227	wr32(E1000_TXDCTL(0), 0);
3228
3229	/* Program the Transmit Control Register */
3230	tctl = rd32(E1000_TCTL);
3231	tctl &= ~E1000_TCTL_CT;
3232	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3233		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3234
3235	igb_config_collision_dist(hw);
3236
3237	/* Enable transmits */
3238	tctl |= E1000_TCTL_EN;
3239
3240	wr32(E1000_TCTL, tctl);
3241}
3242
3243/**
3244 *  igb_configure_tx_ring - Configure transmit ring after Reset
3245 *  @adapter: board private structure
3246 *  @ring: tx ring to configure
3247 *
3248 *  Configure a transmit ring after a reset.
3249 **/
3250void igb_configure_tx_ring(struct igb_adapter *adapter,
3251			   struct igb_ring *ring)
3252{
3253	struct e1000_hw *hw = &adapter->hw;
3254	u32 txdctl = 0;
3255	u64 tdba = ring->dma;
3256	int reg_idx = ring->reg_idx;
3257
3258	/* disable the queue */
3259	wr32(E1000_TXDCTL(reg_idx), 0);
3260	wrfl();
3261	mdelay(10);
3262
3263	wr32(E1000_TDLEN(reg_idx),
3264	     ring->count * sizeof(union e1000_adv_tx_desc));
3265	wr32(E1000_TDBAL(reg_idx),
3266	     tdba & 0x00000000ffffffffULL);
3267	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3268
3269	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3270	wr32(E1000_TDH(reg_idx), 0);
3271	writel(0, ring->tail);
3272
3273	txdctl |= IGB_TX_PTHRESH;
3274	txdctl |= IGB_TX_HTHRESH << 8;
3275	txdctl |= IGB_TX_WTHRESH << 16;
3276
3277	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3278	wr32(E1000_TXDCTL(reg_idx), txdctl);
3279}
3280
3281/**
3282 *  igb_configure_tx - Configure transmit Unit after Reset
3283 *  @adapter: board private structure
3284 *
3285 *  Configure the Tx unit of the MAC after a reset.
3286 **/
3287static void igb_configure_tx(struct igb_adapter *adapter)
3288{
3289	int i;
3290
3291	for (i = 0; i < adapter->num_tx_queues; i++)
3292		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3293}
3294
3295/**
3296 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3297 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3298 *
3299 *  Returns 0 on success, negative on failure
3300 **/
3301int igb_setup_rx_resources(struct igb_ring *rx_ring)
3302{
3303	struct device *dev = rx_ring->dev;
3304	int size;
3305
3306	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3307
3308	rx_ring->rx_buffer_info = vzalloc(size);
3309	if (!rx_ring->rx_buffer_info)
3310		goto err;
3311
3312	/* Round up to nearest 4K */
3313	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3314	rx_ring->size = ALIGN(rx_ring->size, 4096);
3315
3316	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3317					   &rx_ring->dma, GFP_KERNEL);
3318	if (!rx_ring->desc)
3319		goto err;
3320
3321	rx_ring->next_to_alloc = 0;
3322	rx_ring->next_to_clean = 0;
3323	rx_ring->next_to_use = 0;
3324
3325	return 0;
3326
3327err:
3328	vfree(rx_ring->rx_buffer_info);
3329	rx_ring->rx_buffer_info = NULL;
3330	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3331	return -ENOMEM;
3332}
3333
3334/**
3335 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3336 *				 (Descriptors) for all queues
3337 *  @adapter: board private structure
3338 *
3339 *  Return 0 on success, negative on failure
3340 **/
3341static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3342{
3343	struct pci_dev *pdev = adapter->pdev;
3344	int i, err = 0;
3345
3346	for (i = 0; i < adapter->num_rx_queues; i++) {
3347		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3348		if (err) {
3349			dev_err(&pdev->dev,
3350				"Allocation for Rx Queue %u failed\n", i);
3351			for (i--; i >= 0; i--)
3352				igb_free_rx_resources(adapter->rx_ring[i]);
3353			break;
3354		}
3355	}
3356
3357	return err;
3358}
3359
3360/**
3361 *  igb_setup_mrqc - configure the multiple receive queue control registers
3362 *  @adapter: Board private structure
3363 **/
3364static void igb_setup_mrqc(struct igb_adapter *adapter)
3365{
3366	struct e1000_hw *hw = &adapter->hw;
3367	u32 mrqc, rxcsum;
3368	u32 j, num_rx_queues;
3369	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3370					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3371					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3372					0xFA01ACBE };
3373
3374	/* Fill out hash function seeds */
3375	for (j = 0; j < 10; j++)
3376		wr32(E1000_RSSRK(j), rsskey[j]);
3377
3378	num_rx_queues = adapter->rss_queues;
3379
3380	switch (hw->mac.type) {
3381	case e1000_82576:
3382		/* 82576 supports 2 RSS queues for SR-IOV */
3383		if (adapter->vfs_allocated_count)
3384			num_rx_queues = 2;
3385		break;
3386	default:
3387		break;
3388	}
3389
3390	if (adapter->rss_indir_tbl_init != num_rx_queues) {
3391		for (j = 0; j < IGB_RETA_SIZE; j++)
3392			adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
3393		adapter->rss_indir_tbl_init = num_rx_queues;
3394	}
3395	igb_write_rss_indir_tbl(adapter);
3396
3397	/* Disable raw packet checksumming so that RSS hash is placed in
3398	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3399	 * offloads as they are enabled by default
3400	 */
3401	rxcsum = rd32(E1000_RXCSUM);
3402	rxcsum |= E1000_RXCSUM_PCSD;
3403
3404	if (adapter->hw.mac.type >= e1000_82576)
3405		/* Enable Receive Checksum Offload for SCTP */
3406		rxcsum |= E1000_RXCSUM_CRCOFL;
3407
3408	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3409	wr32(E1000_RXCSUM, rxcsum);
3410
3411	/* Generate RSS hash based on packet types, TCP/UDP
3412	 * port numbers and/or IPv4/v6 src and dst addresses
3413	 */
3414	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3415	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3416	       E1000_MRQC_RSS_FIELD_IPV6 |
3417	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3418	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3419
3420	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3421		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3422	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3423		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3424
3425	/* If VMDq is enabled then we set the appropriate mode for that, else
3426	 * we default to RSS so that an RSS hash is calculated per packet even
3427	 * if we are only using one queue
3428	 */
3429	if (adapter->vfs_allocated_count) {
3430		if (hw->mac.type > e1000_82575) {
3431			/* Set the default pool for the PF's first queue */
3432			u32 vtctl = rd32(E1000_VT_CTL);
3433
3434			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3435				   E1000_VT_CTL_DISABLE_DEF_POOL);
3436			vtctl |= adapter->vfs_allocated_count <<
3437				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3438			wr32(E1000_VT_CTL, vtctl);
3439		}
3440		if (adapter->rss_queues > 1)
3441			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3442		else
3443			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3444	} else {
3445		if (hw->mac.type != e1000_i211)
3446			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3447	}
3448	igb_vmm_control(adapter);
3449
3450	wr32(E1000_MRQC, mrqc);
3451}
3452
3453/**
3454 *  igb_setup_rctl - configure the receive control registers
3455 *  @adapter: Board private structure
3456 **/
3457void igb_setup_rctl(struct igb_adapter *adapter)
3458{
3459	struct e1000_hw *hw = &adapter->hw;
3460	u32 rctl;
3461
3462	rctl = rd32(E1000_RCTL);
3463
3464	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3465	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3466
3467	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3468		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3469
3470	/* enable stripping of CRC. It's unlikely this will break BMC
3471	 * redirection as it did with e1000. Newer features require
3472	 * that the HW strips the CRC.
3473	 */
3474	rctl |= E1000_RCTL_SECRC;
3475
3476	/* disable store bad packets and clear size bits. */
3477	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3478
3479	/* enable LPE to prevent packets larger than max_frame_size */
3480	rctl |= E1000_RCTL_LPE;
3481
3482	/* disable queue 0 to prevent tail write w/o re-config */
3483	wr32(E1000_RXDCTL(0), 0);
3484
3485	/* Attention!!!  For SR-IOV PF driver operations you must enable
3486	 * queue drop for all VF and PF queues to prevent head of line blocking
3487	 * if an un-trusted VF does not provide descriptors to hardware.
3488	 */
3489	if (adapter->vfs_allocated_count) {
3490		/* set all queue drop enable bits */
3491		wr32(E1000_QDE, ALL_QUEUES);
3492	}
3493
3494	/* This is useful for sniffing bad packets. */
3495	if (adapter->netdev->features & NETIF_F_RXALL) {
3496		/* UPE and MPE will be handled by normal PROMISC logic
3497		 * in e1000e_set_rx_mode
3498		 */
3499		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3500			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3501			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3502
3503		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3504			  E1000_RCTL_DPF | /* Allow filtered pause */
3505			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3506		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3507		 * and that breaks VLANs.
3508		 */
3509	}
3510
3511	wr32(E1000_RCTL, rctl);
3512}
3513
3514static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3515				   int vfn)
3516{
3517	struct e1000_hw *hw = &adapter->hw;
3518	u32 vmolr;
3519
3520	/* if it isn't the PF check to see if VFs are enabled and
3521	 * increase the size to support vlan tags
3522	 */
3523	if (vfn < adapter->vfs_allocated_count &&
3524	    adapter->vf_data[vfn].vlans_enabled)
3525		size += VLAN_TAG_SIZE;
3526
3527	vmolr = rd32(E1000_VMOLR(vfn));
3528	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3529	vmolr |= size | E1000_VMOLR_LPE;
3530	wr32(E1000_VMOLR(vfn), vmolr);
3531
3532	return 0;
3533}
3534
3535/**
3536 *  igb_rlpml_set - set maximum receive packet size
3537 *  @adapter: board private structure
3538 *
3539 *  Configure maximum receivable packet size.
3540 **/
3541static void igb_rlpml_set(struct igb_adapter *adapter)
3542{
3543	u32 max_frame_size = adapter->max_frame_size;
3544	struct e1000_hw *hw = &adapter->hw;
3545	u16 pf_id = adapter->vfs_allocated_count;
3546
3547	if (pf_id) {
3548		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3549		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3550		 * to our max jumbo frame size, in case we need to enable
3551		 * jumbo frames on one of the rings later.
3552		 * This will not pass over-length frames into the default
3553		 * queue because it's gated by the VMOLR.RLPML.
3554		 */
3555		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3556	}
3557
3558	wr32(E1000_RLPML, max_frame_size);
3559}
3560
3561static inline void igb_set_vmolr(struct igb_adapter *adapter,
3562				 int vfn, bool aupe)
3563{
3564	struct e1000_hw *hw = &adapter->hw;
3565	u32 vmolr;
3566
3567	/* This register exists only on 82576 and newer so if we are older then
3568	 * we should exit and do nothing
3569	 */
3570	if (hw->mac.type < e1000_82576)
3571		return;
3572
3573	vmolr = rd32(E1000_VMOLR(vfn));
3574	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3575	if (hw->mac.type == e1000_i350) {
3576		u32 dvmolr;
3577
3578		dvmolr = rd32(E1000_DVMOLR(vfn));
3579		dvmolr |= E1000_DVMOLR_STRVLAN;
3580		wr32(E1000_DVMOLR(vfn), dvmolr);
3581	}
3582	if (aupe)
3583		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3584	else
3585		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3586
3587	/* clear all bits that might not be set */
3588	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3589
3590	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3591		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3592	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3593	 * multicast packets
3594	 */
3595	if (vfn <= adapter->vfs_allocated_count)
3596		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3597
3598	wr32(E1000_VMOLR(vfn), vmolr);
3599}
3600
3601/**
3602 *  igb_configure_rx_ring - Configure a receive ring after Reset
3603 *  @adapter: board private structure
3604 *  @ring: receive ring to be configured
3605 *
3606 *  Configure the Rx unit of the MAC after a reset.
3607 **/
3608void igb_configure_rx_ring(struct igb_adapter *adapter,
3609			   struct igb_ring *ring)
3610{
3611	struct e1000_hw *hw = &adapter->hw;
3612	u64 rdba = ring->dma;
3613	int reg_idx = ring->reg_idx;
3614	u32 srrctl = 0, rxdctl = 0;
3615
3616	/* disable the queue */
3617	wr32(E1000_RXDCTL(reg_idx), 0);
3618
3619	/* Set DMA base address registers */
3620	wr32(E1000_RDBAL(reg_idx),
3621	     rdba & 0x00000000ffffffffULL);
3622	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3623	wr32(E1000_RDLEN(reg_idx),
3624	     ring->count * sizeof(union e1000_adv_rx_desc));
3625
3626	/* initialize head and tail */
3627	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3628	wr32(E1000_RDH(reg_idx), 0);
3629	writel(0, ring->tail);
3630
3631	/* set descriptor configuration */
3632	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3633	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3634	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3635	if (hw->mac.type >= e1000_82580)
3636		srrctl |= E1000_SRRCTL_TIMESTAMP;
3637	/* Only set Drop Enable if we are supporting multiple queues */
3638	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3639		srrctl |= E1000_SRRCTL_DROP_EN;
3640
3641	wr32(E1000_SRRCTL(reg_idx), srrctl);
3642
3643	/* set filtering for VMDQ pools */
3644	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3645
3646	rxdctl |= IGB_RX_PTHRESH;
3647	rxdctl |= IGB_RX_HTHRESH << 8;
3648	rxdctl |= IGB_RX_WTHRESH << 16;
3649
3650	/* enable receive descriptor fetching */
3651	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3652	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3653}
3654
3655/**
3656 *  igb_configure_rx - Configure receive Unit after Reset
3657 *  @adapter: board private structure
3658 *
3659 *  Configure the Rx unit of the MAC after a reset.
3660 **/
3661static void igb_configure_rx(struct igb_adapter *adapter)
3662{
3663	int i;
3664
3665	/* set UTA to appropriate mode */
3666	igb_set_uta(adapter);
3667
3668	/* set the correct pool for the PF default MAC address in entry 0 */
3669	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3670			 adapter->vfs_allocated_count);
3671
3672	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3673	 * the Base and Length of the Rx Descriptor Ring
3674	 */
3675	for (i = 0; i < adapter->num_rx_queues; i++)
3676		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3677}
3678
3679/**
3680 *  igb_free_tx_resources - Free Tx Resources per Queue
3681 *  @tx_ring: Tx descriptor ring for a specific queue
3682 *
3683 *  Free all transmit software resources
3684 **/
3685void igb_free_tx_resources(struct igb_ring *tx_ring)
3686{
3687	igb_clean_tx_ring(tx_ring);
3688
3689	vfree(tx_ring->tx_buffer_info);
3690	tx_ring->tx_buffer_info = NULL;
3691
3692	/* if not set, then don't free */
3693	if (!tx_ring->desc)
3694		return;
3695
3696	dma_free_coherent(tx_ring->dev, tx_ring->size,
3697			  tx_ring->desc, tx_ring->dma);
3698
3699	tx_ring->desc = NULL;
3700}
3701
3702/**
3703 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3704 *  @adapter: board private structure
3705 *
3706 *  Free all transmit software resources
3707 **/
3708static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3709{
3710	int i;
3711
3712	for (i = 0; i < adapter->num_tx_queues; i++)
3713		igb_free_tx_resources(adapter->tx_ring[i]);
3714}
3715
3716void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3717				    struct igb_tx_buffer *tx_buffer)
3718{
3719	if (tx_buffer->skb) {
3720		dev_kfree_skb_any(tx_buffer->skb);
3721		if (dma_unmap_len(tx_buffer, len))
3722			dma_unmap_single(ring->dev,
3723					 dma_unmap_addr(tx_buffer, dma),
3724					 dma_unmap_len(tx_buffer, len),
3725					 DMA_TO_DEVICE);
3726	} else if (dma_unmap_len(tx_buffer, len)) {
3727		dma_unmap_page(ring->dev,
3728			       dma_unmap_addr(tx_buffer, dma),
3729			       dma_unmap_len(tx_buffer, len),
3730			       DMA_TO_DEVICE);
3731	}
3732	tx_buffer->next_to_watch = NULL;
3733	tx_buffer->skb = NULL;
3734	dma_unmap_len_set(tx_buffer, len, 0);
3735	/* buffer_info must be completely set up in the transmit path */
3736}
3737
3738/**
3739 *  igb_clean_tx_ring - Free Tx Buffers
3740 *  @tx_ring: ring to be cleaned
3741 **/
3742static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3743{
3744	struct igb_tx_buffer *buffer_info;
3745	unsigned long size;
3746	u16 i;
3747
3748	if (!tx_ring->tx_buffer_info)
3749		return;
3750	/* Free all the Tx ring sk_buffs */
3751
3752	for (i = 0; i < tx_ring->count; i++) {
3753		buffer_info = &tx_ring->tx_buffer_info[i];
3754		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3755	}
3756
3757	netdev_tx_reset_queue(txring_txq(tx_ring));
3758
3759	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3760	memset(tx_ring->tx_buffer_info, 0, size);
3761
3762	/* Zero out the descriptor ring */
3763	memset(tx_ring->desc, 0, tx_ring->size);
3764
3765	tx_ring->next_to_use = 0;
3766	tx_ring->next_to_clean = 0;
3767}
3768
3769/**
3770 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3771 *  @adapter: board private structure
3772 **/
3773static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3774{
3775	int i;
3776
3777	for (i = 0; i < adapter->num_tx_queues; i++)
3778		igb_clean_tx_ring(adapter->tx_ring[i]);
3779}
3780
3781/**
3782 *  igb_free_rx_resources - Free Rx Resources
3783 *  @rx_ring: ring to clean the resources from
3784 *
3785 *  Free all receive software resources
3786 **/
3787void igb_free_rx_resources(struct igb_ring *rx_ring)
3788{
3789	igb_clean_rx_ring(rx_ring);
3790
3791	vfree(rx_ring->rx_buffer_info);
3792	rx_ring->rx_buffer_info = NULL;
3793
3794	/* if not set, then don't free */
3795	if (!rx_ring->desc)
3796		return;
3797
3798	dma_free_coherent(rx_ring->dev, rx_ring->size,
3799			  rx_ring->desc, rx_ring->dma);
3800
3801	rx_ring->desc = NULL;
3802}
3803
3804/**
3805 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3806 *  @adapter: board private structure
3807 *
3808 *  Free all receive software resources
3809 **/
3810static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3811{
3812	int i;
3813
3814	for (i = 0; i < adapter->num_rx_queues; i++)
3815		igb_free_rx_resources(adapter->rx_ring[i]);
3816}
3817
3818/**
3819 *  igb_clean_rx_ring - Free Rx Buffers per Queue
3820 *  @rx_ring: ring to free buffers from
3821 **/
3822static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3823{
3824	unsigned long size;
3825	u16 i;
3826
3827	if (rx_ring->skb)
3828		dev_kfree_skb(rx_ring->skb);
3829	rx_ring->skb = NULL;
3830
3831	if (!rx_ring->rx_buffer_info)
3832		return;
3833
3834	/* Free all the Rx ring sk_buffs */
3835	for (i = 0; i < rx_ring->count; i++) {
3836		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3837
3838		if (!buffer_info->page)
3839			continue;
3840
3841		dma_unmap_page(rx_ring->dev,
3842			       buffer_info->dma,
3843			       PAGE_SIZE,
3844			       DMA_FROM_DEVICE);
3845		__free_page(buffer_info->page);
3846
3847		buffer_info->page = NULL;
3848	}
3849
3850	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3851	memset(rx_ring->rx_buffer_info, 0, size);
3852
3853	/* Zero out the descriptor ring */
3854	memset(rx_ring->desc, 0, rx_ring->size);
3855
3856	rx_ring->next_to_alloc = 0;
3857	rx_ring->next_to_clean = 0;
3858	rx_ring->next_to_use = 0;
3859}
3860
3861/**
3862 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3863 *  @adapter: board private structure
3864 **/
3865static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3866{
3867	int i;
3868
3869	for (i = 0; i < adapter->num_rx_queues; i++)
3870		igb_clean_rx_ring(adapter->rx_ring[i]);
3871}
3872
3873/**
3874 *  igb_set_mac - Change the Ethernet Address of the NIC
3875 *  @netdev: network interface device structure
3876 *  @p: pointer to an address structure
3877 *
3878 *  Returns 0 on success, negative on failure
3879 **/
3880static int igb_set_mac(struct net_device *netdev, void *p)
3881{
3882	struct igb_adapter *adapter = netdev_priv(netdev);
3883	struct e1000_hw *hw = &adapter->hw;
3884	struct sockaddr *addr = p;
3885
3886	if (!is_valid_ether_addr(addr->sa_data))
3887		return -EADDRNOTAVAIL;
3888
3889	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3890	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3891
3892	/* set the correct pool for the new PF MAC address in entry 0 */
3893	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3894			 adapter->vfs_allocated_count);
3895
3896	return 0;
3897}
3898
3899/**
3900 *  igb_write_mc_addr_list - write multicast addresses to MTA
3901 *  @netdev: network interface device structure
3902 *
3903 *  Writes multicast address list to the MTA hash table.
3904 *  Returns: -ENOMEM on failure
3905 *           0 on no addresses written
3906 *           X on writing X addresses to MTA
3907 **/
3908static int igb_write_mc_addr_list(struct net_device *netdev)
3909{
3910	struct igb_adapter *adapter = netdev_priv(netdev);
3911	struct e1000_hw *hw = &adapter->hw;
3912	struct netdev_hw_addr *ha;
3913	u8  *mta_list;
3914	int i;
3915
3916	if (netdev_mc_empty(netdev)) {
3917		/* nothing to program, so clear mc list */
3918		igb_update_mc_addr_list(hw, NULL, 0);
3919		igb_restore_vf_multicasts(adapter);
3920		return 0;
3921	}
3922
3923	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3924	if (!mta_list)
3925		return -ENOMEM;
3926
3927	/* The shared function expects a packed array of only addresses. */
3928	i = 0;
3929	netdev_for_each_mc_addr(ha, netdev)
3930		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3931
3932	igb_update_mc_addr_list(hw, mta_list, i);
3933	kfree(mta_list);
3934
3935	return netdev_mc_count(netdev);
3936}
3937
3938/**
3939 *  igb_write_uc_addr_list - write unicast addresses to RAR table
3940 *  @netdev: network interface device structure
3941 *
3942 *  Writes unicast address list to the RAR table.
3943 *  Returns: -ENOMEM on failure/insufficient address space
3944 *           0 on no addresses written
3945 *           X on writing X addresses to the RAR table
3946 **/
3947static int igb_write_uc_addr_list(struct net_device *netdev)
3948{
3949	struct igb_adapter *adapter = netdev_priv(netdev);
3950	struct e1000_hw *hw = &adapter->hw;
3951	unsigned int vfn = adapter->vfs_allocated_count;
3952	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3953	int count = 0;
3954
3955	/* return ENOMEM indicating insufficient memory for addresses */
3956	if (netdev_uc_count(netdev) > rar_entries)
3957		return -ENOMEM;
3958
3959	if (!netdev_uc_empty(netdev) && rar_entries) {
3960		struct netdev_hw_addr *ha;
3961
3962		netdev_for_each_uc_addr(ha, netdev) {
3963			if (!rar_entries)
3964				break;
3965			igb_rar_set_qsel(adapter, ha->addr,
3966					 rar_entries--,
3967					 vfn);
3968			count++;
3969		}
3970	}
3971	/* write the addresses in reverse order to avoid write combining */
3972	for (; rar_entries > 0 ; rar_entries--) {
3973		wr32(E1000_RAH(rar_entries), 0);
3974		wr32(E1000_RAL(rar_entries), 0);
3975	}
3976	wrfl();
3977
3978	return count;
3979}
3980
3981/**
3982 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3983 *  @netdev: network interface device structure
3984 *
3985 *  The set_rx_mode entry point is called whenever the unicast or multicast
3986 *  address lists or the network interface flags are updated.  This routine is
3987 *  responsible for configuring the hardware for proper unicast, multicast,
3988 *  promiscuous mode, and all-multi behavior.
3989 **/
3990static void igb_set_rx_mode(struct net_device *netdev)
3991{
3992	struct igb_adapter *adapter = netdev_priv(netdev);
3993	struct e1000_hw *hw = &adapter->hw;
3994	unsigned int vfn = adapter->vfs_allocated_count;
3995	u32 rctl, vmolr = 0;
3996	int count;
3997
3998	/* Check for Promiscuous and All Multicast modes */
3999	rctl = rd32(E1000_RCTL);
4000
4001	/* clear the effected bits */
4002	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4003
4004	if (netdev->flags & IFF_PROMISC) {
4005		/* retain VLAN HW filtering if in VT mode */
4006		if (adapter->vfs_allocated_count)
4007			rctl |= E1000_RCTL_VFE;
4008		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4009		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4010	} else {
4011		if (netdev->flags & IFF_ALLMULTI) {
4012			rctl |= E1000_RCTL_MPE;
4013			vmolr |= E1000_VMOLR_MPME;
4014		} else {
4015			/* Write addresses to the MTA, if the attempt fails
4016			 * then we should just turn on promiscuous mode so
4017			 * that we can at least receive multicast traffic
4018			 */
4019			count = igb_write_mc_addr_list(netdev);
4020			if (count < 0) {
4021				rctl |= E1000_RCTL_MPE;
4022				vmolr |= E1000_VMOLR_MPME;
4023			} else if (count) {
4024				vmolr |= E1000_VMOLR_ROMPE;
4025			}
4026		}
4027		/* Write addresses to available RAR registers, if there is not
4028		 * sufficient space to store all the addresses then enable
4029		 * unicast promiscuous mode
4030		 */
4031		count = igb_write_uc_addr_list(netdev);
4032		if (count < 0) {
4033			rctl |= E1000_RCTL_UPE;
4034			vmolr |= E1000_VMOLR_ROPE;
4035		}
4036		rctl |= E1000_RCTL_VFE;
4037	}
4038	wr32(E1000_RCTL, rctl);
4039
4040	/* In order to support SR-IOV and eventually VMDq it is necessary to set
4041	 * the VMOLR to enable the appropriate modes.  Without this workaround
4042	 * we will have issues with VLAN tag stripping not being done for frames
4043	 * that are only arriving because we are the default pool
4044	 */
4045	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4046		return;
4047
4048	vmolr |= rd32(E1000_VMOLR(vfn)) &
4049		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4050	wr32(E1000_VMOLR(vfn), vmolr);
4051	igb_restore_vf_multicasts(adapter);
4052}
4053
4054static void igb_check_wvbr(struct igb_adapter *adapter)
4055{
4056	struct e1000_hw *hw = &adapter->hw;
4057	u32 wvbr = 0;
4058
4059	switch (hw->mac.type) {
4060	case e1000_82576:
4061	case e1000_i350:
4062		if (!(wvbr = rd32(E1000_WVBR)))
4063			return;
4064		break;
4065	default:
4066		break;
4067	}
4068
4069	adapter->wvbr |= wvbr;
4070}
4071
4072#define IGB_STAGGERED_QUEUE_OFFSET 8
4073
4074static void igb_spoof_check(struct igb_adapter *adapter)
4075{
4076	int j;
4077
4078	if (!adapter->wvbr)
4079		return;
4080
4081	for (j = 0; j < adapter->vfs_allocated_count; j++) {
4082		if (adapter->wvbr & (1 << j) ||
4083		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4084			dev_warn(&adapter->pdev->dev,
4085				"Spoof event(s) detected on VF %d\n", j);
4086			adapter->wvbr &=
4087				~((1 << j) |
4088				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4089		}
4090	}
4091}
4092
4093/* Need to wait a few seconds after link up to get diagnostic information from
4094 * the phy
4095 */
4096static void igb_update_phy_info(unsigned long data)
4097{
4098	struct igb_adapter *adapter = (struct igb_adapter *) data;
4099	igb_get_phy_info(&adapter->hw);
4100}
4101
4102/**
4103 *  igb_has_link - check shared code for link and determine up/down
4104 *  @adapter: pointer to driver private info
4105 **/
4106bool igb_has_link(struct igb_adapter *adapter)
4107{
4108	struct e1000_hw *hw = &adapter->hw;
4109	bool link_active = false;
4110
4111	/* get_link_status is set on LSC (link status) interrupt or
4112	 * rx sequence error interrupt.  get_link_status will stay
4113	 * false until the e1000_check_for_link establishes link
4114	 * for copper adapters ONLY
4115	 */
4116	switch (hw->phy.media_type) {
4117	case e1000_media_type_copper:
4118		if (!hw->mac.get_link_status)
4119			return true;
4120	case e1000_media_type_internal_serdes:
4121		hw->mac.ops.check_for_link(hw);
4122		link_active = !hw->mac.get_link_status;
4123		break;
4124	default:
4125	case e1000_media_type_unknown:
4126		break;
4127	}
4128
4129	if (((hw->mac.type == e1000_i210) ||
4130	     (hw->mac.type == e1000_i211)) &&
4131	     (hw->phy.id == I210_I_PHY_ID)) {
4132		if (!netif_carrier_ok(adapter->netdev)) {
4133			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4134		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4135			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4136			adapter->link_check_timeout = jiffies;
4137		}
4138	}
4139
4140	return link_active;
4141}
4142
4143static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4144{
4145	bool ret = false;
4146	u32 ctrl_ext, thstat;
4147
4148	/* check for thermal sensor event on i350 copper only */
4149	if (hw->mac.type == e1000_i350) {
4150		thstat = rd32(E1000_THSTAT);
4151		ctrl_ext = rd32(E1000_CTRL_EXT);
4152
4153		if ((hw->phy.media_type == e1000_media_type_copper) &&
4154		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4155			ret = !!(thstat & event);
4156	}
4157
4158	return ret;
4159}
4160
4161/**
4162 *  igb_watchdog - Timer Call-back
4163 *  @data: pointer to adapter cast into an unsigned long
4164 **/
4165static void igb_watchdog(unsigned long data)
4166{
4167	struct igb_adapter *adapter = (struct igb_adapter *)data;
4168	/* Do the rest outside of interrupt context */
4169	schedule_work(&adapter->watchdog_task);
4170}
4171
4172static void igb_watchdog_task(struct work_struct *work)
4173{
4174	struct igb_adapter *adapter = container_of(work,
4175						   struct igb_adapter,
4176						   watchdog_task);
4177	struct e1000_hw *hw = &adapter->hw;
4178	struct e1000_phy_info *phy = &hw->phy;
4179	struct net_device *netdev = adapter->netdev;
4180	u32 link;
4181	int i;
4182	u32 connsw;
4183
4184	link = igb_has_link(adapter);
4185
4186	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4187		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4188			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4189		else
4190			link = false;
4191	}
4192
4193	/* Force link down if we have fiber to swap to */
4194	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4195		if (hw->phy.media_type == e1000_media_type_copper) {
4196			connsw = rd32(E1000_CONNSW);
4197			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4198				link = 0;
4199		}
4200	}
4201	if (link) {
4202		/* Perform a reset if the media type changed. */
4203		if (hw->dev_spec._82575.media_changed) {
4204			hw->dev_spec._82575.media_changed = false;
4205			adapter->flags |= IGB_FLAG_MEDIA_RESET;
4206			igb_reset(adapter);
4207		}
4208		/* Cancel scheduled suspend requests. */
4209		pm_runtime_resume(netdev->dev.parent);
4210
4211		if (!netif_carrier_ok(netdev)) {
4212			u32 ctrl;
4213
4214			hw->mac.ops.get_speed_and_duplex(hw,
4215							 &adapter->link_speed,
4216							 &adapter->link_duplex);
4217
4218			ctrl = rd32(E1000_CTRL);
4219			/* Links status message must follow this format */
4220			netdev_info(netdev,
4221			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4222			       netdev->name,
4223			       adapter->link_speed,
4224			       adapter->link_duplex == FULL_DUPLEX ?
4225			       "Full" : "Half",
4226			       (ctrl & E1000_CTRL_TFCE) &&
4227			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4228			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4229			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4230
4231			/* disable EEE if enabled */
4232			if ((adapter->flags & IGB_FLAG_EEE) &&
4233				(adapter->link_duplex == HALF_DUPLEX)) {
4234				dev_info(&adapter->pdev->dev,
4235				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4236				adapter->hw.dev_spec._82575.eee_disable = true;
4237				adapter->flags &= ~IGB_FLAG_EEE;
4238			}
4239
4240			/* check if SmartSpeed worked */
4241			igb_check_downshift(hw);
4242			if (phy->speed_downgraded)
4243				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4244
4245			/* check for thermal sensor event */
4246			if (igb_thermal_sensor_event(hw,
4247			    E1000_THSTAT_LINK_THROTTLE))
4248				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4249
4250			/* adjust timeout factor according to speed/duplex */
4251			adapter->tx_timeout_factor = 1;
4252			switch (adapter->link_speed) {
4253			case SPEED_10:
4254				adapter->tx_timeout_factor = 14;
4255				break;
4256			case SPEED_100:
4257				/* maybe add some timeout factor ? */
4258				break;
4259			}
4260
4261			netif_carrier_on(netdev);
4262
4263			igb_ping_all_vfs(adapter);
4264			igb_check_vf_rate_limit(adapter);
4265
4266			/* link state has changed, schedule phy info update */
4267			if (!test_bit(__IGB_DOWN, &adapter->state))
4268				mod_timer(&adapter->phy_info_timer,
4269					  round_jiffies(jiffies + 2 * HZ));
4270		}
4271	} else {
4272		if (netif_carrier_ok(netdev)) {
4273			adapter->link_speed = 0;
4274			adapter->link_duplex = 0;
4275
4276			/* check for thermal sensor event */
4277			if (igb_thermal_sensor_event(hw,
4278			    E1000_THSTAT_PWR_DOWN)) {
4279				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4280			}
4281
4282			/* Links status message must follow this format */
4283			netdev_info(netdev, "igb: %s NIC Link is Down\n",
4284			       netdev->name);
4285			netif_carrier_off(netdev);
4286
4287			igb_ping_all_vfs(adapter);
4288
4289			/* link state has changed, schedule phy info update */
4290			if (!test_bit(__IGB_DOWN, &adapter->state))
4291				mod_timer(&adapter->phy_info_timer,
4292					  round_jiffies(jiffies + 2 * HZ));
4293
4294			/* link is down, time to check for alternate media */
4295			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4296				igb_check_swap_media(adapter);
4297				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4298					schedule_work(&adapter->reset_task);
4299					/* return immediately */
4300					return;
4301				}
4302			}
4303			pm_schedule_suspend(netdev->dev.parent,
4304					    MSEC_PER_SEC * 5);
4305
4306		/* also check for alternate media here */
4307		} else if (!netif_carrier_ok(netdev) &&
4308			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4309			igb_check_swap_media(adapter);
4310			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4311				schedule_work(&adapter->reset_task);
4312				/* return immediately */
4313				return;
4314			}
4315		}
4316	}
4317
4318	spin_lock(&adapter->stats64_lock);
4319	igb_update_stats(adapter, &adapter->stats64);
4320	spin_unlock(&adapter->stats64_lock);
4321
4322	for (i = 0; i < adapter->num_tx_queues; i++) {
4323		struct igb_ring *tx_ring = adapter->tx_ring[i];
4324		if (!netif_carrier_ok(netdev)) {
4325			/* We've lost link, so the controller stops DMA,
4326			 * but we've got queued Tx work that's never going
4327			 * to get done, so reset controller to flush Tx.
4328			 * (Do the reset outside of interrupt context).
4329			 */
4330			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4331				adapter->tx_timeout_count++;
4332				schedule_work(&adapter->reset_task);
4333				/* return immediately since reset is imminent */
4334				return;
4335			}
4336		}
4337
4338		/* Force detection of hung controller every watchdog period */
4339		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4340	}
4341
4342	/* Cause software interrupt to ensure Rx ring is cleaned */
4343	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4344		u32 eics = 0;
4345
4346		for (i = 0; i < adapter->num_q_vectors; i++)
4347			eics |= adapter->q_vector[i]->eims_value;
4348		wr32(E1000_EICS, eics);
4349	} else {
4350		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4351	}
4352
4353	igb_spoof_check(adapter);
4354	igb_ptp_rx_hang(adapter);
4355
4356	/* Reset the timer */
4357	if (!test_bit(__IGB_DOWN, &adapter->state)) {
4358		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4359			mod_timer(&adapter->watchdog_timer,
4360				  round_jiffies(jiffies +  HZ));
4361		else
4362			mod_timer(&adapter->watchdog_timer,
4363				  round_jiffies(jiffies + 2 * HZ));
4364	}
4365}
4366
4367enum latency_range {
4368	lowest_latency = 0,
4369	low_latency = 1,
4370	bulk_latency = 2,
4371	latency_invalid = 255
4372};
4373
4374/**
4375 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4376 *  @q_vector: pointer to q_vector
4377 *
4378 *  Stores a new ITR value based on strictly on packet size.  This
4379 *  algorithm is less sophisticated than that used in igb_update_itr,
4380 *  due to the difficulty of synchronizing statistics across multiple
4381 *  receive rings.  The divisors and thresholds used by this function
4382 *  were determined based on theoretical maximum wire speed and testing
4383 *  data, in order to minimize response time while increasing bulk
4384 *  throughput.
4385 *  This functionality is controlled by ethtool's coalescing settings.
4386 *  NOTE:  This function is called only when operating in a multiqueue
4387 *         receive environment.
4388 **/
4389static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4390{
4391	int new_val = q_vector->itr_val;
4392	int avg_wire_size = 0;
4393	struct igb_adapter *adapter = q_vector->adapter;
4394	unsigned int packets;
4395
4396	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4397	 * ints/sec - ITR timer value of 120 ticks.
4398	 */
4399	if (adapter->link_speed != SPEED_1000) {
4400		new_val = IGB_4K_ITR;
4401		goto set_itr_val;
4402	}
4403
4404	packets = q_vector->rx.total_packets;
4405	if (packets)
4406		avg_wire_size = q_vector->rx.total_bytes / packets;
4407
4408	packets = q_vector->tx.total_packets;
4409	if (packets)
4410		avg_wire_size = max_t(u32, avg_wire_size,
4411				      q_vector->tx.total_bytes / packets);
4412
4413	/* if avg_wire_size isn't set no work was done */
4414	if (!avg_wire_size)
4415		goto clear_counts;
4416
4417	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4418	avg_wire_size += 24;
4419
4420	/* Don't starve jumbo frames */
4421	avg_wire_size = min(avg_wire_size, 3000);
4422
4423	/* Give a little boost to mid-size frames */
4424	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4425		new_val = avg_wire_size / 3;
4426	else
4427		new_val = avg_wire_size / 2;
4428
4429	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4430	if (new_val < IGB_20K_ITR &&
4431	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4432	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4433		new_val = IGB_20K_ITR;
4434
4435set_itr_val:
4436	if (new_val != q_vector->itr_val) {
4437		q_vector->itr_val = new_val;
4438		q_vector->set_itr = 1;
4439	}
4440clear_counts:
4441	q_vector->rx.total_bytes = 0;
4442	q_vector->rx.total_packets = 0;
4443	q_vector->tx.total_bytes = 0;
4444	q_vector->tx.total_packets = 0;
4445}
4446
4447/**
4448 *  igb_update_itr - update the dynamic ITR value based on statistics
4449 *  @q_vector: pointer to q_vector
4450 *  @ring_container: ring info to update the itr for
4451 *
4452 *  Stores a new ITR value based on packets and byte
4453 *  counts during the last interrupt.  The advantage of per interrupt
4454 *  computation is faster updates and more accurate ITR for the current
4455 *  traffic pattern.  Constants in this function were computed
4456 *  based on theoretical maximum wire speed and thresholds were set based
4457 *  on testing data as well as attempting to minimize response time
4458 *  while increasing bulk throughput.
4459 *  This functionality is controlled by ethtool's coalescing settings.
4460 *  NOTE:  These calculations are only valid when operating in a single-
4461 *         queue environment.
4462 **/
4463static void igb_update_itr(struct igb_q_vector *q_vector,
4464			   struct igb_ring_container *ring_container)
4465{
4466	unsigned int packets = ring_container->total_packets;
4467	unsigned int bytes = ring_container->total_bytes;
4468	u8 itrval = ring_container->itr;
4469
4470	/* no packets, exit with status unchanged */
4471	if (packets == 0)
4472		return;
4473
4474	switch (itrval) {
4475	case lowest_latency:
4476		/* handle TSO and jumbo frames */
4477		if (bytes/packets > 8000)
4478			itrval = bulk_latency;
4479		else if ((packets < 5) && (bytes > 512))
4480			itrval = low_latency;
4481		break;
4482	case low_latency:  /* 50 usec aka 20000 ints/s */
4483		if (bytes > 10000) {
4484			/* this if handles the TSO accounting */
4485			if (bytes/packets > 8000)
4486				itrval = bulk_latency;
4487			else if ((packets < 10) || ((bytes/packets) > 1200))
4488				itrval = bulk_latency;
4489			else if ((packets > 35))
4490				itrval = lowest_latency;
4491		} else if (bytes/packets > 2000) {
4492			itrval = bulk_latency;
4493		} else if (packets <= 2 && bytes < 512) {
4494			itrval = lowest_latency;
4495		}
4496		break;
4497	case bulk_latency: /* 250 usec aka 4000 ints/s */
4498		if (bytes > 25000) {
4499			if (packets > 35)
4500				itrval = low_latency;
4501		} else if (bytes < 1500) {
4502			itrval = low_latency;
4503		}
4504		break;
4505	}
4506
4507	/* clear work counters since we have the values we need */
4508	ring_container->total_bytes = 0;
4509	ring_container->total_packets = 0;
4510
4511	/* write updated itr to ring container */
4512	ring_container->itr = itrval;
4513}
4514
4515static void igb_set_itr(struct igb_q_vector *q_vector)
4516{
4517	struct igb_adapter *adapter = q_vector->adapter;
4518	u32 new_itr = q_vector->itr_val;
4519	u8 current_itr = 0;
4520
4521	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4522	if (adapter->link_speed != SPEED_1000) {
4523		current_itr = 0;
4524		new_itr = IGB_4K_ITR;
4525		goto set_itr_now;
4526	}
4527
4528	igb_update_itr(q_vector, &q_vector->tx);
4529	igb_update_itr(q_vector, &q_vector->rx);
4530
4531	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4532
4533	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4534	if (current_itr == lowest_latency &&
4535	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4536	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4537		current_itr = low_latency;
4538
4539	switch (current_itr) {
4540	/* counts and packets in update_itr are dependent on these numbers */
4541	case lowest_latency:
4542		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4543		break;
4544	case low_latency:
4545		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4546		break;
4547	case bulk_latency:
4548		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4549		break;
4550	default:
4551		break;
4552	}
4553
4554set_itr_now:
4555	if (new_itr != q_vector->itr_val) {
4556		/* this attempts to bias the interrupt rate towards Bulk
4557		 * by adding intermediate steps when interrupt rate is
4558		 * increasing
4559		 */
4560		new_itr = new_itr > q_vector->itr_val ?
4561			  max((new_itr * q_vector->itr_val) /
4562			  (new_itr + (q_vector->itr_val >> 2)),
4563			  new_itr) : new_itr;
4564		/* Don't write the value here; it resets the adapter's
4565		 * internal timer, and causes us to delay far longer than
4566		 * we should between interrupts.  Instead, we write the ITR
4567		 * value at the beginning of the next interrupt so the timing
4568		 * ends up being correct.
4569		 */
4570		q_vector->itr_val = new_itr;
4571		q_vector->set_itr = 1;
4572	}
4573}
4574
4575static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4576			    u32 type_tucmd, u32 mss_l4len_idx)
4577{
4578	struct e1000_adv_tx_context_desc *context_desc;
4579	u16 i = tx_ring->next_to_use;
4580
4581	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4582
4583	i++;
4584	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4585
4586	/* set bits to identify this as an advanced context descriptor */
4587	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4588
4589	/* For 82575, context index must be unique per ring. */
4590	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4591		mss_l4len_idx |= tx_ring->reg_idx << 4;
4592
4593	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4594	context_desc->seqnum_seed	= 0;
4595	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4596	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4597}
4598
4599static int igb_tso(struct igb_ring *tx_ring,
4600		   struct igb_tx_buffer *first,
4601		   u8 *hdr_len)
4602{
4603	struct sk_buff *skb = first->skb;
4604	u32 vlan_macip_lens, type_tucmd;
4605	u32 mss_l4len_idx, l4len;
4606	int err;
4607
4608	if (skb->ip_summed != CHECKSUM_PARTIAL)
4609		return 0;
4610
4611	if (!skb_is_gso(skb))
4612		return 0;
4613
4614	err = skb_cow_head(skb, 0);
4615	if (err < 0)
4616		return err;
4617
4618	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4619	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4620
4621	if (first->protocol == htons(ETH_P_IP)) {
4622		struct iphdr *iph = ip_hdr(skb);
4623		iph->tot_len = 0;
4624		iph->check = 0;
4625		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4626							 iph->daddr, 0,
4627							 IPPROTO_TCP,
4628							 0);
4629		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4630		first->tx_flags |= IGB_TX_FLAGS_TSO |
4631				   IGB_TX_FLAGS_CSUM |
4632				   IGB_TX_FLAGS_IPV4;
4633	} else if (skb_is_gso_v6(skb)) {
4634		ipv6_hdr(skb)->payload_len = 0;
4635		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4636						       &ipv6_hdr(skb)->daddr,
4637						       0, IPPROTO_TCP, 0);
4638		first->tx_flags |= IGB_TX_FLAGS_TSO |
4639				   IGB_TX_FLAGS_CSUM;
4640	}
4641
4642	/* compute header lengths */
4643	l4len = tcp_hdrlen(skb);
4644	*hdr_len = skb_transport_offset(skb) + l4len;
4645
4646	/* update gso size and bytecount with header size */
4647	first->gso_segs = skb_shinfo(skb)->gso_segs;
4648	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4649
4650	/* MSS L4LEN IDX */
4651	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4652	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4653
4654	/* VLAN MACLEN IPLEN */
4655	vlan_macip_lens = skb_network_header_len(skb);
4656	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4657	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4658
4659	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4660
4661	return 1;
4662}
4663
4664static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4665{
4666	struct sk_buff *skb = first->skb;
4667	u32 vlan_macip_lens = 0;
4668	u32 mss_l4len_idx = 0;
4669	u32 type_tucmd = 0;
4670
4671	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4672		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4673			return;
4674	} else {
4675		u8 l4_hdr = 0;
4676
4677		switch (first->protocol) {
4678		case htons(ETH_P_IP):
4679			vlan_macip_lens |= skb_network_header_len(skb);
4680			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4681			l4_hdr = ip_hdr(skb)->protocol;
4682			break;
4683		case htons(ETH_P_IPV6):
4684			vlan_macip_lens |= skb_network_header_len(skb);
4685			l4_hdr = ipv6_hdr(skb)->nexthdr;
4686			break;
4687		default:
4688			if (unlikely(net_ratelimit())) {
4689				dev_warn(tx_ring->dev,
4690					 "partial checksum but proto=%x!\n",
4691					 first->protocol);
4692			}
4693			break;
4694		}
4695
4696		switch (l4_hdr) {
4697		case IPPROTO_TCP:
4698			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4699			mss_l4len_idx = tcp_hdrlen(skb) <<
4700					E1000_ADVTXD_L4LEN_SHIFT;
4701			break;
4702		case IPPROTO_SCTP:
4703			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4704			mss_l4len_idx = sizeof(struct sctphdr) <<
4705					E1000_ADVTXD_L4LEN_SHIFT;
4706			break;
4707		case IPPROTO_UDP:
4708			mss_l4len_idx = sizeof(struct udphdr) <<
4709					E1000_ADVTXD_L4LEN_SHIFT;
4710			break;
4711		default:
4712			if (unlikely(net_ratelimit())) {
4713				dev_warn(tx_ring->dev,
4714					 "partial checksum but l4 proto=%x!\n",
4715					 l4_hdr);
4716			}
4717			break;
4718		}
4719
4720		/* update TX checksum flag */
4721		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4722	}
4723
4724	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4725	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4726
4727	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4728}
4729
4730#define IGB_SET_FLAG(_input, _flag, _result) \
4731	((_flag <= _result) ? \
4732	 ((u32)(_input & _flag) * (_result / _flag)) : \
4733	 ((u32)(_input & _flag) / (_flag / _result)))
4734
4735static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4736{
4737	/* set type for advanced descriptor with frame checksum insertion */
4738	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4739		       E1000_ADVTXD_DCMD_DEXT |
4740		       E1000_ADVTXD_DCMD_IFCS;
4741
4742	/* set HW vlan bit if vlan is present */
4743	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4744				 (E1000_ADVTXD_DCMD_VLE));
4745
4746	/* set segmentation bits for TSO */
4747	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4748				 (E1000_ADVTXD_DCMD_TSE));
4749
4750	/* set timestamp bit if present */
4751	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4752				 (E1000_ADVTXD_MAC_TSTAMP));
4753
4754	/* insert frame checksum */
4755	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4756
4757	return cmd_type;
4758}
4759
4760static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4761				 union e1000_adv_tx_desc *tx_desc,
4762				 u32 tx_flags, unsigned int paylen)
4763{
4764	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4765
4766	/* 82575 requires a unique index per ring */
4767	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4768		olinfo_status |= tx_ring->reg_idx << 4;
4769
4770	/* insert L4 checksum */
4771	olinfo_status |= IGB_SET_FLAG(tx_flags,
4772				      IGB_TX_FLAGS_CSUM,
4773				      (E1000_TXD_POPTS_TXSM << 8));
4774
4775	/* insert IPv4 checksum */
4776	olinfo_status |= IGB_SET_FLAG(tx_flags,
4777				      IGB_TX_FLAGS_IPV4,
4778				      (E1000_TXD_POPTS_IXSM << 8));
4779
4780	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4781}
4782
4783static void igb_tx_map(struct igb_ring *tx_ring,
4784		       struct igb_tx_buffer *first,
4785		       const u8 hdr_len)
4786{
4787	struct sk_buff *skb = first->skb;
4788	struct igb_tx_buffer *tx_buffer;
4789	union e1000_adv_tx_desc *tx_desc;
4790	struct skb_frag_struct *frag;
4791	dma_addr_t dma;
4792	unsigned int data_len, size;
4793	u32 tx_flags = first->tx_flags;
4794	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4795	u16 i = tx_ring->next_to_use;
4796
4797	tx_desc = IGB_TX_DESC(tx_ring, i);
4798
4799	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4800
4801	size = skb_headlen(skb);
4802	data_len = skb->data_len;
4803
4804	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4805
4806	tx_buffer = first;
4807
4808	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4809		if (dma_mapping_error(tx_ring->dev, dma))
4810			goto dma_error;
4811
4812		/* record length, and DMA address */
4813		dma_unmap_len_set(tx_buffer, len, size);
4814		dma_unmap_addr_set(tx_buffer, dma, dma);
4815
4816		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4817
4818		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4819			tx_desc->read.cmd_type_len =
4820				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4821
4822			i++;
4823			tx_desc++;
4824			if (i == tx_ring->count) {
4825				tx_desc = IGB_TX_DESC(tx_ring, 0);
4826				i = 0;
4827			}
4828			tx_desc->read.olinfo_status = 0;
4829
4830			dma += IGB_MAX_DATA_PER_TXD;
4831			size -= IGB_MAX_DATA_PER_TXD;
4832
4833			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4834		}
4835
4836		if (likely(!data_len))
4837			break;
4838
4839		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4840
4841		i++;
4842		tx_desc++;
4843		if (i == tx_ring->count) {
4844			tx_desc = IGB_TX_DESC(tx_ring, 0);
4845			i = 0;
4846		}
4847		tx_desc->read.olinfo_status = 0;
4848
4849		size = skb_frag_size(frag);
4850		data_len -= size;
4851
4852		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4853				       size, DMA_TO_DEVICE);
4854
4855		tx_buffer = &tx_ring->tx_buffer_info[i];
4856	}
4857
4858	/* write last descriptor with RS and EOP bits */
4859	cmd_type |= size | IGB_TXD_DCMD;
4860	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4861
4862	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4863
4864	/* set the timestamp */
4865	first->time_stamp = jiffies;
4866
4867	/* Force memory writes to complete before letting h/w know there
4868	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4869	 * memory model archs, such as IA-64).
4870	 *
4871	 * We also need this memory barrier to make certain all of the
4872	 * status bits have been updated before next_to_watch is written.
4873	 */
4874	wmb();
4875
4876	/* set next_to_watch value indicating a packet is present */
4877	first->next_to_watch = tx_desc;
4878
4879	i++;
4880	if (i == tx_ring->count)
4881		i = 0;
4882
4883	tx_ring->next_to_use = i;
4884
4885	writel(i, tx_ring->tail);
4886
4887	/* we need this if more than one processor can write to our tail
4888	 * at a time, it synchronizes IO on IA64/Altix systems
4889	 */
4890	mmiowb();
4891
4892	return;
4893
4894dma_error:
4895	dev_err(tx_ring->dev, "TX DMA map failed\n");
4896
4897	/* clear dma mappings for failed tx_buffer_info map */
4898	for (;;) {
4899		tx_buffer = &tx_ring->tx_buffer_info[i];
4900		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4901		if (tx_buffer == first)
4902			break;
4903		if (i == 0)
4904			i = tx_ring->count;
4905		i--;
4906	}
4907
4908	tx_ring->next_to_use = i;
4909}
4910
4911static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4912{
4913	struct net_device *netdev = tx_ring->netdev;
4914
4915	netif_stop_subqueue(netdev, tx_ring->queue_index);
4916
4917	/* Herbert's original patch had:
4918	 *  smp_mb__after_netif_stop_queue();
4919	 * but since that doesn't exist yet, just open code it.
4920	 */
4921	smp_mb();
4922
4923	/* We need to check again in a case another CPU has just
4924	 * made room available.
4925	 */
4926	if (igb_desc_unused(tx_ring) < size)
4927		return -EBUSY;
4928
4929	/* A reprieve! */
4930	netif_wake_subqueue(netdev, tx_ring->queue_index);
4931
4932	u64_stats_update_begin(&tx_ring->tx_syncp2);
4933	tx_ring->tx_stats.restart_queue2++;
4934	u64_stats_update_end(&tx_ring->tx_syncp2);
4935
4936	return 0;
4937}
4938
4939static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4940{
4941	if (igb_desc_unused(tx_ring) >= size)
4942		return 0;
4943	return __igb_maybe_stop_tx(tx_ring, size);
4944}
4945
4946netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4947				struct igb_ring *tx_ring)
4948{
4949	struct igb_tx_buffer *first;
4950	int tso;
4951	u32 tx_flags = 0;
4952	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4953	__be16 protocol = vlan_get_protocol(skb);
4954	u8 hdr_len = 0;
4955
4956	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4957	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4958	 *       + 2 desc gap to keep tail from touching head,
4959	 *       + 1 desc for context descriptor,
4960	 * otherwise try next time
4961	 */
4962	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4963		unsigned short f;
4964
4965		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4966			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4967	} else {
4968		count += skb_shinfo(skb)->nr_frags;
4969	}
4970
4971	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4972		/* this is a hard error */
4973		return NETDEV_TX_BUSY;
4974	}
4975
4976	/* record the location of the first descriptor for this packet */
4977	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4978	first->skb = skb;
4979	first->bytecount = skb->len;
4980	first->gso_segs = 1;
4981
4982	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4983		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4984
4985		if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
4986					   &adapter->state)) {
4987			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4988			tx_flags |= IGB_TX_FLAGS_TSTAMP;
4989
4990			adapter->ptp_tx_skb = skb_get(skb);
4991			adapter->ptp_tx_start = jiffies;
4992			if (adapter->hw.mac.type == e1000_82576)
4993				schedule_work(&adapter->ptp_tx_work);
4994		}
4995	}
4996
4997	skb_tx_timestamp(skb);
4998
4999	if (vlan_tx_tag_present(skb)) {
5000		tx_flags |= IGB_TX_FLAGS_VLAN;
5001		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5002	}
5003
5004	/* record initial flags and protocol */
5005	first->tx_flags = tx_flags;
5006	first->protocol = protocol;
5007
5008	tso = igb_tso(tx_ring, first, &hdr_len);
5009	if (tso < 0)
5010		goto out_drop;
5011	else if (!tso)
5012		igb_tx_csum(tx_ring, first);
5013
5014	igb_tx_map(tx_ring, first, hdr_len);
5015
5016	/* Make sure there is space in the ring for the next send. */
5017	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5018
5019	return NETDEV_TX_OK;
5020
5021out_drop:
5022	igb_unmap_and_free_tx_resource(tx_ring, first);
5023
5024	return NETDEV_TX_OK;
5025}
5026
5027static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5028						    struct sk_buff *skb)
5029{
5030	unsigned int r_idx = skb->queue_mapping;
5031
5032	if (r_idx >= adapter->num_tx_queues)
5033		r_idx = r_idx % adapter->num_tx_queues;
5034
5035	return adapter->tx_ring[r_idx];
5036}
5037
5038static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5039				  struct net_device *netdev)
5040{
5041	struct igb_adapter *adapter = netdev_priv(netdev);
5042
5043	if (test_bit(__IGB_DOWN, &adapter->state)) {
5044		dev_kfree_skb_any(skb);
5045		return NETDEV_TX_OK;
5046	}
5047
5048	if (skb->len <= 0) {
5049		dev_kfree_skb_any(skb);
5050		return NETDEV_TX_OK;
5051	}
5052
5053	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5054	 * in order to meet this minimum size requirement.
5055	 */
5056	if (unlikely(skb->len < 17)) {
5057		if (skb_pad(skb, 17 - skb->len))
5058			return NETDEV_TX_OK;
5059		skb->len = 17;
5060		skb_set_tail_pointer(skb, 17);
5061	}
5062
5063	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5064}
5065
5066/**
5067 *  igb_tx_timeout - Respond to a Tx Hang
5068 *  @netdev: network interface device structure
5069 **/
5070static void igb_tx_timeout(struct net_device *netdev)
5071{
5072	struct igb_adapter *adapter = netdev_priv(netdev);
5073	struct e1000_hw *hw = &adapter->hw;
5074
5075	/* Do the reset outside of interrupt context */
5076	adapter->tx_timeout_count++;
5077
5078	if (hw->mac.type >= e1000_82580)
5079		hw->dev_spec._82575.global_device_reset = true;
5080
5081	schedule_work(&adapter->reset_task);
5082	wr32(E1000_EICS,
5083	     (adapter->eims_enable_mask & ~adapter->eims_other));
5084}
5085
5086static void igb_reset_task(struct work_struct *work)
5087{
5088	struct igb_adapter *adapter;
5089	adapter = container_of(work, struct igb_adapter, reset_task);
5090
5091	igb_dump(adapter);
5092	netdev_err(adapter->netdev, "Reset adapter\n");
5093	igb_reinit_locked(adapter);
5094}
5095
5096/**
5097 *  igb_get_stats64 - Get System Network Statistics
5098 *  @netdev: network interface device structure
5099 *  @stats: rtnl_link_stats64 pointer
5100 **/
5101static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5102						struct rtnl_link_stats64 *stats)
5103{
5104	struct igb_adapter *adapter = netdev_priv(netdev);
5105
5106	spin_lock(&adapter->stats64_lock);
5107	igb_update_stats(adapter, &adapter->stats64);
5108	memcpy(stats, &adapter->stats64, sizeof(*stats));
5109	spin_unlock(&adapter->stats64_lock);
5110
5111	return stats;
5112}
5113
5114/**
5115 *  igb_change_mtu - Change the Maximum Transfer Unit
5116 *  @netdev: network interface device structure
5117 *  @new_mtu: new value for maximum frame size
5118 *
5119 *  Returns 0 on success, negative on failure
5120 **/
5121static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5122{
5123	struct igb_adapter *adapter = netdev_priv(netdev);
5124	struct pci_dev *pdev = adapter->pdev;
5125	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5126
5127	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5128		dev_err(&pdev->dev, "Invalid MTU setting\n");
5129		return -EINVAL;
5130	}
5131
5132#define MAX_STD_JUMBO_FRAME_SIZE 9238
5133	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5134		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5135		return -EINVAL;
5136	}
5137
5138	/* adjust max frame to be at least the size of a standard frame */
5139	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5140		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5141
5142	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5143		msleep(1);
5144
5145	/* igb_down has a dependency on max_frame_size */
5146	adapter->max_frame_size = max_frame;
5147
5148	if (netif_running(netdev))
5149		igb_down(adapter);
5150
5151	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5152		 netdev->mtu, new_mtu);
5153	netdev->mtu = new_mtu;
5154
5155	if (netif_running(netdev))
5156		igb_up(adapter);
5157	else
5158		igb_reset(adapter);
5159
5160	clear_bit(__IGB_RESETTING, &adapter->state);
5161
5162	return 0;
5163}
5164
5165/**
5166 *  igb_update_stats - Update the board statistics counters
5167 *  @adapter: board private structure
5168 **/
5169void igb_update_stats(struct igb_adapter *adapter,
5170		      struct rtnl_link_stats64 *net_stats)
5171{
5172	struct e1000_hw *hw = &adapter->hw;
5173	struct pci_dev *pdev = adapter->pdev;
5174	u32 reg, mpc;
5175	u16 phy_tmp;
5176	int i;
5177	u64 bytes, packets;
5178	unsigned int start;
5179	u64 _bytes, _packets;
5180
5181#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
5182
5183	/* Prevent stats update while adapter is being reset, or if the pci
5184	 * connection is down.
5185	 */
5186	if (adapter->link_speed == 0)
5187		return;
5188	if (pci_channel_offline(pdev))
5189		return;
5190
5191	bytes = 0;
5192	packets = 0;
5193
5194	rcu_read_lock();
5195	for (i = 0; i < adapter->num_rx_queues; i++) {
5196		u32 rqdpc = rd32(E1000_RQDPC(i));
5197		struct igb_ring *ring = adapter->rx_ring[i];
5198
5199		if (rqdpc) {
5200			ring->rx_stats.drops += rqdpc;
5201			net_stats->rx_fifo_errors += rqdpc;
5202		}
5203
5204		do {
5205			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5206			_bytes = ring->rx_stats.bytes;
5207			_packets = ring->rx_stats.packets;
5208		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5209		bytes += _bytes;
5210		packets += _packets;
5211	}
5212
5213	net_stats->rx_bytes = bytes;
5214	net_stats->rx_packets = packets;
5215
5216	bytes = 0;
5217	packets = 0;
5218	for (i = 0; i < adapter->num_tx_queues; i++) {
5219		struct igb_ring *ring = adapter->tx_ring[i];
5220		do {
5221			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5222			_bytes = ring->tx_stats.bytes;
5223			_packets = ring->tx_stats.packets;
5224		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5225		bytes += _bytes;
5226		packets += _packets;
5227	}
5228	net_stats->tx_bytes = bytes;
5229	net_stats->tx_packets = packets;
5230	rcu_read_unlock();
5231
5232	/* read stats registers */
5233	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5234	adapter->stats.gprc += rd32(E1000_GPRC);
5235	adapter->stats.gorc += rd32(E1000_GORCL);
5236	rd32(E1000_GORCH); /* clear GORCL */
5237	adapter->stats.bprc += rd32(E1000_BPRC);
5238	adapter->stats.mprc += rd32(E1000_MPRC);
5239	adapter->stats.roc += rd32(E1000_ROC);
5240
5241	adapter->stats.prc64 += rd32(E1000_PRC64);
5242	adapter->stats.prc127 += rd32(E1000_PRC127);
5243	adapter->stats.prc255 += rd32(E1000_PRC255);
5244	adapter->stats.prc511 += rd32(E1000_PRC511);
5245	adapter->stats.prc1023 += rd32(E1000_PRC1023);
5246	adapter->stats.prc1522 += rd32(E1000_PRC1522);
5247	adapter->stats.symerrs += rd32(E1000_SYMERRS);
5248	adapter->stats.sec += rd32(E1000_SEC);
5249
5250	mpc = rd32(E1000_MPC);
5251	adapter->stats.mpc += mpc;
5252	net_stats->rx_fifo_errors += mpc;
5253	adapter->stats.scc += rd32(E1000_SCC);
5254	adapter->stats.ecol += rd32(E1000_ECOL);
5255	adapter->stats.mcc += rd32(E1000_MCC);
5256	adapter->stats.latecol += rd32(E1000_LATECOL);
5257	adapter->stats.dc += rd32(E1000_DC);
5258	adapter->stats.rlec += rd32(E1000_RLEC);
5259	adapter->stats.xonrxc += rd32(E1000_XONRXC);
5260	adapter->stats.xontxc += rd32(E1000_XONTXC);
5261	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5262	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5263	adapter->stats.fcruc += rd32(E1000_FCRUC);
5264	adapter->stats.gptc += rd32(E1000_GPTC);
5265	adapter->stats.gotc += rd32(E1000_GOTCL);
5266	rd32(E1000_GOTCH); /* clear GOTCL */
5267	adapter->stats.rnbc += rd32(E1000_RNBC);
5268	adapter->stats.ruc += rd32(E1000_RUC);
5269	adapter->stats.rfc += rd32(E1000_RFC);
5270	adapter->stats.rjc += rd32(E1000_RJC);
5271	adapter->stats.tor += rd32(E1000_TORH);
5272	adapter->stats.tot += rd32(E1000_TOTH);
5273	adapter->stats.tpr += rd32(E1000_TPR);
5274
5275	adapter->stats.ptc64 += rd32(E1000_PTC64);
5276	adapter->stats.ptc127 += rd32(E1000_PTC127);
5277	adapter->stats.ptc255 += rd32(E1000_PTC255);
5278	adapter->stats.ptc511 += rd32(E1000_PTC511);
5279	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5280	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5281
5282	adapter->stats.mptc += rd32(E1000_MPTC);
5283	adapter->stats.bptc += rd32(E1000_BPTC);
5284
5285	adapter->stats.tpt += rd32(E1000_TPT);
5286	adapter->stats.colc += rd32(E1000_COLC);
5287
5288	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5289	/* read internal phy specific stats */
5290	reg = rd32(E1000_CTRL_EXT);
5291	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5292		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5293
5294		/* this stat has invalid values on i210/i211 */
5295		if ((hw->mac.type != e1000_i210) &&
5296		    (hw->mac.type != e1000_i211))
5297			adapter->stats.tncrs += rd32(E1000_TNCRS);
5298	}
5299
5300	adapter->stats.tsctc += rd32(E1000_TSCTC);
5301	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5302
5303	adapter->stats.iac += rd32(E1000_IAC);
5304	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5305	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5306	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5307	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5308	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5309	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5310	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5311	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5312
5313	/* Fill out the OS statistics structure */
5314	net_stats->multicast = adapter->stats.mprc;
5315	net_stats->collisions = adapter->stats.colc;
5316
5317	/* Rx Errors */
5318
5319	/* RLEC on some newer hardware can be incorrect so build
5320	 * our own version based on RUC and ROC
5321	 */
5322	net_stats->rx_errors = adapter->stats.rxerrc +
5323		adapter->stats.crcerrs + adapter->stats.algnerrc +
5324		adapter->stats.ruc + adapter->stats.roc +
5325		adapter->stats.cexterr;
5326	net_stats->rx_length_errors = adapter->stats.ruc +
5327				      adapter->stats.roc;
5328	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5329	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5330	net_stats->rx_missed_errors = adapter->stats.mpc;
5331
5332	/* Tx Errors */
5333	net_stats->tx_errors = adapter->stats.ecol +
5334			       adapter->stats.latecol;
5335	net_stats->tx_aborted_errors = adapter->stats.ecol;
5336	net_stats->tx_window_errors = adapter->stats.latecol;
5337	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5338
5339	/* Tx Dropped needs to be maintained elsewhere */
5340
5341	/* Phy Stats */
5342	if (hw->phy.media_type == e1000_media_type_copper) {
5343		if ((adapter->link_speed == SPEED_1000) &&
5344		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5345			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5346			adapter->phy_stats.idle_errors += phy_tmp;
5347		}
5348	}
5349
5350	/* Management Stats */
5351	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5352	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5353	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5354
5355	/* OS2BMC Stats */
5356	reg = rd32(E1000_MANC);
5357	if (reg & E1000_MANC_EN_BMC2OS) {
5358		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5359		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5360		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5361		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5362	}
5363}
5364
5365static irqreturn_t igb_msix_other(int irq, void *data)
5366{
5367	struct igb_adapter *adapter = data;
5368	struct e1000_hw *hw = &adapter->hw;
5369	u32 icr = rd32(E1000_ICR);
5370	/* reading ICR causes bit 31 of EICR to be cleared */
5371
5372	if (icr & E1000_ICR_DRSTA)
5373		schedule_work(&adapter->reset_task);
5374
5375	if (icr & E1000_ICR_DOUTSYNC) {
5376		/* HW is reporting DMA is out of sync */
5377		adapter->stats.doosync++;
5378		/* The DMA Out of Sync is also indication of a spoof event
5379		 * in IOV mode. Check the Wrong VM Behavior register to
5380		 * see if it is really a spoof event.
5381		 */
5382		igb_check_wvbr(adapter);
5383	}
5384
5385	/* Check for a mailbox event */
5386	if (icr & E1000_ICR_VMMB)
5387		igb_msg_task(adapter);
5388
5389	if (icr & E1000_ICR_LSC) {
5390		hw->mac.get_link_status = 1;
5391		/* guard against interrupt when we're going down */
5392		if (!test_bit(__IGB_DOWN, &adapter->state))
5393			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5394	}
5395
5396	if (icr & E1000_ICR_TS) {
5397		u32 tsicr = rd32(E1000_TSICR);
5398
5399		if (tsicr & E1000_TSICR_TXTS) {
5400			/* acknowledge the interrupt */
5401			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5402			/* retrieve hardware timestamp */
5403			schedule_work(&adapter->ptp_tx_work);
5404		}
5405	}
5406
5407	wr32(E1000_EIMS, adapter->eims_other);
5408
5409	return IRQ_HANDLED;
5410}
5411
5412static void igb_write_itr(struct igb_q_vector *q_vector)
5413{
5414	struct igb_adapter *adapter = q_vector->adapter;
5415	u32 itr_val = q_vector->itr_val & 0x7FFC;
5416
5417	if (!q_vector->set_itr)
5418		return;
5419
5420	if (!itr_val)
5421		itr_val = 0x4;
5422
5423	if (adapter->hw.mac.type == e1000_82575)
5424		itr_val |= itr_val << 16;
5425	else
5426		itr_val |= E1000_EITR_CNT_IGNR;
5427
5428	writel(itr_val, q_vector->itr_register);
5429	q_vector->set_itr = 0;
5430}
5431
5432static irqreturn_t igb_msix_ring(int irq, void *data)
5433{
5434	struct igb_q_vector *q_vector = data;
5435
5436	/* Write the ITR value calculated from the previous interrupt. */
5437	igb_write_itr(q_vector);
5438
5439	napi_schedule(&q_vector->napi);
5440
5441	return IRQ_HANDLED;
5442}
5443
5444#ifdef CONFIG_IGB_DCA
5445static void igb_update_tx_dca(struct igb_adapter *adapter,
5446			      struct igb_ring *tx_ring,
5447			      int cpu)
5448{
5449	struct e1000_hw *hw = &adapter->hw;
5450	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5451
5452	if (hw->mac.type != e1000_82575)
5453		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5454
5455	/* We can enable relaxed ordering for reads, but not writes when
5456	 * DCA is enabled.  This is due to a known issue in some chipsets
5457	 * which will cause the DCA tag to be cleared.
5458	 */
5459	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5460		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5461		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5462
5463	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5464}
5465
5466static void igb_update_rx_dca(struct igb_adapter *adapter,
5467			      struct igb_ring *rx_ring,
5468			      int cpu)
5469{
5470	struct e1000_hw *hw = &adapter->hw;
5471	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5472
5473	if (hw->mac.type != e1000_82575)
5474		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5475
5476	/* We can enable relaxed ordering for reads, but not writes when
5477	 * DCA is enabled.  This is due to a known issue in some chipsets
5478	 * which will cause the DCA tag to be cleared.
5479	 */
5480	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5481		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5482
5483	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5484}
5485
5486static void igb_update_dca(struct igb_q_vector *q_vector)
5487{
5488	struct igb_adapter *adapter = q_vector->adapter;
5489	int cpu = get_cpu();
5490
5491	if (q_vector->cpu == cpu)
5492		goto out_no_update;
5493
5494	if (q_vector->tx.ring)
5495		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5496
5497	if (q_vector->rx.ring)
5498		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5499
5500	q_vector->cpu = cpu;
5501out_no_update:
5502	put_cpu();
5503}
5504
5505static void igb_setup_dca(struct igb_adapter *adapter)
5506{
5507	struct e1000_hw *hw = &adapter->hw;
5508	int i;
5509
5510	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5511		return;
5512
5513	/* Always use CB2 mode, difference is masked in the CB driver. */
5514	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5515
5516	for (i = 0; i < adapter->num_q_vectors; i++) {
5517		adapter->q_vector[i]->cpu = -1;
5518		igb_update_dca(adapter->q_vector[i]);
5519	}
5520}
5521
5522static int __igb_notify_dca(struct device *dev, void *data)
5523{
5524	struct net_device *netdev = dev_get_drvdata(dev);
5525	struct igb_adapter *adapter = netdev_priv(netdev);
5526	struct pci_dev *pdev = adapter->pdev;
5527	struct e1000_hw *hw = &adapter->hw;
5528	unsigned long event = *(unsigned long *)data;
5529
5530	switch (event) {
5531	case DCA_PROVIDER_ADD:
5532		/* if already enabled, don't do it again */
5533		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5534			break;
5535		if (dca_add_requester(dev) == 0) {
5536			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5537			dev_info(&pdev->dev, "DCA enabled\n");
5538			igb_setup_dca(adapter);
5539			break;
5540		}
5541		/* Fall Through since DCA is disabled. */
5542	case DCA_PROVIDER_REMOVE:
5543		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5544			/* without this a class_device is left
5545			 * hanging around in the sysfs model
5546			 */
5547			dca_remove_requester(dev);
5548			dev_info(&pdev->dev, "DCA disabled\n");
5549			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5550			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5551		}
5552		break;
5553	}
5554
5555	return 0;
5556}
5557
5558static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5559			  void *p)
5560{
5561	int ret_val;
5562
5563	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5564					 __igb_notify_dca);
5565
5566	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5567}
5568#endif /* CONFIG_IGB_DCA */
5569
5570#ifdef CONFIG_PCI_IOV
5571static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5572{
5573	unsigned char mac_addr[ETH_ALEN];
5574
5575	eth_zero_addr(mac_addr);
5576	igb_set_vf_mac(adapter, vf, mac_addr);
5577
5578	/* By default spoof check is enabled for all VFs */
5579	adapter->vf_data[vf].spoofchk_enabled = true;
5580
5581	return 0;
5582}
5583
5584#endif
5585static void igb_ping_all_vfs(struct igb_adapter *adapter)
5586{
5587	struct e1000_hw *hw = &adapter->hw;
5588	u32 ping;
5589	int i;
5590
5591	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5592		ping = E1000_PF_CONTROL_MSG;
5593		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5594			ping |= E1000_VT_MSGTYPE_CTS;
5595		igb_write_mbx(hw, &ping, 1, i);
5596	}
5597}
5598
5599static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5600{
5601	struct e1000_hw *hw = &adapter->hw;
5602	u32 vmolr = rd32(E1000_VMOLR(vf));
5603	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5604
5605	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5606			    IGB_VF_FLAG_MULTI_PROMISC);
5607	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5608
5609	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5610		vmolr |= E1000_VMOLR_MPME;
5611		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5612		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5613	} else {
5614		/* if we have hashes and we are clearing a multicast promisc
5615		 * flag we need to write the hashes to the MTA as this step
5616		 * was previously skipped
5617		 */
5618		if (vf_data->num_vf_mc_hashes > 30) {
5619			vmolr |= E1000_VMOLR_MPME;
5620		} else if (vf_data->num_vf_mc_hashes) {
5621			int j;
5622
5623			vmolr |= E1000_VMOLR_ROMPE;
5624			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5625				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5626		}
5627	}
5628
5629	wr32(E1000_VMOLR(vf), vmolr);
5630
5631	/* there are flags left unprocessed, likely not supported */
5632	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5633		return -EINVAL;
5634
5635	return 0;
5636}
5637
5638static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5639				  u32 *msgbuf, u32 vf)
5640{
5641	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5642	u16 *hash_list = (u16 *)&msgbuf[1];
5643	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5644	int i;
5645
5646	/* salt away the number of multicast addresses assigned
5647	 * to this VF for later use to restore when the PF multi cast
5648	 * list changes
5649	 */
5650	vf_data->num_vf_mc_hashes = n;
5651
5652	/* only up to 30 hash values supported */
5653	if (n > 30)
5654		n = 30;
5655
5656	/* store the hashes for later use */
5657	for (i = 0; i < n; i++)
5658		vf_data->vf_mc_hashes[i] = hash_list[i];
5659
5660	/* Flush and reset the mta with the new values */
5661	igb_set_rx_mode(adapter->netdev);
5662
5663	return 0;
5664}
5665
5666static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5667{
5668	struct e1000_hw *hw = &adapter->hw;
5669	struct vf_data_storage *vf_data;
5670	int i, j;
5671
5672	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5673		u32 vmolr = rd32(E1000_VMOLR(i));
5674
5675		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5676
5677		vf_data = &adapter->vf_data[i];
5678
5679		if ((vf_data->num_vf_mc_hashes > 30) ||
5680		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5681			vmolr |= E1000_VMOLR_MPME;
5682		} else if (vf_data->num_vf_mc_hashes) {
5683			vmolr |= E1000_VMOLR_ROMPE;
5684			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5685				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5686		}
5687		wr32(E1000_VMOLR(i), vmolr);
5688	}
5689}
5690
5691static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5692{
5693	struct e1000_hw *hw = &adapter->hw;
5694	u32 pool_mask, reg, vid;
5695	int i;
5696
5697	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5698
5699	/* Find the vlan filter for this id */
5700	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5701		reg = rd32(E1000_VLVF(i));
5702
5703		/* remove the vf from the pool */
5704		reg &= ~pool_mask;
5705
5706		/* if pool is empty then remove entry from vfta */
5707		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5708		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5709			reg = 0;
5710			vid = reg & E1000_VLVF_VLANID_MASK;
5711			igb_vfta_set(hw, vid, false);
5712		}
5713
5714		wr32(E1000_VLVF(i), reg);
5715	}
5716
5717	adapter->vf_data[vf].vlans_enabled = 0;
5718}
5719
5720static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5721{
5722	struct e1000_hw *hw = &adapter->hw;
5723	u32 reg, i;
5724
5725	/* The vlvf table only exists on 82576 hardware and newer */
5726	if (hw->mac.type < e1000_82576)
5727		return -1;
5728
5729	/* we only need to do this if VMDq is enabled */
5730	if (!adapter->vfs_allocated_count)
5731		return -1;
5732
5733	/* Find the vlan filter for this id */
5734	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5735		reg = rd32(E1000_VLVF(i));
5736		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5737		    vid == (reg & E1000_VLVF_VLANID_MASK))
5738			break;
5739	}
5740
5741	if (add) {
5742		if (i == E1000_VLVF_ARRAY_SIZE) {
5743			/* Did not find a matching VLAN ID entry that was
5744			 * enabled.  Search for a free filter entry, i.e.
5745			 * one without the enable bit set
5746			 */
5747			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5748				reg = rd32(E1000_VLVF(i));
5749				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5750					break;
5751			}
5752		}
5753		if (i < E1000_VLVF_ARRAY_SIZE) {
5754			/* Found an enabled/available entry */
5755			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5756
5757			/* if !enabled we need to set this up in vfta */
5758			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5759				/* add VID to filter table */
5760				igb_vfta_set(hw, vid, true);
5761				reg |= E1000_VLVF_VLANID_ENABLE;
5762			}
5763			reg &= ~E1000_VLVF_VLANID_MASK;
5764			reg |= vid;
5765			wr32(E1000_VLVF(i), reg);
5766
5767			/* do not modify RLPML for PF devices */
5768			if (vf >= adapter->vfs_allocated_count)
5769				return 0;
5770
5771			if (!adapter->vf_data[vf].vlans_enabled) {
5772				u32 size;
5773
5774				reg = rd32(E1000_VMOLR(vf));
5775				size = reg & E1000_VMOLR_RLPML_MASK;
5776				size += 4;
5777				reg &= ~E1000_VMOLR_RLPML_MASK;
5778				reg |= size;
5779				wr32(E1000_VMOLR(vf), reg);
5780			}
5781
5782			adapter->vf_data[vf].vlans_enabled++;
5783		}
5784	} else {
5785		if (i < E1000_VLVF_ARRAY_SIZE) {
5786			/* remove vf from the pool */
5787			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5788			/* if pool is empty then remove entry from vfta */
5789			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5790				reg = 0;
5791				igb_vfta_set(hw, vid, false);
5792			}
5793			wr32(E1000_VLVF(i), reg);
5794
5795			/* do not modify RLPML for PF devices */
5796			if (vf >= adapter->vfs_allocated_count)
5797				return 0;
5798
5799			adapter->vf_data[vf].vlans_enabled--;
5800			if (!adapter->vf_data[vf].vlans_enabled) {
5801				u32 size;
5802
5803				reg = rd32(E1000_VMOLR(vf));
5804				size = reg & E1000_VMOLR_RLPML_MASK;
5805				size -= 4;
5806				reg &= ~E1000_VMOLR_RLPML_MASK;
5807				reg |= size;
5808				wr32(E1000_VMOLR(vf), reg);
5809			}
5810		}
5811	}
5812	return 0;
5813}
5814
5815static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5816{
5817	struct e1000_hw *hw = &adapter->hw;
5818
5819	if (vid)
5820		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5821	else
5822		wr32(E1000_VMVIR(vf), 0);
5823}
5824
5825static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5826			       int vf, u16 vlan, u8 qos)
5827{
5828	int err = 0;
5829	struct igb_adapter *adapter = netdev_priv(netdev);
5830
5831	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5832		return -EINVAL;
5833	if (vlan || qos) {
5834		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5835		if (err)
5836			goto out;
5837		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5838		igb_set_vmolr(adapter, vf, !vlan);
5839		adapter->vf_data[vf].pf_vlan = vlan;
5840		adapter->vf_data[vf].pf_qos = qos;
5841		dev_info(&adapter->pdev->dev,
5842			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5843		if (test_bit(__IGB_DOWN, &adapter->state)) {
5844			dev_warn(&adapter->pdev->dev,
5845				 "The VF VLAN has been set, but the PF device is not up.\n");
5846			dev_warn(&adapter->pdev->dev,
5847				 "Bring the PF device up before attempting to use the VF device.\n");
5848		}
5849	} else {
5850		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5851			     false, vf);
5852		igb_set_vmvir(adapter, vlan, vf);
5853		igb_set_vmolr(adapter, vf, true);
5854		adapter->vf_data[vf].pf_vlan = 0;
5855		adapter->vf_data[vf].pf_qos = 0;
5856	}
5857out:
5858	return err;
5859}
5860
5861static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5862{
5863	struct e1000_hw *hw = &adapter->hw;
5864	int i;
5865	u32 reg;
5866
5867	/* Find the vlan filter for this id */
5868	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5869		reg = rd32(E1000_VLVF(i));
5870		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5871		    vid == (reg & E1000_VLVF_VLANID_MASK))
5872			break;
5873	}
5874
5875	if (i >= E1000_VLVF_ARRAY_SIZE)
5876		i = -1;
5877
5878	return i;
5879}
5880
5881static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5882{
5883	struct e1000_hw *hw = &adapter->hw;
5884	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5885	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5886	int err = 0;
5887
5888	/* If in promiscuous mode we need to make sure the PF also has
5889	 * the VLAN filter set.
5890	 */
5891	if (add && (adapter->netdev->flags & IFF_PROMISC))
5892		err = igb_vlvf_set(adapter, vid, add,
5893				   adapter->vfs_allocated_count);
5894	if (err)
5895		goto out;
5896
5897	err = igb_vlvf_set(adapter, vid, add, vf);
5898
5899	if (err)
5900		goto out;
5901
5902	/* Go through all the checks to see if the VLAN filter should
5903	 * be wiped completely.
5904	 */
5905	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5906		u32 vlvf, bits;
5907		int regndx = igb_find_vlvf_entry(adapter, vid);
5908
5909		if (regndx < 0)
5910			goto out;
5911		/* See if any other pools are set for this VLAN filter
5912		 * entry other than the PF.
5913		 */
5914		vlvf = bits = rd32(E1000_VLVF(regndx));
5915		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5916			      adapter->vfs_allocated_count);
5917		/* If the filter was removed then ensure PF pool bit
5918		 * is cleared if the PF only added itself to the pool
5919		 * because the PF is in promiscuous mode.
5920		 */
5921		if ((vlvf & VLAN_VID_MASK) == vid &&
5922		    !test_bit(vid, adapter->active_vlans) &&
5923		    !bits)
5924			igb_vlvf_set(adapter, vid, add,
5925				     adapter->vfs_allocated_count);
5926	}
5927
5928out:
5929	return err;
5930}
5931
5932static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5933{
5934	/* clear flags - except flag that indicates PF has set the MAC */
5935	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5936	adapter->vf_data[vf].last_nack = jiffies;
5937
5938	/* reset offloads to defaults */
5939	igb_set_vmolr(adapter, vf, true);
5940
5941	/* reset vlans for device */
5942	igb_clear_vf_vfta(adapter, vf);
5943	if (adapter->vf_data[vf].pf_vlan)
5944		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5945				    adapter->vf_data[vf].pf_vlan,
5946				    adapter->vf_data[vf].pf_qos);
5947	else
5948		igb_clear_vf_vfta(adapter, vf);
5949
5950	/* reset multicast table array for vf */
5951	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5952
5953	/* Flush and reset the mta with the new values */
5954	igb_set_rx_mode(adapter->netdev);
5955}
5956
5957static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5958{
5959	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5960
5961	/* clear mac address as we were hotplug removed/added */
5962	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5963		eth_zero_addr(vf_mac);
5964
5965	/* process remaining reset events */
5966	igb_vf_reset(adapter, vf);
5967}
5968
5969static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5970{
5971	struct e1000_hw *hw = &adapter->hw;
5972	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5973	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5974	u32 reg, msgbuf[3];
5975	u8 *addr = (u8 *)(&msgbuf[1]);
5976
5977	/* process all the same items cleared in a function level reset */
5978	igb_vf_reset(adapter, vf);
5979
5980	/* set vf mac address */
5981	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5982
5983	/* enable transmit and receive for vf */
5984	reg = rd32(E1000_VFTE);
5985	wr32(E1000_VFTE, reg | (1 << vf));
5986	reg = rd32(E1000_VFRE);
5987	wr32(E1000_VFRE, reg | (1 << vf));
5988
5989	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5990
5991	/* reply to reset with ack and vf mac address */
5992	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5993	memcpy(addr, vf_mac, ETH_ALEN);
5994	igb_write_mbx(hw, msgbuf, 3, vf);
5995}
5996
5997static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5998{
5999	/* The VF MAC Address is stored in a packed array of bytes
6000	 * starting at the second 32 bit word of the msg array
6001	 */
6002	unsigned char *addr = (char *)&msg[1];
6003	int err = -1;
6004
6005	if (is_valid_ether_addr(addr))
6006		err = igb_set_vf_mac(adapter, vf, addr);
6007
6008	return err;
6009}
6010
6011static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6012{
6013	struct e1000_hw *hw = &adapter->hw;
6014	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6015	u32 msg = E1000_VT_MSGTYPE_NACK;
6016
6017	/* if device isn't clear to send it shouldn't be reading either */
6018	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6019	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6020		igb_write_mbx(hw, &msg, 1, vf);
6021		vf_data->last_nack = jiffies;
6022	}
6023}
6024
6025static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6026{
6027	struct pci_dev *pdev = adapter->pdev;
6028	u32 msgbuf[E1000_VFMAILBOX_SIZE];
6029	struct e1000_hw *hw = &adapter->hw;
6030	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6031	s32 retval;
6032
6033	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6034
6035	if (retval) {
6036		/* if receive failed revoke VF CTS stats and restart init */
6037		dev_err(&pdev->dev, "Error receiving message from VF\n");
6038		vf_data->flags &= ~IGB_VF_FLAG_CTS;
6039		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6040			return;
6041		goto out;
6042	}
6043
6044	/* this is a message we already processed, do nothing */
6045	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6046		return;
6047
6048	/* until the vf completes a reset it should not be
6049	 * allowed to start any configuration.
6050	 */
6051	if (msgbuf[0] == E1000_VF_RESET) {
6052		igb_vf_reset_msg(adapter, vf);
6053		return;
6054	}
6055
6056	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6057		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6058			return;
6059		retval = -1;
6060		goto out;
6061	}
6062
6063	switch ((msgbuf[0] & 0xFFFF)) {
6064	case E1000_VF_SET_MAC_ADDR:
6065		retval = -EINVAL;
6066		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6067			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6068		else
6069			dev_warn(&pdev->dev,
6070				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6071				 vf);
6072		break;
6073	case E1000_VF_SET_PROMISC:
6074		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6075		break;
6076	case E1000_VF_SET_MULTICAST:
6077		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6078		break;
6079	case E1000_VF_SET_LPE:
6080		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6081		break;
6082	case E1000_VF_SET_VLAN:
6083		retval = -1;
6084		if (vf_data->pf_vlan)
6085			dev_warn(&pdev->dev,
6086				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6087				 vf);
6088		else
6089			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6090		break;
6091	default:
6092		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6093		retval = -1;
6094		break;
6095	}
6096
6097	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6098out:
6099	/* notify the VF of the results of what it sent us */
6100	if (retval)
6101		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6102	else
6103		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6104
6105	igb_write_mbx(hw, msgbuf, 1, vf);
6106}
6107
6108static void igb_msg_task(struct igb_adapter *adapter)
6109{
6110	struct e1000_hw *hw = &adapter->hw;
6111	u32 vf;
6112
6113	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6114		/* process any reset requests */
6115		if (!igb_check_for_rst(hw, vf))
6116			igb_vf_reset_event(adapter, vf);
6117
6118		/* process any messages pending */
6119		if (!igb_check_for_msg(hw, vf))
6120			igb_rcv_msg_from_vf(adapter, vf);
6121
6122		/* process any acks */
6123		if (!igb_check_for_ack(hw, vf))
6124			igb_rcv_ack_from_vf(adapter, vf);
6125	}
6126}
6127
6128/**
6129 *  igb_set_uta - Set unicast filter table address
6130 *  @adapter: board private structure
6131 *
6132 *  The unicast table address is a register array of 32-bit registers.
6133 *  The table is meant to be used in a way similar to how the MTA is used
6134 *  however due to certain limitations in the hardware it is necessary to
6135 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6136 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6137 **/
6138static void igb_set_uta(struct igb_adapter *adapter)
6139{
6140	struct e1000_hw *hw = &adapter->hw;
6141	int i;
6142
6143	/* The UTA table only exists on 82576 hardware and newer */
6144	if (hw->mac.type < e1000_82576)
6145		return;
6146
6147	/* we only need to do this if VMDq is enabled */
6148	if (!adapter->vfs_allocated_count)
6149		return;
6150
6151	for (i = 0; i < hw->mac.uta_reg_count; i++)
6152		array_wr32(E1000_UTA, i, ~0);
6153}
6154
6155/**
6156 *  igb_intr_msi - Interrupt Handler
6157 *  @irq: interrupt number
6158 *  @data: pointer to a network interface device structure
6159 **/
6160static irqreturn_t igb_intr_msi(int irq, void *data)
6161{
6162	struct igb_adapter *adapter = data;
6163	struct igb_q_vector *q_vector = adapter->q_vector[0];
6164	struct e1000_hw *hw = &adapter->hw;
6165	/* read ICR disables interrupts using IAM */
6166	u32 icr = rd32(E1000_ICR);
6167
6168	igb_write_itr(q_vector);
6169
6170	if (icr & E1000_ICR_DRSTA)
6171		schedule_work(&adapter->reset_task);
6172
6173	if (icr & E1000_ICR_DOUTSYNC) {
6174		/* HW is reporting DMA is out of sync */
6175		adapter->stats.doosync++;
6176	}
6177
6178	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6179		hw->mac.get_link_status = 1;
6180		if (!test_bit(__IGB_DOWN, &adapter->state))
6181			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6182	}
6183
6184	if (icr & E1000_ICR_TS) {
6185		u32 tsicr = rd32(E1000_TSICR);
6186
6187		if (tsicr & E1000_TSICR_TXTS) {
6188			/* acknowledge the interrupt */
6189			wr32(E1000_TSICR, E1000_TSICR_TXTS);
6190			/* retrieve hardware timestamp */
6191			schedule_work(&adapter->ptp_tx_work);
6192		}
6193	}
6194
6195	napi_schedule(&q_vector->napi);
6196
6197	return IRQ_HANDLED;
6198}
6199
6200/**
6201 *  igb_intr - Legacy Interrupt Handler
6202 *  @irq: interrupt number
6203 *  @data: pointer to a network interface device structure
6204 **/
6205static irqreturn_t igb_intr(int irq, void *data)
6206{
6207	struct igb_adapter *adapter = data;
6208	struct igb_q_vector *q_vector = adapter->q_vector[0];
6209	struct e1000_hw *hw = &adapter->hw;
6210	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6211	 * need for the IMC write
6212	 */
6213	u32 icr = rd32(E1000_ICR);
6214
6215	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6216	 * not set, then the adapter didn't send an interrupt
6217	 */
6218	if (!(icr & E1000_ICR_INT_ASSERTED))
6219		return IRQ_NONE;
6220
6221	igb_write_itr(q_vector);
6222
6223	if (icr & E1000_ICR_DRSTA)
6224		schedule_work(&adapter->reset_task);
6225
6226	if (icr & E1000_ICR_DOUTSYNC) {
6227		/* HW is reporting DMA is out of sync */
6228		adapter->stats.doosync++;
6229	}
6230
6231	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6232		hw->mac.get_link_status = 1;
6233		/* guard against interrupt when we're going down */
6234		if (!test_bit(__IGB_DOWN, &adapter->state))
6235			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6236	}
6237
6238	if (icr & E1000_ICR_TS) {
6239		u32 tsicr = rd32(E1000_TSICR);
6240
6241		if (tsicr & E1000_TSICR_TXTS) {
6242			/* acknowledge the interrupt */
6243			wr32(E1000_TSICR, E1000_TSICR_TXTS);
6244			/* retrieve hardware timestamp */
6245			schedule_work(&adapter->ptp_tx_work);
6246		}
6247	}
6248
6249	napi_schedule(&q_vector->napi);
6250
6251	return IRQ_HANDLED;
6252}
6253
6254static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6255{
6256	struct igb_adapter *adapter = q_vector->adapter;
6257	struct e1000_hw *hw = &adapter->hw;
6258
6259	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6260	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6261		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6262			igb_set_itr(q_vector);
6263		else
6264			igb_update_ring_itr(q_vector);
6265	}
6266
6267	if (!test_bit(__IGB_DOWN, &adapter->state)) {
6268		if (adapter->flags & IGB_FLAG_HAS_MSIX)
6269			wr32(E1000_EIMS, q_vector->eims_value);
6270		else
6271			igb_irq_enable(adapter);
6272	}
6273}
6274
6275/**
6276 *  igb_poll - NAPI Rx polling callback
6277 *  @napi: napi polling structure
6278 *  @budget: count of how many packets we should handle
6279 **/
6280static int igb_poll(struct napi_struct *napi, int budget)
6281{
6282	struct igb_q_vector *q_vector = container_of(napi,
6283						     struct igb_q_vector,
6284						     napi);
6285	bool clean_complete = true;
6286
6287#ifdef CONFIG_IGB_DCA
6288	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6289		igb_update_dca(q_vector);
6290#endif
6291	if (q_vector->tx.ring)
6292		clean_complete = igb_clean_tx_irq(q_vector);
6293
6294	if (q_vector->rx.ring)
6295		clean_complete &= igb_clean_rx_irq(q_vector, budget);
6296
6297	/* If all work not completed, return budget and keep polling */
6298	if (!clean_complete)
6299		return budget;
6300
6301	/* If not enough Rx work done, exit the polling mode */
6302	napi_complete(napi);
6303	igb_ring_irq_enable(q_vector);
6304
6305	return 0;
6306}
6307
6308/**
6309 *  igb_clean_tx_irq - Reclaim resources after transmit completes
6310 *  @q_vector: pointer to q_vector containing needed info
6311 *
6312 *  returns true if ring is completely cleaned
6313 **/
6314static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6315{
6316	struct igb_adapter *adapter = q_vector->adapter;
6317	struct igb_ring *tx_ring = q_vector->tx.ring;
6318	struct igb_tx_buffer *tx_buffer;
6319	union e1000_adv_tx_desc *tx_desc;
6320	unsigned int total_bytes = 0, total_packets = 0;
6321	unsigned int budget = q_vector->tx.work_limit;
6322	unsigned int i = tx_ring->next_to_clean;
6323
6324	if (test_bit(__IGB_DOWN, &adapter->state))
6325		return true;
6326
6327	tx_buffer = &tx_ring->tx_buffer_info[i];
6328	tx_desc = IGB_TX_DESC(tx_ring, i);
6329	i -= tx_ring->count;
6330
6331	do {
6332		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6333
6334		/* if next_to_watch is not set then there is no work pending */
6335		if (!eop_desc)
6336			break;
6337
6338		/* prevent any other reads prior to eop_desc */
6339		read_barrier_depends();
6340
6341		/* if DD is not set pending work has not been completed */
6342		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6343			break;
6344
6345		/* clear next_to_watch to prevent false hangs */
6346		tx_buffer->next_to_watch = NULL;
6347
6348		/* update the statistics for this packet */
6349		total_bytes += tx_buffer->bytecount;
6350		total_packets += tx_buffer->gso_segs;
6351
6352		/* free the skb */
6353		dev_kfree_skb_any(tx_buffer->skb);
6354
6355		/* unmap skb header data */
6356		dma_unmap_single(tx_ring->dev,
6357				 dma_unmap_addr(tx_buffer, dma),
6358				 dma_unmap_len(tx_buffer, len),
6359				 DMA_TO_DEVICE);
6360
6361		/* clear tx_buffer data */
6362		tx_buffer->skb = NULL;
6363		dma_unmap_len_set(tx_buffer, len, 0);
6364
6365		/* clear last DMA location and unmap remaining buffers */
6366		while (tx_desc != eop_desc) {
6367			tx_buffer++;
6368			tx_desc++;
6369			i++;
6370			if (unlikely(!i)) {
6371				i -= tx_ring->count;
6372				tx_buffer = tx_ring->tx_buffer_info;
6373				tx_desc = IGB_TX_DESC(tx_ring, 0);
6374			}
6375
6376			/* unmap any remaining paged data */
6377			if (dma_unmap_len(tx_buffer, len)) {
6378				dma_unmap_page(tx_ring->dev,
6379					       dma_unmap_addr(tx_buffer, dma),
6380					       dma_unmap_len(tx_buffer, len),
6381					       DMA_TO_DEVICE);
6382				dma_unmap_len_set(tx_buffer, len, 0);
6383			}
6384		}
6385
6386		/* move us one more past the eop_desc for start of next pkt */
6387		tx_buffer++;
6388		tx_desc++;
6389		i++;
6390		if (unlikely(!i)) {
6391			i -= tx_ring->count;
6392			tx_buffer = tx_ring->tx_buffer_info;
6393			tx_desc = IGB_TX_DESC(tx_ring, 0);
6394		}
6395
6396		/* issue prefetch for next Tx descriptor */
6397		prefetch(tx_desc);
6398
6399		/* update budget accounting */
6400		budget--;
6401	} while (likely(budget));
6402
6403	netdev_tx_completed_queue(txring_txq(tx_ring),
6404				  total_packets, total_bytes);
6405	i += tx_ring->count;
6406	tx_ring->next_to_clean = i;
6407	u64_stats_update_begin(&tx_ring->tx_syncp);
6408	tx_ring->tx_stats.bytes += total_bytes;
6409	tx_ring->tx_stats.packets += total_packets;
6410	u64_stats_update_end(&tx_ring->tx_syncp);
6411	q_vector->tx.total_bytes += total_bytes;
6412	q_vector->tx.total_packets += total_packets;
6413
6414	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6415		struct e1000_hw *hw = &adapter->hw;
6416
6417		/* Detect a transmit hang in hardware, this serializes the
6418		 * check with the clearing of time_stamp and movement of i
6419		 */
6420		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6421		if (tx_buffer->next_to_watch &&
6422		    time_after(jiffies, tx_buffer->time_stamp +
6423			       (adapter->tx_timeout_factor * HZ)) &&
6424		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6425
6426			/* detected Tx unit hang */
6427			dev_err(tx_ring->dev,
6428				"Detected Tx Unit Hang\n"
6429				"  Tx Queue             <%d>\n"
6430				"  TDH                  <%x>\n"
6431				"  TDT                  <%x>\n"
6432				"  next_to_use          <%x>\n"
6433				"  next_to_clean        <%x>\n"
6434				"buffer_info[next_to_clean]\n"
6435				"  time_stamp           <%lx>\n"
6436				"  next_to_watch        <%p>\n"
6437				"  jiffies              <%lx>\n"
6438				"  desc.status          <%x>\n",
6439				tx_ring->queue_index,
6440				rd32(E1000_TDH(tx_ring->reg_idx)),
6441				readl(tx_ring->tail),
6442				tx_ring->next_to_use,
6443				tx_ring->next_to_clean,
6444				tx_buffer->time_stamp,
6445				tx_buffer->next_to_watch,
6446				jiffies,
6447				tx_buffer->next_to_watch->wb.status);
6448			netif_stop_subqueue(tx_ring->netdev,
6449					    tx_ring->queue_index);
6450
6451			/* we are about to reset, no point in enabling stuff */
6452			return true;
6453		}
6454	}
6455
6456#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6457	if (unlikely(total_packets &&
6458	    netif_carrier_ok(tx_ring->netdev) &&
6459	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6460		/* Make sure that anybody stopping the queue after this
6461		 * sees the new next_to_clean.
6462		 */
6463		smp_mb();
6464		if (__netif_subqueue_stopped(tx_ring->netdev,
6465					     tx_ring->queue_index) &&
6466		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6467			netif_wake_subqueue(tx_ring->netdev,
6468					    tx_ring->queue_index);
6469
6470			u64_stats_update_begin(&tx_ring->tx_syncp);
6471			tx_ring->tx_stats.restart_queue++;
6472			u64_stats_update_end(&tx_ring->tx_syncp);
6473		}
6474	}
6475
6476	return !!budget;
6477}
6478
6479/**
6480 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6481 *  @rx_ring: rx descriptor ring to store buffers on
6482 *  @old_buff: donor buffer to have page reused
6483 *
6484 *  Synchronizes page for reuse by the adapter
6485 **/
6486static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6487			      struct igb_rx_buffer *old_buff)
6488{
6489	struct igb_rx_buffer *new_buff;
6490	u16 nta = rx_ring->next_to_alloc;
6491
6492	new_buff = &rx_ring->rx_buffer_info[nta];
6493
6494	/* update, and store next to alloc */
6495	nta++;
6496	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6497
6498	/* transfer page from old buffer to new buffer */
6499	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6500
6501	/* sync the buffer for use by the device */
6502	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6503					 old_buff->page_offset,
6504					 IGB_RX_BUFSZ,
6505					 DMA_FROM_DEVICE);
6506}
6507
6508static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6509				  struct page *page,
6510				  unsigned int truesize)
6511{
6512	/* avoid re-using remote pages */
6513	if (unlikely(page_to_nid(page) != numa_node_id()))
6514		return false;
6515
6516#if (PAGE_SIZE < 8192)
6517	/* if we are only owner of page we can reuse it */
6518	if (unlikely(page_count(page) != 1))
6519		return false;
6520
6521	/* flip page offset to other buffer */
6522	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6523
6524	/* since we are the only owner of the page and we need to
6525	 * increment it, just set the value to 2 in order to avoid
6526	 * an unnecessary locked operation
6527	 */
6528	atomic_set(&page->_count, 2);
6529#else
6530	/* move offset up to the next cache line */
6531	rx_buffer->page_offset += truesize;
6532
6533	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6534		return false;
6535
6536	/* bump ref count on page before it is given to the stack */
6537	get_page(page);
6538#endif
6539
6540	return true;
6541}
6542
6543/**
6544 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6545 *  @rx_ring: rx descriptor ring to transact packets on
6546 *  @rx_buffer: buffer containing page to add
6547 *  @rx_desc: descriptor containing length of buffer written by hardware
6548 *  @skb: sk_buff to place the data into
6549 *
6550 *  This function will add the data contained in rx_buffer->page to the skb.
6551 *  This is done either through a direct copy if the data in the buffer is
6552 *  less than the skb header size, otherwise it will just attach the page as
6553 *  a frag to the skb.
6554 *
6555 *  The function will then update the page offset if necessary and return
6556 *  true if the buffer can be reused by the adapter.
6557 **/
6558static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6559			    struct igb_rx_buffer *rx_buffer,
6560			    union e1000_adv_rx_desc *rx_desc,
6561			    struct sk_buff *skb)
6562{
6563	struct page *page = rx_buffer->page;
6564	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6565#if (PAGE_SIZE < 8192)
6566	unsigned int truesize = IGB_RX_BUFSZ;
6567#else
6568	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6569#endif
6570
6571	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6572		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6573
6574		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6575			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6576			va += IGB_TS_HDR_LEN;
6577			size -= IGB_TS_HDR_LEN;
6578		}
6579
6580		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6581
6582		/* we can reuse buffer as-is, just make sure it is local */
6583		if (likely(page_to_nid(page) == numa_node_id()))
6584			return true;
6585
6586		/* this page cannot be reused so discard it */
6587		put_page(page);
6588		return false;
6589	}
6590
6591	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6592			rx_buffer->page_offset, size, truesize);
6593
6594	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6595}
6596
6597static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6598					   union e1000_adv_rx_desc *rx_desc,
6599					   struct sk_buff *skb)
6600{
6601	struct igb_rx_buffer *rx_buffer;
6602	struct page *page;
6603
6604	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6605
6606	page = rx_buffer->page;
6607	prefetchw(page);
6608
6609	if (likely(!skb)) {
6610		void *page_addr = page_address(page) +
6611				  rx_buffer->page_offset;
6612
6613		/* prefetch first cache line of first page */
6614		prefetch(page_addr);
6615#if L1_CACHE_BYTES < 128
6616		prefetch(page_addr + L1_CACHE_BYTES);
6617#endif
6618
6619		/* allocate a skb to store the frags */
6620		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6621						IGB_RX_HDR_LEN);
6622		if (unlikely(!skb)) {
6623			rx_ring->rx_stats.alloc_failed++;
6624			return NULL;
6625		}
6626
6627		/* we will be copying header into skb->data in
6628		 * pskb_may_pull so it is in our interest to prefetch
6629		 * it now to avoid a possible cache miss
6630		 */
6631		prefetchw(skb->data);
6632	}
6633
6634	/* we are reusing so sync this buffer for CPU use */
6635	dma_sync_single_range_for_cpu(rx_ring->dev,
6636				      rx_buffer->dma,
6637				      rx_buffer->page_offset,
6638				      IGB_RX_BUFSZ,
6639				      DMA_FROM_DEVICE);
6640
6641	/* pull page into skb */
6642	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6643		/* hand second half of page back to the ring */
6644		igb_reuse_rx_page(rx_ring, rx_buffer);
6645	} else {
6646		/* we are not reusing the buffer so unmap it */
6647		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6648			       PAGE_SIZE, DMA_FROM_DEVICE);
6649	}
6650
6651	/* clear contents of rx_buffer */
6652	rx_buffer->page = NULL;
6653
6654	return skb;
6655}
6656
6657static inline void igb_rx_checksum(struct igb_ring *ring,
6658				   union e1000_adv_rx_desc *rx_desc,
6659				   struct sk_buff *skb)
6660{
6661	skb_checksum_none_assert(skb);
6662
6663	/* Ignore Checksum bit is set */
6664	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6665		return;
6666
6667	/* Rx checksum disabled via ethtool */
6668	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6669		return;
6670
6671	/* TCP/UDP checksum error bit is set */
6672	if (igb_test_staterr(rx_desc,
6673			     E1000_RXDEXT_STATERR_TCPE |
6674			     E1000_RXDEXT_STATERR_IPE)) {
6675		/* work around errata with sctp packets where the TCPE aka
6676		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6677		 * packets, (aka let the stack check the crc32c)
6678		 */
6679		if (!((skb->len == 60) &&
6680		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6681			u64_stats_update_begin(&ring->rx_syncp);
6682			ring->rx_stats.csum_err++;
6683			u64_stats_update_end(&ring->rx_syncp);
6684		}
6685		/* let the stack verify checksum errors */
6686		return;
6687	}
6688	/* It must be a TCP or UDP packet with a valid checksum */
6689	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6690				      E1000_RXD_STAT_UDPCS))
6691		skb->ip_summed = CHECKSUM_UNNECESSARY;
6692
6693	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6694		le32_to_cpu(rx_desc->wb.upper.status_error));
6695}
6696
6697static inline void igb_rx_hash(struct igb_ring *ring,
6698			       union e1000_adv_rx_desc *rx_desc,
6699			       struct sk_buff *skb)
6700{
6701	if (ring->netdev->features & NETIF_F_RXHASH)
6702		skb_set_hash(skb,
6703			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6704			     PKT_HASH_TYPE_L3);
6705}
6706
6707/**
6708 *  igb_is_non_eop - process handling of non-EOP buffers
6709 *  @rx_ring: Rx ring being processed
6710 *  @rx_desc: Rx descriptor for current buffer
6711 *  @skb: current socket buffer containing buffer in progress
6712 *
6713 *  This function updates next to clean.  If the buffer is an EOP buffer
6714 *  this function exits returning false, otherwise it will place the
6715 *  sk_buff in the next buffer to be chained and return true indicating
6716 *  that this is in fact a non-EOP buffer.
6717 **/
6718static bool igb_is_non_eop(struct igb_ring *rx_ring,
6719			   union e1000_adv_rx_desc *rx_desc)
6720{
6721	u32 ntc = rx_ring->next_to_clean + 1;
6722
6723	/* fetch, update, and store next to clean */
6724	ntc = (ntc < rx_ring->count) ? ntc : 0;
6725	rx_ring->next_to_clean = ntc;
6726
6727	prefetch(IGB_RX_DESC(rx_ring, ntc));
6728
6729	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6730		return false;
6731
6732	return true;
6733}
6734
6735/**
6736 *  igb_get_headlen - determine size of header for LRO/GRO
6737 *  @data: pointer to the start of the headers
6738 *  @max_len: total length of section to find headers in
6739 *
6740 *  This function is meant to determine the length of headers that will
6741 *  be recognized by hardware for LRO, and GRO offloads.  The main
6742 *  motivation of doing this is to only perform one pull for IPv4 TCP
6743 *  packets so that we can do basic things like calculating the gso_size
6744 *  based on the average data per packet.
6745 **/
6746static unsigned int igb_get_headlen(unsigned char *data,
6747				    unsigned int max_len)
6748{
6749	union {
6750		unsigned char *network;
6751		/* l2 headers */
6752		struct ethhdr *eth;
6753		struct vlan_hdr *vlan;
6754		/* l3 headers */
6755		struct iphdr *ipv4;
6756		struct ipv6hdr *ipv6;
6757	} hdr;
6758	__be16 protocol;
6759	u8 nexthdr = 0;	/* default to not TCP */
6760	u8 hlen;
6761
6762	/* this should never happen, but better safe than sorry */
6763	if (max_len < ETH_HLEN)
6764		return max_len;
6765
6766	/* initialize network frame pointer */
6767	hdr.network = data;
6768
6769	/* set first protocol and move network header forward */
6770	protocol = hdr.eth->h_proto;
6771	hdr.network += ETH_HLEN;
6772
6773	/* handle any vlan tag if present */
6774	if (protocol == htons(ETH_P_8021Q)) {
6775		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6776			return max_len;
6777
6778		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6779		hdr.network += VLAN_HLEN;
6780	}
6781
6782	/* handle L3 protocols */
6783	if (protocol == htons(ETH_P_IP)) {
6784		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6785			return max_len;
6786
6787		/* access ihl as a u8 to avoid unaligned access on ia64 */
6788		hlen = (hdr.network[0] & 0x0F) << 2;
6789
6790		/* verify hlen meets minimum size requirements */
6791		if (hlen < sizeof(struct iphdr))
6792			return hdr.network - data;
6793
6794		/* record next protocol if header is present */
6795		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6796			nexthdr = hdr.ipv4->protocol;
6797	} else if (protocol == htons(ETH_P_IPV6)) {
6798		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6799			return max_len;
6800
6801		/* record next protocol */
6802		nexthdr = hdr.ipv6->nexthdr;
6803		hlen = sizeof(struct ipv6hdr);
6804	} else {
6805		return hdr.network - data;
6806	}
6807
6808	/* relocate pointer to start of L4 header */
6809	hdr.network += hlen;
6810
6811	/* finally sort out TCP */
6812	if (nexthdr == IPPROTO_TCP) {
6813		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6814			return max_len;
6815
6816		/* access doff as a u8 to avoid unaligned access on ia64 */
6817		hlen = (hdr.network[12] & 0xF0) >> 2;
6818
6819		/* verify hlen meets minimum size requirements */
6820		if (hlen < sizeof(struct tcphdr))
6821			return hdr.network - data;
6822
6823		hdr.network += hlen;
6824	} else if (nexthdr == IPPROTO_UDP) {
6825		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6826			return max_len;
6827
6828		hdr.network += sizeof(struct udphdr);
6829	}
6830
6831	/* If everything has gone correctly hdr.network should be the
6832	 * data section of the packet and will be the end of the header.
6833	 * If not then it probably represents the end of the last recognized
6834	 * header.
6835	 */
6836	if ((hdr.network - data) < max_len)
6837		return hdr.network - data;
6838	else
6839		return max_len;
6840}
6841
6842/**
6843 *  igb_pull_tail - igb specific version of skb_pull_tail
6844 *  @rx_ring: rx descriptor ring packet is being transacted on
6845 *  @rx_desc: pointer to the EOP Rx descriptor
6846 *  @skb: pointer to current skb being adjusted
6847 *
6848 *  This function is an igb specific version of __pskb_pull_tail.  The
6849 *  main difference between this version and the original function is that
6850 *  this function can make several assumptions about the state of things
6851 *  that allow for significant optimizations versus the standard function.
6852 *  As a result we can do things like drop a frag and maintain an accurate
6853 *  truesize for the skb.
6854 */
6855static void igb_pull_tail(struct igb_ring *rx_ring,
6856			  union e1000_adv_rx_desc *rx_desc,
6857			  struct sk_buff *skb)
6858{
6859	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6860	unsigned char *va;
6861	unsigned int pull_len;
6862
6863	/* it is valid to use page_address instead of kmap since we are
6864	 * working with pages allocated out of the lomem pool per
6865	 * alloc_page(GFP_ATOMIC)
6866	 */
6867	va = skb_frag_address(frag);
6868
6869	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6870		/* retrieve timestamp from buffer */
6871		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6872
6873		/* update pointers to remove timestamp header */
6874		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6875		frag->page_offset += IGB_TS_HDR_LEN;
6876		skb->data_len -= IGB_TS_HDR_LEN;
6877		skb->len -= IGB_TS_HDR_LEN;
6878
6879		/* move va to start of packet data */
6880		va += IGB_TS_HDR_LEN;
6881	}
6882
6883	/* we need the header to contain the greater of either ETH_HLEN or
6884	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6885	 */
6886	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6887
6888	/* align pull length to size of long to optimize memcpy performance */
6889	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6890
6891	/* update all of the pointers */
6892	skb_frag_size_sub(frag, pull_len);
6893	frag->page_offset += pull_len;
6894	skb->data_len -= pull_len;
6895	skb->tail += pull_len;
6896}
6897
6898/**
6899 *  igb_cleanup_headers - Correct corrupted or empty headers
6900 *  @rx_ring: rx descriptor ring packet is being transacted on
6901 *  @rx_desc: pointer to the EOP Rx descriptor
6902 *  @skb: pointer to current skb being fixed
6903 *
6904 *  Address the case where we are pulling data in on pages only
6905 *  and as such no data is present in the skb header.
6906 *
6907 *  In addition if skb is not at least 60 bytes we need to pad it so that
6908 *  it is large enough to qualify as a valid Ethernet frame.
6909 *
6910 *  Returns true if an error was encountered and skb was freed.
6911 **/
6912static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6913				union e1000_adv_rx_desc *rx_desc,
6914				struct sk_buff *skb)
6915{
6916	if (unlikely((igb_test_staterr(rx_desc,
6917				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6918		struct net_device *netdev = rx_ring->netdev;
6919		if (!(netdev->features & NETIF_F_RXALL)) {
6920			dev_kfree_skb_any(skb);
6921			return true;
6922		}
6923	}
6924
6925	/* place header in linear portion of buffer */
6926	if (skb_is_nonlinear(skb))
6927		igb_pull_tail(rx_ring, rx_desc, skb);
6928
6929	/* if skb_pad returns an error the skb was freed */
6930	if (unlikely(skb->len < 60)) {
6931		int pad_len = 60 - skb->len;
6932
6933		if (skb_pad(skb, pad_len))
6934			return true;
6935		__skb_put(skb, pad_len);
6936	}
6937
6938	return false;
6939}
6940
6941/**
6942 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6943 *  @rx_ring: rx descriptor ring packet is being transacted on
6944 *  @rx_desc: pointer to the EOP Rx descriptor
6945 *  @skb: pointer to current skb being populated
6946 *
6947 *  This function checks the ring, descriptor, and packet information in
6948 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6949 *  other fields within the skb.
6950 **/
6951static void igb_process_skb_fields(struct igb_ring *rx_ring,
6952				   union e1000_adv_rx_desc *rx_desc,
6953				   struct sk_buff *skb)
6954{
6955	struct net_device *dev = rx_ring->netdev;
6956
6957	igb_rx_hash(rx_ring, rx_desc, skb);
6958
6959	igb_rx_checksum(rx_ring, rx_desc, skb);
6960
6961	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6962	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6963		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6964
6965	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6966	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6967		u16 vid;
6968
6969		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6970		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6971			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6972		else
6973			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6974
6975		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6976	}
6977
6978	skb_record_rx_queue(skb, rx_ring->queue_index);
6979
6980	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6981}
6982
6983static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6984{
6985	struct igb_ring *rx_ring = q_vector->rx.ring;
6986	struct sk_buff *skb = rx_ring->skb;
6987	unsigned int total_bytes = 0, total_packets = 0;
6988	u16 cleaned_count = igb_desc_unused(rx_ring);
6989
6990	while (likely(total_packets < budget)) {
6991		union e1000_adv_rx_desc *rx_desc;
6992
6993		/* return some buffers to hardware, one at a time is too slow */
6994		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6995			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6996			cleaned_count = 0;
6997		}
6998
6999		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7000
7001		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
7002			break;
7003
7004		/* This memory barrier is needed to keep us from reading
7005		 * any other fields out of the rx_desc until we know the
7006		 * RXD_STAT_DD bit is set
7007		 */
7008		rmb();
7009
7010		/* retrieve a buffer from the ring */
7011		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7012
7013		/* exit if we failed to retrieve a buffer */
7014		if (!skb)
7015			break;
7016
7017		cleaned_count++;
7018
7019		/* fetch next buffer in frame if non-eop */
7020		if (igb_is_non_eop(rx_ring, rx_desc))
7021			continue;
7022
7023		/* verify the packet layout is correct */
7024		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7025			skb = NULL;
7026			continue;
7027		}
7028
7029		/* probably a little skewed due to removing CRC */
7030		total_bytes += skb->len;
7031
7032		/* populate checksum, timestamp, VLAN, and protocol */
7033		igb_process_skb_fields(rx_ring, rx_desc, skb);
7034
7035		napi_gro_receive(&q_vector->napi, skb);
7036
7037		/* reset skb pointer */
7038		skb = NULL;
7039
7040		/* update budget accounting */
7041		total_packets++;
7042	}
7043
7044	/* place incomplete frames back on ring for completion */
7045	rx_ring->skb = skb;
7046
7047	u64_stats_update_begin(&rx_ring->rx_syncp);
7048	rx_ring->rx_stats.packets += total_packets;
7049	rx_ring->rx_stats.bytes += total_bytes;
7050	u64_stats_update_end(&rx_ring->rx_syncp);
7051	q_vector->rx.total_packets += total_packets;
7052	q_vector->rx.total_bytes += total_bytes;
7053
7054	if (cleaned_count)
7055		igb_alloc_rx_buffers(rx_ring, cleaned_count);
7056
7057	return (total_packets < budget);
7058}
7059
7060static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7061				  struct igb_rx_buffer *bi)
7062{
7063	struct page *page = bi->page;
7064	dma_addr_t dma;
7065
7066	/* since we are recycling buffers we should seldom need to alloc */
7067	if (likely(page))
7068		return true;
7069
7070	/* alloc new page for storage */
7071	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
7072	if (unlikely(!page)) {
7073		rx_ring->rx_stats.alloc_failed++;
7074		return false;
7075	}
7076
7077	/* map page for use */
7078	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7079
7080	/* if mapping failed free memory back to system since
7081	 * there isn't much point in holding memory we can't use
7082	 */
7083	if (dma_mapping_error(rx_ring->dev, dma)) {
7084		__free_page(page);
7085
7086		rx_ring->rx_stats.alloc_failed++;
7087		return false;
7088	}
7089
7090	bi->dma = dma;
7091	bi->page = page;
7092	bi->page_offset = 0;
7093
7094	return true;
7095}
7096
7097/**
7098 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7099 *  @adapter: address of board private structure
7100 **/
7101void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7102{
7103	union e1000_adv_rx_desc *rx_desc;
7104	struct igb_rx_buffer *bi;
7105	u16 i = rx_ring->next_to_use;
7106
7107	/* nothing to do */
7108	if (!cleaned_count)
7109		return;
7110
7111	rx_desc = IGB_RX_DESC(rx_ring, i);
7112	bi = &rx_ring->rx_buffer_info[i];
7113	i -= rx_ring->count;
7114
7115	do {
7116		if (!igb_alloc_mapped_page(rx_ring, bi))
7117			break;
7118
7119		/* Refresh the desc even if buffer_addrs didn't change
7120		 * because each write-back erases this info.
7121		 */
7122		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7123
7124		rx_desc++;
7125		bi++;
7126		i++;
7127		if (unlikely(!i)) {
7128			rx_desc = IGB_RX_DESC(rx_ring, 0);
7129			bi = rx_ring->rx_buffer_info;
7130			i -= rx_ring->count;
7131		}
7132
7133		/* clear the hdr_addr for the next_to_use descriptor */
7134		rx_desc->read.hdr_addr = 0;
7135
7136		cleaned_count--;
7137	} while (cleaned_count);
7138
7139	i += rx_ring->count;
7140
7141	if (rx_ring->next_to_use != i) {
7142		/* record the next descriptor to use */
7143		rx_ring->next_to_use = i;
7144
7145		/* update next to alloc since we have filled the ring */
7146		rx_ring->next_to_alloc = i;
7147
7148		/* Force memory writes to complete before letting h/w
7149		 * know there are new descriptors to fetch.  (Only
7150		 * applicable for weak-ordered memory model archs,
7151		 * such as IA-64).
7152		 */
7153		wmb();
7154		writel(i, rx_ring->tail);
7155	}
7156}
7157
7158/**
7159 * igb_mii_ioctl -
7160 * @netdev:
7161 * @ifreq:
7162 * @cmd:
7163 **/
7164static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7165{
7166	struct igb_adapter *adapter = netdev_priv(netdev);
7167	struct mii_ioctl_data *data = if_mii(ifr);
7168
7169	if (adapter->hw.phy.media_type != e1000_media_type_copper)
7170		return -EOPNOTSUPP;
7171
7172	switch (cmd) {
7173	case SIOCGMIIPHY:
7174		data->phy_id = adapter->hw.phy.addr;
7175		break;
7176	case SIOCGMIIREG:
7177		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7178				     &data->val_out))
7179			return -EIO;
7180		break;
7181	case SIOCSMIIREG:
7182	default:
7183		return -EOPNOTSUPP;
7184	}
7185	return 0;
7186}
7187
7188/**
7189 * igb_ioctl -
7190 * @netdev:
7191 * @ifreq:
7192 * @cmd:
7193 **/
7194static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7195{
7196	switch (cmd) {
7197	case SIOCGMIIPHY:
7198	case SIOCGMIIREG:
7199	case SIOCSMIIREG:
7200		return igb_mii_ioctl(netdev, ifr, cmd);
7201	case SIOCGHWTSTAMP:
7202		return igb_ptp_get_ts_config(netdev, ifr);
7203	case SIOCSHWTSTAMP:
7204		return igb_ptp_set_ts_config(netdev, ifr);
7205	default:
7206		return -EOPNOTSUPP;
7207	}
7208}
7209
7210s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7211{
7212	struct igb_adapter *adapter = hw->back;
7213
7214	if (pcie_capability_read_word(adapter->pdev, reg, value))
7215		return -E1000_ERR_CONFIG;
7216
7217	return 0;
7218}
7219
7220s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7221{
7222	struct igb_adapter *adapter = hw->back;
7223
7224	if (pcie_capability_write_word(adapter->pdev, reg, *value))
7225		return -E1000_ERR_CONFIG;
7226
7227	return 0;
7228}
7229
7230static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7231{
7232	struct igb_adapter *adapter = netdev_priv(netdev);
7233	struct e1000_hw *hw = &adapter->hw;
7234	u32 ctrl, rctl;
7235	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7236
7237	if (enable) {
7238		/* enable VLAN tag insert/strip */
7239		ctrl = rd32(E1000_CTRL);
7240		ctrl |= E1000_CTRL_VME;
7241		wr32(E1000_CTRL, ctrl);
7242
7243		/* Disable CFI check */
7244		rctl = rd32(E1000_RCTL);
7245		rctl &= ~E1000_RCTL_CFIEN;
7246		wr32(E1000_RCTL, rctl);
7247	} else {
7248		/* disable VLAN tag insert/strip */
7249		ctrl = rd32(E1000_CTRL);
7250		ctrl &= ~E1000_CTRL_VME;
7251		wr32(E1000_CTRL, ctrl);
7252	}
7253
7254	igb_rlpml_set(adapter);
7255}
7256
7257static int igb_vlan_rx_add_vid(struct net_device *netdev,
7258			       __be16 proto, u16 vid)
7259{
7260	struct igb_adapter *adapter = netdev_priv(netdev);
7261	struct e1000_hw *hw = &adapter->hw;
7262	int pf_id = adapter->vfs_allocated_count;
7263
7264	/* attempt to add filter to vlvf array */
7265	igb_vlvf_set(adapter, vid, true, pf_id);
7266
7267	/* add the filter since PF can receive vlans w/o entry in vlvf */
7268	igb_vfta_set(hw, vid, true);
7269
7270	set_bit(vid, adapter->active_vlans);
7271
7272	return 0;
7273}
7274
7275static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7276				__be16 proto, u16 vid)
7277{
7278	struct igb_adapter *adapter = netdev_priv(netdev);
7279	struct e1000_hw *hw = &adapter->hw;
7280	int pf_id = adapter->vfs_allocated_count;
7281	s32 err;
7282
7283	/* remove vlan from VLVF table array */
7284	err = igb_vlvf_set(adapter, vid, false, pf_id);
7285
7286	/* if vid was not present in VLVF just remove it from table */
7287	if (err)
7288		igb_vfta_set(hw, vid, false);
7289
7290	clear_bit(vid, adapter->active_vlans);
7291
7292	return 0;
7293}
7294
7295static void igb_restore_vlan(struct igb_adapter *adapter)
7296{
7297	u16 vid;
7298
7299	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7300
7301	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7302		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7303}
7304
7305int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7306{
7307	struct pci_dev *pdev = adapter->pdev;
7308	struct e1000_mac_info *mac = &adapter->hw.mac;
7309
7310	mac->autoneg = 0;
7311
7312	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7313	 * for the switch() below to work
7314	 */
7315	if ((spd & 1) || (dplx & ~1))
7316		goto err_inval;
7317
7318	/* Fiber NIC's only allow 1000 gbps Full duplex
7319	 * and 100Mbps Full duplex for 100baseFx sfp
7320	 */
7321	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7322		switch (spd + dplx) {
7323		case SPEED_10 + DUPLEX_HALF:
7324		case SPEED_10 + DUPLEX_FULL:
7325		case SPEED_100 + DUPLEX_HALF:
7326			goto err_inval;
7327		default:
7328			break;
7329		}
7330	}
7331
7332	switch (spd + dplx) {
7333	case SPEED_10 + DUPLEX_HALF:
7334		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7335		break;
7336	case SPEED_10 + DUPLEX_FULL:
7337		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7338		break;
7339	case SPEED_100 + DUPLEX_HALF:
7340		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7341		break;
7342	case SPEED_100 + DUPLEX_FULL:
7343		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7344		break;
7345	case SPEED_1000 + DUPLEX_FULL:
7346		mac->autoneg = 1;
7347		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7348		break;
7349	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7350	default:
7351		goto err_inval;
7352	}
7353
7354	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7355	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7356
7357	return 0;
7358
7359err_inval:
7360	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7361	return -EINVAL;
7362}
7363
7364static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7365			  bool runtime)
7366{
7367	struct net_device *netdev = pci_get_drvdata(pdev);
7368	struct igb_adapter *adapter = netdev_priv(netdev);
7369	struct e1000_hw *hw = &adapter->hw;
7370	u32 ctrl, rctl, status;
7371	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7372#ifdef CONFIG_PM
7373	int retval = 0;
7374#endif
7375
7376	netif_device_detach(netdev);
7377
7378	if (netif_running(netdev))
7379		__igb_close(netdev, true);
7380
7381	igb_clear_interrupt_scheme(adapter);
7382
7383#ifdef CONFIG_PM
7384	retval = pci_save_state(pdev);
7385	if (retval)
7386		return retval;
7387#endif
7388
7389	status = rd32(E1000_STATUS);
7390	if (status & E1000_STATUS_LU)
7391		wufc &= ~E1000_WUFC_LNKC;
7392
7393	if (wufc) {
7394		igb_setup_rctl(adapter);
7395		igb_set_rx_mode(netdev);
7396
7397		/* turn on all-multi mode if wake on multicast is enabled */
7398		if (wufc & E1000_WUFC_MC) {
7399			rctl = rd32(E1000_RCTL);
7400			rctl |= E1000_RCTL_MPE;
7401			wr32(E1000_RCTL, rctl);
7402		}
7403
7404		ctrl = rd32(E1000_CTRL);
7405		/* advertise wake from D3Cold */
7406		#define E1000_CTRL_ADVD3WUC 0x00100000
7407		/* phy power management enable */
7408		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7409		ctrl |= E1000_CTRL_ADVD3WUC;
7410		wr32(E1000_CTRL, ctrl);
7411
7412		/* Allow time for pending master requests to run */
7413		igb_disable_pcie_master(hw);
7414
7415		wr32(E1000_WUC, E1000_WUC_PME_EN);
7416		wr32(E1000_WUFC, wufc);
7417	} else {
7418		wr32(E1000_WUC, 0);
7419		wr32(E1000_WUFC, 0);
7420	}
7421
7422	*enable_wake = wufc || adapter->en_mng_pt;
7423	if (!*enable_wake)
7424		igb_power_down_link(adapter);
7425	else
7426		igb_power_up_link(adapter);
7427
7428	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7429	 * would have already happened in close and is redundant.
7430	 */
7431	igb_release_hw_control(adapter);
7432
7433	pci_disable_device(pdev);
7434
7435	return 0;
7436}
7437
7438#ifdef CONFIG_PM
7439#ifdef CONFIG_PM_SLEEP
7440static int igb_suspend(struct device *dev)
7441{
7442	int retval;
7443	bool wake;
7444	struct pci_dev *pdev = to_pci_dev(dev);
7445
7446	retval = __igb_shutdown(pdev, &wake, 0);
7447	if (retval)
7448		return retval;
7449
7450	if (wake) {
7451		pci_prepare_to_sleep(pdev);
7452	} else {
7453		pci_wake_from_d3(pdev, false);
7454		pci_set_power_state(pdev, PCI_D3hot);
7455	}
7456
7457	return 0;
7458}
7459#endif /* CONFIG_PM_SLEEP */
7460
7461static int igb_resume(struct device *dev)
7462{
7463	struct pci_dev *pdev = to_pci_dev(dev);
7464	struct net_device *netdev = pci_get_drvdata(pdev);
7465	struct igb_adapter *adapter = netdev_priv(netdev);
7466	struct e1000_hw *hw = &adapter->hw;
7467	u32 err;
7468
7469	pci_set_power_state(pdev, PCI_D0);
7470	pci_restore_state(pdev);
7471	pci_save_state(pdev);
7472
7473	err = pci_enable_device_mem(pdev);
7474	if (err) {
7475		dev_err(&pdev->dev,
7476			"igb: Cannot enable PCI device from suspend\n");
7477		return err;
7478	}
7479	pci_set_master(pdev);
7480
7481	pci_enable_wake(pdev, PCI_D3hot, 0);
7482	pci_enable_wake(pdev, PCI_D3cold, 0);
7483
7484	if (igb_init_interrupt_scheme(adapter, true)) {
7485		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7486		return -ENOMEM;
7487	}
7488
7489	igb_reset(adapter);
7490
7491	/* let the f/w know that the h/w is now under the control of the
7492	 * driver.
7493	 */
7494	igb_get_hw_control(adapter);
7495
7496	wr32(E1000_WUS, ~0);
7497
7498	if (netdev->flags & IFF_UP) {
7499		rtnl_lock();
7500		err = __igb_open(netdev, true);
7501		rtnl_unlock();
7502		if (err)
7503			return err;
7504	}
7505
7506	netif_device_attach(netdev);
7507	return 0;
7508}
7509
7510#ifdef CONFIG_PM_RUNTIME
7511static int igb_runtime_idle(struct device *dev)
7512{
7513	struct pci_dev *pdev = to_pci_dev(dev);
7514	struct net_device *netdev = pci_get_drvdata(pdev);
7515	struct igb_adapter *adapter = netdev_priv(netdev);
7516
7517	if (!igb_has_link(adapter))
7518		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7519
7520	return -EBUSY;
7521}
7522
7523static int igb_runtime_suspend(struct device *dev)
7524{
7525	struct pci_dev *pdev = to_pci_dev(dev);
7526	int retval;
7527	bool wake;
7528
7529	retval = __igb_shutdown(pdev, &wake, 1);
7530	if (retval)
7531		return retval;
7532
7533	if (wake) {
7534		pci_prepare_to_sleep(pdev);
7535	} else {
7536		pci_wake_from_d3(pdev, false);
7537		pci_set_power_state(pdev, PCI_D3hot);
7538	}
7539
7540	return 0;
7541}
7542
7543static int igb_runtime_resume(struct device *dev)
7544{
7545	return igb_resume(dev);
7546}
7547#endif /* CONFIG_PM_RUNTIME */
7548#endif
7549
7550static void igb_shutdown(struct pci_dev *pdev)
7551{
7552	bool wake;
7553
7554	__igb_shutdown(pdev, &wake, 0);
7555
7556	if (system_state == SYSTEM_POWER_OFF) {
7557		pci_wake_from_d3(pdev, wake);
7558		pci_set_power_state(pdev, PCI_D3hot);
7559	}
7560}
7561
7562#ifdef CONFIG_PCI_IOV
7563static int igb_sriov_reinit(struct pci_dev *dev)
7564{
7565	struct net_device *netdev = pci_get_drvdata(dev);
7566	struct igb_adapter *adapter = netdev_priv(netdev);
7567	struct pci_dev *pdev = adapter->pdev;
7568
7569	rtnl_lock();
7570
7571	if (netif_running(netdev))
7572		igb_close(netdev);
7573
7574	igb_clear_interrupt_scheme(adapter);
7575
7576	igb_init_queue_configuration(adapter);
7577
7578	if (igb_init_interrupt_scheme(adapter, true)) {
7579		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7580		return -ENOMEM;
7581	}
7582
7583	if (netif_running(netdev))
7584		igb_open(netdev);
7585
7586	rtnl_unlock();
7587
7588	return 0;
7589}
7590
7591static int igb_pci_disable_sriov(struct pci_dev *dev)
7592{
7593	int err = igb_disable_sriov(dev);
7594
7595	if (!err)
7596		err = igb_sriov_reinit(dev);
7597
7598	return err;
7599}
7600
7601static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7602{
7603	int err = igb_enable_sriov(dev, num_vfs);
7604
7605	if (err)
7606		goto out;
7607
7608	err = igb_sriov_reinit(dev);
7609	if (!err)
7610		return num_vfs;
7611
7612out:
7613	return err;
7614}
7615
7616#endif
7617static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7618{
7619#ifdef CONFIG_PCI_IOV
7620	if (num_vfs == 0)
7621		return igb_pci_disable_sriov(dev);
7622	else
7623		return igb_pci_enable_sriov(dev, num_vfs);
7624#endif
7625	return 0;
7626}
7627
7628#ifdef CONFIG_NET_POLL_CONTROLLER
7629/* Polling 'interrupt' - used by things like netconsole to send skbs
7630 * without having to re-enable interrupts. It's not called while
7631 * the interrupt routine is executing.
7632 */
7633static void igb_netpoll(struct net_device *netdev)
7634{
7635	struct igb_adapter *adapter = netdev_priv(netdev);
7636	struct e1000_hw *hw = &adapter->hw;
7637	struct igb_q_vector *q_vector;
7638	int i;
7639
7640	for (i = 0; i < adapter->num_q_vectors; i++) {
7641		q_vector = adapter->q_vector[i];
7642		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7643			wr32(E1000_EIMC, q_vector->eims_value);
7644		else
7645			igb_irq_disable(adapter);
7646		napi_schedule(&q_vector->napi);
7647	}
7648}
7649#endif /* CONFIG_NET_POLL_CONTROLLER */
7650
7651/**
7652 *  igb_io_error_detected - called when PCI error is detected
7653 *  @pdev: Pointer to PCI device
7654 *  @state: The current pci connection state
7655 *
7656 *  This function is called after a PCI bus error affecting
7657 *  this device has been detected.
7658 **/
7659static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7660					      pci_channel_state_t state)
7661{
7662	struct net_device *netdev = pci_get_drvdata(pdev);
7663	struct igb_adapter *adapter = netdev_priv(netdev);
7664
7665	netif_device_detach(netdev);
7666
7667	if (state == pci_channel_io_perm_failure)
7668		return PCI_ERS_RESULT_DISCONNECT;
7669
7670	if (netif_running(netdev))
7671		igb_down(adapter);
7672	pci_disable_device(pdev);
7673
7674	/* Request a slot slot reset. */
7675	return PCI_ERS_RESULT_NEED_RESET;
7676}
7677
7678/**
7679 *  igb_io_slot_reset - called after the pci bus has been reset.
7680 *  @pdev: Pointer to PCI device
7681 *
7682 *  Restart the card from scratch, as if from a cold-boot. Implementation
7683 *  resembles the first-half of the igb_resume routine.
7684 **/
7685static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7686{
7687	struct net_device *netdev = pci_get_drvdata(pdev);
7688	struct igb_adapter *adapter = netdev_priv(netdev);
7689	struct e1000_hw *hw = &adapter->hw;
7690	pci_ers_result_t result;
7691	int err;
7692
7693	if (pci_enable_device_mem(pdev)) {
7694		dev_err(&pdev->dev,
7695			"Cannot re-enable PCI device after reset.\n");
7696		result = PCI_ERS_RESULT_DISCONNECT;
7697	} else {
7698		pci_set_master(pdev);
7699		pci_restore_state(pdev);
7700		pci_save_state(pdev);
7701
7702		pci_enable_wake(pdev, PCI_D3hot, 0);
7703		pci_enable_wake(pdev, PCI_D3cold, 0);
7704
7705		igb_reset(adapter);
7706		wr32(E1000_WUS, ~0);
7707		result = PCI_ERS_RESULT_RECOVERED;
7708	}
7709
7710	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7711	if (err) {
7712		dev_err(&pdev->dev,
7713			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7714			err);
7715		/* non-fatal, continue */
7716	}
7717
7718	return result;
7719}
7720
7721/**
7722 *  igb_io_resume - called when traffic can start flowing again.
7723 *  @pdev: Pointer to PCI device
7724 *
7725 *  This callback is called when the error recovery driver tells us that
7726 *  its OK to resume normal operation. Implementation resembles the
7727 *  second-half of the igb_resume routine.
7728 */
7729static void igb_io_resume(struct pci_dev *pdev)
7730{
7731	struct net_device *netdev = pci_get_drvdata(pdev);
7732	struct igb_adapter *adapter = netdev_priv(netdev);
7733
7734	if (netif_running(netdev)) {
7735		if (igb_up(adapter)) {
7736			dev_err(&pdev->dev, "igb_up failed after reset\n");
7737			return;
7738		}
7739	}
7740
7741	netif_device_attach(netdev);
7742
7743	/* let the f/w know that the h/w is now under the control of the
7744	 * driver.
7745	 */
7746	igb_get_hw_control(adapter);
7747}
7748
7749static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7750			     u8 qsel)
7751{
7752	u32 rar_low, rar_high;
7753	struct e1000_hw *hw = &adapter->hw;
7754
7755	/* HW expects these in little endian so we reverse the byte order
7756	 * from network order (big endian) to little endian
7757	 */
7758	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7759		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7760	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7761
7762	/* Indicate to hardware the Address is Valid. */
7763	rar_high |= E1000_RAH_AV;
7764
7765	if (hw->mac.type == e1000_82575)
7766		rar_high |= E1000_RAH_POOL_1 * qsel;
7767	else
7768		rar_high |= E1000_RAH_POOL_1 << qsel;
7769
7770	wr32(E1000_RAL(index), rar_low);
7771	wrfl();
7772	wr32(E1000_RAH(index), rar_high);
7773	wrfl();
7774}
7775
7776static int igb_set_vf_mac(struct igb_adapter *adapter,
7777			  int vf, unsigned char *mac_addr)
7778{
7779	struct e1000_hw *hw = &adapter->hw;
7780	/* VF MAC addresses start at end of receive addresses and moves
7781	 * towards the first, as a result a collision should not be possible
7782	 */
7783	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7784
7785	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7786
7787	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7788
7789	return 0;
7790}
7791
7792static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7793{
7794	struct igb_adapter *adapter = netdev_priv(netdev);
7795	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7796		return -EINVAL;
7797	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7798	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7799	dev_info(&adapter->pdev->dev,
7800		 "Reload the VF driver to make this change effective.");
7801	if (test_bit(__IGB_DOWN, &adapter->state)) {
7802		dev_warn(&adapter->pdev->dev,
7803			 "The VF MAC address has been set, but the PF device is not up.\n");
7804		dev_warn(&adapter->pdev->dev,
7805			 "Bring the PF device up before attempting to use the VF device.\n");
7806	}
7807	return igb_set_vf_mac(adapter, vf, mac);
7808}
7809
7810static int igb_link_mbps(int internal_link_speed)
7811{
7812	switch (internal_link_speed) {
7813	case SPEED_100:
7814		return 100;
7815	case SPEED_1000:
7816		return 1000;
7817	default:
7818		return 0;
7819	}
7820}
7821
7822static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7823				  int link_speed)
7824{
7825	int rf_dec, rf_int;
7826	u32 bcnrc_val;
7827
7828	if (tx_rate != 0) {
7829		/* Calculate the rate factor values to set */
7830		rf_int = link_speed / tx_rate;
7831		rf_dec = (link_speed - (rf_int * tx_rate));
7832		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7833			 tx_rate;
7834
7835		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7836		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7837			      E1000_RTTBCNRC_RF_INT_MASK);
7838		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7839	} else {
7840		bcnrc_val = 0;
7841	}
7842
7843	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7844	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7845	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7846	 */
7847	wr32(E1000_RTTBCNRM, 0x14);
7848	wr32(E1000_RTTBCNRC, bcnrc_val);
7849}
7850
7851static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7852{
7853	int actual_link_speed, i;
7854	bool reset_rate = false;
7855
7856	/* VF TX rate limit was not set or not supported */
7857	if ((adapter->vf_rate_link_speed == 0) ||
7858	    (adapter->hw.mac.type != e1000_82576))
7859		return;
7860
7861	actual_link_speed = igb_link_mbps(adapter->link_speed);
7862	if (actual_link_speed != adapter->vf_rate_link_speed) {
7863		reset_rate = true;
7864		adapter->vf_rate_link_speed = 0;
7865		dev_info(&adapter->pdev->dev,
7866			 "Link speed has been changed. VF Transmit rate is disabled\n");
7867	}
7868
7869	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7870		if (reset_rate)
7871			adapter->vf_data[i].tx_rate = 0;
7872
7873		igb_set_vf_rate_limit(&adapter->hw, i,
7874				      adapter->vf_data[i].tx_rate,
7875				      actual_link_speed);
7876	}
7877}
7878
7879static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7880{
7881	struct igb_adapter *adapter = netdev_priv(netdev);
7882	struct e1000_hw *hw = &adapter->hw;
7883	int actual_link_speed;
7884
7885	if (hw->mac.type != e1000_82576)
7886		return -EOPNOTSUPP;
7887
7888	actual_link_speed = igb_link_mbps(adapter->link_speed);
7889	if ((vf >= adapter->vfs_allocated_count) ||
7890	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7891	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7892		return -EINVAL;
7893
7894	adapter->vf_rate_link_speed = actual_link_speed;
7895	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7896	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7897
7898	return 0;
7899}
7900
7901static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7902				   bool setting)
7903{
7904	struct igb_adapter *adapter = netdev_priv(netdev);
7905	struct e1000_hw *hw = &adapter->hw;
7906	u32 reg_val, reg_offset;
7907
7908	if (!adapter->vfs_allocated_count)
7909		return -EOPNOTSUPP;
7910
7911	if (vf >= adapter->vfs_allocated_count)
7912		return -EINVAL;
7913
7914	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7915	reg_val = rd32(reg_offset);
7916	if (setting)
7917		reg_val |= ((1 << vf) |
7918			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7919	else
7920		reg_val &= ~((1 << vf) |
7921			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7922	wr32(reg_offset, reg_val);
7923
7924	adapter->vf_data[vf].spoofchk_enabled = setting;
7925	return E1000_SUCCESS;
7926}
7927
7928static int igb_ndo_get_vf_config(struct net_device *netdev,
7929				 int vf, struct ifla_vf_info *ivi)
7930{
7931	struct igb_adapter *adapter = netdev_priv(netdev);
7932	if (vf >= adapter->vfs_allocated_count)
7933		return -EINVAL;
7934	ivi->vf = vf;
7935	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7936	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7937	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7938	ivi->qos = adapter->vf_data[vf].pf_qos;
7939	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7940	return 0;
7941}
7942
7943static void igb_vmm_control(struct igb_adapter *adapter)
7944{
7945	struct e1000_hw *hw = &adapter->hw;
7946	u32 reg;
7947
7948	switch (hw->mac.type) {
7949	case e1000_82575:
7950	case e1000_i210:
7951	case e1000_i211:
7952	case e1000_i354:
7953	default:
7954		/* replication is not supported for 82575 */
7955		return;
7956	case e1000_82576:
7957		/* notify HW that the MAC is adding vlan tags */
7958		reg = rd32(E1000_DTXCTL);
7959		reg |= E1000_DTXCTL_VLAN_ADDED;
7960		wr32(E1000_DTXCTL, reg);
7961	case e1000_82580:
7962		/* enable replication vlan tag stripping */
7963		reg = rd32(E1000_RPLOLR);
7964		reg |= E1000_RPLOLR_STRVLAN;
7965		wr32(E1000_RPLOLR, reg);
7966	case e1000_i350:
7967		/* none of the above registers are supported by i350 */
7968		break;
7969	}
7970
7971	if (adapter->vfs_allocated_count) {
7972		igb_vmdq_set_loopback_pf(hw, true);
7973		igb_vmdq_set_replication_pf(hw, true);
7974		igb_vmdq_set_anti_spoofing_pf(hw, true,
7975					      adapter->vfs_allocated_count);
7976	} else {
7977		igb_vmdq_set_loopback_pf(hw, false);
7978		igb_vmdq_set_replication_pf(hw, false);
7979	}
7980}
7981
7982static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7983{
7984	struct e1000_hw *hw = &adapter->hw;
7985	u32 dmac_thr;
7986	u16 hwm;
7987
7988	if (hw->mac.type > e1000_82580) {
7989		if (adapter->flags & IGB_FLAG_DMAC) {
7990			u32 reg;
7991
7992			/* force threshold to 0. */
7993			wr32(E1000_DMCTXTH, 0);
7994
7995			/* DMA Coalescing high water mark needs to be greater
7996			 * than the Rx threshold. Set hwm to PBA - max frame
7997			 * size in 16B units, capping it at PBA - 6KB.
7998			 */
7999			hwm = 64 * pba - adapter->max_frame_size / 16;
8000			if (hwm < 64 * (pba - 6))
8001				hwm = 64 * (pba - 6);
8002			reg = rd32(E1000_FCRTC);
8003			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8004			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8005				& E1000_FCRTC_RTH_COAL_MASK);
8006			wr32(E1000_FCRTC, reg);
8007
8008			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8009			 * frame size, capping it at PBA - 10KB.
8010			 */
8011			dmac_thr = pba - adapter->max_frame_size / 512;
8012			if (dmac_thr < pba - 10)
8013				dmac_thr = pba - 10;
8014			reg = rd32(E1000_DMACR);
8015			reg &= ~E1000_DMACR_DMACTHR_MASK;
8016			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8017				& E1000_DMACR_DMACTHR_MASK);
8018
8019			/* transition to L0x or L1 if available..*/
8020			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8021
8022			/* watchdog timer= +-1000 usec in 32usec intervals */
8023			reg |= (1000 >> 5);
8024
8025			/* Disable BMC-to-OS Watchdog Enable */
8026			if (hw->mac.type != e1000_i354)
8027				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8028
8029			wr32(E1000_DMACR, reg);
8030
8031			/* no lower threshold to disable
8032			 * coalescing(smart fifb)-UTRESH=0
8033			 */
8034			wr32(E1000_DMCRTRH, 0);
8035
8036			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8037
8038			wr32(E1000_DMCTLX, reg);
8039
8040			/* free space in tx packet buffer to wake from
8041			 * DMA coal
8042			 */
8043			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8044			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8045
8046			/* make low power state decision controlled
8047			 * by DMA coal
8048			 */
8049			reg = rd32(E1000_PCIEMISC);
8050			reg &= ~E1000_PCIEMISC_LX_DECISION;
8051			wr32(E1000_PCIEMISC, reg);
8052		} /* endif adapter->dmac is not disabled */
8053	} else if (hw->mac.type == e1000_82580) {
8054		u32 reg = rd32(E1000_PCIEMISC);
8055
8056		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8057		wr32(E1000_DMACR, 0);
8058	}
8059}
8060
8061/**
8062 *  igb_read_i2c_byte - Reads 8 bit word over I2C
8063 *  @hw: pointer to hardware structure
8064 *  @byte_offset: byte offset to read
8065 *  @dev_addr: device address
8066 *  @data: value read
8067 *
8068 *  Performs byte read operation over I2C interface at
8069 *  a specified device address.
8070 **/
8071s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8072		      u8 dev_addr, u8 *data)
8073{
8074	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8075	struct i2c_client *this_client = adapter->i2c_client;
8076	s32 status;
8077	u16 swfw_mask = 0;
8078
8079	if (!this_client)
8080		return E1000_ERR_I2C;
8081
8082	swfw_mask = E1000_SWFW_PHY0_SM;
8083
8084	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
8085	    != E1000_SUCCESS)
8086		return E1000_ERR_SWFW_SYNC;
8087
8088	status = i2c_smbus_read_byte_data(this_client, byte_offset);
8089	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8090
8091	if (status < 0)
8092		return E1000_ERR_I2C;
8093	else {
8094		*data = status;
8095		return E1000_SUCCESS;
8096	}
8097}
8098
8099/**
8100 *  igb_write_i2c_byte - Writes 8 bit word over I2C
8101 *  @hw: pointer to hardware structure
8102 *  @byte_offset: byte offset to write
8103 *  @dev_addr: device address
8104 *  @data: value to write
8105 *
8106 *  Performs byte write operation over I2C interface at
8107 *  a specified device address.
8108 **/
8109s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8110		       u8 dev_addr, u8 data)
8111{
8112	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8113	struct i2c_client *this_client = adapter->i2c_client;
8114	s32 status;
8115	u16 swfw_mask = E1000_SWFW_PHY0_SM;
8116
8117	if (!this_client)
8118		return E1000_ERR_I2C;
8119
8120	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
8121		return E1000_ERR_SWFW_SYNC;
8122	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8123	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8124
8125	if (status)
8126		return E1000_ERR_I2C;
8127	else
8128		return E1000_SUCCESS;
8129
8130}
8131
8132int igb_reinit_queues(struct igb_adapter *adapter)
8133{
8134	struct net_device *netdev = adapter->netdev;
8135	struct pci_dev *pdev = adapter->pdev;
8136	int err = 0;
8137
8138	if (netif_running(netdev))
8139		igb_close(netdev);
8140
8141	igb_reset_interrupt_capability(adapter);
8142
8143	if (igb_init_interrupt_scheme(adapter, true)) {
8144		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8145		return -ENOMEM;
8146	}
8147
8148	if (netif_running(netdev))
8149		err = igb_open(netdev);
8150
8151	return err;
8152}
8153/* igb_main.c */
8154