igb_main.c revision b2adaca92c63b9bb8beb021d554f656e387a7648
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2013 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
33#include <linux/bitops.h>
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/netdevice.h>
37#include <linux/ipv6.h>
38#include <linux/slab.h>
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
41#include <linux/net_tstamp.h>
42#include <linux/mii.h>
43#include <linux/ethtool.h>
44#include <linux/if.h>
45#include <linux/if_vlan.h>
46#include <linux/pci.h>
47#include <linux/pci-aspm.h>
48#include <linux/delay.h>
49#include <linux/interrupt.h>
50#include <linux/ip.h>
51#include <linux/tcp.h>
52#include <linux/sctp.h>
53#include <linux/if_ether.h>
54#include <linux/aer.h>
55#include <linux/prefetch.h>
56#include <linux/pm_runtime.h>
57#ifdef CONFIG_IGB_DCA
58#include <linux/dca.h>
59#endif
60#include <linux/i2c.h>
61#include "igb.h"
62
63#define MAJ 4
64#define MIN 1
65#define BUILD 2
66#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67__stringify(BUILD) "-k"
68char igb_driver_name[] = "igb";
69char igb_driver_version[] = DRV_VERSION;
70static const char igb_driver_string[] =
71				"Intel(R) Gigabit Ethernet Network Driver";
72static const char igb_copyright[] =
73				"Copyright (c) 2007-2013 Intel Corporation.";
74
75static const struct e1000_info *igb_info_tbl[] = {
76	[board_82575] = &e1000_82575_info,
77};
78
79static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
99	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
104	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
105	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
106	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
107	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
108	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
109	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
110	/* required last entry */
111	{0, }
112};
113
114MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
115
116void igb_reset(struct igb_adapter *);
117static int igb_setup_all_tx_resources(struct igb_adapter *);
118static int igb_setup_all_rx_resources(struct igb_adapter *);
119static void igb_free_all_tx_resources(struct igb_adapter *);
120static void igb_free_all_rx_resources(struct igb_adapter *);
121static void igb_setup_mrqc(struct igb_adapter *);
122static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123static void igb_remove(struct pci_dev *pdev);
124static int igb_sw_init(struct igb_adapter *);
125static int igb_open(struct net_device *);
126static int igb_close(struct net_device *);
127static void igb_configure(struct igb_adapter *);
128static void igb_configure_tx(struct igb_adapter *);
129static void igb_configure_rx(struct igb_adapter *);
130static void igb_clean_all_tx_rings(struct igb_adapter *);
131static void igb_clean_all_rx_rings(struct igb_adapter *);
132static void igb_clean_tx_ring(struct igb_ring *);
133static void igb_clean_rx_ring(struct igb_ring *);
134static void igb_set_rx_mode(struct net_device *);
135static void igb_update_phy_info(unsigned long);
136static void igb_watchdog(unsigned long);
137static void igb_watchdog_task(struct work_struct *);
138static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140						 struct rtnl_link_stats64 *stats);
141static int igb_change_mtu(struct net_device *, int);
142static int igb_set_mac(struct net_device *, void *);
143static void igb_set_uta(struct igb_adapter *adapter);
144static irqreturn_t igb_intr(int irq, void *);
145static irqreturn_t igb_intr_msi(int irq, void *);
146static irqreturn_t igb_msix_other(int irq, void *);
147static irqreturn_t igb_msix_ring(int irq, void *);
148#ifdef CONFIG_IGB_DCA
149static void igb_update_dca(struct igb_q_vector *);
150static void igb_setup_dca(struct igb_adapter *);
151#endif /* CONFIG_IGB_DCA */
152static int igb_poll(struct napi_struct *, int);
153static bool igb_clean_tx_irq(struct igb_q_vector *);
154static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156static void igb_tx_timeout(struct net_device *);
157static void igb_reset_task(struct work_struct *);
158static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
159static int igb_vlan_rx_add_vid(struct net_device *, u16);
160static int igb_vlan_rx_kill_vid(struct net_device *, u16);
161static void igb_restore_vlan(struct igb_adapter *);
162static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
163static void igb_ping_all_vfs(struct igb_adapter *);
164static void igb_msg_task(struct igb_adapter *);
165static void igb_vmm_control(struct igb_adapter *);
166static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
167static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
168static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
169static int igb_ndo_set_vf_vlan(struct net_device *netdev,
170			       int vf, u16 vlan, u8 qos);
171static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
172static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
173				 struct ifla_vf_info *ivi);
174static void igb_check_vf_rate_limit(struct igb_adapter *);
175
176#ifdef CONFIG_PCI_IOV
177static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
179#endif
180
181#ifdef CONFIG_PM
182#ifdef CONFIG_PM_SLEEP
183static int igb_suspend(struct device *);
184#endif
185static int igb_resume(struct device *);
186#ifdef CONFIG_PM_RUNTIME
187static int igb_runtime_suspend(struct device *dev);
188static int igb_runtime_resume(struct device *dev);
189static int igb_runtime_idle(struct device *dev);
190#endif
191static const struct dev_pm_ops igb_pm_ops = {
192	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
193	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
194			igb_runtime_idle)
195};
196#endif
197static void igb_shutdown(struct pci_dev *);
198static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
199#ifdef CONFIG_IGB_DCA
200static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
201static struct notifier_block dca_notifier = {
202	.notifier_call	= igb_notify_dca,
203	.next		= NULL,
204	.priority	= 0
205};
206#endif
207#ifdef CONFIG_NET_POLL_CONTROLLER
208/* for netdump / net console */
209static void igb_netpoll(struct net_device *);
210#endif
211#ifdef CONFIG_PCI_IOV
212static unsigned int max_vfs = 0;
213module_param(max_vfs, uint, 0);
214MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
215                 "per physical function");
216#endif /* CONFIG_PCI_IOV */
217
218static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
219		     pci_channel_state_t);
220static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
221static void igb_io_resume(struct pci_dev *);
222
223static const struct pci_error_handlers igb_err_handler = {
224	.error_detected = igb_io_error_detected,
225	.slot_reset = igb_io_slot_reset,
226	.resume = igb_io_resume,
227};
228
229static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
230
231static struct pci_driver igb_driver = {
232	.name     = igb_driver_name,
233	.id_table = igb_pci_tbl,
234	.probe    = igb_probe,
235	.remove   = igb_remove,
236#ifdef CONFIG_PM
237	.driver.pm = &igb_pm_ops,
238#endif
239	.shutdown = igb_shutdown,
240	.sriov_configure = igb_pci_sriov_configure,
241	.err_handler = &igb_err_handler
242};
243
244MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
245MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
246MODULE_LICENSE("GPL");
247MODULE_VERSION(DRV_VERSION);
248
249#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
250static int debug = -1;
251module_param(debug, int, 0);
252MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
253
254struct igb_reg_info {
255	u32 ofs;
256	char *name;
257};
258
259static const struct igb_reg_info igb_reg_info_tbl[] = {
260
261	/* General Registers */
262	{E1000_CTRL, "CTRL"},
263	{E1000_STATUS, "STATUS"},
264	{E1000_CTRL_EXT, "CTRL_EXT"},
265
266	/* Interrupt Registers */
267	{E1000_ICR, "ICR"},
268
269	/* RX Registers */
270	{E1000_RCTL, "RCTL"},
271	{E1000_RDLEN(0), "RDLEN"},
272	{E1000_RDH(0), "RDH"},
273	{E1000_RDT(0), "RDT"},
274	{E1000_RXDCTL(0), "RXDCTL"},
275	{E1000_RDBAL(0), "RDBAL"},
276	{E1000_RDBAH(0), "RDBAH"},
277
278	/* TX Registers */
279	{E1000_TCTL, "TCTL"},
280	{E1000_TDBAL(0), "TDBAL"},
281	{E1000_TDBAH(0), "TDBAH"},
282	{E1000_TDLEN(0), "TDLEN"},
283	{E1000_TDH(0), "TDH"},
284	{E1000_TDT(0), "TDT"},
285	{E1000_TXDCTL(0), "TXDCTL"},
286	{E1000_TDFH, "TDFH"},
287	{E1000_TDFT, "TDFT"},
288	{E1000_TDFHS, "TDFHS"},
289	{E1000_TDFPC, "TDFPC"},
290
291	/* List Terminator */
292	{}
293};
294
295/*
296 * igb_regdump - register printout routine
297 */
298static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
299{
300	int n = 0;
301	char rname[16];
302	u32 regs[8];
303
304	switch (reginfo->ofs) {
305	case E1000_RDLEN(0):
306		for (n = 0; n < 4; n++)
307			regs[n] = rd32(E1000_RDLEN(n));
308		break;
309	case E1000_RDH(0):
310		for (n = 0; n < 4; n++)
311			regs[n] = rd32(E1000_RDH(n));
312		break;
313	case E1000_RDT(0):
314		for (n = 0; n < 4; n++)
315			regs[n] = rd32(E1000_RDT(n));
316		break;
317	case E1000_RXDCTL(0):
318		for (n = 0; n < 4; n++)
319			regs[n] = rd32(E1000_RXDCTL(n));
320		break;
321	case E1000_RDBAL(0):
322		for (n = 0; n < 4; n++)
323			regs[n] = rd32(E1000_RDBAL(n));
324		break;
325	case E1000_RDBAH(0):
326		for (n = 0; n < 4; n++)
327			regs[n] = rd32(E1000_RDBAH(n));
328		break;
329	case E1000_TDBAL(0):
330		for (n = 0; n < 4; n++)
331			regs[n] = rd32(E1000_RDBAL(n));
332		break;
333	case E1000_TDBAH(0):
334		for (n = 0; n < 4; n++)
335			regs[n] = rd32(E1000_TDBAH(n));
336		break;
337	case E1000_TDLEN(0):
338		for (n = 0; n < 4; n++)
339			regs[n] = rd32(E1000_TDLEN(n));
340		break;
341	case E1000_TDH(0):
342		for (n = 0; n < 4; n++)
343			regs[n] = rd32(E1000_TDH(n));
344		break;
345	case E1000_TDT(0):
346		for (n = 0; n < 4; n++)
347			regs[n] = rd32(E1000_TDT(n));
348		break;
349	case E1000_TXDCTL(0):
350		for (n = 0; n < 4; n++)
351			regs[n] = rd32(E1000_TXDCTL(n));
352		break;
353	default:
354		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
355		return;
356	}
357
358	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
359	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
360		regs[2], regs[3]);
361}
362
363/*
364 * igb_dump - Print registers, tx-rings and rx-rings
365 */
366static void igb_dump(struct igb_adapter *adapter)
367{
368	struct net_device *netdev = adapter->netdev;
369	struct e1000_hw *hw = &adapter->hw;
370	struct igb_reg_info *reginfo;
371	struct igb_ring *tx_ring;
372	union e1000_adv_tx_desc *tx_desc;
373	struct my_u0 { u64 a; u64 b; } *u0;
374	struct igb_ring *rx_ring;
375	union e1000_adv_rx_desc *rx_desc;
376	u32 staterr;
377	u16 i, n;
378
379	if (!netif_msg_hw(adapter))
380		return;
381
382	/* Print netdevice Info */
383	if (netdev) {
384		dev_info(&adapter->pdev->dev, "Net device Info\n");
385		pr_info("Device Name     state            trans_start      "
386			"last_rx\n");
387		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
388			netdev->state, netdev->trans_start, netdev->last_rx);
389	}
390
391	/* Print Registers */
392	dev_info(&adapter->pdev->dev, "Register Dump\n");
393	pr_info(" Register Name   Value\n");
394	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395	     reginfo->name; reginfo++) {
396		igb_regdump(hw, reginfo);
397	}
398
399	/* Print TX Ring Summary */
400	if (!netdev || !netif_running(netdev))
401		goto exit;
402
403	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
404	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
405	for (n = 0; n < adapter->num_tx_queues; n++) {
406		struct igb_tx_buffer *buffer_info;
407		tx_ring = adapter->tx_ring[n];
408		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
409		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410			n, tx_ring->next_to_use, tx_ring->next_to_clean,
411			(u64)dma_unmap_addr(buffer_info, dma),
412			dma_unmap_len(buffer_info, len),
413			buffer_info->next_to_watch,
414			(u64)buffer_info->time_stamp);
415	}
416
417	/* Print TX Rings */
418	if (!netif_msg_tx_done(adapter))
419		goto rx_ring_summary;
420
421	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422
423	/* Transmit Descriptor Formats
424	 *
425	 * Advanced Transmit Descriptor
426	 *   +--------------------------------------------------------------+
427	 * 0 |         Buffer Address [63:0]                                |
428	 *   +--------------------------------------------------------------+
429	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
430	 *   +--------------------------------------------------------------+
431	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
432	 */
433
434	for (n = 0; n < adapter->num_tx_queues; n++) {
435		tx_ring = adapter->tx_ring[n];
436		pr_info("------------------------------------\n");
437		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438		pr_info("------------------------------------\n");
439		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
440			"[bi->dma       ] leng  ntw timestamp        "
441			"bi->skb\n");
442
443		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
444			const char *next_desc;
445			struct igb_tx_buffer *buffer_info;
446			tx_desc = IGB_TX_DESC(tx_ring, i);
447			buffer_info = &tx_ring->tx_buffer_info[i];
448			u0 = (struct my_u0 *)tx_desc;
449			if (i == tx_ring->next_to_use &&
450			    i == tx_ring->next_to_clean)
451				next_desc = " NTC/U";
452			else if (i == tx_ring->next_to_use)
453				next_desc = " NTU";
454			else if (i == tx_ring->next_to_clean)
455				next_desc = " NTC";
456			else
457				next_desc = "";
458
459			pr_info("T [0x%03X]    %016llX %016llX %016llX"
460				" %04X  %p %016llX %p%s\n", i,
461				le64_to_cpu(u0->a),
462				le64_to_cpu(u0->b),
463				(u64)dma_unmap_addr(buffer_info, dma),
464				dma_unmap_len(buffer_info, len),
465				buffer_info->next_to_watch,
466				(u64)buffer_info->time_stamp,
467				buffer_info->skb, next_desc);
468
469			if (netif_msg_pktdata(adapter) && buffer_info->skb)
470				print_hex_dump(KERN_INFO, "",
471					DUMP_PREFIX_ADDRESS,
472					16, 1, buffer_info->skb->data,
473					dma_unmap_len(buffer_info, len),
474					true);
475		}
476	}
477
478	/* Print RX Rings Summary */
479rx_ring_summary:
480	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
481	pr_info("Queue [NTU] [NTC]\n");
482	for (n = 0; n < adapter->num_rx_queues; n++) {
483		rx_ring = adapter->rx_ring[n];
484		pr_info(" %5d %5X %5X\n",
485			n, rx_ring->next_to_use, rx_ring->next_to_clean);
486	}
487
488	/* Print RX Rings */
489	if (!netif_msg_rx_status(adapter))
490		goto exit;
491
492	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
493
494	/* Advanced Receive Descriptor (Read) Format
495	 *    63                                           1        0
496	 *    +-----------------------------------------------------+
497	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
498	 *    +----------------------------------------------+------+
499	 *  8 |       Header Buffer Address [63:1]           |  DD  |
500	 *    +-----------------------------------------------------+
501	 *
502	 *
503	 * Advanced Receive Descriptor (Write-Back) Format
504	 *
505	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
506	 *   +------------------------------------------------------+
507	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
508	 *   | Checksum   Ident  |   |           |    | Type | Type |
509	 *   +------------------------------------------------------+
510	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
511	 *   +------------------------------------------------------+
512	 *   63       48 47    32 31            20 19               0
513	 */
514
515	for (n = 0; n < adapter->num_rx_queues; n++) {
516		rx_ring = adapter->rx_ring[n];
517		pr_info("------------------------------------\n");
518		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
519		pr_info("------------------------------------\n");
520		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
521			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
522		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
523			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
524
525		for (i = 0; i < rx_ring->count; i++) {
526			const char *next_desc;
527			struct igb_rx_buffer *buffer_info;
528			buffer_info = &rx_ring->rx_buffer_info[i];
529			rx_desc = IGB_RX_DESC(rx_ring, i);
530			u0 = (struct my_u0 *)rx_desc;
531			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
532
533			if (i == rx_ring->next_to_use)
534				next_desc = " NTU";
535			else if (i == rx_ring->next_to_clean)
536				next_desc = " NTC";
537			else
538				next_desc = "";
539
540			if (staterr & E1000_RXD_STAT_DD) {
541				/* Descriptor Done */
542				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
543					"RWB", i,
544					le64_to_cpu(u0->a),
545					le64_to_cpu(u0->b),
546					next_desc);
547			} else {
548				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
549					"R  ", i,
550					le64_to_cpu(u0->a),
551					le64_to_cpu(u0->b),
552					(u64)buffer_info->dma,
553					next_desc);
554
555				if (netif_msg_pktdata(adapter) &&
556				    buffer_info->dma && buffer_info->page) {
557					print_hex_dump(KERN_INFO, "",
558					  DUMP_PREFIX_ADDRESS,
559					  16, 1,
560					  page_address(buffer_info->page) +
561						      buffer_info->page_offset,
562					  IGB_RX_BUFSZ, true);
563				}
564			}
565		}
566	}
567
568exit:
569	return;
570}
571
572/*  igb_get_i2c_data - Reads the I2C SDA data bit
573 *  @hw: pointer to hardware structure
574 *  @i2cctl: Current value of I2CCTL register
575 *
576 *  Returns the I2C data bit value
577 */
578static int igb_get_i2c_data(void *data)
579{
580	struct igb_adapter *adapter = (struct igb_adapter *)data;
581	struct e1000_hw *hw = &adapter->hw;
582	s32 i2cctl = rd32(E1000_I2CPARAMS);
583
584	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
585}
586
587/* igb_set_i2c_data - Sets the I2C data bit
588 *  @data: pointer to hardware structure
589 *  @state: I2C data value (0 or 1) to set
590 *
591 *  Sets the I2C data bit
592 */
593static void igb_set_i2c_data(void *data, int state)
594{
595	struct igb_adapter *adapter = (struct igb_adapter *)data;
596	struct e1000_hw *hw = &adapter->hw;
597	s32 i2cctl = rd32(E1000_I2CPARAMS);
598
599	if (state)
600		i2cctl |= E1000_I2C_DATA_OUT;
601	else
602		i2cctl &= ~E1000_I2C_DATA_OUT;
603
604	i2cctl &= ~E1000_I2C_DATA_OE_N;
605	i2cctl |= E1000_I2C_CLK_OE_N;
606	wr32(E1000_I2CPARAMS, i2cctl);
607	wrfl();
608
609}
610
611/* igb_set_i2c_clk - Sets the I2C SCL clock
612 *  @data: pointer to hardware structure
613 *  @state: state to set clock
614 *
615 *  Sets the I2C clock line to state
616 */
617static void igb_set_i2c_clk(void *data, int state)
618{
619	struct igb_adapter *adapter = (struct igb_adapter *)data;
620	struct e1000_hw *hw = &adapter->hw;
621	s32 i2cctl = rd32(E1000_I2CPARAMS);
622
623	if (state) {
624		i2cctl |= E1000_I2C_CLK_OUT;
625		i2cctl &= ~E1000_I2C_CLK_OE_N;
626	} else {
627		i2cctl &= ~E1000_I2C_CLK_OUT;
628		i2cctl &= ~E1000_I2C_CLK_OE_N;
629	}
630	wr32(E1000_I2CPARAMS, i2cctl);
631	wrfl();
632}
633
634/* igb_get_i2c_clk - Gets the I2C SCL clock state
635 *  @data: pointer to hardware structure
636 *
637 *  Gets the I2C clock state
638 */
639static int igb_get_i2c_clk(void *data)
640{
641	struct igb_adapter *adapter = (struct igb_adapter *)data;
642	struct e1000_hw *hw = &adapter->hw;
643	s32 i2cctl = rd32(E1000_I2CPARAMS);
644
645	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
646}
647
648static const struct i2c_algo_bit_data igb_i2c_algo = {
649	.setsda		= igb_set_i2c_data,
650	.setscl		= igb_set_i2c_clk,
651	.getsda		= igb_get_i2c_data,
652	.getscl		= igb_get_i2c_clk,
653	.udelay		= 5,
654	.timeout	= 20,
655};
656
657/**
658 * igb_get_hw_dev - return device
659 * used by hardware layer to print debugging information
660 **/
661struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
662{
663	struct igb_adapter *adapter = hw->back;
664	return adapter->netdev;
665}
666
667/**
668 * igb_init_module - Driver Registration Routine
669 *
670 * igb_init_module is the first routine called when the driver is
671 * loaded. All it does is register with the PCI subsystem.
672 **/
673static int __init igb_init_module(void)
674{
675	int ret;
676	pr_info("%s - version %s\n",
677	       igb_driver_string, igb_driver_version);
678
679	pr_info("%s\n", igb_copyright);
680
681#ifdef CONFIG_IGB_DCA
682	dca_register_notify(&dca_notifier);
683#endif
684	ret = pci_register_driver(&igb_driver);
685	return ret;
686}
687
688module_init(igb_init_module);
689
690/**
691 * igb_exit_module - Driver Exit Cleanup Routine
692 *
693 * igb_exit_module is called just before the driver is removed
694 * from memory.
695 **/
696static void __exit igb_exit_module(void)
697{
698#ifdef CONFIG_IGB_DCA
699	dca_unregister_notify(&dca_notifier);
700#endif
701	pci_unregister_driver(&igb_driver);
702}
703
704module_exit(igb_exit_module);
705
706#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
707/**
708 * igb_cache_ring_register - Descriptor ring to register mapping
709 * @adapter: board private structure to initialize
710 *
711 * Once we know the feature-set enabled for the device, we'll cache
712 * the register offset the descriptor ring is assigned to.
713 **/
714static void igb_cache_ring_register(struct igb_adapter *adapter)
715{
716	int i = 0, j = 0;
717	u32 rbase_offset = adapter->vfs_allocated_count;
718
719	switch (adapter->hw.mac.type) {
720	case e1000_82576:
721		/* The queues are allocated for virtualization such that VF 0
722		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
723		 * In order to avoid collision we start at the first free queue
724		 * and continue consuming queues in the same sequence
725		 */
726		if (adapter->vfs_allocated_count) {
727			for (; i < adapter->rss_queues; i++)
728				adapter->rx_ring[i]->reg_idx = rbase_offset +
729				                               Q_IDX_82576(i);
730		}
731	case e1000_82575:
732	case e1000_82580:
733	case e1000_i350:
734	case e1000_i210:
735	case e1000_i211:
736	default:
737		for (; i < adapter->num_rx_queues; i++)
738			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
739		for (; j < adapter->num_tx_queues; j++)
740			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
741		break;
742	}
743}
744
745/**
746 *  igb_write_ivar - configure ivar for given MSI-X vector
747 *  @hw: pointer to the HW structure
748 *  @msix_vector: vector number we are allocating to a given ring
749 *  @index: row index of IVAR register to write within IVAR table
750 *  @offset: column offset of in IVAR, should be multiple of 8
751 *
752 *  This function is intended to handle the writing of the IVAR register
753 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
754 *  each containing an cause allocation for an Rx and Tx ring, and a
755 *  variable number of rows depending on the number of queues supported.
756 **/
757static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
758			   int index, int offset)
759{
760	u32 ivar = array_rd32(E1000_IVAR0, index);
761
762	/* clear any bits that are currently set */
763	ivar &= ~((u32)0xFF << offset);
764
765	/* write vector and valid bit */
766	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
767
768	array_wr32(E1000_IVAR0, index, ivar);
769}
770
771#define IGB_N0_QUEUE -1
772static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
773{
774	struct igb_adapter *adapter = q_vector->adapter;
775	struct e1000_hw *hw = &adapter->hw;
776	int rx_queue = IGB_N0_QUEUE;
777	int tx_queue = IGB_N0_QUEUE;
778	u32 msixbm = 0;
779
780	if (q_vector->rx.ring)
781		rx_queue = q_vector->rx.ring->reg_idx;
782	if (q_vector->tx.ring)
783		tx_queue = q_vector->tx.ring->reg_idx;
784
785	switch (hw->mac.type) {
786	case e1000_82575:
787		/* The 82575 assigns vectors using a bitmask, which matches the
788		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
789		   or more queues to a vector, we write the appropriate bits
790		   into the MSIXBM register for that vector. */
791		if (rx_queue > IGB_N0_QUEUE)
792			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
793		if (tx_queue > IGB_N0_QUEUE)
794			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
795		if (!adapter->msix_entries && msix_vector == 0)
796			msixbm |= E1000_EIMS_OTHER;
797		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
798		q_vector->eims_value = msixbm;
799		break;
800	case e1000_82576:
801		/*
802		 * 82576 uses a table that essentially consists of 2 columns
803		 * with 8 rows.  The ordering is column-major so we use the
804		 * lower 3 bits as the row index, and the 4th bit as the
805		 * column offset.
806		 */
807		if (rx_queue > IGB_N0_QUEUE)
808			igb_write_ivar(hw, msix_vector,
809				       rx_queue & 0x7,
810				       (rx_queue & 0x8) << 1);
811		if (tx_queue > IGB_N0_QUEUE)
812			igb_write_ivar(hw, msix_vector,
813				       tx_queue & 0x7,
814				       ((tx_queue & 0x8) << 1) + 8);
815		q_vector->eims_value = 1 << msix_vector;
816		break;
817	case e1000_82580:
818	case e1000_i350:
819	case e1000_i210:
820	case e1000_i211:
821		/*
822		 * On 82580 and newer adapters the scheme is similar to 82576
823		 * however instead of ordering column-major we have things
824		 * ordered row-major.  So we traverse the table by using
825		 * bit 0 as the column offset, and the remaining bits as the
826		 * row index.
827		 */
828		if (rx_queue > IGB_N0_QUEUE)
829			igb_write_ivar(hw, msix_vector,
830				       rx_queue >> 1,
831				       (rx_queue & 0x1) << 4);
832		if (tx_queue > IGB_N0_QUEUE)
833			igb_write_ivar(hw, msix_vector,
834				       tx_queue >> 1,
835				       ((tx_queue & 0x1) << 4) + 8);
836		q_vector->eims_value = 1 << msix_vector;
837		break;
838	default:
839		BUG();
840		break;
841	}
842
843	/* add q_vector eims value to global eims_enable_mask */
844	adapter->eims_enable_mask |= q_vector->eims_value;
845
846	/* configure q_vector to set itr on first interrupt */
847	q_vector->set_itr = 1;
848}
849
850/**
851 * igb_configure_msix - Configure MSI-X hardware
852 *
853 * igb_configure_msix sets up the hardware to properly
854 * generate MSI-X interrupts.
855 **/
856static void igb_configure_msix(struct igb_adapter *adapter)
857{
858	u32 tmp;
859	int i, vector = 0;
860	struct e1000_hw *hw = &adapter->hw;
861
862	adapter->eims_enable_mask = 0;
863
864	/* set vector for other causes, i.e. link changes */
865	switch (hw->mac.type) {
866	case e1000_82575:
867		tmp = rd32(E1000_CTRL_EXT);
868		/* enable MSI-X PBA support*/
869		tmp |= E1000_CTRL_EXT_PBA_CLR;
870
871		/* Auto-Mask interrupts upon ICR read. */
872		tmp |= E1000_CTRL_EXT_EIAME;
873		tmp |= E1000_CTRL_EXT_IRCA;
874
875		wr32(E1000_CTRL_EXT, tmp);
876
877		/* enable msix_other interrupt */
878		array_wr32(E1000_MSIXBM(0), vector++,
879		                      E1000_EIMS_OTHER);
880		adapter->eims_other = E1000_EIMS_OTHER;
881
882		break;
883
884	case e1000_82576:
885	case e1000_82580:
886	case e1000_i350:
887	case e1000_i210:
888	case e1000_i211:
889		/* Turn on MSI-X capability first, or our settings
890		 * won't stick.  And it will take days to debug. */
891		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
892		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
893		                E1000_GPIE_NSICR);
894
895		/* enable msix_other interrupt */
896		adapter->eims_other = 1 << vector;
897		tmp = (vector++ | E1000_IVAR_VALID) << 8;
898
899		wr32(E1000_IVAR_MISC, tmp);
900		break;
901	default:
902		/* do nothing, since nothing else supports MSI-X */
903		break;
904	} /* switch (hw->mac.type) */
905
906	adapter->eims_enable_mask |= adapter->eims_other;
907
908	for (i = 0; i < adapter->num_q_vectors; i++)
909		igb_assign_vector(adapter->q_vector[i], vector++);
910
911	wrfl();
912}
913
914/**
915 * igb_request_msix - Initialize MSI-X interrupts
916 *
917 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
918 * kernel.
919 **/
920static int igb_request_msix(struct igb_adapter *adapter)
921{
922	struct net_device *netdev = adapter->netdev;
923	struct e1000_hw *hw = &adapter->hw;
924	int i, err = 0, vector = 0, free_vector = 0;
925
926	err = request_irq(adapter->msix_entries[vector].vector,
927	                  igb_msix_other, 0, netdev->name, adapter);
928	if (err)
929		goto err_out;
930
931	for (i = 0; i < adapter->num_q_vectors; i++) {
932		struct igb_q_vector *q_vector = adapter->q_vector[i];
933
934		vector++;
935
936		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
937
938		if (q_vector->rx.ring && q_vector->tx.ring)
939			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
940				q_vector->rx.ring->queue_index);
941		else if (q_vector->tx.ring)
942			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
943				q_vector->tx.ring->queue_index);
944		else if (q_vector->rx.ring)
945			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
946				q_vector->rx.ring->queue_index);
947		else
948			sprintf(q_vector->name, "%s-unused", netdev->name);
949
950		err = request_irq(adapter->msix_entries[vector].vector,
951		                  igb_msix_ring, 0, q_vector->name,
952		                  q_vector);
953		if (err)
954			goto err_free;
955	}
956
957	igb_configure_msix(adapter);
958	return 0;
959
960err_free:
961	/* free already assigned IRQs */
962	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
963
964	vector--;
965	for (i = 0; i < vector; i++) {
966		free_irq(adapter->msix_entries[free_vector++].vector,
967			 adapter->q_vector[i]);
968	}
969err_out:
970	return err;
971}
972
973static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
974{
975	if (adapter->msix_entries) {
976		pci_disable_msix(adapter->pdev);
977		kfree(adapter->msix_entries);
978		adapter->msix_entries = NULL;
979	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
980		pci_disable_msi(adapter->pdev);
981	}
982}
983
984/**
985 * igb_free_q_vector - Free memory allocated for specific interrupt vector
986 * @adapter: board private structure to initialize
987 * @v_idx: Index of vector to be freed
988 *
989 * This function frees the memory allocated to the q_vector.  In addition if
990 * NAPI is enabled it will delete any references to the NAPI struct prior
991 * to freeing the q_vector.
992 **/
993static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
994{
995	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
996
997	if (q_vector->tx.ring)
998		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
999
1000	if (q_vector->rx.ring)
1001		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1002
1003	adapter->q_vector[v_idx] = NULL;
1004	netif_napi_del(&q_vector->napi);
1005
1006	/*
1007	 * ixgbe_get_stats64() might access the rings on this vector,
1008	 * we must wait a grace period before freeing it.
1009	 */
1010	kfree_rcu(q_vector, rcu);
1011}
1012
1013/**
1014 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1015 * @adapter: board private structure to initialize
1016 *
1017 * This function frees the memory allocated to the q_vectors.  In addition if
1018 * NAPI is enabled it will delete any references to the NAPI struct prior
1019 * to freeing the q_vector.
1020 **/
1021static void igb_free_q_vectors(struct igb_adapter *adapter)
1022{
1023	int v_idx = adapter->num_q_vectors;
1024
1025	adapter->num_tx_queues = 0;
1026	adapter->num_rx_queues = 0;
1027	adapter->num_q_vectors = 0;
1028
1029	while (v_idx--)
1030		igb_free_q_vector(adapter, v_idx);
1031}
1032
1033/**
1034 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1035 *
1036 * This function resets the device so that it has 0 rx queues, tx queues, and
1037 * MSI-X interrupts allocated.
1038 */
1039static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1040{
1041	igb_free_q_vectors(adapter);
1042	igb_reset_interrupt_capability(adapter);
1043}
1044
1045/**
1046 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1047 *
1048 * Attempt to configure interrupts using the best available
1049 * capabilities of the hardware and kernel.
1050 **/
1051static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1052{
1053	int err;
1054	int numvecs, i;
1055
1056	if (!msix)
1057		goto msi_only;
1058
1059	/* Number of supported queues. */
1060	adapter->num_rx_queues = adapter->rss_queues;
1061	if (adapter->vfs_allocated_count)
1062		adapter->num_tx_queues = 1;
1063	else
1064		adapter->num_tx_queues = adapter->rss_queues;
1065
1066	/* start with one vector for every rx queue */
1067	numvecs = adapter->num_rx_queues;
1068
1069	/* if tx handler is separate add 1 for every tx queue */
1070	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1071		numvecs += adapter->num_tx_queues;
1072
1073	/* store the number of vectors reserved for queues */
1074	adapter->num_q_vectors = numvecs;
1075
1076	/* add 1 vector for link status interrupts */
1077	numvecs++;
1078	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1079					GFP_KERNEL);
1080
1081	if (!adapter->msix_entries)
1082		goto msi_only;
1083
1084	for (i = 0; i < numvecs; i++)
1085		adapter->msix_entries[i].entry = i;
1086
1087	err = pci_enable_msix(adapter->pdev,
1088			      adapter->msix_entries,
1089			      numvecs);
1090	if (err == 0)
1091		return;
1092
1093	igb_reset_interrupt_capability(adapter);
1094
1095	/* If we can't do MSI-X, try MSI */
1096msi_only:
1097#ifdef CONFIG_PCI_IOV
1098	/* disable SR-IOV for non MSI-X configurations */
1099	if (adapter->vf_data) {
1100		struct e1000_hw *hw = &adapter->hw;
1101		/* disable iov and allow time for transactions to clear */
1102		pci_disable_sriov(adapter->pdev);
1103		msleep(500);
1104
1105		kfree(adapter->vf_data);
1106		adapter->vf_data = NULL;
1107		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1108		wrfl();
1109		msleep(100);
1110		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1111	}
1112#endif
1113	adapter->vfs_allocated_count = 0;
1114	adapter->rss_queues = 1;
1115	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1116	adapter->num_rx_queues = 1;
1117	adapter->num_tx_queues = 1;
1118	adapter->num_q_vectors = 1;
1119	if (!pci_enable_msi(adapter->pdev))
1120		adapter->flags |= IGB_FLAG_HAS_MSI;
1121}
1122
1123static void igb_add_ring(struct igb_ring *ring,
1124			 struct igb_ring_container *head)
1125{
1126	head->ring = ring;
1127	head->count++;
1128}
1129
1130/**
1131 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1132 * @adapter: board private structure to initialize
1133 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1134 * @v_idx: index of vector in adapter struct
1135 * @txr_count: total number of Tx rings to allocate
1136 * @txr_idx: index of first Tx ring to allocate
1137 * @rxr_count: total number of Rx rings to allocate
1138 * @rxr_idx: index of first Rx ring to allocate
1139 *
1140 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1141 **/
1142static int igb_alloc_q_vector(struct igb_adapter *adapter,
1143			      int v_count, int v_idx,
1144			      int txr_count, int txr_idx,
1145			      int rxr_count, int rxr_idx)
1146{
1147	struct igb_q_vector *q_vector;
1148	struct igb_ring *ring;
1149	int ring_count, size;
1150
1151	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1152	if (txr_count > 1 || rxr_count > 1)
1153		return -ENOMEM;
1154
1155	ring_count = txr_count + rxr_count;
1156	size = sizeof(struct igb_q_vector) +
1157	       (sizeof(struct igb_ring) * ring_count);
1158
1159	/* allocate q_vector and rings */
1160	q_vector = kzalloc(size, GFP_KERNEL);
1161	if (!q_vector)
1162		return -ENOMEM;
1163
1164	/* initialize NAPI */
1165	netif_napi_add(adapter->netdev, &q_vector->napi,
1166		       igb_poll, 64);
1167
1168	/* tie q_vector and adapter together */
1169	adapter->q_vector[v_idx] = q_vector;
1170	q_vector->adapter = adapter;
1171
1172	/* initialize work limits */
1173	q_vector->tx.work_limit = adapter->tx_work_limit;
1174
1175	/* initialize ITR configuration */
1176	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1177	q_vector->itr_val = IGB_START_ITR;
1178
1179	/* initialize pointer to rings */
1180	ring = q_vector->ring;
1181
1182	if (txr_count) {
1183		/* assign generic ring traits */
1184		ring->dev = &adapter->pdev->dev;
1185		ring->netdev = adapter->netdev;
1186
1187		/* configure backlink on ring */
1188		ring->q_vector = q_vector;
1189
1190		/* update q_vector Tx values */
1191		igb_add_ring(ring, &q_vector->tx);
1192
1193		/* For 82575, context index must be unique per ring. */
1194		if (adapter->hw.mac.type == e1000_82575)
1195			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1196
1197		/* apply Tx specific ring traits */
1198		ring->count = adapter->tx_ring_count;
1199		ring->queue_index = txr_idx;
1200
1201		/* assign ring to adapter */
1202		adapter->tx_ring[txr_idx] = ring;
1203
1204		/* push pointer to next ring */
1205		ring++;
1206	}
1207
1208	if (rxr_count) {
1209		/* assign generic ring traits */
1210		ring->dev = &adapter->pdev->dev;
1211		ring->netdev = adapter->netdev;
1212
1213		/* configure backlink on ring */
1214		ring->q_vector = q_vector;
1215
1216		/* update q_vector Rx values */
1217		igb_add_ring(ring, &q_vector->rx);
1218
1219		/* set flag indicating ring supports SCTP checksum offload */
1220		if (adapter->hw.mac.type >= e1000_82576)
1221			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1222
1223		/*
1224		 * On i350, i210, and i211, loopback VLAN packets
1225		 * have the tag byte-swapped.
1226		 * */
1227		if (adapter->hw.mac.type >= e1000_i350)
1228			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1229
1230		/* apply Rx specific ring traits */
1231		ring->count = adapter->rx_ring_count;
1232		ring->queue_index = rxr_idx;
1233
1234		/* assign ring to adapter */
1235		adapter->rx_ring[rxr_idx] = ring;
1236	}
1237
1238	return 0;
1239}
1240
1241
1242/**
1243 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1244 * @adapter: board private structure to initialize
1245 *
1246 * We allocate one q_vector per queue interrupt.  If allocation fails we
1247 * return -ENOMEM.
1248 **/
1249static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1250{
1251	int q_vectors = adapter->num_q_vectors;
1252	int rxr_remaining = adapter->num_rx_queues;
1253	int txr_remaining = adapter->num_tx_queues;
1254	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1255	int err;
1256
1257	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1258		for (; rxr_remaining; v_idx++) {
1259			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1260						 0, 0, 1, rxr_idx);
1261
1262			if (err)
1263				goto err_out;
1264
1265			/* update counts and index */
1266			rxr_remaining--;
1267			rxr_idx++;
1268		}
1269	}
1270
1271	for (; v_idx < q_vectors; v_idx++) {
1272		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1273		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1274		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1275					 tqpv, txr_idx, rqpv, rxr_idx);
1276
1277		if (err)
1278			goto err_out;
1279
1280		/* update counts and index */
1281		rxr_remaining -= rqpv;
1282		txr_remaining -= tqpv;
1283		rxr_idx++;
1284		txr_idx++;
1285	}
1286
1287	return 0;
1288
1289err_out:
1290	adapter->num_tx_queues = 0;
1291	adapter->num_rx_queues = 0;
1292	adapter->num_q_vectors = 0;
1293
1294	while (v_idx--)
1295		igb_free_q_vector(adapter, v_idx);
1296
1297	return -ENOMEM;
1298}
1299
1300/**
1301 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1302 *
1303 * This function initializes the interrupts and allocates all of the queues.
1304 **/
1305static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1306{
1307	struct pci_dev *pdev = adapter->pdev;
1308	int err;
1309
1310	igb_set_interrupt_capability(adapter, msix);
1311
1312	err = igb_alloc_q_vectors(adapter);
1313	if (err) {
1314		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1315		goto err_alloc_q_vectors;
1316	}
1317
1318	igb_cache_ring_register(adapter);
1319
1320	return 0;
1321
1322err_alloc_q_vectors:
1323	igb_reset_interrupt_capability(adapter);
1324	return err;
1325}
1326
1327/**
1328 * igb_request_irq - initialize interrupts
1329 *
1330 * Attempts to configure interrupts using the best available
1331 * capabilities of the hardware and kernel.
1332 **/
1333static int igb_request_irq(struct igb_adapter *adapter)
1334{
1335	struct net_device *netdev = adapter->netdev;
1336	struct pci_dev *pdev = adapter->pdev;
1337	int err = 0;
1338
1339	if (adapter->msix_entries) {
1340		err = igb_request_msix(adapter);
1341		if (!err)
1342			goto request_done;
1343		/* fall back to MSI */
1344		igb_free_all_tx_resources(adapter);
1345		igb_free_all_rx_resources(adapter);
1346
1347		igb_clear_interrupt_scheme(adapter);
1348		err = igb_init_interrupt_scheme(adapter, false);
1349		if (err)
1350			goto request_done;
1351
1352		igb_setup_all_tx_resources(adapter);
1353		igb_setup_all_rx_resources(adapter);
1354		igb_configure(adapter);
1355	}
1356
1357	igb_assign_vector(adapter->q_vector[0], 0);
1358
1359	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1360		err = request_irq(pdev->irq, igb_intr_msi, 0,
1361				  netdev->name, adapter);
1362		if (!err)
1363			goto request_done;
1364
1365		/* fall back to legacy interrupts */
1366		igb_reset_interrupt_capability(adapter);
1367		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1368	}
1369
1370	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1371			  netdev->name, adapter);
1372
1373	if (err)
1374		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1375			err);
1376
1377request_done:
1378	return err;
1379}
1380
1381static void igb_free_irq(struct igb_adapter *adapter)
1382{
1383	if (adapter->msix_entries) {
1384		int vector = 0, i;
1385
1386		free_irq(adapter->msix_entries[vector++].vector, adapter);
1387
1388		for (i = 0; i < adapter->num_q_vectors; i++)
1389			free_irq(adapter->msix_entries[vector++].vector,
1390				 adapter->q_vector[i]);
1391	} else {
1392		free_irq(adapter->pdev->irq, adapter);
1393	}
1394}
1395
1396/**
1397 * igb_irq_disable - Mask off interrupt generation on the NIC
1398 * @adapter: board private structure
1399 **/
1400static void igb_irq_disable(struct igb_adapter *adapter)
1401{
1402	struct e1000_hw *hw = &adapter->hw;
1403
1404	/*
1405	 * we need to be careful when disabling interrupts.  The VFs are also
1406	 * mapped into these registers and so clearing the bits can cause
1407	 * issues on the VF drivers so we only need to clear what we set
1408	 */
1409	if (adapter->msix_entries) {
1410		u32 regval = rd32(E1000_EIAM);
1411		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1412		wr32(E1000_EIMC, adapter->eims_enable_mask);
1413		regval = rd32(E1000_EIAC);
1414		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1415	}
1416
1417	wr32(E1000_IAM, 0);
1418	wr32(E1000_IMC, ~0);
1419	wrfl();
1420	if (adapter->msix_entries) {
1421		int i;
1422		for (i = 0; i < adapter->num_q_vectors; i++)
1423			synchronize_irq(adapter->msix_entries[i].vector);
1424	} else {
1425		synchronize_irq(adapter->pdev->irq);
1426	}
1427}
1428
1429/**
1430 * igb_irq_enable - Enable default interrupt generation settings
1431 * @adapter: board private structure
1432 **/
1433static void igb_irq_enable(struct igb_adapter *adapter)
1434{
1435	struct e1000_hw *hw = &adapter->hw;
1436
1437	if (adapter->msix_entries) {
1438		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1439		u32 regval = rd32(E1000_EIAC);
1440		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1441		regval = rd32(E1000_EIAM);
1442		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1443		wr32(E1000_EIMS, adapter->eims_enable_mask);
1444		if (adapter->vfs_allocated_count) {
1445			wr32(E1000_MBVFIMR, 0xFF);
1446			ims |= E1000_IMS_VMMB;
1447		}
1448		wr32(E1000_IMS, ims);
1449	} else {
1450		wr32(E1000_IMS, IMS_ENABLE_MASK |
1451				E1000_IMS_DRSTA);
1452		wr32(E1000_IAM, IMS_ENABLE_MASK |
1453				E1000_IMS_DRSTA);
1454	}
1455}
1456
1457static void igb_update_mng_vlan(struct igb_adapter *adapter)
1458{
1459	struct e1000_hw *hw = &adapter->hw;
1460	u16 vid = adapter->hw.mng_cookie.vlan_id;
1461	u16 old_vid = adapter->mng_vlan_id;
1462
1463	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1464		/* add VID to filter table */
1465		igb_vfta_set(hw, vid, true);
1466		adapter->mng_vlan_id = vid;
1467	} else {
1468		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1469	}
1470
1471	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1472	    (vid != old_vid) &&
1473	    !test_bit(old_vid, adapter->active_vlans)) {
1474		/* remove VID from filter table */
1475		igb_vfta_set(hw, old_vid, false);
1476	}
1477}
1478
1479/**
1480 * igb_release_hw_control - release control of the h/w to f/w
1481 * @adapter: address of board private structure
1482 *
1483 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1484 * For ASF and Pass Through versions of f/w this means that the
1485 * driver is no longer loaded.
1486 *
1487 **/
1488static void igb_release_hw_control(struct igb_adapter *adapter)
1489{
1490	struct e1000_hw *hw = &adapter->hw;
1491	u32 ctrl_ext;
1492
1493	/* Let firmware take over control of h/w */
1494	ctrl_ext = rd32(E1000_CTRL_EXT);
1495	wr32(E1000_CTRL_EXT,
1496			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1497}
1498
1499/**
1500 * igb_get_hw_control - get control of the h/w from f/w
1501 * @adapter: address of board private structure
1502 *
1503 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1504 * For ASF and Pass Through versions of f/w this means that
1505 * the driver is loaded.
1506 *
1507 **/
1508static void igb_get_hw_control(struct igb_adapter *adapter)
1509{
1510	struct e1000_hw *hw = &adapter->hw;
1511	u32 ctrl_ext;
1512
1513	/* Let firmware know the driver has taken over */
1514	ctrl_ext = rd32(E1000_CTRL_EXT);
1515	wr32(E1000_CTRL_EXT,
1516			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1517}
1518
1519/**
1520 * igb_configure - configure the hardware for RX and TX
1521 * @adapter: private board structure
1522 **/
1523static void igb_configure(struct igb_adapter *adapter)
1524{
1525	struct net_device *netdev = adapter->netdev;
1526	int i;
1527
1528	igb_get_hw_control(adapter);
1529	igb_set_rx_mode(netdev);
1530
1531	igb_restore_vlan(adapter);
1532
1533	igb_setup_tctl(adapter);
1534	igb_setup_mrqc(adapter);
1535	igb_setup_rctl(adapter);
1536
1537	igb_configure_tx(adapter);
1538	igb_configure_rx(adapter);
1539
1540	igb_rx_fifo_flush_82575(&adapter->hw);
1541
1542	/* call igb_desc_unused which always leaves
1543	 * at least 1 descriptor unused to make sure
1544	 * next_to_use != next_to_clean */
1545	for (i = 0; i < adapter->num_rx_queues; i++) {
1546		struct igb_ring *ring = adapter->rx_ring[i];
1547		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1548	}
1549}
1550
1551/**
1552 * igb_power_up_link - Power up the phy/serdes link
1553 * @adapter: address of board private structure
1554 **/
1555void igb_power_up_link(struct igb_adapter *adapter)
1556{
1557	igb_reset_phy(&adapter->hw);
1558
1559	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1560		igb_power_up_phy_copper(&adapter->hw);
1561	else
1562		igb_power_up_serdes_link_82575(&adapter->hw);
1563}
1564
1565/**
1566 * igb_power_down_link - Power down the phy/serdes link
1567 * @adapter: address of board private structure
1568 */
1569static void igb_power_down_link(struct igb_adapter *adapter)
1570{
1571	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1572		igb_power_down_phy_copper_82575(&adapter->hw);
1573	else
1574		igb_shutdown_serdes_link_82575(&adapter->hw);
1575}
1576
1577/**
1578 * igb_up - Open the interface and prepare it to handle traffic
1579 * @adapter: board private structure
1580 **/
1581int igb_up(struct igb_adapter *adapter)
1582{
1583	struct e1000_hw *hw = &adapter->hw;
1584	int i;
1585
1586	/* hardware has been reset, we need to reload some things */
1587	igb_configure(adapter);
1588
1589	clear_bit(__IGB_DOWN, &adapter->state);
1590
1591	for (i = 0; i < adapter->num_q_vectors; i++)
1592		napi_enable(&(adapter->q_vector[i]->napi));
1593
1594	if (adapter->msix_entries)
1595		igb_configure_msix(adapter);
1596	else
1597		igb_assign_vector(adapter->q_vector[0], 0);
1598
1599	/* Clear any pending interrupts. */
1600	rd32(E1000_ICR);
1601	igb_irq_enable(adapter);
1602
1603	/* notify VFs that reset has been completed */
1604	if (adapter->vfs_allocated_count) {
1605		u32 reg_data = rd32(E1000_CTRL_EXT);
1606		reg_data |= E1000_CTRL_EXT_PFRSTD;
1607		wr32(E1000_CTRL_EXT, reg_data);
1608	}
1609
1610	netif_tx_start_all_queues(adapter->netdev);
1611
1612	/* start the watchdog. */
1613	hw->mac.get_link_status = 1;
1614	schedule_work(&adapter->watchdog_task);
1615
1616	return 0;
1617}
1618
1619void igb_down(struct igb_adapter *adapter)
1620{
1621	struct net_device *netdev = adapter->netdev;
1622	struct e1000_hw *hw = &adapter->hw;
1623	u32 tctl, rctl;
1624	int i;
1625
1626	/* signal that we're down so the interrupt handler does not
1627	 * reschedule our watchdog timer */
1628	set_bit(__IGB_DOWN, &adapter->state);
1629
1630	/* disable receives in the hardware */
1631	rctl = rd32(E1000_RCTL);
1632	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1633	/* flush and sleep below */
1634
1635	netif_tx_stop_all_queues(netdev);
1636
1637	/* disable transmits in the hardware */
1638	tctl = rd32(E1000_TCTL);
1639	tctl &= ~E1000_TCTL_EN;
1640	wr32(E1000_TCTL, tctl);
1641	/* flush both disables and wait for them to finish */
1642	wrfl();
1643	msleep(10);
1644
1645	for (i = 0; i < adapter->num_q_vectors; i++)
1646		napi_disable(&(adapter->q_vector[i]->napi));
1647
1648	igb_irq_disable(adapter);
1649
1650	del_timer_sync(&adapter->watchdog_timer);
1651	del_timer_sync(&adapter->phy_info_timer);
1652
1653	netif_carrier_off(netdev);
1654
1655	/* record the stats before reset*/
1656	spin_lock(&adapter->stats64_lock);
1657	igb_update_stats(adapter, &adapter->stats64);
1658	spin_unlock(&adapter->stats64_lock);
1659
1660	adapter->link_speed = 0;
1661	adapter->link_duplex = 0;
1662
1663	if (!pci_channel_offline(adapter->pdev))
1664		igb_reset(adapter);
1665	igb_clean_all_tx_rings(adapter);
1666	igb_clean_all_rx_rings(adapter);
1667#ifdef CONFIG_IGB_DCA
1668
1669	/* since we reset the hardware DCA settings were cleared */
1670	igb_setup_dca(adapter);
1671#endif
1672}
1673
1674void igb_reinit_locked(struct igb_adapter *adapter)
1675{
1676	WARN_ON(in_interrupt());
1677	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1678		msleep(1);
1679	igb_down(adapter);
1680	igb_up(adapter);
1681	clear_bit(__IGB_RESETTING, &adapter->state);
1682}
1683
1684void igb_reset(struct igb_adapter *adapter)
1685{
1686	struct pci_dev *pdev = adapter->pdev;
1687	struct e1000_hw *hw = &adapter->hw;
1688	struct e1000_mac_info *mac = &hw->mac;
1689	struct e1000_fc_info *fc = &hw->fc;
1690	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1691
1692	/* Repartition Pba for greater than 9k mtu
1693	 * To take effect CTRL.RST is required.
1694	 */
1695	switch (mac->type) {
1696	case e1000_i350:
1697	case e1000_82580:
1698		pba = rd32(E1000_RXPBS);
1699		pba = igb_rxpbs_adjust_82580(pba);
1700		break;
1701	case e1000_82576:
1702		pba = rd32(E1000_RXPBS);
1703		pba &= E1000_RXPBS_SIZE_MASK_82576;
1704		break;
1705	case e1000_82575:
1706	case e1000_i210:
1707	case e1000_i211:
1708	default:
1709		pba = E1000_PBA_34K;
1710		break;
1711	}
1712
1713	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1714	    (mac->type < e1000_82576)) {
1715		/* adjust PBA for jumbo frames */
1716		wr32(E1000_PBA, pba);
1717
1718		/* To maintain wire speed transmits, the Tx FIFO should be
1719		 * large enough to accommodate two full transmit packets,
1720		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1721		 * the Rx FIFO should be large enough to accommodate at least
1722		 * one full receive packet and is similarly rounded up and
1723		 * expressed in KB. */
1724		pba = rd32(E1000_PBA);
1725		/* upper 16 bits has Tx packet buffer allocation size in KB */
1726		tx_space = pba >> 16;
1727		/* lower 16 bits has Rx packet buffer allocation size in KB */
1728		pba &= 0xffff;
1729		/* the tx fifo also stores 16 bytes of information about the tx
1730		 * but don't include ethernet FCS because hardware appends it */
1731		min_tx_space = (adapter->max_frame_size +
1732				sizeof(union e1000_adv_tx_desc) -
1733				ETH_FCS_LEN) * 2;
1734		min_tx_space = ALIGN(min_tx_space, 1024);
1735		min_tx_space >>= 10;
1736		/* software strips receive CRC, so leave room for it */
1737		min_rx_space = adapter->max_frame_size;
1738		min_rx_space = ALIGN(min_rx_space, 1024);
1739		min_rx_space >>= 10;
1740
1741		/* If current Tx allocation is less than the min Tx FIFO size,
1742		 * and the min Tx FIFO size is less than the current Rx FIFO
1743		 * allocation, take space away from current Rx allocation */
1744		if (tx_space < min_tx_space &&
1745		    ((min_tx_space - tx_space) < pba)) {
1746			pba = pba - (min_tx_space - tx_space);
1747
1748			/* if short on rx space, rx wins and must trump tx
1749			 * adjustment */
1750			if (pba < min_rx_space)
1751				pba = min_rx_space;
1752		}
1753		wr32(E1000_PBA, pba);
1754	}
1755
1756	/* flow control settings */
1757	/* The high water mark must be low enough to fit one full frame
1758	 * (or the size used for early receive) above it in the Rx FIFO.
1759	 * Set it to the lower of:
1760	 * - 90% of the Rx FIFO size, or
1761	 * - the full Rx FIFO size minus one full frame */
1762	hwm = min(((pba << 10) * 9 / 10),
1763			((pba << 10) - 2 * adapter->max_frame_size));
1764
1765	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1766	fc->low_water = fc->high_water - 16;
1767	fc->pause_time = 0xFFFF;
1768	fc->send_xon = 1;
1769	fc->current_mode = fc->requested_mode;
1770
1771	/* disable receive for all VFs and wait one second */
1772	if (adapter->vfs_allocated_count) {
1773		int i;
1774		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1775			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1776
1777		/* ping all the active vfs to let them know we are going down */
1778		igb_ping_all_vfs(adapter);
1779
1780		/* disable transmits and receives */
1781		wr32(E1000_VFRE, 0);
1782		wr32(E1000_VFTE, 0);
1783	}
1784
1785	/* Allow time for pending master requests to run */
1786	hw->mac.ops.reset_hw(hw);
1787	wr32(E1000_WUC, 0);
1788
1789	if (hw->mac.ops.init_hw(hw))
1790		dev_err(&pdev->dev, "Hardware Error\n");
1791
1792	/*
1793	 * Flow control settings reset on hardware reset, so guarantee flow
1794	 * control is off when forcing speed.
1795	 */
1796	if (!hw->mac.autoneg)
1797		igb_force_mac_fc(hw);
1798
1799	igb_init_dmac(adapter, pba);
1800#ifdef CONFIG_IGB_HWMON
1801	/* Re-initialize the thermal sensor on i350 devices. */
1802	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1803		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1804			/* If present, re-initialize the external thermal sensor
1805			 * interface.
1806			 */
1807			if (adapter->ets)
1808				mac->ops.init_thermal_sensor_thresh(hw);
1809		}
1810	}
1811#endif
1812	if (!netif_running(adapter->netdev))
1813		igb_power_down_link(adapter);
1814
1815	igb_update_mng_vlan(adapter);
1816
1817	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1818	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1819
1820	/* Re-enable PTP, where applicable. */
1821	igb_ptp_reset(adapter);
1822
1823	igb_get_phy_info(hw);
1824}
1825
1826static netdev_features_t igb_fix_features(struct net_device *netdev,
1827	netdev_features_t features)
1828{
1829	/*
1830	 * Since there is no support for separate rx/tx vlan accel
1831	 * enable/disable make sure tx flag is always in same state as rx.
1832	 */
1833	if (features & NETIF_F_HW_VLAN_RX)
1834		features |= NETIF_F_HW_VLAN_TX;
1835	else
1836		features &= ~NETIF_F_HW_VLAN_TX;
1837
1838	return features;
1839}
1840
1841static int igb_set_features(struct net_device *netdev,
1842	netdev_features_t features)
1843{
1844	netdev_features_t changed = netdev->features ^ features;
1845	struct igb_adapter *adapter = netdev_priv(netdev);
1846
1847	if (changed & NETIF_F_HW_VLAN_RX)
1848		igb_vlan_mode(netdev, features);
1849
1850	if (!(changed & NETIF_F_RXALL))
1851		return 0;
1852
1853	netdev->features = features;
1854
1855	if (netif_running(netdev))
1856		igb_reinit_locked(adapter);
1857	else
1858		igb_reset(adapter);
1859
1860	return 0;
1861}
1862
1863static const struct net_device_ops igb_netdev_ops = {
1864	.ndo_open		= igb_open,
1865	.ndo_stop		= igb_close,
1866	.ndo_start_xmit		= igb_xmit_frame,
1867	.ndo_get_stats64	= igb_get_stats64,
1868	.ndo_set_rx_mode	= igb_set_rx_mode,
1869	.ndo_set_mac_address	= igb_set_mac,
1870	.ndo_change_mtu		= igb_change_mtu,
1871	.ndo_do_ioctl		= igb_ioctl,
1872	.ndo_tx_timeout		= igb_tx_timeout,
1873	.ndo_validate_addr	= eth_validate_addr,
1874	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
1875	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1876	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
1877	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
1878	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
1879	.ndo_get_vf_config	= igb_ndo_get_vf_config,
1880#ifdef CONFIG_NET_POLL_CONTROLLER
1881	.ndo_poll_controller	= igb_netpoll,
1882#endif
1883	.ndo_fix_features	= igb_fix_features,
1884	.ndo_set_features	= igb_set_features,
1885};
1886
1887/**
1888 * igb_set_fw_version - Configure version string for ethtool
1889 * @adapter: adapter struct
1890 *
1891 **/
1892void igb_set_fw_version(struct igb_adapter *adapter)
1893{
1894	struct e1000_hw *hw = &adapter->hw;
1895	struct e1000_fw_version fw;
1896
1897	igb_get_fw_version(hw, &fw);
1898
1899	switch (hw->mac.type) {
1900	case e1000_i211:
1901		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1902			 "%2d.%2d-%d",
1903			 fw.invm_major, fw.invm_minor, fw.invm_img_type);
1904		break;
1905
1906	default:
1907		/* if option is rom valid, display its version too */
1908		if (fw.or_valid) {
1909			snprintf(adapter->fw_version,
1910				 sizeof(adapter->fw_version),
1911				 "%d.%d, 0x%08x, %d.%d.%d",
1912				 fw.eep_major, fw.eep_minor, fw.etrack_id,
1913				 fw.or_major, fw.or_build, fw.or_patch);
1914		/* no option rom */
1915		} else {
1916			snprintf(adapter->fw_version,
1917				 sizeof(adapter->fw_version),
1918				 "%d.%d, 0x%08x",
1919				 fw.eep_major, fw.eep_minor, fw.etrack_id);
1920		}
1921		break;
1922	}
1923	return;
1924}
1925
1926static const struct i2c_board_info i350_sensor_info = {
1927	I2C_BOARD_INFO("i350bb", 0Xf8),
1928};
1929
1930/*  igb_init_i2c - Init I2C interface
1931 *  @adapter: pointer to adapter structure
1932 *
1933 */
1934static s32 igb_init_i2c(struct igb_adapter *adapter)
1935{
1936	s32 status = E1000_SUCCESS;
1937
1938	/* I2C interface supported on i350 devices */
1939	if (adapter->hw.mac.type != e1000_i350)
1940		return E1000_SUCCESS;
1941
1942	/* Initialize the i2c bus which is controlled by the registers.
1943	 * This bus will use the i2c_algo_bit structue that implements
1944	 * the protocol through toggling of the 4 bits in the register.
1945	 */
1946	adapter->i2c_adap.owner = THIS_MODULE;
1947	adapter->i2c_algo = igb_i2c_algo;
1948	adapter->i2c_algo.data = adapter;
1949	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1950	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1951	strlcpy(adapter->i2c_adap.name, "igb BB",
1952		sizeof(adapter->i2c_adap.name));
1953	status = i2c_bit_add_bus(&adapter->i2c_adap);
1954	return status;
1955}
1956
1957/**
1958 * igb_probe - Device Initialization Routine
1959 * @pdev: PCI device information struct
1960 * @ent: entry in igb_pci_tbl
1961 *
1962 * Returns 0 on success, negative on failure
1963 *
1964 * igb_probe initializes an adapter identified by a pci_dev structure.
1965 * The OS initialization, configuring of the adapter private structure,
1966 * and a hardware reset occur.
1967 **/
1968static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1969{
1970	struct net_device *netdev;
1971	struct igb_adapter *adapter;
1972	struct e1000_hw *hw;
1973	u16 eeprom_data = 0;
1974	s32 ret_val;
1975	static int global_quad_port_a; /* global quad port a indication */
1976	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1977	unsigned long mmio_start, mmio_len;
1978	int err, pci_using_dac;
1979	u8 part_str[E1000_PBANUM_LENGTH];
1980
1981	/* Catch broken hardware that put the wrong VF device ID in
1982	 * the PCIe SR-IOV capability.
1983	 */
1984	if (pdev->is_virtfn) {
1985		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1986			pci_name(pdev), pdev->vendor, pdev->device);
1987		return -EINVAL;
1988	}
1989
1990	err = pci_enable_device_mem(pdev);
1991	if (err)
1992		return err;
1993
1994	pci_using_dac = 0;
1995	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1996	if (!err) {
1997		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1998		if (!err)
1999			pci_using_dac = 1;
2000	} else {
2001		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2002		if (err) {
2003			err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
2004			if (err) {
2005				dev_err(&pdev->dev, "No usable DMA "
2006					"configuration, aborting\n");
2007				goto err_dma;
2008			}
2009		}
2010	}
2011
2012	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2013	                                   IORESOURCE_MEM),
2014	                                   igb_driver_name);
2015	if (err)
2016		goto err_pci_reg;
2017
2018	pci_enable_pcie_error_reporting(pdev);
2019
2020	pci_set_master(pdev);
2021	pci_save_state(pdev);
2022
2023	err = -ENOMEM;
2024	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2025				   IGB_MAX_TX_QUEUES);
2026	if (!netdev)
2027		goto err_alloc_etherdev;
2028
2029	SET_NETDEV_DEV(netdev, &pdev->dev);
2030
2031	pci_set_drvdata(pdev, netdev);
2032	adapter = netdev_priv(netdev);
2033	adapter->netdev = netdev;
2034	adapter->pdev = pdev;
2035	hw = &adapter->hw;
2036	hw->back = adapter;
2037	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2038
2039	mmio_start = pci_resource_start(pdev, 0);
2040	mmio_len = pci_resource_len(pdev, 0);
2041
2042	err = -EIO;
2043	hw->hw_addr = ioremap(mmio_start, mmio_len);
2044	if (!hw->hw_addr)
2045		goto err_ioremap;
2046
2047	netdev->netdev_ops = &igb_netdev_ops;
2048	igb_set_ethtool_ops(netdev);
2049	netdev->watchdog_timeo = 5 * HZ;
2050
2051	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2052
2053	netdev->mem_start = mmio_start;
2054	netdev->mem_end = mmio_start + mmio_len;
2055
2056	/* PCI config space info */
2057	hw->vendor_id = pdev->vendor;
2058	hw->device_id = pdev->device;
2059	hw->revision_id = pdev->revision;
2060	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2061	hw->subsystem_device_id = pdev->subsystem_device;
2062
2063	/* Copy the default MAC, PHY and NVM function pointers */
2064	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2065	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2066	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2067	/* Initialize skew-specific constants */
2068	err = ei->get_invariants(hw);
2069	if (err)
2070		goto err_sw_init;
2071
2072	/* setup the private structure */
2073	err = igb_sw_init(adapter);
2074	if (err)
2075		goto err_sw_init;
2076
2077	igb_get_bus_info_pcie(hw);
2078
2079	hw->phy.autoneg_wait_to_complete = false;
2080
2081	/* Copper options */
2082	if (hw->phy.media_type == e1000_media_type_copper) {
2083		hw->phy.mdix = AUTO_ALL_MODES;
2084		hw->phy.disable_polarity_correction = false;
2085		hw->phy.ms_type = e1000_ms_hw_default;
2086	}
2087
2088	if (igb_check_reset_block(hw))
2089		dev_info(&pdev->dev,
2090			"PHY reset is blocked due to SOL/IDER session.\n");
2091
2092	/*
2093	 * features is initialized to 0 in allocation, it might have bits
2094	 * set by igb_sw_init so we should use an or instead of an
2095	 * assignment.
2096	 */
2097	netdev->features |= NETIF_F_SG |
2098			    NETIF_F_IP_CSUM |
2099			    NETIF_F_IPV6_CSUM |
2100			    NETIF_F_TSO |
2101			    NETIF_F_TSO6 |
2102			    NETIF_F_RXHASH |
2103			    NETIF_F_RXCSUM |
2104			    NETIF_F_HW_VLAN_RX |
2105			    NETIF_F_HW_VLAN_TX;
2106
2107	/* copy netdev features into list of user selectable features */
2108	netdev->hw_features |= netdev->features;
2109	netdev->hw_features |= NETIF_F_RXALL;
2110
2111	/* set this bit last since it cannot be part of hw_features */
2112	netdev->features |= NETIF_F_HW_VLAN_FILTER;
2113
2114	netdev->vlan_features |= NETIF_F_TSO |
2115				 NETIF_F_TSO6 |
2116				 NETIF_F_IP_CSUM |
2117				 NETIF_F_IPV6_CSUM |
2118				 NETIF_F_SG;
2119
2120	netdev->priv_flags |= IFF_SUPP_NOFCS;
2121
2122	if (pci_using_dac) {
2123		netdev->features |= NETIF_F_HIGHDMA;
2124		netdev->vlan_features |= NETIF_F_HIGHDMA;
2125	}
2126
2127	if (hw->mac.type >= e1000_82576) {
2128		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2129		netdev->features |= NETIF_F_SCTP_CSUM;
2130	}
2131
2132	netdev->priv_flags |= IFF_UNICAST_FLT;
2133
2134	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2135
2136	/* before reading the NVM, reset the controller to put the device in a
2137	 * known good starting state */
2138	hw->mac.ops.reset_hw(hw);
2139
2140	/*
2141	 * make sure the NVM is good , i211 parts have special NVM that
2142	 * doesn't contain a checksum
2143	 */
2144	if (hw->mac.type != e1000_i211) {
2145		if (hw->nvm.ops.validate(hw) < 0) {
2146			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2147			err = -EIO;
2148			goto err_eeprom;
2149		}
2150	}
2151
2152	/* copy the MAC address out of the NVM */
2153	if (hw->mac.ops.read_mac_addr(hw))
2154		dev_err(&pdev->dev, "NVM Read Error\n");
2155
2156	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2157
2158	if (!is_valid_ether_addr(netdev->dev_addr)) {
2159		dev_err(&pdev->dev, "Invalid MAC Address\n");
2160		err = -EIO;
2161		goto err_eeprom;
2162	}
2163
2164	/* get firmware version for ethtool -i */
2165	igb_set_fw_version(adapter);
2166
2167	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2168	            (unsigned long) adapter);
2169	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2170	            (unsigned long) adapter);
2171
2172	INIT_WORK(&adapter->reset_task, igb_reset_task);
2173	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2174
2175	/* Initialize link properties that are user-changeable */
2176	adapter->fc_autoneg = true;
2177	hw->mac.autoneg = true;
2178	hw->phy.autoneg_advertised = 0x2f;
2179
2180	hw->fc.requested_mode = e1000_fc_default;
2181	hw->fc.current_mode = e1000_fc_default;
2182
2183	igb_validate_mdi_setting(hw);
2184
2185	/* By default, support wake on port A */
2186	if (hw->bus.func == 0)
2187		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2188
2189	/* Check the NVM for wake support on non-port A ports */
2190	if (hw->mac.type >= e1000_82580)
2191		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2192		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2193		                 &eeprom_data);
2194	else if (hw->bus.func == 1)
2195		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2196
2197	if (eeprom_data & IGB_EEPROM_APME)
2198		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2199
2200	/* now that we have the eeprom settings, apply the special cases where
2201	 * the eeprom may be wrong or the board simply won't support wake on
2202	 * lan on a particular port */
2203	switch (pdev->device) {
2204	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2205		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2206		break;
2207	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2208	case E1000_DEV_ID_82576_FIBER:
2209	case E1000_DEV_ID_82576_SERDES:
2210		/* Wake events only supported on port A for dual fiber
2211		 * regardless of eeprom setting */
2212		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2213			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2214		break;
2215	case E1000_DEV_ID_82576_QUAD_COPPER:
2216	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2217		/* if quad port adapter, disable WoL on all but port A */
2218		if (global_quad_port_a != 0)
2219			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2220		else
2221			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2222		/* Reset for multiple quad port adapters */
2223		if (++global_quad_port_a == 4)
2224			global_quad_port_a = 0;
2225		break;
2226	default:
2227		/* If the device can't wake, don't set software support */
2228		if (!device_can_wakeup(&adapter->pdev->dev))
2229			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2230	}
2231
2232	/* initialize the wol settings based on the eeprom settings */
2233	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2234		adapter->wol |= E1000_WUFC_MAG;
2235
2236	/* Some vendors want WoL disabled by default, but still supported */
2237	if ((hw->mac.type == e1000_i350) &&
2238	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2239		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2240		adapter->wol = 0;
2241	}
2242
2243	device_set_wakeup_enable(&adapter->pdev->dev,
2244				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2245
2246	/* reset the hardware with the new settings */
2247	igb_reset(adapter);
2248
2249	/* Init the I2C interface */
2250	err = igb_init_i2c(adapter);
2251	if (err) {
2252		dev_err(&pdev->dev, "failed to init i2c interface\n");
2253		goto err_eeprom;
2254	}
2255
2256	/* let the f/w know that the h/w is now under the control of the
2257	 * driver. */
2258	igb_get_hw_control(adapter);
2259
2260	strcpy(netdev->name, "eth%d");
2261	err = register_netdev(netdev);
2262	if (err)
2263		goto err_register;
2264
2265	/* carrier off reporting is important to ethtool even BEFORE open */
2266	netif_carrier_off(netdev);
2267
2268#ifdef CONFIG_IGB_DCA
2269	if (dca_add_requester(&pdev->dev) == 0) {
2270		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2271		dev_info(&pdev->dev, "DCA enabled\n");
2272		igb_setup_dca(adapter);
2273	}
2274
2275#endif
2276#ifdef CONFIG_IGB_HWMON
2277	/* Initialize the thermal sensor on i350 devices. */
2278	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2279		u16 ets_word;
2280
2281		/*
2282		 * Read the NVM to determine if this i350 device supports an
2283		 * external thermal sensor.
2284		 */
2285		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2286		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2287			adapter->ets = true;
2288		else
2289			adapter->ets = false;
2290		if (igb_sysfs_init(adapter))
2291			dev_err(&pdev->dev,
2292				"failed to allocate sysfs resources\n");
2293	} else {
2294		adapter->ets = false;
2295	}
2296#endif
2297	/* do hw tstamp init after resetting */
2298	igb_ptp_init(adapter);
2299
2300	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2301	/* print bus type/speed/width info */
2302	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2303		 netdev->name,
2304		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2305		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2306		                                            "unknown"),
2307		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2308		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2309		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2310		   "unknown"),
2311		 netdev->dev_addr);
2312
2313	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2314	if (ret_val)
2315		strcpy(part_str, "Unknown");
2316	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2317	dev_info(&pdev->dev,
2318		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2319		adapter->msix_entries ? "MSI-X" :
2320		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2321		adapter->num_rx_queues, adapter->num_tx_queues);
2322	switch (hw->mac.type) {
2323	case e1000_i350:
2324	case e1000_i210:
2325	case e1000_i211:
2326		igb_set_eee_i350(hw);
2327		break;
2328	default:
2329		break;
2330	}
2331
2332	pm_runtime_put_noidle(&pdev->dev);
2333	return 0;
2334
2335err_register:
2336	igb_release_hw_control(adapter);
2337	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2338err_eeprom:
2339	if (!igb_check_reset_block(hw))
2340		igb_reset_phy(hw);
2341
2342	if (hw->flash_address)
2343		iounmap(hw->flash_address);
2344err_sw_init:
2345	igb_clear_interrupt_scheme(adapter);
2346	iounmap(hw->hw_addr);
2347err_ioremap:
2348	free_netdev(netdev);
2349err_alloc_etherdev:
2350	pci_release_selected_regions(pdev,
2351	                             pci_select_bars(pdev, IORESOURCE_MEM));
2352err_pci_reg:
2353err_dma:
2354	pci_disable_device(pdev);
2355	return err;
2356}
2357
2358#ifdef CONFIG_PCI_IOV
2359static int  igb_disable_sriov(struct pci_dev *pdev)
2360{
2361	struct net_device *netdev = pci_get_drvdata(pdev);
2362	struct igb_adapter *adapter = netdev_priv(netdev);
2363	struct e1000_hw *hw = &adapter->hw;
2364
2365	/* reclaim resources allocated to VFs */
2366	if (adapter->vf_data) {
2367		/* disable iov and allow time for transactions to clear */
2368		if (igb_vfs_are_assigned(adapter)) {
2369			dev_warn(&pdev->dev,
2370				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2371			return -EPERM;
2372		} else {
2373			pci_disable_sriov(pdev);
2374			msleep(500);
2375		}
2376
2377		kfree(adapter->vf_data);
2378		adapter->vf_data = NULL;
2379		adapter->vfs_allocated_count = 0;
2380		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2381		wrfl();
2382		msleep(100);
2383		dev_info(&pdev->dev, "IOV Disabled\n");
2384
2385		/* Re-enable DMA Coalescing flag since IOV is turned off */
2386		adapter->flags |= IGB_FLAG_DMAC;
2387	}
2388
2389	return 0;
2390}
2391
2392static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2393{
2394	struct net_device *netdev = pci_get_drvdata(pdev);
2395	struct igb_adapter *adapter = netdev_priv(netdev);
2396	int old_vfs = pci_num_vf(pdev);
2397	int err = 0;
2398	int i;
2399
2400	if (!num_vfs)
2401		goto out;
2402	else if (old_vfs && old_vfs == num_vfs)
2403		goto out;
2404	else if (old_vfs && old_vfs != num_vfs)
2405		err = igb_disable_sriov(pdev);
2406
2407	if (err)
2408		goto out;
2409
2410	if (num_vfs > 7) {
2411		err = -EPERM;
2412		goto out;
2413	}
2414
2415	adapter->vfs_allocated_count = num_vfs;
2416
2417	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2418				sizeof(struct vf_data_storage), GFP_KERNEL);
2419
2420	/* if allocation failed then we do not support SR-IOV */
2421	if (!adapter->vf_data) {
2422		adapter->vfs_allocated_count = 0;
2423		dev_err(&pdev->dev,
2424			"Unable to allocate memory for VF Data Storage\n");
2425		err = -ENOMEM;
2426		goto out;
2427	}
2428
2429	err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2430	if (err)
2431		goto err_out;
2432
2433	dev_info(&pdev->dev, "%d VFs allocated\n",
2434		 adapter->vfs_allocated_count);
2435	for (i = 0; i < adapter->vfs_allocated_count; i++)
2436		igb_vf_configure(adapter, i);
2437
2438	/* DMA Coalescing is not supported in IOV mode. */
2439	adapter->flags &= ~IGB_FLAG_DMAC;
2440	goto out;
2441
2442err_out:
2443	kfree(adapter->vf_data);
2444	adapter->vf_data = NULL;
2445	adapter->vfs_allocated_count = 0;
2446out:
2447	return err;
2448}
2449
2450#endif
2451/*
2452 *  igb_remove_i2c - Cleanup  I2C interface
2453 *  @adapter: pointer to adapter structure
2454 *
2455 */
2456static void igb_remove_i2c(struct igb_adapter *adapter)
2457{
2458
2459	/* free the adapter bus structure */
2460	i2c_del_adapter(&adapter->i2c_adap);
2461}
2462
2463/**
2464 * igb_remove - Device Removal Routine
2465 * @pdev: PCI device information struct
2466 *
2467 * igb_remove is called by the PCI subsystem to alert the driver
2468 * that it should release a PCI device.  The could be caused by a
2469 * Hot-Plug event, or because the driver is going to be removed from
2470 * memory.
2471 **/
2472static void igb_remove(struct pci_dev *pdev)
2473{
2474	struct net_device *netdev = pci_get_drvdata(pdev);
2475	struct igb_adapter *adapter = netdev_priv(netdev);
2476	struct e1000_hw *hw = &adapter->hw;
2477
2478	pm_runtime_get_noresume(&pdev->dev);
2479#ifdef CONFIG_IGB_HWMON
2480	igb_sysfs_exit(adapter);
2481#endif
2482	igb_remove_i2c(adapter);
2483	igb_ptp_stop(adapter);
2484	/*
2485	 * The watchdog timer may be rescheduled, so explicitly
2486	 * disable watchdog from being rescheduled.
2487	 */
2488	set_bit(__IGB_DOWN, &adapter->state);
2489	del_timer_sync(&adapter->watchdog_timer);
2490	del_timer_sync(&adapter->phy_info_timer);
2491
2492	cancel_work_sync(&adapter->reset_task);
2493	cancel_work_sync(&adapter->watchdog_task);
2494
2495#ifdef CONFIG_IGB_DCA
2496	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2497		dev_info(&pdev->dev, "DCA disabled\n");
2498		dca_remove_requester(&pdev->dev);
2499		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2500		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2501	}
2502#endif
2503
2504	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2505	 * would have already happened in close and is redundant. */
2506	igb_release_hw_control(adapter);
2507
2508	unregister_netdev(netdev);
2509
2510	igb_clear_interrupt_scheme(adapter);
2511
2512#ifdef CONFIG_PCI_IOV
2513	igb_disable_sriov(pdev);
2514#endif
2515
2516	iounmap(hw->hw_addr);
2517	if (hw->flash_address)
2518		iounmap(hw->flash_address);
2519	pci_release_selected_regions(pdev,
2520	                             pci_select_bars(pdev, IORESOURCE_MEM));
2521
2522	kfree(adapter->shadow_vfta);
2523	free_netdev(netdev);
2524
2525	pci_disable_pcie_error_reporting(pdev);
2526
2527	pci_disable_device(pdev);
2528}
2529
2530/**
2531 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2532 * @adapter: board private structure to initialize
2533 *
2534 * This function initializes the vf specific data storage and then attempts to
2535 * allocate the VFs.  The reason for ordering it this way is because it is much
2536 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2537 * the memory for the VFs.
2538 **/
2539static void igb_probe_vfs(struct igb_adapter *adapter)
2540{
2541#ifdef CONFIG_PCI_IOV
2542	struct pci_dev *pdev = adapter->pdev;
2543	struct e1000_hw *hw = &adapter->hw;
2544
2545	/* Virtualization features not supported on i210 family. */
2546	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2547		return;
2548
2549	igb_enable_sriov(pdev, max_vfs);
2550	pci_sriov_set_totalvfs(pdev, 7);
2551
2552#endif /* CONFIG_PCI_IOV */
2553}
2554
2555static void igb_init_queue_configuration(struct igb_adapter *adapter)
2556{
2557	struct e1000_hw *hw = &adapter->hw;
2558	u32 max_rss_queues;
2559
2560	/* Determine the maximum number of RSS queues supported. */
2561	switch (hw->mac.type) {
2562	case e1000_i211:
2563		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2564		break;
2565	case e1000_82575:
2566	case e1000_i210:
2567		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2568		break;
2569	case e1000_i350:
2570		/* I350 cannot do RSS and SR-IOV at the same time */
2571		if (!!adapter->vfs_allocated_count) {
2572			max_rss_queues = 1;
2573			break;
2574		}
2575		/* fall through */
2576	case e1000_82576:
2577		if (!!adapter->vfs_allocated_count) {
2578			max_rss_queues = 2;
2579			break;
2580		}
2581		/* fall through */
2582	case e1000_82580:
2583	default:
2584		max_rss_queues = IGB_MAX_RX_QUEUES;
2585		break;
2586	}
2587
2588	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2589
2590	/* Determine if we need to pair queues. */
2591	switch (hw->mac.type) {
2592	case e1000_82575:
2593	case e1000_i211:
2594		/* Device supports enough interrupts without queue pairing. */
2595		break;
2596	case e1000_82576:
2597		/*
2598		 * If VFs are going to be allocated with RSS queues then we
2599		 * should pair the queues in order to conserve interrupts due
2600		 * to limited supply.
2601		 */
2602		if ((adapter->rss_queues > 1) &&
2603		    (adapter->vfs_allocated_count > 6))
2604			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2605		/* fall through */
2606	case e1000_82580:
2607	case e1000_i350:
2608	case e1000_i210:
2609	default:
2610		/*
2611		 * If rss_queues > half of max_rss_queues, pair the queues in
2612		 * order to conserve interrupts due to limited supply.
2613		 */
2614		if (adapter->rss_queues > (max_rss_queues / 2))
2615			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2616		break;
2617	}
2618}
2619
2620/**
2621 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2622 * @adapter: board private structure to initialize
2623 *
2624 * igb_sw_init initializes the Adapter private data structure.
2625 * Fields are initialized based on PCI device information and
2626 * OS network device settings (MTU size).
2627 **/
2628static int igb_sw_init(struct igb_adapter *adapter)
2629{
2630	struct e1000_hw *hw = &adapter->hw;
2631	struct net_device *netdev = adapter->netdev;
2632	struct pci_dev *pdev = adapter->pdev;
2633
2634	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2635
2636	/* set default ring sizes */
2637	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2638	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2639
2640	/* set default ITR values */
2641	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2642	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2643
2644	/* set default work limits */
2645	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2646
2647	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2648				  VLAN_HLEN;
2649	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2650
2651	spin_lock_init(&adapter->stats64_lock);
2652#ifdef CONFIG_PCI_IOV
2653	switch (hw->mac.type) {
2654	case e1000_82576:
2655	case e1000_i350:
2656		if (max_vfs > 7) {
2657			dev_warn(&pdev->dev,
2658				 "Maximum of 7 VFs per PF, using max\n");
2659			adapter->vfs_allocated_count = 7;
2660		} else
2661			adapter->vfs_allocated_count = max_vfs;
2662		if (adapter->vfs_allocated_count)
2663			dev_warn(&pdev->dev,
2664				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2665		break;
2666	default:
2667		break;
2668	}
2669#endif /* CONFIG_PCI_IOV */
2670
2671	igb_init_queue_configuration(adapter);
2672
2673	/* Setup and initialize a copy of the hw vlan table array */
2674	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2675				       GFP_ATOMIC);
2676
2677	/* This call may decrease the number of queues */
2678	if (igb_init_interrupt_scheme(adapter, true)) {
2679		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2680		return -ENOMEM;
2681	}
2682
2683	igb_probe_vfs(adapter);
2684
2685	/* Explicitly disable IRQ since the NIC can be in any state. */
2686	igb_irq_disable(adapter);
2687
2688	if (hw->mac.type >= e1000_i350)
2689		adapter->flags &= ~IGB_FLAG_DMAC;
2690
2691	set_bit(__IGB_DOWN, &adapter->state);
2692	return 0;
2693}
2694
2695/**
2696 * igb_open - Called when a network interface is made active
2697 * @netdev: network interface device structure
2698 *
2699 * Returns 0 on success, negative value on failure
2700 *
2701 * The open entry point is called when a network interface is made
2702 * active by the system (IFF_UP).  At this point all resources needed
2703 * for transmit and receive operations are allocated, the interrupt
2704 * handler is registered with the OS, the watchdog timer is started,
2705 * and the stack is notified that the interface is ready.
2706 **/
2707static int __igb_open(struct net_device *netdev, bool resuming)
2708{
2709	struct igb_adapter *adapter = netdev_priv(netdev);
2710	struct e1000_hw *hw = &adapter->hw;
2711	struct pci_dev *pdev = adapter->pdev;
2712	int err;
2713	int i;
2714
2715	/* disallow open during test */
2716	if (test_bit(__IGB_TESTING, &adapter->state)) {
2717		WARN_ON(resuming);
2718		return -EBUSY;
2719	}
2720
2721	if (!resuming)
2722		pm_runtime_get_sync(&pdev->dev);
2723
2724	netif_carrier_off(netdev);
2725
2726	/* allocate transmit descriptors */
2727	err = igb_setup_all_tx_resources(adapter);
2728	if (err)
2729		goto err_setup_tx;
2730
2731	/* allocate receive descriptors */
2732	err = igb_setup_all_rx_resources(adapter);
2733	if (err)
2734		goto err_setup_rx;
2735
2736	igb_power_up_link(adapter);
2737
2738	/* before we allocate an interrupt, we must be ready to handle it.
2739	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2740	 * as soon as we call pci_request_irq, so we have to setup our
2741	 * clean_rx handler before we do so.  */
2742	igb_configure(adapter);
2743
2744	err = igb_request_irq(adapter);
2745	if (err)
2746		goto err_req_irq;
2747
2748	/* Notify the stack of the actual queue counts. */
2749	err = netif_set_real_num_tx_queues(adapter->netdev,
2750					   adapter->num_tx_queues);
2751	if (err)
2752		goto err_set_queues;
2753
2754	err = netif_set_real_num_rx_queues(adapter->netdev,
2755					   adapter->num_rx_queues);
2756	if (err)
2757		goto err_set_queues;
2758
2759	/* From here on the code is the same as igb_up() */
2760	clear_bit(__IGB_DOWN, &adapter->state);
2761
2762	for (i = 0; i < adapter->num_q_vectors; i++)
2763		napi_enable(&(adapter->q_vector[i]->napi));
2764
2765	/* Clear any pending interrupts. */
2766	rd32(E1000_ICR);
2767
2768	igb_irq_enable(adapter);
2769
2770	/* notify VFs that reset has been completed */
2771	if (adapter->vfs_allocated_count) {
2772		u32 reg_data = rd32(E1000_CTRL_EXT);
2773		reg_data |= E1000_CTRL_EXT_PFRSTD;
2774		wr32(E1000_CTRL_EXT, reg_data);
2775	}
2776
2777	netif_tx_start_all_queues(netdev);
2778
2779	if (!resuming)
2780		pm_runtime_put(&pdev->dev);
2781
2782	/* start the watchdog. */
2783	hw->mac.get_link_status = 1;
2784	schedule_work(&adapter->watchdog_task);
2785
2786	return 0;
2787
2788err_set_queues:
2789	igb_free_irq(adapter);
2790err_req_irq:
2791	igb_release_hw_control(adapter);
2792	igb_power_down_link(adapter);
2793	igb_free_all_rx_resources(adapter);
2794err_setup_rx:
2795	igb_free_all_tx_resources(adapter);
2796err_setup_tx:
2797	igb_reset(adapter);
2798	if (!resuming)
2799		pm_runtime_put(&pdev->dev);
2800
2801	return err;
2802}
2803
2804static int igb_open(struct net_device *netdev)
2805{
2806	return __igb_open(netdev, false);
2807}
2808
2809/**
2810 * igb_close - Disables a network interface
2811 * @netdev: network interface device structure
2812 *
2813 * Returns 0, this is not allowed to fail
2814 *
2815 * The close entry point is called when an interface is de-activated
2816 * by the OS.  The hardware is still under the driver's control, but
2817 * needs to be disabled.  A global MAC reset is issued to stop the
2818 * hardware, and all transmit and receive resources are freed.
2819 **/
2820static int __igb_close(struct net_device *netdev, bool suspending)
2821{
2822	struct igb_adapter *adapter = netdev_priv(netdev);
2823	struct pci_dev *pdev = adapter->pdev;
2824
2825	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2826
2827	if (!suspending)
2828		pm_runtime_get_sync(&pdev->dev);
2829
2830	igb_down(adapter);
2831	igb_free_irq(adapter);
2832
2833	igb_free_all_tx_resources(adapter);
2834	igb_free_all_rx_resources(adapter);
2835
2836	if (!suspending)
2837		pm_runtime_put_sync(&pdev->dev);
2838	return 0;
2839}
2840
2841static int igb_close(struct net_device *netdev)
2842{
2843	return __igb_close(netdev, false);
2844}
2845
2846/**
2847 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2848 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2849 *
2850 * Return 0 on success, negative on failure
2851 **/
2852int igb_setup_tx_resources(struct igb_ring *tx_ring)
2853{
2854	struct device *dev = tx_ring->dev;
2855	int size;
2856
2857	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2858
2859	tx_ring->tx_buffer_info = vzalloc(size);
2860	if (!tx_ring->tx_buffer_info)
2861		goto err;
2862
2863	/* round up to nearest 4K */
2864	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2865	tx_ring->size = ALIGN(tx_ring->size, 4096);
2866
2867	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2868					   &tx_ring->dma, GFP_KERNEL);
2869	if (!tx_ring->desc)
2870		goto err;
2871
2872	tx_ring->next_to_use = 0;
2873	tx_ring->next_to_clean = 0;
2874
2875	return 0;
2876
2877err:
2878	vfree(tx_ring->tx_buffer_info);
2879	tx_ring->tx_buffer_info = NULL;
2880	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2881	return -ENOMEM;
2882}
2883
2884/**
2885 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2886 *				  (Descriptors) for all queues
2887 * @adapter: board private structure
2888 *
2889 * Return 0 on success, negative on failure
2890 **/
2891static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2892{
2893	struct pci_dev *pdev = adapter->pdev;
2894	int i, err = 0;
2895
2896	for (i = 0; i < adapter->num_tx_queues; i++) {
2897		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2898		if (err) {
2899			dev_err(&pdev->dev,
2900				"Allocation for Tx Queue %u failed\n", i);
2901			for (i--; i >= 0; i--)
2902				igb_free_tx_resources(adapter->tx_ring[i]);
2903			break;
2904		}
2905	}
2906
2907	return err;
2908}
2909
2910/**
2911 * igb_setup_tctl - configure the transmit control registers
2912 * @adapter: Board private structure
2913 **/
2914void igb_setup_tctl(struct igb_adapter *adapter)
2915{
2916	struct e1000_hw *hw = &adapter->hw;
2917	u32 tctl;
2918
2919	/* disable queue 0 which is enabled by default on 82575 and 82576 */
2920	wr32(E1000_TXDCTL(0), 0);
2921
2922	/* Program the Transmit Control Register */
2923	tctl = rd32(E1000_TCTL);
2924	tctl &= ~E1000_TCTL_CT;
2925	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2926		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2927
2928	igb_config_collision_dist(hw);
2929
2930	/* Enable transmits */
2931	tctl |= E1000_TCTL_EN;
2932
2933	wr32(E1000_TCTL, tctl);
2934}
2935
2936/**
2937 * igb_configure_tx_ring - Configure transmit ring after Reset
2938 * @adapter: board private structure
2939 * @ring: tx ring to configure
2940 *
2941 * Configure a transmit ring after a reset.
2942 **/
2943void igb_configure_tx_ring(struct igb_adapter *adapter,
2944                           struct igb_ring *ring)
2945{
2946	struct e1000_hw *hw = &adapter->hw;
2947	u32 txdctl = 0;
2948	u64 tdba = ring->dma;
2949	int reg_idx = ring->reg_idx;
2950
2951	/* disable the queue */
2952	wr32(E1000_TXDCTL(reg_idx), 0);
2953	wrfl();
2954	mdelay(10);
2955
2956	wr32(E1000_TDLEN(reg_idx),
2957	                ring->count * sizeof(union e1000_adv_tx_desc));
2958	wr32(E1000_TDBAL(reg_idx),
2959	                tdba & 0x00000000ffffffffULL);
2960	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2961
2962	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2963	wr32(E1000_TDH(reg_idx), 0);
2964	writel(0, ring->tail);
2965
2966	txdctl |= IGB_TX_PTHRESH;
2967	txdctl |= IGB_TX_HTHRESH << 8;
2968	txdctl |= IGB_TX_WTHRESH << 16;
2969
2970	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2971	wr32(E1000_TXDCTL(reg_idx), txdctl);
2972}
2973
2974/**
2975 * igb_configure_tx - Configure transmit Unit after Reset
2976 * @adapter: board private structure
2977 *
2978 * Configure the Tx unit of the MAC after a reset.
2979 **/
2980static void igb_configure_tx(struct igb_adapter *adapter)
2981{
2982	int i;
2983
2984	for (i = 0; i < adapter->num_tx_queues; i++)
2985		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2986}
2987
2988/**
2989 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2990 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2991 *
2992 * Returns 0 on success, negative on failure
2993 **/
2994int igb_setup_rx_resources(struct igb_ring *rx_ring)
2995{
2996	struct device *dev = rx_ring->dev;
2997	int size;
2998
2999	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3000
3001	rx_ring->rx_buffer_info = vzalloc(size);
3002	if (!rx_ring->rx_buffer_info)
3003		goto err;
3004
3005	/* Round up to nearest 4K */
3006	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3007	rx_ring->size = ALIGN(rx_ring->size, 4096);
3008
3009	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3010					   &rx_ring->dma, GFP_KERNEL);
3011	if (!rx_ring->desc)
3012		goto err;
3013
3014	rx_ring->next_to_alloc = 0;
3015	rx_ring->next_to_clean = 0;
3016	rx_ring->next_to_use = 0;
3017
3018	return 0;
3019
3020err:
3021	vfree(rx_ring->rx_buffer_info);
3022	rx_ring->rx_buffer_info = NULL;
3023	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3024	return -ENOMEM;
3025}
3026
3027/**
3028 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3029 *				  (Descriptors) for all queues
3030 * @adapter: board private structure
3031 *
3032 * Return 0 on success, negative on failure
3033 **/
3034static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3035{
3036	struct pci_dev *pdev = adapter->pdev;
3037	int i, err = 0;
3038
3039	for (i = 0; i < adapter->num_rx_queues; i++) {
3040		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3041		if (err) {
3042			dev_err(&pdev->dev,
3043				"Allocation for Rx Queue %u failed\n", i);
3044			for (i--; i >= 0; i--)
3045				igb_free_rx_resources(adapter->rx_ring[i]);
3046			break;
3047		}
3048	}
3049
3050	return err;
3051}
3052
3053/**
3054 * igb_setup_mrqc - configure the multiple receive queue control registers
3055 * @adapter: Board private structure
3056 **/
3057static void igb_setup_mrqc(struct igb_adapter *adapter)
3058{
3059	struct e1000_hw *hw = &adapter->hw;
3060	u32 mrqc, rxcsum;
3061	u32 j, num_rx_queues, shift = 0;
3062	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3063					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3064					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3065					0xFA01ACBE };
3066
3067	/* Fill out hash function seeds */
3068	for (j = 0; j < 10; j++)
3069		wr32(E1000_RSSRK(j), rsskey[j]);
3070
3071	num_rx_queues = adapter->rss_queues;
3072
3073	switch (hw->mac.type) {
3074	case e1000_82575:
3075		shift = 6;
3076		break;
3077	case e1000_82576:
3078		/* 82576 supports 2 RSS queues for SR-IOV */
3079		if (adapter->vfs_allocated_count) {
3080			shift = 3;
3081			num_rx_queues = 2;
3082		}
3083		break;
3084	default:
3085		break;
3086	}
3087
3088	/*
3089	 * Populate the indirection table 4 entries at a time.  To do this
3090	 * we are generating the results for n and n+2 and then interleaving
3091	 * those with the results with n+1 and n+3.
3092	 */
3093	for (j = 0; j < 32; j++) {
3094		/* first pass generates n and n+2 */
3095		u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
3096		u32 reta = (base & 0x07800780) >> (7 - shift);
3097
3098		/* second pass generates n+1 and n+3 */
3099		base += 0x00010001 * num_rx_queues;
3100		reta |= (base & 0x07800780) << (1 + shift);
3101
3102		wr32(E1000_RETA(j), reta);
3103	}
3104
3105	/*
3106	 * Disable raw packet checksumming so that RSS hash is placed in
3107	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3108	 * offloads as they are enabled by default
3109	 */
3110	rxcsum = rd32(E1000_RXCSUM);
3111	rxcsum |= E1000_RXCSUM_PCSD;
3112
3113	if (adapter->hw.mac.type >= e1000_82576)
3114		/* Enable Receive Checksum Offload for SCTP */
3115		rxcsum |= E1000_RXCSUM_CRCOFL;
3116
3117	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3118	wr32(E1000_RXCSUM, rxcsum);
3119
3120	/* Generate RSS hash based on packet types, TCP/UDP
3121	 * port numbers and/or IPv4/v6 src and dst addresses
3122	 */
3123	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3124	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3125	       E1000_MRQC_RSS_FIELD_IPV6 |
3126	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3127	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3128
3129	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3130		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3131	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3132		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3133
3134	/* If VMDq is enabled then we set the appropriate mode for that, else
3135	 * we default to RSS so that an RSS hash is calculated per packet even
3136	 * if we are only using one queue */
3137	if (adapter->vfs_allocated_count) {
3138		if (hw->mac.type > e1000_82575) {
3139			/* Set the default pool for the PF's first queue */
3140			u32 vtctl = rd32(E1000_VT_CTL);
3141			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3142				   E1000_VT_CTL_DISABLE_DEF_POOL);
3143			vtctl |= adapter->vfs_allocated_count <<
3144				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3145			wr32(E1000_VT_CTL, vtctl);
3146		}
3147		if (adapter->rss_queues > 1)
3148			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3149		else
3150			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3151	} else {
3152		if (hw->mac.type != e1000_i211)
3153			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3154	}
3155	igb_vmm_control(adapter);
3156
3157	wr32(E1000_MRQC, mrqc);
3158}
3159
3160/**
3161 * igb_setup_rctl - configure the receive control registers
3162 * @adapter: Board private structure
3163 **/
3164void igb_setup_rctl(struct igb_adapter *adapter)
3165{
3166	struct e1000_hw *hw = &adapter->hw;
3167	u32 rctl;
3168
3169	rctl = rd32(E1000_RCTL);
3170
3171	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3172	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3173
3174	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3175		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3176
3177	/*
3178	 * enable stripping of CRC. It's unlikely this will break BMC
3179	 * redirection as it did with e1000. Newer features require
3180	 * that the HW strips the CRC.
3181	 */
3182	rctl |= E1000_RCTL_SECRC;
3183
3184	/* disable store bad packets and clear size bits. */
3185	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3186
3187	/* enable LPE to prevent packets larger than max_frame_size */
3188	rctl |= E1000_RCTL_LPE;
3189
3190	/* disable queue 0 to prevent tail write w/o re-config */
3191	wr32(E1000_RXDCTL(0), 0);
3192
3193	/* Attention!!!  For SR-IOV PF driver operations you must enable
3194	 * queue drop for all VF and PF queues to prevent head of line blocking
3195	 * if an un-trusted VF does not provide descriptors to hardware.
3196	 */
3197	if (adapter->vfs_allocated_count) {
3198		/* set all queue drop enable bits */
3199		wr32(E1000_QDE, ALL_QUEUES);
3200	}
3201
3202	/* This is useful for sniffing bad packets. */
3203	if (adapter->netdev->features & NETIF_F_RXALL) {
3204		/* UPE and MPE will be handled by normal PROMISC logic
3205		 * in e1000e_set_rx_mode */
3206		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3207			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3208			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3209
3210		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3211			  E1000_RCTL_DPF | /* Allow filtered pause */
3212			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3213		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3214		 * and that breaks VLANs.
3215		 */
3216	}
3217
3218	wr32(E1000_RCTL, rctl);
3219}
3220
3221static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3222                                   int vfn)
3223{
3224	struct e1000_hw *hw = &adapter->hw;
3225	u32 vmolr;
3226
3227	/* if it isn't the PF check to see if VFs are enabled and
3228	 * increase the size to support vlan tags */
3229	if (vfn < adapter->vfs_allocated_count &&
3230	    adapter->vf_data[vfn].vlans_enabled)
3231		size += VLAN_TAG_SIZE;
3232
3233	vmolr = rd32(E1000_VMOLR(vfn));
3234	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3235	vmolr |= size | E1000_VMOLR_LPE;
3236	wr32(E1000_VMOLR(vfn), vmolr);
3237
3238	return 0;
3239}
3240
3241/**
3242 * igb_rlpml_set - set maximum receive packet size
3243 * @adapter: board private structure
3244 *
3245 * Configure maximum receivable packet size.
3246 **/
3247static void igb_rlpml_set(struct igb_adapter *adapter)
3248{
3249	u32 max_frame_size = adapter->max_frame_size;
3250	struct e1000_hw *hw = &adapter->hw;
3251	u16 pf_id = adapter->vfs_allocated_count;
3252
3253	if (pf_id) {
3254		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3255		/*
3256		 * If we're in VMDQ or SR-IOV mode, then set global RLPML
3257		 * to our max jumbo frame size, in case we need to enable
3258		 * jumbo frames on one of the rings later.
3259		 * This will not pass over-length frames into the default
3260		 * queue because it's gated by the VMOLR.RLPML.
3261		 */
3262		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3263	}
3264
3265	wr32(E1000_RLPML, max_frame_size);
3266}
3267
3268static inline void igb_set_vmolr(struct igb_adapter *adapter,
3269				 int vfn, bool aupe)
3270{
3271	struct e1000_hw *hw = &adapter->hw;
3272	u32 vmolr;
3273
3274	/*
3275	 * This register exists only on 82576 and newer so if we are older then
3276	 * we should exit and do nothing
3277	 */
3278	if (hw->mac.type < e1000_82576)
3279		return;
3280
3281	vmolr = rd32(E1000_VMOLR(vfn));
3282	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
3283	if (aupe)
3284		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
3285	else
3286		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3287
3288	/* clear all bits that might not be set */
3289	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3290
3291	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3292		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3293	/*
3294	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3295	 * multicast packets
3296	 */
3297	if (vfn <= adapter->vfs_allocated_count)
3298		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */
3299
3300	wr32(E1000_VMOLR(vfn), vmolr);
3301}
3302
3303/**
3304 * igb_configure_rx_ring - Configure a receive ring after Reset
3305 * @adapter: board private structure
3306 * @ring: receive ring to be configured
3307 *
3308 * Configure the Rx unit of the MAC after a reset.
3309 **/
3310void igb_configure_rx_ring(struct igb_adapter *adapter,
3311                           struct igb_ring *ring)
3312{
3313	struct e1000_hw *hw = &adapter->hw;
3314	u64 rdba = ring->dma;
3315	int reg_idx = ring->reg_idx;
3316	u32 srrctl = 0, rxdctl = 0;
3317
3318	/* disable the queue */
3319	wr32(E1000_RXDCTL(reg_idx), 0);
3320
3321	/* Set DMA base address registers */
3322	wr32(E1000_RDBAL(reg_idx),
3323	     rdba & 0x00000000ffffffffULL);
3324	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3325	wr32(E1000_RDLEN(reg_idx),
3326	               ring->count * sizeof(union e1000_adv_rx_desc));
3327
3328	/* initialize head and tail */
3329	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3330	wr32(E1000_RDH(reg_idx), 0);
3331	writel(0, ring->tail);
3332
3333	/* set descriptor configuration */
3334	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3335	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3336	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3337	if (hw->mac.type >= e1000_82580)
3338		srrctl |= E1000_SRRCTL_TIMESTAMP;
3339	/* Only set Drop Enable if we are supporting multiple queues */
3340	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3341		srrctl |= E1000_SRRCTL_DROP_EN;
3342
3343	wr32(E1000_SRRCTL(reg_idx), srrctl);
3344
3345	/* set filtering for VMDQ pools */
3346	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3347
3348	rxdctl |= IGB_RX_PTHRESH;
3349	rxdctl |= IGB_RX_HTHRESH << 8;
3350	rxdctl |= IGB_RX_WTHRESH << 16;
3351
3352	/* enable receive descriptor fetching */
3353	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3354	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3355}
3356
3357/**
3358 * igb_configure_rx - Configure receive Unit after Reset
3359 * @adapter: board private structure
3360 *
3361 * Configure the Rx unit of the MAC after a reset.
3362 **/
3363static void igb_configure_rx(struct igb_adapter *adapter)
3364{
3365	int i;
3366
3367	/* set UTA to appropriate mode */
3368	igb_set_uta(adapter);
3369
3370	/* set the correct pool for the PF default MAC address in entry 0 */
3371	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3372	                 adapter->vfs_allocated_count);
3373
3374	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3375	 * the Base and Length of the Rx Descriptor Ring */
3376	for (i = 0; i < adapter->num_rx_queues; i++)
3377		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3378}
3379
3380/**
3381 * igb_free_tx_resources - Free Tx Resources per Queue
3382 * @tx_ring: Tx descriptor ring for a specific queue
3383 *
3384 * Free all transmit software resources
3385 **/
3386void igb_free_tx_resources(struct igb_ring *tx_ring)
3387{
3388	igb_clean_tx_ring(tx_ring);
3389
3390	vfree(tx_ring->tx_buffer_info);
3391	tx_ring->tx_buffer_info = NULL;
3392
3393	/* if not set, then don't free */
3394	if (!tx_ring->desc)
3395		return;
3396
3397	dma_free_coherent(tx_ring->dev, tx_ring->size,
3398			  tx_ring->desc, tx_ring->dma);
3399
3400	tx_ring->desc = NULL;
3401}
3402
3403/**
3404 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3405 * @adapter: board private structure
3406 *
3407 * Free all transmit software resources
3408 **/
3409static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3410{
3411	int i;
3412
3413	for (i = 0; i < adapter->num_tx_queues; i++)
3414		igb_free_tx_resources(adapter->tx_ring[i]);
3415}
3416
3417void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3418				    struct igb_tx_buffer *tx_buffer)
3419{
3420	if (tx_buffer->skb) {
3421		dev_kfree_skb_any(tx_buffer->skb);
3422		if (dma_unmap_len(tx_buffer, len))
3423			dma_unmap_single(ring->dev,
3424					 dma_unmap_addr(tx_buffer, dma),
3425					 dma_unmap_len(tx_buffer, len),
3426					 DMA_TO_DEVICE);
3427	} else if (dma_unmap_len(tx_buffer, len)) {
3428		dma_unmap_page(ring->dev,
3429			       dma_unmap_addr(tx_buffer, dma),
3430			       dma_unmap_len(tx_buffer, len),
3431			       DMA_TO_DEVICE);
3432	}
3433	tx_buffer->next_to_watch = NULL;
3434	tx_buffer->skb = NULL;
3435	dma_unmap_len_set(tx_buffer, len, 0);
3436	/* buffer_info must be completely set up in the transmit path */
3437}
3438
3439/**
3440 * igb_clean_tx_ring - Free Tx Buffers
3441 * @tx_ring: ring to be cleaned
3442 **/
3443static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3444{
3445	struct igb_tx_buffer *buffer_info;
3446	unsigned long size;
3447	u16 i;
3448
3449	if (!tx_ring->tx_buffer_info)
3450		return;
3451	/* Free all the Tx ring sk_buffs */
3452
3453	for (i = 0; i < tx_ring->count; i++) {
3454		buffer_info = &tx_ring->tx_buffer_info[i];
3455		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3456	}
3457
3458	netdev_tx_reset_queue(txring_txq(tx_ring));
3459
3460	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3461	memset(tx_ring->tx_buffer_info, 0, size);
3462
3463	/* Zero out the descriptor ring */
3464	memset(tx_ring->desc, 0, tx_ring->size);
3465
3466	tx_ring->next_to_use = 0;
3467	tx_ring->next_to_clean = 0;
3468}
3469
3470/**
3471 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3472 * @adapter: board private structure
3473 **/
3474static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3475{
3476	int i;
3477
3478	for (i = 0; i < adapter->num_tx_queues; i++)
3479		igb_clean_tx_ring(adapter->tx_ring[i]);
3480}
3481
3482/**
3483 * igb_free_rx_resources - Free Rx Resources
3484 * @rx_ring: ring to clean the resources from
3485 *
3486 * Free all receive software resources
3487 **/
3488void igb_free_rx_resources(struct igb_ring *rx_ring)
3489{
3490	igb_clean_rx_ring(rx_ring);
3491
3492	vfree(rx_ring->rx_buffer_info);
3493	rx_ring->rx_buffer_info = NULL;
3494
3495	/* if not set, then don't free */
3496	if (!rx_ring->desc)
3497		return;
3498
3499	dma_free_coherent(rx_ring->dev, rx_ring->size,
3500			  rx_ring->desc, rx_ring->dma);
3501
3502	rx_ring->desc = NULL;
3503}
3504
3505/**
3506 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3507 * @adapter: board private structure
3508 *
3509 * Free all receive software resources
3510 **/
3511static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3512{
3513	int i;
3514
3515	for (i = 0; i < adapter->num_rx_queues; i++)
3516		igb_free_rx_resources(adapter->rx_ring[i]);
3517}
3518
3519/**
3520 * igb_clean_rx_ring - Free Rx Buffers per Queue
3521 * @rx_ring: ring to free buffers from
3522 **/
3523static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3524{
3525	unsigned long size;
3526	u16 i;
3527
3528	if (rx_ring->skb)
3529		dev_kfree_skb(rx_ring->skb);
3530	rx_ring->skb = NULL;
3531
3532	if (!rx_ring->rx_buffer_info)
3533		return;
3534
3535	/* Free all the Rx ring sk_buffs */
3536	for (i = 0; i < rx_ring->count; i++) {
3537		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3538
3539		if (!buffer_info->page)
3540			continue;
3541
3542		dma_unmap_page(rx_ring->dev,
3543			       buffer_info->dma,
3544			       PAGE_SIZE,
3545			       DMA_FROM_DEVICE);
3546		__free_page(buffer_info->page);
3547
3548		buffer_info->page = NULL;
3549	}
3550
3551	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3552	memset(rx_ring->rx_buffer_info, 0, size);
3553
3554	/* Zero out the descriptor ring */
3555	memset(rx_ring->desc, 0, rx_ring->size);
3556
3557	rx_ring->next_to_alloc = 0;
3558	rx_ring->next_to_clean = 0;
3559	rx_ring->next_to_use = 0;
3560}
3561
3562/**
3563 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3564 * @adapter: board private structure
3565 **/
3566static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3567{
3568	int i;
3569
3570	for (i = 0; i < adapter->num_rx_queues; i++)
3571		igb_clean_rx_ring(adapter->rx_ring[i]);
3572}
3573
3574/**
3575 * igb_set_mac - Change the Ethernet Address of the NIC
3576 * @netdev: network interface device structure
3577 * @p: pointer to an address structure
3578 *
3579 * Returns 0 on success, negative on failure
3580 **/
3581static int igb_set_mac(struct net_device *netdev, void *p)
3582{
3583	struct igb_adapter *adapter = netdev_priv(netdev);
3584	struct e1000_hw *hw = &adapter->hw;
3585	struct sockaddr *addr = p;
3586
3587	if (!is_valid_ether_addr(addr->sa_data))
3588		return -EADDRNOTAVAIL;
3589
3590	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3591	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3592
3593	/* set the correct pool for the new PF MAC address in entry 0 */
3594	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3595	                 adapter->vfs_allocated_count);
3596
3597	return 0;
3598}
3599
3600/**
3601 * igb_write_mc_addr_list - write multicast addresses to MTA
3602 * @netdev: network interface device structure
3603 *
3604 * Writes multicast address list to the MTA hash table.
3605 * Returns: -ENOMEM on failure
3606 *                0 on no addresses written
3607 *                X on writing X addresses to MTA
3608 **/
3609static int igb_write_mc_addr_list(struct net_device *netdev)
3610{
3611	struct igb_adapter *adapter = netdev_priv(netdev);
3612	struct e1000_hw *hw = &adapter->hw;
3613	struct netdev_hw_addr *ha;
3614	u8  *mta_list;
3615	int i;
3616
3617	if (netdev_mc_empty(netdev)) {
3618		/* nothing to program, so clear mc list */
3619		igb_update_mc_addr_list(hw, NULL, 0);
3620		igb_restore_vf_multicasts(adapter);
3621		return 0;
3622	}
3623
3624	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3625	if (!mta_list)
3626		return -ENOMEM;
3627
3628	/* The shared function expects a packed array of only addresses. */
3629	i = 0;
3630	netdev_for_each_mc_addr(ha, netdev)
3631		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3632
3633	igb_update_mc_addr_list(hw, mta_list, i);
3634	kfree(mta_list);
3635
3636	return netdev_mc_count(netdev);
3637}
3638
3639/**
3640 * igb_write_uc_addr_list - write unicast addresses to RAR table
3641 * @netdev: network interface device structure
3642 *
3643 * Writes unicast address list to the RAR table.
3644 * Returns: -ENOMEM on failure/insufficient address space
3645 *                0 on no addresses written
3646 *                X on writing X addresses to the RAR table
3647 **/
3648static int igb_write_uc_addr_list(struct net_device *netdev)
3649{
3650	struct igb_adapter *adapter = netdev_priv(netdev);
3651	struct e1000_hw *hw = &adapter->hw;
3652	unsigned int vfn = adapter->vfs_allocated_count;
3653	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3654	int count = 0;
3655
3656	/* return ENOMEM indicating insufficient memory for addresses */
3657	if (netdev_uc_count(netdev) > rar_entries)
3658		return -ENOMEM;
3659
3660	if (!netdev_uc_empty(netdev) && rar_entries) {
3661		struct netdev_hw_addr *ha;
3662
3663		netdev_for_each_uc_addr(ha, netdev) {
3664			if (!rar_entries)
3665				break;
3666			igb_rar_set_qsel(adapter, ha->addr,
3667			                 rar_entries--,
3668			                 vfn);
3669			count++;
3670		}
3671	}
3672	/* write the addresses in reverse order to avoid write combining */
3673	for (; rar_entries > 0 ; rar_entries--) {
3674		wr32(E1000_RAH(rar_entries), 0);
3675		wr32(E1000_RAL(rar_entries), 0);
3676	}
3677	wrfl();
3678
3679	return count;
3680}
3681
3682/**
3683 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3684 * @netdev: network interface device structure
3685 *
3686 * The set_rx_mode entry point is called whenever the unicast or multicast
3687 * address lists or the network interface flags are updated.  This routine is
3688 * responsible for configuring the hardware for proper unicast, multicast,
3689 * promiscuous mode, and all-multi behavior.
3690 **/
3691static void igb_set_rx_mode(struct net_device *netdev)
3692{
3693	struct igb_adapter *adapter = netdev_priv(netdev);
3694	struct e1000_hw *hw = &adapter->hw;
3695	unsigned int vfn = adapter->vfs_allocated_count;
3696	u32 rctl, vmolr = 0;
3697	int count;
3698
3699	/* Check for Promiscuous and All Multicast modes */
3700	rctl = rd32(E1000_RCTL);
3701
3702	/* clear the effected bits */
3703	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3704
3705	if (netdev->flags & IFF_PROMISC) {
3706		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3707		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3708	} else {
3709		if (netdev->flags & IFF_ALLMULTI) {
3710			rctl |= E1000_RCTL_MPE;
3711			vmolr |= E1000_VMOLR_MPME;
3712		} else {
3713			/*
3714			 * Write addresses to the MTA, if the attempt fails
3715			 * then we should just turn on promiscuous mode so
3716			 * that we can at least receive multicast traffic
3717			 */
3718			count = igb_write_mc_addr_list(netdev);
3719			if (count < 0) {
3720				rctl |= E1000_RCTL_MPE;
3721				vmolr |= E1000_VMOLR_MPME;
3722			} else if (count) {
3723				vmolr |= E1000_VMOLR_ROMPE;
3724			}
3725		}
3726		/*
3727		 * Write addresses to available RAR registers, if there is not
3728		 * sufficient space to store all the addresses then enable
3729		 * unicast promiscuous mode
3730		 */
3731		count = igb_write_uc_addr_list(netdev);
3732		if (count < 0) {
3733			rctl |= E1000_RCTL_UPE;
3734			vmolr |= E1000_VMOLR_ROPE;
3735		}
3736		rctl |= E1000_RCTL_VFE;
3737	}
3738	wr32(E1000_RCTL, rctl);
3739
3740	/*
3741	 * In order to support SR-IOV and eventually VMDq it is necessary to set
3742	 * the VMOLR to enable the appropriate modes.  Without this workaround
3743	 * we will have issues with VLAN tag stripping not being done for frames
3744	 * that are only arriving because we are the default pool
3745	 */
3746	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3747		return;
3748
3749	vmolr |= rd32(E1000_VMOLR(vfn)) &
3750	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3751	wr32(E1000_VMOLR(vfn), vmolr);
3752	igb_restore_vf_multicasts(adapter);
3753}
3754
3755static void igb_check_wvbr(struct igb_adapter *adapter)
3756{
3757	struct e1000_hw *hw = &adapter->hw;
3758	u32 wvbr = 0;
3759
3760	switch (hw->mac.type) {
3761	case e1000_82576:
3762	case e1000_i350:
3763		if (!(wvbr = rd32(E1000_WVBR)))
3764			return;
3765		break;
3766	default:
3767		break;
3768	}
3769
3770	adapter->wvbr |= wvbr;
3771}
3772
3773#define IGB_STAGGERED_QUEUE_OFFSET 8
3774
3775static void igb_spoof_check(struct igb_adapter *adapter)
3776{
3777	int j;
3778
3779	if (!adapter->wvbr)
3780		return;
3781
3782	for(j = 0; j < adapter->vfs_allocated_count; j++) {
3783		if (adapter->wvbr & (1 << j) ||
3784		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3785			dev_warn(&adapter->pdev->dev,
3786				"Spoof event(s) detected on VF %d\n", j);
3787			adapter->wvbr &=
3788				~((1 << j) |
3789				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3790		}
3791	}
3792}
3793
3794/* Need to wait a few seconds after link up to get diagnostic information from
3795 * the phy */
3796static void igb_update_phy_info(unsigned long data)
3797{
3798	struct igb_adapter *adapter = (struct igb_adapter *) data;
3799	igb_get_phy_info(&adapter->hw);
3800}
3801
3802/**
3803 * igb_has_link - check shared code for link and determine up/down
3804 * @adapter: pointer to driver private info
3805 **/
3806bool igb_has_link(struct igb_adapter *adapter)
3807{
3808	struct e1000_hw *hw = &adapter->hw;
3809	bool link_active = false;
3810	s32 ret_val = 0;
3811
3812	/* get_link_status is set on LSC (link status) interrupt or
3813	 * rx sequence error interrupt.  get_link_status will stay
3814	 * false until the e1000_check_for_link establishes link
3815	 * for copper adapters ONLY
3816	 */
3817	switch (hw->phy.media_type) {
3818	case e1000_media_type_copper:
3819		if (hw->mac.get_link_status) {
3820			ret_val = hw->mac.ops.check_for_link(hw);
3821			link_active = !hw->mac.get_link_status;
3822		} else {
3823			link_active = true;
3824		}
3825		break;
3826	case e1000_media_type_internal_serdes:
3827		ret_val = hw->mac.ops.check_for_link(hw);
3828		link_active = hw->mac.serdes_has_link;
3829		break;
3830	default:
3831	case e1000_media_type_unknown:
3832		break;
3833	}
3834
3835	return link_active;
3836}
3837
3838static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3839{
3840	bool ret = false;
3841	u32 ctrl_ext, thstat;
3842
3843	/* check for thermal sensor event on i350 copper only */
3844	if (hw->mac.type == e1000_i350) {
3845		thstat = rd32(E1000_THSTAT);
3846		ctrl_ext = rd32(E1000_CTRL_EXT);
3847
3848		if ((hw->phy.media_type == e1000_media_type_copper) &&
3849		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3850			ret = !!(thstat & event);
3851		}
3852	}
3853
3854	return ret;
3855}
3856
3857/**
3858 * igb_watchdog - Timer Call-back
3859 * @data: pointer to adapter cast into an unsigned long
3860 **/
3861static void igb_watchdog(unsigned long data)
3862{
3863	struct igb_adapter *adapter = (struct igb_adapter *)data;
3864	/* Do the rest outside of interrupt context */
3865	schedule_work(&adapter->watchdog_task);
3866}
3867
3868static void igb_watchdog_task(struct work_struct *work)
3869{
3870	struct igb_adapter *adapter = container_of(work,
3871	                                           struct igb_adapter,
3872                                                   watchdog_task);
3873	struct e1000_hw *hw = &adapter->hw;
3874	struct net_device *netdev = adapter->netdev;
3875	u32 link;
3876	int i;
3877
3878	link = igb_has_link(adapter);
3879	if (link) {
3880		/* Cancel scheduled suspend requests. */
3881		pm_runtime_resume(netdev->dev.parent);
3882
3883		if (!netif_carrier_ok(netdev)) {
3884			u32 ctrl;
3885			hw->mac.ops.get_speed_and_duplex(hw,
3886			                                 &adapter->link_speed,
3887			                                 &adapter->link_duplex);
3888
3889			ctrl = rd32(E1000_CTRL);
3890			/* Links status message must follow this format */
3891			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3892			       "Duplex, Flow Control: %s\n",
3893			       netdev->name,
3894			       adapter->link_speed,
3895			       adapter->link_duplex == FULL_DUPLEX ?
3896			       "Full" : "Half",
3897			       (ctrl & E1000_CTRL_TFCE) &&
3898			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3899			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
3900			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3901
3902			/* check for thermal sensor event */
3903			if (igb_thermal_sensor_event(hw,
3904			    E1000_THSTAT_LINK_THROTTLE)) {
3905				netdev_info(netdev, "The network adapter link "
3906					    "speed was downshifted because it "
3907					    "overheated\n");
3908			}
3909
3910			/* adjust timeout factor according to speed/duplex */
3911			adapter->tx_timeout_factor = 1;
3912			switch (adapter->link_speed) {
3913			case SPEED_10:
3914				adapter->tx_timeout_factor = 14;
3915				break;
3916			case SPEED_100:
3917				/* maybe add some timeout factor ? */
3918				break;
3919			}
3920
3921			netif_carrier_on(netdev);
3922
3923			igb_ping_all_vfs(adapter);
3924			igb_check_vf_rate_limit(adapter);
3925
3926			/* link state has changed, schedule phy info update */
3927			if (!test_bit(__IGB_DOWN, &adapter->state))
3928				mod_timer(&adapter->phy_info_timer,
3929					  round_jiffies(jiffies + 2 * HZ));
3930		}
3931	} else {
3932		if (netif_carrier_ok(netdev)) {
3933			adapter->link_speed = 0;
3934			adapter->link_duplex = 0;
3935
3936			/* check for thermal sensor event */
3937			if (igb_thermal_sensor_event(hw,
3938			    E1000_THSTAT_PWR_DOWN)) {
3939				netdev_err(netdev, "The network adapter was "
3940					   "stopped because it overheated\n");
3941			}
3942
3943			/* Links status message must follow this format */
3944			printk(KERN_INFO "igb: %s NIC Link is Down\n",
3945			       netdev->name);
3946			netif_carrier_off(netdev);
3947
3948			igb_ping_all_vfs(adapter);
3949
3950			/* link state has changed, schedule phy info update */
3951			if (!test_bit(__IGB_DOWN, &adapter->state))
3952				mod_timer(&adapter->phy_info_timer,
3953					  round_jiffies(jiffies + 2 * HZ));
3954
3955			pm_schedule_suspend(netdev->dev.parent,
3956					    MSEC_PER_SEC * 5);
3957		}
3958	}
3959
3960	spin_lock(&adapter->stats64_lock);
3961	igb_update_stats(adapter, &adapter->stats64);
3962	spin_unlock(&adapter->stats64_lock);
3963
3964	for (i = 0; i < adapter->num_tx_queues; i++) {
3965		struct igb_ring *tx_ring = adapter->tx_ring[i];
3966		if (!netif_carrier_ok(netdev)) {
3967			/* We've lost link, so the controller stops DMA,
3968			 * but we've got queued Tx work that's never going
3969			 * to get done, so reset controller to flush Tx.
3970			 * (Do the reset outside of interrupt context). */
3971			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3972				adapter->tx_timeout_count++;
3973				schedule_work(&adapter->reset_task);
3974				/* return immediately since reset is imminent */
3975				return;
3976			}
3977		}
3978
3979		/* Force detection of hung controller every watchdog period */
3980		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3981	}
3982
3983	/* Cause software interrupt to ensure rx ring is cleaned */
3984	if (adapter->msix_entries) {
3985		u32 eics = 0;
3986		for (i = 0; i < adapter->num_q_vectors; i++)
3987			eics |= adapter->q_vector[i]->eims_value;
3988		wr32(E1000_EICS, eics);
3989	} else {
3990		wr32(E1000_ICS, E1000_ICS_RXDMT0);
3991	}
3992
3993	igb_spoof_check(adapter);
3994	igb_ptp_rx_hang(adapter);
3995
3996	/* Reset the timer */
3997	if (!test_bit(__IGB_DOWN, &adapter->state))
3998		mod_timer(&adapter->watchdog_timer,
3999			  round_jiffies(jiffies + 2 * HZ));
4000}
4001
4002enum latency_range {
4003	lowest_latency = 0,
4004	low_latency = 1,
4005	bulk_latency = 2,
4006	latency_invalid = 255
4007};
4008
4009/**
4010 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4011 *
4012 *      Stores a new ITR value based on strictly on packet size.  This
4013 *      algorithm is less sophisticated than that used in igb_update_itr,
4014 *      due to the difficulty of synchronizing statistics across multiple
4015 *      receive rings.  The divisors and thresholds used by this function
4016 *      were determined based on theoretical maximum wire speed and testing
4017 *      data, in order to minimize response time while increasing bulk
4018 *      throughput.
4019 *      This functionality is controlled by the InterruptThrottleRate module
4020 *      parameter (see igb_param.c)
4021 *      NOTE:  This function is called only when operating in a multiqueue
4022 *             receive environment.
4023 * @q_vector: pointer to q_vector
4024 **/
4025static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4026{
4027	int new_val = q_vector->itr_val;
4028	int avg_wire_size = 0;
4029	struct igb_adapter *adapter = q_vector->adapter;
4030	unsigned int packets;
4031
4032	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4033	 * ints/sec - ITR timer value of 120 ticks.
4034	 */
4035	if (adapter->link_speed != SPEED_1000) {
4036		new_val = IGB_4K_ITR;
4037		goto set_itr_val;
4038	}
4039
4040	packets = q_vector->rx.total_packets;
4041	if (packets)
4042		avg_wire_size = q_vector->rx.total_bytes / packets;
4043
4044	packets = q_vector->tx.total_packets;
4045	if (packets)
4046		avg_wire_size = max_t(u32, avg_wire_size,
4047				      q_vector->tx.total_bytes / packets);
4048
4049	/* if avg_wire_size isn't set no work was done */
4050	if (!avg_wire_size)
4051		goto clear_counts;
4052
4053	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4054	avg_wire_size += 24;
4055
4056	/* Don't starve jumbo frames */
4057	avg_wire_size = min(avg_wire_size, 3000);
4058
4059	/* Give a little boost to mid-size frames */
4060	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4061		new_val = avg_wire_size / 3;
4062	else
4063		new_val = avg_wire_size / 2;
4064
4065	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4066	if (new_val < IGB_20K_ITR &&
4067	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4068	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4069		new_val = IGB_20K_ITR;
4070
4071set_itr_val:
4072	if (new_val != q_vector->itr_val) {
4073		q_vector->itr_val = new_val;
4074		q_vector->set_itr = 1;
4075	}
4076clear_counts:
4077	q_vector->rx.total_bytes = 0;
4078	q_vector->rx.total_packets = 0;
4079	q_vector->tx.total_bytes = 0;
4080	q_vector->tx.total_packets = 0;
4081}
4082
4083/**
4084 * igb_update_itr - update the dynamic ITR value based on statistics
4085 *      Stores a new ITR value based on packets and byte
4086 *      counts during the last interrupt.  The advantage of per interrupt
4087 *      computation is faster updates and more accurate ITR for the current
4088 *      traffic pattern.  Constants in this function were computed
4089 *      based on theoretical maximum wire speed and thresholds were set based
4090 *      on testing data as well as attempting to minimize response time
4091 *      while increasing bulk throughput.
4092 *      this functionality is controlled by the InterruptThrottleRate module
4093 *      parameter (see igb_param.c)
4094 *      NOTE:  These calculations are only valid when operating in a single-
4095 *             queue environment.
4096 * @q_vector: pointer to q_vector
4097 * @ring_container: ring info to update the itr for
4098 **/
4099static void igb_update_itr(struct igb_q_vector *q_vector,
4100			   struct igb_ring_container *ring_container)
4101{
4102	unsigned int packets = ring_container->total_packets;
4103	unsigned int bytes = ring_container->total_bytes;
4104	u8 itrval = ring_container->itr;
4105
4106	/* no packets, exit with status unchanged */
4107	if (packets == 0)
4108		return;
4109
4110	switch (itrval) {
4111	case lowest_latency:
4112		/* handle TSO and jumbo frames */
4113		if (bytes/packets > 8000)
4114			itrval = bulk_latency;
4115		else if ((packets < 5) && (bytes > 512))
4116			itrval = low_latency;
4117		break;
4118	case low_latency:  /* 50 usec aka 20000 ints/s */
4119		if (bytes > 10000) {
4120			/* this if handles the TSO accounting */
4121			if (bytes/packets > 8000) {
4122				itrval = bulk_latency;
4123			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4124				itrval = bulk_latency;
4125			} else if ((packets > 35)) {
4126				itrval = lowest_latency;
4127			}
4128		} else if (bytes/packets > 2000) {
4129			itrval = bulk_latency;
4130		} else if (packets <= 2 && bytes < 512) {
4131			itrval = lowest_latency;
4132		}
4133		break;
4134	case bulk_latency: /* 250 usec aka 4000 ints/s */
4135		if (bytes > 25000) {
4136			if (packets > 35)
4137				itrval = low_latency;
4138		} else if (bytes < 1500) {
4139			itrval = low_latency;
4140		}
4141		break;
4142	}
4143
4144	/* clear work counters since we have the values we need */
4145	ring_container->total_bytes = 0;
4146	ring_container->total_packets = 0;
4147
4148	/* write updated itr to ring container */
4149	ring_container->itr = itrval;
4150}
4151
4152static void igb_set_itr(struct igb_q_vector *q_vector)
4153{
4154	struct igb_adapter *adapter = q_vector->adapter;
4155	u32 new_itr = q_vector->itr_val;
4156	u8 current_itr = 0;
4157
4158	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4159	if (adapter->link_speed != SPEED_1000) {
4160		current_itr = 0;
4161		new_itr = IGB_4K_ITR;
4162		goto set_itr_now;
4163	}
4164
4165	igb_update_itr(q_vector, &q_vector->tx);
4166	igb_update_itr(q_vector, &q_vector->rx);
4167
4168	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4169
4170	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4171	if (current_itr == lowest_latency &&
4172	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4173	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4174		current_itr = low_latency;
4175
4176	switch (current_itr) {
4177	/* counts and packets in update_itr are dependent on these numbers */
4178	case lowest_latency:
4179		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4180		break;
4181	case low_latency:
4182		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4183		break;
4184	case bulk_latency:
4185		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4186		break;
4187	default:
4188		break;
4189	}
4190
4191set_itr_now:
4192	if (new_itr != q_vector->itr_val) {
4193		/* this attempts to bias the interrupt rate towards Bulk
4194		 * by adding intermediate steps when interrupt rate is
4195		 * increasing */
4196		new_itr = new_itr > q_vector->itr_val ?
4197		             max((new_itr * q_vector->itr_val) /
4198		                 (new_itr + (q_vector->itr_val >> 2)),
4199				 new_itr) :
4200			     new_itr;
4201		/* Don't write the value here; it resets the adapter's
4202		 * internal timer, and causes us to delay far longer than
4203		 * we should between interrupts.  Instead, we write the ITR
4204		 * value at the beginning of the next interrupt so the timing
4205		 * ends up being correct.
4206		 */
4207		q_vector->itr_val = new_itr;
4208		q_vector->set_itr = 1;
4209	}
4210}
4211
4212static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4213			    u32 type_tucmd, u32 mss_l4len_idx)
4214{
4215	struct e1000_adv_tx_context_desc *context_desc;
4216	u16 i = tx_ring->next_to_use;
4217
4218	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4219
4220	i++;
4221	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4222
4223	/* set bits to identify this as an advanced context descriptor */
4224	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4225
4226	/* For 82575, context index must be unique per ring. */
4227	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4228		mss_l4len_idx |= tx_ring->reg_idx << 4;
4229
4230	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4231	context_desc->seqnum_seed	= 0;
4232	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4233	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4234}
4235
4236static int igb_tso(struct igb_ring *tx_ring,
4237		   struct igb_tx_buffer *first,
4238		   u8 *hdr_len)
4239{
4240	struct sk_buff *skb = first->skb;
4241	u32 vlan_macip_lens, type_tucmd;
4242	u32 mss_l4len_idx, l4len;
4243
4244	if (skb->ip_summed != CHECKSUM_PARTIAL)
4245		return 0;
4246
4247	if (!skb_is_gso(skb))
4248		return 0;
4249
4250	if (skb_header_cloned(skb)) {
4251		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4252		if (err)
4253			return err;
4254	}
4255
4256	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4257	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4258
4259	if (first->protocol == __constant_htons(ETH_P_IP)) {
4260		struct iphdr *iph = ip_hdr(skb);
4261		iph->tot_len = 0;
4262		iph->check = 0;
4263		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4264							 iph->daddr, 0,
4265							 IPPROTO_TCP,
4266							 0);
4267		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4268		first->tx_flags |= IGB_TX_FLAGS_TSO |
4269				   IGB_TX_FLAGS_CSUM |
4270				   IGB_TX_FLAGS_IPV4;
4271	} else if (skb_is_gso_v6(skb)) {
4272		ipv6_hdr(skb)->payload_len = 0;
4273		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4274						       &ipv6_hdr(skb)->daddr,
4275						       0, IPPROTO_TCP, 0);
4276		first->tx_flags |= IGB_TX_FLAGS_TSO |
4277				   IGB_TX_FLAGS_CSUM;
4278	}
4279
4280	/* compute header lengths */
4281	l4len = tcp_hdrlen(skb);
4282	*hdr_len = skb_transport_offset(skb) + l4len;
4283
4284	/* update gso size and bytecount with header size */
4285	first->gso_segs = skb_shinfo(skb)->gso_segs;
4286	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4287
4288	/* MSS L4LEN IDX */
4289	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4290	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4291
4292	/* VLAN MACLEN IPLEN */
4293	vlan_macip_lens = skb_network_header_len(skb);
4294	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4295	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4296
4297	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4298
4299	return 1;
4300}
4301
4302static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4303{
4304	struct sk_buff *skb = first->skb;
4305	u32 vlan_macip_lens = 0;
4306	u32 mss_l4len_idx = 0;
4307	u32 type_tucmd = 0;
4308
4309	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4310		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4311			return;
4312	} else {
4313		u8 l4_hdr = 0;
4314		switch (first->protocol) {
4315		case __constant_htons(ETH_P_IP):
4316			vlan_macip_lens |= skb_network_header_len(skb);
4317			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4318			l4_hdr = ip_hdr(skb)->protocol;
4319			break;
4320		case __constant_htons(ETH_P_IPV6):
4321			vlan_macip_lens |= skb_network_header_len(skb);
4322			l4_hdr = ipv6_hdr(skb)->nexthdr;
4323			break;
4324		default:
4325			if (unlikely(net_ratelimit())) {
4326				dev_warn(tx_ring->dev,
4327				 "partial checksum but proto=%x!\n",
4328				 first->protocol);
4329			}
4330			break;
4331		}
4332
4333		switch (l4_hdr) {
4334		case IPPROTO_TCP:
4335			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4336			mss_l4len_idx = tcp_hdrlen(skb) <<
4337					E1000_ADVTXD_L4LEN_SHIFT;
4338			break;
4339		case IPPROTO_SCTP:
4340			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4341			mss_l4len_idx = sizeof(struct sctphdr) <<
4342					E1000_ADVTXD_L4LEN_SHIFT;
4343			break;
4344		case IPPROTO_UDP:
4345			mss_l4len_idx = sizeof(struct udphdr) <<
4346					E1000_ADVTXD_L4LEN_SHIFT;
4347			break;
4348		default:
4349			if (unlikely(net_ratelimit())) {
4350				dev_warn(tx_ring->dev,
4351				 "partial checksum but l4 proto=%x!\n",
4352				 l4_hdr);
4353			}
4354			break;
4355		}
4356
4357		/* update TX checksum flag */
4358		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4359	}
4360
4361	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4362	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4363
4364	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4365}
4366
4367#define IGB_SET_FLAG(_input, _flag, _result) \
4368	((_flag <= _result) ? \
4369	 ((u32)(_input & _flag) * (_result / _flag)) : \
4370	 ((u32)(_input & _flag) / (_flag / _result)))
4371
4372static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4373{
4374	/* set type for advanced descriptor with frame checksum insertion */
4375	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4376		       E1000_ADVTXD_DCMD_DEXT |
4377		       E1000_ADVTXD_DCMD_IFCS;
4378
4379	/* set HW vlan bit if vlan is present */
4380	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4381				 (E1000_ADVTXD_DCMD_VLE));
4382
4383	/* set segmentation bits for TSO */
4384	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4385				 (E1000_ADVTXD_DCMD_TSE));
4386
4387	/* set timestamp bit if present */
4388	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4389				 (E1000_ADVTXD_MAC_TSTAMP));
4390
4391	/* insert frame checksum */
4392	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4393
4394	return cmd_type;
4395}
4396
4397static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4398				 union e1000_adv_tx_desc *tx_desc,
4399				 u32 tx_flags, unsigned int paylen)
4400{
4401	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4402
4403	/* 82575 requires a unique index per ring */
4404	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4405		olinfo_status |= tx_ring->reg_idx << 4;
4406
4407	/* insert L4 checksum */
4408	olinfo_status |= IGB_SET_FLAG(tx_flags,
4409				      IGB_TX_FLAGS_CSUM,
4410				      (E1000_TXD_POPTS_TXSM << 8));
4411
4412	/* insert IPv4 checksum */
4413	olinfo_status |= IGB_SET_FLAG(tx_flags,
4414				      IGB_TX_FLAGS_IPV4,
4415				      (E1000_TXD_POPTS_IXSM << 8));
4416
4417	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4418}
4419
4420/*
4421 * The largest size we can write to the descriptor is 65535.  In order to
4422 * maintain a power of two alignment we have to limit ourselves to 32K.
4423 */
4424#define IGB_MAX_TXD_PWR	15
4425#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)
4426
4427static void igb_tx_map(struct igb_ring *tx_ring,
4428		       struct igb_tx_buffer *first,
4429		       const u8 hdr_len)
4430{
4431	struct sk_buff *skb = first->skb;
4432	struct igb_tx_buffer *tx_buffer;
4433	union e1000_adv_tx_desc *tx_desc;
4434	struct skb_frag_struct *frag;
4435	dma_addr_t dma;
4436	unsigned int data_len, size;
4437	u32 tx_flags = first->tx_flags;
4438	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4439	u16 i = tx_ring->next_to_use;
4440
4441	tx_desc = IGB_TX_DESC(tx_ring, i);
4442
4443	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4444
4445	size = skb_headlen(skb);
4446	data_len = skb->data_len;
4447
4448	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4449
4450	tx_buffer = first;
4451
4452	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4453		if (dma_mapping_error(tx_ring->dev, dma))
4454			goto dma_error;
4455
4456		/* record length, and DMA address */
4457		dma_unmap_len_set(tx_buffer, len, size);
4458		dma_unmap_addr_set(tx_buffer, dma, dma);
4459
4460		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4461
4462		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4463			tx_desc->read.cmd_type_len =
4464				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4465
4466			i++;
4467			tx_desc++;
4468			if (i == tx_ring->count) {
4469				tx_desc = IGB_TX_DESC(tx_ring, 0);
4470				i = 0;
4471			}
4472			tx_desc->read.olinfo_status = 0;
4473
4474			dma += IGB_MAX_DATA_PER_TXD;
4475			size -= IGB_MAX_DATA_PER_TXD;
4476
4477			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4478		}
4479
4480		if (likely(!data_len))
4481			break;
4482
4483		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4484
4485		i++;
4486		tx_desc++;
4487		if (i == tx_ring->count) {
4488			tx_desc = IGB_TX_DESC(tx_ring, 0);
4489			i = 0;
4490		}
4491		tx_desc->read.olinfo_status = 0;
4492
4493		size = skb_frag_size(frag);
4494		data_len -= size;
4495
4496		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4497				       size, DMA_TO_DEVICE);
4498
4499		tx_buffer = &tx_ring->tx_buffer_info[i];
4500	}
4501
4502	/* write last descriptor with RS and EOP bits */
4503	cmd_type |= size | IGB_TXD_DCMD;
4504	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4505
4506	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4507
4508	/* set the timestamp */
4509	first->time_stamp = jiffies;
4510
4511	/*
4512	 * Force memory writes to complete before letting h/w know there
4513	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4514	 * memory model archs, such as IA-64).
4515	 *
4516	 * We also need this memory barrier to make certain all of the
4517	 * status bits have been updated before next_to_watch is written.
4518	 */
4519	wmb();
4520
4521	/* set next_to_watch value indicating a packet is present */
4522	first->next_to_watch = tx_desc;
4523
4524	i++;
4525	if (i == tx_ring->count)
4526		i = 0;
4527
4528	tx_ring->next_to_use = i;
4529
4530	writel(i, tx_ring->tail);
4531
4532	/* we need this if more than one processor can write to our tail
4533	 * at a time, it syncronizes IO on IA64/Altix systems */
4534	mmiowb();
4535
4536	return;
4537
4538dma_error:
4539	dev_err(tx_ring->dev, "TX DMA map failed\n");
4540
4541	/* clear dma mappings for failed tx_buffer_info map */
4542	for (;;) {
4543		tx_buffer = &tx_ring->tx_buffer_info[i];
4544		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4545		if (tx_buffer == first)
4546			break;
4547		if (i == 0)
4548			i = tx_ring->count;
4549		i--;
4550	}
4551
4552	tx_ring->next_to_use = i;
4553}
4554
4555static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4556{
4557	struct net_device *netdev = tx_ring->netdev;
4558
4559	netif_stop_subqueue(netdev, tx_ring->queue_index);
4560
4561	/* Herbert's original patch had:
4562	 *  smp_mb__after_netif_stop_queue();
4563	 * but since that doesn't exist yet, just open code it. */
4564	smp_mb();
4565
4566	/* We need to check again in a case another CPU has just
4567	 * made room available. */
4568	if (igb_desc_unused(tx_ring) < size)
4569		return -EBUSY;
4570
4571	/* A reprieve! */
4572	netif_wake_subqueue(netdev, tx_ring->queue_index);
4573
4574	u64_stats_update_begin(&tx_ring->tx_syncp2);
4575	tx_ring->tx_stats.restart_queue2++;
4576	u64_stats_update_end(&tx_ring->tx_syncp2);
4577
4578	return 0;
4579}
4580
4581static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4582{
4583	if (igb_desc_unused(tx_ring) >= size)
4584		return 0;
4585	return __igb_maybe_stop_tx(tx_ring, size);
4586}
4587
4588netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4589				struct igb_ring *tx_ring)
4590{
4591	struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4592	struct igb_tx_buffer *first;
4593	int tso;
4594	u32 tx_flags = 0;
4595	__be16 protocol = vlan_get_protocol(skb);
4596	u8 hdr_len = 0;
4597
4598	/* need: 1 descriptor per page,
4599	 *       + 2 desc gap to keep tail from touching head,
4600	 *       + 1 desc for skb->data,
4601	 *       + 1 desc for context descriptor,
4602	 * otherwise try next time */
4603	if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4604		/* this is a hard error */
4605		return NETDEV_TX_BUSY;
4606	}
4607
4608	/* record the location of the first descriptor for this packet */
4609	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4610	first->skb = skb;
4611	first->bytecount = skb->len;
4612	first->gso_segs = 1;
4613
4614	skb_tx_timestamp(skb);
4615
4616	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4617		     !(adapter->ptp_tx_skb))) {
4618		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4619		tx_flags |= IGB_TX_FLAGS_TSTAMP;
4620
4621		adapter->ptp_tx_skb = skb_get(skb);
4622		adapter->ptp_tx_start = jiffies;
4623		if (adapter->hw.mac.type == e1000_82576)
4624			schedule_work(&adapter->ptp_tx_work);
4625	}
4626
4627	if (vlan_tx_tag_present(skb)) {
4628		tx_flags |= IGB_TX_FLAGS_VLAN;
4629		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4630	}
4631
4632	/* record initial flags and protocol */
4633	first->tx_flags = tx_flags;
4634	first->protocol = protocol;
4635
4636	tso = igb_tso(tx_ring, first, &hdr_len);
4637	if (tso < 0)
4638		goto out_drop;
4639	else if (!tso)
4640		igb_tx_csum(tx_ring, first);
4641
4642	igb_tx_map(tx_ring, first, hdr_len);
4643
4644	/* Make sure there is space in the ring for the next send. */
4645	igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4646
4647	return NETDEV_TX_OK;
4648
4649out_drop:
4650	igb_unmap_and_free_tx_resource(tx_ring, first);
4651
4652	return NETDEV_TX_OK;
4653}
4654
4655static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4656						    struct sk_buff *skb)
4657{
4658	unsigned int r_idx = skb->queue_mapping;
4659
4660	if (r_idx >= adapter->num_tx_queues)
4661		r_idx = r_idx % adapter->num_tx_queues;
4662
4663	return adapter->tx_ring[r_idx];
4664}
4665
4666static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4667				  struct net_device *netdev)
4668{
4669	struct igb_adapter *adapter = netdev_priv(netdev);
4670
4671	if (test_bit(__IGB_DOWN, &adapter->state)) {
4672		dev_kfree_skb_any(skb);
4673		return NETDEV_TX_OK;
4674	}
4675
4676	if (skb->len <= 0) {
4677		dev_kfree_skb_any(skb);
4678		return NETDEV_TX_OK;
4679	}
4680
4681	/*
4682	 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4683	 * in order to meet this minimum size requirement.
4684	 */
4685	if (unlikely(skb->len < 17)) {
4686		if (skb_pad(skb, 17 - skb->len))
4687			return NETDEV_TX_OK;
4688		skb->len = 17;
4689		skb_set_tail_pointer(skb, 17);
4690	}
4691
4692	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4693}
4694
4695/**
4696 * igb_tx_timeout - Respond to a Tx Hang
4697 * @netdev: network interface device structure
4698 **/
4699static void igb_tx_timeout(struct net_device *netdev)
4700{
4701	struct igb_adapter *adapter = netdev_priv(netdev);
4702	struct e1000_hw *hw = &adapter->hw;
4703
4704	/* Do the reset outside of interrupt context */
4705	adapter->tx_timeout_count++;
4706
4707	if (hw->mac.type >= e1000_82580)
4708		hw->dev_spec._82575.global_device_reset = true;
4709
4710	schedule_work(&adapter->reset_task);
4711	wr32(E1000_EICS,
4712	     (adapter->eims_enable_mask & ~adapter->eims_other));
4713}
4714
4715static void igb_reset_task(struct work_struct *work)
4716{
4717	struct igb_adapter *adapter;
4718	adapter = container_of(work, struct igb_adapter, reset_task);
4719
4720	igb_dump(adapter);
4721	netdev_err(adapter->netdev, "Reset adapter\n");
4722	igb_reinit_locked(adapter);
4723}
4724
4725/**
4726 * igb_get_stats64 - Get System Network Statistics
4727 * @netdev: network interface device structure
4728 * @stats: rtnl_link_stats64 pointer
4729 *
4730 **/
4731static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4732						 struct rtnl_link_stats64 *stats)
4733{
4734	struct igb_adapter *adapter = netdev_priv(netdev);
4735
4736	spin_lock(&adapter->stats64_lock);
4737	igb_update_stats(adapter, &adapter->stats64);
4738	memcpy(stats, &adapter->stats64, sizeof(*stats));
4739	spin_unlock(&adapter->stats64_lock);
4740
4741	return stats;
4742}
4743
4744/**
4745 * igb_change_mtu - Change the Maximum Transfer Unit
4746 * @netdev: network interface device structure
4747 * @new_mtu: new value for maximum frame size
4748 *
4749 * Returns 0 on success, negative on failure
4750 **/
4751static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4752{
4753	struct igb_adapter *adapter = netdev_priv(netdev);
4754	struct pci_dev *pdev = adapter->pdev;
4755	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4756
4757	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4758		dev_err(&pdev->dev, "Invalid MTU setting\n");
4759		return -EINVAL;
4760	}
4761
4762#define MAX_STD_JUMBO_FRAME_SIZE 9238
4763	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4764		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4765		return -EINVAL;
4766	}
4767
4768	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4769		msleep(1);
4770
4771	/* igb_down has a dependency on max_frame_size */
4772	adapter->max_frame_size = max_frame;
4773
4774	if (netif_running(netdev))
4775		igb_down(adapter);
4776
4777	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4778		 netdev->mtu, new_mtu);
4779	netdev->mtu = new_mtu;
4780
4781	if (netif_running(netdev))
4782		igb_up(adapter);
4783	else
4784		igb_reset(adapter);
4785
4786	clear_bit(__IGB_RESETTING, &adapter->state);
4787
4788	return 0;
4789}
4790
4791/**
4792 * igb_update_stats - Update the board statistics counters
4793 * @adapter: board private structure
4794 **/
4795
4796void igb_update_stats(struct igb_adapter *adapter,
4797		      struct rtnl_link_stats64 *net_stats)
4798{
4799	struct e1000_hw *hw = &adapter->hw;
4800	struct pci_dev *pdev = adapter->pdev;
4801	u32 reg, mpc;
4802	u16 phy_tmp;
4803	int i;
4804	u64 bytes, packets;
4805	unsigned int start;
4806	u64 _bytes, _packets;
4807
4808#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4809
4810	/*
4811	 * Prevent stats update while adapter is being reset, or if the pci
4812	 * connection is down.
4813	 */
4814	if (adapter->link_speed == 0)
4815		return;
4816	if (pci_channel_offline(pdev))
4817		return;
4818
4819	bytes = 0;
4820	packets = 0;
4821	for (i = 0; i < adapter->num_rx_queues; i++) {
4822		u32 rqdpc = rd32(E1000_RQDPC(i));
4823		struct igb_ring *ring = adapter->rx_ring[i];
4824
4825		if (rqdpc) {
4826			ring->rx_stats.drops += rqdpc;
4827			net_stats->rx_fifo_errors += rqdpc;
4828		}
4829
4830		do {
4831			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4832			_bytes = ring->rx_stats.bytes;
4833			_packets = ring->rx_stats.packets;
4834		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4835		bytes += _bytes;
4836		packets += _packets;
4837	}
4838
4839	net_stats->rx_bytes = bytes;
4840	net_stats->rx_packets = packets;
4841
4842	bytes = 0;
4843	packets = 0;
4844	for (i = 0; i < adapter->num_tx_queues; i++) {
4845		struct igb_ring *ring = adapter->tx_ring[i];
4846		do {
4847			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4848			_bytes = ring->tx_stats.bytes;
4849			_packets = ring->tx_stats.packets;
4850		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4851		bytes += _bytes;
4852		packets += _packets;
4853	}
4854	net_stats->tx_bytes = bytes;
4855	net_stats->tx_packets = packets;
4856
4857	/* read stats registers */
4858	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4859	adapter->stats.gprc += rd32(E1000_GPRC);
4860	adapter->stats.gorc += rd32(E1000_GORCL);
4861	rd32(E1000_GORCH); /* clear GORCL */
4862	adapter->stats.bprc += rd32(E1000_BPRC);
4863	adapter->stats.mprc += rd32(E1000_MPRC);
4864	adapter->stats.roc += rd32(E1000_ROC);
4865
4866	adapter->stats.prc64 += rd32(E1000_PRC64);
4867	adapter->stats.prc127 += rd32(E1000_PRC127);
4868	adapter->stats.prc255 += rd32(E1000_PRC255);
4869	adapter->stats.prc511 += rd32(E1000_PRC511);
4870	adapter->stats.prc1023 += rd32(E1000_PRC1023);
4871	adapter->stats.prc1522 += rd32(E1000_PRC1522);
4872	adapter->stats.symerrs += rd32(E1000_SYMERRS);
4873	adapter->stats.sec += rd32(E1000_SEC);
4874
4875	mpc = rd32(E1000_MPC);
4876	adapter->stats.mpc += mpc;
4877	net_stats->rx_fifo_errors += mpc;
4878	adapter->stats.scc += rd32(E1000_SCC);
4879	adapter->stats.ecol += rd32(E1000_ECOL);
4880	adapter->stats.mcc += rd32(E1000_MCC);
4881	adapter->stats.latecol += rd32(E1000_LATECOL);
4882	adapter->stats.dc += rd32(E1000_DC);
4883	adapter->stats.rlec += rd32(E1000_RLEC);
4884	adapter->stats.xonrxc += rd32(E1000_XONRXC);
4885	adapter->stats.xontxc += rd32(E1000_XONTXC);
4886	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4887	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4888	adapter->stats.fcruc += rd32(E1000_FCRUC);
4889	adapter->stats.gptc += rd32(E1000_GPTC);
4890	adapter->stats.gotc += rd32(E1000_GOTCL);
4891	rd32(E1000_GOTCH); /* clear GOTCL */
4892	adapter->stats.rnbc += rd32(E1000_RNBC);
4893	adapter->stats.ruc += rd32(E1000_RUC);
4894	adapter->stats.rfc += rd32(E1000_RFC);
4895	adapter->stats.rjc += rd32(E1000_RJC);
4896	adapter->stats.tor += rd32(E1000_TORH);
4897	adapter->stats.tot += rd32(E1000_TOTH);
4898	adapter->stats.tpr += rd32(E1000_TPR);
4899
4900	adapter->stats.ptc64 += rd32(E1000_PTC64);
4901	adapter->stats.ptc127 += rd32(E1000_PTC127);
4902	adapter->stats.ptc255 += rd32(E1000_PTC255);
4903	adapter->stats.ptc511 += rd32(E1000_PTC511);
4904	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4905	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4906
4907	adapter->stats.mptc += rd32(E1000_MPTC);
4908	adapter->stats.bptc += rd32(E1000_BPTC);
4909
4910	adapter->stats.tpt += rd32(E1000_TPT);
4911	adapter->stats.colc += rd32(E1000_COLC);
4912
4913	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4914	/* read internal phy specific stats */
4915	reg = rd32(E1000_CTRL_EXT);
4916	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4917		adapter->stats.rxerrc += rd32(E1000_RXERRC);
4918
4919		/* this stat has invalid values on i210/i211 */
4920		if ((hw->mac.type != e1000_i210) &&
4921		    (hw->mac.type != e1000_i211))
4922			adapter->stats.tncrs += rd32(E1000_TNCRS);
4923	}
4924
4925	adapter->stats.tsctc += rd32(E1000_TSCTC);
4926	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4927
4928	adapter->stats.iac += rd32(E1000_IAC);
4929	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4930	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4931	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4932	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4933	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4934	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4935	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4936	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4937
4938	/* Fill out the OS statistics structure */
4939	net_stats->multicast = adapter->stats.mprc;
4940	net_stats->collisions = adapter->stats.colc;
4941
4942	/* Rx Errors */
4943
4944	/* RLEC on some newer hardware can be incorrect so build
4945	 * our own version based on RUC and ROC */
4946	net_stats->rx_errors = adapter->stats.rxerrc +
4947		adapter->stats.crcerrs + adapter->stats.algnerrc +
4948		adapter->stats.ruc + adapter->stats.roc +
4949		adapter->stats.cexterr;
4950	net_stats->rx_length_errors = adapter->stats.ruc +
4951				      adapter->stats.roc;
4952	net_stats->rx_crc_errors = adapter->stats.crcerrs;
4953	net_stats->rx_frame_errors = adapter->stats.algnerrc;
4954	net_stats->rx_missed_errors = adapter->stats.mpc;
4955
4956	/* Tx Errors */
4957	net_stats->tx_errors = adapter->stats.ecol +
4958			       adapter->stats.latecol;
4959	net_stats->tx_aborted_errors = adapter->stats.ecol;
4960	net_stats->tx_window_errors = adapter->stats.latecol;
4961	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4962
4963	/* Tx Dropped needs to be maintained elsewhere */
4964
4965	/* Phy Stats */
4966	if (hw->phy.media_type == e1000_media_type_copper) {
4967		if ((adapter->link_speed == SPEED_1000) &&
4968		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4969			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4970			adapter->phy_stats.idle_errors += phy_tmp;
4971		}
4972	}
4973
4974	/* Management Stats */
4975	adapter->stats.mgptc += rd32(E1000_MGTPTC);
4976	adapter->stats.mgprc += rd32(E1000_MGTPRC);
4977	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4978
4979	/* OS2BMC Stats */
4980	reg = rd32(E1000_MANC);
4981	if (reg & E1000_MANC_EN_BMC2OS) {
4982		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4983		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4984		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4985		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4986	}
4987}
4988
4989static irqreturn_t igb_msix_other(int irq, void *data)
4990{
4991	struct igb_adapter *adapter = data;
4992	struct e1000_hw *hw = &adapter->hw;
4993	u32 icr = rd32(E1000_ICR);
4994	/* reading ICR causes bit 31 of EICR to be cleared */
4995
4996	if (icr & E1000_ICR_DRSTA)
4997		schedule_work(&adapter->reset_task);
4998
4999	if (icr & E1000_ICR_DOUTSYNC) {
5000		/* HW is reporting DMA is out of sync */
5001		adapter->stats.doosync++;
5002		/* The DMA Out of Sync is also indication of a spoof event
5003		 * in IOV mode. Check the Wrong VM Behavior register to
5004		 * see if it is really a spoof event. */
5005		igb_check_wvbr(adapter);
5006	}
5007
5008	/* Check for a mailbox event */
5009	if (icr & E1000_ICR_VMMB)
5010		igb_msg_task(adapter);
5011
5012	if (icr & E1000_ICR_LSC) {
5013		hw->mac.get_link_status = 1;
5014		/* guard against interrupt when we're going down */
5015		if (!test_bit(__IGB_DOWN, &adapter->state))
5016			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5017	}
5018
5019	if (icr & E1000_ICR_TS) {
5020		u32 tsicr = rd32(E1000_TSICR);
5021
5022		if (tsicr & E1000_TSICR_TXTS) {
5023			/* acknowledge the interrupt */
5024			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5025			/* retrieve hardware timestamp */
5026			schedule_work(&adapter->ptp_tx_work);
5027		}
5028	}
5029
5030	wr32(E1000_EIMS, adapter->eims_other);
5031
5032	return IRQ_HANDLED;
5033}
5034
5035static void igb_write_itr(struct igb_q_vector *q_vector)
5036{
5037	struct igb_adapter *adapter = q_vector->adapter;
5038	u32 itr_val = q_vector->itr_val & 0x7FFC;
5039
5040	if (!q_vector->set_itr)
5041		return;
5042
5043	if (!itr_val)
5044		itr_val = 0x4;
5045
5046	if (adapter->hw.mac.type == e1000_82575)
5047		itr_val |= itr_val << 16;
5048	else
5049		itr_val |= E1000_EITR_CNT_IGNR;
5050
5051	writel(itr_val, q_vector->itr_register);
5052	q_vector->set_itr = 0;
5053}
5054
5055static irqreturn_t igb_msix_ring(int irq, void *data)
5056{
5057	struct igb_q_vector *q_vector = data;
5058
5059	/* Write the ITR value calculated from the previous interrupt. */
5060	igb_write_itr(q_vector);
5061
5062	napi_schedule(&q_vector->napi);
5063
5064	return IRQ_HANDLED;
5065}
5066
5067#ifdef CONFIG_IGB_DCA
5068static void igb_update_tx_dca(struct igb_adapter *adapter,
5069			      struct igb_ring *tx_ring,
5070			      int cpu)
5071{
5072	struct e1000_hw *hw = &adapter->hw;
5073	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5074
5075	if (hw->mac.type != e1000_82575)
5076		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5077
5078	/*
5079	 * We can enable relaxed ordering for reads, but not writes when
5080	 * DCA is enabled.  This is due to a known issue in some chipsets
5081	 * which will cause the DCA tag to be cleared.
5082	 */
5083	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5084		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5085		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5086
5087	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5088}
5089
5090static void igb_update_rx_dca(struct igb_adapter *adapter,
5091			      struct igb_ring *rx_ring,
5092			      int cpu)
5093{
5094	struct e1000_hw *hw = &adapter->hw;
5095	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5096
5097	if (hw->mac.type != e1000_82575)
5098		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5099
5100	/*
5101	 * We can enable relaxed ordering for reads, but not writes when
5102	 * DCA is enabled.  This is due to a known issue in some chipsets
5103	 * which will cause the DCA tag to be cleared.
5104	 */
5105	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5106		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5107
5108	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5109}
5110
5111static void igb_update_dca(struct igb_q_vector *q_vector)
5112{
5113	struct igb_adapter *adapter = q_vector->adapter;
5114	int cpu = get_cpu();
5115
5116	if (q_vector->cpu == cpu)
5117		goto out_no_update;
5118
5119	if (q_vector->tx.ring)
5120		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5121
5122	if (q_vector->rx.ring)
5123		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5124
5125	q_vector->cpu = cpu;
5126out_no_update:
5127	put_cpu();
5128}
5129
5130static void igb_setup_dca(struct igb_adapter *adapter)
5131{
5132	struct e1000_hw *hw = &adapter->hw;
5133	int i;
5134
5135	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5136		return;
5137
5138	/* Always use CB2 mode, difference is masked in the CB driver. */
5139	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5140
5141	for (i = 0; i < adapter->num_q_vectors; i++) {
5142		adapter->q_vector[i]->cpu = -1;
5143		igb_update_dca(adapter->q_vector[i]);
5144	}
5145}
5146
5147static int __igb_notify_dca(struct device *dev, void *data)
5148{
5149	struct net_device *netdev = dev_get_drvdata(dev);
5150	struct igb_adapter *adapter = netdev_priv(netdev);
5151	struct pci_dev *pdev = adapter->pdev;
5152	struct e1000_hw *hw = &adapter->hw;
5153	unsigned long event = *(unsigned long *)data;
5154
5155	switch (event) {
5156	case DCA_PROVIDER_ADD:
5157		/* if already enabled, don't do it again */
5158		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5159			break;
5160		if (dca_add_requester(dev) == 0) {
5161			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5162			dev_info(&pdev->dev, "DCA enabled\n");
5163			igb_setup_dca(adapter);
5164			break;
5165		}
5166		/* Fall Through since DCA is disabled. */
5167	case DCA_PROVIDER_REMOVE:
5168		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5169			/* without this a class_device is left
5170			 * hanging around in the sysfs model */
5171			dca_remove_requester(dev);
5172			dev_info(&pdev->dev, "DCA disabled\n");
5173			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5174			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5175		}
5176		break;
5177	}
5178
5179	return 0;
5180}
5181
5182static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5183                          void *p)
5184{
5185	int ret_val;
5186
5187	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5188	                                 __igb_notify_dca);
5189
5190	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5191}
5192#endif /* CONFIG_IGB_DCA */
5193
5194#ifdef CONFIG_PCI_IOV
5195static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5196{
5197	unsigned char mac_addr[ETH_ALEN];
5198
5199	eth_zero_addr(mac_addr);
5200	igb_set_vf_mac(adapter, vf, mac_addr);
5201
5202	return 0;
5203}
5204
5205static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
5206{
5207	struct pci_dev *pdev = adapter->pdev;
5208	struct pci_dev *vfdev;
5209	int dev_id;
5210
5211	switch (adapter->hw.mac.type) {
5212	case e1000_82576:
5213		dev_id = IGB_82576_VF_DEV_ID;
5214		break;
5215	case e1000_i350:
5216		dev_id = IGB_I350_VF_DEV_ID;
5217		break;
5218	default:
5219		return false;
5220	}
5221
5222	/* loop through all the VFs to see if we own any that are assigned */
5223	vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
5224	while (vfdev) {
5225		/* if we don't own it we don't care */
5226		if (vfdev->is_virtfn && vfdev->physfn == pdev) {
5227			/* if it is assigned we cannot release it */
5228			if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
5229				return true;
5230		}
5231
5232		vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
5233	}
5234
5235	return false;
5236}
5237
5238#endif
5239static void igb_ping_all_vfs(struct igb_adapter *adapter)
5240{
5241	struct e1000_hw *hw = &adapter->hw;
5242	u32 ping;
5243	int i;
5244
5245	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5246		ping = E1000_PF_CONTROL_MSG;
5247		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5248			ping |= E1000_VT_MSGTYPE_CTS;
5249		igb_write_mbx(hw, &ping, 1, i);
5250	}
5251}
5252
5253static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5254{
5255	struct e1000_hw *hw = &adapter->hw;
5256	u32 vmolr = rd32(E1000_VMOLR(vf));
5257	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5258
5259	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5260	                    IGB_VF_FLAG_MULTI_PROMISC);
5261	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5262
5263	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5264		vmolr |= E1000_VMOLR_MPME;
5265		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5266		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5267	} else {
5268		/*
5269		 * if we have hashes and we are clearing a multicast promisc
5270		 * flag we need to write the hashes to the MTA as this step
5271		 * was previously skipped
5272		 */
5273		if (vf_data->num_vf_mc_hashes > 30) {
5274			vmolr |= E1000_VMOLR_MPME;
5275		} else if (vf_data->num_vf_mc_hashes) {
5276			int j;
5277			vmolr |= E1000_VMOLR_ROMPE;
5278			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5279				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5280		}
5281	}
5282
5283	wr32(E1000_VMOLR(vf), vmolr);
5284
5285	/* there are flags left unprocessed, likely not supported */
5286	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5287		return -EINVAL;
5288
5289	return 0;
5290
5291}
5292
5293static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5294				  u32 *msgbuf, u32 vf)
5295{
5296	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5297	u16 *hash_list = (u16 *)&msgbuf[1];
5298	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5299	int i;
5300
5301	/* salt away the number of multicast addresses assigned
5302	 * to this VF for later use to restore when the PF multi cast
5303	 * list changes
5304	 */
5305	vf_data->num_vf_mc_hashes = n;
5306
5307	/* only up to 30 hash values supported */
5308	if (n > 30)
5309		n = 30;
5310
5311	/* store the hashes for later use */
5312	for (i = 0; i < n; i++)
5313		vf_data->vf_mc_hashes[i] = hash_list[i];
5314
5315	/* Flush and reset the mta with the new values */
5316	igb_set_rx_mode(adapter->netdev);
5317
5318	return 0;
5319}
5320
5321static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5322{
5323	struct e1000_hw *hw = &adapter->hw;
5324	struct vf_data_storage *vf_data;
5325	int i, j;
5326
5327	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5328		u32 vmolr = rd32(E1000_VMOLR(i));
5329		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5330
5331		vf_data = &adapter->vf_data[i];
5332
5333		if ((vf_data->num_vf_mc_hashes > 30) ||
5334		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5335			vmolr |= E1000_VMOLR_MPME;
5336		} else if (vf_data->num_vf_mc_hashes) {
5337			vmolr |= E1000_VMOLR_ROMPE;
5338			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5339				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5340		}
5341		wr32(E1000_VMOLR(i), vmolr);
5342	}
5343}
5344
5345static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5346{
5347	struct e1000_hw *hw = &adapter->hw;
5348	u32 pool_mask, reg, vid;
5349	int i;
5350
5351	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5352
5353	/* Find the vlan filter for this id */
5354	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5355		reg = rd32(E1000_VLVF(i));
5356
5357		/* remove the vf from the pool */
5358		reg &= ~pool_mask;
5359
5360		/* if pool is empty then remove entry from vfta */
5361		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5362		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5363			reg = 0;
5364			vid = reg & E1000_VLVF_VLANID_MASK;
5365			igb_vfta_set(hw, vid, false);
5366		}
5367
5368		wr32(E1000_VLVF(i), reg);
5369	}
5370
5371	adapter->vf_data[vf].vlans_enabled = 0;
5372}
5373
5374static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5375{
5376	struct e1000_hw *hw = &adapter->hw;
5377	u32 reg, i;
5378
5379	/* The vlvf table only exists on 82576 hardware and newer */
5380	if (hw->mac.type < e1000_82576)
5381		return -1;
5382
5383	/* we only need to do this if VMDq is enabled */
5384	if (!adapter->vfs_allocated_count)
5385		return -1;
5386
5387	/* Find the vlan filter for this id */
5388	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5389		reg = rd32(E1000_VLVF(i));
5390		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5391		    vid == (reg & E1000_VLVF_VLANID_MASK))
5392			break;
5393	}
5394
5395	if (add) {
5396		if (i == E1000_VLVF_ARRAY_SIZE) {
5397			/* Did not find a matching VLAN ID entry that was
5398			 * enabled.  Search for a free filter entry, i.e.
5399			 * one without the enable bit set
5400			 */
5401			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5402				reg = rd32(E1000_VLVF(i));
5403				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5404					break;
5405			}
5406		}
5407		if (i < E1000_VLVF_ARRAY_SIZE) {
5408			/* Found an enabled/available entry */
5409			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5410
5411			/* if !enabled we need to set this up in vfta */
5412			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5413				/* add VID to filter table */
5414				igb_vfta_set(hw, vid, true);
5415				reg |= E1000_VLVF_VLANID_ENABLE;
5416			}
5417			reg &= ~E1000_VLVF_VLANID_MASK;
5418			reg |= vid;
5419			wr32(E1000_VLVF(i), reg);
5420
5421			/* do not modify RLPML for PF devices */
5422			if (vf >= adapter->vfs_allocated_count)
5423				return 0;
5424
5425			if (!adapter->vf_data[vf].vlans_enabled) {
5426				u32 size;
5427				reg = rd32(E1000_VMOLR(vf));
5428				size = reg & E1000_VMOLR_RLPML_MASK;
5429				size += 4;
5430				reg &= ~E1000_VMOLR_RLPML_MASK;
5431				reg |= size;
5432				wr32(E1000_VMOLR(vf), reg);
5433			}
5434
5435			adapter->vf_data[vf].vlans_enabled++;
5436		}
5437	} else {
5438		if (i < E1000_VLVF_ARRAY_SIZE) {
5439			/* remove vf from the pool */
5440			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5441			/* if pool is empty then remove entry from vfta */
5442			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5443				reg = 0;
5444				igb_vfta_set(hw, vid, false);
5445			}
5446			wr32(E1000_VLVF(i), reg);
5447
5448			/* do not modify RLPML for PF devices */
5449			if (vf >= adapter->vfs_allocated_count)
5450				return 0;
5451
5452			adapter->vf_data[vf].vlans_enabled--;
5453			if (!adapter->vf_data[vf].vlans_enabled) {
5454				u32 size;
5455				reg = rd32(E1000_VMOLR(vf));
5456				size = reg & E1000_VMOLR_RLPML_MASK;
5457				size -= 4;
5458				reg &= ~E1000_VMOLR_RLPML_MASK;
5459				reg |= size;
5460				wr32(E1000_VMOLR(vf), reg);
5461			}
5462		}
5463	}
5464	return 0;
5465}
5466
5467static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5468{
5469	struct e1000_hw *hw = &adapter->hw;
5470
5471	if (vid)
5472		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5473	else
5474		wr32(E1000_VMVIR(vf), 0);
5475}
5476
5477static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5478			       int vf, u16 vlan, u8 qos)
5479{
5480	int err = 0;
5481	struct igb_adapter *adapter = netdev_priv(netdev);
5482
5483	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5484		return -EINVAL;
5485	if (vlan || qos) {
5486		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5487		if (err)
5488			goto out;
5489		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5490		igb_set_vmolr(adapter, vf, !vlan);
5491		adapter->vf_data[vf].pf_vlan = vlan;
5492		adapter->vf_data[vf].pf_qos = qos;
5493		dev_info(&adapter->pdev->dev,
5494			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5495		if (test_bit(__IGB_DOWN, &adapter->state)) {
5496			dev_warn(&adapter->pdev->dev,
5497				 "The VF VLAN has been set,"
5498				 " but the PF device is not up.\n");
5499			dev_warn(&adapter->pdev->dev,
5500				 "Bring the PF device up before"
5501				 " attempting to use the VF device.\n");
5502		}
5503	} else {
5504		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5505				   false, vf);
5506		igb_set_vmvir(adapter, vlan, vf);
5507		igb_set_vmolr(adapter, vf, true);
5508		adapter->vf_data[vf].pf_vlan = 0;
5509		adapter->vf_data[vf].pf_qos = 0;
5510       }
5511out:
5512       return err;
5513}
5514
5515static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5516{
5517	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5518	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5519
5520	return igb_vlvf_set(adapter, vid, add, vf);
5521}
5522
5523static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5524{
5525	/* clear flags - except flag that indicates PF has set the MAC */
5526	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5527	adapter->vf_data[vf].last_nack = jiffies;
5528
5529	/* reset offloads to defaults */
5530	igb_set_vmolr(adapter, vf, true);
5531
5532	/* reset vlans for device */
5533	igb_clear_vf_vfta(adapter, vf);
5534	if (adapter->vf_data[vf].pf_vlan)
5535		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5536				    adapter->vf_data[vf].pf_vlan,
5537				    adapter->vf_data[vf].pf_qos);
5538	else
5539		igb_clear_vf_vfta(adapter, vf);
5540
5541	/* reset multicast table array for vf */
5542	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5543
5544	/* Flush and reset the mta with the new values */
5545	igb_set_rx_mode(adapter->netdev);
5546}
5547
5548static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5549{
5550	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5551
5552	/* clear mac address as we were hotplug removed/added */
5553	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5554		eth_zero_addr(vf_mac);
5555
5556	/* process remaining reset events */
5557	igb_vf_reset(adapter, vf);
5558}
5559
5560static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5561{
5562	struct e1000_hw *hw = &adapter->hw;
5563	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5564	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5565	u32 reg, msgbuf[3];
5566	u8 *addr = (u8 *)(&msgbuf[1]);
5567
5568	/* process all the same items cleared in a function level reset */
5569	igb_vf_reset(adapter, vf);
5570
5571	/* set vf mac address */
5572	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5573
5574	/* enable transmit and receive for vf */
5575	reg = rd32(E1000_VFTE);
5576	wr32(E1000_VFTE, reg | (1 << vf));
5577	reg = rd32(E1000_VFRE);
5578	wr32(E1000_VFRE, reg | (1 << vf));
5579
5580	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5581
5582	/* reply to reset with ack and vf mac address */
5583	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5584	memcpy(addr, vf_mac, 6);
5585	igb_write_mbx(hw, msgbuf, 3, vf);
5586}
5587
5588static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5589{
5590	/*
5591	 * The VF MAC Address is stored in a packed array of bytes
5592	 * starting at the second 32 bit word of the msg array
5593	 */
5594	unsigned char *addr = (char *)&msg[1];
5595	int err = -1;
5596
5597	if (is_valid_ether_addr(addr))
5598		err = igb_set_vf_mac(adapter, vf, addr);
5599
5600	return err;
5601}
5602
5603static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5604{
5605	struct e1000_hw *hw = &adapter->hw;
5606	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5607	u32 msg = E1000_VT_MSGTYPE_NACK;
5608
5609	/* if device isn't clear to send it shouldn't be reading either */
5610	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5611	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5612		igb_write_mbx(hw, &msg, 1, vf);
5613		vf_data->last_nack = jiffies;
5614	}
5615}
5616
5617static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5618{
5619	struct pci_dev *pdev = adapter->pdev;
5620	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5621	struct e1000_hw *hw = &adapter->hw;
5622	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5623	s32 retval;
5624
5625	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5626
5627	if (retval) {
5628		/* if receive failed revoke VF CTS stats and restart init */
5629		dev_err(&pdev->dev, "Error receiving message from VF\n");
5630		vf_data->flags &= ~IGB_VF_FLAG_CTS;
5631		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5632			return;
5633		goto out;
5634	}
5635
5636	/* this is a message we already processed, do nothing */
5637	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5638		return;
5639
5640	/*
5641	 * until the vf completes a reset it should not be
5642	 * allowed to start any configuration.
5643	 */
5644
5645	if (msgbuf[0] == E1000_VF_RESET) {
5646		igb_vf_reset_msg(adapter, vf);
5647		return;
5648	}
5649
5650	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5651		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5652			return;
5653		retval = -1;
5654		goto out;
5655	}
5656
5657	switch ((msgbuf[0] & 0xFFFF)) {
5658	case E1000_VF_SET_MAC_ADDR:
5659		retval = -EINVAL;
5660		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5661			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5662		else
5663			dev_warn(&pdev->dev,
5664				 "VF %d attempted to override administratively "
5665				 "set MAC address\nReload the VF driver to "
5666				 "resume operations\n", vf);
5667		break;
5668	case E1000_VF_SET_PROMISC:
5669		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5670		break;
5671	case E1000_VF_SET_MULTICAST:
5672		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5673		break;
5674	case E1000_VF_SET_LPE:
5675		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5676		break;
5677	case E1000_VF_SET_VLAN:
5678		retval = -1;
5679		if (vf_data->pf_vlan)
5680			dev_warn(&pdev->dev,
5681				 "VF %d attempted to override administratively "
5682				 "set VLAN tag\nReload the VF driver to "
5683				 "resume operations\n", vf);
5684		else
5685			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5686		break;
5687	default:
5688		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5689		retval = -1;
5690		break;
5691	}
5692
5693	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5694out:
5695	/* notify the VF of the results of what it sent us */
5696	if (retval)
5697		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5698	else
5699		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5700
5701	igb_write_mbx(hw, msgbuf, 1, vf);
5702}
5703
5704static void igb_msg_task(struct igb_adapter *adapter)
5705{
5706	struct e1000_hw *hw = &adapter->hw;
5707	u32 vf;
5708
5709	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5710		/* process any reset requests */
5711		if (!igb_check_for_rst(hw, vf))
5712			igb_vf_reset_event(adapter, vf);
5713
5714		/* process any messages pending */
5715		if (!igb_check_for_msg(hw, vf))
5716			igb_rcv_msg_from_vf(adapter, vf);
5717
5718		/* process any acks */
5719		if (!igb_check_for_ack(hw, vf))
5720			igb_rcv_ack_from_vf(adapter, vf);
5721	}
5722}
5723
5724/**
5725 *  igb_set_uta - Set unicast filter table address
5726 *  @adapter: board private structure
5727 *
5728 *  The unicast table address is a register array of 32-bit registers.
5729 *  The table is meant to be used in a way similar to how the MTA is used
5730 *  however due to certain limitations in the hardware it is necessary to
5731 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5732 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5733 **/
5734static void igb_set_uta(struct igb_adapter *adapter)
5735{
5736	struct e1000_hw *hw = &adapter->hw;
5737	int i;
5738
5739	/* The UTA table only exists on 82576 hardware and newer */
5740	if (hw->mac.type < e1000_82576)
5741		return;
5742
5743	/* we only need to do this if VMDq is enabled */
5744	if (!adapter->vfs_allocated_count)
5745		return;
5746
5747	for (i = 0; i < hw->mac.uta_reg_count; i++)
5748		array_wr32(E1000_UTA, i, ~0);
5749}
5750
5751/**
5752 * igb_intr_msi - Interrupt Handler
5753 * @irq: interrupt number
5754 * @data: pointer to a network interface device structure
5755 **/
5756static irqreturn_t igb_intr_msi(int irq, void *data)
5757{
5758	struct igb_adapter *adapter = data;
5759	struct igb_q_vector *q_vector = adapter->q_vector[0];
5760	struct e1000_hw *hw = &adapter->hw;
5761	/* read ICR disables interrupts using IAM */
5762	u32 icr = rd32(E1000_ICR);
5763
5764	igb_write_itr(q_vector);
5765
5766	if (icr & E1000_ICR_DRSTA)
5767		schedule_work(&adapter->reset_task);
5768
5769	if (icr & E1000_ICR_DOUTSYNC) {
5770		/* HW is reporting DMA is out of sync */
5771		adapter->stats.doosync++;
5772	}
5773
5774	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5775		hw->mac.get_link_status = 1;
5776		if (!test_bit(__IGB_DOWN, &adapter->state))
5777			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5778	}
5779
5780	if (icr & E1000_ICR_TS) {
5781		u32 tsicr = rd32(E1000_TSICR);
5782
5783		if (tsicr & E1000_TSICR_TXTS) {
5784			/* acknowledge the interrupt */
5785			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5786			/* retrieve hardware timestamp */
5787			schedule_work(&adapter->ptp_tx_work);
5788		}
5789	}
5790
5791	napi_schedule(&q_vector->napi);
5792
5793	return IRQ_HANDLED;
5794}
5795
5796/**
5797 * igb_intr - Legacy Interrupt Handler
5798 * @irq: interrupt number
5799 * @data: pointer to a network interface device structure
5800 **/
5801static irqreturn_t igb_intr(int irq, void *data)
5802{
5803	struct igb_adapter *adapter = data;
5804	struct igb_q_vector *q_vector = adapter->q_vector[0];
5805	struct e1000_hw *hw = &adapter->hw;
5806	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5807	 * need for the IMC write */
5808	u32 icr = rd32(E1000_ICR);
5809
5810	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5811	 * not set, then the adapter didn't send an interrupt */
5812	if (!(icr & E1000_ICR_INT_ASSERTED))
5813		return IRQ_NONE;
5814
5815	igb_write_itr(q_vector);
5816
5817	if (icr & E1000_ICR_DRSTA)
5818		schedule_work(&adapter->reset_task);
5819
5820	if (icr & E1000_ICR_DOUTSYNC) {
5821		/* HW is reporting DMA is out of sync */
5822		adapter->stats.doosync++;
5823	}
5824
5825	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5826		hw->mac.get_link_status = 1;
5827		/* guard against interrupt when we're going down */
5828		if (!test_bit(__IGB_DOWN, &adapter->state))
5829			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5830	}
5831
5832	if (icr & E1000_ICR_TS) {
5833		u32 tsicr = rd32(E1000_TSICR);
5834
5835		if (tsicr & E1000_TSICR_TXTS) {
5836			/* acknowledge the interrupt */
5837			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5838			/* retrieve hardware timestamp */
5839			schedule_work(&adapter->ptp_tx_work);
5840		}
5841	}
5842
5843	napi_schedule(&q_vector->napi);
5844
5845	return IRQ_HANDLED;
5846}
5847
5848static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5849{
5850	struct igb_adapter *adapter = q_vector->adapter;
5851	struct e1000_hw *hw = &adapter->hw;
5852
5853	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5854	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5855		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5856			igb_set_itr(q_vector);
5857		else
5858			igb_update_ring_itr(q_vector);
5859	}
5860
5861	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5862		if (adapter->msix_entries)
5863			wr32(E1000_EIMS, q_vector->eims_value);
5864		else
5865			igb_irq_enable(adapter);
5866	}
5867}
5868
5869/**
5870 * igb_poll - NAPI Rx polling callback
5871 * @napi: napi polling structure
5872 * @budget: count of how many packets we should handle
5873 **/
5874static int igb_poll(struct napi_struct *napi, int budget)
5875{
5876	struct igb_q_vector *q_vector = container_of(napi,
5877	                                             struct igb_q_vector,
5878	                                             napi);
5879	bool clean_complete = true;
5880
5881#ifdef CONFIG_IGB_DCA
5882	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5883		igb_update_dca(q_vector);
5884#endif
5885	if (q_vector->tx.ring)
5886		clean_complete = igb_clean_tx_irq(q_vector);
5887
5888	if (q_vector->rx.ring)
5889		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5890
5891	/* If all work not completed, return budget and keep polling */
5892	if (!clean_complete)
5893		return budget;
5894
5895	/* If not enough Rx work done, exit the polling mode */
5896	napi_complete(napi);
5897	igb_ring_irq_enable(q_vector);
5898
5899	return 0;
5900}
5901
5902/**
5903 * igb_clean_tx_irq - Reclaim resources after transmit completes
5904 * @q_vector: pointer to q_vector containing needed info
5905 *
5906 * returns true if ring is completely cleaned
5907 **/
5908static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5909{
5910	struct igb_adapter *adapter = q_vector->adapter;
5911	struct igb_ring *tx_ring = q_vector->tx.ring;
5912	struct igb_tx_buffer *tx_buffer;
5913	union e1000_adv_tx_desc *tx_desc;
5914	unsigned int total_bytes = 0, total_packets = 0;
5915	unsigned int budget = q_vector->tx.work_limit;
5916	unsigned int i = tx_ring->next_to_clean;
5917
5918	if (test_bit(__IGB_DOWN, &adapter->state))
5919		return true;
5920
5921	tx_buffer = &tx_ring->tx_buffer_info[i];
5922	tx_desc = IGB_TX_DESC(tx_ring, i);
5923	i -= tx_ring->count;
5924
5925	do {
5926		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5927
5928		/* if next_to_watch is not set then there is no work pending */
5929		if (!eop_desc)
5930			break;
5931
5932		/* prevent any other reads prior to eop_desc */
5933		read_barrier_depends();
5934
5935		/* if DD is not set pending work has not been completed */
5936		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5937			break;
5938
5939		/* clear next_to_watch to prevent false hangs */
5940		tx_buffer->next_to_watch = NULL;
5941
5942		/* update the statistics for this packet */
5943		total_bytes += tx_buffer->bytecount;
5944		total_packets += tx_buffer->gso_segs;
5945
5946		/* free the skb */
5947		dev_kfree_skb_any(tx_buffer->skb);
5948
5949		/* unmap skb header data */
5950		dma_unmap_single(tx_ring->dev,
5951				 dma_unmap_addr(tx_buffer, dma),
5952				 dma_unmap_len(tx_buffer, len),
5953				 DMA_TO_DEVICE);
5954
5955		/* clear tx_buffer data */
5956		tx_buffer->skb = NULL;
5957		dma_unmap_len_set(tx_buffer, len, 0);
5958
5959		/* clear last DMA location and unmap remaining buffers */
5960		while (tx_desc != eop_desc) {
5961			tx_buffer++;
5962			tx_desc++;
5963			i++;
5964			if (unlikely(!i)) {
5965				i -= tx_ring->count;
5966				tx_buffer = tx_ring->tx_buffer_info;
5967				tx_desc = IGB_TX_DESC(tx_ring, 0);
5968			}
5969
5970			/* unmap any remaining paged data */
5971			if (dma_unmap_len(tx_buffer, len)) {
5972				dma_unmap_page(tx_ring->dev,
5973					       dma_unmap_addr(tx_buffer, dma),
5974					       dma_unmap_len(tx_buffer, len),
5975					       DMA_TO_DEVICE);
5976				dma_unmap_len_set(tx_buffer, len, 0);
5977			}
5978		}
5979
5980		/* move us one more past the eop_desc for start of next pkt */
5981		tx_buffer++;
5982		tx_desc++;
5983		i++;
5984		if (unlikely(!i)) {
5985			i -= tx_ring->count;
5986			tx_buffer = tx_ring->tx_buffer_info;
5987			tx_desc = IGB_TX_DESC(tx_ring, 0);
5988		}
5989
5990		/* issue prefetch for next Tx descriptor */
5991		prefetch(tx_desc);
5992
5993		/* update budget accounting */
5994		budget--;
5995	} while (likely(budget));
5996
5997	netdev_tx_completed_queue(txring_txq(tx_ring),
5998				  total_packets, total_bytes);
5999	i += tx_ring->count;
6000	tx_ring->next_to_clean = i;
6001	u64_stats_update_begin(&tx_ring->tx_syncp);
6002	tx_ring->tx_stats.bytes += total_bytes;
6003	tx_ring->tx_stats.packets += total_packets;
6004	u64_stats_update_end(&tx_ring->tx_syncp);
6005	q_vector->tx.total_bytes += total_bytes;
6006	q_vector->tx.total_packets += total_packets;
6007
6008	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6009		struct e1000_hw *hw = &adapter->hw;
6010
6011		/* Detect a transmit hang in hardware, this serializes the
6012		 * check with the clearing of time_stamp and movement of i */
6013		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6014		if (tx_buffer->next_to_watch &&
6015		    time_after(jiffies, tx_buffer->time_stamp +
6016			       (adapter->tx_timeout_factor * HZ)) &&
6017		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6018
6019			/* detected Tx unit hang */
6020			dev_err(tx_ring->dev,
6021				"Detected Tx Unit Hang\n"
6022				"  Tx Queue             <%d>\n"
6023				"  TDH                  <%x>\n"
6024				"  TDT                  <%x>\n"
6025				"  next_to_use          <%x>\n"
6026				"  next_to_clean        <%x>\n"
6027				"buffer_info[next_to_clean]\n"
6028				"  time_stamp           <%lx>\n"
6029				"  next_to_watch        <%p>\n"
6030				"  jiffies              <%lx>\n"
6031				"  desc.status          <%x>\n",
6032				tx_ring->queue_index,
6033				rd32(E1000_TDH(tx_ring->reg_idx)),
6034				readl(tx_ring->tail),
6035				tx_ring->next_to_use,
6036				tx_ring->next_to_clean,
6037				tx_buffer->time_stamp,
6038				tx_buffer->next_to_watch,
6039				jiffies,
6040				tx_buffer->next_to_watch->wb.status);
6041			netif_stop_subqueue(tx_ring->netdev,
6042					    tx_ring->queue_index);
6043
6044			/* we are about to reset, no point in enabling stuff */
6045			return true;
6046		}
6047	}
6048
6049	if (unlikely(total_packets &&
6050		     netif_carrier_ok(tx_ring->netdev) &&
6051		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
6052		/* Make sure that anybody stopping the queue after this
6053		 * sees the new next_to_clean.
6054		 */
6055		smp_mb();
6056		if (__netif_subqueue_stopped(tx_ring->netdev,
6057					     tx_ring->queue_index) &&
6058		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6059			netif_wake_subqueue(tx_ring->netdev,
6060					    tx_ring->queue_index);
6061
6062			u64_stats_update_begin(&tx_ring->tx_syncp);
6063			tx_ring->tx_stats.restart_queue++;
6064			u64_stats_update_end(&tx_ring->tx_syncp);
6065		}
6066	}
6067
6068	return !!budget;
6069}
6070
6071/**
6072 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6073 * @rx_ring: rx descriptor ring to store buffers on
6074 * @old_buff: donor buffer to have page reused
6075 *
6076 * Synchronizes page for reuse by the adapter
6077 **/
6078static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6079			      struct igb_rx_buffer *old_buff)
6080{
6081	struct igb_rx_buffer *new_buff;
6082	u16 nta = rx_ring->next_to_alloc;
6083
6084	new_buff = &rx_ring->rx_buffer_info[nta];
6085
6086	/* update, and store next to alloc */
6087	nta++;
6088	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6089
6090	/* transfer page from old buffer to new buffer */
6091	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6092
6093	/* sync the buffer for use by the device */
6094	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6095					 old_buff->page_offset,
6096					 IGB_RX_BUFSZ,
6097					 DMA_FROM_DEVICE);
6098}
6099
6100/**
6101 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6102 * @rx_ring: rx descriptor ring to transact packets on
6103 * @rx_buffer: buffer containing page to add
6104 * @rx_desc: descriptor containing length of buffer written by hardware
6105 * @skb: sk_buff to place the data into
6106 *
6107 * This function will add the data contained in rx_buffer->page to the skb.
6108 * This is done either through a direct copy if the data in the buffer is
6109 * less than the skb header size, otherwise it will just attach the page as
6110 * a frag to the skb.
6111 *
6112 * The function will then update the page offset if necessary and return
6113 * true if the buffer can be reused by the adapter.
6114 **/
6115static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6116			    struct igb_rx_buffer *rx_buffer,
6117			    union e1000_adv_rx_desc *rx_desc,
6118			    struct sk_buff *skb)
6119{
6120	struct page *page = rx_buffer->page;
6121	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6122
6123	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6124		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6125
6126		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6127			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6128			va += IGB_TS_HDR_LEN;
6129			size -= IGB_TS_HDR_LEN;
6130		}
6131
6132		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6133
6134		/* we can reuse buffer as-is, just make sure it is local */
6135		if (likely(page_to_nid(page) == numa_node_id()))
6136			return true;
6137
6138		/* this page cannot be reused so discard it */
6139		put_page(page);
6140		return false;
6141	}
6142
6143	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6144			rx_buffer->page_offset, size, IGB_RX_BUFSZ);
6145
6146	/* avoid re-using remote pages */
6147	if (unlikely(page_to_nid(page) != numa_node_id()))
6148		return false;
6149
6150#if (PAGE_SIZE < 8192)
6151	/* if we are only owner of page we can reuse it */
6152	if (unlikely(page_count(page) != 1))
6153		return false;
6154
6155	/* flip page offset to other buffer */
6156	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6157
6158	/*
6159	 * since we are the only owner of the page and we need to
6160	 * increment it, just set the value to 2 in order to avoid
6161	 * an unnecessary locked operation
6162	 */
6163	atomic_set(&page->_count, 2);
6164#else
6165	/* move offset up to the next cache line */
6166	rx_buffer->page_offset += SKB_DATA_ALIGN(size);
6167
6168	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6169		return false;
6170
6171	/* bump ref count on page before it is given to the stack */
6172	get_page(page);
6173#endif
6174
6175	return true;
6176}
6177
6178static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6179					   union e1000_adv_rx_desc *rx_desc,
6180					   struct sk_buff *skb)
6181{
6182	struct igb_rx_buffer *rx_buffer;
6183	struct page *page;
6184
6185	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6186
6187	/*
6188	 * This memory barrier is needed to keep us from reading
6189	 * any other fields out of the rx_desc until we know the
6190	 * RXD_STAT_DD bit is set
6191	 */
6192	rmb();
6193
6194	page = rx_buffer->page;
6195	prefetchw(page);
6196
6197	if (likely(!skb)) {
6198		void *page_addr = page_address(page) +
6199				  rx_buffer->page_offset;
6200
6201		/* prefetch first cache line of first page */
6202		prefetch(page_addr);
6203#if L1_CACHE_BYTES < 128
6204		prefetch(page_addr + L1_CACHE_BYTES);
6205#endif
6206
6207		/* allocate a skb to store the frags */
6208		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6209						IGB_RX_HDR_LEN);
6210		if (unlikely(!skb)) {
6211			rx_ring->rx_stats.alloc_failed++;
6212			return NULL;
6213		}
6214
6215		/*
6216		 * we will be copying header into skb->data in
6217		 * pskb_may_pull so it is in our interest to prefetch
6218		 * it now to avoid a possible cache miss
6219		 */
6220		prefetchw(skb->data);
6221	}
6222
6223	/* we are reusing so sync this buffer for CPU use */
6224	dma_sync_single_range_for_cpu(rx_ring->dev,
6225				      rx_buffer->dma,
6226				      rx_buffer->page_offset,
6227				      IGB_RX_BUFSZ,
6228				      DMA_FROM_DEVICE);
6229
6230	/* pull page into skb */
6231	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6232		/* hand second half of page back to the ring */
6233		igb_reuse_rx_page(rx_ring, rx_buffer);
6234	} else {
6235		/* we are not reusing the buffer so unmap it */
6236		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6237			       PAGE_SIZE, DMA_FROM_DEVICE);
6238	}
6239
6240	/* clear contents of rx_buffer */
6241	rx_buffer->page = NULL;
6242
6243	return skb;
6244}
6245
6246static inline void igb_rx_checksum(struct igb_ring *ring,
6247				   union e1000_adv_rx_desc *rx_desc,
6248				   struct sk_buff *skb)
6249{
6250	skb_checksum_none_assert(skb);
6251
6252	/* Ignore Checksum bit is set */
6253	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6254		return;
6255
6256	/* Rx checksum disabled via ethtool */
6257	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6258		return;
6259
6260	/* TCP/UDP checksum error bit is set */
6261	if (igb_test_staterr(rx_desc,
6262			     E1000_RXDEXT_STATERR_TCPE |
6263			     E1000_RXDEXT_STATERR_IPE)) {
6264		/*
6265		 * work around errata with sctp packets where the TCPE aka
6266		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6267		 * packets, (aka let the stack check the crc32c)
6268		 */
6269		if (!((skb->len == 60) &&
6270		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6271			u64_stats_update_begin(&ring->rx_syncp);
6272			ring->rx_stats.csum_err++;
6273			u64_stats_update_end(&ring->rx_syncp);
6274		}
6275		/* let the stack verify checksum errors */
6276		return;
6277	}
6278	/* It must be a TCP or UDP packet with a valid checksum */
6279	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6280				      E1000_RXD_STAT_UDPCS))
6281		skb->ip_summed = CHECKSUM_UNNECESSARY;
6282
6283	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6284		le32_to_cpu(rx_desc->wb.upper.status_error));
6285}
6286
6287static inline void igb_rx_hash(struct igb_ring *ring,
6288			       union e1000_adv_rx_desc *rx_desc,
6289			       struct sk_buff *skb)
6290{
6291	if (ring->netdev->features & NETIF_F_RXHASH)
6292		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6293}
6294
6295/**
6296 * igb_is_non_eop - process handling of non-EOP buffers
6297 * @rx_ring: Rx ring being processed
6298 * @rx_desc: Rx descriptor for current buffer
6299 * @skb: current socket buffer containing buffer in progress
6300 *
6301 * This function updates next to clean.  If the buffer is an EOP buffer
6302 * this function exits returning false, otherwise it will place the
6303 * sk_buff in the next buffer to be chained and return true indicating
6304 * that this is in fact a non-EOP buffer.
6305 **/
6306static bool igb_is_non_eop(struct igb_ring *rx_ring,
6307			   union e1000_adv_rx_desc *rx_desc)
6308{
6309	u32 ntc = rx_ring->next_to_clean + 1;
6310
6311	/* fetch, update, and store next to clean */
6312	ntc = (ntc < rx_ring->count) ? ntc : 0;
6313	rx_ring->next_to_clean = ntc;
6314
6315	prefetch(IGB_RX_DESC(rx_ring, ntc));
6316
6317	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6318		return false;
6319
6320	return true;
6321}
6322
6323/**
6324 * igb_get_headlen - determine size of header for LRO/GRO
6325 * @data: pointer to the start of the headers
6326 * @max_len: total length of section to find headers in
6327 *
6328 * This function is meant to determine the length of headers that will
6329 * be recognized by hardware for LRO, and GRO offloads.  The main
6330 * motivation of doing this is to only perform one pull for IPv4 TCP
6331 * packets so that we can do basic things like calculating the gso_size
6332 * based on the average data per packet.
6333 **/
6334static unsigned int igb_get_headlen(unsigned char *data,
6335				    unsigned int max_len)
6336{
6337	union {
6338		unsigned char *network;
6339		/* l2 headers */
6340		struct ethhdr *eth;
6341		struct vlan_hdr *vlan;
6342		/* l3 headers */
6343		struct iphdr *ipv4;
6344		struct ipv6hdr *ipv6;
6345	} hdr;
6346	__be16 protocol;
6347	u8 nexthdr = 0;	/* default to not TCP */
6348	u8 hlen;
6349
6350	/* this should never happen, but better safe than sorry */
6351	if (max_len < ETH_HLEN)
6352		return max_len;
6353
6354	/* initialize network frame pointer */
6355	hdr.network = data;
6356
6357	/* set first protocol and move network header forward */
6358	protocol = hdr.eth->h_proto;
6359	hdr.network += ETH_HLEN;
6360
6361	/* handle any vlan tag if present */
6362	if (protocol == __constant_htons(ETH_P_8021Q)) {
6363		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6364			return max_len;
6365
6366		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6367		hdr.network += VLAN_HLEN;
6368	}
6369
6370	/* handle L3 protocols */
6371	if (protocol == __constant_htons(ETH_P_IP)) {
6372		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6373			return max_len;
6374
6375		/* access ihl as a u8 to avoid unaligned access on ia64 */
6376		hlen = (hdr.network[0] & 0x0F) << 2;
6377
6378		/* verify hlen meets minimum size requirements */
6379		if (hlen < sizeof(struct iphdr))
6380			return hdr.network - data;
6381
6382		/* record next protocol if header is present */
6383		if (!hdr.ipv4->frag_off)
6384			nexthdr = hdr.ipv4->protocol;
6385	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
6386		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6387			return max_len;
6388
6389		/* record next protocol */
6390		nexthdr = hdr.ipv6->nexthdr;
6391		hlen = sizeof(struct ipv6hdr);
6392	} else {
6393		return hdr.network - data;
6394	}
6395
6396	/* relocate pointer to start of L4 header */
6397	hdr.network += hlen;
6398
6399	/* finally sort out TCP */
6400	if (nexthdr == IPPROTO_TCP) {
6401		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6402			return max_len;
6403
6404		/* access doff as a u8 to avoid unaligned access on ia64 */
6405		hlen = (hdr.network[12] & 0xF0) >> 2;
6406
6407		/* verify hlen meets minimum size requirements */
6408		if (hlen < sizeof(struct tcphdr))
6409			return hdr.network - data;
6410
6411		hdr.network += hlen;
6412	} else if (nexthdr == IPPROTO_UDP) {
6413		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6414			return max_len;
6415
6416		hdr.network += sizeof(struct udphdr);
6417	}
6418
6419	/*
6420	 * If everything has gone correctly hdr.network should be the
6421	 * data section of the packet and will be the end of the header.
6422	 * If not then it probably represents the end of the last recognized
6423	 * header.
6424	 */
6425	if ((hdr.network - data) < max_len)
6426		return hdr.network - data;
6427	else
6428		return max_len;
6429}
6430
6431/**
6432 * igb_pull_tail - igb specific version of skb_pull_tail
6433 * @rx_ring: rx descriptor ring packet is being transacted on
6434 * @rx_desc: pointer to the EOP Rx descriptor
6435 * @skb: pointer to current skb being adjusted
6436 *
6437 * This function is an igb specific version of __pskb_pull_tail.  The
6438 * main difference between this version and the original function is that
6439 * this function can make several assumptions about the state of things
6440 * that allow for significant optimizations versus the standard function.
6441 * As a result we can do things like drop a frag and maintain an accurate
6442 * truesize for the skb.
6443 */
6444static void igb_pull_tail(struct igb_ring *rx_ring,
6445			  union e1000_adv_rx_desc *rx_desc,
6446			  struct sk_buff *skb)
6447{
6448	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6449	unsigned char *va;
6450	unsigned int pull_len;
6451
6452	/*
6453	 * it is valid to use page_address instead of kmap since we are
6454	 * working with pages allocated out of the lomem pool per
6455	 * alloc_page(GFP_ATOMIC)
6456	 */
6457	va = skb_frag_address(frag);
6458
6459	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6460		/* retrieve timestamp from buffer */
6461		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6462
6463		/* update pointers to remove timestamp header */
6464		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6465		frag->page_offset += IGB_TS_HDR_LEN;
6466		skb->data_len -= IGB_TS_HDR_LEN;
6467		skb->len -= IGB_TS_HDR_LEN;
6468
6469		/* move va to start of packet data */
6470		va += IGB_TS_HDR_LEN;
6471	}
6472
6473	/*
6474	 * we need the header to contain the greater of either ETH_HLEN or
6475	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6476	 */
6477	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6478
6479	/* align pull length to size of long to optimize memcpy performance */
6480	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6481
6482	/* update all of the pointers */
6483	skb_frag_size_sub(frag, pull_len);
6484	frag->page_offset += pull_len;
6485	skb->data_len -= pull_len;
6486	skb->tail += pull_len;
6487}
6488
6489/**
6490 * igb_cleanup_headers - Correct corrupted or empty headers
6491 * @rx_ring: rx descriptor ring packet is being transacted on
6492 * @rx_desc: pointer to the EOP Rx descriptor
6493 * @skb: pointer to current skb being fixed
6494 *
6495 * Address the case where we are pulling data in on pages only
6496 * and as such no data is present in the skb header.
6497 *
6498 * In addition if skb is not at least 60 bytes we need to pad it so that
6499 * it is large enough to qualify as a valid Ethernet frame.
6500 *
6501 * Returns true if an error was encountered and skb was freed.
6502 **/
6503static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6504				union e1000_adv_rx_desc *rx_desc,
6505				struct sk_buff *skb)
6506{
6507
6508	if (unlikely((igb_test_staterr(rx_desc,
6509				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6510		struct net_device *netdev = rx_ring->netdev;
6511		if (!(netdev->features & NETIF_F_RXALL)) {
6512			dev_kfree_skb_any(skb);
6513			return true;
6514		}
6515	}
6516
6517	/* place header in linear portion of buffer */
6518	if (skb_is_nonlinear(skb))
6519		igb_pull_tail(rx_ring, rx_desc, skb);
6520
6521	/* if skb_pad returns an error the skb was freed */
6522	if (unlikely(skb->len < 60)) {
6523		int pad_len = 60 - skb->len;
6524
6525		if (skb_pad(skb, pad_len))
6526			return true;
6527		__skb_put(skb, pad_len);
6528	}
6529
6530	return false;
6531}
6532
6533/**
6534 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6535 * @rx_ring: rx descriptor ring packet is being transacted on
6536 * @rx_desc: pointer to the EOP Rx descriptor
6537 * @skb: pointer to current skb being populated
6538 *
6539 * This function checks the ring, descriptor, and packet information in
6540 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6541 * other fields within the skb.
6542 **/
6543static void igb_process_skb_fields(struct igb_ring *rx_ring,
6544				   union e1000_adv_rx_desc *rx_desc,
6545				   struct sk_buff *skb)
6546{
6547	struct net_device *dev = rx_ring->netdev;
6548
6549	igb_rx_hash(rx_ring, rx_desc, skb);
6550
6551	igb_rx_checksum(rx_ring, rx_desc, skb);
6552
6553	igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);
6554
6555	if ((dev->features & NETIF_F_HW_VLAN_RX) &&
6556	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6557		u16 vid;
6558		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6559		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6560			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6561		else
6562			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6563
6564		__vlan_hwaccel_put_tag(skb, vid);
6565	}
6566
6567	skb_record_rx_queue(skb, rx_ring->queue_index);
6568
6569	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6570}
6571
6572static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6573{
6574	struct igb_ring *rx_ring = q_vector->rx.ring;
6575	struct sk_buff *skb = rx_ring->skb;
6576	unsigned int total_bytes = 0, total_packets = 0;
6577	u16 cleaned_count = igb_desc_unused(rx_ring);
6578
6579	do {
6580		union e1000_adv_rx_desc *rx_desc;
6581
6582		/* return some buffers to hardware, one at a time is too slow */
6583		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6584			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6585			cleaned_count = 0;
6586		}
6587
6588		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6589
6590		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6591			break;
6592
6593		/* retrieve a buffer from the ring */
6594		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6595
6596		/* exit if we failed to retrieve a buffer */
6597		if (!skb)
6598			break;
6599
6600		cleaned_count++;
6601
6602		/* fetch next buffer in frame if non-eop */
6603		if (igb_is_non_eop(rx_ring, rx_desc))
6604			continue;
6605
6606		/* verify the packet layout is correct */
6607		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6608			skb = NULL;
6609			continue;
6610		}
6611
6612		/* probably a little skewed due to removing CRC */
6613		total_bytes += skb->len;
6614
6615		/* populate checksum, timestamp, VLAN, and protocol */
6616		igb_process_skb_fields(rx_ring, rx_desc, skb);
6617
6618		napi_gro_receive(&q_vector->napi, skb);
6619
6620		/* reset skb pointer */
6621		skb = NULL;
6622
6623		/* update budget accounting */
6624		total_packets++;
6625	} while (likely(total_packets < budget));
6626
6627	/* place incomplete frames back on ring for completion */
6628	rx_ring->skb = skb;
6629
6630	u64_stats_update_begin(&rx_ring->rx_syncp);
6631	rx_ring->rx_stats.packets += total_packets;
6632	rx_ring->rx_stats.bytes += total_bytes;
6633	u64_stats_update_end(&rx_ring->rx_syncp);
6634	q_vector->rx.total_packets += total_packets;
6635	q_vector->rx.total_bytes += total_bytes;
6636
6637	if (cleaned_count)
6638		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6639
6640	return (total_packets < budget);
6641}
6642
6643static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6644				  struct igb_rx_buffer *bi)
6645{
6646	struct page *page = bi->page;
6647	dma_addr_t dma;
6648
6649	/* since we are recycling buffers we should seldom need to alloc */
6650	if (likely(page))
6651		return true;
6652
6653	/* alloc new page for storage */
6654	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6655	if (unlikely(!page)) {
6656		rx_ring->rx_stats.alloc_failed++;
6657		return false;
6658	}
6659
6660	/* map page for use */
6661	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6662
6663	/*
6664	 * if mapping failed free memory back to system since
6665	 * there isn't much point in holding memory we can't use
6666	 */
6667	if (dma_mapping_error(rx_ring->dev, dma)) {
6668		__free_page(page);
6669
6670		rx_ring->rx_stats.alloc_failed++;
6671		return false;
6672	}
6673
6674	bi->dma = dma;
6675	bi->page = page;
6676	bi->page_offset = 0;
6677
6678	return true;
6679}
6680
6681/**
6682 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6683 * @adapter: address of board private structure
6684 **/
6685void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6686{
6687	union e1000_adv_rx_desc *rx_desc;
6688	struct igb_rx_buffer *bi;
6689	u16 i = rx_ring->next_to_use;
6690
6691	/* nothing to do */
6692	if (!cleaned_count)
6693		return;
6694
6695	rx_desc = IGB_RX_DESC(rx_ring, i);
6696	bi = &rx_ring->rx_buffer_info[i];
6697	i -= rx_ring->count;
6698
6699	do {
6700		if (!igb_alloc_mapped_page(rx_ring, bi))
6701			break;
6702
6703		/*
6704		 * Refresh the desc even if buffer_addrs didn't change
6705		 * because each write-back erases this info.
6706		 */
6707		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6708
6709		rx_desc++;
6710		bi++;
6711		i++;
6712		if (unlikely(!i)) {
6713			rx_desc = IGB_RX_DESC(rx_ring, 0);
6714			bi = rx_ring->rx_buffer_info;
6715			i -= rx_ring->count;
6716		}
6717
6718		/* clear the hdr_addr for the next_to_use descriptor */
6719		rx_desc->read.hdr_addr = 0;
6720
6721		cleaned_count--;
6722	} while (cleaned_count);
6723
6724	i += rx_ring->count;
6725
6726	if (rx_ring->next_to_use != i) {
6727		/* record the next descriptor to use */
6728		rx_ring->next_to_use = i;
6729
6730		/* update next to alloc since we have filled the ring */
6731		rx_ring->next_to_alloc = i;
6732
6733		/*
6734		 * Force memory writes to complete before letting h/w
6735		 * know there are new descriptors to fetch.  (Only
6736		 * applicable for weak-ordered memory model archs,
6737		 * such as IA-64).
6738		 */
6739		wmb();
6740		writel(i, rx_ring->tail);
6741	}
6742}
6743
6744/**
6745 * igb_mii_ioctl -
6746 * @netdev:
6747 * @ifreq:
6748 * @cmd:
6749 **/
6750static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6751{
6752	struct igb_adapter *adapter = netdev_priv(netdev);
6753	struct mii_ioctl_data *data = if_mii(ifr);
6754
6755	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6756		return -EOPNOTSUPP;
6757
6758	switch (cmd) {
6759	case SIOCGMIIPHY:
6760		data->phy_id = adapter->hw.phy.addr;
6761		break;
6762	case SIOCGMIIREG:
6763		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6764		                     &data->val_out))
6765			return -EIO;
6766		break;
6767	case SIOCSMIIREG:
6768	default:
6769		return -EOPNOTSUPP;
6770	}
6771	return 0;
6772}
6773
6774/**
6775 * igb_ioctl -
6776 * @netdev:
6777 * @ifreq:
6778 * @cmd:
6779 **/
6780static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6781{
6782	switch (cmd) {
6783	case SIOCGMIIPHY:
6784	case SIOCGMIIREG:
6785	case SIOCSMIIREG:
6786		return igb_mii_ioctl(netdev, ifr, cmd);
6787	case SIOCSHWTSTAMP:
6788		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6789	default:
6790		return -EOPNOTSUPP;
6791	}
6792}
6793
6794s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6795{
6796	struct igb_adapter *adapter = hw->back;
6797
6798	if (pcie_capability_read_word(adapter->pdev, reg, value))
6799		return -E1000_ERR_CONFIG;
6800
6801	return 0;
6802}
6803
6804s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6805{
6806	struct igb_adapter *adapter = hw->back;
6807
6808	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6809		return -E1000_ERR_CONFIG;
6810
6811	return 0;
6812}
6813
6814static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6815{
6816	struct igb_adapter *adapter = netdev_priv(netdev);
6817	struct e1000_hw *hw = &adapter->hw;
6818	u32 ctrl, rctl;
6819	bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6820
6821	if (enable) {
6822		/* enable VLAN tag insert/strip */
6823		ctrl = rd32(E1000_CTRL);
6824		ctrl |= E1000_CTRL_VME;
6825		wr32(E1000_CTRL, ctrl);
6826
6827		/* Disable CFI check */
6828		rctl = rd32(E1000_RCTL);
6829		rctl &= ~E1000_RCTL_CFIEN;
6830		wr32(E1000_RCTL, rctl);
6831	} else {
6832		/* disable VLAN tag insert/strip */
6833		ctrl = rd32(E1000_CTRL);
6834		ctrl &= ~E1000_CTRL_VME;
6835		wr32(E1000_CTRL, ctrl);
6836	}
6837
6838	igb_rlpml_set(adapter);
6839}
6840
6841static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6842{
6843	struct igb_adapter *adapter = netdev_priv(netdev);
6844	struct e1000_hw *hw = &adapter->hw;
6845	int pf_id = adapter->vfs_allocated_count;
6846
6847	/* attempt to add filter to vlvf array */
6848	igb_vlvf_set(adapter, vid, true, pf_id);
6849
6850	/* add the filter since PF can receive vlans w/o entry in vlvf */
6851	igb_vfta_set(hw, vid, true);
6852
6853	set_bit(vid, adapter->active_vlans);
6854
6855	return 0;
6856}
6857
6858static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6859{
6860	struct igb_adapter *adapter = netdev_priv(netdev);
6861	struct e1000_hw *hw = &adapter->hw;
6862	int pf_id = adapter->vfs_allocated_count;
6863	s32 err;
6864
6865	/* remove vlan from VLVF table array */
6866	err = igb_vlvf_set(adapter, vid, false, pf_id);
6867
6868	/* if vid was not present in VLVF just remove it from table */
6869	if (err)
6870		igb_vfta_set(hw, vid, false);
6871
6872	clear_bit(vid, adapter->active_vlans);
6873
6874	return 0;
6875}
6876
6877static void igb_restore_vlan(struct igb_adapter *adapter)
6878{
6879	u16 vid;
6880
6881	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6882
6883	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6884		igb_vlan_rx_add_vid(adapter->netdev, vid);
6885}
6886
6887int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6888{
6889	struct pci_dev *pdev = adapter->pdev;
6890	struct e1000_mac_info *mac = &adapter->hw.mac;
6891
6892	mac->autoneg = 0;
6893
6894	/* Make sure dplx is at most 1 bit and lsb of speed is not set
6895	 * for the switch() below to work */
6896	if ((spd & 1) || (dplx & ~1))
6897		goto err_inval;
6898
6899	/* Fiber NIC's only allow 1000 Gbps Full duplex */
6900	if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6901	    spd != SPEED_1000 &&
6902	    dplx != DUPLEX_FULL)
6903		goto err_inval;
6904
6905	switch (spd + dplx) {
6906	case SPEED_10 + DUPLEX_HALF:
6907		mac->forced_speed_duplex = ADVERTISE_10_HALF;
6908		break;
6909	case SPEED_10 + DUPLEX_FULL:
6910		mac->forced_speed_duplex = ADVERTISE_10_FULL;
6911		break;
6912	case SPEED_100 + DUPLEX_HALF:
6913		mac->forced_speed_duplex = ADVERTISE_100_HALF;
6914		break;
6915	case SPEED_100 + DUPLEX_FULL:
6916		mac->forced_speed_duplex = ADVERTISE_100_FULL;
6917		break;
6918	case SPEED_1000 + DUPLEX_FULL:
6919		mac->autoneg = 1;
6920		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6921		break;
6922	case SPEED_1000 + DUPLEX_HALF: /* not supported */
6923	default:
6924		goto err_inval;
6925	}
6926
6927	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
6928	adapter->hw.phy.mdix = AUTO_ALL_MODES;
6929
6930	return 0;
6931
6932err_inval:
6933	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6934	return -EINVAL;
6935}
6936
6937static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
6938			  bool runtime)
6939{
6940	struct net_device *netdev = pci_get_drvdata(pdev);
6941	struct igb_adapter *adapter = netdev_priv(netdev);
6942	struct e1000_hw *hw = &adapter->hw;
6943	u32 ctrl, rctl, status;
6944	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6945#ifdef CONFIG_PM
6946	int retval = 0;
6947#endif
6948
6949	netif_device_detach(netdev);
6950
6951	if (netif_running(netdev))
6952		__igb_close(netdev, true);
6953
6954	igb_clear_interrupt_scheme(adapter);
6955
6956#ifdef CONFIG_PM
6957	retval = pci_save_state(pdev);
6958	if (retval)
6959		return retval;
6960#endif
6961
6962	status = rd32(E1000_STATUS);
6963	if (status & E1000_STATUS_LU)
6964		wufc &= ~E1000_WUFC_LNKC;
6965
6966	if (wufc) {
6967		igb_setup_rctl(adapter);
6968		igb_set_rx_mode(netdev);
6969
6970		/* turn on all-multi mode if wake on multicast is enabled */
6971		if (wufc & E1000_WUFC_MC) {
6972			rctl = rd32(E1000_RCTL);
6973			rctl |= E1000_RCTL_MPE;
6974			wr32(E1000_RCTL, rctl);
6975		}
6976
6977		ctrl = rd32(E1000_CTRL);
6978		/* advertise wake from D3Cold */
6979		#define E1000_CTRL_ADVD3WUC 0x00100000
6980		/* phy power management enable */
6981		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6982		ctrl |= E1000_CTRL_ADVD3WUC;
6983		wr32(E1000_CTRL, ctrl);
6984
6985		/* Allow time for pending master requests to run */
6986		igb_disable_pcie_master(hw);
6987
6988		wr32(E1000_WUC, E1000_WUC_PME_EN);
6989		wr32(E1000_WUFC, wufc);
6990	} else {
6991		wr32(E1000_WUC, 0);
6992		wr32(E1000_WUFC, 0);
6993	}
6994
6995	*enable_wake = wufc || adapter->en_mng_pt;
6996	if (!*enable_wake)
6997		igb_power_down_link(adapter);
6998	else
6999		igb_power_up_link(adapter);
7000
7001	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7002	 * would have already happened in close and is redundant. */
7003	igb_release_hw_control(adapter);
7004
7005	pci_disable_device(pdev);
7006
7007	return 0;
7008}
7009
7010#ifdef CONFIG_PM
7011#ifdef CONFIG_PM_SLEEP
7012static int igb_suspend(struct device *dev)
7013{
7014	int retval;
7015	bool wake;
7016	struct pci_dev *pdev = to_pci_dev(dev);
7017
7018	retval = __igb_shutdown(pdev, &wake, 0);
7019	if (retval)
7020		return retval;
7021
7022	if (wake) {
7023		pci_prepare_to_sleep(pdev);
7024	} else {
7025		pci_wake_from_d3(pdev, false);
7026		pci_set_power_state(pdev, PCI_D3hot);
7027	}
7028
7029	return 0;
7030}
7031#endif /* CONFIG_PM_SLEEP */
7032
7033static int igb_resume(struct device *dev)
7034{
7035	struct pci_dev *pdev = to_pci_dev(dev);
7036	struct net_device *netdev = pci_get_drvdata(pdev);
7037	struct igb_adapter *adapter = netdev_priv(netdev);
7038	struct e1000_hw *hw = &adapter->hw;
7039	u32 err;
7040
7041	pci_set_power_state(pdev, PCI_D0);
7042	pci_restore_state(pdev);
7043	pci_save_state(pdev);
7044
7045	err = pci_enable_device_mem(pdev);
7046	if (err) {
7047		dev_err(&pdev->dev,
7048			"igb: Cannot enable PCI device from suspend\n");
7049		return err;
7050	}
7051	pci_set_master(pdev);
7052
7053	pci_enable_wake(pdev, PCI_D3hot, 0);
7054	pci_enable_wake(pdev, PCI_D3cold, 0);
7055
7056	if (igb_init_interrupt_scheme(adapter, true)) {
7057		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7058		return -ENOMEM;
7059	}
7060
7061	igb_reset(adapter);
7062
7063	/* let the f/w know that the h/w is now under the control of the
7064	 * driver. */
7065	igb_get_hw_control(adapter);
7066
7067	wr32(E1000_WUS, ~0);
7068
7069	if (netdev->flags & IFF_UP) {
7070		rtnl_lock();
7071		err = __igb_open(netdev, true);
7072		rtnl_unlock();
7073		if (err)
7074			return err;
7075	}
7076
7077	netif_device_attach(netdev);
7078	return 0;
7079}
7080
7081#ifdef CONFIG_PM_RUNTIME
7082static int igb_runtime_idle(struct device *dev)
7083{
7084	struct pci_dev *pdev = to_pci_dev(dev);
7085	struct net_device *netdev = pci_get_drvdata(pdev);
7086	struct igb_adapter *adapter = netdev_priv(netdev);
7087
7088	if (!igb_has_link(adapter))
7089		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7090
7091	return -EBUSY;
7092}
7093
7094static int igb_runtime_suspend(struct device *dev)
7095{
7096	struct pci_dev *pdev = to_pci_dev(dev);
7097	int retval;
7098	bool wake;
7099
7100	retval = __igb_shutdown(pdev, &wake, 1);
7101	if (retval)
7102		return retval;
7103
7104	if (wake) {
7105		pci_prepare_to_sleep(pdev);
7106	} else {
7107		pci_wake_from_d3(pdev, false);
7108		pci_set_power_state(pdev, PCI_D3hot);
7109	}
7110
7111	return 0;
7112}
7113
7114static int igb_runtime_resume(struct device *dev)
7115{
7116	return igb_resume(dev);
7117}
7118#endif /* CONFIG_PM_RUNTIME */
7119#endif
7120
7121static void igb_shutdown(struct pci_dev *pdev)
7122{
7123	bool wake;
7124
7125	__igb_shutdown(pdev, &wake, 0);
7126
7127	if (system_state == SYSTEM_POWER_OFF) {
7128		pci_wake_from_d3(pdev, wake);
7129		pci_set_power_state(pdev, PCI_D3hot);
7130	}
7131}
7132
7133#ifdef CONFIG_PCI_IOV
7134static int igb_sriov_reinit(struct pci_dev *dev)
7135{
7136	struct net_device *netdev = pci_get_drvdata(dev);
7137	struct igb_adapter *adapter = netdev_priv(netdev);
7138	struct pci_dev *pdev = adapter->pdev;
7139
7140	rtnl_lock();
7141
7142	if (netif_running(netdev))
7143		igb_close(netdev);
7144
7145	igb_clear_interrupt_scheme(adapter);
7146
7147	igb_init_queue_configuration(adapter);
7148
7149	if (igb_init_interrupt_scheme(adapter, true)) {
7150		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7151		return -ENOMEM;
7152	}
7153
7154	if (netif_running(netdev))
7155		igb_open(netdev);
7156
7157	rtnl_unlock();
7158
7159	return 0;
7160}
7161
7162static int igb_pci_disable_sriov(struct pci_dev *dev)
7163{
7164	int err = igb_disable_sriov(dev);
7165
7166	if (!err)
7167		err = igb_sriov_reinit(dev);
7168
7169	return err;
7170}
7171
7172static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7173{
7174	int err = igb_enable_sriov(dev, num_vfs);
7175
7176	if (err)
7177		goto out;
7178
7179	err = igb_sriov_reinit(dev);
7180	if (!err)
7181		return num_vfs;
7182
7183out:
7184	return err;
7185}
7186
7187#endif
7188static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7189{
7190#ifdef CONFIG_PCI_IOV
7191	if (num_vfs == 0)
7192		return igb_pci_disable_sriov(dev);
7193	else
7194		return igb_pci_enable_sriov(dev, num_vfs);
7195#endif
7196	return 0;
7197}
7198
7199#ifdef CONFIG_NET_POLL_CONTROLLER
7200/*
7201 * Polling 'interrupt' - used by things like netconsole to send skbs
7202 * without having to re-enable interrupts. It's not called while
7203 * the interrupt routine is executing.
7204 */
7205static void igb_netpoll(struct net_device *netdev)
7206{
7207	struct igb_adapter *adapter = netdev_priv(netdev);
7208	struct e1000_hw *hw = &adapter->hw;
7209	struct igb_q_vector *q_vector;
7210	int i;
7211
7212	for (i = 0; i < adapter->num_q_vectors; i++) {
7213		q_vector = adapter->q_vector[i];
7214		if (adapter->msix_entries)
7215			wr32(E1000_EIMC, q_vector->eims_value);
7216		else
7217			igb_irq_disable(adapter);
7218		napi_schedule(&q_vector->napi);
7219	}
7220}
7221#endif /* CONFIG_NET_POLL_CONTROLLER */
7222
7223/**
7224 * igb_io_error_detected - called when PCI error is detected
7225 * @pdev: Pointer to PCI device
7226 * @state: The current pci connection state
7227 *
7228 * This function is called after a PCI bus error affecting
7229 * this device has been detected.
7230 */
7231static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7232					      pci_channel_state_t state)
7233{
7234	struct net_device *netdev = pci_get_drvdata(pdev);
7235	struct igb_adapter *adapter = netdev_priv(netdev);
7236
7237	netif_device_detach(netdev);
7238
7239	if (state == pci_channel_io_perm_failure)
7240		return PCI_ERS_RESULT_DISCONNECT;
7241
7242	if (netif_running(netdev))
7243		igb_down(adapter);
7244	pci_disable_device(pdev);
7245
7246	/* Request a slot slot reset. */
7247	return PCI_ERS_RESULT_NEED_RESET;
7248}
7249
7250/**
7251 * igb_io_slot_reset - called after the pci bus has been reset.
7252 * @pdev: Pointer to PCI device
7253 *
7254 * Restart the card from scratch, as if from a cold-boot. Implementation
7255 * resembles the first-half of the igb_resume routine.
7256 */
7257static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7258{
7259	struct net_device *netdev = pci_get_drvdata(pdev);
7260	struct igb_adapter *adapter = netdev_priv(netdev);
7261	struct e1000_hw *hw = &adapter->hw;
7262	pci_ers_result_t result;
7263	int err;
7264
7265	if (pci_enable_device_mem(pdev)) {
7266		dev_err(&pdev->dev,
7267			"Cannot re-enable PCI device after reset.\n");
7268		result = PCI_ERS_RESULT_DISCONNECT;
7269	} else {
7270		pci_set_master(pdev);
7271		pci_restore_state(pdev);
7272		pci_save_state(pdev);
7273
7274		pci_enable_wake(pdev, PCI_D3hot, 0);
7275		pci_enable_wake(pdev, PCI_D3cold, 0);
7276
7277		igb_reset(adapter);
7278		wr32(E1000_WUS, ~0);
7279		result = PCI_ERS_RESULT_RECOVERED;
7280	}
7281
7282	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7283	if (err) {
7284		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
7285		        "failed 0x%0x\n", err);
7286		/* non-fatal, continue */
7287	}
7288
7289	return result;
7290}
7291
7292/**
7293 * igb_io_resume - called when traffic can start flowing again.
7294 * @pdev: Pointer to PCI device
7295 *
7296 * This callback is called when the error recovery driver tells us that
7297 * its OK to resume normal operation. Implementation resembles the
7298 * second-half of the igb_resume routine.
7299 */
7300static void igb_io_resume(struct pci_dev *pdev)
7301{
7302	struct net_device *netdev = pci_get_drvdata(pdev);
7303	struct igb_adapter *adapter = netdev_priv(netdev);
7304
7305	if (netif_running(netdev)) {
7306		if (igb_up(adapter)) {
7307			dev_err(&pdev->dev, "igb_up failed after reset\n");
7308			return;
7309		}
7310	}
7311
7312	netif_device_attach(netdev);
7313
7314	/* let the f/w know that the h/w is now under the control of the
7315	 * driver. */
7316	igb_get_hw_control(adapter);
7317}
7318
7319static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7320                             u8 qsel)
7321{
7322	u32 rar_low, rar_high;
7323	struct e1000_hw *hw = &adapter->hw;
7324
7325	/* HW expects these in little endian so we reverse the byte order
7326	 * from network order (big endian) to little endian
7327	 */
7328	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7329	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7330	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7331
7332	/* Indicate to hardware the Address is Valid. */
7333	rar_high |= E1000_RAH_AV;
7334
7335	if (hw->mac.type == e1000_82575)
7336		rar_high |= E1000_RAH_POOL_1 * qsel;
7337	else
7338		rar_high |= E1000_RAH_POOL_1 << qsel;
7339
7340	wr32(E1000_RAL(index), rar_low);
7341	wrfl();
7342	wr32(E1000_RAH(index), rar_high);
7343	wrfl();
7344}
7345
7346static int igb_set_vf_mac(struct igb_adapter *adapter,
7347                          int vf, unsigned char *mac_addr)
7348{
7349	struct e1000_hw *hw = &adapter->hw;
7350	/* VF MAC addresses start at end of receive addresses and moves
7351	 * torwards the first, as a result a collision should not be possible */
7352	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7353
7354	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7355
7356	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7357
7358	return 0;
7359}
7360
7361static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7362{
7363	struct igb_adapter *adapter = netdev_priv(netdev);
7364	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7365		return -EINVAL;
7366	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7367	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7368	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
7369				      " change effective.");
7370	if (test_bit(__IGB_DOWN, &adapter->state)) {
7371		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
7372			 " but the PF device is not up.\n");
7373		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
7374			 " attempting to use the VF device.\n");
7375	}
7376	return igb_set_vf_mac(adapter, vf, mac);
7377}
7378
7379static int igb_link_mbps(int internal_link_speed)
7380{
7381	switch (internal_link_speed) {
7382	case SPEED_100:
7383		return 100;
7384	case SPEED_1000:
7385		return 1000;
7386	default:
7387		return 0;
7388	}
7389}
7390
7391static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7392				  int link_speed)
7393{
7394	int rf_dec, rf_int;
7395	u32 bcnrc_val;
7396
7397	if (tx_rate != 0) {
7398		/* Calculate the rate factor values to set */
7399		rf_int = link_speed / tx_rate;
7400		rf_dec = (link_speed - (rf_int * tx_rate));
7401		rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
7402
7403		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7404		bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
7405		               E1000_RTTBCNRC_RF_INT_MASK);
7406		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7407	} else {
7408		bcnrc_val = 0;
7409	}
7410
7411	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7412	/*
7413	 * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7414	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7415	 */
7416	wr32(E1000_RTTBCNRM, 0x14);
7417	wr32(E1000_RTTBCNRC, bcnrc_val);
7418}
7419
7420static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7421{
7422	int actual_link_speed, i;
7423	bool reset_rate = false;
7424
7425	/* VF TX rate limit was not set or not supported */
7426	if ((adapter->vf_rate_link_speed == 0) ||
7427	    (adapter->hw.mac.type != e1000_82576))
7428		return;
7429
7430	actual_link_speed = igb_link_mbps(adapter->link_speed);
7431	if (actual_link_speed != adapter->vf_rate_link_speed) {
7432		reset_rate = true;
7433		adapter->vf_rate_link_speed = 0;
7434		dev_info(&adapter->pdev->dev,
7435		         "Link speed has been changed. VF Transmit "
7436		         "rate is disabled\n");
7437	}
7438
7439	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7440		if (reset_rate)
7441			adapter->vf_data[i].tx_rate = 0;
7442
7443		igb_set_vf_rate_limit(&adapter->hw, i,
7444		                      adapter->vf_data[i].tx_rate,
7445		                      actual_link_speed);
7446	}
7447}
7448
7449static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7450{
7451	struct igb_adapter *adapter = netdev_priv(netdev);
7452	struct e1000_hw *hw = &adapter->hw;
7453	int actual_link_speed;
7454
7455	if (hw->mac.type != e1000_82576)
7456		return -EOPNOTSUPP;
7457
7458	actual_link_speed = igb_link_mbps(adapter->link_speed);
7459	if ((vf >= adapter->vfs_allocated_count) ||
7460	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7461	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7462		return -EINVAL;
7463
7464	adapter->vf_rate_link_speed = actual_link_speed;
7465	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7466	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7467
7468	return 0;
7469}
7470
7471static int igb_ndo_get_vf_config(struct net_device *netdev,
7472				 int vf, struct ifla_vf_info *ivi)
7473{
7474	struct igb_adapter *adapter = netdev_priv(netdev);
7475	if (vf >= adapter->vfs_allocated_count)
7476		return -EINVAL;
7477	ivi->vf = vf;
7478	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7479	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7480	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7481	ivi->qos = adapter->vf_data[vf].pf_qos;
7482	return 0;
7483}
7484
7485static void igb_vmm_control(struct igb_adapter *adapter)
7486{
7487	struct e1000_hw *hw = &adapter->hw;
7488	u32 reg;
7489
7490	switch (hw->mac.type) {
7491	case e1000_82575:
7492	case e1000_i210:
7493	case e1000_i211:
7494	default:
7495		/* replication is not supported for 82575 */
7496		return;
7497	case e1000_82576:
7498		/* notify HW that the MAC is adding vlan tags */
7499		reg = rd32(E1000_DTXCTL);
7500		reg |= E1000_DTXCTL_VLAN_ADDED;
7501		wr32(E1000_DTXCTL, reg);
7502	case e1000_82580:
7503		/* enable replication vlan tag stripping */
7504		reg = rd32(E1000_RPLOLR);
7505		reg |= E1000_RPLOLR_STRVLAN;
7506		wr32(E1000_RPLOLR, reg);
7507	case e1000_i350:
7508		/* none of the above registers are supported by i350 */
7509		break;
7510	}
7511
7512	if (adapter->vfs_allocated_count) {
7513		igb_vmdq_set_loopback_pf(hw, true);
7514		igb_vmdq_set_replication_pf(hw, true);
7515		igb_vmdq_set_anti_spoofing_pf(hw, true,
7516						adapter->vfs_allocated_count);
7517	} else {
7518		igb_vmdq_set_loopback_pf(hw, false);
7519		igb_vmdq_set_replication_pf(hw, false);
7520	}
7521}
7522
7523static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7524{
7525	struct e1000_hw *hw = &adapter->hw;
7526	u32 dmac_thr;
7527	u16 hwm;
7528
7529	if (hw->mac.type > e1000_82580) {
7530		if (adapter->flags & IGB_FLAG_DMAC) {
7531			u32 reg;
7532
7533			/* force threshold to 0. */
7534			wr32(E1000_DMCTXTH, 0);
7535
7536			/*
7537			 * DMA Coalescing high water mark needs to be greater
7538			 * than the Rx threshold. Set hwm to PBA - max frame
7539			 * size in 16B units, capping it at PBA - 6KB.
7540			 */
7541			hwm = 64 * pba - adapter->max_frame_size / 16;
7542			if (hwm < 64 * (pba - 6))
7543				hwm = 64 * (pba - 6);
7544			reg = rd32(E1000_FCRTC);
7545			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7546			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7547				& E1000_FCRTC_RTH_COAL_MASK);
7548			wr32(E1000_FCRTC, reg);
7549
7550			/*
7551			 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
7552			 * frame size, capping it at PBA - 10KB.
7553			 */
7554			dmac_thr = pba - adapter->max_frame_size / 512;
7555			if (dmac_thr < pba - 10)
7556				dmac_thr = pba - 10;
7557			reg = rd32(E1000_DMACR);
7558			reg &= ~E1000_DMACR_DMACTHR_MASK;
7559			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7560				& E1000_DMACR_DMACTHR_MASK);
7561
7562			/* transition to L0x or L1 if available..*/
7563			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7564
7565			/* watchdog timer= +-1000 usec in 32usec intervals */
7566			reg |= (1000 >> 5);
7567
7568			/* Disable BMC-to-OS Watchdog Enable */
7569			reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7570			wr32(E1000_DMACR, reg);
7571
7572			/*
7573			 * no lower threshold to disable
7574			 * coalescing(smart fifb)-UTRESH=0
7575			 */
7576			wr32(E1000_DMCRTRH, 0);
7577
7578			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7579
7580			wr32(E1000_DMCTLX, reg);
7581
7582			/*
7583			 * free space in tx packet buffer to wake from
7584			 * DMA coal
7585			 */
7586			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7587			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7588
7589			/*
7590			 * make low power state decision controlled
7591			 * by DMA coal
7592			 */
7593			reg = rd32(E1000_PCIEMISC);
7594			reg &= ~E1000_PCIEMISC_LX_DECISION;
7595			wr32(E1000_PCIEMISC, reg);
7596		} /* endif adapter->dmac is not disabled */
7597	} else if (hw->mac.type == e1000_82580) {
7598		u32 reg = rd32(E1000_PCIEMISC);
7599		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7600		wr32(E1000_DMACR, 0);
7601	}
7602}
7603
7604static DEFINE_SPINLOCK(i2c_clients_lock);
7605
7606/*  igb_get_i2c_client - returns matching client
7607 *  in adapters's client list.
7608 *  @adapter: adapter struct
7609 *  @dev_addr: device address of i2c needed.
7610 */
7611struct i2c_client *
7612igb_get_i2c_client(struct igb_adapter *adapter, u8 dev_addr)
7613{
7614	ulong flags;
7615	struct igb_i2c_client_list *client_list;
7616	struct i2c_client *client = NULL;
7617	struct i2c_board_info client_info = {
7618		I2C_BOARD_INFO("igb", 0x00),
7619	};
7620
7621	spin_lock_irqsave(&i2c_clients_lock, flags);
7622	client_list = adapter->i2c_clients;
7623
7624	/* See if we already have an i2c_client */
7625	while (client_list) {
7626		if (client_list->client->addr == (dev_addr >> 1)) {
7627			client = client_list->client;
7628			goto exit;
7629		} else {
7630			client_list = client_list->next;
7631		}
7632	}
7633
7634	/* no client_list found, create a new one as long as
7635	 * irqs are not disabled
7636	 */
7637	if (unlikely(irqs_disabled()))
7638		goto exit;
7639
7640	client_list = kzalloc(sizeof(*client_list), GFP_KERNEL);
7641	if (client_list == NULL)
7642		goto exit;
7643
7644	/* dev_addr passed to us is left-shifted by 1 bit
7645	 * i2c_new_device call expects it to be flush to the right.
7646	 */
7647	client_info.addr = dev_addr >> 1;
7648	client_info.platform_data = adapter;
7649	client_list->client = i2c_new_device(&adapter->i2c_adap, &client_info);
7650	if (client_list->client == NULL) {
7651		dev_info(&adapter->pdev->dev,
7652			"Failed to create new i2c device..\n");
7653		goto err_no_client;
7654	}
7655
7656	/* insert new client at head of list */
7657	client_list->next = adapter->i2c_clients;
7658	adapter->i2c_clients = client_list;
7659
7660	client = client_list->client;
7661	goto exit;
7662
7663err_no_client:
7664	kfree(client_list);
7665exit:
7666	spin_unlock_irqrestore(&i2c_clients_lock, flags);
7667	return client;
7668}
7669
7670/*  igb_read_i2c_byte - Reads 8 bit word over I2C
7671 *  @hw: pointer to hardware structure
7672 *  @byte_offset: byte offset to read
7673 *  @dev_addr: device address
7674 *  @data: value read
7675 *
7676 *  Performs byte read operation over I2C interface at
7677 *  a specified device address.
7678 */
7679s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7680				u8 dev_addr, u8 *data)
7681{
7682	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7683	struct i2c_client *this_client = igb_get_i2c_client(adapter, dev_addr);
7684	s32 status;
7685	u16 swfw_mask = 0;
7686
7687	if (!this_client)
7688		return E1000_ERR_I2C;
7689
7690	swfw_mask = E1000_SWFW_PHY0_SM;
7691
7692	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7693	    != E1000_SUCCESS)
7694		return E1000_ERR_SWFW_SYNC;
7695
7696	status = i2c_smbus_read_byte_data(this_client, byte_offset);
7697	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7698
7699	if (status < 0)
7700		return E1000_ERR_I2C;
7701	else {
7702		*data = status;
7703		return E1000_SUCCESS;
7704	}
7705}
7706
7707/*  igb_write_i2c_byte - Writes 8 bit word over I2C
7708 *  @hw: pointer to hardware structure
7709 *  @byte_offset: byte offset to write
7710 *  @dev_addr: device address
7711 *  @data: value to write
7712 *
7713 *  Performs byte write operation over I2C interface at
7714 *  a specified device address.
7715 */
7716s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7717				 u8 dev_addr, u8 data)
7718{
7719	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7720	struct i2c_client *this_client = igb_get_i2c_client(adapter, dev_addr);
7721	s32 status;
7722	u16 swfw_mask = E1000_SWFW_PHY0_SM;
7723
7724	if (!this_client)
7725		return E1000_ERR_I2C;
7726
7727	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7728		return E1000_ERR_SWFW_SYNC;
7729	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7730	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7731
7732	if (status)
7733		return E1000_ERR_I2C;
7734	else
7735		return E1000_SUCCESS;
7736
7737}
7738/* igb_main.c */
7739