igb_main.c revision afc835d1bda13923e3792d838dae1fa34c506b09
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2014 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, see <http://www.gnu.org/licenses/>.
17
18  The full GNU General Public License is included in this distribution in
19  the file called "COPYING".
20
21  Contact Information:
22  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25*******************************************************************************/
26
27#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28
29#include <linux/module.h>
30#include <linux/types.h>
31#include <linux/init.h>
32#include <linux/bitops.h>
33#include <linux/vmalloc.h>
34#include <linux/pagemap.h>
35#include <linux/netdevice.h>
36#include <linux/ipv6.h>
37#include <linux/slab.h>
38#include <net/checksum.h>
39#include <net/ip6_checksum.h>
40#include <linux/net_tstamp.h>
41#include <linux/mii.h>
42#include <linux/ethtool.h>
43#include <linux/if.h>
44#include <linux/if_vlan.h>
45#include <linux/pci.h>
46#include <linux/pci-aspm.h>
47#include <linux/delay.h>
48#include <linux/interrupt.h>
49#include <linux/ip.h>
50#include <linux/tcp.h>
51#include <linux/sctp.h>
52#include <linux/if_ether.h>
53#include <linux/aer.h>
54#include <linux/prefetch.h>
55#include <linux/pm_runtime.h>
56#ifdef CONFIG_IGB_DCA
57#include <linux/dca.h>
58#endif
59#include <linux/i2c.h>
60#include "igb.h"
61
62#define MAJ 5
63#define MIN 0
64#define BUILD 5
65#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66__stringify(BUILD) "-k"
67char igb_driver_name[] = "igb";
68char igb_driver_version[] = DRV_VERSION;
69static const char igb_driver_string[] =
70				"Intel(R) Gigabit Ethernet Network Driver";
71static const char igb_copyright[] =
72				"Copyright (c) 2007-2014 Intel Corporation.";
73
74static const struct e1000_info *igb_info_tbl[] = {
75	[board_82575] = &e1000_82575_info,
76};
77
78static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
79	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
99	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
104	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
105	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
106	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
107	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
108	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
109	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
110	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
111	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
112	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
113	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
114	/* required last entry */
115	{0, }
116};
117
118MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
119
120void igb_reset(struct igb_adapter *);
121static int igb_setup_all_tx_resources(struct igb_adapter *);
122static int igb_setup_all_rx_resources(struct igb_adapter *);
123static void igb_free_all_tx_resources(struct igb_adapter *);
124static void igb_free_all_rx_resources(struct igb_adapter *);
125static void igb_setup_mrqc(struct igb_adapter *);
126static int igb_probe(struct pci_dev *, const struct pci_device_id *);
127static void igb_remove(struct pci_dev *pdev);
128static int igb_sw_init(struct igb_adapter *);
129static int igb_open(struct net_device *);
130static int igb_close(struct net_device *);
131static void igb_configure(struct igb_adapter *);
132static void igb_configure_tx(struct igb_adapter *);
133static void igb_configure_rx(struct igb_adapter *);
134static void igb_clean_all_tx_rings(struct igb_adapter *);
135static void igb_clean_all_rx_rings(struct igb_adapter *);
136static void igb_clean_tx_ring(struct igb_ring *);
137static void igb_clean_rx_ring(struct igb_ring *);
138static void igb_set_rx_mode(struct net_device *);
139static void igb_update_phy_info(unsigned long);
140static void igb_watchdog(unsigned long);
141static void igb_watchdog_task(struct work_struct *);
142static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
143static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
144						 struct rtnl_link_stats64 *stats);
145static int igb_change_mtu(struct net_device *, int);
146static int igb_set_mac(struct net_device *, void *);
147static void igb_set_uta(struct igb_adapter *adapter);
148static irqreturn_t igb_intr(int irq, void *);
149static irqreturn_t igb_intr_msi(int irq, void *);
150static irqreturn_t igb_msix_other(int irq, void *);
151static irqreturn_t igb_msix_ring(int irq, void *);
152#ifdef CONFIG_IGB_DCA
153static void igb_update_dca(struct igb_q_vector *);
154static void igb_setup_dca(struct igb_adapter *);
155#endif /* CONFIG_IGB_DCA */
156static int igb_poll(struct napi_struct *, int);
157static bool igb_clean_tx_irq(struct igb_q_vector *);
158static bool igb_clean_rx_irq(struct igb_q_vector *, int);
159static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
160static void igb_tx_timeout(struct net_device *);
161static void igb_reset_task(struct work_struct *);
162static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
163static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
164static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
165static void igb_restore_vlan(struct igb_adapter *);
166static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
167static void igb_ping_all_vfs(struct igb_adapter *);
168static void igb_msg_task(struct igb_adapter *);
169static void igb_vmm_control(struct igb_adapter *);
170static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
171static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
172static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
173static int igb_ndo_set_vf_vlan(struct net_device *netdev,
174			       int vf, u16 vlan, u8 qos);
175static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
176static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
177				   bool setting);
178static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
179				 struct ifla_vf_info *ivi);
180static void igb_check_vf_rate_limit(struct igb_adapter *);
181
182#ifdef CONFIG_PCI_IOV
183static int igb_vf_configure(struct igb_adapter *adapter, int vf);
184static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
185#endif
186
187#ifdef CONFIG_PM
188#ifdef CONFIG_PM_SLEEP
189static int igb_suspend(struct device *);
190#endif
191static int igb_resume(struct device *);
192#ifdef CONFIG_PM_RUNTIME
193static int igb_runtime_suspend(struct device *dev);
194static int igb_runtime_resume(struct device *dev);
195static int igb_runtime_idle(struct device *dev);
196#endif
197static const struct dev_pm_ops igb_pm_ops = {
198	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
199	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
200			igb_runtime_idle)
201};
202#endif
203static void igb_shutdown(struct pci_dev *);
204static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
205#ifdef CONFIG_IGB_DCA
206static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
207static struct notifier_block dca_notifier = {
208	.notifier_call	= igb_notify_dca,
209	.next		= NULL,
210	.priority	= 0
211};
212#endif
213#ifdef CONFIG_NET_POLL_CONTROLLER
214/* for netdump / net console */
215static void igb_netpoll(struct net_device *);
216#endif
217#ifdef CONFIG_PCI_IOV
218static unsigned int max_vfs = 0;
219module_param(max_vfs, uint, 0);
220MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
221                 "per physical function");
222#endif /* CONFIG_PCI_IOV */
223
224static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
225		     pci_channel_state_t);
226static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
227static void igb_io_resume(struct pci_dev *);
228
229static const struct pci_error_handlers igb_err_handler = {
230	.error_detected = igb_io_error_detected,
231	.slot_reset = igb_io_slot_reset,
232	.resume = igb_io_resume,
233};
234
235static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
236
237static struct pci_driver igb_driver = {
238	.name     = igb_driver_name,
239	.id_table = igb_pci_tbl,
240	.probe    = igb_probe,
241	.remove   = igb_remove,
242#ifdef CONFIG_PM
243	.driver.pm = &igb_pm_ops,
244#endif
245	.shutdown = igb_shutdown,
246	.sriov_configure = igb_pci_sriov_configure,
247	.err_handler = &igb_err_handler
248};
249
250MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
251MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
252MODULE_LICENSE("GPL");
253MODULE_VERSION(DRV_VERSION);
254
255#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
256static int debug = -1;
257module_param(debug, int, 0);
258MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
259
260struct igb_reg_info {
261	u32 ofs;
262	char *name;
263};
264
265static const struct igb_reg_info igb_reg_info_tbl[] = {
266
267	/* General Registers */
268	{E1000_CTRL, "CTRL"},
269	{E1000_STATUS, "STATUS"},
270	{E1000_CTRL_EXT, "CTRL_EXT"},
271
272	/* Interrupt Registers */
273	{E1000_ICR, "ICR"},
274
275	/* RX Registers */
276	{E1000_RCTL, "RCTL"},
277	{E1000_RDLEN(0), "RDLEN"},
278	{E1000_RDH(0), "RDH"},
279	{E1000_RDT(0), "RDT"},
280	{E1000_RXDCTL(0), "RXDCTL"},
281	{E1000_RDBAL(0), "RDBAL"},
282	{E1000_RDBAH(0), "RDBAH"},
283
284	/* TX Registers */
285	{E1000_TCTL, "TCTL"},
286	{E1000_TDBAL(0), "TDBAL"},
287	{E1000_TDBAH(0), "TDBAH"},
288	{E1000_TDLEN(0), "TDLEN"},
289	{E1000_TDH(0), "TDH"},
290	{E1000_TDT(0), "TDT"},
291	{E1000_TXDCTL(0), "TXDCTL"},
292	{E1000_TDFH, "TDFH"},
293	{E1000_TDFT, "TDFT"},
294	{E1000_TDFHS, "TDFHS"},
295	{E1000_TDFPC, "TDFPC"},
296
297	/* List Terminator */
298	{}
299};
300
301/* igb_regdump - register printout routine */
302static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
303{
304	int n = 0;
305	char rname[16];
306	u32 regs[8];
307
308	switch (reginfo->ofs) {
309	case E1000_RDLEN(0):
310		for (n = 0; n < 4; n++)
311			regs[n] = rd32(E1000_RDLEN(n));
312		break;
313	case E1000_RDH(0):
314		for (n = 0; n < 4; n++)
315			regs[n] = rd32(E1000_RDH(n));
316		break;
317	case E1000_RDT(0):
318		for (n = 0; n < 4; n++)
319			regs[n] = rd32(E1000_RDT(n));
320		break;
321	case E1000_RXDCTL(0):
322		for (n = 0; n < 4; n++)
323			regs[n] = rd32(E1000_RXDCTL(n));
324		break;
325	case E1000_RDBAL(0):
326		for (n = 0; n < 4; n++)
327			regs[n] = rd32(E1000_RDBAL(n));
328		break;
329	case E1000_RDBAH(0):
330		for (n = 0; n < 4; n++)
331			regs[n] = rd32(E1000_RDBAH(n));
332		break;
333	case E1000_TDBAL(0):
334		for (n = 0; n < 4; n++)
335			regs[n] = rd32(E1000_RDBAL(n));
336		break;
337	case E1000_TDBAH(0):
338		for (n = 0; n < 4; n++)
339			regs[n] = rd32(E1000_TDBAH(n));
340		break;
341	case E1000_TDLEN(0):
342		for (n = 0; n < 4; n++)
343			regs[n] = rd32(E1000_TDLEN(n));
344		break;
345	case E1000_TDH(0):
346		for (n = 0; n < 4; n++)
347			regs[n] = rd32(E1000_TDH(n));
348		break;
349	case E1000_TDT(0):
350		for (n = 0; n < 4; n++)
351			regs[n] = rd32(E1000_TDT(n));
352		break;
353	case E1000_TXDCTL(0):
354		for (n = 0; n < 4; n++)
355			regs[n] = rd32(E1000_TXDCTL(n));
356		break;
357	default:
358		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
359		return;
360	}
361
362	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
363	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
364		regs[2], regs[3]);
365}
366
367/* igb_dump - Print registers, Tx-rings and Rx-rings */
368static void igb_dump(struct igb_adapter *adapter)
369{
370	struct net_device *netdev = adapter->netdev;
371	struct e1000_hw *hw = &adapter->hw;
372	struct igb_reg_info *reginfo;
373	struct igb_ring *tx_ring;
374	union e1000_adv_tx_desc *tx_desc;
375	struct my_u0 { u64 a; u64 b; } *u0;
376	struct igb_ring *rx_ring;
377	union e1000_adv_rx_desc *rx_desc;
378	u32 staterr;
379	u16 i, n;
380
381	if (!netif_msg_hw(adapter))
382		return;
383
384	/* Print netdevice Info */
385	if (netdev) {
386		dev_info(&adapter->pdev->dev, "Net device Info\n");
387		pr_info("Device Name     state            trans_start      "
388			"last_rx\n");
389		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
390			netdev->state, netdev->trans_start, netdev->last_rx);
391	}
392
393	/* Print Registers */
394	dev_info(&adapter->pdev->dev, "Register Dump\n");
395	pr_info(" Register Name   Value\n");
396	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
397	     reginfo->name; reginfo++) {
398		igb_regdump(hw, reginfo);
399	}
400
401	/* Print TX Ring Summary */
402	if (!netdev || !netif_running(netdev))
403		goto exit;
404
405	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
406	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
407	for (n = 0; n < adapter->num_tx_queues; n++) {
408		struct igb_tx_buffer *buffer_info;
409		tx_ring = adapter->tx_ring[n];
410		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
411		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
412			n, tx_ring->next_to_use, tx_ring->next_to_clean,
413			(u64)dma_unmap_addr(buffer_info, dma),
414			dma_unmap_len(buffer_info, len),
415			buffer_info->next_to_watch,
416			(u64)buffer_info->time_stamp);
417	}
418
419	/* Print TX Rings */
420	if (!netif_msg_tx_done(adapter))
421		goto rx_ring_summary;
422
423	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
424
425	/* Transmit Descriptor Formats
426	 *
427	 * Advanced Transmit Descriptor
428	 *   +--------------------------------------------------------------+
429	 * 0 |         Buffer Address [63:0]                                |
430	 *   +--------------------------------------------------------------+
431	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
432	 *   +--------------------------------------------------------------+
433	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
434	 */
435
436	for (n = 0; n < adapter->num_tx_queues; n++) {
437		tx_ring = adapter->tx_ring[n];
438		pr_info("------------------------------------\n");
439		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
440		pr_info("------------------------------------\n");
441		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
442			"[bi->dma       ] leng  ntw timestamp        "
443			"bi->skb\n");
444
445		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
446			const char *next_desc;
447			struct igb_tx_buffer *buffer_info;
448			tx_desc = IGB_TX_DESC(tx_ring, i);
449			buffer_info = &tx_ring->tx_buffer_info[i];
450			u0 = (struct my_u0 *)tx_desc;
451			if (i == tx_ring->next_to_use &&
452			    i == tx_ring->next_to_clean)
453				next_desc = " NTC/U";
454			else if (i == tx_ring->next_to_use)
455				next_desc = " NTU";
456			else if (i == tx_ring->next_to_clean)
457				next_desc = " NTC";
458			else
459				next_desc = "";
460
461			pr_info("T [0x%03X]    %016llX %016llX %016llX"
462				" %04X  %p %016llX %p%s\n", i,
463				le64_to_cpu(u0->a),
464				le64_to_cpu(u0->b),
465				(u64)dma_unmap_addr(buffer_info, dma),
466				dma_unmap_len(buffer_info, len),
467				buffer_info->next_to_watch,
468				(u64)buffer_info->time_stamp,
469				buffer_info->skb, next_desc);
470
471			if (netif_msg_pktdata(adapter) && buffer_info->skb)
472				print_hex_dump(KERN_INFO, "",
473					DUMP_PREFIX_ADDRESS,
474					16, 1, buffer_info->skb->data,
475					dma_unmap_len(buffer_info, len),
476					true);
477		}
478	}
479
480	/* Print RX Rings Summary */
481rx_ring_summary:
482	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
483	pr_info("Queue [NTU] [NTC]\n");
484	for (n = 0; n < adapter->num_rx_queues; n++) {
485		rx_ring = adapter->rx_ring[n];
486		pr_info(" %5d %5X %5X\n",
487			n, rx_ring->next_to_use, rx_ring->next_to_clean);
488	}
489
490	/* Print RX Rings */
491	if (!netif_msg_rx_status(adapter))
492		goto exit;
493
494	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
495
496	/* Advanced Receive Descriptor (Read) Format
497	 *    63                                           1        0
498	 *    +-----------------------------------------------------+
499	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
500	 *    +----------------------------------------------+------+
501	 *  8 |       Header Buffer Address [63:1]           |  DD  |
502	 *    +-----------------------------------------------------+
503	 *
504	 *
505	 * Advanced Receive Descriptor (Write-Back) Format
506	 *
507	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
508	 *   +------------------------------------------------------+
509	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
510	 *   | Checksum   Ident  |   |           |    | Type | Type |
511	 *   +------------------------------------------------------+
512	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
513	 *   +------------------------------------------------------+
514	 *   63       48 47    32 31            20 19               0
515	 */
516
517	for (n = 0; n < adapter->num_rx_queues; n++) {
518		rx_ring = adapter->rx_ring[n];
519		pr_info("------------------------------------\n");
520		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
521		pr_info("------------------------------------\n");
522		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
523			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
524		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
525			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
526
527		for (i = 0; i < rx_ring->count; i++) {
528			const char *next_desc;
529			struct igb_rx_buffer *buffer_info;
530			buffer_info = &rx_ring->rx_buffer_info[i];
531			rx_desc = IGB_RX_DESC(rx_ring, i);
532			u0 = (struct my_u0 *)rx_desc;
533			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
534
535			if (i == rx_ring->next_to_use)
536				next_desc = " NTU";
537			else if (i == rx_ring->next_to_clean)
538				next_desc = " NTC";
539			else
540				next_desc = "";
541
542			if (staterr & E1000_RXD_STAT_DD) {
543				/* Descriptor Done */
544				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
545					"RWB", i,
546					le64_to_cpu(u0->a),
547					le64_to_cpu(u0->b),
548					next_desc);
549			} else {
550				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
551					"R  ", i,
552					le64_to_cpu(u0->a),
553					le64_to_cpu(u0->b),
554					(u64)buffer_info->dma,
555					next_desc);
556
557				if (netif_msg_pktdata(adapter) &&
558				    buffer_info->dma && buffer_info->page) {
559					print_hex_dump(KERN_INFO, "",
560					  DUMP_PREFIX_ADDRESS,
561					  16, 1,
562					  page_address(buffer_info->page) +
563						      buffer_info->page_offset,
564					  IGB_RX_BUFSZ, true);
565				}
566			}
567		}
568	}
569
570exit:
571	return;
572}
573
574/**
575 *  igb_get_i2c_data - Reads the I2C SDA data bit
576 *  @hw: pointer to hardware structure
577 *  @i2cctl: Current value of I2CCTL register
578 *
579 *  Returns the I2C data bit value
580 **/
581static int igb_get_i2c_data(void *data)
582{
583	struct igb_adapter *adapter = (struct igb_adapter *)data;
584	struct e1000_hw *hw = &adapter->hw;
585	s32 i2cctl = rd32(E1000_I2CPARAMS);
586
587	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
588}
589
590/**
591 *  igb_set_i2c_data - Sets the I2C data bit
592 *  @data: pointer to hardware structure
593 *  @state: I2C data value (0 or 1) to set
594 *
595 *  Sets the I2C data bit
596 **/
597static void igb_set_i2c_data(void *data, int state)
598{
599	struct igb_adapter *adapter = (struct igb_adapter *)data;
600	struct e1000_hw *hw = &adapter->hw;
601	s32 i2cctl = rd32(E1000_I2CPARAMS);
602
603	if (state)
604		i2cctl |= E1000_I2C_DATA_OUT;
605	else
606		i2cctl &= ~E1000_I2C_DATA_OUT;
607
608	i2cctl &= ~E1000_I2C_DATA_OE_N;
609	i2cctl |= E1000_I2C_CLK_OE_N;
610	wr32(E1000_I2CPARAMS, i2cctl);
611	wrfl();
612
613}
614
615/**
616 *  igb_set_i2c_clk - Sets the I2C SCL clock
617 *  @data: pointer to hardware structure
618 *  @state: state to set clock
619 *
620 *  Sets the I2C clock line to state
621 **/
622static void igb_set_i2c_clk(void *data, int state)
623{
624	struct igb_adapter *adapter = (struct igb_adapter *)data;
625	struct e1000_hw *hw = &adapter->hw;
626	s32 i2cctl = rd32(E1000_I2CPARAMS);
627
628	if (state) {
629		i2cctl |= E1000_I2C_CLK_OUT;
630		i2cctl &= ~E1000_I2C_CLK_OE_N;
631	} else {
632		i2cctl &= ~E1000_I2C_CLK_OUT;
633		i2cctl &= ~E1000_I2C_CLK_OE_N;
634	}
635	wr32(E1000_I2CPARAMS, i2cctl);
636	wrfl();
637}
638
639/**
640 *  igb_get_i2c_clk - Gets the I2C SCL clock state
641 *  @data: pointer to hardware structure
642 *
643 *  Gets the I2C clock state
644 **/
645static int igb_get_i2c_clk(void *data)
646{
647	struct igb_adapter *adapter = (struct igb_adapter *)data;
648	struct e1000_hw *hw = &adapter->hw;
649	s32 i2cctl = rd32(E1000_I2CPARAMS);
650
651	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
652}
653
654static const struct i2c_algo_bit_data igb_i2c_algo = {
655	.setsda		= igb_set_i2c_data,
656	.setscl		= igb_set_i2c_clk,
657	.getsda		= igb_get_i2c_data,
658	.getscl		= igb_get_i2c_clk,
659	.udelay		= 5,
660	.timeout	= 20,
661};
662
663/**
664 *  igb_get_hw_dev - return device
665 *  @hw: pointer to hardware structure
666 *
667 *  used by hardware layer to print debugging information
668 **/
669struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
670{
671	struct igb_adapter *adapter = hw->back;
672	return adapter->netdev;
673}
674
675/**
676 *  igb_init_module - Driver Registration Routine
677 *
678 *  igb_init_module is the first routine called when the driver is
679 *  loaded. All it does is register with the PCI subsystem.
680 **/
681static int __init igb_init_module(void)
682{
683	int ret;
684	pr_info("%s - version %s\n",
685	       igb_driver_string, igb_driver_version);
686
687	pr_info("%s\n", igb_copyright);
688
689#ifdef CONFIG_IGB_DCA
690	dca_register_notify(&dca_notifier);
691#endif
692	ret = pci_register_driver(&igb_driver);
693	return ret;
694}
695
696module_init(igb_init_module);
697
698/**
699 *  igb_exit_module - Driver Exit Cleanup Routine
700 *
701 *  igb_exit_module is called just before the driver is removed
702 *  from memory.
703 **/
704static void __exit igb_exit_module(void)
705{
706#ifdef CONFIG_IGB_DCA
707	dca_unregister_notify(&dca_notifier);
708#endif
709	pci_unregister_driver(&igb_driver);
710}
711
712module_exit(igb_exit_module);
713
714#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
715/**
716 *  igb_cache_ring_register - Descriptor ring to register mapping
717 *  @adapter: board private structure to initialize
718 *
719 *  Once we know the feature-set enabled for the device, we'll cache
720 *  the register offset the descriptor ring is assigned to.
721 **/
722static void igb_cache_ring_register(struct igb_adapter *adapter)
723{
724	int i = 0, j = 0;
725	u32 rbase_offset = adapter->vfs_allocated_count;
726
727	switch (adapter->hw.mac.type) {
728	case e1000_82576:
729		/* The queues are allocated for virtualization such that VF 0
730		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
731		 * In order to avoid collision we start at the first free queue
732		 * and continue consuming queues in the same sequence
733		 */
734		if (adapter->vfs_allocated_count) {
735			for (; i < adapter->rss_queues; i++)
736				adapter->rx_ring[i]->reg_idx = rbase_offset +
737							       Q_IDX_82576(i);
738		}
739	case e1000_82575:
740	case e1000_82580:
741	case e1000_i350:
742	case e1000_i354:
743	case e1000_i210:
744	case e1000_i211:
745	default:
746		for (; i < adapter->num_rx_queues; i++)
747			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
748		for (; j < adapter->num_tx_queues; j++)
749			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
750		break;
751	}
752}
753
754u32 igb_rd32(struct e1000_hw *hw, u32 reg)
755{
756	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
757	u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
758	u32 value = 0;
759
760	if (E1000_REMOVED(hw_addr))
761		return ~value;
762
763	value = readl(&hw_addr[reg]);
764
765	/* reads should not return all F's */
766	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
767		struct net_device *netdev = igb->netdev;
768		hw->hw_addr = NULL;
769		netif_device_detach(netdev);
770		netdev_err(netdev, "PCIe link lost, device now detached\n");
771	}
772
773	return value;
774}
775
776/**
777 *  igb_write_ivar - configure ivar for given MSI-X vector
778 *  @hw: pointer to the HW structure
779 *  @msix_vector: vector number we are allocating to a given ring
780 *  @index: row index of IVAR register to write within IVAR table
781 *  @offset: column offset of in IVAR, should be multiple of 8
782 *
783 *  This function is intended to handle the writing of the IVAR register
784 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
785 *  each containing an cause allocation for an Rx and Tx ring, and a
786 *  variable number of rows depending on the number of queues supported.
787 **/
788static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
789			   int index, int offset)
790{
791	u32 ivar = array_rd32(E1000_IVAR0, index);
792
793	/* clear any bits that are currently set */
794	ivar &= ~((u32)0xFF << offset);
795
796	/* write vector and valid bit */
797	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
798
799	array_wr32(E1000_IVAR0, index, ivar);
800}
801
802#define IGB_N0_QUEUE -1
803static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
804{
805	struct igb_adapter *adapter = q_vector->adapter;
806	struct e1000_hw *hw = &adapter->hw;
807	int rx_queue = IGB_N0_QUEUE;
808	int tx_queue = IGB_N0_QUEUE;
809	u32 msixbm = 0;
810
811	if (q_vector->rx.ring)
812		rx_queue = q_vector->rx.ring->reg_idx;
813	if (q_vector->tx.ring)
814		tx_queue = q_vector->tx.ring->reg_idx;
815
816	switch (hw->mac.type) {
817	case e1000_82575:
818		/* The 82575 assigns vectors using a bitmask, which matches the
819		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
820		 * or more queues to a vector, we write the appropriate bits
821		 * into the MSIXBM register for that vector.
822		 */
823		if (rx_queue > IGB_N0_QUEUE)
824			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
825		if (tx_queue > IGB_N0_QUEUE)
826			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
827		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
828			msixbm |= E1000_EIMS_OTHER;
829		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
830		q_vector->eims_value = msixbm;
831		break;
832	case e1000_82576:
833		/* 82576 uses a table that essentially consists of 2 columns
834		 * with 8 rows.  The ordering is column-major so we use the
835		 * lower 3 bits as the row index, and the 4th bit as the
836		 * column offset.
837		 */
838		if (rx_queue > IGB_N0_QUEUE)
839			igb_write_ivar(hw, msix_vector,
840				       rx_queue & 0x7,
841				       (rx_queue & 0x8) << 1);
842		if (tx_queue > IGB_N0_QUEUE)
843			igb_write_ivar(hw, msix_vector,
844				       tx_queue & 0x7,
845				       ((tx_queue & 0x8) << 1) + 8);
846		q_vector->eims_value = 1 << msix_vector;
847		break;
848	case e1000_82580:
849	case e1000_i350:
850	case e1000_i354:
851	case e1000_i210:
852	case e1000_i211:
853		/* On 82580 and newer adapters the scheme is similar to 82576
854		 * however instead of ordering column-major we have things
855		 * ordered row-major.  So we traverse the table by using
856		 * bit 0 as the column offset, and the remaining bits as the
857		 * row index.
858		 */
859		if (rx_queue > IGB_N0_QUEUE)
860			igb_write_ivar(hw, msix_vector,
861				       rx_queue >> 1,
862				       (rx_queue & 0x1) << 4);
863		if (tx_queue > IGB_N0_QUEUE)
864			igb_write_ivar(hw, msix_vector,
865				       tx_queue >> 1,
866				       ((tx_queue & 0x1) << 4) + 8);
867		q_vector->eims_value = 1 << msix_vector;
868		break;
869	default:
870		BUG();
871		break;
872	}
873
874	/* add q_vector eims value to global eims_enable_mask */
875	adapter->eims_enable_mask |= q_vector->eims_value;
876
877	/* configure q_vector to set itr on first interrupt */
878	q_vector->set_itr = 1;
879}
880
881/**
882 *  igb_configure_msix - Configure MSI-X hardware
883 *  @adapter: board private structure to initialize
884 *
885 *  igb_configure_msix sets up the hardware to properly
886 *  generate MSI-X interrupts.
887 **/
888static void igb_configure_msix(struct igb_adapter *adapter)
889{
890	u32 tmp;
891	int i, vector = 0;
892	struct e1000_hw *hw = &adapter->hw;
893
894	adapter->eims_enable_mask = 0;
895
896	/* set vector for other causes, i.e. link changes */
897	switch (hw->mac.type) {
898	case e1000_82575:
899		tmp = rd32(E1000_CTRL_EXT);
900		/* enable MSI-X PBA support*/
901		tmp |= E1000_CTRL_EXT_PBA_CLR;
902
903		/* Auto-Mask interrupts upon ICR read. */
904		tmp |= E1000_CTRL_EXT_EIAME;
905		tmp |= E1000_CTRL_EXT_IRCA;
906
907		wr32(E1000_CTRL_EXT, tmp);
908
909		/* enable msix_other interrupt */
910		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
911		adapter->eims_other = E1000_EIMS_OTHER;
912
913		break;
914
915	case e1000_82576:
916	case e1000_82580:
917	case e1000_i350:
918	case e1000_i354:
919	case e1000_i210:
920	case e1000_i211:
921		/* Turn on MSI-X capability first, or our settings
922		 * won't stick.  And it will take days to debug.
923		 */
924		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
925		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
926		     E1000_GPIE_NSICR);
927
928		/* enable msix_other interrupt */
929		adapter->eims_other = 1 << vector;
930		tmp = (vector++ | E1000_IVAR_VALID) << 8;
931
932		wr32(E1000_IVAR_MISC, tmp);
933		break;
934	default:
935		/* do nothing, since nothing else supports MSI-X */
936		break;
937	} /* switch (hw->mac.type) */
938
939	adapter->eims_enable_mask |= adapter->eims_other;
940
941	for (i = 0; i < adapter->num_q_vectors; i++)
942		igb_assign_vector(adapter->q_vector[i], vector++);
943
944	wrfl();
945}
946
947/**
948 *  igb_request_msix - Initialize MSI-X interrupts
949 *  @adapter: board private structure to initialize
950 *
951 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
952 *  kernel.
953 **/
954static int igb_request_msix(struct igb_adapter *adapter)
955{
956	struct net_device *netdev = adapter->netdev;
957	struct e1000_hw *hw = &adapter->hw;
958	int i, err = 0, vector = 0, free_vector = 0;
959
960	err = request_irq(adapter->msix_entries[vector].vector,
961			  igb_msix_other, 0, netdev->name, adapter);
962	if (err)
963		goto err_out;
964
965	for (i = 0; i < adapter->num_q_vectors; i++) {
966		struct igb_q_vector *q_vector = adapter->q_vector[i];
967
968		vector++;
969
970		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
971
972		if (q_vector->rx.ring && q_vector->tx.ring)
973			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
974				q_vector->rx.ring->queue_index);
975		else if (q_vector->tx.ring)
976			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
977				q_vector->tx.ring->queue_index);
978		else if (q_vector->rx.ring)
979			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
980				q_vector->rx.ring->queue_index);
981		else
982			sprintf(q_vector->name, "%s-unused", netdev->name);
983
984		err = request_irq(adapter->msix_entries[vector].vector,
985				  igb_msix_ring, 0, q_vector->name,
986				  q_vector);
987		if (err)
988			goto err_free;
989	}
990
991	igb_configure_msix(adapter);
992	return 0;
993
994err_free:
995	/* free already assigned IRQs */
996	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
997
998	vector--;
999	for (i = 0; i < vector; i++) {
1000		free_irq(adapter->msix_entries[free_vector++].vector,
1001			 adapter->q_vector[i]);
1002	}
1003err_out:
1004	return err;
1005}
1006
1007/**
1008 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1009 *  @adapter: board private structure to initialize
1010 *  @v_idx: Index of vector to be freed
1011 *
1012 *  This function frees the memory allocated to the q_vector.
1013 **/
1014static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1015{
1016	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1017
1018	adapter->q_vector[v_idx] = NULL;
1019
1020	/* igb_get_stats64() might access the rings on this vector,
1021	 * we must wait a grace period before freeing it.
1022	 */
1023	kfree_rcu(q_vector, rcu);
1024}
1025
1026/**
1027 *  igb_reset_q_vector - Reset config for interrupt vector
1028 *  @adapter: board private structure to initialize
1029 *  @v_idx: Index of vector to be reset
1030 *
1031 *  If NAPI is enabled it will delete any references to the
1032 *  NAPI struct. This is preparation for igb_free_q_vector.
1033 **/
1034static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1035{
1036	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1037
1038	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1039	 * allocated. So, q_vector is NULL so we should stop here.
1040	 */
1041	if (!q_vector)
1042		return;
1043
1044	if (q_vector->tx.ring)
1045		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1046
1047	if (q_vector->rx.ring)
1048		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1049
1050	netif_napi_del(&q_vector->napi);
1051
1052}
1053
1054static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1055{
1056	int v_idx = adapter->num_q_vectors;
1057
1058	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1059		pci_disable_msix(adapter->pdev);
1060	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1061		pci_disable_msi(adapter->pdev);
1062
1063	while (v_idx--)
1064		igb_reset_q_vector(adapter, v_idx);
1065}
1066
1067/**
1068 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1069 *  @adapter: board private structure to initialize
1070 *
1071 *  This function frees the memory allocated to the q_vectors.  In addition if
1072 *  NAPI is enabled it will delete any references to the NAPI struct prior
1073 *  to freeing the q_vector.
1074 **/
1075static void igb_free_q_vectors(struct igb_adapter *adapter)
1076{
1077	int v_idx = adapter->num_q_vectors;
1078
1079	adapter->num_tx_queues = 0;
1080	adapter->num_rx_queues = 0;
1081	adapter->num_q_vectors = 0;
1082
1083	while (v_idx--) {
1084		igb_reset_q_vector(adapter, v_idx);
1085		igb_free_q_vector(adapter, v_idx);
1086	}
1087}
1088
1089/**
1090 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1091 *  @adapter: board private structure to initialize
1092 *
1093 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1094 *  MSI-X interrupts allocated.
1095 */
1096static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1097{
1098	igb_free_q_vectors(adapter);
1099	igb_reset_interrupt_capability(adapter);
1100}
1101
1102/**
1103 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1104 *  @adapter: board private structure to initialize
1105 *  @msix: boolean value of MSIX capability
1106 *
1107 *  Attempt to configure interrupts using the best available
1108 *  capabilities of the hardware and kernel.
1109 **/
1110static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1111{
1112	int err;
1113	int numvecs, i;
1114
1115	if (!msix)
1116		goto msi_only;
1117	adapter->flags |= IGB_FLAG_HAS_MSIX;
1118
1119	/* Number of supported queues. */
1120	adapter->num_rx_queues = adapter->rss_queues;
1121	if (adapter->vfs_allocated_count)
1122		adapter->num_tx_queues = 1;
1123	else
1124		adapter->num_tx_queues = adapter->rss_queues;
1125
1126	/* start with one vector for every Rx queue */
1127	numvecs = adapter->num_rx_queues;
1128
1129	/* if Tx handler is separate add 1 for every Tx queue */
1130	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1131		numvecs += adapter->num_tx_queues;
1132
1133	/* store the number of vectors reserved for queues */
1134	adapter->num_q_vectors = numvecs;
1135
1136	/* add 1 vector for link status interrupts */
1137	numvecs++;
1138	for (i = 0; i < numvecs; i++)
1139		adapter->msix_entries[i].entry = i;
1140
1141	err = pci_enable_msix_range(adapter->pdev,
1142				    adapter->msix_entries,
1143				    numvecs,
1144				    numvecs);
1145	if (err > 0)
1146		return;
1147
1148	igb_reset_interrupt_capability(adapter);
1149
1150	/* If we can't do MSI-X, try MSI */
1151msi_only:
1152	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1153#ifdef CONFIG_PCI_IOV
1154	/* disable SR-IOV for non MSI-X configurations */
1155	if (adapter->vf_data) {
1156		struct e1000_hw *hw = &adapter->hw;
1157		/* disable iov and allow time for transactions to clear */
1158		pci_disable_sriov(adapter->pdev);
1159		msleep(500);
1160
1161		kfree(adapter->vf_data);
1162		adapter->vf_data = NULL;
1163		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1164		wrfl();
1165		msleep(100);
1166		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1167	}
1168#endif
1169	adapter->vfs_allocated_count = 0;
1170	adapter->rss_queues = 1;
1171	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1172	adapter->num_rx_queues = 1;
1173	adapter->num_tx_queues = 1;
1174	adapter->num_q_vectors = 1;
1175	if (!pci_enable_msi(adapter->pdev))
1176		adapter->flags |= IGB_FLAG_HAS_MSI;
1177}
1178
1179static void igb_add_ring(struct igb_ring *ring,
1180			 struct igb_ring_container *head)
1181{
1182	head->ring = ring;
1183	head->count++;
1184}
1185
1186/**
1187 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1188 *  @adapter: board private structure to initialize
1189 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1190 *  @v_idx: index of vector in adapter struct
1191 *  @txr_count: total number of Tx rings to allocate
1192 *  @txr_idx: index of first Tx ring to allocate
1193 *  @rxr_count: total number of Rx rings to allocate
1194 *  @rxr_idx: index of first Rx ring to allocate
1195 *
1196 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1197 **/
1198static int igb_alloc_q_vector(struct igb_adapter *adapter,
1199			      int v_count, int v_idx,
1200			      int txr_count, int txr_idx,
1201			      int rxr_count, int rxr_idx)
1202{
1203	struct igb_q_vector *q_vector;
1204	struct igb_ring *ring;
1205	int ring_count, size;
1206
1207	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1208	if (txr_count > 1 || rxr_count > 1)
1209		return -ENOMEM;
1210
1211	ring_count = txr_count + rxr_count;
1212	size = sizeof(struct igb_q_vector) +
1213	       (sizeof(struct igb_ring) * ring_count);
1214
1215	/* allocate q_vector and rings */
1216	q_vector = adapter->q_vector[v_idx];
1217	if (!q_vector)
1218		q_vector = kzalloc(size, GFP_KERNEL);
1219	if (!q_vector)
1220		return -ENOMEM;
1221
1222	/* initialize NAPI */
1223	netif_napi_add(adapter->netdev, &q_vector->napi,
1224		       igb_poll, 64);
1225
1226	/* tie q_vector and adapter together */
1227	adapter->q_vector[v_idx] = q_vector;
1228	q_vector->adapter = adapter;
1229
1230	/* initialize work limits */
1231	q_vector->tx.work_limit = adapter->tx_work_limit;
1232
1233	/* initialize ITR configuration */
1234	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1235	q_vector->itr_val = IGB_START_ITR;
1236
1237	/* initialize pointer to rings */
1238	ring = q_vector->ring;
1239
1240	/* intialize ITR */
1241	if (rxr_count) {
1242		/* rx or rx/tx vector */
1243		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1244			q_vector->itr_val = adapter->rx_itr_setting;
1245	} else {
1246		/* tx only vector */
1247		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1248			q_vector->itr_val = adapter->tx_itr_setting;
1249	}
1250
1251	if (txr_count) {
1252		/* assign generic ring traits */
1253		ring->dev = &adapter->pdev->dev;
1254		ring->netdev = adapter->netdev;
1255
1256		/* configure backlink on ring */
1257		ring->q_vector = q_vector;
1258
1259		/* update q_vector Tx values */
1260		igb_add_ring(ring, &q_vector->tx);
1261
1262		/* For 82575, context index must be unique per ring. */
1263		if (adapter->hw.mac.type == e1000_82575)
1264			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1265
1266		/* apply Tx specific ring traits */
1267		ring->count = adapter->tx_ring_count;
1268		ring->queue_index = txr_idx;
1269
1270		u64_stats_init(&ring->tx_syncp);
1271		u64_stats_init(&ring->tx_syncp2);
1272
1273		/* assign ring to adapter */
1274		adapter->tx_ring[txr_idx] = ring;
1275
1276		/* push pointer to next ring */
1277		ring++;
1278	}
1279
1280	if (rxr_count) {
1281		/* assign generic ring traits */
1282		ring->dev = &adapter->pdev->dev;
1283		ring->netdev = adapter->netdev;
1284
1285		/* configure backlink on ring */
1286		ring->q_vector = q_vector;
1287
1288		/* update q_vector Rx values */
1289		igb_add_ring(ring, &q_vector->rx);
1290
1291		/* set flag indicating ring supports SCTP checksum offload */
1292		if (adapter->hw.mac.type >= e1000_82576)
1293			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1294
1295		/*
1296		 * On i350, i354, i210, and i211, loopback VLAN packets
1297		 * have the tag byte-swapped.
1298		 */
1299		if (adapter->hw.mac.type >= e1000_i350)
1300			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1301
1302		/* apply Rx specific ring traits */
1303		ring->count = adapter->rx_ring_count;
1304		ring->queue_index = rxr_idx;
1305
1306		u64_stats_init(&ring->rx_syncp);
1307
1308		/* assign ring to adapter */
1309		adapter->rx_ring[rxr_idx] = ring;
1310	}
1311
1312	return 0;
1313}
1314
1315
1316/**
1317 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1318 *  @adapter: board private structure to initialize
1319 *
1320 *  We allocate one q_vector per queue interrupt.  If allocation fails we
1321 *  return -ENOMEM.
1322 **/
1323static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1324{
1325	int q_vectors = adapter->num_q_vectors;
1326	int rxr_remaining = adapter->num_rx_queues;
1327	int txr_remaining = adapter->num_tx_queues;
1328	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1329	int err;
1330
1331	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1332		for (; rxr_remaining; v_idx++) {
1333			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1334						 0, 0, 1, rxr_idx);
1335
1336			if (err)
1337				goto err_out;
1338
1339			/* update counts and index */
1340			rxr_remaining--;
1341			rxr_idx++;
1342		}
1343	}
1344
1345	for (; v_idx < q_vectors; v_idx++) {
1346		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1347		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1348		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1349					 tqpv, txr_idx, rqpv, rxr_idx);
1350
1351		if (err)
1352			goto err_out;
1353
1354		/* update counts and index */
1355		rxr_remaining -= rqpv;
1356		txr_remaining -= tqpv;
1357		rxr_idx++;
1358		txr_idx++;
1359	}
1360
1361	return 0;
1362
1363err_out:
1364	adapter->num_tx_queues = 0;
1365	adapter->num_rx_queues = 0;
1366	adapter->num_q_vectors = 0;
1367
1368	while (v_idx--)
1369		igb_free_q_vector(adapter, v_idx);
1370
1371	return -ENOMEM;
1372}
1373
1374/**
1375 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1376 *  @adapter: board private structure to initialize
1377 *  @msix: boolean value of MSIX capability
1378 *
1379 *  This function initializes the interrupts and allocates all of the queues.
1380 **/
1381static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1382{
1383	struct pci_dev *pdev = adapter->pdev;
1384	int err;
1385
1386	igb_set_interrupt_capability(adapter, msix);
1387
1388	err = igb_alloc_q_vectors(adapter);
1389	if (err) {
1390		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1391		goto err_alloc_q_vectors;
1392	}
1393
1394	igb_cache_ring_register(adapter);
1395
1396	return 0;
1397
1398err_alloc_q_vectors:
1399	igb_reset_interrupt_capability(adapter);
1400	return err;
1401}
1402
1403/**
1404 *  igb_request_irq - initialize interrupts
1405 *  @adapter: board private structure to initialize
1406 *
1407 *  Attempts to configure interrupts using the best available
1408 *  capabilities of the hardware and kernel.
1409 **/
1410static int igb_request_irq(struct igb_adapter *adapter)
1411{
1412	struct net_device *netdev = adapter->netdev;
1413	struct pci_dev *pdev = adapter->pdev;
1414	int err = 0;
1415
1416	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1417		err = igb_request_msix(adapter);
1418		if (!err)
1419			goto request_done;
1420		/* fall back to MSI */
1421		igb_free_all_tx_resources(adapter);
1422		igb_free_all_rx_resources(adapter);
1423
1424		igb_clear_interrupt_scheme(adapter);
1425		err = igb_init_interrupt_scheme(adapter, false);
1426		if (err)
1427			goto request_done;
1428
1429		igb_setup_all_tx_resources(adapter);
1430		igb_setup_all_rx_resources(adapter);
1431		igb_configure(adapter);
1432	}
1433
1434	igb_assign_vector(adapter->q_vector[0], 0);
1435
1436	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1437		err = request_irq(pdev->irq, igb_intr_msi, 0,
1438				  netdev->name, adapter);
1439		if (!err)
1440			goto request_done;
1441
1442		/* fall back to legacy interrupts */
1443		igb_reset_interrupt_capability(adapter);
1444		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1445	}
1446
1447	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1448			  netdev->name, adapter);
1449
1450	if (err)
1451		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1452			err);
1453
1454request_done:
1455	return err;
1456}
1457
1458static void igb_free_irq(struct igb_adapter *adapter)
1459{
1460	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1461		int vector = 0, i;
1462
1463		free_irq(adapter->msix_entries[vector++].vector, adapter);
1464
1465		for (i = 0; i < adapter->num_q_vectors; i++)
1466			free_irq(adapter->msix_entries[vector++].vector,
1467				 adapter->q_vector[i]);
1468	} else {
1469		free_irq(adapter->pdev->irq, adapter);
1470	}
1471}
1472
1473/**
1474 *  igb_irq_disable - Mask off interrupt generation on the NIC
1475 *  @adapter: board private structure
1476 **/
1477static void igb_irq_disable(struct igb_adapter *adapter)
1478{
1479	struct e1000_hw *hw = &adapter->hw;
1480
1481	/* we need to be careful when disabling interrupts.  The VFs are also
1482	 * mapped into these registers and so clearing the bits can cause
1483	 * issues on the VF drivers so we only need to clear what we set
1484	 */
1485	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1486		u32 regval = rd32(E1000_EIAM);
1487		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488		wr32(E1000_EIMC, adapter->eims_enable_mask);
1489		regval = rd32(E1000_EIAC);
1490		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491	}
1492
1493	wr32(E1000_IAM, 0);
1494	wr32(E1000_IMC, ~0);
1495	wrfl();
1496	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497		int i;
1498		for (i = 0; i < adapter->num_q_vectors; i++)
1499			synchronize_irq(adapter->msix_entries[i].vector);
1500	} else {
1501		synchronize_irq(adapter->pdev->irq);
1502	}
1503}
1504
1505/**
1506 *  igb_irq_enable - Enable default interrupt generation settings
1507 *  @adapter: board private structure
1508 **/
1509static void igb_irq_enable(struct igb_adapter *adapter)
1510{
1511	struct e1000_hw *hw = &adapter->hw;
1512
1513	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1514		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1515		u32 regval = rd32(E1000_EIAC);
1516		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1517		regval = rd32(E1000_EIAM);
1518		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1519		wr32(E1000_EIMS, adapter->eims_enable_mask);
1520		if (adapter->vfs_allocated_count) {
1521			wr32(E1000_MBVFIMR, 0xFF);
1522			ims |= E1000_IMS_VMMB;
1523		}
1524		wr32(E1000_IMS, ims);
1525	} else {
1526		wr32(E1000_IMS, IMS_ENABLE_MASK |
1527				E1000_IMS_DRSTA);
1528		wr32(E1000_IAM, IMS_ENABLE_MASK |
1529				E1000_IMS_DRSTA);
1530	}
1531}
1532
1533static void igb_update_mng_vlan(struct igb_adapter *adapter)
1534{
1535	struct e1000_hw *hw = &adapter->hw;
1536	u16 vid = adapter->hw.mng_cookie.vlan_id;
1537	u16 old_vid = adapter->mng_vlan_id;
1538
1539	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1540		/* add VID to filter table */
1541		igb_vfta_set(hw, vid, true);
1542		adapter->mng_vlan_id = vid;
1543	} else {
1544		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1545	}
1546
1547	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1548	    (vid != old_vid) &&
1549	    !test_bit(old_vid, adapter->active_vlans)) {
1550		/* remove VID from filter table */
1551		igb_vfta_set(hw, old_vid, false);
1552	}
1553}
1554
1555/**
1556 *  igb_release_hw_control - release control of the h/w to f/w
1557 *  @adapter: address of board private structure
1558 *
1559 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1560 *  For ASF and Pass Through versions of f/w this means that the
1561 *  driver is no longer loaded.
1562 **/
1563static void igb_release_hw_control(struct igb_adapter *adapter)
1564{
1565	struct e1000_hw *hw = &adapter->hw;
1566	u32 ctrl_ext;
1567
1568	/* Let firmware take over control of h/w */
1569	ctrl_ext = rd32(E1000_CTRL_EXT);
1570	wr32(E1000_CTRL_EXT,
1571			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1572}
1573
1574/**
1575 *  igb_get_hw_control - get control of the h/w from f/w
1576 *  @adapter: address of board private structure
1577 *
1578 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1579 *  For ASF and Pass Through versions of f/w this means that
1580 *  the driver is loaded.
1581 **/
1582static void igb_get_hw_control(struct igb_adapter *adapter)
1583{
1584	struct e1000_hw *hw = &adapter->hw;
1585	u32 ctrl_ext;
1586
1587	/* Let firmware know the driver has taken over */
1588	ctrl_ext = rd32(E1000_CTRL_EXT);
1589	wr32(E1000_CTRL_EXT,
1590			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1591}
1592
1593/**
1594 *  igb_configure - configure the hardware for RX and TX
1595 *  @adapter: private board structure
1596 **/
1597static void igb_configure(struct igb_adapter *adapter)
1598{
1599	struct net_device *netdev = adapter->netdev;
1600	int i;
1601
1602	igb_get_hw_control(adapter);
1603	igb_set_rx_mode(netdev);
1604
1605	igb_restore_vlan(adapter);
1606
1607	igb_setup_tctl(adapter);
1608	igb_setup_mrqc(adapter);
1609	igb_setup_rctl(adapter);
1610
1611	igb_configure_tx(adapter);
1612	igb_configure_rx(adapter);
1613
1614	igb_rx_fifo_flush_82575(&adapter->hw);
1615
1616	/* call igb_desc_unused which always leaves
1617	 * at least 1 descriptor unused to make sure
1618	 * next_to_use != next_to_clean
1619	 */
1620	for (i = 0; i < adapter->num_rx_queues; i++) {
1621		struct igb_ring *ring = adapter->rx_ring[i];
1622		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1623	}
1624}
1625
1626/**
1627 *  igb_power_up_link - Power up the phy/serdes link
1628 *  @adapter: address of board private structure
1629 **/
1630void igb_power_up_link(struct igb_adapter *adapter)
1631{
1632	igb_reset_phy(&adapter->hw);
1633
1634	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1635		igb_power_up_phy_copper(&adapter->hw);
1636	else
1637		igb_power_up_serdes_link_82575(&adapter->hw);
1638}
1639
1640/**
1641 *  igb_power_down_link - Power down the phy/serdes link
1642 *  @adapter: address of board private structure
1643 */
1644static void igb_power_down_link(struct igb_adapter *adapter)
1645{
1646	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1647		igb_power_down_phy_copper_82575(&adapter->hw);
1648	else
1649		igb_shutdown_serdes_link_82575(&adapter->hw);
1650}
1651
1652/**
1653 * Detect and switch function for Media Auto Sense
1654 * @adapter: address of the board private structure
1655 **/
1656static void igb_check_swap_media(struct igb_adapter *adapter)
1657{
1658	struct e1000_hw *hw = &adapter->hw;
1659	u32 ctrl_ext, connsw;
1660	bool swap_now = false;
1661
1662	ctrl_ext = rd32(E1000_CTRL_EXT);
1663	connsw = rd32(E1000_CONNSW);
1664
1665	/* need to live swap if current media is copper and we have fiber/serdes
1666	 * to go to.
1667	 */
1668
1669	if ((hw->phy.media_type == e1000_media_type_copper) &&
1670	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1671		swap_now = true;
1672	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
1673		/* copper signal takes time to appear */
1674		if (adapter->copper_tries < 4) {
1675			adapter->copper_tries++;
1676			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1677			wr32(E1000_CONNSW, connsw);
1678			return;
1679		} else {
1680			adapter->copper_tries = 0;
1681			if ((connsw & E1000_CONNSW_PHYSD) &&
1682			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
1683				swap_now = true;
1684				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1685				wr32(E1000_CONNSW, connsw);
1686			}
1687		}
1688	}
1689
1690	if (!swap_now)
1691		return;
1692
1693	switch (hw->phy.media_type) {
1694	case e1000_media_type_copper:
1695		netdev_info(adapter->netdev,
1696			"MAS: changing media to fiber/serdes\n");
1697		ctrl_ext |=
1698			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1699		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1700		adapter->copper_tries = 0;
1701		break;
1702	case e1000_media_type_internal_serdes:
1703	case e1000_media_type_fiber:
1704		netdev_info(adapter->netdev,
1705			"MAS: changing media to copper\n");
1706		ctrl_ext &=
1707			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1708		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1709		break;
1710	default:
1711		/* shouldn't get here during regular operation */
1712		netdev_err(adapter->netdev,
1713			"AMS: Invalid media type found, returning\n");
1714		break;
1715	}
1716	wr32(E1000_CTRL_EXT, ctrl_ext);
1717}
1718
1719/**
1720 *  igb_up - Open the interface and prepare it to handle traffic
1721 *  @adapter: board private structure
1722 **/
1723int igb_up(struct igb_adapter *adapter)
1724{
1725	struct e1000_hw *hw = &adapter->hw;
1726	int i;
1727
1728	/* hardware has been reset, we need to reload some things */
1729	igb_configure(adapter);
1730
1731	clear_bit(__IGB_DOWN, &adapter->state);
1732
1733	for (i = 0; i < adapter->num_q_vectors; i++)
1734		napi_enable(&(adapter->q_vector[i]->napi));
1735
1736	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1737		igb_configure_msix(adapter);
1738	else
1739		igb_assign_vector(adapter->q_vector[0], 0);
1740
1741	/* Clear any pending interrupts. */
1742	rd32(E1000_ICR);
1743	igb_irq_enable(adapter);
1744
1745	/* notify VFs that reset has been completed */
1746	if (adapter->vfs_allocated_count) {
1747		u32 reg_data = rd32(E1000_CTRL_EXT);
1748		reg_data |= E1000_CTRL_EXT_PFRSTD;
1749		wr32(E1000_CTRL_EXT, reg_data);
1750	}
1751
1752	netif_tx_start_all_queues(adapter->netdev);
1753
1754	/* start the watchdog. */
1755	hw->mac.get_link_status = 1;
1756	schedule_work(&adapter->watchdog_task);
1757
1758	if ((adapter->flags & IGB_FLAG_EEE) &&
1759	    (!hw->dev_spec._82575.eee_disable))
1760		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1761
1762	return 0;
1763}
1764
1765void igb_down(struct igb_adapter *adapter)
1766{
1767	struct net_device *netdev = adapter->netdev;
1768	struct e1000_hw *hw = &adapter->hw;
1769	u32 tctl, rctl;
1770	int i;
1771
1772	/* signal that we're down so the interrupt handler does not
1773	 * reschedule our watchdog timer
1774	 */
1775	set_bit(__IGB_DOWN, &adapter->state);
1776
1777	/* disable receives in the hardware */
1778	rctl = rd32(E1000_RCTL);
1779	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1780	/* flush and sleep below */
1781
1782	netif_tx_stop_all_queues(netdev);
1783
1784	/* disable transmits in the hardware */
1785	tctl = rd32(E1000_TCTL);
1786	tctl &= ~E1000_TCTL_EN;
1787	wr32(E1000_TCTL, tctl);
1788	/* flush both disables and wait for them to finish */
1789	wrfl();
1790	msleep(10);
1791
1792	igb_irq_disable(adapter);
1793
1794	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1795
1796	for (i = 0; i < adapter->num_q_vectors; i++) {
1797		napi_synchronize(&(adapter->q_vector[i]->napi));
1798		napi_disable(&(adapter->q_vector[i]->napi));
1799	}
1800
1801
1802	del_timer_sync(&adapter->watchdog_timer);
1803	del_timer_sync(&adapter->phy_info_timer);
1804
1805	netif_carrier_off(netdev);
1806
1807	/* record the stats before reset*/
1808	spin_lock(&adapter->stats64_lock);
1809	igb_update_stats(adapter, &adapter->stats64);
1810	spin_unlock(&adapter->stats64_lock);
1811
1812	adapter->link_speed = 0;
1813	adapter->link_duplex = 0;
1814
1815	if (!pci_channel_offline(adapter->pdev))
1816		igb_reset(adapter);
1817	igb_clean_all_tx_rings(adapter);
1818	igb_clean_all_rx_rings(adapter);
1819#ifdef CONFIG_IGB_DCA
1820
1821	/* since we reset the hardware DCA settings were cleared */
1822	igb_setup_dca(adapter);
1823#endif
1824}
1825
1826void igb_reinit_locked(struct igb_adapter *adapter)
1827{
1828	WARN_ON(in_interrupt());
1829	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1830		msleep(1);
1831	igb_down(adapter);
1832	igb_up(adapter);
1833	clear_bit(__IGB_RESETTING, &adapter->state);
1834}
1835
1836/** igb_enable_mas - Media Autosense re-enable after swap
1837 *
1838 * @adapter: adapter struct
1839 **/
1840static s32 igb_enable_mas(struct igb_adapter *adapter)
1841{
1842	struct e1000_hw *hw = &adapter->hw;
1843	u32 connsw;
1844	s32 ret_val = 0;
1845
1846	connsw = rd32(E1000_CONNSW);
1847	if (!(hw->phy.media_type == e1000_media_type_copper))
1848		return ret_val;
1849
1850	/* configure for SerDes media detect */
1851	if (!(connsw & E1000_CONNSW_SERDESD)) {
1852		connsw |= E1000_CONNSW_ENRGSRC;
1853		connsw |= E1000_CONNSW_AUTOSENSE_EN;
1854		wr32(E1000_CONNSW, connsw);
1855		wrfl();
1856	} else if (connsw & E1000_CONNSW_SERDESD) {
1857		/* already SerDes, no need to enable anything */
1858		return ret_val;
1859	} else {
1860		netdev_info(adapter->netdev,
1861			"MAS: Unable to configure feature, disabling..\n");
1862		adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1863	}
1864	return ret_val;
1865}
1866
1867void igb_reset(struct igb_adapter *adapter)
1868{
1869	struct pci_dev *pdev = adapter->pdev;
1870	struct e1000_hw *hw = &adapter->hw;
1871	struct e1000_mac_info *mac = &hw->mac;
1872	struct e1000_fc_info *fc = &hw->fc;
1873	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1874
1875	/* Repartition Pba for greater than 9k mtu
1876	 * To take effect CTRL.RST is required.
1877	 */
1878	switch (mac->type) {
1879	case e1000_i350:
1880	case e1000_i354:
1881	case e1000_82580:
1882		pba = rd32(E1000_RXPBS);
1883		pba = igb_rxpbs_adjust_82580(pba);
1884		break;
1885	case e1000_82576:
1886		pba = rd32(E1000_RXPBS);
1887		pba &= E1000_RXPBS_SIZE_MASK_82576;
1888		break;
1889	case e1000_82575:
1890	case e1000_i210:
1891	case e1000_i211:
1892	default:
1893		pba = E1000_PBA_34K;
1894		break;
1895	}
1896
1897	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1898	    (mac->type < e1000_82576)) {
1899		/* adjust PBA for jumbo frames */
1900		wr32(E1000_PBA, pba);
1901
1902		/* To maintain wire speed transmits, the Tx FIFO should be
1903		 * large enough to accommodate two full transmit packets,
1904		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1905		 * the Rx FIFO should be large enough to accommodate at least
1906		 * one full receive packet and is similarly rounded up and
1907		 * expressed in KB.
1908		 */
1909		pba = rd32(E1000_PBA);
1910		/* upper 16 bits has Tx packet buffer allocation size in KB */
1911		tx_space = pba >> 16;
1912		/* lower 16 bits has Rx packet buffer allocation size in KB */
1913		pba &= 0xffff;
1914		/* the Tx fifo also stores 16 bytes of information about the Tx
1915		 * but don't include ethernet FCS because hardware appends it
1916		 */
1917		min_tx_space = (adapter->max_frame_size +
1918				sizeof(union e1000_adv_tx_desc) -
1919				ETH_FCS_LEN) * 2;
1920		min_tx_space = ALIGN(min_tx_space, 1024);
1921		min_tx_space >>= 10;
1922		/* software strips receive CRC, so leave room for it */
1923		min_rx_space = adapter->max_frame_size;
1924		min_rx_space = ALIGN(min_rx_space, 1024);
1925		min_rx_space >>= 10;
1926
1927		/* If current Tx allocation is less than the min Tx FIFO size,
1928		 * and the min Tx FIFO size is less than the current Rx FIFO
1929		 * allocation, take space away from current Rx allocation
1930		 */
1931		if (tx_space < min_tx_space &&
1932		    ((min_tx_space - tx_space) < pba)) {
1933			pba = pba - (min_tx_space - tx_space);
1934
1935			/* if short on Rx space, Rx wins and must trump Tx
1936			 * adjustment
1937			 */
1938			if (pba < min_rx_space)
1939				pba = min_rx_space;
1940		}
1941		wr32(E1000_PBA, pba);
1942	}
1943
1944	/* flow control settings */
1945	/* The high water mark must be low enough to fit one full frame
1946	 * (or the size used for early receive) above it in the Rx FIFO.
1947	 * Set it to the lower of:
1948	 * - 90% of the Rx FIFO size, or
1949	 * - the full Rx FIFO size minus one full frame
1950	 */
1951	hwm = min(((pba << 10) * 9 / 10),
1952			((pba << 10) - 2 * adapter->max_frame_size));
1953
1954	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1955	fc->low_water = fc->high_water - 16;
1956	fc->pause_time = 0xFFFF;
1957	fc->send_xon = 1;
1958	fc->current_mode = fc->requested_mode;
1959
1960	/* disable receive for all VFs and wait one second */
1961	if (adapter->vfs_allocated_count) {
1962		int i;
1963		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1964			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1965
1966		/* ping all the active vfs to let them know we are going down */
1967		igb_ping_all_vfs(adapter);
1968
1969		/* disable transmits and receives */
1970		wr32(E1000_VFRE, 0);
1971		wr32(E1000_VFTE, 0);
1972	}
1973
1974	/* Allow time for pending master requests to run */
1975	hw->mac.ops.reset_hw(hw);
1976	wr32(E1000_WUC, 0);
1977
1978	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1979		/* need to resetup here after media swap */
1980		adapter->ei.get_invariants(hw);
1981		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1982	}
1983	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1984		if (igb_enable_mas(adapter))
1985			dev_err(&pdev->dev,
1986				"Error enabling Media Auto Sense\n");
1987	}
1988	if (hw->mac.ops.init_hw(hw))
1989		dev_err(&pdev->dev, "Hardware Error\n");
1990
1991	/* Flow control settings reset on hardware reset, so guarantee flow
1992	 * control is off when forcing speed.
1993	 */
1994	if (!hw->mac.autoneg)
1995		igb_force_mac_fc(hw);
1996
1997	igb_init_dmac(adapter, pba);
1998#ifdef CONFIG_IGB_HWMON
1999	/* Re-initialize the thermal sensor on i350 devices. */
2000	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2001		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2002			/* If present, re-initialize the external thermal sensor
2003			 * interface.
2004			 */
2005			if (adapter->ets)
2006				mac->ops.init_thermal_sensor_thresh(hw);
2007		}
2008	}
2009#endif
2010	/* Re-establish EEE setting */
2011	if (hw->phy.media_type == e1000_media_type_copper) {
2012		switch (mac->type) {
2013		case e1000_i350:
2014		case e1000_i210:
2015		case e1000_i211:
2016			igb_set_eee_i350(hw);
2017			break;
2018		case e1000_i354:
2019			igb_set_eee_i354(hw);
2020			break;
2021		default:
2022			break;
2023		}
2024	}
2025	if (!netif_running(adapter->netdev))
2026		igb_power_down_link(adapter);
2027
2028	igb_update_mng_vlan(adapter);
2029
2030	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2031	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2032
2033	/* Re-enable PTP, where applicable. */
2034	igb_ptp_reset(adapter);
2035
2036	igb_get_phy_info(hw);
2037}
2038
2039static netdev_features_t igb_fix_features(struct net_device *netdev,
2040	netdev_features_t features)
2041{
2042	/* Since there is no support for separate Rx/Tx vlan accel
2043	 * enable/disable make sure Tx flag is always in same state as Rx.
2044	 */
2045	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2046		features |= NETIF_F_HW_VLAN_CTAG_TX;
2047	else
2048		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2049
2050	return features;
2051}
2052
2053static int igb_set_features(struct net_device *netdev,
2054	netdev_features_t features)
2055{
2056	netdev_features_t changed = netdev->features ^ features;
2057	struct igb_adapter *adapter = netdev_priv(netdev);
2058
2059	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2060		igb_vlan_mode(netdev, features);
2061
2062	if (!(changed & NETIF_F_RXALL))
2063		return 0;
2064
2065	netdev->features = features;
2066
2067	if (netif_running(netdev))
2068		igb_reinit_locked(adapter);
2069	else
2070		igb_reset(adapter);
2071
2072	return 0;
2073}
2074
2075static const struct net_device_ops igb_netdev_ops = {
2076	.ndo_open		= igb_open,
2077	.ndo_stop		= igb_close,
2078	.ndo_start_xmit		= igb_xmit_frame,
2079	.ndo_get_stats64	= igb_get_stats64,
2080	.ndo_set_rx_mode	= igb_set_rx_mode,
2081	.ndo_set_mac_address	= igb_set_mac,
2082	.ndo_change_mtu		= igb_change_mtu,
2083	.ndo_do_ioctl		= igb_ioctl,
2084	.ndo_tx_timeout		= igb_tx_timeout,
2085	.ndo_validate_addr	= eth_validate_addr,
2086	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2087	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2088	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2089	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2090	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
2091	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2092	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2093#ifdef CONFIG_NET_POLL_CONTROLLER
2094	.ndo_poll_controller	= igb_netpoll,
2095#endif
2096	.ndo_fix_features	= igb_fix_features,
2097	.ndo_set_features	= igb_set_features,
2098};
2099
2100/**
2101 * igb_set_fw_version - Configure version string for ethtool
2102 * @adapter: adapter struct
2103 **/
2104void igb_set_fw_version(struct igb_adapter *adapter)
2105{
2106	struct e1000_hw *hw = &adapter->hw;
2107	struct e1000_fw_version fw;
2108
2109	igb_get_fw_version(hw, &fw);
2110
2111	switch (hw->mac.type) {
2112	case e1000_i210:
2113	case e1000_i211:
2114		if (!(igb_get_flash_presence_i210(hw))) {
2115			snprintf(adapter->fw_version,
2116				 sizeof(adapter->fw_version),
2117				 "%2d.%2d-%d",
2118				 fw.invm_major, fw.invm_minor,
2119				 fw.invm_img_type);
2120			break;
2121		}
2122		/* fall through */
2123	default:
2124		/* if option is rom valid, display its version too */
2125		if (fw.or_valid) {
2126			snprintf(adapter->fw_version,
2127				 sizeof(adapter->fw_version),
2128				 "%d.%d, 0x%08x, %d.%d.%d",
2129				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2130				 fw.or_major, fw.or_build, fw.or_patch);
2131		/* no option rom */
2132		} else if (fw.etrack_id != 0X0000) {
2133			snprintf(adapter->fw_version,
2134			    sizeof(adapter->fw_version),
2135			    "%d.%d, 0x%08x",
2136			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2137		} else {
2138		snprintf(adapter->fw_version,
2139		    sizeof(adapter->fw_version),
2140		    "%d.%d.%d",
2141		    fw.eep_major, fw.eep_minor, fw.eep_build);
2142		}
2143		break;
2144	}
2145	return;
2146}
2147
2148/**
2149 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2150 *
2151 * @adapter: adapter struct
2152 **/
2153static void igb_init_mas(struct igb_adapter *adapter)
2154{
2155	struct e1000_hw *hw = &adapter->hw;
2156	u16 eeprom_data;
2157
2158	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2159	switch (hw->bus.func) {
2160	case E1000_FUNC_0:
2161		if (eeprom_data & IGB_MAS_ENABLE_0) {
2162			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2163			netdev_info(adapter->netdev,
2164				"MAS: Enabling Media Autosense for port %d\n",
2165				hw->bus.func);
2166		}
2167		break;
2168	case E1000_FUNC_1:
2169		if (eeprom_data & IGB_MAS_ENABLE_1) {
2170			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2171			netdev_info(adapter->netdev,
2172				"MAS: Enabling Media Autosense for port %d\n",
2173				hw->bus.func);
2174		}
2175		break;
2176	case E1000_FUNC_2:
2177		if (eeprom_data & IGB_MAS_ENABLE_2) {
2178			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2179			netdev_info(adapter->netdev,
2180				"MAS: Enabling Media Autosense for port %d\n",
2181				hw->bus.func);
2182		}
2183		break;
2184	case E1000_FUNC_3:
2185		if (eeprom_data & IGB_MAS_ENABLE_3) {
2186			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2187			netdev_info(adapter->netdev,
2188				"MAS: Enabling Media Autosense for port %d\n",
2189				hw->bus.func);
2190		}
2191		break;
2192	default:
2193		/* Shouldn't get here */
2194		netdev_err(adapter->netdev,
2195			"MAS: Invalid port configuration, returning\n");
2196		break;
2197	}
2198}
2199
2200/**
2201 *  igb_init_i2c - Init I2C interface
2202 *  @adapter: pointer to adapter structure
2203 **/
2204static s32 igb_init_i2c(struct igb_adapter *adapter)
2205{
2206	s32 status = E1000_SUCCESS;
2207
2208	/* I2C interface supported on i350 devices */
2209	if (adapter->hw.mac.type != e1000_i350)
2210		return E1000_SUCCESS;
2211
2212	/* Initialize the i2c bus which is controlled by the registers.
2213	 * This bus will use the i2c_algo_bit structue that implements
2214	 * the protocol through toggling of the 4 bits in the register.
2215	 */
2216	adapter->i2c_adap.owner = THIS_MODULE;
2217	adapter->i2c_algo = igb_i2c_algo;
2218	adapter->i2c_algo.data = adapter;
2219	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2220	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2221	strlcpy(adapter->i2c_adap.name, "igb BB",
2222		sizeof(adapter->i2c_adap.name));
2223	status = i2c_bit_add_bus(&adapter->i2c_adap);
2224	return status;
2225}
2226
2227/**
2228 *  igb_probe - Device Initialization Routine
2229 *  @pdev: PCI device information struct
2230 *  @ent: entry in igb_pci_tbl
2231 *
2232 *  Returns 0 on success, negative on failure
2233 *
2234 *  igb_probe initializes an adapter identified by a pci_dev structure.
2235 *  The OS initialization, configuring of the adapter private structure,
2236 *  and a hardware reset occur.
2237 **/
2238static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2239{
2240	struct net_device *netdev;
2241	struct igb_adapter *adapter;
2242	struct e1000_hw *hw;
2243	u16 eeprom_data = 0;
2244	s32 ret_val;
2245	static int global_quad_port_a; /* global quad port a indication */
2246	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2247	int err, pci_using_dac;
2248	u8 part_str[E1000_PBANUM_LENGTH];
2249
2250	/* Catch broken hardware that put the wrong VF device ID in
2251	 * the PCIe SR-IOV capability.
2252	 */
2253	if (pdev->is_virtfn) {
2254		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2255			pci_name(pdev), pdev->vendor, pdev->device);
2256		return -EINVAL;
2257	}
2258
2259	err = pci_enable_device_mem(pdev);
2260	if (err)
2261		return err;
2262
2263	pci_using_dac = 0;
2264	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2265	if (!err) {
2266		pci_using_dac = 1;
2267	} else {
2268		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2269		if (err) {
2270			dev_err(&pdev->dev,
2271				"No usable DMA configuration, aborting\n");
2272			goto err_dma;
2273		}
2274	}
2275
2276	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2277					   IORESOURCE_MEM),
2278					   igb_driver_name);
2279	if (err)
2280		goto err_pci_reg;
2281
2282	pci_enable_pcie_error_reporting(pdev);
2283
2284	pci_set_master(pdev);
2285	pci_save_state(pdev);
2286
2287	err = -ENOMEM;
2288	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2289				   IGB_MAX_TX_QUEUES);
2290	if (!netdev)
2291		goto err_alloc_etherdev;
2292
2293	SET_NETDEV_DEV(netdev, &pdev->dev);
2294
2295	pci_set_drvdata(pdev, netdev);
2296	adapter = netdev_priv(netdev);
2297	adapter->netdev = netdev;
2298	adapter->pdev = pdev;
2299	hw = &adapter->hw;
2300	hw->back = adapter;
2301	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2302
2303	err = -EIO;
2304	hw->hw_addr = pci_iomap(pdev, 0, 0);
2305	if (!hw->hw_addr)
2306		goto err_ioremap;
2307
2308	netdev->netdev_ops = &igb_netdev_ops;
2309	igb_set_ethtool_ops(netdev);
2310	netdev->watchdog_timeo = 5 * HZ;
2311
2312	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2313
2314	netdev->mem_start = pci_resource_start(pdev, 0);
2315	netdev->mem_end = pci_resource_end(pdev, 0);
2316
2317	/* PCI config space info */
2318	hw->vendor_id = pdev->vendor;
2319	hw->device_id = pdev->device;
2320	hw->revision_id = pdev->revision;
2321	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2322	hw->subsystem_device_id = pdev->subsystem_device;
2323
2324	/* Copy the default MAC, PHY and NVM function pointers */
2325	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2326	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2327	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2328	/* Initialize skew-specific constants */
2329	err = ei->get_invariants(hw);
2330	if (err)
2331		goto err_sw_init;
2332
2333	/* setup the private structure */
2334	err = igb_sw_init(adapter);
2335	if (err)
2336		goto err_sw_init;
2337
2338	igb_get_bus_info_pcie(hw);
2339
2340	hw->phy.autoneg_wait_to_complete = false;
2341
2342	/* Copper options */
2343	if (hw->phy.media_type == e1000_media_type_copper) {
2344		hw->phy.mdix = AUTO_ALL_MODES;
2345		hw->phy.disable_polarity_correction = false;
2346		hw->phy.ms_type = e1000_ms_hw_default;
2347	}
2348
2349	if (igb_check_reset_block(hw))
2350		dev_info(&pdev->dev,
2351			"PHY reset is blocked due to SOL/IDER session.\n");
2352
2353	/* features is initialized to 0 in allocation, it might have bits
2354	 * set by igb_sw_init so we should use an or instead of an
2355	 * assignment.
2356	 */
2357	netdev->features |= NETIF_F_SG |
2358			    NETIF_F_IP_CSUM |
2359			    NETIF_F_IPV6_CSUM |
2360			    NETIF_F_TSO |
2361			    NETIF_F_TSO6 |
2362			    NETIF_F_RXHASH |
2363			    NETIF_F_RXCSUM |
2364			    NETIF_F_HW_VLAN_CTAG_RX |
2365			    NETIF_F_HW_VLAN_CTAG_TX;
2366
2367	/* copy netdev features into list of user selectable features */
2368	netdev->hw_features |= netdev->features;
2369	netdev->hw_features |= NETIF_F_RXALL;
2370
2371	/* set this bit last since it cannot be part of hw_features */
2372	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2373
2374	netdev->vlan_features |= NETIF_F_TSO |
2375				 NETIF_F_TSO6 |
2376				 NETIF_F_IP_CSUM |
2377				 NETIF_F_IPV6_CSUM |
2378				 NETIF_F_SG;
2379
2380	netdev->priv_flags |= IFF_SUPP_NOFCS;
2381
2382	if (pci_using_dac) {
2383		netdev->features |= NETIF_F_HIGHDMA;
2384		netdev->vlan_features |= NETIF_F_HIGHDMA;
2385	}
2386
2387	if (hw->mac.type >= e1000_82576) {
2388		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2389		netdev->features |= NETIF_F_SCTP_CSUM;
2390	}
2391
2392	netdev->priv_flags |= IFF_UNICAST_FLT;
2393
2394	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2395
2396	/* before reading the NVM, reset the controller to put the device in a
2397	 * known good starting state
2398	 */
2399	hw->mac.ops.reset_hw(hw);
2400
2401	/* make sure the NVM is good , i211/i210 parts can have special NVM
2402	 * that doesn't contain a checksum
2403	 */
2404	switch (hw->mac.type) {
2405	case e1000_i210:
2406	case e1000_i211:
2407		if (igb_get_flash_presence_i210(hw)) {
2408			if (hw->nvm.ops.validate(hw) < 0) {
2409				dev_err(&pdev->dev,
2410					"The NVM Checksum Is Not Valid\n");
2411				err = -EIO;
2412				goto err_eeprom;
2413			}
2414		}
2415		break;
2416	default:
2417		if (hw->nvm.ops.validate(hw) < 0) {
2418			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2419			err = -EIO;
2420			goto err_eeprom;
2421		}
2422		break;
2423	}
2424
2425	/* copy the MAC address out of the NVM */
2426	if (hw->mac.ops.read_mac_addr(hw))
2427		dev_err(&pdev->dev, "NVM Read Error\n");
2428
2429	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2430
2431	if (!is_valid_ether_addr(netdev->dev_addr)) {
2432		dev_err(&pdev->dev, "Invalid MAC Address\n");
2433		err = -EIO;
2434		goto err_eeprom;
2435	}
2436
2437	/* get firmware version for ethtool -i */
2438	igb_set_fw_version(adapter);
2439
2440	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2441		    (unsigned long) adapter);
2442	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2443		    (unsigned long) adapter);
2444
2445	INIT_WORK(&adapter->reset_task, igb_reset_task);
2446	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2447
2448	/* Initialize link properties that are user-changeable */
2449	adapter->fc_autoneg = true;
2450	hw->mac.autoneg = true;
2451	hw->phy.autoneg_advertised = 0x2f;
2452
2453	hw->fc.requested_mode = e1000_fc_default;
2454	hw->fc.current_mode = e1000_fc_default;
2455
2456	igb_validate_mdi_setting(hw);
2457
2458	/* By default, support wake on port A */
2459	if (hw->bus.func == 0)
2460		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2461
2462	/* Check the NVM for wake support on non-port A ports */
2463	if (hw->mac.type >= e1000_82580)
2464		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2465				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2466				 &eeprom_data);
2467	else if (hw->bus.func == 1)
2468		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2469
2470	if (eeprom_data & IGB_EEPROM_APME)
2471		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2472
2473	/* now that we have the eeprom settings, apply the special cases where
2474	 * the eeprom may be wrong or the board simply won't support wake on
2475	 * lan on a particular port
2476	 */
2477	switch (pdev->device) {
2478	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2479		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2480		break;
2481	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2482	case E1000_DEV_ID_82576_FIBER:
2483	case E1000_DEV_ID_82576_SERDES:
2484		/* Wake events only supported on port A for dual fiber
2485		 * regardless of eeprom setting
2486		 */
2487		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2488			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2489		break;
2490	case E1000_DEV_ID_82576_QUAD_COPPER:
2491	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2492		/* if quad port adapter, disable WoL on all but port A */
2493		if (global_quad_port_a != 0)
2494			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2495		else
2496			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2497		/* Reset for multiple quad port adapters */
2498		if (++global_quad_port_a == 4)
2499			global_quad_port_a = 0;
2500		break;
2501	default:
2502		/* If the device can't wake, don't set software support */
2503		if (!device_can_wakeup(&adapter->pdev->dev))
2504			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2505	}
2506
2507	/* initialize the wol settings based on the eeprom settings */
2508	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2509		adapter->wol |= E1000_WUFC_MAG;
2510
2511	/* Some vendors want WoL disabled by default, but still supported */
2512	if ((hw->mac.type == e1000_i350) &&
2513	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2514		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2515		adapter->wol = 0;
2516	}
2517
2518	device_set_wakeup_enable(&adapter->pdev->dev,
2519				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2520
2521	/* reset the hardware with the new settings */
2522	igb_reset(adapter);
2523
2524	/* Init the I2C interface */
2525	err = igb_init_i2c(adapter);
2526	if (err) {
2527		dev_err(&pdev->dev, "failed to init i2c interface\n");
2528		goto err_eeprom;
2529	}
2530
2531	/* let the f/w know that the h/w is now under the control of the
2532	 * driver. */
2533	igb_get_hw_control(adapter);
2534
2535	strcpy(netdev->name, "eth%d");
2536	err = register_netdev(netdev);
2537	if (err)
2538		goto err_register;
2539
2540	/* carrier off reporting is important to ethtool even BEFORE open */
2541	netif_carrier_off(netdev);
2542
2543#ifdef CONFIG_IGB_DCA
2544	if (dca_add_requester(&pdev->dev) == 0) {
2545		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2546		dev_info(&pdev->dev, "DCA enabled\n");
2547		igb_setup_dca(adapter);
2548	}
2549
2550#endif
2551#ifdef CONFIG_IGB_HWMON
2552	/* Initialize the thermal sensor on i350 devices. */
2553	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2554		u16 ets_word;
2555
2556		/* Read the NVM to determine if this i350 device supports an
2557		 * external thermal sensor.
2558		 */
2559		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2560		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2561			adapter->ets = true;
2562		else
2563			adapter->ets = false;
2564		if (igb_sysfs_init(adapter))
2565			dev_err(&pdev->dev,
2566				"failed to allocate sysfs resources\n");
2567	} else {
2568		adapter->ets = false;
2569	}
2570#endif
2571	/* Check if Media Autosense is enabled */
2572	adapter->ei = *ei;
2573	if (hw->dev_spec._82575.mas_capable)
2574		igb_init_mas(adapter);
2575
2576	/* do hw tstamp init after resetting */
2577	igb_ptp_init(adapter);
2578
2579	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2580	/* print bus type/speed/width info, not applicable to i354 */
2581	if (hw->mac.type != e1000_i354) {
2582		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2583			 netdev->name,
2584			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2585			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2586			   "unknown"),
2587			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2588			  "Width x4" :
2589			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2590			  "Width x2" :
2591			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2592			  "Width x1" : "unknown"), netdev->dev_addr);
2593	}
2594
2595	if ((hw->mac.type >= e1000_i210 ||
2596	     igb_get_flash_presence_i210(hw))) {
2597		ret_val = igb_read_part_string(hw, part_str,
2598					       E1000_PBANUM_LENGTH);
2599	} else {
2600		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2601	}
2602
2603	if (ret_val)
2604		strcpy(part_str, "Unknown");
2605	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2606	dev_info(&pdev->dev,
2607		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2608		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2609		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2610		adapter->num_rx_queues, adapter->num_tx_queues);
2611	if (hw->phy.media_type == e1000_media_type_copper) {
2612		switch (hw->mac.type) {
2613		case e1000_i350:
2614		case e1000_i210:
2615		case e1000_i211:
2616			/* Enable EEE for internal copper PHY devices */
2617			err = igb_set_eee_i350(hw);
2618			if ((!err) &&
2619			    (!hw->dev_spec._82575.eee_disable)) {
2620				adapter->eee_advert =
2621					MDIO_EEE_100TX | MDIO_EEE_1000T;
2622				adapter->flags |= IGB_FLAG_EEE;
2623			}
2624			break;
2625		case e1000_i354:
2626			if ((rd32(E1000_CTRL_EXT) &
2627			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2628				err = igb_set_eee_i354(hw);
2629				if ((!err) &&
2630					(!hw->dev_spec._82575.eee_disable)) {
2631					adapter->eee_advert =
2632					   MDIO_EEE_100TX | MDIO_EEE_1000T;
2633					adapter->flags |= IGB_FLAG_EEE;
2634				}
2635			}
2636			break;
2637		default:
2638			break;
2639		}
2640	}
2641	pm_runtime_put_noidle(&pdev->dev);
2642	return 0;
2643
2644err_register:
2645	igb_release_hw_control(adapter);
2646	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2647err_eeprom:
2648	if (!igb_check_reset_block(hw))
2649		igb_reset_phy(hw);
2650
2651	if (hw->flash_address)
2652		iounmap(hw->flash_address);
2653err_sw_init:
2654	igb_clear_interrupt_scheme(adapter);
2655	iounmap(hw->hw_addr);
2656err_ioremap:
2657	free_netdev(netdev);
2658err_alloc_etherdev:
2659	pci_release_selected_regions(pdev,
2660				     pci_select_bars(pdev, IORESOURCE_MEM));
2661err_pci_reg:
2662err_dma:
2663	pci_disable_device(pdev);
2664	return err;
2665}
2666
2667#ifdef CONFIG_PCI_IOV
2668static int igb_disable_sriov(struct pci_dev *pdev)
2669{
2670	struct net_device *netdev = pci_get_drvdata(pdev);
2671	struct igb_adapter *adapter = netdev_priv(netdev);
2672	struct e1000_hw *hw = &adapter->hw;
2673
2674	/* reclaim resources allocated to VFs */
2675	if (adapter->vf_data) {
2676		/* disable iov and allow time for transactions to clear */
2677		if (pci_vfs_assigned(pdev)) {
2678			dev_warn(&pdev->dev,
2679				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2680			return -EPERM;
2681		} else {
2682			pci_disable_sriov(pdev);
2683			msleep(500);
2684		}
2685
2686		kfree(adapter->vf_data);
2687		adapter->vf_data = NULL;
2688		adapter->vfs_allocated_count = 0;
2689		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2690		wrfl();
2691		msleep(100);
2692		dev_info(&pdev->dev, "IOV Disabled\n");
2693
2694		/* Re-enable DMA Coalescing flag since IOV is turned off */
2695		adapter->flags |= IGB_FLAG_DMAC;
2696	}
2697
2698	return 0;
2699}
2700
2701static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2702{
2703	struct net_device *netdev = pci_get_drvdata(pdev);
2704	struct igb_adapter *adapter = netdev_priv(netdev);
2705	int old_vfs = pci_num_vf(pdev);
2706	int err = 0;
2707	int i;
2708
2709	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2710		err = -EPERM;
2711		goto out;
2712	}
2713	if (!num_vfs)
2714		goto out;
2715
2716	if (old_vfs) {
2717		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2718			 old_vfs, max_vfs);
2719		adapter->vfs_allocated_count = old_vfs;
2720	} else
2721		adapter->vfs_allocated_count = num_vfs;
2722
2723	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2724				sizeof(struct vf_data_storage), GFP_KERNEL);
2725
2726	/* if allocation failed then we do not support SR-IOV */
2727	if (!adapter->vf_data) {
2728		adapter->vfs_allocated_count = 0;
2729		dev_err(&pdev->dev,
2730			"Unable to allocate memory for VF Data Storage\n");
2731		err = -ENOMEM;
2732		goto out;
2733	}
2734
2735	/* only call pci_enable_sriov() if no VFs are allocated already */
2736	if (!old_vfs) {
2737		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2738		if (err)
2739			goto err_out;
2740	}
2741	dev_info(&pdev->dev, "%d VFs allocated\n",
2742		 adapter->vfs_allocated_count);
2743	for (i = 0; i < adapter->vfs_allocated_count; i++)
2744		igb_vf_configure(adapter, i);
2745
2746	/* DMA Coalescing is not supported in IOV mode. */
2747	adapter->flags &= ~IGB_FLAG_DMAC;
2748	goto out;
2749
2750err_out:
2751	kfree(adapter->vf_data);
2752	adapter->vf_data = NULL;
2753	adapter->vfs_allocated_count = 0;
2754out:
2755	return err;
2756}
2757
2758#endif
2759/**
2760 *  igb_remove_i2c - Cleanup  I2C interface
2761 *  @adapter: pointer to adapter structure
2762 **/
2763static void igb_remove_i2c(struct igb_adapter *adapter)
2764{
2765	/* free the adapter bus structure */
2766	i2c_del_adapter(&adapter->i2c_adap);
2767}
2768
2769/**
2770 *  igb_remove - Device Removal Routine
2771 *  @pdev: PCI device information struct
2772 *
2773 *  igb_remove is called by the PCI subsystem to alert the driver
2774 *  that it should release a PCI device.  The could be caused by a
2775 *  Hot-Plug event, or because the driver is going to be removed from
2776 *  memory.
2777 **/
2778static void igb_remove(struct pci_dev *pdev)
2779{
2780	struct net_device *netdev = pci_get_drvdata(pdev);
2781	struct igb_adapter *adapter = netdev_priv(netdev);
2782	struct e1000_hw *hw = &adapter->hw;
2783
2784	pm_runtime_get_noresume(&pdev->dev);
2785#ifdef CONFIG_IGB_HWMON
2786	igb_sysfs_exit(adapter);
2787#endif
2788	igb_remove_i2c(adapter);
2789	igb_ptp_stop(adapter);
2790	/* The watchdog timer may be rescheduled, so explicitly
2791	 * disable watchdog from being rescheduled.
2792	 */
2793	set_bit(__IGB_DOWN, &adapter->state);
2794	del_timer_sync(&adapter->watchdog_timer);
2795	del_timer_sync(&adapter->phy_info_timer);
2796
2797	cancel_work_sync(&adapter->reset_task);
2798	cancel_work_sync(&adapter->watchdog_task);
2799
2800#ifdef CONFIG_IGB_DCA
2801	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2802		dev_info(&pdev->dev, "DCA disabled\n");
2803		dca_remove_requester(&pdev->dev);
2804		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2805		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2806	}
2807#endif
2808
2809	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2810	 * would have already happened in close and is redundant.
2811	 */
2812	igb_release_hw_control(adapter);
2813
2814	unregister_netdev(netdev);
2815
2816	igb_clear_interrupt_scheme(adapter);
2817
2818#ifdef CONFIG_PCI_IOV
2819	igb_disable_sriov(pdev);
2820#endif
2821
2822	iounmap(hw->hw_addr);
2823	if (hw->flash_address)
2824		iounmap(hw->flash_address);
2825	pci_release_selected_regions(pdev,
2826				     pci_select_bars(pdev, IORESOURCE_MEM));
2827
2828	kfree(adapter->shadow_vfta);
2829	free_netdev(netdev);
2830
2831	pci_disable_pcie_error_reporting(pdev);
2832
2833	pci_disable_device(pdev);
2834}
2835
2836/**
2837 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2838 *  @adapter: board private structure to initialize
2839 *
2840 *  This function initializes the vf specific data storage and then attempts to
2841 *  allocate the VFs.  The reason for ordering it this way is because it is much
2842 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2843 *  the memory for the VFs.
2844 **/
2845static void igb_probe_vfs(struct igb_adapter *adapter)
2846{
2847#ifdef CONFIG_PCI_IOV
2848	struct pci_dev *pdev = adapter->pdev;
2849	struct e1000_hw *hw = &adapter->hw;
2850
2851	/* Virtualization features not supported on i210 family. */
2852	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2853		return;
2854
2855	pci_sriov_set_totalvfs(pdev, 7);
2856	igb_pci_enable_sriov(pdev, max_vfs);
2857
2858#endif /* CONFIG_PCI_IOV */
2859}
2860
2861static void igb_init_queue_configuration(struct igb_adapter *adapter)
2862{
2863	struct e1000_hw *hw = &adapter->hw;
2864	u32 max_rss_queues;
2865
2866	/* Determine the maximum number of RSS queues supported. */
2867	switch (hw->mac.type) {
2868	case e1000_i211:
2869		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2870		break;
2871	case e1000_82575:
2872	case e1000_i210:
2873		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2874		break;
2875	case e1000_i350:
2876		/* I350 cannot do RSS and SR-IOV at the same time */
2877		if (!!adapter->vfs_allocated_count) {
2878			max_rss_queues = 1;
2879			break;
2880		}
2881		/* fall through */
2882	case e1000_82576:
2883		if (!!adapter->vfs_allocated_count) {
2884			max_rss_queues = 2;
2885			break;
2886		}
2887		/* fall through */
2888	case e1000_82580:
2889	case e1000_i354:
2890	default:
2891		max_rss_queues = IGB_MAX_RX_QUEUES;
2892		break;
2893	}
2894
2895	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2896
2897	/* Determine if we need to pair queues. */
2898	switch (hw->mac.type) {
2899	case e1000_82575:
2900	case e1000_i211:
2901		/* Device supports enough interrupts without queue pairing. */
2902		break;
2903	case e1000_82576:
2904		/* If VFs are going to be allocated with RSS queues then we
2905		 * should pair the queues in order to conserve interrupts due
2906		 * to limited supply.
2907		 */
2908		if ((adapter->rss_queues > 1) &&
2909		    (adapter->vfs_allocated_count > 6))
2910			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2911		/* fall through */
2912	case e1000_82580:
2913	case e1000_i350:
2914	case e1000_i354:
2915	case e1000_i210:
2916	default:
2917		/* If rss_queues > half of max_rss_queues, pair the queues in
2918		 * order to conserve interrupts due to limited supply.
2919		 */
2920		if (adapter->rss_queues > (max_rss_queues / 2))
2921			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2922		break;
2923	}
2924}
2925
2926/**
2927 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2928 *  @adapter: board private structure to initialize
2929 *
2930 *  igb_sw_init initializes the Adapter private data structure.
2931 *  Fields are initialized based on PCI device information and
2932 *  OS network device settings (MTU size).
2933 **/
2934static int igb_sw_init(struct igb_adapter *adapter)
2935{
2936	struct e1000_hw *hw = &adapter->hw;
2937	struct net_device *netdev = adapter->netdev;
2938	struct pci_dev *pdev = adapter->pdev;
2939
2940	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2941
2942	/* set default ring sizes */
2943	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2944	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2945
2946	/* set default ITR values */
2947	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2948	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2949
2950	/* set default work limits */
2951	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2952
2953	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2954				  VLAN_HLEN;
2955	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2956
2957	spin_lock_init(&adapter->stats64_lock);
2958#ifdef CONFIG_PCI_IOV
2959	switch (hw->mac.type) {
2960	case e1000_82576:
2961	case e1000_i350:
2962		if (max_vfs > 7) {
2963			dev_warn(&pdev->dev,
2964				 "Maximum of 7 VFs per PF, using max\n");
2965			max_vfs = adapter->vfs_allocated_count = 7;
2966		} else
2967			adapter->vfs_allocated_count = max_vfs;
2968		if (adapter->vfs_allocated_count)
2969			dev_warn(&pdev->dev,
2970				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2971		break;
2972	default:
2973		break;
2974	}
2975#endif /* CONFIG_PCI_IOV */
2976
2977	igb_init_queue_configuration(adapter);
2978
2979	/* Setup and initialize a copy of the hw vlan table array */
2980	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2981				       GFP_ATOMIC);
2982
2983	/* This call may decrease the number of queues */
2984	if (igb_init_interrupt_scheme(adapter, true)) {
2985		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2986		return -ENOMEM;
2987	}
2988
2989	igb_probe_vfs(adapter);
2990
2991	/* Explicitly disable IRQ since the NIC can be in any state. */
2992	igb_irq_disable(adapter);
2993
2994	if (hw->mac.type >= e1000_i350)
2995		adapter->flags &= ~IGB_FLAG_DMAC;
2996
2997	set_bit(__IGB_DOWN, &adapter->state);
2998	return 0;
2999}
3000
3001/**
3002 *  igb_open - Called when a network interface is made active
3003 *  @netdev: network interface device structure
3004 *
3005 *  Returns 0 on success, negative value on failure
3006 *
3007 *  The open entry point is called when a network interface is made
3008 *  active by the system (IFF_UP).  At this point all resources needed
3009 *  for transmit and receive operations are allocated, the interrupt
3010 *  handler is registered with the OS, the watchdog timer is started,
3011 *  and the stack is notified that the interface is ready.
3012 **/
3013static int __igb_open(struct net_device *netdev, bool resuming)
3014{
3015	struct igb_adapter *adapter = netdev_priv(netdev);
3016	struct e1000_hw *hw = &adapter->hw;
3017	struct pci_dev *pdev = adapter->pdev;
3018	int err;
3019	int i;
3020
3021	/* disallow open during test */
3022	if (test_bit(__IGB_TESTING, &adapter->state)) {
3023		WARN_ON(resuming);
3024		return -EBUSY;
3025	}
3026
3027	if (!resuming)
3028		pm_runtime_get_sync(&pdev->dev);
3029
3030	netif_carrier_off(netdev);
3031
3032	/* allocate transmit descriptors */
3033	err = igb_setup_all_tx_resources(adapter);
3034	if (err)
3035		goto err_setup_tx;
3036
3037	/* allocate receive descriptors */
3038	err = igb_setup_all_rx_resources(adapter);
3039	if (err)
3040		goto err_setup_rx;
3041
3042	igb_power_up_link(adapter);
3043
3044	/* before we allocate an interrupt, we must be ready to handle it.
3045	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3046	 * as soon as we call pci_request_irq, so we have to setup our
3047	 * clean_rx handler before we do so.
3048	 */
3049	igb_configure(adapter);
3050
3051	err = igb_request_irq(adapter);
3052	if (err)
3053		goto err_req_irq;
3054
3055	/* Notify the stack of the actual queue counts. */
3056	err = netif_set_real_num_tx_queues(adapter->netdev,
3057					   adapter->num_tx_queues);
3058	if (err)
3059		goto err_set_queues;
3060
3061	err = netif_set_real_num_rx_queues(adapter->netdev,
3062					   adapter->num_rx_queues);
3063	if (err)
3064		goto err_set_queues;
3065
3066	/* From here on the code is the same as igb_up() */
3067	clear_bit(__IGB_DOWN, &adapter->state);
3068
3069	for (i = 0; i < adapter->num_q_vectors; i++)
3070		napi_enable(&(adapter->q_vector[i]->napi));
3071
3072	/* Clear any pending interrupts. */
3073	rd32(E1000_ICR);
3074
3075	igb_irq_enable(adapter);
3076
3077	/* notify VFs that reset has been completed */
3078	if (adapter->vfs_allocated_count) {
3079		u32 reg_data = rd32(E1000_CTRL_EXT);
3080		reg_data |= E1000_CTRL_EXT_PFRSTD;
3081		wr32(E1000_CTRL_EXT, reg_data);
3082	}
3083
3084	netif_tx_start_all_queues(netdev);
3085
3086	if (!resuming)
3087		pm_runtime_put(&pdev->dev);
3088
3089	/* start the watchdog. */
3090	hw->mac.get_link_status = 1;
3091	schedule_work(&adapter->watchdog_task);
3092
3093	return 0;
3094
3095err_set_queues:
3096	igb_free_irq(adapter);
3097err_req_irq:
3098	igb_release_hw_control(adapter);
3099	igb_power_down_link(adapter);
3100	igb_free_all_rx_resources(adapter);
3101err_setup_rx:
3102	igb_free_all_tx_resources(adapter);
3103err_setup_tx:
3104	igb_reset(adapter);
3105	if (!resuming)
3106		pm_runtime_put(&pdev->dev);
3107
3108	return err;
3109}
3110
3111static int igb_open(struct net_device *netdev)
3112{
3113	return __igb_open(netdev, false);
3114}
3115
3116/**
3117 *  igb_close - Disables a network interface
3118 *  @netdev: network interface device structure
3119 *
3120 *  Returns 0, this is not allowed to fail
3121 *
3122 *  The close entry point is called when an interface is de-activated
3123 *  by the OS.  The hardware is still under the driver's control, but
3124 *  needs to be disabled.  A global MAC reset is issued to stop the
3125 *  hardware, and all transmit and receive resources are freed.
3126 **/
3127static int __igb_close(struct net_device *netdev, bool suspending)
3128{
3129	struct igb_adapter *adapter = netdev_priv(netdev);
3130	struct pci_dev *pdev = adapter->pdev;
3131
3132	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3133
3134	if (!suspending)
3135		pm_runtime_get_sync(&pdev->dev);
3136
3137	igb_down(adapter);
3138	igb_free_irq(adapter);
3139
3140	igb_free_all_tx_resources(adapter);
3141	igb_free_all_rx_resources(adapter);
3142
3143	if (!suspending)
3144		pm_runtime_put_sync(&pdev->dev);
3145	return 0;
3146}
3147
3148static int igb_close(struct net_device *netdev)
3149{
3150	return __igb_close(netdev, false);
3151}
3152
3153/**
3154 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3155 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3156 *
3157 *  Return 0 on success, negative on failure
3158 **/
3159int igb_setup_tx_resources(struct igb_ring *tx_ring)
3160{
3161	struct device *dev = tx_ring->dev;
3162	int size;
3163
3164	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3165
3166	tx_ring->tx_buffer_info = vzalloc(size);
3167	if (!tx_ring->tx_buffer_info)
3168		goto err;
3169
3170	/* round up to nearest 4K */
3171	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3172	tx_ring->size = ALIGN(tx_ring->size, 4096);
3173
3174	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3175					   &tx_ring->dma, GFP_KERNEL);
3176	if (!tx_ring->desc)
3177		goto err;
3178
3179	tx_ring->next_to_use = 0;
3180	tx_ring->next_to_clean = 0;
3181
3182	return 0;
3183
3184err:
3185	vfree(tx_ring->tx_buffer_info);
3186	tx_ring->tx_buffer_info = NULL;
3187	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3188	return -ENOMEM;
3189}
3190
3191/**
3192 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3193 *				 (Descriptors) for all queues
3194 *  @adapter: board private structure
3195 *
3196 *  Return 0 on success, negative on failure
3197 **/
3198static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3199{
3200	struct pci_dev *pdev = adapter->pdev;
3201	int i, err = 0;
3202
3203	for (i = 0; i < adapter->num_tx_queues; i++) {
3204		err = igb_setup_tx_resources(adapter->tx_ring[i]);
3205		if (err) {
3206			dev_err(&pdev->dev,
3207				"Allocation for Tx Queue %u failed\n", i);
3208			for (i--; i >= 0; i--)
3209				igb_free_tx_resources(adapter->tx_ring[i]);
3210			break;
3211		}
3212	}
3213
3214	return err;
3215}
3216
3217/**
3218 *  igb_setup_tctl - configure the transmit control registers
3219 *  @adapter: Board private structure
3220 **/
3221void igb_setup_tctl(struct igb_adapter *adapter)
3222{
3223	struct e1000_hw *hw = &adapter->hw;
3224	u32 tctl;
3225
3226	/* disable queue 0 which is enabled by default on 82575 and 82576 */
3227	wr32(E1000_TXDCTL(0), 0);
3228
3229	/* Program the Transmit Control Register */
3230	tctl = rd32(E1000_TCTL);
3231	tctl &= ~E1000_TCTL_CT;
3232	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3233		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3234
3235	igb_config_collision_dist(hw);
3236
3237	/* Enable transmits */
3238	tctl |= E1000_TCTL_EN;
3239
3240	wr32(E1000_TCTL, tctl);
3241}
3242
3243/**
3244 *  igb_configure_tx_ring - Configure transmit ring after Reset
3245 *  @adapter: board private structure
3246 *  @ring: tx ring to configure
3247 *
3248 *  Configure a transmit ring after a reset.
3249 **/
3250void igb_configure_tx_ring(struct igb_adapter *adapter,
3251                           struct igb_ring *ring)
3252{
3253	struct e1000_hw *hw = &adapter->hw;
3254	u32 txdctl = 0;
3255	u64 tdba = ring->dma;
3256	int reg_idx = ring->reg_idx;
3257
3258	/* disable the queue */
3259	wr32(E1000_TXDCTL(reg_idx), 0);
3260	wrfl();
3261	mdelay(10);
3262
3263	wr32(E1000_TDLEN(reg_idx),
3264	     ring->count * sizeof(union e1000_adv_tx_desc));
3265	wr32(E1000_TDBAL(reg_idx),
3266	     tdba & 0x00000000ffffffffULL);
3267	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3268
3269	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3270	wr32(E1000_TDH(reg_idx), 0);
3271	writel(0, ring->tail);
3272
3273	txdctl |= IGB_TX_PTHRESH;
3274	txdctl |= IGB_TX_HTHRESH << 8;
3275	txdctl |= IGB_TX_WTHRESH << 16;
3276
3277	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3278	wr32(E1000_TXDCTL(reg_idx), txdctl);
3279}
3280
3281/**
3282 *  igb_configure_tx - Configure transmit Unit after Reset
3283 *  @adapter: board private structure
3284 *
3285 *  Configure the Tx unit of the MAC after a reset.
3286 **/
3287static void igb_configure_tx(struct igb_adapter *adapter)
3288{
3289	int i;
3290
3291	for (i = 0; i < adapter->num_tx_queues; i++)
3292		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3293}
3294
3295/**
3296 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3297 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3298 *
3299 *  Returns 0 on success, negative on failure
3300 **/
3301int igb_setup_rx_resources(struct igb_ring *rx_ring)
3302{
3303	struct device *dev = rx_ring->dev;
3304	int size;
3305
3306	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3307
3308	rx_ring->rx_buffer_info = vzalloc(size);
3309	if (!rx_ring->rx_buffer_info)
3310		goto err;
3311
3312	/* Round up to nearest 4K */
3313	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3314	rx_ring->size = ALIGN(rx_ring->size, 4096);
3315
3316	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3317					   &rx_ring->dma, GFP_KERNEL);
3318	if (!rx_ring->desc)
3319		goto err;
3320
3321	rx_ring->next_to_alloc = 0;
3322	rx_ring->next_to_clean = 0;
3323	rx_ring->next_to_use = 0;
3324
3325	return 0;
3326
3327err:
3328	vfree(rx_ring->rx_buffer_info);
3329	rx_ring->rx_buffer_info = NULL;
3330	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3331	return -ENOMEM;
3332}
3333
3334/**
3335 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3336 *				 (Descriptors) for all queues
3337 *  @adapter: board private structure
3338 *
3339 *  Return 0 on success, negative on failure
3340 **/
3341static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3342{
3343	struct pci_dev *pdev = adapter->pdev;
3344	int i, err = 0;
3345
3346	for (i = 0; i < adapter->num_rx_queues; i++) {
3347		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3348		if (err) {
3349			dev_err(&pdev->dev,
3350				"Allocation for Rx Queue %u failed\n", i);
3351			for (i--; i >= 0; i--)
3352				igb_free_rx_resources(adapter->rx_ring[i]);
3353			break;
3354		}
3355	}
3356
3357	return err;
3358}
3359
3360/**
3361 *  igb_setup_mrqc - configure the multiple receive queue control registers
3362 *  @adapter: Board private structure
3363 **/
3364static void igb_setup_mrqc(struct igb_adapter *adapter)
3365{
3366	struct e1000_hw *hw = &adapter->hw;
3367	u32 mrqc, rxcsum;
3368	u32 j, num_rx_queues;
3369	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3370					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3371					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3372					0xFA01ACBE };
3373
3374	/* Fill out hash function seeds */
3375	for (j = 0; j < 10; j++)
3376		wr32(E1000_RSSRK(j), rsskey[j]);
3377
3378	num_rx_queues = adapter->rss_queues;
3379
3380	switch (hw->mac.type) {
3381	case e1000_82576:
3382		/* 82576 supports 2 RSS queues for SR-IOV */
3383		if (adapter->vfs_allocated_count)
3384			num_rx_queues = 2;
3385		break;
3386	default:
3387		break;
3388	}
3389
3390	if (adapter->rss_indir_tbl_init != num_rx_queues) {
3391		for (j = 0; j < IGB_RETA_SIZE; j++)
3392			adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
3393		adapter->rss_indir_tbl_init = num_rx_queues;
3394	}
3395	igb_write_rss_indir_tbl(adapter);
3396
3397	/* Disable raw packet checksumming so that RSS hash is placed in
3398	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3399	 * offloads as they are enabled by default
3400	 */
3401	rxcsum = rd32(E1000_RXCSUM);
3402	rxcsum |= E1000_RXCSUM_PCSD;
3403
3404	if (adapter->hw.mac.type >= e1000_82576)
3405		/* Enable Receive Checksum Offload for SCTP */
3406		rxcsum |= E1000_RXCSUM_CRCOFL;
3407
3408	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3409	wr32(E1000_RXCSUM, rxcsum);
3410
3411	/* Generate RSS hash based on packet types, TCP/UDP
3412	 * port numbers and/or IPv4/v6 src and dst addresses
3413	 */
3414	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3415	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3416	       E1000_MRQC_RSS_FIELD_IPV6 |
3417	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3418	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3419
3420	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3421		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3422	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3423		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3424
3425	/* If VMDq is enabled then we set the appropriate mode for that, else
3426	 * we default to RSS so that an RSS hash is calculated per packet even
3427	 * if we are only using one queue
3428	 */
3429	if (adapter->vfs_allocated_count) {
3430		if (hw->mac.type > e1000_82575) {
3431			/* Set the default pool for the PF's first queue */
3432			u32 vtctl = rd32(E1000_VT_CTL);
3433			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3434				   E1000_VT_CTL_DISABLE_DEF_POOL);
3435			vtctl |= adapter->vfs_allocated_count <<
3436				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3437			wr32(E1000_VT_CTL, vtctl);
3438		}
3439		if (adapter->rss_queues > 1)
3440			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3441		else
3442			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3443	} else {
3444		if (hw->mac.type != e1000_i211)
3445			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3446	}
3447	igb_vmm_control(adapter);
3448
3449	wr32(E1000_MRQC, mrqc);
3450}
3451
3452/**
3453 *  igb_setup_rctl - configure the receive control registers
3454 *  @adapter: Board private structure
3455 **/
3456void igb_setup_rctl(struct igb_adapter *adapter)
3457{
3458	struct e1000_hw *hw = &adapter->hw;
3459	u32 rctl;
3460
3461	rctl = rd32(E1000_RCTL);
3462
3463	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3464	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3465
3466	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3467		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3468
3469	/* enable stripping of CRC. It's unlikely this will break BMC
3470	 * redirection as it did with e1000. Newer features require
3471	 * that the HW strips the CRC.
3472	 */
3473	rctl |= E1000_RCTL_SECRC;
3474
3475	/* disable store bad packets and clear size bits. */
3476	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3477
3478	/* enable LPE to prevent packets larger than max_frame_size */
3479	rctl |= E1000_RCTL_LPE;
3480
3481	/* disable queue 0 to prevent tail write w/o re-config */
3482	wr32(E1000_RXDCTL(0), 0);
3483
3484	/* Attention!!!  For SR-IOV PF driver operations you must enable
3485	 * queue drop for all VF and PF queues to prevent head of line blocking
3486	 * if an un-trusted VF does not provide descriptors to hardware.
3487	 */
3488	if (adapter->vfs_allocated_count) {
3489		/* set all queue drop enable bits */
3490		wr32(E1000_QDE, ALL_QUEUES);
3491	}
3492
3493	/* This is useful for sniffing bad packets. */
3494	if (adapter->netdev->features & NETIF_F_RXALL) {
3495		/* UPE and MPE will be handled by normal PROMISC logic
3496		 * in e1000e_set_rx_mode
3497		 */
3498		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3499			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3500			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3501
3502		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3503			  E1000_RCTL_DPF | /* Allow filtered pause */
3504			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3505		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3506		 * and that breaks VLANs.
3507		 */
3508	}
3509
3510	wr32(E1000_RCTL, rctl);
3511}
3512
3513static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3514                                   int vfn)
3515{
3516	struct e1000_hw *hw = &adapter->hw;
3517	u32 vmolr;
3518
3519	/* if it isn't the PF check to see if VFs are enabled and
3520	 * increase the size to support vlan tags
3521	 */
3522	if (vfn < adapter->vfs_allocated_count &&
3523	    adapter->vf_data[vfn].vlans_enabled)
3524		size += VLAN_TAG_SIZE;
3525
3526	vmolr = rd32(E1000_VMOLR(vfn));
3527	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3528	vmolr |= size | E1000_VMOLR_LPE;
3529	wr32(E1000_VMOLR(vfn), vmolr);
3530
3531	return 0;
3532}
3533
3534/**
3535 *  igb_rlpml_set - set maximum receive packet size
3536 *  @adapter: board private structure
3537 *
3538 *  Configure maximum receivable packet size.
3539 **/
3540static void igb_rlpml_set(struct igb_adapter *adapter)
3541{
3542	u32 max_frame_size = adapter->max_frame_size;
3543	struct e1000_hw *hw = &adapter->hw;
3544	u16 pf_id = adapter->vfs_allocated_count;
3545
3546	if (pf_id) {
3547		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3548		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3549		 * to our max jumbo frame size, in case we need to enable
3550		 * jumbo frames on one of the rings later.
3551		 * This will not pass over-length frames into the default
3552		 * queue because it's gated by the VMOLR.RLPML.
3553		 */
3554		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3555	}
3556
3557	wr32(E1000_RLPML, max_frame_size);
3558}
3559
3560static inline void igb_set_vmolr(struct igb_adapter *adapter,
3561				 int vfn, bool aupe)
3562{
3563	struct e1000_hw *hw = &adapter->hw;
3564	u32 vmolr;
3565
3566	/* This register exists only on 82576 and newer so if we are older then
3567	 * we should exit and do nothing
3568	 */
3569	if (hw->mac.type < e1000_82576)
3570		return;
3571
3572	vmolr = rd32(E1000_VMOLR(vfn));
3573	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3574	if (hw->mac.type == e1000_i350) {
3575		u32 dvmolr;
3576
3577		dvmolr = rd32(E1000_DVMOLR(vfn));
3578		dvmolr |= E1000_DVMOLR_STRVLAN;
3579		wr32(E1000_DVMOLR(vfn), dvmolr);
3580	}
3581	if (aupe)
3582		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3583	else
3584		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3585
3586	/* clear all bits that might not be set */
3587	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3588
3589	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3590		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3591	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3592	 * multicast packets
3593	 */
3594	if (vfn <= adapter->vfs_allocated_count)
3595		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3596
3597	wr32(E1000_VMOLR(vfn), vmolr);
3598}
3599
3600/**
3601 *  igb_configure_rx_ring - Configure a receive ring after Reset
3602 *  @adapter: board private structure
3603 *  @ring: receive ring to be configured
3604 *
3605 *  Configure the Rx unit of the MAC after a reset.
3606 **/
3607void igb_configure_rx_ring(struct igb_adapter *adapter,
3608			   struct igb_ring *ring)
3609{
3610	struct e1000_hw *hw = &adapter->hw;
3611	u64 rdba = ring->dma;
3612	int reg_idx = ring->reg_idx;
3613	u32 srrctl = 0, rxdctl = 0;
3614
3615	/* disable the queue */
3616	wr32(E1000_RXDCTL(reg_idx), 0);
3617
3618	/* Set DMA base address registers */
3619	wr32(E1000_RDBAL(reg_idx),
3620	     rdba & 0x00000000ffffffffULL);
3621	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3622	wr32(E1000_RDLEN(reg_idx),
3623	     ring->count * sizeof(union e1000_adv_rx_desc));
3624
3625	/* initialize head and tail */
3626	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3627	wr32(E1000_RDH(reg_idx), 0);
3628	writel(0, ring->tail);
3629
3630	/* set descriptor configuration */
3631	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3632	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3633	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3634	if (hw->mac.type >= e1000_82580)
3635		srrctl |= E1000_SRRCTL_TIMESTAMP;
3636	/* Only set Drop Enable if we are supporting multiple queues */
3637	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3638		srrctl |= E1000_SRRCTL_DROP_EN;
3639
3640	wr32(E1000_SRRCTL(reg_idx), srrctl);
3641
3642	/* set filtering for VMDQ pools */
3643	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3644
3645	rxdctl |= IGB_RX_PTHRESH;
3646	rxdctl |= IGB_RX_HTHRESH << 8;
3647	rxdctl |= IGB_RX_WTHRESH << 16;
3648
3649	/* enable receive descriptor fetching */
3650	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3651	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3652}
3653
3654/**
3655 *  igb_configure_rx - Configure receive Unit after Reset
3656 *  @adapter: board private structure
3657 *
3658 *  Configure the Rx unit of the MAC after a reset.
3659 **/
3660static void igb_configure_rx(struct igb_adapter *adapter)
3661{
3662	int i;
3663
3664	/* set UTA to appropriate mode */
3665	igb_set_uta(adapter);
3666
3667	/* set the correct pool for the PF default MAC address in entry 0 */
3668	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3669			 adapter->vfs_allocated_count);
3670
3671	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3672	 * the Base and Length of the Rx Descriptor Ring
3673	 */
3674	for (i = 0; i < adapter->num_rx_queues; i++)
3675		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3676}
3677
3678/**
3679 *  igb_free_tx_resources - Free Tx Resources per Queue
3680 *  @tx_ring: Tx descriptor ring for a specific queue
3681 *
3682 *  Free all transmit software resources
3683 **/
3684void igb_free_tx_resources(struct igb_ring *tx_ring)
3685{
3686	igb_clean_tx_ring(tx_ring);
3687
3688	vfree(tx_ring->tx_buffer_info);
3689	tx_ring->tx_buffer_info = NULL;
3690
3691	/* if not set, then don't free */
3692	if (!tx_ring->desc)
3693		return;
3694
3695	dma_free_coherent(tx_ring->dev, tx_ring->size,
3696			  tx_ring->desc, tx_ring->dma);
3697
3698	tx_ring->desc = NULL;
3699}
3700
3701/**
3702 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3703 *  @adapter: board private structure
3704 *
3705 *  Free all transmit software resources
3706 **/
3707static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3708{
3709	int i;
3710
3711	for (i = 0; i < adapter->num_tx_queues; i++)
3712		igb_free_tx_resources(adapter->tx_ring[i]);
3713}
3714
3715void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3716				    struct igb_tx_buffer *tx_buffer)
3717{
3718	if (tx_buffer->skb) {
3719		dev_kfree_skb_any(tx_buffer->skb);
3720		if (dma_unmap_len(tx_buffer, len))
3721			dma_unmap_single(ring->dev,
3722					 dma_unmap_addr(tx_buffer, dma),
3723					 dma_unmap_len(tx_buffer, len),
3724					 DMA_TO_DEVICE);
3725	} else if (dma_unmap_len(tx_buffer, len)) {
3726		dma_unmap_page(ring->dev,
3727			       dma_unmap_addr(tx_buffer, dma),
3728			       dma_unmap_len(tx_buffer, len),
3729			       DMA_TO_DEVICE);
3730	}
3731	tx_buffer->next_to_watch = NULL;
3732	tx_buffer->skb = NULL;
3733	dma_unmap_len_set(tx_buffer, len, 0);
3734	/* buffer_info must be completely set up in the transmit path */
3735}
3736
3737/**
3738 *  igb_clean_tx_ring - Free Tx Buffers
3739 *  @tx_ring: ring to be cleaned
3740 **/
3741static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3742{
3743	struct igb_tx_buffer *buffer_info;
3744	unsigned long size;
3745	u16 i;
3746
3747	if (!tx_ring->tx_buffer_info)
3748		return;
3749	/* Free all the Tx ring sk_buffs */
3750
3751	for (i = 0; i < tx_ring->count; i++) {
3752		buffer_info = &tx_ring->tx_buffer_info[i];
3753		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3754	}
3755
3756	netdev_tx_reset_queue(txring_txq(tx_ring));
3757
3758	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3759	memset(tx_ring->tx_buffer_info, 0, size);
3760
3761	/* Zero out the descriptor ring */
3762	memset(tx_ring->desc, 0, tx_ring->size);
3763
3764	tx_ring->next_to_use = 0;
3765	tx_ring->next_to_clean = 0;
3766}
3767
3768/**
3769 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3770 *  @adapter: board private structure
3771 **/
3772static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3773{
3774	int i;
3775
3776	for (i = 0; i < adapter->num_tx_queues; i++)
3777		igb_clean_tx_ring(adapter->tx_ring[i]);
3778}
3779
3780/**
3781 *  igb_free_rx_resources - Free Rx Resources
3782 *  @rx_ring: ring to clean the resources from
3783 *
3784 *  Free all receive software resources
3785 **/
3786void igb_free_rx_resources(struct igb_ring *rx_ring)
3787{
3788	igb_clean_rx_ring(rx_ring);
3789
3790	vfree(rx_ring->rx_buffer_info);
3791	rx_ring->rx_buffer_info = NULL;
3792
3793	/* if not set, then don't free */
3794	if (!rx_ring->desc)
3795		return;
3796
3797	dma_free_coherent(rx_ring->dev, rx_ring->size,
3798			  rx_ring->desc, rx_ring->dma);
3799
3800	rx_ring->desc = NULL;
3801}
3802
3803/**
3804 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3805 *  @adapter: board private structure
3806 *
3807 *  Free all receive software resources
3808 **/
3809static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3810{
3811	int i;
3812
3813	for (i = 0; i < adapter->num_rx_queues; i++)
3814		igb_free_rx_resources(adapter->rx_ring[i]);
3815}
3816
3817/**
3818 *  igb_clean_rx_ring - Free Rx Buffers per Queue
3819 *  @rx_ring: ring to free buffers from
3820 **/
3821static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3822{
3823	unsigned long size;
3824	u16 i;
3825
3826	if (rx_ring->skb)
3827		dev_kfree_skb(rx_ring->skb);
3828	rx_ring->skb = NULL;
3829
3830	if (!rx_ring->rx_buffer_info)
3831		return;
3832
3833	/* Free all the Rx ring sk_buffs */
3834	for (i = 0; i < rx_ring->count; i++) {
3835		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3836
3837		if (!buffer_info->page)
3838			continue;
3839
3840		dma_unmap_page(rx_ring->dev,
3841			       buffer_info->dma,
3842			       PAGE_SIZE,
3843			       DMA_FROM_DEVICE);
3844		__free_page(buffer_info->page);
3845
3846		buffer_info->page = NULL;
3847	}
3848
3849	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3850	memset(rx_ring->rx_buffer_info, 0, size);
3851
3852	/* Zero out the descriptor ring */
3853	memset(rx_ring->desc, 0, rx_ring->size);
3854
3855	rx_ring->next_to_alloc = 0;
3856	rx_ring->next_to_clean = 0;
3857	rx_ring->next_to_use = 0;
3858}
3859
3860/**
3861 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3862 *  @adapter: board private structure
3863 **/
3864static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3865{
3866	int i;
3867
3868	for (i = 0; i < adapter->num_rx_queues; i++)
3869		igb_clean_rx_ring(adapter->rx_ring[i]);
3870}
3871
3872/**
3873 *  igb_set_mac - Change the Ethernet Address of the NIC
3874 *  @netdev: network interface device structure
3875 *  @p: pointer to an address structure
3876 *
3877 *  Returns 0 on success, negative on failure
3878 **/
3879static int igb_set_mac(struct net_device *netdev, void *p)
3880{
3881	struct igb_adapter *adapter = netdev_priv(netdev);
3882	struct e1000_hw *hw = &adapter->hw;
3883	struct sockaddr *addr = p;
3884
3885	if (!is_valid_ether_addr(addr->sa_data))
3886		return -EADDRNOTAVAIL;
3887
3888	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3889	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3890
3891	/* set the correct pool for the new PF MAC address in entry 0 */
3892	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3893			 adapter->vfs_allocated_count);
3894
3895	return 0;
3896}
3897
3898/**
3899 *  igb_write_mc_addr_list - write multicast addresses to MTA
3900 *  @netdev: network interface device structure
3901 *
3902 *  Writes multicast address list to the MTA hash table.
3903 *  Returns: -ENOMEM on failure
3904 *           0 on no addresses written
3905 *           X on writing X addresses to MTA
3906 **/
3907static int igb_write_mc_addr_list(struct net_device *netdev)
3908{
3909	struct igb_adapter *adapter = netdev_priv(netdev);
3910	struct e1000_hw *hw = &adapter->hw;
3911	struct netdev_hw_addr *ha;
3912	u8  *mta_list;
3913	int i;
3914
3915	if (netdev_mc_empty(netdev)) {
3916		/* nothing to program, so clear mc list */
3917		igb_update_mc_addr_list(hw, NULL, 0);
3918		igb_restore_vf_multicasts(adapter);
3919		return 0;
3920	}
3921
3922	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3923	if (!mta_list)
3924		return -ENOMEM;
3925
3926	/* The shared function expects a packed array of only addresses. */
3927	i = 0;
3928	netdev_for_each_mc_addr(ha, netdev)
3929		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3930
3931	igb_update_mc_addr_list(hw, mta_list, i);
3932	kfree(mta_list);
3933
3934	return netdev_mc_count(netdev);
3935}
3936
3937/**
3938 *  igb_write_uc_addr_list - write unicast addresses to RAR table
3939 *  @netdev: network interface device structure
3940 *
3941 *  Writes unicast address list to the RAR table.
3942 *  Returns: -ENOMEM on failure/insufficient address space
3943 *           0 on no addresses written
3944 *           X on writing X addresses to the RAR table
3945 **/
3946static int igb_write_uc_addr_list(struct net_device *netdev)
3947{
3948	struct igb_adapter *adapter = netdev_priv(netdev);
3949	struct e1000_hw *hw = &adapter->hw;
3950	unsigned int vfn = adapter->vfs_allocated_count;
3951	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3952	int count = 0;
3953
3954	/* return ENOMEM indicating insufficient memory for addresses */
3955	if (netdev_uc_count(netdev) > rar_entries)
3956		return -ENOMEM;
3957
3958	if (!netdev_uc_empty(netdev) && rar_entries) {
3959		struct netdev_hw_addr *ha;
3960
3961		netdev_for_each_uc_addr(ha, netdev) {
3962			if (!rar_entries)
3963				break;
3964			igb_rar_set_qsel(adapter, ha->addr,
3965					 rar_entries--,
3966					 vfn);
3967			count++;
3968		}
3969	}
3970	/* write the addresses in reverse order to avoid write combining */
3971	for (; rar_entries > 0 ; rar_entries--) {
3972		wr32(E1000_RAH(rar_entries), 0);
3973		wr32(E1000_RAL(rar_entries), 0);
3974	}
3975	wrfl();
3976
3977	return count;
3978}
3979
3980/**
3981 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3982 *  @netdev: network interface device structure
3983 *
3984 *  The set_rx_mode entry point is called whenever the unicast or multicast
3985 *  address lists or the network interface flags are updated.  This routine is
3986 *  responsible for configuring the hardware for proper unicast, multicast,
3987 *  promiscuous mode, and all-multi behavior.
3988 **/
3989static void igb_set_rx_mode(struct net_device *netdev)
3990{
3991	struct igb_adapter *adapter = netdev_priv(netdev);
3992	struct e1000_hw *hw = &adapter->hw;
3993	unsigned int vfn = adapter->vfs_allocated_count;
3994	u32 rctl, vmolr = 0;
3995	int count;
3996
3997	/* Check for Promiscuous and All Multicast modes */
3998	rctl = rd32(E1000_RCTL);
3999
4000	/* clear the effected bits */
4001	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4002
4003	if (netdev->flags & IFF_PROMISC) {
4004		/* retain VLAN HW filtering if in VT mode */
4005		if (adapter->vfs_allocated_count)
4006			rctl |= E1000_RCTL_VFE;
4007		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4008		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4009	} else {
4010		if (netdev->flags & IFF_ALLMULTI) {
4011			rctl |= E1000_RCTL_MPE;
4012			vmolr |= E1000_VMOLR_MPME;
4013		} else {
4014			/* Write addresses to the MTA, if the attempt fails
4015			 * then we should just turn on promiscuous mode so
4016			 * that we can at least receive multicast traffic
4017			 */
4018			count = igb_write_mc_addr_list(netdev);
4019			if (count < 0) {
4020				rctl |= E1000_RCTL_MPE;
4021				vmolr |= E1000_VMOLR_MPME;
4022			} else if (count) {
4023				vmolr |= E1000_VMOLR_ROMPE;
4024			}
4025		}
4026		/* Write addresses to available RAR registers, if there is not
4027		 * sufficient space to store all the addresses then enable
4028		 * unicast promiscuous mode
4029		 */
4030		count = igb_write_uc_addr_list(netdev);
4031		if (count < 0) {
4032			rctl |= E1000_RCTL_UPE;
4033			vmolr |= E1000_VMOLR_ROPE;
4034		}
4035		rctl |= E1000_RCTL_VFE;
4036	}
4037	wr32(E1000_RCTL, rctl);
4038
4039	/* In order to support SR-IOV and eventually VMDq it is necessary to set
4040	 * the VMOLR to enable the appropriate modes.  Without this workaround
4041	 * we will have issues with VLAN tag stripping not being done for frames
4042	 * that are only arriving because we are the default pool
4043	 */
4044	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4045		return;
4046
4047	vmolr |= rd32(E1000_VMOLR(vfn)) &
4048		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4049	wr32(E1000_VMOLR(vfn), vmolr);
4050	igb_restore_vf_multicasts(adapter);
4051}
4052
4053static void igb_check_wvbr(struct igb_adapter *adapter)
4054{
4055	struct e1000_hw *hw = &adapter->hw;
4056	u32 wvbr = 0;
4057
4058	switch (hw->mac.type) {
4059	case e1000_82576:
4060	case e1000_i350:
4061		if (!(wvbr = rd32(E1000_WVBR)))
4062			return;
4063		break;
4064	default:
4065		break;
4066	}
4067
4068	adapter->wvbr |= wvbr;
4069}
4070
4071#define IGB_STAGGERED_QUEUE_OFFSET 8
4072
4073static void igb_spoof_check(struct igb_adapter *adapter)
4074{
4075	int j;
4076
4077	if (!adapter->wvbr)
4078		return;
4079
4080	for(j = 0; j < adapter->vfs_allocated_count; j++) {
4081		if (adapter->wvbr & (1 << j) ||
4082		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4083			dev_warn(&adapter->pdev->dev,
4084				"Spoof event(s) detected on VF %d\n", j);
4085			adapter->wvbr &=
4086				~((1 << j) |
4087				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4088		}
4089	}
4090}
4091
4092/* Need to wait a few seconds after link up to get diagnostic information from
4093 * the phy
4094 */
4095static void igb_update_phy_info(unsigned long data)
4096{
4097	struct igb_adapter *adapter = (struct igb_adapter *) data;
4098	igb_get_phy_info(&adapter->hw);
4099}
4100
4101/**
4102 *  igb_has_link - check shared code for link and determine up/down
4103 *  @adapter: pointer to driver private info
4104 **/
4105bool igb_has_link(struct igb_adapter *adapter)
4106{
4107	struct e1000_hw *hw = &adapter->hw;
4108	bool link_active = false;
4109
4110	/* get_link_status is set on LSC (link status) interrupt or
4111	 * rx sequence error interrupt.  get_link_status will stay
4112	 * false until the e1000_check_for_link establishes link
4113	 * for copper adapters ONLY
4114	 */
4115	switch (hw->phy.media_type) {
4116	case e1000_media_type_copper:
4117		if (!hw->mac.get_link_status)
4118			return true;
4119	case e1000_media_type_internal_serdes:
4120		hw->mac.ops.check_for_link(hw);
4121		link_active = !hw->mac.get_link_status;
4122		break;
4123	default:
4124	case e1000_media_type_unknown:
4125		break;
4126	}
4127
4128	if (((hw->mac.type == e1000_i210) ||
4129	     (hw->mac.type == e1000_i211)) &&
4130	     (hw->phy.id == I210_I_PHY_ID)) {
4131		if (!netif_carrier_ok(adapter->netdev)) {
4132			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4133		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4134			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4135			adapter->link_check_timeout = jiffies;
4136		}
4137	}
4138
4139	return link_active;
4140}
4141
4142static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4143{
4144	bool ret = false;
4145	u32 ctrl_ext, thstat;
4146
4147	/* check for thermal sensor event on i350 copper only */
4148	if (hw->mac.type == e1000_i350) {
4149		thstat = rd32(E1000_THSTAT);
4150		ctrl_ext = rd32(E1000_CTRL_EXT);
4151
4152		if ((hw->phy.media_type == e1000_media_type_copper) &&
4153		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4154			ret = !!(thstat & event);
4155	}
4156
4157	return ret;
4158}
4159
4160/**
4161 *  igb_watchdog - Timer Call-back
4162 *  @data: pointer to adapter cast into an unsigned long
4163 **/
4164static void igb_watchdog(unsigned long data)
4165{
4166	struct igb_adapter *adapter = (struct igb_adapter *)data;
4167	/* Do the rest outside of interrupt context */
4168	schedule_work(&adapter->watchdog_task);
4169}
4170
4171static void igb_watchdog_task(struct work_struct *work)
4172{
4173	struct igb_adapter *adapter = container_of(work,
4174						   struct igb_adapter,
4175						   watchdog_task);
4176	struct e1000_hw *hw = &adapter->hw;
4177	struct e1000_phy_info *phy = &hw->phy;
4178	struct net_device *netdev = adapter->netdev;
4179	u32 link;
4180	int i;
4181	u32 connsw;
4182
4183	link = igb_has_link(adapter);
4184
4185	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4186		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4187			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4188		else
4189			link = false;
4190	}
4191
4192	/* Force link down if we have fiber to swap to */
4193	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4194		if (hw->phy.media_type == e1000_media_type_copper) {
4195			connsw = rd32(E1000_CONNSW);
4196			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4197				link = 0;
4198		}
4199	}
4200	if (link) {
4201		/* Perform a reset if the media type changed. */
4202		if (hw->dev_spec._82575.media_changed) {
4203			hw->dev_spec._82575.media_changed = false;
4204			adapter->flags |= IGB_FLAG_MEDIA_RESET;
4205			igb_reset(adapter);
4206		}
4207		/* Cancel scheduled suspend requests. */
4208		pm_runtime_resume(netdev->dev.parent);
4209
4210		if (!netif_carrier_ok(netdev)) {
4211			u32 ctrl;
4212			hw->mac.ops.get_speed_and_duplex(hw,
4213							 &adapter->link_speed,
4214							 &adapter->link_duplex);
4215
4216			ctrl = rd32(E1000_CTRL);
4217			/* Links status message must follow this format */
4218			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
4219			       "Duplex, Flow Control: %s\n",
4220			       netdev->name,
4221			       adapter->link_speed,
4222			       adapter->link_duplex == FULL_DUPLEX ?
4223			       "Full" : "Half",
4224			       (ctrl & E1000_CTRL_TFCE) &&
4225			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4226			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4227			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4228
4229			/* disable EEE if enabled */
4230			if ((adapter->flags & IGB_FLAG_EEE) &&
4231				(adapter->link_duplex == HALF_DUPLEX)) {
4232				dev_info(&adapter->pdev->dev,
4233				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4234				adapter->hw.dev_spec._82575.eee_disable = true;
4235				adapter->flags &= ~IGB_FLAG_EEE;
4236			}
4237
4238			/* check if SmartSpeed worked */
4239			igb_check_downshift(hw);
4240			if (phy->speed_downgraded)
4241				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4242
4243			/* check for thermal sensor event */
4244			if (igb_thermal_sensor_event(hw,
4245			    E1000_THSTAT_LINK_THROTTLE)) {
4246				netdev_info(netdev, "The network adapter link "
4247					    "speed was downshifted because it "
4248					    "overheated\n");
4249			}
4250
4251			/* adjust timeout factor according to speed/duplex */
4252			adapter->tx_timeout_factor = 1;
4253			switch (adapter->link_speed) {
4254			case SPEED_10:
4255				adapter->tx_timeout_factor = 14;
4256				break;
4257			case SPEED_100:
4258				/* maybe add some timeout factor ? */
4259				break;
4260			}
4261
4262			netif_carrier_on(netdev);
4263
4264			igb_ping_all_vfs(adapter);
4265			igb_check_vf_rate_limit(adapter);
4266
4267			/* link state has changed, schedule phy info update */
4268			if (!test_bit(__IGB_DOWN, &adapter->state))
4269				mod_timer(&adapter->phy_info_timer,
4270					  round_jiffies(jiffies + 2 * HZ));
4271		}
4272	} else {
4273		if (netif_carrier_ok(netdev)) {
4274			adapter->link_speed = 0;
4275			adapter->link_duplex = 0;
4276
4277			/* check for thermal sensor event */
4278			if (igb_thermal_sensor_event(hw,
4279			    E1000_THSTAT_PWR_DOWN)) {
4280				netdev_err(netdev, "The network adapter was "
4281					   "stopped because it overheated\n");
4282			}
4283
4284			/* Links status message must follow this format */
4285			printk(KERN_INFO "igb: %s NIC Link is Down\n",
4286			       netdev->name);
4287			netif_carrier_off(netdev);
4288
4289			igb_ping_all_vfs(adapter);
4290
4291			/* link state has changed, schedule phy info update */
4292			if (!test_bit(__IGB_DOWN, &adapter->state))
4293				mod_timer(&adapter->phy_info_timer,
4294					  round_jiffies(jiffies + 2 * HZ));
4295
4296			/* link is down, time to check for alternate media */
4297			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4298				igb_check_swap_media(adapter);
4299				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4300					schedule_work(&adapter->reset_task);
4301					/* return immediately */
4302					return;
4303				}
4304			}
4305			pm_schedule_suspend(netdev->dev.parent,
4306					    MSEC_PER_SEC * 5);
4307
4308		/* also check for alternate media here */
4309		} else if (!netif_carrier_ok(netdev) &&
4310			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4311			igb_check_swap_media(adapter);
4312			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4313				schedule_work(&adapter->reset_task);
4314				/* return immediately */
4315				return;
4316			}
4317		}
4318	}
4319
4320	spin_lock(&adapter->stats64_lock);
4321	igb_update_stats(adapter, &adapter->stats64);
4322	spin_unlock(&adapter->stats64_lock);
4323
4324	for (i = 0; i < adapter->num_tx_queues; i++) {
4325		struct igb_ring *tx_ring = adapter->tx_ring[i];
4326		if (!netif_carrier_ok(netdev)) {
4327			/* We've lost link, so the controller stops DMA,
4328			 * but we've got queued Tx work that's never going
4329			 * to get done, so reset controller to flush Tx.
4330			 * (Do the reset outside of interrupt context).
4331			 */
4332			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4333				adapter->tx_timeout_count++;
4334				schedule_work(&adapter->reset_task);
4335				/* return immediately since reset is imminent */
4336				return;
4337			}
4338		}
4339
4340		/* Force detection of hung controller every watchdog period */
4341		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4342	}
4343
4344	/* Cause software interrupt to ensure Rx ring is cleaned */
4345	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4346		u32 eics = 0;
4347		for (i = 0; i < adapter->num_q_vectors; i++)
4348			eics |= adapter->q_vector[i]->eims_value;
4349		wr32(E1000_EICS, eics);
4350	} else {
4351		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4352	}
4353
4354	igb_spoof_check(adapter);
4355	igb_ptp_rx_hang(adapter);
4356
4357	/* Reset the timer */
4358	if (!test_bit(__IGB_DOWN, &adapter->state)) {
4359		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4360			mod_timer(&adapter->watchdog_timer,
4361				  round_jiffies(jiffies +  HZ));
4362		else
4363			mod_timer(&adapter->watchdog_timer,
4364				  round_jiffies(jiffies + 2 * HZ));
4365	}
4366}
4367
4368enum latency_range {
4369	lowest_latency = 0,
4370	low_latency = 1,
4371	bulk_latency = 2,
4372	latency_invalid = 255
4373};
4374
4375/**
4376 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4377 *  @q_vector: pointer to q_vector
4378 *
4379 *  Stores a new ITR value based on strictly on packet size.  This
4380 *  algorithm is less sophisticated than that used in igb_update_itr,
4381 *  due to the difficulty of synchronizing statistics across multiple
4382 *  receive rings.  The divisors and thresholds used by this function
4383 *  were determined based on theoretical maximum wire speed and testing
4384 *  data, in order to minimize response time while increasing bulk
4385 *  throughput.
4386 *  This functionality is controlled by ethtool's coalescing settings.
4387 *  NOTE:  This function is called only when operating in a multiqueue
4388 *         receive environment.
4389 **/
4390static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4391{
4392	int new_val = q_vector->itr_val;
4393	int avg_wire_size = 0;
4394	struct igb_adapter *adapter = q_vector->adapter;
4395	unsigned int packets;
4396
4397	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4398	 * ints/sec - ITR timer value of 120 ticks.
4399	 */
4400	if (adapter->link_speed != SPEED_1000) {
4401		new_val = IGB_4K_ITR;
4402		goto set_itr_val;
4403	}
4404
4405	packets = q_vector->rx.total_packets;
4406	if (packets)
4407		avg_wire_size = q_vector->rx.total_bytes / packets;
4408
4409	packets = q_vector->tx.total_packets;
4410	if (packets)
4411		avg_wire_size = max_t(u32, avg_wire_size,
4412				      q_vector->tx.total_bytes / packets);
4413
4414	/* if avg_wire_size isn't set no work was done */
4415	if (!avg_wire_size)
4416		goto clear_counts;
4417
4418	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4419	avg_wire_size += 24;
4420
4421	/* Don't starve jumbo frames */
4422	avg_wire_size = min(avg_wire_size, 3000);
4423
4424	/* Give a little boost to mid-size frames */
4425	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4426		new_val = avg_wire_size / 3;
4427	else
4428		new_val = avg_wire_size / 2;
4429
4430	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4431	if (new_val < IGB_20K_ITR &&
4432	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4433	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4434		new_val = IGB_20K_ITR;
4435
4436set_itr_val:
4437	if (new_val != q_vector->itr_val) {
4438		q_vector->itr_val = new_val;
4439		q_vector->set_itr = 1;
4440	}
4441clear_counts:
4442	q_vector->rx.total_bytes = 0;
4443	q_vector->rx.total_packets = 0;
4444	q_vector->tx.total_bytes = 0;
4445	q_vector->tx.total_packets = 0;
4446}
4447
4448/**
4449 *  igb_update_itr - update the dynamic ITR value based on statistics
4450 *  @q_vector: pointer to q_vector
4451 *  @ring_container: ring info to update the itr for
4452 *
4453 *  Stores a new ITR value based on packets and byte
4454 *  counts during the last interrupt.  The advantage of per interrupt
4455 *  computation is faster updates and more accurate ITR for the current
4456 *  traffic pattern.  Constants in this function were computed
4457 *  based on theoretical maximum wire speed and thresholds were set based
4458 *  on testing data as well as attempting to minimize response time
4459 *  while increasing bulk throughput.
4460 *  This functionality is controlled by ethtool's coalescing settings.
4461 *  NOTE:  These calculations are only valid when operating in a single-
4462 *         queue environment.
4463 **/
4464static void igb_update_itr(struct igb_q_vector *q_vector,
4465			   struct igb_ring_container *ring_container)
4466{
4467	unsigned int packets = ring_container->total_packets;
4468	unsigned int bytes = ring_container->total_bytes;
4469	u8 itrval = ring_container->itr;
4470
4471	/* no packets, exit with status unchanged */
4472	if (packets == 0)
4473		return;
4474
4475	switch (itrval) {
4476	case lowest_latency:
4477		/* handle TSO and jumbo frames */
4478		if (bytes/packets > 8000)
4479			itrval = bulk_latency;
4480		else if ((packets < 5) && (bytes > 512))
4481			itrval = low_latency;
4482		break;
4483	case low_latency:  /* 50 usec aka 20000 ints/s */
4484		if (bytes > 10000) {
4485			/* this if handles the TSO accounting */
4486			if (bytes/packets > 8000) {
4487				itrval = bulk_latency;
4488			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4489				itrval = bulk_latency;
4490			} else if ((packets > 35)) {
4491				itrval = lowest_latency;
4492			}
4493		} else if (bytes/packets > 2000) {
4494			itrval = bulk_latency;
4495		} else if (packets <= 2 && bytes < 512) {
4496			itrval = lowest_latency;
4497		}
4498		break;
4499	case bulk_latency: /* 250 usec aka 4000 ints/s */
4500		if (bytes > 25000) {
4501			if (packets > 35)
4502				itrval = low_latency;
4503		} else if (bytes < 1500) {
4504			itrval = low_latency;
4505		}
4506		break;
4507	}
4508
4509	/* clear work counters since we have the values we need */
4510	ring_container->total_bytes = 0;
4511	ring_container->total_packets = 0;
4512
4513	/* write updated itr to ring container */
4514	ring_container->itr = itrval;
4515}
4516
4517static void igb_set_itr(struct igb_q_vector *q_vector)
4518{
4519	struct igb_adapter *adapter = q_vector->adapter;
4520	u32 new_itr = q_vector->itr_val;
4521	u8 current_itr = 0;
4522
4523	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4524	if (adapter->link_speed != SPEED_1000) {
4525		current_itr = 0;
4526		new_itr = IGB_4K_ITR;
4527		goto set_itr_now;
4528	}
4529
4530	igb_update_itr(q_vector, &q_vector->tx);
4531	igb_update_itr(q_vector, &q_vector->rx);
4532
4533	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4534
4535	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4536	if (current_itr == lowest_latency &&
4537	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4538	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4539		current_itr = low_latency;
4540
4541	switch (current_itr) {
4542	/* counts and packets in update_itr are dependent on these numbers */
4543	case lowest_latency:
4544		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4545		break;
4546	case low_latency:
4547		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4548		break;
4549	case bulk_latency:
4550		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4551		break;
4552	default:
4553		break;
4554	}
4555
4556set_itr_now:
4557	if (new_itr != q_vector->itr_val) {
4558		/* this attempts to bias the interrupt rate towards Bulk
4559		 * by adding intermediate steps when interrupt rate is
4560		 * increasing
4561		 */
4562		new_itr = new_itr > q_vector->itr_val ?
4563			  max((new_itr * q_vector->itr_val) /
4564			  (new_itr + (q_vector->itr_val >> 2)),
4565			  new_itr) : new_itr;
4566		/* Don't write the value here; it resets the adapter's
4567		 * internal timer, and causes us to delay far longer than
4568		 * we should between interrupts.  Instead, we write the ITR
4569		 * value at the beginning of the next interrupt so the timing
4570		 * ends up being correct.
4571		 */
4572		q_vector->itr_val = new_itr;
4573		q_vector->set_itr = 1;
4574	}
4575}
4576
4577static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4578			    u32 type_tucmd, u32 mss_l4len_idx)
4579{
4580	struct e1000_adv_tx_context_desc *context_desc;
4581	u16 i = tx_ring->next_to_use;
4582
4583	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4584
4585	i++;
4586	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4587
4588	/* set bits to identify this as an advanced context descriptor */
4589	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4590
4591	/* For 82575, context index must be unique per ring. */
4592	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4593		mss_l4len_idx |= tx_ring->reg_idx << 4;
4594
4595	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4596	context_desc->seqnum_seed	= 0;
4597	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4598	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4599}
4600
4601static int igb_tso(struct igb_ring *tx_ring,
4602		   struct igb_tx_buffer *first,
4603		   u8 *hdr_len)
4604{
4605	struct sk_buff *skb = first->skb;
4606	u32 vlan_macip_lens, type_tucmd;
4607	u32 mss_l4len_idx, l4len;
4608
4609	if (skb->ip_summed != CHECKSUM_PARTIAL)
4610		return 0;
4611
4612	if (!skb_is_gso(skb))
4613		return 0;
4614
4615	if (skb_header_cloned(skb)) {
4616		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4617		if (err)
4618			return err;
4619	}
4620
4621	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4622	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4623
4624	if (first->protocol == htons(ETH_P_IP)) {
4625		struct iphdr *iph = ip_hdr(skb);
4626		iph->tot_len = 0;
4627		iph->check = 0;
4628		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4629							 iph->daddr, 0,
4630							 IPPROTO_TCP,
4631							 0);
4632		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4633		first->tx_flags |= IGB_TX_FLAGS_TSO |
4634				   IGB_TX_FLAGS_CSUM |
4635				   IGB_TX_FLAGS_IPV4;
4636	} else if (skb_is_gso_v6(skb)) {
4637		ipv6_hdr(skb)->payload_len = 0;
4638		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4639						       &ipv6_hdr(skb)->daddr,
4640						       0, IPPROTO_TCP, 0);
4641		first->tx_flags |= IGB_TX_FLAGS_TSO |
4642				   IGB_TX_FLAGS_CSUM;
4643	}
4644
4645	/* compute header lengths */
4646	l4len = tcp_hdrlen(skb);
4647	*hdr_len = skb_transport_offset(skb) + l4len;
4648
4649	/* update gso size and bytecount with header size */
4650	first->gso_segs = skb_shinfo(skb)->gso_segs;
4651	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4652
4653	/* MSS L4LEN IDX */
4654	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4655	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4656
4657	/* VLAN MACLEN IPLEN */
4658	vlan_macip_lens = skb_network_header_len(skb);
4659	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4660	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4661
4662	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4663
4664	return 1;
4665}
4666
4667static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4668{
4669	struct sk_buff *skb = first->skb;
4670	u32 vlan_macip_lens = 0;
4671	u32 mss_l4len_idx = 0;
4672	u32 type_tucmd = 0;
4673
4674	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4675		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4676			return;
4677	} else {
4678		u8 l4_hdr = 0;
4679		switch (first->protocol) {
4680		case htons(ETH_P_IP):
4681			vlan_macip_lens |= skb_network_header_len(skb);
4682			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4683			l4_hdr = ip_hdr(skb)->protocol;
4684			break;
4685		case htons(ETH_P_IPV6):
4686			vlan_macip_lens |= skb_network_header_len(skb);
4687			l4_hdr = ipv6_hdr(skb)->nexthdr;
4688			break;
4689		default:
4690			if (unlikely(net_ratelimit())) {
4691				dev_warn(tx_ring->dev,
4692					 "partial checksum but proto=%x!\n",
4693					 first->protocol);
4694			}
4695			break;
4696		}
4697
4698		switch (l4_hdr) {
4699		case IPPROTO_TCP:
4700			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4701			mss_l4len_idx = tcp_hdrlen(skb) <<
4702					E1000_ADVTXD_L4LEN_SHIFT;
4703			break;
4704		case IPPROTO_SCTP:
4705			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4706			mss_l4len_idx = sizeof(struct sctphdr) <<
4707					E1000_ADVTXD_L4LEN_SHIFT;
4708			break;
4709		case IPPROTO_UDP:
4710			mss_l4len_idx = sizeof(struct udphdr) <<
4711					E1000_ADVTXD_L4LEN_SHIFT;
4712			break;
4713		default:
4714			if (unlikely(net_ratelimit())) {
4715				dev_warn(tx_ring->dev,
4716					 "partial checksum but l4 proto=%x!\n",
4717					 l4_hdr);
4718			}
4719			break;
4720		}
4721
4722		/* update TX checksum flag */
4723		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4724	}
4725
4726	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4727	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4728
4729	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4730}
4731
4732#define IGB_SET_FLAG(_input, _flag, _result) \
4733	((_flag <= _result) ? \
4734	 ((u32)(_input & _flag) * (_result / _flag)) : \
4735	 ((u32)(_input & _flag) / (_flag / _result)))
4736
4737static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4738{
4739	/* set type for advanced descriptor with frame checksum insertion */
4740	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4741		       E1000_ADVTXD_DCMD_DEXT |
4742		       E1000_ADVTXD_DCMD_IFCS;
4743
4744	/* set HW vlan bit if vlan is present */
4745	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4746				 (E1000_ADVTXD_DCMD_VLE));
4747
4748	/* set segmentation bits for TSO */
4749	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4750				 (E1000_ADVTXD_DCMD_TSE));
4751
4752	/* set timestamp bit if present */
4753	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4754				 (E1000_ADVTXD_MAC_TSTAMP));
4755
4756	/* insert frame checksum */
4757	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4758
4759	return cmd_type;
4760}
4761
4762static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4763				 union e1000_adv_tx_desc *tx_desc,
4764				 u32 tx_flags, unsigned int paylen)
4765{
4766	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4767
4768	/* 82575 requires a unique index per ring */
4769	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4770		olinfo_status |= tx_ring->reg_idx << 4;
4771
4772	/* insert L4 checksum */
4773	olinfo_status |= IGB_SET_FLAG(tx_flags,
4774				      IGB_TX_FLAGS_CSUM,
4775				      (E1000_TXD_POPTS_TXSM << 8));
4776
4777	/* insert IPv4 checksum */
4778	olinfo_status |= IGB_SET_FLAG(tx_flags,
4779				      IGB_TX_FLAGS_IPV4,
4780				      (E1000_TXD_POPTS_IXSM << 8));
4781
4782	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4783}
4784
4785static void igb_tx_map(struct igb_ring *tx_ring,
4786		       struct igb_tx_buffer *first,
4787		       const u8 hdr_len)
4788{
4789	struct sk_buff *skb = first->skb;
4790	struct igb_tx_buffer *tx_buffer;
4791	union e1000_adv_tx_desc *tx_desc;
4792	struct skb_frag_struct *frag;
4793	dma_addr_t dma;
4794	unsigned int data_len, size;
4795	u32 tx_flags = first->tx_flags;
4796	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4797	u16 i = tx_ring->next_to_use;
4798
4799	tx_desc = IGB_TX_DESC(tx_ring, i);
4800
4801	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4802
4803	size = skb_headlen(skb);
4804	data_len = skb->data_len;
4805
4806	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4807
4808	tx_buffer = first;
4809
4810	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4811		if (dma_mapping_error(tx_ring->dev, dma))
4812			goto dma_error;
4813
4814		/* record length, and DMA address */
4815		dma_unmap_len_set(tx_buffer, len, size);
4816		dma_unmap_addr_set(tx_buffer, dma, dma);
4817
4818		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4819
4820		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4821			tx_desc->read.cmd_type_len =
4822				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4823
4824			i++;
4825			tx_desc++;
4826			if (i == tx_ring->count) {
4827				tx_desc = IGB_TX_DESC(tx_ring, 0);
4828				i = 0;
4829			}
4830			tx_desc->read.olinfo_status = 0;
4831
4832			dma += IGB_MAX_DATA_PER_TXD;
4833			size -= IGB_MAX_DATA_PER_TXD;
4834
4835			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4836		}
4837
4838		if (likely(!data_len))
4839			break;
4840
4841		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4842
4843		i++;
4844		tx_desc++;
4845		if (i == tx_ring->count) {
4846			tx_desc = IGB_TX_DESC(tx_ring, 0);
4847			i = 0;
4848		}
4849		tx_desc->read.olinfo_status = 0;
4850
4851		size = skb_frag_size(frag);
4852		data_len -= size;
4853
4854		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4855				       size, DMA_TO_DEVICE);
4856
4857		tx_buffer = &tx_ring->tx_buffer_info[i];
4858	}
4859
4860	/* write last descriptor with RS and EOP bits */
4861	cmd_type |= size | IGB_TXD_DCMD;
4862	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4863
4864	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4865
4866	/* set the timestamp */
4867	first->time_stamp = jiffies;
4868
4869	/* Force memory writes to complete before letting h/w know there
4870	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4871	 * memory model archs, such as IA-64).
4872	 *
4873	 * We also need this memory barrier to make certain all of the
4874	 * status bits have been updated before next_to_watch is written.
4875	 */
4876	wmb();
4877
4878	/* set next_to_watch value indicating a packet is present */
4879	first->next_to_watch = tx_desc;
4880
4881	i++;
4882	if (i == tx_ring->count)
4883		i = 0;
4884
4885	tx_ring->next_to_use = i;
4886
4887	writel(i, tx_ring->tail);
4888
4889	/* we need this if more than one processor can write to our tail
4890	 * at a time, it synchronizes IO on IA64/Altix systems
4891	 */
4892	mmiowb();
4893
4894	return;
4895
4896dma_error:
4897	dev_err(tx_ring->dev, "TX DMA map failed\n");
4898
4899	/* clear dma mappings for failed tx_buffer_info map */
4900	for (;;) {
4901		tx_buffer = &tx_ring->tx_buffer_info[i];
4902		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4903		if (tx_buffer == first)
4904			break;
4905		if (i == 0)
4906			i = tx_ring->count;
4907		i--;
4908	}
4909
4910	tx_ring->next_to_use = i;
4911}
4912
4913static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4914{
4915	struct net_device *netdev = tx_ring->netdev;
4916
4917	netif_stop_subqueue(netdev, tx_ring->queue_index);
4918
4919	/* Herbert's original patch had:
4920	 *  smp_mb__after_netif_stop_queue();
4921	 * but since that doesn't exist yet, just open code it.
4922	 */
4923	smp_mb();
4924
4925	/* We need to check again in a case another CPU has just
4926	 * made room available.
4927	 */
4928	if (igb_desc_unused(tx_ring) < size)
4929		return -EBUSY;
4930
4931	/* A reprieve! */
4932	netif_wake_subqueue(netdev, tx_ring->queue_index);
4933
4934	u64_stats_update_begin(&tx_ring->tx_syncp2);
4935	tx_ring->tx_stats.restart_queue2++;
4936	u64_stats_update_end(&tx_ring->tx_syncp2);
4937
4938	return 0;
4939}
4940
4941static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4942{
4943	if (igb_desc_unused(tx_ring) >= size)
4944		return 0;
4945	return __igb_maybe_stop_tx(tx_ring, size);
4946}
4947
4948netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4949				struct igb_ring *tx_ring)
4950{
4951	struct igb_tx_buffer *first;
4952	int tso;
4953	u32 tx_flags = 0;
4954	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4955	__be16 protocol = vlan_get_protocol(skb);
4956	u8 hdr_len = 0;
4957
4958	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4959	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4960	 *       + 2 desc gap to keep tail from touching head,
4961	 *       + 1 desc for context descriptor,
4962	 * otherwise try next time
4963	 */
4964	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4965		unsigned short f;
4966		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4967			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4968	} else {
4969		count += skb_shinfo(skb)->nr_frags;
4970	}
4971
4972	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4973		/* this is a hard error */
4974		return NETDEV_TX_BUSY;
4975	}
4976
4977	/* record the location of the first descriptor for this packet */
4978	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4979	first->skb = skb;
4980	first->bytecount = skb->len;
4981	first->gso_segs = 1;
4982
4983	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4984		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4985
4986		if (!(adapter->ptp_tx_skb)) {
4987			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4988			tx_flags |= IGB_TX_FLAGS_TSTAMP;
4989
4990			adapter->ptp_tx_skb = skb_get(skb);
4991			adapter->ptp_tx_start = jiffies;
4992			if (adapter->hw.mac.type == e1000_82576)
4993				schedule_work(&adapter->ptp_tx_work);
4994		}
4995	}
4996
4997	skb_tx_timestamp(skb);
4998
4999	if (vlan_tx_tag_present(skb)) {
5000		tx_flags |= IGB_TX_FLAGS_VLAN;
5001		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5002	}
5003
5004	/* record initial flags and protocol */
5005	first->tx_flags = tx_flags;
5006	first->protocol = protocol;
5007
5008	tso = igb_tso(tx_ring, first, &hdr_len);
5009	if (tso < 0)
5010		goto out_drop;
5011	else if (!tso)
5012		igb_tx_csum(tx_ring, first);
5013
5014	igb_tx_map(tx_ring, first, hdr_len);
5015
5016	/* Make sure there is space in the ring for the next send. */
5017	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5018
5019	return NETDEV_TX_OK;
5020
5021out_drop:
5022	igb_unmap_and_free_tx_resource(tx_ring, first);
5023
5024	return NETDEV_TX_OK;
5025}
5026
5027static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5028						    struct sk_buff *skb)
5029{
5030	unsigned int r_idx = skb->queue_mapping;
5031
5032	if (r_idx >= adapter->num_tx_queues)
5033		r_idx = r_idx % adapter->num_tx_queues;
5034
5035	return adapter->tx_ring[r_idx];
5036}
5037
5038static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5039				  struct net_device *netdev)
5040{
5041	struct igb_adapter *adapter = netdev_priv(netdev);
5042
5043	if (test_bit(__IGB_DOWN, &adapter->state)) {
5044		dev_kfree_skb_any(skb);
5045		return NETDEV_TX_OK;
5046	}
5047
5048	if (skb->len <= 0) {
5049		dev_kfree_skb_any(skb);
5050		return NETDEV_TX_OK;
5051	}
5052
5053	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5054	 * in order to meet this minimum size requirement.
5055	 */
5056	if (unlikely(skb->len < 17)) {
5057		if (skb_pad(skb, 17 - skb->len))
5058			return NETDEV_TX_OK;
5059		skb->len = 17;
5060		skb_set_tail_pointer(skb, 17);
5061	}
5062
5063	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5064}
5065
5066/**
5067 *  igb_tx_timeout - Respond to a Tx Hang
5068 *  @netdev: network interface device structure
5069 **/
5070static void igb_tx_timeout(struct net_device *netdev)
5071{
5072	struct igb_adapter *adapter = netdev_priv(netdev);
5073	struct e1000_hw *hw = &adapter->hw;
5074
5075	/* Do the reset outside of interrupt context */
5076	adapter->tx_timeout_count++;
5077
5078	if (hw->mac.type >= e1000_82580)
5079		hw->dev_spec._82575.global_device_reset = true;
5080
5081	schedule_work(&adapter->reset_task);
5082	wr32(E1000_EICS,
5083	     (adapter->eims_enable_mask & ~adapter->eims_other));
5084}
5085
5086static void igb_reset_task(struct work_struct *work)
5087{
5088	struct igb_adapter *adapter;
5089	adapter = container_of(work, struct igb_adapter, reset_task);
5090
5091	igb_dump(adapter);
5092	netdev_err(adapter->netdev, "Reset adapter\n");
5093	igb_reinit_locked(adapter);
5094}
5095
5096/**
5097 *  igb_get_stats64 - Get System Network Statistics
5098 *  @netdev: network interface device structure
5099 *  @stats: rtnl_link_stats64 pointer
5100 **/
5101static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5102						struct rtnl_link_stats64 *stats)
5103{
5104	struct igb_adapter *adapter = netdev_priv(netdev);
5105
5106	spin_lock(&adapter->stats64_lock);
5107	igb_update_stats(adapter, &adapter->stats64);
5108	memcpy(stats, &adapter->stats64, sizeof(*stats));
5109	spin_unlock(&adapter->stats64_lock);
5110
5111	return stats;
5112}
5113
5114/**
5115 *  igb_change_mtu - Change the Maximum Transfer Unit
5116 *  @netdev: network interface device structure
5117 *  @new_mtu: new value for maximum frame size
5118 *
5119 *  Returns 0 on success, negative on failure
5120 **/
5121static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5122{
5123	struct igb_adapter *adapter = netdev_priv(netdev);
5124	struct pci_dev *pdev = adapter->pdev;
5125	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5126
5127	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5128		dev_err(&pdev->dev, "Invalid MTU setting\n");
5129		return -EINVAL;
5130	}
5131
5132#define MAX_STD_JUMBO_FRAME_SIZE 9238
5133	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5134		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5135		return -EINVAL;
5136	}
5137
5138	/* adjust max frame to be at least the size of a standard frame */
5139	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5140		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5141
5142	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5143		msleep(1);
5144
5145	/* igb_down has a dependency on max_frame_size */
5146	adapter->max_frame_size = max_frame;
5147
5148	if (netif_running(netdev))
5149		igb_down(adapter);
5150
5151	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5152		 netdev->mtu, new_mtu);
5153	netdev->mtu = new_mtu;
5154
5155	if (netif_running(netdev))
5156		igb_up(adapter);
5157	else
5158		igb_reset(adapter);
5159
5160	clear_bit(__IGB_RESETTING, &adapter->state);
5161
5162	return 0;
5163}
5164
5165/**
5166 *  igb_update_stats - Update the board statistics counters
5167 *  @adapter: board private structure
5168 **/
5169void igb_update_stats(struct igb_adapter *adapter,
5170		      struct rtnl_link_stats64 *net_stats)
5171{
5172	struct e1000_hw *hw = &adapter->hw;
5173	struct pci_dev *pdev = adapter->pdev;
5174	u32 reg, mpc;
5175	u16 phy_tmp;
5176	int i;
5177	u64 bytes, packets;
5178	unsigned int start;
5179	u64 _bytes, _packets;
5180
5181#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
5182
5183	/* Prevent stats update while adapter is being reset, or if the pci
5184	 * connection is down.
5185	 */
5186	if (adapter->link_speed == 0)
5187		return;
5188	if (pci_channel_offline(pdev))
5189		return;
5190
5191	bytes = 0;
5192	packets = 0;
5193
5194	rcu_read_lock();
5195	for (i = 0; i < adapter->num_rx_queues; i++) {
5196		u32 rqdpc = rd32(E1000_RQDPC(i));
5197		struct igb_ring *ring = adapter->rx_ring[i];
5198
5199		if (rqdpc) {
5200			ring->rx_stats.drops += rqdpc;
5201			net_stats->rx_fifo_errors += rqdpc;
5202		}
5203
5204		do {
5205			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5206			_bytes = ring->rx_stats.bytes;
5207			_packets = ring->rx_stats.packets;
5208		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5209		bytes += _bytes;
5210		packets += _packets;
5211	}
5212
5213	net_stats->rx_bytes = bytes;
5214	net_stats->rx_packets = packets;
5215
5216	bytes = 0;
5217	packets = 0;
5218	for (i = 0; i < adapter->num_tx_queues; i++) {
5219		struct igb_ring *ring = adapter->tx_ring[i];
5220		do {
5221			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5222			_bytes = ring->tx_stats.bytes;
5223			_packets = ring->tx_stats.packets;
5224		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5225		bytes += _bytes;
5226		packets += _packets;
5227	}
5228	net_stats->tx_bytes = bytes;
5229	net_stats->tx_packets = packets;
5230	rcu_read_unlock();
5231
5232	/* read stats registers */
5233	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5234	adapter->stats.gprc += rd32(E1000_GPRC);
5235	adapter->stats.gorc += rd32(E1000_GORCL);
5236	rd32(E1000_GORCH); /* clear GORCL */
5237	adapter->stats.bprc += rd32(E1000_BPRC);
5238	adapter->stats.mprc += rd32(E1000_MPRC);
5239	adapter->stats.roc += rd32(E1000_ROC);
5240
5241	adapter->stats.prc64 += rd32(E1000_PRC64);
5242	adapter->stats.prc127 += rd32(E1000_PRC127);
5243	adapter->stats.prc255 += rd32(E1000_PRC255);
5244	adapter->stats.prc511 += rd32(E1000_PRC511);
5245	adapter->stats.prc1023 += rd32(E1000_PRC1023);
5246	adapter->stats.prc1522 += rd32(E1000_PRC1522);
5247	adapter->stats.symerrs += rd32(E1000_SYMERRS);
5248	adapter->stats.sec += rd32(E1000_SEC);
5249
5250	mpc = rd32(E1000_MPC);
5251	adapter->stats.mpc += mpc;
5252	net_stats->rx_fifo_errors += mpc;
5253	adapter->stats.scc += rd32(E1000_SCC);
5254	adapter->stats.ecol += rd32(E1000_ECOL);
5255	adapter->stats.mcc += rd32(E1000_MCC);
5256	adapter->stats.latecol += rd32(E1000_LATECOL);
5257	adapter->stats.dc += rd32(E1000_DC);
5258	adapter->stats.rlec += rd32(E1000_RLEC);
5259	adapter->stats.xonrxc += rd32(E1000_XONRXC);
5260	adapter->stats.xontxc += rd32(E1000_XONTXC);
5261	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5262	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5263	adapter->stats.fcruc += rd32(E1000_FCRUC);
5264	adapter->stats.gptc += rd32(E1000_GPTC);
5265	adapter->stats.gotc += rd32(E1000_GOTCL);
5266	rd32(E1000_GOTCH); /* clear GOTCL */
5267	adapter->stats.rnbc += rd32(E1000_RNBC);
5268	adapter->stats.ruc += rd32(E1000_RUC);
5269	adapter->stats.rfc += rd32(E1000_RFC);
5270	adapter->stats.rjc += rd32(E1000_RJC);
5271	adapter->stats.tor += rd32(E1000_TORH);
5272	adapter->stats.tot += rd32(E1000_TOTH);
5273	adapter->stats.tpr += rd32(E1000_TPR);
5274
5275	adapter->stats.ptc64 += rd32(E1000_PTC64);
5276	adapter->stats.ptc127 += rd32(E1000_PTC127);
5277	adapter->stats.ptc255 += rd32(E1000_PTC255);
5278	adapter->stats.ptc511 += rd32(E1000_PTC511);
5279	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5280	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5281
5282	adapter->stats.mptc += rd32(E1000_MPTC);
5283	adapter->stats.bptc += rd32(E1000_BPTC);
5284
5285	adapter->stats.tpt += rd32(E1000_TPT);
5286	adapter->stats.colc += rd32(E1000_COLC);
5287
5288	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5289	/* read internal phy specific stats */
5290	reg = rd32(E1000_CTRL_EXT);
5291	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5292		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5293
5294		/* this stat has invalid values on i210/i211 */
5295		if ((hw->mac.type != e1000_i210) &&
5296		    (hw->mac.type != e1000_i211))
5297			adapter->stats.tncrs += rd32(E1000_TNCRS);
5298	}
5299
5300	adapter->stats.tsctc += rd32(E1000_TSCTC);
5301	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5302
5303	adapter->stats.iac += rd32(E1000_IAC);
5304	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5305	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5306	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5307	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5308	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5309	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5310	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5311	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5312
5313	/* Fill out the OS statistics structure */
5314	net_stats->multicast = adapter->stats.mprc;
5315	net_stats->collisions = adapter->stats.colc;
5316
5317	/* Rx Errors */
5318
5319	/* RLEC on some newer hardware can be incorrect so build
5320	 * our own version based on RUC and ROC
5321	 */
5322	net_stats->rx_errors = adapter->stats.rxerrc +
5323		adapter->stats.crcerrs + adapter->stats.algnerrc +
5324		adapter->stats.ruc + adapter->stats.roc +
5325		adapter->stats.cexterr;
5326	net_stats->rx_length_errors = adapter->stats.ruc +
5327				      adapter->stats.roc;
5328	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5329	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5330	net_stats->rx_missed_errors = adapter->stats.mpc;
5331
5332	/* Tx Errors */
5333	net_stats->tx_errors = adapter->stats.ecol +
5334			       adapter->stats.latecol;
5335	net_stats->tx_aborted_errors = adapter->stats.ecol;
5336	net_stats->tx_window_errors = adapter->stats.latecol;
5337	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5338
5339	/* Tx Dropped needs to be maintained elsewhere */
5340
5341	/* Phy Stats */
5342	if (hw->phy.media_type == e1000_media_type_copper) {
5343		if ((adapter->link_speed == SPEED_1000) &&
5344		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5345			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5346			adapter->phy_stats.idle_errors += phy_tmp;
5347		}
5348	}
5349
5350	/* Management Stats */
5351	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5352	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5353	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5354
5355	/* OS2BMC Stats */
5356	reg = rd32(E1000_MANC);
5357	if (reg & E1000_MANC_EN_BMC2OS) {
5358		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5359		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5360		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5361		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5362	}
5363}
5364
5365static irqreturn_t igb_msix_other(int irq, void *data)
5366{
5367	struct igb_adapter *adapter = data;
5368	struct e1000_hw *hw = &adapter->hw;
5369	u32 icr = rd32(E1000_ICR);
5370	/* reading ICR causes bit 31 of EICR to be cleared */
5371
5372	if (icr & E1000_ICR_DRSTA)
5373		schedule_work(&adapter->reset_task);
5374
5375	if (icr & E1000_ICR_DOUTSYNC) {
5376		/* HW is reporting DMA is out of sync */
5377		adapter->stats.doosync++;
5378		/* The DMA Out of Sync is also indication of a spoof event
5379		 * in IOV mode. Check the Wrong VM Behavior register to
5380		 * see if it is really a spoof event.
5381		 */
5382		igb_check_wvbr(adapter);
5383	}
5384
5385	/* Check for a mailbox event */
5386	if (icr & E1000_ICR_VMMB)
5387		igb_msg_task(adapter);
5388
5389	if (icr & E1000_ICR_LSC) {
5390		hw->mac.get_link_status = 1;
5391		/* guard against interrupt when we're going down */
5392		if (!test_bit(__IGB_DOWN, &adapter->state))
5393			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5394	}
5395
5396	if (icr & E1000_ICR_TS) {
5397		u32 tsicr = rd32(E1000_TSICR);
5398
5399		if (tsicr & E1000_TSICR_TXTS) {
5400			/* acknowledge the interrupt */
5401			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5402			/* retrieve hardware timestamp */
5403			schedule_work(&adapter->ptp_tx_work);
5404		}
5405	}
5406
5407	wr32(E1000_EIMS, adapter->eims_other);
5408
5409	return IRQ_HANDLED;
5410}
5411
5412static void igb_write_itr(struct igb_q_vector *q_vector)
5413{
5414	struct igb_adapter *adapter = q_vector->adapter;
5415	u32 itr_val = q_vector->itr_val & 0x7FFC;
5416
5417	if (!q_vector->set_itr)
5418		return;
5419
5420	if (!itr_val)
5421		itr_val = 0x4;
5422
5423	if (adapter->hw.mac.type == e1000_82575)
5424		itr_val |= itr_val << 16;
5425	else
5426		itr_val |= E1000_EITR_CNT_IGNR;
5427
5428	writel(itr_val, q_vector->itr_register);
5429	q_vector->set_itr = 0;
5430}
5431
5432static irqreturn_t igb_msix_ring(int irq, void *data)
5433{
5434	struct igb_q_vector *q_vector = data;
5435
5436	/* Write the ITR value calculated from the previous interrupt. */
5437	igb_write_itr(q_vector);
5438
5439	napi_schedule(&q_vector->napi);
5440
5441	return IRQ_HANDLED;
5442}
5443
5444#ifdef CONFIG_IGB_DCA
5445static void igb_update_tx_dca(struct igb_adapter *adapter,
5446			      struct igb_ring *tx_ring,
5447			      int cpu)
5448{
5449	struct e1000_hw *hw = &adapter->hw;
5450	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5451
5452	if (hw->mac.type != e1000_82575)
5453		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5454
5455	/* We can enable relaxed ordering for reads, but not writes when
5456	 * DCA is enabled.  This is due to a known issue in some chipsets
5457	 * which will cause the DCA tag to be cleared.
5458	 */
5459	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5460		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5461		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5462
5463	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5464}
5465
5466static void igb_update_rx_dca(struct igb_adapter *adapter,
5467			      struct igb_ring *rx_ring,
5468			      int cpu)
5469{
5470	struct e1000_hw *hw = &adapter->hw;
5471	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5472
5473	if (hw->mac.type != e1000_82575)
5474		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5475
5476	/* We can enable relaxed ordering for reads, but not writes when
5477	 * DCA is enabled.  This is due to a known issue in some chipsets
5478	 * which will cause the DCA tag to be cleared.
5479	 */
5480	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5481		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5482
5483	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5484}
5485
5486static void igb_update_dca(struct igb_q_vector *q_vector)
5487{
5488	struct igb_adapter *adapter = q_vector->adapter;
5489	int cpu = get_cpu();
5490
5491	if (q_vector->cpu == cpu)
5492		goto out_no_update;
5493
5494	if (q_vector->tx.ring)
5495		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5496
5497	if (q_vector->rx.ring)
5498		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5499
5500	q_vector->cpu = cpu;
5501out_no_update:
5502	put_cpu();
5503}
5504
5505static void igb_setup_dca(struct igb_adapter *adapter)
5506{
5507	struct e1000_hw *hw = &adapter->hw;
5508	int i;
5509
5510	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5511		return;
5512
5513	/* Always use CB2 mode, difference is masked in the CB driver. */
5514	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5515
5516	for (i = 0; i < adapter->num_q_vectors; i++) {
5517		adapter->q_vector[i]->cpu = -1;
5518		igb_update_dca(adapter->q_vector[i]);
5519	}
5520}
5521
5522static int __igb_notify_dca(struct device *dev, void *data)
5523{
5524	struct net_device *netdev = dev_get_drvdata(dev);
5525	struct igb_adapter *adapter = netdev_priv(netdev);
5526	struct pci_dev *pdev = adapter->pdev;
5527	struct e1000_hw *hw = &adapter->hw;
5528	unsigned long event = *(unsigned long *)data;
5529
5530	switch (event) {
5531	case DCA_PROVIDER_ADD:
5532		/* if already enabled, don't do it again */
5533		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5534			break;
5535		if (dca_add_requester(dev) == 0) {
5536			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5537			dev_info(&pdev->dev, "DCA enabled\n");
5538			igb_setup_dca(adapter);
5539			break;
5540		}
5541		/* Fall Through since DCA is disabled. */
5542	case DCA_PROVIDER_REMOVE:
5543		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5544			/* without this a class_device is left
5545			 * hanging around in the sysfs model
5546			 */
5547			dca_remove_requester(dev);
5548			dev_info(&pdev->dev, "DCA disabled\n");
5549			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5550			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5551		}
5552		break;
5553	}
5554
5555	return 0;
5556}
5557
5558static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5559			  void *p)
5560{
5561	int ret_val;
5562
5563	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5564					 __igb_notify_dca);
5565
5566	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5567}
5568#endif /* CONFIG_IGB_DCA */
5569
5570#ifdef CONFIG_PCI_IOV
5571static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5572{
5573	unsigned char mac_addr[ETH_ALEN];
5574
5575	eth_zero_addr(mac_addr);
5576	igb_set_vf_mac(adapter, vf, mac_addr);
5577
5578	/* By default spoof check is enabled for all VFs */
5579	adapter->vf_data[vf].spoofchk_enabled = true;
5580
5581	return 0;
5582}
5583
5584#endif
5585static void igb_ping_all_vfs(struct igb_adapter *adapter)
5586{
5587	struct e1000_hw *hw = &adapter->hw;
5588	u32 ping;
5589	int i;
5590
5591	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5592		ping = E1000_PF_CONTROL_MSG;
5593		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5594			ping |= E1000_VT_MSGTYPE_CTS;
5595		igb_write_mbx(hw, &ping, 1, i);
5596	}
5597}
5598
5599static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5600{
5601	struct e1000_hw *hw = &adapter->hw;
5602	u32 vmolr = rd32(E1000_VMOLR(vf));
5603	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5604
5605	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5606			    IGB_VF_FLAG_MULTI_PROMISC);
5607	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5608
5609	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5610		vmolr |= E1000_VMOLR_MPME;
5611		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5612		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5613	} else {
5614		/* if we have hashes and we are clearing a multicast promisc
5615		 * flag we need to write the hashes to the MTA as this step
5616		 * was previously skipped
5617		 */
5618		if (vf_data->num_vf_mc_hashes > 30) {
5619			vmolr |= E1000_VMOLR_MPME;
5620		} else if (vf_data->num_vf_mc_hashes) {
5621			int j;
5622			vmolr |= E1000_VMOLR_ROMPE;
5623			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5624				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5625		}
5626	}
5627
5628	wr32(E1000_VMOLR(vf), vmolr);
5629
5630	/* there are flags left unprocessed, likely not supported */
5631	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5632		return -EINVAL;
5633
5634	return 0;
5635}
5636
5637static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5638				  u32 *msgbuf, u32 vf)
5639{
5640	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5641	u16 *hash_list = (u16 *)&msgbuf[1];
5642	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5643	int i;
5644
5645	/* salt away the number of multicast addresses assigned
5646	 * to this VF for later use to restore when the PF multi cast
5647	 * list changes
5648	 */
5649	vf_data->num_vf_mc_hashes = n;
5650
5651	/* only up to 30 hash values supported */
5652	if (n > 30)
5653		n = 30;
5654
5655	/* store the hashes for later use */
5656	for (i = 0; i < n; i++)
5657		vf_data->vf_mc_hashes[i] = hash_list[i];
5658
5659	/* Flush and reset the mta with the new values */
5660	igb_set_rx_mode(adapter->netdev);
5661
5662	return 0;
5663}
5664
5665static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5666{
5667	struct e1000_hw *hw = &adapter->hw;
5668	struct vf_data_storage *vf_data;
5669	int i, j;
5670
5671	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5672		u32 vmolr = rd32(E1000_VMOLR(i));
5673		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5674
5675		vf_data = &adapter->vf_data[i];
5676
5677		if ((vf_data->num_vf_mc_hashes > 30) ||
5678		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5679			vmolr |= E1000_VMOLR_MPME;
5680		} else if (vf_data->num_vf_mc_hashes) {
5681			vmolr |= E1000_VMOLR_ROMPE;
5682			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5683				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5684		}
5685		wr32(E1000_VMOLR(i), vmolr);
5686	}
5687}
5688
5689static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5690{
5691	struct e1000_hw *hw = &adapter->hw;
5692	u32 pool_mask, reg, vid;
5693	int i;
5694
5695	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5696
5697	/* Find the vlan filter for this id */
5698	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5699		reg = rd32(E1000_VLVF(i));
5700
5701		/* remove the vf from the pool */
5702		reg &= ~pool_mask;
5703
5704		/* if pool is empty then remove entry from vfta */
5705		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5706		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5707			reg = 0;
5708			vid = reg & E1000_VLVF_VLANID_MASK;
5709			igb_vfta_set(hw, vid, false);
5710		}
5711
5712		wr32(E1000_VLVF(i), reg);
5713	}
5714
5715	adapter->vf_data[vf].vlans_enabled = 0;
5716}
5717
5718static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5719{
5720	struct e1000_hw *hw = &adapter->hw;
5721	u32 reg, i;
5722
5723	/* The vlvf table only exists on 82576 hardware and newer */
5724	if (hw->mac.type < e1000_82576)
5725		return -1;
5726
5727	/* we only need to do this if VMDq is enabled */
5728	if (!adapter->vfs_allocated_count)
5729		return -1;
5730
5731	/* Find the vlan filter for this id */
5732	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5733		reg = rd32(E1000_VLVF(i));
5734		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5735		    vid == (reg & E1000_VLVF_VLANID_MASK))
5736			break;
5737	}
5738
5739	if (add) {
5740		if (i == E1000_VLVF_ARRAY_SIZE) {
5741			/* Did not find a matching VLAN ID entry that was
5742			 * enabled.  Search for a free filter entry, i.e.
5743			 * one without the enable bit set
5744			 */
5745			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5746				reg = rd32(E1000_VLVF(i));
5747				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5748					break;
5749			}
5750		}
5751		if (i < E1000_VLVF_ARRAY_SIZE) {
5752			/* Found an enabled/available entry */
5753			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5754
5755			/* if !enabled we need to set this up in vfta */
5756			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5757				/* add VID to filter table */
5758				igb_vfta_set(hw, vid, true);
5759				reg |= E1000_VLVF_VLANID_ENABLE;
5760			}
5761			reg &= ~E1000_VLVF_VLANID_MASK;
5762			reg |= vid;
5763			wr32(E1000_VLVF(i), reg);
5764
5765			/* do not modify RLPML for PF devices */
5766			if (vf >= adapter->vfs_allocated_count)
5767				return 0;
5768
5769			if (!adapter->vf_data[vf].vlans_enabled) {
5770				u32 size;
5771				reg = rd32(E1000_VMOLR(vf));
5772				size = reg & E1000_VMOLR_RLPML_MASK;
5773				size += 4;
5774				reg &= ~E1000_VMOLR_RLPML_MASK;
5775				reg |= size;
5776				wr32(E1000_VMOLR(vf), reg);
5777			}
5778
5779			adapter->vf_data[vf].vlans_enabled++;
5780		}
5781	} else {
5782		if (i < E1000_VLVF_ARRAY_SIZE) {
5783			/* remove vf from the pool */
5784			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5785			/* if pool is empty then remove entry from vfta */
5786			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5787				reg = 0;
5788				igb_vfta_set(hw, vid, false);
5789			}
5790			wr32(E1000_VLVF(i), reg);
5791
5792			/* do not modify RLPML for PF devices */
5793			if (vf >= adapter->vfs_allocated_count)
5794				return 0;
5795
5796			adapter->vf_data[vf].vlans_enabled--;
5797			if (!adapter->vf_data[vf].vlans_enabled) {
5798				u32 size;
5799				reg = rd32(E1000_VMOLR(vf));
5800				size = reg & E1000_VMOLR_RLPML_MASK;
5801				size -= 4;
5802				reg &= ~E1000_VMOLR_RLPML_MASK;
5803				reg |= size;
5804				wr32(E1000_VMOLR(vf), reg);
5805			}
5806		}
5807	}
5808	return 0;
5809}
5810
5811static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5812{
5813	struct e1000_hw *hw = &adapter->hw;
5814
5815	if (vid)
5816		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5817	else
5818		wr32(E1000_VMVIR(vf), 0);
5819}
5820
5821static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5822			       int vf, u16 vlan, u8 qos)
5823{
5824	int err = 0;
5825	struct igb_adapter *adapter = netdev_priv(netdev);
5826
5827	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5828		return -EINVAL;
5829	if (vlan || qos) {
5830		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5831		if (err)
5832			goto out;
5833		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5834		igb_set_vmolr(adapter, vf, !vlan);
5835		adapter->vf_data[vf].pf_vlan = vlan;
5836		adapter->vf_data[vf].pf_qos = qos;
5837		dev_info(&adapter->pdev->dev,
5838			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5839		if (test_bit(__IGB_DOWN, &adapter->state)) {
5840			dev_warn(&adapter->pdev->dev,
5841				 "The VF VLAN has been set, but the PF device is not up.\n");
5842			dev_warn(&adapter->pdev->dev,
5843				 "Bring the PF device up before attempting to use the VF device.\n");
5844		}
5845	} else {
5846		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5847			     false, vf);
5848		igb_set_vmvir(adapter, vlan, vf);
5849		igb_set_vmolr(adapter, vf, true);
5850		adapter->vf_data[vf].pf_vlan = 0;
5851		adapter->vf_data[vf].pf_qos = 0;
5852	}
5853out:
5854	return err;
5855}
5856
5857static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5858{
5859	struct e1000_hw *hw = &adapter->hw;
5860	int i;
5861	u32 reg;
5862
5863	/* Find the vlan filter for this id */
5864	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5865		reg = rd32(E1000_VLVF(i));
5866		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5867		    vid == (reg & E1000_VLVF_VLANID_MASK))
5868			break;
5869	}
5870
5871	if (i >= E1000_VLVF_ARRAY_SIZE)
5872		i = -1;
5873
5874	return i;
5875}
5876
5877static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5878{
5879	struct e1000_hw *hw = &adapter->hw;
5880	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5881	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5882	int err = 0;
5883
5884	/* If in promiscuous mode we need to make sure the PF also has
5885	 * the VLAN filter set.
5886	 */
5887	if (add && (adapter->netdev->flags & IFF_PROMISC))
5888		err = igb_vlvf_set(adapter, vid, add,
5889				   adapter->vfs_allocated_count);
5890	if (err)
5891		goto out;
5892
5893	err = igb_vlvf_set(adapter, vid, add, vf);
5894
5895	if (err)
5896		goto out;
5897
5898	/* Go through all the checks to see if the VLAN filter should
5899	 * be wiped completely.
5900	 */
5901	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5902		u32 vlvf, bits;
5903
5904		int regndx = igb_find_vlvf_entry(adapter, vid);
5905		if (regndx < 0)
5906			goto out;
5907		/* See if any other pools are set for this VLAN filter
5908		 * entry other than the PF.
5909		 */
5910		vlvf = bits = rd32(E1000_VLVF(regndx));
5911		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5912			      adapter->vfs_allocated_count);
5913		/* If the filter was removed then ensure PF pool bit
5914		 * is cleared if the PF only added itself to the pool
5915		 * because the PF is in promiscuous mode.
5916		 */
5917		if ((vlvf & VLAN_VID_MASK) == vid &&
5918		    !test_bit(vid, adapter->active_vlans) &&
5919		    !bits)
5920			igb_vlvf_set(adapter, vid, add,
5921				     adapter->vfs_allocated_count);
5922	}
5923
5924out:
5925	return err;
5926}
5927
5928static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5929{
5930	/* clear flags - except flag that indicates PF has set the MAC */
5931	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5932	adapter->vf_data[vf].last_nack = jiffies;
5933
5934	/* reset offloads to defaults */
5935	igb_set_vmolr(adapter, vf, true);
5936
5937	/* reset vlans for device */
5938	igb_clear_vf_vfta(adapter, vf);
5939	if (adapter->vf_data[vf].pf_vlan)
5940		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5941				    adapter->vf_data[vf].pf_vlan,
5942				    adapter->vf_data[vf].pf_qos);
5943	else
5944		igb_clear_vf_vfta(adapter, vf);
5945
5946	/* reset multicast table array for vf */
5947	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5948
5949	/* Flush and reset the mta with the new values */
5950	igb_set_rx_mode(adapter->netdev);
5951}
5952
5953static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5954{
5955	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5956
5957	/* clear mac address as we were hotplug removed/added */
5958	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5959		eth_zero_addr(vf_mac);
5960
5961	/* process remaining reset events */
5962	igb_vf_reset(adapter, vf);
5963}
5964
5965static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5966{
5967	struct e1000_hw *hw = &adapter->hw;
5968	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5969	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5970	u32 reg, msgbuf[3];
5971	u8 *addr = (u8 *)(&msgbuf[1]);
5972
5973	/* process all the same items cleared in a function level reset */
5974	igb_vf_reset(adapter, vf);
5975
5976	/* set vf mac address */
5977	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5978
5979	/* enable transmit and receive for vf */
5980	reg = rd32(E1000_VFTE);
5981	wr32(E1000_VFTE, reg | (1 << vf));
5982	reg = rd32(E1000_VFRE);
5983	wr32(E1000_VFRE, reg | (1 << vf));
5984
5985	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5986
5987	/* reply to reset with ack and vf mac address */
5988	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5989	memcpy(addr, vf_mac, ETH_ALEN);
5990	igb_write_mbx(hw, msgbuf, 3, vf);
5991}
5992
5993static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5994{
5995	/* The VF MAC Address is stored in a packed array of bytes
5996	 * starting at the second 32 bit word of the msg array
5997	 */
5998	unsigned char *addr = (char *)&msg[1];
5999	int err = -1;
6000
6001	if (is_valid_ether_addr(addr))
6002		err = igb_set_vf_mac(adapter, vf, addr);
6003
6004	return err;
6005}
6006
6007static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6008{
6009	struct e1000_hw *hw = &adapter->hw;
6010	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6011	u32 msg = E1000_VT_MSGTYPE_NACK;
6012
6013	/* if device isn't clear to send it shouldn't be reading either */
6014	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6015	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6016		igb_write_mbx(hw, &msg, 1, vf);
6017		vf_data->last_nack = jiffies;
6018	}
6019}
6020
6021static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6022{
6023	struct pci_dev *pdev = adapter->pdev;
6024	u32 msgbuf[E1000_VFMAILBOX_SIZE];
6025	struct e1000_hw *hw = &adapter->hw;
6026	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6027	s32 retval;
6028
6029	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6030
6031	if (retval) {
6032		/* if receive failed revoke VF CTS stats and restart init */
6033		dev_err(&pdev->dev, "Error receiving message from VF\n");
6034		vf_data->flags &= ~IGB_VF_FLAG_CTS;
6035		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6036			return;
6037		goto out;
6038	}
6039
6040	/* this is a message we already processed, do nothing */
6041	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6042		return;
6043
6044	/* until the vf completes a reset it should not be
6045	 * allowed to start any configuration.
6046	 */
6047	if (msgbuf[0] == E1000_VF_RESET) {
6048		igb_vf_reset_msg(adapter, vf);
6049		return;
6050	}
6051
6052	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6053		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6054			return;
6055		retval = -1;
6056		goto out;
6057	}
6058
6059	switch ((msgbuf[0] & 0xFFFF)) {
6060	case E1000_VF_SET_MAC_ADDR:
6061		retval = -EINVAL;
6062		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6063			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6064		else
6065			dev_warn(&pdev->dev,
6066				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6067				 vf);
6068		break;
6069	case E1000_VF_SET_PROMISC:
6070		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6071		break;
6072	case E1000_VF_SET_MULTICAST:
6073		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6074		break;
6075	case E1000_VF_SET_LPE:
6076		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6077		break;
6078	case E1000_VF_SET_VLAN:
6079		retval = -1;
6080		if (vf_data->pf_vlan)
6081			dev_warn(&pdev->dev,
6082				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6083				 vf);
6084		else
6085			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6086		break;
6087	default:
6088		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6089		retval = -1;
6090		break;
6091	}
6092
6093	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6094out:
6095	/* notify the VF of the results of what it sent us */
6096	if (retval)
6097		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6098	else
6099		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6100
6101	igb_write_mbx(hw, msgbuf, 1, vf);
6102}
6103
6104static void igb_msg_task(struct igb_adapter *adapter)
6105{
6106	struct e1000_hw *hw = &adapter->hw;
6107	u32 vf;
6108
6109	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6110		/* process any reset requests */
6111		if (!igb_check_for_rst(hw, vf))
6112			igb_vf_reset_event(adapter, vf);
6113
6114		/* process any messages pending */
6115		if (!igb_check_for_msg(hw, vf))
6116			igb_rcv_msg_from_vf(adapter, vf);
6117
6118		/* process any acks */
6119		if (!igb_check_for_ack(hw, vf))
6120			igb_rcv_ack_from_vf(adapter, vf);
6121	}
6122}
6123
6124/**
6125 *  igb_set_uta - Set unicast filter table address
6126 *  @adapter: board private structure
6127 *
6128 *  The unicast table address is a register array of 32-bit registers.
6129 *  The table is meant to be used in a way similar to how the MTA is used
6130 *  however due to certain limitations in the hardware it is necessary to
6131 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6132 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6133 **/
6134static void igb_set_uta(struct igb_adapter *adapter)
6135{
6136	struct e1000_hw *hw = &adapter->hw;
6137	int i;
6138
6139	/* The UTA table only exists on 82576 hardware and newer */
6140	if (hw->mac.type < e1000_82576)
6141		return;
6142
6143	/* we only need to do this if VMDq is enabled */
6144	if (!adapter->vfs_allocated_count)
6145		return;
6146
6147	for (i = 0; i < hw->mac.uta_reg_count; i++)
6148		array_wr32(E1000_UTA, i, ~0);
6149}
6150
6151/**
6152 *  igb_intr_msi - Interrupt Handler
6153 *  @irq: interrupt number
6154 *  @data: pointer to a network interface device structure
6155 **/
6156static irqreturn_t igb_intr_msi(int irq, void *data)
6157{
6158	struct igb_adapter *adapter = data;
6159	struct igb_q_vector *q_vector = adapter->q_vector[0];
6160	struct e1000_hw *hw = &adapter->hw;
6161	/* read ICR disables interrupts using IAM */
6162	u32 icr = rd32(E1000_ICR);
6163
6164	igb_write_itr(q_vector);
6165
6166	if (icr & E1000_ICR_DRSTA)
6167		schedule_work(&adapter->reset_task);
6168
6169	if (icr & E1000_ICR_DOUTSYNC) {
6170		/* HW is reporting DMA is out of sync */
6171		adapter->stats.doosync++;
6172	}
6173
6174	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6175		hw->mac.get_link_status = 1;
6176		if (!test_bit(__IGB_DOWN, &adapter->state))
6177			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6178	}
6179
6180	if (icr & E1000_ICR_TS) {
6181		u32 tsicr = rd32(E1000_TSICR);
6182
6183		if (tsicr & E1000_TSICR_TXTS) {
6184			/* acknowledge the interrupt */
6185			wr32(E1000_TSICR, E1000_TSICR_TXTS);
6186			/* retrieve hardware timestamp */
6187			schedule_work(&adapter->ptp_tx_work);
6188		}
6189	}
6190
6191	napi_schedule(&q_vector->napi);
6192
6193	return IRQ_HANDLED;
6194}
6195
6196/**
6197 *  igb_intr - Legacy Interrupt Handler
6198 *  @irq: interrupt number
6199 *  @data: pointer to a network interface device structure
6200 **/
6201static irqreturn_t igb_intr(int irq, void *data)
6202{
6203	struct igb_adapter *adapter = data;
6204	struct igb_q_vector *q_vector = adapter->q_vector[0];
6205	struct e1000_hw *hw = &adapter->hw;
6206	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6207	 * need for the IMC write
6208	 */
6209	u32 icr = rd32(E1000_ICR);
6210
6211	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6212	 * not set, then the adapter didn't send an interrupt
6213	 */
6214	if (!(icr & E1000_ICR_INT_ASSERTED))
6215		return IRQ_NONE;
6216
6217	igb_write_itr(q_vector);
6218
6219	if (icr & E1000_ICR_DRSTA)
6220		schedule_work(&adapter->reset_task);
6221
6222	if (icr & E1000_ICR_DOUTSYNC) {
6223		/* HW is reporting DMA is out of sync */
6224		adapter->stats.doosync++;
6225	}
6226
6227	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6228		hw->mac.get_link_status = 1;
6229		/* guard against interrupt when we're going down */
6230		if (!test_bit(__IGB_DOWN, &adapter->state))
6231			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6232	}
6233
6234	if (icr & E1000_ICR_TS) {
6235		u32 tsicr = rd32(E1000_TSICR);
6236
6237		if (tsicr & E1000_TSICR_TXTS) {
6238			/* acknowledge the interrupt */
6239			wr32(E1000_TSICR, E1000_TSICR_TXTS);
6240			/* retrieve hardware timestamp */
6241			schedule_work(&adapter->ptp_tx_work);
6242		}
6243	}
6244
6245	napi_schedule(&q_vector->napi);
6246
6247	return IRQ_HANDLED;
6248}
6249
6250static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6251{
6252	struct igb_adapter *adapter = q_vector->adapter;
6253	struct e1000_hw *hw = &adapter->hw;
6254
6255	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6256	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6257		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6258			igb_set_itr(q_vector);
6259		else
6260			igb_update_ring_itr(q_vector);
6261	}
6262
6263	if (!test_bit(__IGB_DOWN, &adapter->state)) {
6264		if (adapter->flags & IGB_FLAG_HAS_MSIX)
6265			wr32(E1000_EIMS, q_vector->eims_value);
6266		else
6267			igb_irq_enable(adapter);
6268	}
6269}
6270
6271/**
6272 *  igb_poll - NAPI Rx polling callback
6273 *  @napi: napi polling structure
6274 *  @budget: count of how many packets we should handle
6275 **/
6276static int igb_poll(struct napi_struct *napi, int budget)
6277{
6278	struct igb_q_vector *q_vector = container_of(napi,
6279						     struct igb_q_vector,
6280						     napi);
6281	bool clean_complete = true;
6282
6283#ifdef CONFIG_IGB_DCA
6284	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6285		igb_update_dca(q_vector);
6286#endif
6287	if (q_vector->tx.ring)
6288		clean_complete = igb_clean_tx_irq(q_vector);
6289
6290	if (q_vector->rx.ring)
6291		clean_complete &= igb_clean_rx_irq(q_vector, budget);
6292
6293	/* If all work not completed, return budget and keep polling */
6294	if (!clean_complete)
6295		return budget;
6296
6297	/* If not enough Rx work done, exit the polling mode */
6298	napi_complete(napi);
6299	igb_ring_irq_enable(q_vector);
6300
6301	return 0;
6302}
6303
6304/**
6305 *  igb_clean_tx_irq - Reclaim resources after transmit completes
6306 *  @q_vector: pointer to q_vector containing needed info
6307 *
6308 *  returns true if ring is completely cleaned
6309 **/
6310static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6311{
6312	struct igb_adapter *adapter = q_vector->adapter;
6313	struct igb_ring *tx_ring = q_vector->tx.ring;
6314	struct igb_tx_buffer *tx_buffer;
6315	union e1000_adv_tx_desc *tx_desc;
6316	unsigned int total_bytes = 0, total_packets = 0;
6317	unsigned int budget = q_vector->tx.work_limit;
6318	unsigned int i = tx_ring->next_to_clean;
6319
6320	if (test_bit(__IGB_DOWN, &adapter->state))
6321		return true;
6322
6323	tx_buffer = &tx_ring->tx_buffer_info[i];
6324	tx_desc = IGB_TX_DESC(tx_ring, i);
6325	i -= tx_ring->count;
6326
6327	do {
6328		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6329
6330		/* if next_to_watch is not set then there is no work pending */
6331		if (!eop_desc)
6332			break;
6333
6334		/* prevent any other reads prior to eop_desc */
6335		read_barrier_depends();
6336
6337		/* if DD is not set pending work has not been completed */
6338		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6339			break;
6340
6341		/* clear next_to_watch to prevent false hangs */
6342		tx_buffer->next_to_watch = NULL;
6343
6344		/* update the statistics for this packet */
6345		total_bytes += tx_buffer->bytecount;
6346		total_packets += tx_buffer->gso_segs;
6347
6348		/* free the skb */
6349		dev_kfree_skb_any(tx_buffer->skb);
6350
6351		/* unmap skb header data */
6352		dma_unmap_single(tx_ring->dev,
6353				 dma_unmap_addr(tx_buffer, dma),
6354				 dma_unmap_len(tx_buffer, len),
6355				 DMA_TO_DEVICE);
6356
6357		/* clear tx_buffer data */
6358		tx_buffer->skb = NULL;
6359		dma_unmap_len_set(tx_buffer, len, 0);
6360
6361		/* clear last DMA location and unmap remaining buffers */
6362		while (tx_desc != eop_desc) {
6363			tx_buffer++;
6364			tx_desc++;
6365			i++;
6366			if (unlikely(!i)) {
6367				i -= tx_ring->count;
6368				tx_buffer = tx_ring->tx_buffer_info;
6369				tx_desc = IGB_TX_DESC(tx_ring, 0);
6370			}
6371
6372			/* unmap any remaining paged data */
6373			if (dma_unmap_len(tx_buffer, len)) {
6374				dma_unmap_page(tx_ring->dev,
6375					       dma_unmap_addr(tx_buffer, dma),
6376					       dma_unmap_len(tx_buffer, len),
6377					       DMA_TO_DEVICE);
6378				dma_unmap_len_set(tx_buffer, len, 0);
6379			}
6380		}
6381
6382		/* move us one more past the eop_desc for start of next pkt */
6383		tx_buffer++;
6384		tx_desc++;
6385		i++;
6386		if (unlikely(!i)) {
6387			i -= tx_ring->count;
6388			tx_buffer = tx_ring->tx_buffer_info;
6389			tx_desc = IGB_TX_DESC(tx_ring, 0);
6390		}
6391
6392		/* issue prefetch for next Tx descriptor */
6393		prefetch(tx_desc);
6394
6395		/* update budget accounting */
6396		budget--;
6397	} while (likely(budget));
6398
6399	netdev_tx_completed_queue(txring_txq(tx_ring),
6400				  total_packets, total_bytes);
6401	i += tx_ring->count;
6402	tx_ring->next_to_clean = i;
6403	u64_stats_update_begin(&tx_ring->tx_syncp);
6404	tx_ring->tx_stats.bytes += total_bytes;
6405	tx_ring->tx_stats.packets += total_packets;
6406	u64_stats_update_end(&tx_ring->tx_syncp);
6407	q_vector->tx.total_bytes += total_bytes;
6408	q_vector->tx.total_packets += total_packets;
6409
6410	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6411		struct e1000_hw *hw = &adapter->hw;
6412
6413		/* Detect a transmit hang in hardware, this serializes the
6414		 * check with the clearing of time_stamp and movement of i
6415		 */
6416		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6417		if (tx_buffer->next_to_watch &&
6418		    time_after(jiffies, tx_buffer->time_stamp +
6419			       (adapter->tx_timeout_factor * HZ)) &&
6420		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6421
6422			/* detected Tx unit hang */
6423			dev_err(tx_ring->dev,
6424				"Detected Tx Unit Hang\n"
6425				"  Tx Queue             <%d>\n"
6426				"  TDH                  <%x>\n"
6427				"  TDT                  <%x>\n"
6428				"  next_to_use          <%x>\n"
6429				"  next_to_clean        <%x>\n"
6430				"buffer_info[next_to_clean]\n"
6431				"  time_stamp           <%lx>\n"
6432				"  next_to_watch        <%p>\n"
6433				"  jiffies              <%lx>\n"
6434				"  desc.status          <%x>\n",
6435				tx_ring->queue_index,
6436				rd32(E1000_TDH(tx_ring->reg_idx)),
6437				readl(tx_ring->tail),
6438				tx_ring->next_to_use,
6439				tx_ring->next_to_clean,
6440				tx_buffer->time_stamp,
6441				tx_buffer->next_to_watch,
6442				jiffies,
6443				tx_buffer->next_to_watch->wb.status);
6444			netif_stop_subqueue(tx_ring->netdev,
6445					    tx_ring->queue_index);
6446
6447			/* we are about to reset, no point in enabling stuff */
6448			return true;
6449		}
6450	}
6451
6452#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6453	if (unlikely(total_packets &&
6454	    netif_carrier_ok(tx_ring->netdev) &&
6455	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6456		/* Make sure that anybody stopping the queue after this
6457		 * sees the new next_to_clean.
6458		 */
6459		smp_mb();
6460		if (__netif_subqueue_stopped(tx_ring->netdev,
6461					     tx_ring->queue_index) &&
6462		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6463			netif_wake_subqueue(tx_ring->netdev,
6464					    tx_ring->queue_index);
6465
6466			u64_stats_update_begin(&tx_ring->tx_syncp);
6467			tx_ring->tx_stats.restart_queue++;
6468			u64_stats_update_end(&tx_ring->tx_syncp);
6469		}
6470	}
6471
6472	return !!budget;
6473}
6474
6475/**
6476 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6477 *  @rx_ring: rx descriptor ring to store buffers on
6478 *  @old_buff: donor buffer to have page reused
6479 *
6480 *  Synchronizes page for reuse by the adapter
6481 **/
6482static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6483			      struct igb_rx_buffer *old_buff)
6484{
6485	struct igb_rx_buffer *new_buff;
6486	u16 nta = rx_ring->next_to_alloc;
6487
6488	new_buff = &rx_ring->rx_buffer_info[nta];
6489
6490	/* update, and store next to alloc */
6491	nta++;
6492	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6493
6494	/* transfer page from old buffer to new buffer */
6495	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6496
6497	/* sync the buffer for use by the device */
6498	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6499					 old_buff->page_offset,
6500					 IGB_RX_BUFSZ,
6501					 DMA_FROM_DEVICE);
6502}
6503
6504static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6505				  struct page *page,
6506				  unsigned int truesize)
6507{
6508	/* avoid re-using remote pages */
6509	if (unlikely(page_to_nid(page) != numa_node_id()))
6510		return false;
6511
6512#if (PAGE_SIZE < 8192)
6513	/* if we are only owner of page we can reuse it */
6514	if (unlikely(page_count(page) != 1))
6515		return false;
6516
6517	/* flip page offset to other buffer */
6518	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6519
6520	/* since we are the only owner of the page and we need to
6521	 * increment it, just set the value to 2 in order to avoid
6522	 * an unnecessary locked operation
6523	 */
6524	atomic_set(&page->_count, 2);
6525#else
6526	/* move offset up to the next cache line */
6527	rx_buffer->page_offset += truesize;
6528
6529	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6530		return false;
6531
6532	/* bump ref count on page before it is given to the stack */
6533	get_page(page);
6534#endif
6535
6536	return true;
6537}
6538
6539/**
6540 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6541 *  @rx_ring: rx descriptor ring to transact packets on
6542 *  @rx_buffer: buffer containing page to add
6543 *  @rx_desc: descriptor containing length of buffer written by hardware
6544 *  @skb: sk_buff to place the data into
6545 *
6546 *  This function will add the data contained in rx_buffer->page to the skb.
6547 *  This is done either through a direct copy if the data in the buffer is
6548 *  less than the skb header size, otherwise it will just attach the page as
6549 *  a frag to the skb.
6550 *
6551 *  The function will then update the page offset if necessary and return
6552 *  true if the buffer can be reused by the adapter.
6553 **/
6554static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6555			    struct igb_rx_buffer *rx_buffer,
6556			    union e1000_adv_rx_desc *rx_desc,
6557			    struct sk_buff *skb)
6558{
6559	struct page *page = rx_buffer->page;
6560	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6561#if (PAGE_SIZE < 8192)
6562	unsigned int truesize = IGB_RX_BUFSZ;
6563#else
6564	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6565#endif
6566
6567	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6568		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6569
6570		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6571			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6572			va += IGB_TS_HDR_LEN;
6573			size -= IGB_TS_HDR_LEN;
6574		}
6575
6576		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6577
6578		/* we can reuse buffer as-is, just make sure it is local */
6579		if (likely(page_to_nid(page) == numa_node_id()))
6580			return true;
6581
6582		/* this page cannot be reused so discard it */
6583		put_page(page);
6584		return false;
6585	}
6586
6587	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6588			rx_buffer->page_offset, size, truesize);
6589
6590	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6591}
6592
6593static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6594					   union e1000_adv_rx_desc *rx_desc,
6595					   struct sk_buff *skb)
6596{
6597	struct igb_rx_buffer *rx_buffer;
6598	struct page *page;
6599
6600	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6601
6602	page = rx_buffer->page;
6603	prefetchw(page);
6604
6605	if (likely(!skb)) {
6606		void *page_addr = page_address(page) +
6607				  rx_buffer->page_offset;
6608
6609		/* prefetch first cache line of first page */
6610		prefetch(page_addr);
6611#if L1_CACHE_BYTES < 128
6612		prefetch(page_addr + L1_CACHE_BYTES);
6613#endif
6614
6615		/* allocate a skb to store the frags */
6616		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6617						IGB_RX_HDR_LEN);
6618		if (unlikely(!skb)) {
6619			rx_ring->rx_stats.alloc_failed++;
6620			return NULL;
6621		}
6622
6623		/* we will be copying header into skb->data in
6624		 * pskb_may_pull so it is in our interest to prefetch
6625		 * it now to avoid a possible cache miss
6626		 */
6627		prefetchw(skb->data);
6628	}
6629
6630	/* we are reusing so sync this buffer for CPU use */
6631	dma_sync_single_range_for_cpu(rx_ring->dev,
6632				      rx_buffer->dma,
6633				      rx_buffer->page_offset,
6634				      IGB_RX_BUFSZ,
6635				      DMA_FROM_DEVICE);
6636
6637	/* pull page into skb */
6638	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6639		/* hand second half of page back to the ring */
6640		igb_reuse_rx_page(rx_ring, rx_buffer);
6641	} else {
6642		/* we are not reusing the buffer so unmap it */
6643		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6644			       PAGE_SIZE, DMA_FROM_DEVICE);
6645	}
6646
6647	/* clear contents of rx_buffer */
6648	rx_buffer->page = NULL;
6649
6650	return skb;
6651}
6652
6653static inline void igb_rx_checksum(struct igb_ring *ring,
6654				   union e1000_adv_rx_desc *rx_desc,
6655				   struct sk_buff *skb)
6656{
6657	skb_checksum_none_assert(skb);
6658
6659	/* Ignore Checksum bit is set */
6660	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6661		return;
6662
6663	/* Rx checksum disabled via ethtool */
6664	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6665		return;
6666
6667	/* TCP/UDP checksum error bit is set */
6668	if (igb_test_staterr(rx_desc,
6669			     E1000_RXDEXT_STATERR_TCPE |
6670			     E1000_RXDEXT_STATERR_IPE)) {
6671		/* work around errata with sctp packets where the TCPE aka
6672		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6673		 * packets, (aka let the stack check the crc32c)
6674		 */
6675		if (!((skb->len == 60) &&
6676		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6677			u64_stats_update_begin(&ring->rx_syncp);
6678			ring->rx_stats.csum_err++;
6679			u64_stats_update_end(&ring->rx_syncp);
6680		}
6681		/* let the stack verify checksum errors */
6682		return;
6683	}
6684	/* It must be a TCP or UDP packet with a valid checksum */
6685	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6686				      E1000_RXD_STAT_UDPCS))
6687		skb->ip_summed = CHECKSUM_UNNECESSARY;
6688
6689	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6690		le32_to_cpu(rx_desc->wb.upper.status_error));
6691}
6692
6693static inline void igb_rx_hash(struct igb_ring *ring,
6694			       union e1000_adv_rx_desc *rx_desc,
6695			       struct sk_buff *skb)
6696{
6697	if (ring->netdev->features & NETIF_F_RXHASH)
6698		skb_set_hash(skb,
6699			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6700			     PKT_HASH_TYPE_L3);
6701}
6702
6703/**
6704 *  igb_is_non_eop - process handling of non-EOP buffers
6705 *  @rx_ring: Rx ring being processed
6706 *  @rx_desc: Rx descriptor for current buffer
6707 *  @skb: current socket buffer containing buffer in progress
6708 *
6709 *  This function updates next to clean.  If the buffer is an EOP buffer
6710 *  this function exits returning false, otherwise it will place the
6711 *  sk_buff in the next buffer to be chained and return true indicating
6712 *  that this is in fact a non-EOP buffer.
6713 **/
6714static bool igb_is_non_eop(struct igb_ring *rx_ring,
6715			   union e1000_adv_rx_desc *rx_desc)
6716{
6717	u32 ntc = rx_ring->next_to_clean + 1;
6718
6719	/* fetch, update, and store next to clean */
6720	ntc = (ntc < rx_ring->count) ? ntc : 0;
6721	rx_ring->next_to_clean = ntc;
6722
6723	prefetch(IGB_RX_DESC(rx_ring, ntc));
6724
6725	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6726		return false;
6727
6728	return true;
6729}
6730
6731/**
6732 *  igb_get_headlen - determine size of header for LRO/GRO
6733 *  @data: pointer to the start of the headers
6734 *  @max_len: total length of section to find headers in
6735 *
6736 *  This function is meant to determine the length of headers that will
6737 *  be recognized by hardware for LRO, and GRO offloads.  The main
6738 *  motivation of doing this is to only perform one pull for IPv4 TCP
6739 *  packets so that we can do basic things like calculating the gso_size
6740 *  based on the average data per packet.
6741 **/
6742static unsigned int igb_get_headlen(unsigned char *data,
6743				    unsigned int max_len)
6744{
6745	union {
6746		unsigned char *network;
6747		/* l2 headers */
6748		struct ethhdr *eth;
6749		struct vlan_hdr *vlan;
6750		/* l3 headers */
6751		struct iphdr *ipv4;
6752		struct ipv6hdr *ipv6;
6753	} hdr;
6754	__be16 protocol;
6755	u8 nexthdr = 0;	/* default to not TCP */
6756	u8 hlen;
6757
6758	/* this should never happen, but better safe than sorry */
6759	if (max_len < ETH_HLEN)
6760		return max_len;
6761
6762	/* initialize network frame pointer */
6763	hdr.network = data;
6764
6765	/* set first protocol and move network header forward */
6766	protocol = hdr.eth->h_proto;
6767	hdr.network += ETH_HLEN;
6768
6769	/* handle any vlan tag if present */
6770	if (protocol == htons(ETH_P_8021Q)) {
6771		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6772			return max_len;
6773
6774		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6775		hdr.network += VLAN_HLEN;
6776	}
6777
6778	/* handle L3 protocols */
6779	if (protocol == htons(ETH_P_IP)) {
6780		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6781			return max_len;
6782
6783		/* access ihl as a u8 to avoid unaligned access on ia64 */
6784		hlen = (hdr.network[0] & 0x0F) << 2;
6785
6786		/* verify hlen meets minimum size requirements */
6787		if (hlen < sizeof(struct iphdr))
6788			return hdr.network - data;
6789
6790		/* record next protocol if header is present */
6791		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6792			nexthdr = hdr.ipv4->protocol;
6793	} else if (protocol == htons(ETH_P_IPV6)) {
6794		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6795			return max_len;
6796
6797		/* record next protocol */
6798		nexthdr = hdr.ipv6->nexthdr;
6799		hlen = sizeof(struct ipv6hdr);
6800	} else {
6801		return hdr.network - data;
6802	}
6803
6804	/* relocate pointer to start of L4 header */
6805	hdr.network += hlen;
6806
6807	/* finally sort out TCP */
6808	if (nexthdr == IPPROTO_TCP) {
6809		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6810			return max_len;
6811
6812		/* access doff as a u8 to avoid unaligned access on ia64 */
6813		hlen = (hdr.network[12] & 0xF0) >> 2;
6814
6815		/* verify hlen meets minimum size requirements */
6816		if (hlen < sizeof(struct tcphdr))
6817			return hdr.network - data;
6818
6819		hdr.network += hlen;
6820	} else if (nexthdr == IPPROTO_UDP) {
6821		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6822			return max_len;
6823
6824		hdr.network += sizeof(struct udphdr);
6825	}
6826
6827	/* If everything has gone correctly hdr.network should be the
6828	 * data section of the packet and will be the end of the header.
6829	 * If not then it probably represents the end of the last recognized
6830	 * header.
6831	 */
6832	if ((hdr.network - data) < max_len)
6833		return hdr.network - data;
6834	else
6835		return max_len;
6836}
6837
6838/**
6839 *  igb_pull_tail - igb specific version of skb_pull_tail
6840 *  @rx_ring: rx descriptor ring packet is being transacted on
6841 *  @rx_desc: pointer to the EOP Rx descriptor
6842 *  @skb: pointer to current skb being adjusted
6843 *
6844 *  This function is an igb specific version of __pskb_pull_tail.  The
6845 *  main difference between this version and the original function is that
6846 *  this function can make several assumptions about the state of things
6847 *  that allow for significant optimizations versus the standard function.
6848 *  As a result we can do things like drop a frag and maintain an accurate
6849 *  truesize for the skb.
6850 */
6851static void igb_pull_tail(struct igb_ring *rx_ring,
6852			  union e1000_adv_rx_desc *rx_desc,
6853			  struct sk_buff *skb)
6854{
6855	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6856	unsigned char *va;
6857	unsigned int pull_len;
6858
6859	/* it is valid to use page_address instead of kmap since we are
6860	 * working with pages allocated out of the lomem pool per
6861	 * alloc_page(GFP_ATOMIC)
6862	 */
6863	va = skb_frag_address(frag);
6864
6865	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6866		/* retrieve timestamp from buffer */
6867		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6868
6869		/* update pointers to remove timestamp header */
6870		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6871		frag->page_offset += IGB_TS_HDR_LEN;
6872		skb->data_len -= IGB_TS_HDR_LEN;
6873		skb->len -= IGB_TS_HDR_LEN;
6874
6875		/* move va to start of packet data */
6876		va += IGB_TS_HDR_LEN;
6877	}
6878
6879	/* we need the header to contain the greater of either ETH_HLEN or
6880	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6881	 */
6882	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6883
6884	/* align pull length to size of long to optimize memcpy performance */
6885	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6886
6887	/* update all of the pointers */
6888	skb_frag_size_sub(frag, pull_len);
6889	frag->page_offset += pull_len;
6890	skb->data_len -= pull_len;
6891	skb->tail += pull_len;
6892}
6893
6894/**
6895 *  igb_cleanup_headers - Correct corrupted or empty headers
6896 *  @rx_ring: rx descriptor ring packet is being transacted on
6897 *  @rx_desc: pointer to the EOP Rx descriptor
6898 *  @skb: pointer to current skb being fixed
6899 *
6900 *  Address the case where we are pulling data in on pages only
6901 *  and as such no data is present in the skb header.
6902 *
6903 *  In addition if skb is not at least 60 bytes we need to pad it so that
6904 *  it is large enough to qualify as a valid Ethernet frame.
6905 *
6906 *  Returns true if an error was encountered and skb was freed.
6907 **/
6908static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6909				union e1000_adv_rx_desc *rx_desc,
6910				struct sk_buff *skb)
6911{
6912	if (unlikely((igb_test_staterr(rx_desc,
6913				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6914		struct net_device *netdev = rx_ring->netdev;
6915		if (!(netdev->features & NETIF_F_RXALL)) {
6916			dev_kfree_skb_any(skb);
6917			return true;
6918		}
6919	}
6920
6921	/* place header in linear portion of buffer */
6922	if (skb_is_nonlinear(skb))
6923		igb_pull_tail(rx_ring, rx_desc, skb);
6924
6925	/* if skb_pad returns an error the skb was freed */
6926	if (unlikely(skb->len < 60)) {
6927		int pad_len = 60 - skb->len;
6928
6929		if (skb_pad(skb, pad_len))
6930			return true;
6931		__skb_put(skb, pad_len);
6932	}
6933
6934	return false;
6935}
6936
6937/**
6938 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6939 *  @rx_ring: rx descriptor ring packet is being transacted on
6940 *  @rx_desc: pointer to the EOP Rx descriptor
6941 *  @skb: pointer to current skb being populated
6942 *
6943 *  This function checks the ring, descriptor, and packet information in
6944 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6945 *  other fields within the skb.
6946 **/
6947static void igb_process_skb_fields(struct igb_ring *rx_ring,
6948				   union e1000_adv_rx_desc *rx_desc,
6949				   struct sk_buff *skb)
6950{
6951	struct net_device *dev = rx_ring->netdev;
6952
6953	igb_rx_hash(rx_ring, rx_desc, skb);
6954
6955	igb_rx_checksum(rx_ring, rx_desc, skb);
6956
6957	igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
6958
6959	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6960	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6961		u16 vid;
6962		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6963		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6964			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6965		else
6966			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6967
6968		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6969	}
6970
6971	skb_record_rx_queue(skb, rx_ring->queue_index);
6972
6973	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6974}
6975
6976static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6977{
6978	struct igb_ring *rx_ring = q_vector->rx.ring;
6979	struct sk_buff *skb = rx_ring->skb;
6980	unsigned int total_bytes = 0, total_packets = 0;
6981	u16 cleaned_count = igb_desc_unused(rx_ring);
6982
6983	while (likely(total_packets < budget)) {
6984		union e1000_adv_rx_desc *rx_desc;
6985
6986		/* return some buffers to hardware, one at a time is too slow */
6987		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6988			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6989			cleaned_count = 0;
6990		}
6991
6992		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6993
6994		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6995			break;
6996
6997		/* This memory barrier is needed to keep us from reading
6998		 * any other fields out of the rx_desc until we know the
6999		 * RXD_STAT_DD bit is set
7000		 */
7001		rmb();
7002
7003		/* retrieve a buffer from the ring */
7004		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7005
7006		/* exit if we failed to retrieve a buffer */
7007		if (!skb)
7008			break;
7009
7010		cleaned_count++;
7011
7012		/* fetch next buffer in frame if non-eop */
7013		if (igb_is_non_eop(rx_ring, rx_desc))
7014			continue;
7015
7016		/* verify the packet layout is correct */
7017		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7018			skb = NULL;
7019			continue;
7020		}
7021
7022		/* probably a little skewed due to removing CRC */
7023		total_bytes += skb->len;
7024
7025		/* populate checksum, timestamp, VLAN, and protocol */
7026		igb_process_skb_fields(rx_ring, rx_desc, skb);
7027
7028		napi_gro_receive(&q_vector->napi, skb);
7029
7030		/* reset skb pointer */
7031		skb = NULL;
7032
7033		/* update budget accounting */
7034		total_packets++;
7035	}
7036
7037	/* place incomplete frames back on ring for completion */
7038	rx_ring->skb = skb;
7039
7040	u64_stats_update_begin(&rx_ring->rx_syncp);
7041	rx_ring->rx_stats.packets += total_packets;
7042	rx_ring->rx_stats.bytes += total_bytes;
7043	u64_stats_update_end(&rx_ring->rx_syncp);
7044	q_vector->rx.total_packets += total_packets;
7045	q_vector->rx.total_bytes += total_bytes;
7046
7047	if (cleaned_count)
7048		igb_alloc_rx_buffers(rx_ring, cleaned_count);
7049
7050	return (total_packets < budget);
7051}
7052
7053static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7054				  struct igb_rx_buffer *bi)
7055{
7056	struct page *page = bi->page;
7057	dma_addr_t dma;
7058
7059	/* since we are recycling buffers we should seldom need to alloc */
7060	if (likely(page))
7061		return true;
7062
7063	/* alloc new page for storage */
7064	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
7065	if (unlikely(!page)) {
7066		rx_ring->rx_stats.alloc_failed++;
7067		return false;
7068	}
7069
7070	/* map page for use */
7071	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7072
7073	/* if mapping failed free memory back to system since
7074	 * there isn't much point in holding memory we can't use
7075	 */
7076	if (dma_mapping_error(rx_ring->dev, dma)) {
7077		__free_page(page);
7078
7079		rx_ring->rx_stats.alloc_failed++;
7080		return false;
7081	}
7082
7083	bi->dma = dma;
7084	bi->page = page;
7085	bi->page_offset = 0;
7086
7087	return true;
7088}
7089
7090/**
7091 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7092 *  @adapter: address of board private structure
7093 **/
7094void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7095{
7096	union e1000_adv_rx_desc *rx_desc;
7097	struct igb_rx_buffer *bi;
7098	u16 i = rx_ring->next_to_use;
7099
7100	/* nothing to do */
7101	if (!cleaned_count)
7102		return;
7103
7104	rx_desc = IGB_RX_DESC(rx_ring, i);
7105	bi = &rx_ring->rx_buffer_info[i];
7106	i -= rx_ring->count;
7107
7108	do {
7109		if (!igb_alloc_mapped_page(rx_ring, bi))
7110			break;
7111
7112		/* Refresh the desc even if buffer_addrs didn't change
7113		 * because each write-back erases this info.
7114		 */
7115		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7116
7117		rx_desc++;
7118		bi++;
7119		i++;
7120		if (unlikely(!i)) {
7121			rx_desc = IGB_RX_DESC(rx_ring, 0);
7122			bi = rx_ring->rx_buffer_info;
7123			i -= rx_ring->count;
7124		}
7125
7126		/* clear the hdr_addr for the next_to_use descriptor */
7127		rx_desc->read.hdr_addr = 0;
7128
7129		cleaned_count--;
7130	} while (cleaned_count);
7131
7132	i += rx_ring->count;
7133
7134	if (rx_ring->next_to_use != i) {
7135		/* record the next descriptor to use */
7136		rx_ring->next_to_use = i;
7137
7138		/* update next to alloc since we have filled the ring */
7139		rx_ring->next_to_alloc = i;
7140
7141		/* Force memory writes to complete before letting h/w
7142		 * know there are new descriptors to fetch.  (Only
7143		 * applicable for weak-ordered memory model archs,
7144		 * such as IA-64).
7145		 */
7146		wmb();
7147		writel(i, rx_ring->tail);
7148	}
7149}
7150
7151/**
7152 * igb_mii_ioctl -
7153 * @netdev:
7154 * @ifreq:
7155 * @cmd:
7156 **/
7157static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7158{
7159	struct igb_adapter *adapter = netdev_priv(netdev);
7160	struct mii_ioctl_data *data = if_mii(ifr);
7161
7162	if (adapter->hw.phy.media_type != e1000_media_type_copper)
7163		return -EOPNOTSUPP;
7164
7165	switch (cmd) {
7166	case SIOCGMIIPHY:
7167		data->phy_id = adapter->hw.phy.addr;
7168		break;
7169	case SIOCGMIIREG:
7170		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7171		                     &data->val_out))
7172			return -EIO;
7173		break;
7174	case SIOCSMIIREG:
7175	default:
7176		return -EOPNOTSUPP;
7177	}
7178	return 0;
7179}
7180
7181/**
7182 * igb_ioctl -
7183 * @netdev:
7184 * @ifreq:
7185 * @cmd:
7186 **/
7187static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7188{
7189	switch (cmd) {
7190	case SIOCGMIIPHY:
7191	case SIOCGMIIREG:
7192	case SIOCSMIIREG:
7193		return igb_mii_ioctl(netdev, ifr, cmd);
7194	case SIOCGHWTSTAMP:
7195		return igb_ptp_get_ts_config(netdev, ifr);
7196	case SIOCSHWTSTAMP:
7197		return igb_ptp_set_ts_config(netdev, ifr);
7198	default:
7199		return -EOPNOTSUPP;
7200	}
7201}
7202
7203s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7204{
7205	struct igb_adapter *adapter = hw->back;
7206
7207	if (pcie_capability_read_word(adapter->pdev, reg, value))
7208		return -E1000_ERR_CONFIG;
7209
7210	return 0;
7211}
7212
7213s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7214{
7215	struct igb_adapter *adapter = hw->back;
7216
7217	if (pcie_capability_write_word(adapter->pdev, reg, *value))
7218		return -E1000_ERR_CONFIG;
7219
7220	return 0;
7221}
7222
7223static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7224{
7225	struct igb_adapter *adapter = netdev_priv(netdev);
7226	struct e1000_hw *hw = &adapter->hw;
7227	u32 ctrl, rctl;
7228	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7229
7230	if (enable) {
7231		/* enable VLAN tag insert/strip */
7232		ctrl = rd32(E1000_CTRL);
7233		ctrl |= E1000_CTRL_VME;
7234		wr32(E1000_CTRL, ctrl);
7235
7236		/* Disable CFI check */
7237		rctl = rd32(E1000_RCTL);
7238		rctl &= ~E1000_RCTL_CFIEN;
7239		wr32(E1000_RCTL, rctl);
7240	} else {
7241		/* disable VLAN tag insert/strip */
7242		ctrl = rd32(E1000_CTRL);
7243		ctrl &= ~E1000_CTRL_VME;
7244		wr32(E1000_CTRL, ctrl);
7245	}
7246
7247	igb_rlpml_set(adapter);
7248}
7249
7250static int igb_vlan_rx_add_vid(struct net_device *netdev,
7251			       __be16 proto, u16 vid)
7252{
7253	struct igb_adapter *adapter = netdev_priv(netdev);
7254	struct e1000_hw *hw = &adapter->hw;
7255	int pf_id = adapter->vfs_allocated_count;
7256
7257	/* attempt to add filter to vlvf array */
7258	igb_vlvf_set(adapter, vid, true, pf_id);
7259
7260	/* add the filter since PF can receive vlans w/o entry in vlvf */
7261	igb_vfta_set(hw, vid, true);
7262
7263	set_bit(vid, adapter->active_vlans);
7264
7265	return 0;
7266}
7267
7268static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7269				__be16 proto, u16 vid)
7270{
7271	struct igb_adapter *adapter = netdev_priv(netdev);
7272	struct e1000_hw *hw = &adapter->hw;
7273	int pf_id = adapter->vfs_allocated_count;
7274	s32 err;
7275
7276	/* remove vlan from VLVF table array */
7277	err = igb_vlvf_set(adapter, vid, false, pf_id);
7278
7279	/* if vid was not present in VLVF just remove it from table */
7280	if (err)
7281		igb_vfta_set(hw, vid, false);
7282
7283	clear_bit(vid, adapter->active_vlans);
7284
7285	return 0;
7286}
7287
7288static void igb_restore_vlan(struct igb_adapter *adapter)
7289{
7290	u16 vid;
7291
7292	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7293
7294	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7295		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7296}
7297
7298int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7299{
7300	struct pci_dev *pdev = adapter->pdev;
7301	struct e1000_mac_info *mac = &adapter->hw.mac;
7302
7303	mac->autoneg = 0;
7304
7305	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7306	 * for the switch() below to work
7307	 */
7308	if ((spd & 1) || (dplx & ~1))
7309		goto err_inval;
7310
7311	/* Fiber NIC's only allow 1000 gbps Full duplex
7312	 * and 100Mbps Full duplex for 100baseFx sfp
7313	 */
7314	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7315		switch (spd + dplx) {
7316		case SPEED_10 + DUPLEX_HALF:
7317		case SPEED_10 + DUPLEX_FULL:
7318		case SPEED_100 + DUPLEX_HALF:
7319			goto err_inval;
7320		default:
7321			break;
7322		}
7323	}
7324
7325	switch (spd + dplx) {
7326	case SPEED_10 + DUPLEX_HALF:
7327		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7328		break;
7329	case SPEED_10 + DUPLEX_FULL:
7330		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7331		break;
7332	case SPEED_100 + DUPLEX_HALF:
7333		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7334		break;
7335	case SPEED_100 + DUPLEX_FULL:
7336		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7337		break;
7338	case SPEED_1000 + DUPLEX_FULL:
7339		mac->autoneg = 1;
7340		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7341		break;
7342	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7343	default:
7344		goto err_inval;
7345	}
7346
7347	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7348	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7349
7350	return 0;
7351
7352err_inval:
7353	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7354	return -EINVAL;
7355}
7356
7357static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7358			  bool runtime)
7359{
7360	struct net_device *netdev = pci_get_drvdata(pdev);
7361	struct igb_adapter *adapter = netdev_priv(netdev);
7362	struct e1000_hw *hw = &adapter->hw;
7363	u32 ctrl, rctl, status;
7364	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7365#ifdef CONFIG_PM
7366	int retval = 0;
7367#endif
7368
7369	netif_device_detach(netdev);
7370
7371	if (netif_running(netdev))
7372		__igb_close(netdev, true);
7373
7374	igb_clear_interrupt_scheme(adapter);
7375
7376#ifdef CONFIG_PM
7377	retval = pci_save_state(pdev);
7378	if (retval)
7379		return retval;
7380#endif
7381
7382	status = rd32(E1000_STATUS);
7383	if (status & E1000_STATUS_LU)
7384		wufc &= ~E1000_WUFC_LNKC;
7385
7386	if (wufc) {
7387		igb_setup_rctl(adapter);
7388		igb_set_rx_mode(netdev);
7389
7390		/* turn on all-multi mode if wake on multicast is enabled */
7391		if (wufc & E1000_WUFC_MC) {
7392			rctl = rd32(E1000_RCTL);
7393			rctl |= E1000_RCTL_MPE;
7394			wr32(E1000_RCTL, rctl);
7395		}
7396
7397		ctrl = rd32(E1000_CTRL);
7398		/* advertise wake from D3Cold */
7399		#define E1000_CTRL_ADVD3WUC 0x00100000
7400		/* phy power management enable */
7401		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7402		ctrl |= E1000_CTRL_ADVD3WUC;
7403		wr32(E1000_CTRL, ctrl);
7404
7405		/* Allow time for pending master requests to run */
7406		igb_disable_pcie_master(hw);
7407
7408		wr32(E1000_WUC, E1000_WUC_PME_EN);
7409		wr32(E1000_WUFC, wufc);
7410	} else {
7411		wr32(E1000_WUC, 0);
7412		wr32(E1000_WUFC, 0);
7413	}
7414
7415	*enable_wake = wufc || adapter->en_mng_pt;
7416	if (!*enable_wake)
7417		igb_power_down_link(adapter);
7418	else
7419		igb_power_up_link(adapter);
7420
7421	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7422	 * would have already happened in close and is redundant.
7423	 */
7424	igb_release_hw_control(adapter);
7425
7426	pci_disable_device(pdev);
7427
7428	return 0;
7429}
7430
7431#ifdef CONFIG_PM
7432#ifdef CONFIG_PM_SLEEP
7433static int igb_suspend(struct device *dev)
7434{
7435	int retval;
7436	bool wake;
7437	struct pci_dev *pdev = to_pci_dev(dev);
7438
7439	retval = __igb_shutdown(pdev, &wake, 0);
7440	if (retval)
7441		return retval;
7442
7443	if (wake) {
7444		pci_prepare_to_sleep(pdev);
7445	} else {
7446		pci_wake_from_d3(pdev, false);
7447		pci_set_power_state(pdev, PCI_D3hot);
7448	}
7449
7450	return 0;
7451}
7452#endif /* CONFIG_PM_SLEEP */
7453
7454static int igb_resume(struct device *dev)
7455{
7456	struct pci_dev *pdev = to_pci_dev(dev);
7457	struct net_device *netdev = pci_get_drvdata(pdev);
7458	struct igb_adapter *adapter = netdev_priv(netdev);
7459	struct e1000_hw *hw = &adapter->hw;
7460	u32 err;
7461
7462	pci_set_power_state(pdev, PCI_D0);
7463	pci_restore_state(pdev);
7464	pci_save_state(pdev);
7465
7466	err = pci_enable_device_mem(pdev);
7467	if (err) {
7468		dev_err(&pdev->dev,
7469			"igb: Cannot enable PCI device from suspend\n");
7470		return err;
7471	}
7472	pci_set_master(pdev);
7473
7474	pci_enable_wake(pdev, PCI_D3hot, 0);
7475	pci_enable_wake(pdev, PCI_D3cold, 0);
7476
7477	if (igb_init_interrupt_scheme(adapter, true)) {
7478		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7479		return -ENOMEM;
7480	}
7481
7482	igb_reset(adapter);
7483
7484	/* let the f/w know that the h/w is now under the control of the
7485	 * driver.
7486	 */
7487	igb_get_hw_control(adapter);
7488
7489	wr32(E1000_WUS, ~0);
7490
7491	if (netdev->flags & IFF_UP) {
7492		rtnl_lock();
7493		err = __igb_open(netdev, true);
7494		rtnl_unlock();
7495		if (err)
7496			return err;
7497	}
7498
7499	netif_device_attach(netdev);
7500	return 0;
7501}
7502
7503#ifdef CONFIG_PM_RUNTIME
7504static int igb_runtime_idle(struct device *dev)
7505{
7506	struct pci_dev *pdev = to_pci_dev(dev);
7507	struct net_device *netdev = pci_get_drvdata(pdev);
7508	struct igb_adapter *adapter = netdev_priv(netdev);
7509
7510	if (!igb_has_link(adapter))
7511		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7512
7513	return -EBUSY;
7514}
7515
7516static int igb_runtime_suspend(struct device *dev)
7517{
7518	struct pci_dev *pdev = to_pci_dev(dev);
7519	int retval;
7520	bool wake;
7521
7522	retval = __igb_shutdown(pdev, &wake, 1);
7523	if (retval)
7524		return retval;
7525
7526	if (wake) {
7527		pci_prepare_to_sleep(pdev);
7528	} else {
7529		pci_wake_from_d3(pdev, false);
7530		pci_set_power_state(pdev, PCI_D3hot);
7531	}
7532
7533	return 0;
7534}
7535
7536static int igb_runtime_resume(struct device *dev)
7537{
7538	return igb_resume(dev);
7539}
7540#endif /* CONFIG_PM_RUNTIME */
7541#endif
7542
7543static void igb_shutdown(struct pci_dev *pdev)
7544{
7545	bool wake;
7546
7547	__igb_shutdown(pdev, &wake, 0);
7548
7549	if (system_state == SYSTEM_POWER_OFF) {
7550		pci_wake_from_d3(pdev, wake);
7551		pci_set_power_state(pdev, PCI_D3hot);
7552	}
7553}
7554
7555#ifdef CONFIG_PCI_IOV
7556static int igb_sriov_reinit(struct pci_dev *dev)
7557{
7558	struct net_device *netdev = pci_get_drvdata(dev);
7559	struct igb_adapter *adapter = netdev_priv(netdev);
7560	struct pci_dev *pdev = adapter->pdev;
7561
7562	rtnl_lock();
7563
7564	if (netif_running(netdev))
7565		igb_close(netdev);
7566
7567	igb_clear_interrupt_scheme(adapter);
7568
7569	igb_init_queue_configuration(adapter);
7570
7571	if (igb_init_interrupt_scheme(adapter, true)) {
7572		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7573		return -ENOMEM;
7574	}
7575
7576	if (netif_running(netdev))
7577		igb_open(netdev);
7578
7579	rtnl_unlock();
7580
7581	return 0;
7582}
7583
7584static int igb_pci_disable_sriov(struct pci_dev *dev)
7585{
7586	int err = igb_disable_sriov(dev);
7587
7588	if (!err)
7589		err = igb_sriov_reinit(dev);
7590
7591	return err;
7592}
7593
7594static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7595{
7596	int err = igb_enable_sriov(dev, num_vfs);
7597
7598	if (err)
7599		goto out;
7600
7601	err = igb_sriov_reinit(dev);
7602	if (!err)
7603		return num_vfs;
7604
7605out:
7606	return err;
7607}
7608
7609#endif
7610static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7611{
7612#ifdef CONFIG_PCI_IOV
7613	if (num_vfs == 0)
7614		return igb_pci_disable_sriov(dev);
7615	else
7616		return igb_pci_enable_sriov(dev, num_vfs);
7617#endif
7618	return 0;
7619}
7620
7621#ifdef CONFIG_NET_POLL_CONTROLLER
7622/* Polling 'interrupt' - used by things like netconsole to send skbs
7623 * without having to re-enable interrupts. It's not called while
7624 * the interrupt routine is executing.
7625 */
7626static void igb_netpoll(struct net_device *netdev)
7627{
7628	struct igb_adapter *adapter = netdev_priv(netdev);
7629	struct e1000_hw *hw = &adapter->hw;
7630	struct igb_q_vector *q_vector;
7631	int i;
7632
7633	for (i = 0; i < adapter->num_q_vectors; i++) {
7634		q_vector = adapter->q_vector[i];
7635		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7636			wr32(E1000_EIMC, q_vector->eims_value);
7637		else
7638			igb_irq_disable(adapter);
7639		napi_schedule(&q_vector->napi);
7640	}
7641}
7642#endif /* CONFIG_NET_POLL_CONTROLLER */
7643
7644/**
7645 *  igb_io_error_detected - called when PCI error is detected
7646 *  @pdev: Pointer to PCI device
7647 *  @state: The current pci connection state
7648 *
7649 *  This function is called after a PCI bus error affecting
7650 *  this device has been detected.
7651 **/
7652static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7653					      pci_channel_state_t state)
7654{
7655	struct net_device *netdev = pci_get_drvdata(pdev);
7656	struct igb_adapter *adapter = netdev_priv(netdev);
7657
7658	netif_device_detach(netdev);
7659
7660	if (state == pci_channel_io_perm_failure)
7661		return PCI_ERS_RESULT_DISCONNECT;
7662
7663	if (netif_running(netdev))
7664		igb_down(adapter);
7665	pci_disable_device(pdev);
7666
7667	/* Request a slot slot reset. */
7668	return PCI_ERS_RESULT_NEED_RESET;
7669}
7670
7671/**
7672 *  igb_io_slot_reset - called after the pci bus has been reset.
7673 *  @pdev: Pointer to PCI device
7674 *
7675 *  Restart the card from scratch, as if from a cold-boot. Implementation
7676 *  resembles the first-half of the igb_resume routine.
7677 **/
7678static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7679{
7680	struct net_device *netdev = pci_get_drvdata(pdev);
7681	struct igb_adapter *adapter = netdev_priv(netdev);
7682	struct e1000_hw *hw = &adapter->hw;
7683	pci_ers_result_t result;
7684	int err;
7685
7686	if (pci_enable_device_mem(pdev)) {
7687		dev_err(&pdev->dev,
7688			"Cannot re-enable PCI device after reset.\n");
7689		result = PCI_ERS_RESULT_DISCONNECT;
7690	} else {
7691		pci_set_master(pdev);
7692		pci_restore_state(pdev);
7693		pci_save_state(pdev);
7694
7695		pci_enable_wake(pdev, PCI_D3hot, 0);
7696		pci_enable_wake(pdev, PCI_D3cold, 0);
7697
7698		igb_reset(adapter);
7699		wr32(E1000_WUS, ~0);
7700		result = PCI_ERS_RESULT_RECOVERED;
7701	}
7702
7703	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7704	if (err) {
7705		dev_err(&pdev->dev,
7706			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7707			err);
7708		/* non-fatal, continue */
7709	}
7710
7711	return result;
7712}
7713
7714/**
7715 *  igb_io_resume - called when traffic can start flowing again.
7716 *  @pdev: Pointer to PCI device
7717 *
7718 *  This callback is called when the error recovery driver tells us that
7719 *  its OK to resume normal operation. Implementation resembles the
7720 *  second-half of the igb_resume routine.
7721 */
7722static void igb_io_resume(struct pci_dev *pdev)
7723{
7724	struct net_device *netdev = pci_get_drvdata(pdev);
7725	struct igb_adapter *adapter = netdev_priv(netdev);
7726
7727	if (netif_running(netdev)) {
7728		if (igb_up(adapter)) {
7729			dev_err(&pdev->dev, "igb_up failed after reset\n");
7730			return;
7731		}
7732	}
7733
7734	netif_device_attach(netdev);
7735
7736	/* let the f/w know that the h/w is now under the control of the
7737	 * driver.
7738	 */
7739	igb_get_hw_control(adapter);
7740}
7741
7742static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7743			     u8 qsel)
7744{
7745	u32 rar_low, rar_high;
7746	struct e1000_hw *hw = &adapter->hw;
7747
7748	/* HW expects these in little endian so we reverse the byte order
7749	 * from network order (big endian) to little endian
7750	 */
7751	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7752		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7753	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7754
7755	/* Indicate to hardware the Address is Valid. */
7756	rar_high |= E1000_RAH_AV;
7757
7758	if (hw->mac.type == e1000_82575)
7759		rar_high |= E1000_RAH_POOL_1 * qsel;
7760	else
7761		rar_high |= E1000_RAH_POOL_1 << qsel;
7762
7763	wr32(E1000_RAL(index), rar_low);
7764	wrfl();
7765	wr32(E1000_RAH(index), rar_high);
7766	wrfl();
7767}
7768
7769static int igb_set_vf_mac(struct igb_adapter *adapter,
7770			  int vf, unsigned char *mac_addr)
7771{
7772	struct e1000_hw *hw = &adapter->hw;
7773	/* VF MAC addresses start at end of receive addresses and moves
7774	 * towards the first, as a result a collision should not be possible
7775	 */
7776	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7777
7778	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7779
7780	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7781
7782	return 0;
7783}
7784
7785static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7786{
7787	struct igb_adapter *adapter = netdev_priv(netdev);
7788	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7789		return -EINVAL;
7790	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7791	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7792	dev_info(&adapter->pdev->dev,
7793		 "Reload the VF driver to make this change effective.");
7794	if (test_bit(__IGB_DOWN, &adapter->state)) {
7795		dev_warn(&adapter->pdev->dev,
7796			 "The VF MAC address has been set, but the PF device is not up.\n");
7797		dev_warn(&adapter->pdev->dev,
7798			 "Bring the PF device up before attempting to use the VF device.\n");
7799	}
7800	return igb_set_vf_mac(adapter, vf, mac);
7801}
7802
7803static int igb_link_mbps(int internal_link_speed)
7804{
7805	switch (internal_link_speed) {
7806	case SPEED_100:
7807		return 100;
7808	case SPEED_1000:
7809		return 1000;
7810	default:
7811		return 0;
7812	}
7813}
7814
7815static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7816				  int link_speed)
7817{
7818	int rf_dec, rf_int;
7819	u32 bcnrc_val;
7820
7821	if (tx_rate != 0) {
7822		/* Calculate the rate factor values to set */
7823		rf_int = link_speed / tx_rate;
7824		rf_dec = (link_speed - (rf_int * tx_rate));
7825		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7826			 tx_rate;
7827
7828		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7829		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7830			      E1000_RTTBCNRC_RF_INT_MASK);
7831		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7832	} else {
7833		bcnrc_val = 0;
7834	}
7835
7836	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7837	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7838	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7839	 */
7840	wr32(E1000_RTTBCNRM, 0x14);
7841	wr32(E1000_RTTBCNRC, bcnrc_val);
7842}
7843
7844static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7845{
7846	int actual_link_speed, i;
7847	bool reset_rate = false;
7848
7849	/* VF TX rate limit was not set or not supported */
7850	if ((adapter->vf_rate_link_speed == 0) ||
7851	    (adapter->hw.mac.type != e1000_82576))
7852		return;
7853
7854	actual_link_speed = igb_link_mbps(adapter->link_speed);
7855	if (actual_link_speed != adapter->vf_rate_link_speed) {
7856		reset_rate = true;
7857		adapter->vf_rate_link_speed = 0;
7858		dev_info(&adapter->pdev->dev,
7859			 "Link speed has been changed. VF Transmit rate is disabled\n");
7860	}
7861
7862	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7863		if (reset_rate)
7864			adapter->vf_data[i].tx_rate = 0;
7865
7866		igb_set_vf_rate_limit(&adapter->hw, i,
7867				      adapter->vf_data[i].tx_rate,
7868				      actual_link_speed);
7869	}
7870}
7871
7872static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7873{
7874	struct igb_adapter *adapter = netdev_priv(netdev);
7875	struct e1000_hw *hw = &adapter->hw;
7876	int actual_link_speed;
7877
7878	if (hw->mac.type != e1000_82576)
7879		return -EOPNOTSUPP;
7880
7881	actual_link_speed = igb_link_mbps(adapter->link_speed);
7882	if ((vf >= adapter->vfs_allocated_count) ||
7883	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7884	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7885		return -EINVAL;
7886
7887	adapter->vf_rate_link_speed = actual_link_speed;
7888	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7889	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7890
7891	return 0;
7892}
7893
7894static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7895				   bool setting)
7896{
7897	struct igb_adapter *adapter = netdev_priv(netdev);
7898	struct e1000_hw *hw = &adapter->hw;
7899	u32 reg_val, reg_offset;
7900
7901	if (!adapter->vfs_allocated_count)
7902		return -EOPNOTSUPP;
7903
7904	if (vf >= adapter->vfs_allocated_count)
7905		return -EINVAL;
7906
7907	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7908	reg_val = rd32(reg_offset);
7909	if (setting)
7910		reg_val |= ((1 << vf) |
7911			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7912	else
7913		reg_val &= ~((1 << vf) |
7914			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7915	wr32(reg_offset, reg_val);
7916
7917	adapter->vf_data[vf].spoofchk_enabled = setting;
7918	return E1000_SUCCESS;
7919}
7920
7921static int igb_ndo_get_vf_config(struct net_device *netdev,
7922				 int vf, struct ifla_vf_info *ivi)
7923{
7924	struct igb_adapter *adapter = netdev_priv(netdev);
7925	if (vf >= adapter->vfs_allocated_count)
7926		return -EINVAL;
7927	ivi->vf = vf;
7928	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7929	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7930	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7931	ivi->qos = adapter->vf_data[vf].pf_qos;
7932	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7933	return 0;
7934}
7935
7936static void igb_vmm_control(struct igb_adapter *adapter)
7937{
7938	struct e1000_hw *hw = &adapter->hw;
7939	u32 reg;
7940
7941	switch (hw->mac.type) {
7942	case e1000_82575:
7943	case e1000_i210:
7944	case e1000_i211:
7945	case e1000_i354:
7946	default:
7947		/* replication is not supported for 82575 */
7948		return;
7949	case e1000_82576:
7950		/* notify HW that the MAC is adding vlan tags */
7951		reg = rd32(E1000_DTXCTL);
7952		reg |= E1000_DTXCTL_VLAN_ADDED;
7953		wr32(E1000_DTXCTL, reg);
7954	case e1000_82580:
7955		/* enable replication vlan tag stripping */
7956		reg = rd32(E1000_RPLOLR);
7957		reg |= E1000_RPLOLR_STRVLAN;
7958		wr32(E1000_RPLOLR, reg);
7959	case e1000_i350:
7960		/* none of the above registers are supported by i350 */
7961		break;
7962	}
7963
7964	if (adapter->vfs_allocated_count) {
7965		igb_vmdq_set_loopback_pf(hw, true);
7966		igb_vmdq_set_replication_pf(hw, true);
7967		igb_vmdq_set_anti_spoofing_pf(hw, true,
7968					      adapter->vfs_allocated_count);
7969	} else {
7970		igb_vmdq_set_loopback_pf(hw, false);
7971		igb_vmdq_set_replication_pf(hw, false);
7972	}
7973}
7974
7975static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7976{
7977	struct e1000_hw *hw = &adapter->hw;
7978	u32 dmac_thr;
7979	u16 hwm;
7980
7981	if (hw->mac.type > e1000_82580) {
7982		if (adapter->flags & IGB_FLAG_DMAC) {
7983			u32 reg;
7984
7985			/* force threshold to 0. */
7986			wr32(E1000_DMCTXTH, 0);
7987
7988			/* DMA Coalescing high water mark needs to be greater
7989			 * than the Rx threshold. Set hwm to PBA - max frame
7990			 * size in 16B units, capping it at PBA - 6KB.
7991			 */
7992			hwm = 64 * pba - adapter->max_frame_size / 16;
7993			if (hwm < 64 * (pba - 6))
7994				hwm = 64 * (pba - 6);
7995			reg = rd32(E1000_FCRTC);
7996			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7997			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7998				& E1000_FCRTC_RTH_COAL_MASK);
7999			wr32(E1000_FCRTC, reg);
8000
8001			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8002			 * frame size, capping it at PBA - 10KB.
8003			 */
8004			dmac_thr = pba - adapter->max_frame_size / 512;
8005			if (dmac_thr < pba - 10)
8006				dmac_thr = pba - 10;
8007			reg = rd32(E1000_DMACR);
8008			reg &= ~E1000_DMACR_DMACTHR_MASK;
8009			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8010				& E1000_DMACR_DMACTHR_MASK);
8011
8012			/* transition to L0x or L1 if available..*/
8013			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8014
8015			/* watchdog timer= +-1000 usec in 32usec intervals */
8016			reg |= (1000 >> 5);
8017
8018			/* Disable BMC-to-OS Watchdog Enable */
8019			if (hw->mac.type != e1000_i354)
8020				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8021
8022			wr32(E1000_DMACR, reg);
8023
8024			/* no lower threshold to disable
8025			 * coalescing(smart fifb)-UTRESH=0
8026			 */
8027			wr32(E1000_DMCRTRH, 0);
8028
8029			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8030
8031			wr32(E1000_DMCTLX, reg);
8032
8033			/* free space in tx packet buffer to wake from
8034			 * DMA coal
8035			 */
8036			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8037			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8038
8039			/* make low power state decision controlled
8040			 * by DMA coal
8041			 */
8042			reg = rd32(E1000_PCIEMISC);
8043			reg &= ~E1000_PCIEMISC_LX_DECISION;
8044			wr32(E1000_PCIEMISC, reg);
8045		} /* endif adapter->dmac is not disabled */
8046	} else if (hw->mac.type == e1000_82580) {
8047		u32 reg = rd32(E1000_PCIEMISC);
8048		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8049		wr32(E1000_DMACR, 0);
8050	}
8051}
8052
8053/**
8054 *  igb_read_i2c_byte - Reads 8 bit word over I2C
8055 *  @hw: pointer to hardware structure
8056 *  @byte_offset: byte offset to read
8057 *  @dev_addr: device address
8058 *  @data: value read
8059 *
8060 *  Performs byte read operation over I2C interface at
8061 *  a specified device address.
8062 **/
8063s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8064		      u8 dev_addr, u8 *data)
8065{
8066	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8067	struct i2c_client *this_client = adapter->i2c_client;
8068	s32 status;
8069	u16 swfw_mask = 0;
8070
8071	if (!this_client)
8072		return E1000_ERR_I2C;
8073
8074	swfw_mask = E1000_SWFW_PHY0_SM;
8075
8076	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
8077	    != E1000_SUCCESS)
8078		return E1000_ERR_SWFW_SYNC;
8079
8080	status = i2c_smbus_read_byte_data(this_client, byte_offset);
8081	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8082
8083	if (status < 0)
8084		return E1000_ERR_I2C;
8085	else {
8086		*data = status;
8087		return E1000_SUCCESS;
8088	}
8089}
8090
8091/**
8092 *  igb_write_i2c_byte - Writes 8 bit word over I2C
8093 *  @hw: pointer to hardware structure
8094 *  @byte_offset: byte offset to write
8095 *  @dev_addr: device address
8096 *  @data: value to write
8097 *
8098 *  Performs byte write operation over I2C interface at
8099 *  a specified device address.
8100 **/
8101s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8102		       u8 dev_addr, u8 data)
8103{
8104	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8105	struct i2c_client *this_client = adapter->i2c_client;
8106	s32 status;
8107	u16 swfw_mask = E1000_SWFW_PHY0_SM;
8108
8109	if (!this_client)
8110		return E1000_ERR_I2C;
8111
8112	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
8113		return E1000_ERR_SWFW_SYNC;
8114	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8115	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8116
8117	if (status)
8118		return E1000_ERR_I2C;
8119	else
8120		return E1000_SUCCESS;
8121
8122}
8123
8124int igb_reinit_queues(struct igb_adapter *adapter)
8125{
8126	struct net_device *netdev = adapter->netdev;
8127	struct pci_dev *pdev = adapter->pdev;
8128	int err = 0;
8129
8130	if (netif_running(netdev))
8131		igb_close(netdev);
8132
8133	igb_reset_interrupt_capability(adapter);
8134
8135	if (igb_init_interrupt_scheme(adapter, true)) {
8136		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8137		return -ENOMEM;
8138	}
8139
8140	if (netif_running(netdev))
8141		err = igb_open(netdev);
8142
8143	return err;
8144}
8145/* igb_main.c */
8146