igb_main.c revision b66e2397cd277cf2bec2628b3ed35865df2609e5
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2012 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
33#include <linux/bitops.h>
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/netdevice.h>
37#include <linux/ipv6.h>
38#include <linux/slab.h>
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
41#include <linux/net_tstamp.h>
42#include <linux/mii.h>
43#include <linux/ethtool.h>
44#include <linux/if.h>
45#include <linux/if_vlan.h>
46#include <linux/pci.h>
47#include <linux/pci-aspm.h>
48#include <linux/delay.h>
49#include <linux/interrupt.h>
50#include <linux/ip.h>
51#include <linux/tcp.h>
52#include <linux/sctp.h>
53#include <linux/if_ether.h>
54#include <linux/aer.h>
55#include <linux/prefetch.h>
56#include <linux/pm_runtime.h>
57#ifdef CONFIG_IGB_DCA
58#include <linux/dca.h>
59#endif
60#include <linux/i2c.h>
61#include "igb.h"
62
63#define MAJ 4
64#define MIN 1
65#define BUILD 2
66#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67__stringify(BUILD) "-k"
68char igb_driver_name[] = "igb";
69char igb_driver_version[] = DRV_VERSION;
70static const char igb_driver_string[] =
71				"Intel(R) Gigabit Ethernet Network Driver";
72static const char igb_copyright[] = "Copyright (c) 2007-2012 Intel Corporation.";
73
74static const struct e1000_info *igb_info_tbl[] = {
75	[board_82575] = &e1000_82575_info,
76};
77
78static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
79	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
99	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
104	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
105	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
106	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
107	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
108	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
109	/* required last entry */
110	{0, }
111};
112
113MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
114
115void igb_reset(struct igb_adapter *);
116static int igb_setup_all_tx_resources(struct igb_adapter *);
117static int igb_setup_all_rx_resources(struct igb_adapter *);
118static void igb_free_all_tx_resources(struct igb_adapter *);
119static void igb_free_all_rx_resources(struct igb_adapter *);
120static void igb_setup_mrqc(struct igb_adapter *);
121static int igb_probe(struct pci_dev *, const struct pci_device_id *);
122static void igb_remove(struct pci_dev *pdev);
123static int igb_sw_init(struct igb_adapter *);
124static int igb_open(struct net_device *);
125static int igb_close(struct net_device *);
126static void igb_configure(struct igb_adapter *);
127static void igb_configure_tx(struct igb_adapter *);
128static void igb_configure_rx(struct igb_adapter *);
129static void igb_clean_all_tx_rings(struct igb_adapter *);
130static void igb_clean_all_rx_rings(struct igb_adapter *);
131static void igb_clean_tx_ring(struct igb_ring *);
132static void igb_clean_rx_ring(struct igb_ring *);
133static void igb_set_rx_mode(struct net_device *);
134static void igb_update_phy_info(unsigned long);
135static void igb_watchdog(unsigned long);
136static void igb_watchdog_task(struct work_struct *);
137static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
138static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
139						 struct rtnl_link_stats64 *stats);
140static int igb_change_mtu(struct net_device *, int);
141static int igb_set_mac(struct net_device *, void *);
142static void igb_set_uta(struct igb_adapter *adapter);
143static irqreturn_t igb_intr(int irq, void *);
144static irqreturn_t igb_intr_msi(int irq, void *);
145static irqreturn_t igb_msix_other(int irq, void *);
146static irqreturn_t igb_msix_ring(int irq, void *);
147#ifdef CONFIG_IGB_DCA
148static void igb_update_dca(struct igb_q_vector *);
149static void igb_setup_dca(struct igb_adapter *);
150#endif /* CONFIG_IGB_DCA */
151static int igb_poll(struct napi_struct *, int);
152static bool igb_clean_tx_irq(struct igb_q_vector *);
153static bool igb_clean_rx_irq(struct igb_q_vector *, int);
154static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
155static void igb_tx_timeout(struct net_device *);
156static void igb_reset_task(struct work_struct *);
157static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
158static int igb_vlan_rx_add_vid(struct net_device *, u16);
159static int igb_vlan_rx_kill_vid(struct net_device *, u16);
160static void igb_restore_vlan(struct igb_adapter *);
161static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
162static void igb_ping_all_vfs(struct igb_adapter *);
163static void igb_msg_task(struct igb_adapter *);
164static void igb_vmm_control(struct igb_adapter *);
165static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
166static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
167static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
168static int igb_ndo_set_vf_vlan(struct net_device *netdev,
169			       int vf, u16 vlan, u8 qos);
170static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
171static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
172				 struct ifla_vf_info *ivi);
173static void igb_check_vf_rate_limit(struct igb_adapter *);
174
175#ifdef CONFIG_PCI_IOV
176static int igb_vf_configure(struct igb_adapter *adapter, int vf);
177static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
178#endif
179
180#ifdef CONFIG_PM
181#ifdef CONFIG_PM_SLEEP
182static int igb_suspend(struct device *);
183#endif
184static int igb_resume(struct device *);
185#ifdef CONFIG_PM_RUNTIME
186static int igb_runtime_suspend(struct device *dev);
187static int igb_runtime_resume(struct device *dev);
188static int igb_runtime_idle(struct device *dev);
189#endif
190static const struct dev_pm_ops igb_pm_ops = {
191	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
192	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
193			igb_runtime_idle)
194};
195#endif
196static void igb_shutdown(struct pci_dev *);
197static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
198#ifdef CONFIG_IGB_DCA
199static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
200static struct notifier_block dca_notifier = {
201	.notifier_call	= igb_notify_dca,
202	.next		= NULL,
203	.priority	= 0
204};
205#endif
206#ifdef CONFIG_NET_POLL_CONTROLLER
207/* for netdump / net console */
208static void igb_netpoll(struct net_device *);
209#endif
210#ifdef CONFIG_PCI_IOV
211static unsigned int max_vfs = 0;
212module_param(max_vfs, uint, 0);
213MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
214                 "per physical function");
215#endif /* CONFIG_PCI_IOV */
216
217static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
218		     pci_channel_state_t);
219static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
220static void igb_io_resume(struct pci_dev *);
221
222static const struct pci_error_handlers igb_err_handler = {
223	.error_detected = igb_io_error_detected,
224	.slot_reset = igb_io_slot_reset,
225	.resume = igb_io_resume,
226};
227
228static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
229
230static struct pci_driver igb_driver = {
231	.name     = igb_driver_name,
232	.id_table = igb_pci_tbl,
233	.probe    = igb_probe,
234	.remove   = igb_remove,
235#ifdef CONFIG_PM
236	.driver.pm = &igb_pm_ops,
237#endif
238	.shutdown = igb_shutdown,
239	.sriov_configure = igb_pci_sriov_configure,
240	.err_handler = &igb_err_handler
241};
242
243MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
244MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
245MODULE_LICENSE("GPL");
246MODULE_VERSION(DRV_VERSION);
247
248#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
249static int debug = -1;
250module_param(debug, int, 0);
251MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
252
253struct igb_reg_info {
254	u32 ofs;
255	char *name;
256};
257
258static const struct igb_reg_info igb_reg_info_tbl[] = {
259
260	/* General Registers */
261	{E1000_CTRL, "CTRL"},
262	{E1000_STATUS, "STATUS"},
263	{E1000_CTRL_EXT, "CTRL_EXT"},
264
265	/* Interrupt Registers */
266	{E1000_ICR, "ICR"},
267
268	/* RX Registers */
269	{E1000_RCTL, "RCTL"},
270	{E1000_RDLEN(0), "RDLEN"},
271	{E1000_RDH(0), "RDH"},
272	{E1000_RDT(0), "RDT"},
273	{E1000_RXDCTL(0), "RXDCTL"},
274	{E1000_RDBAL(0), "RDBAL"},
275	{E1000_RDBAH(0), "RDBAH"},
276
277	/* TX Registers */
278	{E1000_TCTL, "TCTL"},
279	{E1000_TDBAL(0), "TDBAL"},
280	{E1000_TDBAH(0), "TDBAH"},
281	{E1000_TDLEN(0), "TDLEN"},
282	{E1000_TDH(0), "TDH"},
283	{E1000_TDT(0), "TDT"},
284	{E1000_TXDCTL(0), "TXDCTL"},
285	{E1000_TDFH, "TDFH"},
286	{E1000_TDFT, "TDFT"},
287	{E1000_TDFHS, "TDFHS"},
288	{E1000_TDFPC, "TDFPC"},
289
290	/* List Terminator */
291	{}
292};
293
294/*
295 * igb_regdump - register printout routine
296 */
297static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
298{
299	int n = 0;
300	char rname[16];
301	u32 regs[8];
302
303	switch (reginfo->ofs) {
304	case E1000_RDLEN(0):
305		for (n = 0; n < 4; n++)
306			regs[n] = rd32(E1000_RDLEN(n));
307		break;
308	case E1000_RDH(0):
309		for (n = 0; n < 4; n++)
310			regs[n] = rd32(E1000_RDH(n));
311		break;
312	case E1000_RDT(0):
313		for (n = 0; n < 4; n++)
314			regs[n] = rd32(E1000_RDT(n));
315		break;
316	case E1000_RXDCTL(0):
317		for (n = 0; n < 4; n++)
318			regs[n] = rd32(E1000_RXDCTL(n));
319		break;
320	case E1000_RDBAL(0):
321		for (n = 0; n < 4; n++)
322			regs[n] = rd32(E1000_RDBAL(n));
323		break;
324	case E1000_RDBAH(0):
325		for (n = 0; n < 4; n++)
326			regs[n] = rd32(E1000_RDBAH(n));
327		break;
328	case E1000_TDBAL(0):
329		for (n = 0; n < 4; n++)
330			regs[n] = rd32(E1000_RDBAL(n));
331		break;
332	case E1000_TDBAH(0):
333		for (n = 0; n < 4; n++)
334			regs[n] = rd32(E1000_TDBAH(n));
335		break;
336	case E1000_TDLEN(0):
337		for (n = 0; n < 4; n++)
338			regs[n] = rd32(E1000_TDLEN(n));
339		break;
340	case E1000_TDH(0):
341		for (n = 0; n < 4; n++)
342			regs[n] = rd32(E1000_TDH(n));
343		break;
344	case E1000_TDT(0):
345		for (n = 0; n < 4; n++)
346			regs[n] = rd32(E1000_TDT(n));
347		break;
348	case E1000_TXDCTL(0):
349		for (n = 0; n < 4; n++)
350			regs[n] = rd32(E1000_TXDCTL(n));
351		break;
352	default:
353		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
354		return;
355	}
356
357	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
358	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
359		regs[2], regs[3]);
360}
361
362/*
363 * igb_dump - Print registers, tx-rings and rx-rings
364 */
365static void igb_dump(struct igb_adapter *adapter)
366{
367	struct net_device *netdev = adapter->netdev;
368	struct e1000_hw *hw = &adapter->hw;
369	struct igb_reg_info *reginfo;
370	struct igb_ring *tx_ring;
371	union e1000_adv_tx_desc *tx_desc;
372	struct my_u0 { u64 a; u64 b; } *u0;
373	struct igb_ring *rx_ring;
374	union e1000_adv_rx_desc *rx_desc;
375	u32 staterr;
376	u16 i, n;
377
378	if (!netif_msg_hw(adapter))
379		return;
380
381	/* Print netdevice Info */
382	if (netdev) {
383		dev_info(&adapter->pdev->dev, "Net device Info\n");
384		pr_info("Device Name     state            trans_start      "
385			"last_rx\n");
386		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
387			netdev->state, netdev->trans_start, netdev->last_rx);
388	}
389
390	/* Print Registers */
391	dev_info(&adapter->pdev->dev, "Register Dump\n");
392	pr_info(" Register Name   Value\n");
393	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
394	     reginfo->name; reginfo++) {
395		igb_regdump(hw, reginfo);
396	}
397
398	/* Print TX Ring Summary */
399	if (!netdev || !netif_running(netdev))
400		goto exit;
401
402	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
403	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
404	for (n = 0; n < adapter->num_tx_queues; n++) {
405		struct igb_tx_buffer *buffer_info;
406		tx_ring = adapter->tx_ring[n];
407		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
408		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
409			n, tx_ring->next_to_use, tx_ring->next_to_clean,
410			(u64)dma_unmap_addr(buffer_info, dma),
411			dma_unmap_len(buffer_info, len),
412			buffer_info->next_to_watch,
413			(u64)buffer_info->time_stamp);
414	}
415
416	/* Print TX Rings */
417	if (!netif_msg_tx_done(adapter))
418		goto rx_ring_summary;
419
420	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
421
422	/* Transmit Descriptor Formats
423	 *
424	 * Advanced Transmit Descriptor
425	 *   +--------------------------------------------------------------+
426	 * 0 |         Buffer Address [63:0]                                |
427	 *   +--------------------------------------------------------------+
428	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
429	 *   +--------------------------------------------------------------+
430	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
431	 */
432
433	for (n = 0; n < adapter->num_tx_queues; n++) {
434		tx_ring = adapter->tx_ring[n];
435		pr_info("------------------------------------\n");
436		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
437		pr_info("------------------------------------\n");
438		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
439			"[bi->dma       ] leng  ntw timestamp        "
440			"bi->skb\n");
441
442		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
443			const char *next_desc;
444			struct igb_tx_buffer *buffer_info;
445			tx_desc = IGB_TX_DESC(tx_ring, i);
446			buffer_info = &tx_ring->tx_buffer_info[i];
447			u0 = (struct my_u0 *)tx_desc;
448			if (i == tx_ring->next_to_use &&
449			    i == tx_ring->next_to_clean)
450				next_desc = " NTC/U";
451			else if (i == tx_ring->next_to_use)
452				next_desc = " NTU";
453			else if (i == tx_ring->next_to_clean)
454				next_desc = " NTC";
455			else
456				next_desc = "";
457
458			pr_info("T [0x%03X]    %016llX %016llX %016llX"
459				" %04X  %p %016llX %p%s\n", i,
460				le64_to_cpu(u0->a),
461				le64_to_cpu(u0->b),
462				(u64)dma_unmap_addr(buffer_info, dma),
463				dma_unmap_len(buffer_info, len),
464				buffer_info->next_to_watch,
465				(u64)buffer_info->time_stamp,
466				buffer_info->skb, next_desc);
467
468			if (netif_msg_pktdata(adapter) && buffer_info->skb)
469				print_hex_dump(KERN_INFO, "",
470					DUMP_PREFIX_ADDRESS,
471					16, 1, buffer_info->skb->data,
472					dma_unmap_len(buffer_info, len),
473					true);
474		}
475	}
476
477	/* Print RX Rings Summary */
478rx_ring_summary:
479	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
480	pr_info("Queue [NTU] [NTC]\n");
481	for (n = 0; n < adapter->num_rx_queues; n++) {
482		rx_ring = adapter->rx_ring[n];
483		pr_info(" %5d %5X %5X\n",
484			n, rx_ring->next_to_use, rx_ring->next_to_clean);
485	}
486
487	/* Print RX Rings */
488	if (!netif_msg_rx_status(adapter))
489		goto exit;
490
491	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
492
493	/* Advanced Receive Descriptor (Read) Format
494	 *    63                                           1        0
495	 *    +-----------------------------------------------------+
496	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
497	 *    +----------------------------------------------+------+
498	 *  8 |       Header Buffer Address [63:1]           |  DD  |
499	 *    +-----------------------------------------------------+
500	 *
501	 *
502	 * Advanced Receive Descriptor (Write-Back) Format
503	 *
504	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
505	 *   +------------------------------------------------------+
506	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
507	 *   | Checksum   Ident  |   |           |    | Type | Type |
508	 *   +------------------------------------------------------+
509	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
510	 *   +------------------------------------------------------+
511	 *   63       48 47    32 31            20 19               0
512	 */
513
514	for (n = 0; n < adapter->num_rx_queues; n++) {
515		rx_ring = adapter->rx_ring[n];
516		pr_info("------------------------------------\n");
517		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
518		pr_info("------------------------------------\n");
519		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
520			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
521		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
522			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
523
524		for (i = 0; i < rx_ring->count; i++) {
525			const char *next_desc;
526			struct igb_rx_buffer *buffer_info;
527			buffer_info = &rx_ring->rx_buffer_info[i];
528			rx_desc = IGB_RX_DESC(rx_ring, i);
529			u0 = (struct my_u0 *)rx_desc;
530			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
531
532			if (i == rx_ring->next_to_use)
533				next_desc = " NTU";
534			else if (i == rx_ring->next_to_clean)
535				next_desc = " NTC";
536			else
537				next_desc = "";
538
539			if (staterr & E1000_RXD_STAT_DD) {
540				/* Descriptor Done */
541				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
542					"RWB", i,
543					le64_to_cpu(u0->a),
544					le64_to_cpu(u0->b),
545					next_desc);
546			} else {
547				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
548					"R  ", i,
549					le64_to_cpu(u0->a),
550					le64_to_cpu(u0->b),
551					(u64)buffer_info->dma,
552					next_desc);
553
554				if (netif_msg_pktdata(adapter) &&
555				    buffer_info->dma && buffer_info->page) {
556					print_hex_dump(KERN_INFO, "",
557					  DUMP_PREFIX_ADDRESS,
558					  16, 1,
559					  page_address(buffer_info->page) +
560						      buffer_info->page_offset,
561					  IGB_RX_BUFSZ, true);
562				}
563			}
564		}
565	}
566
567exit:
568	return;
569}
570
571/*  igb_get_i2c_data - Reads the I2C SDA data bit
572 *  @hw: pointer to hardware structure
573 *  @i2cctl: Current value of I2CCTL register
574 *
575 *  Returns the I2C data bit value
576 */
577static int igb_get_i2c_data(void *data)
578{
579	struct igb_adapter *adapter = (struct igb_adapter *)data;
580	struct e1000_hw *hw = &adapter->hw;
581	s32 i2cctl = rd32(E1000_I2CPARAMS);
582
583	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
584}
585
586/* igb_set_i2c_data - Sets the I2C data bit
587 *  @data: pointer to hardware structure
588 *  @state: I2C data value (0 or 1) to set
589 *
590 *  Sets the I2C data bit
591 */
592static void igb_set_i2c_data(void *data, int state)
593{
594	struct igb_adapter *adapter = (struct igb_adapter *)data;
595	struct e1000_hw *hw = &adapter->hw;
596	s32 i2cctl = rd32(E1000_I2CPARAMS);
597
598	if (state)
599		i2cctl |= E1000_I2C_DATA_OUT;
600	else
601		i2cctl &= ~E1000_I2C_DATA_OUT;
602
603	i2cctl &= ~E1000_I2C_DATA_OE_N;
604	i2cctl |= E1000_I2C_CLK_OE_N;
605	wr32(E1000_I2CPARAMS, i2cctl);
606	wrfl();
607
608}
609
610/* igb_set_i2c_clk - Sets the I2C SCL clock
611 *  @data: pointer to hardware structure
612 *  @state: state to set clock
613 *
614 *  Sets the I2C clock line to state
615 */
616static void igb_set_i2c_clk(void *data, int state)
617{
618	struct igb_adapter *adapter = (struct igb_adapter *)data;
619	struct e1000_hw *hw = &adapter->hw;
620	s32 i2cctl = rd32(E1000_I2CPARAMS);
621
622	if (state) {
623		i2cctl |= E1000_I2C_CLK_OUT;
624		i2cctl &= ~E1000_I2C_CLK_OE_N;
625	} else {
626		i2cctl &= ~E1000_I2C_CLK_OUT;
627		i2cctl &= ~E1000_I2C_CLK_OE_N;
628	}
629	wr32(E1000_I2CPARAMS, i2cctl);
630	wrfl();
631}
632
633/* igb_get_i2c_clk - Gets the I2C SCL clock state
634 *  @data: pointer to hardware structure
635 *
636 *  Gets the I2C clock state
637 */
638static int igb_get_i2c_clk(void *data)
639{
640	struct igb_adapter *adapter = (struct igb_adapter *)data;
641	struct e1000_hw *hw = &adapter->hw;
642	s32 i2cctl = rd32(E1000_I2CPARAMS);
643
644	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
645}
646
647static const struct i2c_algo_bit_data igb_i2c_algo = {
648	.setsda		= igb_set_i2c_data,
649	.setscl		= igb_set_i2c_clk,
650	.getsda		= igb_get_i2c_data,
651	.getscl		= igb_get_i2c_clk,
652	.udelay		= 5,
653	.timeout	= 20,
654};
655
656/**
657 * igb_get_hw_dev - return device
658 * used by hardware layer to print debugging information
659 **/
660struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
661{
662	struct igb_adapter *adapter = hw->back;
663	return adapter->netdev;
664}
665
666/**
667 * igb_init_module - Driver Registration Routine
668 *
669 * igb_init_module is the first routine called when the driver is
670 * loaded. All it does is register with the PCI subsystem.
671 **/
672static int __init igb_init_module(void)
673{
674	int ret;
675	pr_info("%s - version %s\n",
676	       igb_driver_string, igb_driver_version);
677
678	pr_info("%s\n", igb_copyright);
679
680#ifdef CONFIG_IGB_DCA
681	dca_register_notify(&dca_notifier);
682#endif
683	ret = pci_register_driver(&igb_driver);
684	return ret;
685}
686
687module_init(igb_init_module);
688
689/**
690 * igb_exit_module - Driver Exit Cleanup Routine
691 *
692 * igb_exit_module is called just before the driver is removed
693 * from memory.
694 **/
695static void __exit igb_exit_module(void)
696{
697#ifdef CONFIG_IGB_DCA
698	dca_unregister_notify(&dca_notifier);
699#endif
700	pci_unregister_driver(&igb_driver);
701}
702
703module_exit(igb_exit_module);
704
705#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
706/**
707 * igb_cache_ring_register - Descriptor ring to register mapping
708 * @adapter: board private structure to initialize
709 *
710 * Once we know the feature-set enabled for the device, we'll cache
711 * the register offset the descriptor ring is assigned to.
712 **/
713static void igb_cache_ring_register(struct igb_adapter *adapter)
714{
715	int i = 0, j = 0;
716	u32 rbase_offset = adapter->vfs_allocated_count;
717
718	switch (adapter->hw.mac.type) {
719	case e1000_82576:
720		/* The queues are allocated for virtualization such that VF 0
721		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
722		 * In order to avoid collision we start at the first free queue
723		 * and continue consuming queues in the same sequence
724		 */
725		if (adapter->vfs_allocated_count) {
726			for (; i < adapter->rss_queues; i++)
727				adapter->rx_ring[i]->reg_idx = rbase_offset +
728				                               Q_IDX_82576(i);
729		}
730	case e1000_82575:
731	case e1000_82580:
732	case e1000_i350:
733	case e1000_i210:
734	case e1000_i211:
735	default:
736		for (; i < adapter->num_rx_queues; i++)
737			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
738		for (; j < adapter->num_tx_queues; j++)
739			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
740		break;
741	}
742}
743
744/**
745 *  igb_write_ivar - configure ivar for given MSI-X vector
746 *  @hw: pointer to the HW structure
747 *  @msix_vector: vector number we are allocating to a given ring
748 *  @index: row index of IVAR register to write within IVAR table
749 *  @offset: column offset of in IVAR, should be multiple of 8
750 *
751 *  This function is intended to handle the writing of the IVAR register
752 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
753 *  each containing an cause allocation for an Rx and Tx ring, and a
754 *  variable number of rows depending on the number of queues supported.
755 **/
756static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
757			   int index, int offset)
758{
759	u32 ivar = array_rd32(E1000_IVAR0, index);
760
761	/* clear any bits that are currently set */
762	ivar &= ~((u32)0xFF << offset);
763
764	/* write vector and valid bit */
765	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
766
767	array_wr32(E1000_IVAR0, index, ivar);
768}
769
770#define IGB_N0_QUEUE -1
771static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
772{
773	struct igb_adapter *adapter = q_vector->adapter;
774	struct e1000_hw *hw = &adapter->hw;
775	int rx_queue = IGB_N0_QUEUE;
776	int tx_queue = IGB_N0_QUEUE;
777	u32 msixbm = 0;
778
779	if (q_vector->rx.ring)
780		rx_queue = q_vector->rx.ring->reg_idx;
781	if (q_vector->tx.ring)
782		tx_queue = q_vector->tx.ring->reg_idx;
783
784	switch (hw->mac.type) {
785	case e1000_82575:
786		/* The 82575 assigns vectors using a bitmask, which matches the
787		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
788		   or more queues to a vector, we write the appropriate bits
789		   into the MSIXBM register for that vector. */
790		if (rx_queue > IGB_N0_QUEUE)
791			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
792		if (tx_queue > IGB_N0_QUEUE)
793			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
794		if (!adapter->msix_entries && msix_vector == 0)
795			msixbm |= E1000_EIMS_OTHER;
796		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
797		q_vector->eims_value = msixbm;
798		break;
799	case e1000_82576:
800		/*
801		 * 82576 uses a table that essentially consists of 2 columns
802		 * with 8 rows.  The ordering is column-major so we use the
803		 * lower 3 bits as the row index, and the 4th bit as the
804		 * column offset.
805		 */
806		if (rx_queue > IGB_N0_QUEUE)
807			igb_write_ivar(hw, msix_vector,
808				       rx_queue & 0x7,
809				       (rx_queue & 0x8) << 1);
810		if (tx_queue > IGB_N0_QUEUE)
811			igb_write_ivar(hw, msix_vector,
812				       tx_queue & 0x7,
813				       ((tx_queue & 0x8) << 1) + 8);
814		q_vector->eims_value = 1 << msix_vector;
815		break;
816	case e1000_82580:
817	case e1000_i350:
818	case e1000_i210:
819	case e1000_i211:
820		/*
821		 * On 82580 and newer adapters the scheme is similar to 82576
822		 * however instead of ordering column-major we have things
823		 * ordered row-major.  So we traverse the table by using
824		 * bit 0 as the column offset, and the remaining bits as the
825		 * row index.
826		 */
827		if (rx_queue > IGB_N0_QUEUE)
828			igb_write_ivar(hw, msix_vector,
829				       rx_queue >> 1,
830				       (rx_queue & 0x1) << 4);
831		if (tx_queue > IGB_N0_QUEUE)
832			igb_write_ivar(hw, msix_vector,
833				       tx_queue >> 1,
834				       ((tx_queue & 0x1) << 4) + 8);
835		q_vector->eims_value = 1 << msix_vector;
836		break;
837	default:
838		BUG();
839		break;
840	}
841
842	/* add q_vector eims value to global eims_enable_mask */
843	adapter->eims_enable_mask |= q_vector->eims_value;
844
845	/* configure q_vector to set itr on first interrupt */
846	q_vector->set_itr = 1;
847}
848
849/**
850 * igb_configure_msix - Configure MSI-X hardware
851 *
852 * igb_configure_msix sets up the hardware to properly
853 * generate MSI-X interrupts.
854 **/
855static void igb_configure_msix(struct igb_adapter *adapter)
856{
857	u32 tmp;
858	int i, vector = 0;
859	struct e1000_hw *hw = &adapter->hw;
860
861	adapter->eims_enable_mask = 0;
862
863	/* set vector for other causes, i.e. link changes */
864	switch (hw->mac.type) {
865	case e1000_82575:
866		tmp = rd32(E1000_CTRL_EXT);
867		/* enable MSI-X PBA support*/
868		tmp |= E1000_CTRL_EXT_PBA_CLR;
869
870		/* Auto-Mask interrupts upon ICR read. */
871		tmp |= E1000_CTRL_EXT_EIAME;
872		tmp |= E1000_CTRL_EXT_IRCA;
873
874		wr32(E1000_CTRL_EXT, tmp);
875
876		/* enable msix_other interrupt */
877		array_wr32(E1000_MSIXBM(0), vector++,
878		                      E1000_EIMS_OTHER);
879		adapter->eims_other = E1000_EIMS_OTHER;
880
881		break;
882
883	case e1000_82576:
884	case e1000_82580:
885	case e1000_i350:
886	case e1000_i210:
887	case e1000_i211:
888		/* Turn on MSI-X capability first, or our settings
889		 * won't stick.  And it will take days to debug. */
890		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
891		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
892		                E1000_GPIE_NSICR);
893
894		/* enable msix_other interrupt */
895		adapter->eims_other = 1 << vector;
896		tmp = (vector++ | E1000_IVAR_VALID) << 8;
897
898		wr32(E1000_IVAR_MISC, tmp);
899		break;
900	default:
901		/* do nothing, since nothing else supports MSI-X */
902		break;
903	} /* switch (hw->mac.type) */
904
905	adapter->eims_enable_mask |= adapter->eims_other;
906
907	for (i = 0; i < adapter->num_q_vectors; i++)
908		igb_assign_vector(adapter->q_vector[i], vector++);
909
910	wrfl();
911}
912
913/**
914 * igb_request_msix - Initialize MSI-X interrupts
915 *
916 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
917 * kernel.
918 **/
919static int igb_request_msix(struct igb_adapter *adapter)
920{
921	struct net_device *netdev = adapter->netdev;
922	struct e1000_hw *hw = &adapter->hw;
923	int i, err = 0, vector = 0, free_vector = 0;
924
925	err = request_irq(adapter->msix_entries[vector].vector,
926	                  igb_msix_other, 0, netdev->name, adapter);
927	if (err)
928		goto err_out;
929
930	for (i = 0; i < adapter->num_q_vectors; i++) {
931		struct igb_q_vector *q_vector = adapter->q_vector[i];
932
933		vector++;
934
935		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
936
937		if (q_vector->rx.ring && q_vector->tx.ring)
938			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
939				q_vector->rx.ring->queue_index);
940		else if (q_vector->tx.ring)
941			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
942				q_vector->tx.ring->queue_index);
943		else if (q_vector->rx.ring)
944			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
945				q_vector->rx.ring->queue_index);
946		else
947			sprintf(q_vector->name, "%s-unused", netdev->name);
948
949		err = request_irq(adapter->msix_entries[vector].vector,
950		                  igb_msix_ring, 0, q_vector->name,
951		                  q_vector);
952		if (err)
953			goto err_free;
954	}
955
956	igb_configure_msix(adapter);
957	return 0;
958
959err_free:
960	/* free already assigned IRQs */
961	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
962
963	vector--;
964	for (i = 0; i < vector; i++) {
965		free_irq(adapter->msix_entries[free_vector++].vector,
966			 adapter->q_vector[i]);
967	}
968err_out:
969	return err;
970}
971
972static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
973{
974	if (adapter->msix_entries) {
975		pci_disable_msix(adapter->pdev);
976		kfree(adapter->msix_entries);
977		adapter->msix_entries = NULL;
978	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
979		pci_disable_msi(adapter->pdev);
980	}
981}
982
983/**
984 * igb_free_q_vector - Free memory allocated for specific interrupt vector
985 * @adapter: board private structure to initialize
986 * @v_idx: Index of vector to be freed
987 *
988 * This function frees the memory allocated to the q_vector.  In addition if
989 * NAPI is enabled it will delete any references to the NAPI struct prior
990 * to freeing the q_vector.
991 **/
992static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
993{
994	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
995
996	if (q_vector->tx.ring)
997		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
998
999	if (q_vector->rx.ring)
1000		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1001
1002	adapter->q_vector[v_idx] = NULL;
1003	netif_napi_del(&q_vector->napi);
1004
1005	/*
1006	 * ixgbe_get_stats64() might access the rings on this vector,
1007	 * we must wait a grace period before freeing it.
1008	 */
1009	kfree_rcu(q_vector, rcu);
1010}
1011
1012/**
1013 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1014 * @adapter: board private structure to initialize
1015 *
1016 * This function frees the memory allocated to the q_vectors.  In addition if
1017 * NAPI is enabled it will delete any references to the NAPI struct prior
1018 * to freeing the q_vector.
1019 **/
1020static void igb_free_q_vectors(struct igb_adapter *adapter)
1021{
1022	int v_idx = adapter->num_q_vectors;
1023
1024	adapter->num_tx_queues = 0;
1025	adapter->num_rx_queues = 0;
1026	adapter->num_q_vectors = 0;
1027
1028	while (v_idx--)
1029		igb_free_q_vector(adapter, v_idx);
1030}
1031
1032/**
1033 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1034 *
1035 * This function resets the device so that it has 0 rx queues, tx queues, and
1036 * MSI-X interrupts allocated.
1037 */
1038static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1039{
1040	igb_free_q_vectors(adapter);
1041	igb_reset_interrupt_capability(adapter);
1042}
1043
1044/**
1045 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1046 *
1047 * Attempt to configure interrupts using the best available
1048 * capabilities of the hardware and kernel.
1049 **/
1050static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1051{
1052	int err;
1053	int numvecs, i;
1054
1055	if (!msix)
1056		goto msi_only;
1057
1058	/* Number of supported queues. */
1059	adapter->num_rx_queues = adapter->rss_queues;
1060	if (adapter->vfs_allocated_count)
1061		adapter->num_tx_queues = 1;
1062	else
1063		adapter->num_tx_queues = adapter->rss_queues;
1064
1065	/* start with one vector for every rx queue */
1066	numvecs = adapter->num_rx_queues;
1067
1068	/* if tx handler is separate add 1 for every tx queue */
1069	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1070		numvecs += adapter->num_tx_queues;
1071
1072	/* store the number of vectors reserved for queues */
1073	adapter->num_q_vectors = numvecs;
1074
1075	/* add 1 vector for link status interrupts */
1076	numvecs++;
1077	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1078					GFP_KERNEL);
1079
1080	if (!adapter->msix_entries)
1081		goto msi_only;
1082
1083	for (i = 0; i < numvecs; i++)
1084		adapter->msix_entries[i].entry = i;
1085
1086	err = pci_enable_msix(adapter->pdev,
1087			      adapter->msix_entries,
1088			      numvecs);
1089	if (err == 0)
1090		return;
1091
1092	igb_reset_interrupt_capability(adapter);
1093
1094	/* If we can't do MSI-X, try MSI */
1095msi_only:
1096#ifdef CONFIG_PCI_IOV
1097	/* disable SR-IOV for non MSI-X configurations */
1098	if (adapter->vf_data) {
1099		struct e1000_hw *hw = &adapter->hw;
1100		/* disable iov and allow time for transactions to clear */
1101		pci_disable_sriov(adapter->pdev);
1102		msleep(500);
1103
1104		kfree(adapter->vf_data);
1105		adapter->vf_data = NULL;
1106		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1107		wrfl();
1108		msleep(100);
1109		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1110	}
1111#endif
1112	adapter->vfs_allocated_count = 0;
1113	adapter->rss_queues = 1;
1114	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1115	adapter->num_rx_queues = 1;
1116	adapter->num_tx_queues = 1;
1117	adapter->num_q_vectors = 1;
1118	if (!pci_enable_msi(adapter->pdev))
1119		adapter->flags |= IGB_FLAG_HAS_MSI;
1120}
1121
1122static void igb_add_ring(struct igb_ring *ring,
1123			 struct igb_ring_container *head)
1124{
1125	head->ring = ring;
1126	head->count++;
1127}
1128
1129/**
1130 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1131 * @adapter: board private structure to initialize
1132 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1133 * @v_idx: index of vector in adapter struct
1134 * @txr_count: total number of Tx rings to allocate
1135 * @txr_idx: index of first Tx ring to allocate
1136 * @rxr_count: total number of Rx rings to allocate
1137 * @rxr_idx: index of first Rx ring to allocate
1138 *
1139 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1140 **/
1141static int igb_alloc_q_vector(struct igb_adapter *adapter,
1142			      int v_count, int v_idx,
1143			      int txr_count, int txr_idx,
1144			      int rxr_count, int rxr_idx)
1145{
1146	struct igb_q_vector *q_vector;
1147	struct igb_ring *ring;
1148	int ring_count, size;
1149
1150	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1151	if (txr_count > 1 || rxr_count > 1)
1152		return -ENOMEM;
1153
1154	ring_count = txr_count + rxr_count;
1155	size = sizeof(struct igb_q_vector) +
1156	       (sizeof(struct igb_ring) * ring_count);
1157
1158	/* allocate q_vector and rings */
1159	q_vector = kzalloc(size, GFP_KERNEL);
1160	if (!q_vector)
1161		return -ENOMEM;
1162
1163	/* initialize NAPI */
1164	netif_napi_add(adapter->netdev, &q_vector->napi,
1165		       igb_poll, 64);
1166
1167	/* tie q_vector and adapter together */
1168	adapter->q_vector[v_idx] = q_vector;
1169	q_vector->adapter = adapter;
1170
1171	/* initialize work limits */
1172	q_vector->tx.work_limit = adapter->tx_work_limit;
1173
1174	/* initialize ITR configuration */
1175	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1176	q_vector->itr_val = IGB_START_ITR;
1177
1178	/* initialize pointer to rings */
1179	ring = q_vector->ring;
1180
1181	if (txr_count) {
1182		/* assign generic ring traits */
1183		ring->dev = &adapter->pdev->dev;
1184		ring->netdev = adapter->netdev;
1185
1186		/* configure backlink on ring */
1187		ring->q_vector = q_vector;
1188
1189		/* update q_vector Tx values */
1190		igb_add_ring(ring, &q_vector->tx);
1191
1192		/* For 82575, context index must be unique per ring. */
1193		if (adapter->hw.mac.type == e1000_82575)
1194			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1195
1196		/* apply Tx specific ring traits */
1197		ring->count = adapter->tx_ring_count;
1198		ring->queue_index = txr_idx;
1199
1200		/* assign ring to adapter */
1201		adapter->tx_ring[txr_idx] = ring;
1202
1203		/* push pointer to next ring */
1204		ring++;
1205	}
1206
1207	if (rxr_count) {
1208		/* assign generic ring traits */
1209		ring->dev = &adapter->pdev->dev;
1210		ring->netdev = adapter->netdev;
1211
1212		/* configure backlink on ring */
1213		ring->q_vector = q_vector;
1214
1215		/* update q_vector Rx values */
1216		igb_add_ring(ring, &q_vector->rx);
1217
1218		/* set flag indicating ring supports SCTP checksum offload */
1219		if (adapter->hw.mac.type >= e1000_82576)
1220			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1221
1222		/*
1223		 * On i350, i210, and i211, loopback VLAN packets
1224		 * have the tag byte-swapped.
1225		 * */
1226		if (adapter->hw.mac.type >= e1000_i350)
1227			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1228
1229		/* apply Rx specific ring traits */
1230		ring->count = adapter->rx_ring_count;
1231		ring->queue_index = rxr_idx;
1232
1233		/* assign ring to adapter */
1234		adapter->rx_ring[rxr_idx] = ring;
1235	}
1236
1237	return 0;
1238}
1239
1240
1241/**
1242 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1243 * @adapter: board private structure to initialize
1244 *
1245 * We allocate one q_vector per queue interrupt.  If allocation fails we
1246 * return -ENOMEM.
1247 **/
1248static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1249{
1250	int q_vectors = adapter->num_q_vectors;
1251	int rxr_remaining = adapter->num_rx_queues;
1252	int txr_remaining = adapter->num_tx_queues;
1253	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1254	int err;
1255
1256	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1257		for (; rxr_remaining; v_idx++) {
1258			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1259						 0, 0, 1, rxr_idx);
1260
1261			if (err)
1262				goto err_out;
1263
1264			/* update counts and index */
1265			rxr_remaining--;
1266			rxr_idx++;
1267		}
1268	}
1269
1270	for (; v_idx < q_vectors; v_idx++) {
1271		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1272		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1273		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1274					 tqpv, txr_idx, rqpv, rxr_idx);
1275
1276		if (err)
1277			goto err_out;
1278
1279		/* update counts and index */
1280		rxr_remaining -= rqpv;
1281		txr_remaining -= tqpv;
1282		rxr_idx++;
1283		txr_idx++;
1284	}
1285
1286	return 0;
1287
1288err_out:
1289	adapter->num_tx_queues = 0;
1290	adapter->num_rx_queues = 0;
1291	adapter->num_q_vectors = 0;
1292
1293	while (v_idx--)
1294		igb_free_q_vector(adapter, v_idx);
1295
1296	return -ENOMEM;
1297}
1298
1299/**
1300 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1301 *
1302 * This function initializes the interrupts and allocates all of the queues.
1303 **/
1304static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1305{
1306	struct pci_dev *pdev = adapter->pdev;
1307	int err;
1308
1309	igb_set_interrupt_capability(adapter, msix);
1310
1311	err = igb_alloc_q_vectors(adapter);
1312	if (err) {
1313		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1314		goto err_alloc_q_vectors;
1315	}
1316
1317	igb_cache_ring_register(adapter);
1318
1319	return 0;
1320
1321err_alloc_q_vectors:
1322	igb_reset_interrupt_capability(adapter);
1323	return err;
1324}
1325
1326/**
1327 * igb_request_irq - initialize interrupts
1328 *
1329 * Attempts to configure interrupts using the best available
1330 * capabilities of the hardware and kernel.
1331 **/
1332static int igb_request_irq(struct igb_adapter *adapter)
1333{
1334	struct net_device *netdev = adapter->netdev;
1335	struct pci_dev *pdev = adapter->pdev;
1336	int err = 0;
1337
1338	if (adapter->msix_entries) {
1339		err = igb_request_msix(adapter);
1340		if (!err)
1341			goto request_done;
1342		/* fall back to MSI */
1343		igb_free_all_tx_resources(adapter);
1344		igb_free_all_rx_resources(adapter);
1345
1346		igb_clear_interrupt_scheme(adapter);
1347		err = igb_init_interrupt_scheme(adapter, false);
1348		if (err)
1349			goto request_done;
1350
1351		igb_setup_all_tx_resources(adapter);
1352		igb_setup_all_rx_resources(adapter);
1353		igb_configure(adapter);
1354	}
1355
1356	igb_assign_vector(adapter->q_vector[0], 0);
1357
1358	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1359		err = request_irq(pdev->irq, igb_intr_msi, 0,
1360				  netdev->name, adapter);
1361		if (!err)
1362			goto request_done;
1363
1364		/* fall back to legacy interrupts */
1365		igb_reset_interrupt_capability(adapter);
1366		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1367	}
1368
1369	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1370			  netdev->name, adapter);
1371
1372	if (err)
1373		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1374			err);
1375
1376request_done:
1377	return err;
1378}
1379
1380static void igb_free_irq(struct igb_adapter *adapter)
1381{
1382	if (adapter->msix_entries) {
1383		int vector = 0, i;
1384
1385		free_irq(adapter->msix_entries[vector++].vector, adapter);
1386
1387		for (i = 0; i < adapter->num_q_vectors; i++)
1388			free_irq(adapter->msix_entries[vector++].vector,
1389				 adapter->q_vector[i]);
1390	} else {
1391		free_irq(adapter->pdev->irq, adapter);
1392	}
1393}
1394
1395/**
1396 * igb_irq_disable - Mask off interrupt generation on the NIC
1397 * @adapter: board private structure
1398 **/
1399static void igb_irq_disable(struct igb_adapter *adapter)
1400{
1401	struct e1000_hw *hw = &adapter->hw;
1402
1403	/*
1404	 * we need to be careful when disabling interrupts.  The VFs are also
1405	 * mapped into these registers and so clearing the bits can cause
1406	 * issues on the VF drivers so we only need to clear what we set
1407	 */
1408	if (adapter->msix_entries) {
1409		u32 regval = rd32(E1000_EIAM);
1410		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1411		wr32(E1000_EIMC, adapter->eims_enable_mask);
1412		regval = rd32(E1000_EIAC);
1413		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1414	}
1415
1416	wr32(E1000_IAM, 0);
1417	wr32(E1000_IMC, ~0);
1418	wrfl();
1419	if (adapter->msix_entries) {
1420		int i;
1421		for (i = 0; i < adapter->num_q_vectors; i++)
1422			synchronize_irq(adapter->msix_entries[i].vector);
1423	} else {
1424		synchronize_irq(adapter->pdev->irq);
1425	}
1426}
1427
1428/**
1429 * igb_irq_enable - Enable default interrupt generation settings
1430 * @adapter: board private structure
1431 **/
1432static void igb_irq_enable(struct igb_adapter *adapter)
1433{
1434	struct e1000_hw *hw = &adapter->hw;
1435
1436	if (adapter->msix_entries) {
1437		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1438		u32 regval = rd32(E1000_EIAC);
1439		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1440		regval = rd32(E1000_EIAM);
1441		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1442		wr32(E1000_EIMS, adapter->eims_enable_mask);
1443		if (adapter->vfs_allocated_count) {
1444			wr32(E1000_MBVFIMR, 0xFF);
1445			ims |= E1000_IMS_VMMB;
1446		}
1447		wr32(E1000_IMS, ims);
1448	} else {
1449		wr32(E1000_IMS, IMS_ENABLE_MASK |
1450				E1000_IMS_DRSTA);
1451		wr32(E1000_IAM, IMS_ENABLE_MASK |
1452				E1000_IMS_DRSTA);
1453	}
1454}
1455
1456static void igb_update_mng_vlan(struct igb_adapter *adapter)
1457{
1458	struct e1000_hw *hw = &adapter->hw;
1459	u16 vid = adapter->hw.mng_cookie.vlan_id;
1460	u16 old_vid = adapter->mng_vlan_id;
1461
1462	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1463		/* add VID to filter table */
1464		igb_vfta_set(hw, vid, true);
1465		adapter->mng_vlan_id = vid;
1466	} else {
1467		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1468	}
1469
1470	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1471	    (vid != old_vid) &&
1472	    !test_bit(old_vid, adapter->active_vlans)) {
1473		/* remove VID from filter table */
1474		igb_vfta_set(hw, old_vid, false);
1475	}
1476}
1477
1478/**
1479 * igb_release_hw_control - release control of the h/w to f/w
1480 * @adapter: address of board private structure
1481 *
1482 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1483 * For ASF and Pass Through versions of f/w this means that the
1484 * driver is no longer loaded.
1485 *
1486 **/
1487static void igb_release_hw_control(struct igb_adapter *adapter)
1488{
1489	struct e1000_hw *hw = &adapter->hw;
1490	u32 ctrl_ext;
1491
1492	/* Let firmware take over control of h/w */
1493	ctrl_ext = rd32(E1000_CTRL_EXT);
1494	wr32(E1000_CTRL_EXT,
1495			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1496}
1497
1498/**
1499 * igb_get_hw_control - get control of the h/w from f/w
1500 * @adapter: address of board private structure
1501 *
1502 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1503 * For ASF and Pass Through versions of f/w this means that
1504 * the driver is loaded.
1505 *
1506 **/
1507static void igb_get_hw_control(struct igb_adapter *adapter)
1508{
1509	struct e1000_hw *hw = &adapter->hw;
1510	u32 ctrl_ext;
1511
1512	/* Let firmware know the driver has taken over */
1513	ctrl_ext = rd32(E1000_CTRL_EXT);
1514	wr32(E1000_CTRL_EXT,
1515			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1516}
1517
1518/**
1519 * igb_configure - configure the hardware for RX and TX
1520 * @adapter: private board structure
1521 **/
1522static void igb_configure(struct igb_adapter *adapter)
1523{
1524	struct net_device *netdev = adapter->netdev;
1525	int i;
1526
1527	igb_get_hw_control(adapter);
1528	igb_set_rx_mode(netdev);
1529
1530	igb_restore_vlan(adapter);
1531
1532	igb_setup_tctl(adapter);
1533	igb_setup_mrqc(adapter);
1534	igb_setup_rctl(adapter);
1535
1536	igb_configure_tx(adapter);
1537	igb_configure_rx(adapter);
1538
1539	igb_rx_fifo_flush_82575(&adapter->hw);
1540
1541	/* call igb_desc_unused which always leaves
1542	 * at least 1 descriptor unused to make sure
1543	 * next_to_use != next_to_clean */
1544	for (i = 0; i < adapter->num_rx_queues; i++) {
1545		struct igb_ring *ring = adapter->rx_ring[i];
1546		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1547	}
1548}
1549
1550/**
1551 * igb_power_up_link - Power up the phy/serdes link
1552 * @adapter: address of board private structure
1553 **/
1554void igb_power_up_link(struct igb_adapter *adapter)
1555{
1556	igb_reset_phy(&adapter->hw);
1557
1558	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1559		igb_power_up_phy_copper(&adapter->hw);
1560	else
1561		igb_power_up_serdes_link_82575(&adapter->hw);
1562}
1563
1564/**
1565 * igb_power_down_link - Power down the phy/serdes link
1566 * @adapter: address of board private structure
1567 */
1568static void igb_power_down_link(struct igb_adapter *adapter)
1569{
1570	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1571		igb_power_down_phy_copper_82575(&adapter->hw);
1572	else
1573		igb_shutdown_serdes_link_82575(&adapter->hw);
1574}
1575
1576/**
1577 * igb_up - Open the interface and prepare it to handle traffic
1578 * @adapter: board private structure
1579 **/
1580int igb_up(struct igb_adapter *adapter)
1581{
1582	struct e1000_hw *hw = &adapter->hw;
1583	int i;
1584
1585	/* hardware has been reset, we need to reload some things */
1586	igb_configure(adapter);
1587
1588	clear_bit(__IGB_DOWN, &adapter->state);
1589
1590	for (i = 0; i < adapter->num_q_vectors; i++)
1591		napi_enable(&(adapter->q_vector[i]->napi));
1592
1593	if (adapter->msix_entries)
1594		igb_configure_msix(adapter);
1595	else
1596		igb_assign_vector(adapter->q_vector[0], 0);
1597
1598	/* Clear any pending interrupts. */
1599	rd32(E1000_ICR);
1600	igb_irq_enable(adapter);
1601
1602	/* notify VFs that reset has been completed */
1603	if (adapter->vfs_allocated_count) {
1604		u32 reg_data = rd32(E1000_CTRL_EXT);
1605		reg_data |= E1000_CTRL_EXT_PFRSTD;
1606		wr32(E1000_CTRL_EXT, reg_data);
1607	}
1608
1609	netif_tx_start_all_queues(adapter->netdev);
1610
1611	/* start the watchdog. */
1612	hw->mac.get_link_status = 1;
1613	schedule_work(&adapter->watchdog_task);
1614
1615	return 0;
1616}
1617
1618void igb_down(struct igb_adapter *adapter)
1619{
1620	struct net_device *netdev = adapter->netdev;
1621	struct e1000_hw *hw = &adapter->hw;
1622	u32 tctl, rctl;
1623	int i;
1624
1625	/* signal that we're down so the interrupt handler does not
1626	 * reschedule our watchdog timer */
1627	set_bit(__IGB_DOWN, &adapter->state);
1628
1629	/* disable receives in the hardware */
1630	rctl = rd32(E1000_RCTL);
1631	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1632	/* flush and sleep below */
1633
1634	netif_tx_stop_all_queues(netdev);
1635
1636	/* disable transmits in the hardware */
1637	tctl = rd32(E1000_TCTL);
1638	tctl &= ~E1000_TCTL_EN;
1639	wr32(E1000_TCTL, tctl);
1640	/* flush both disables and wait for them to finish */
1641	wrfl();
1642	msleep(10);
1643
1644	for (i = 0; i < adapter->num_q_vectors; i++)
1645		napi_disable(&(adapter->q_vector[i]->napi));
1646
1647	igb_irq_disable(adapter);
1648
1649	del_timer_sync(&adapter->watchdog_timer);
1650	del_timer_sync(&adapter->phy_info_timer);
1651
1652	netif_carrier_off(netdev);
1653
1654	/* record the stats before reset*/
1655	spin_lock(&adapter->stats64_lock);
1656	igb_update_stats(adapter, &adapter->stats64);
1657	spin_unlock(&adapter->stats64_lock);
1658
1659	adapter->link_speed = 0;
1660	adapter->link_duplex = 0;
1661
1662	if (!pci_channel_offline(adapter->pdev))
1663		igb_reset(adapter);
1664	igb_clean_all_tx_rings(adapter);
1665	igb_clean_all_rx_rings(adapter);
1666#ifdef CONFIG_IGB_DCA
1667
1668	/* since we reset the hardware DCA settings were cleared */
1669	igb_setup_dca(adapter);
1670#endif
1671}
1672
1673void igb_reinit_locked(struct igb_adapter *adapter)
1674{
1675	WARN_ON(in_interrupt());
1676	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1677		msleep(1);
1678	igb_down(adapter);
1679	igb_up(adapter);
1680	clear_bit(__IGB_RESETTING, &adapter->state);
1681}
1682
1683void igb_reset(struct igb_adapter *adapter)
1684{
1685	struct pci_dev *pdev = adapter->pdev;
1686	struct e1000_hw *hw = &adapter->hw;
1687	struct e1000_mac_info *mac = &hw->mac;
1688	struct e1000_fc_info *fc = &hw->fc;
1689	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1690
1691	/* Repartition Pba for greater than 9k mtu
1692	 * To take effect CTRL.RST is required.
1693	 */
1694	switch (mac->type) {
1695	case e1000_i350:
1696	case e1000_82580:
1697		pba = rd32(E1000_RXPBS);
1698		pba = igb_rxpbs_adjust_82580(pba);
1699		break;
1700	case e1000_82576:
1701		pba = rd32(E1000_RXPBS);
1702		pba &= E1000_RXPBS_SIZE_MASK_82576;
1703		break;
1704	case e1000_82575:
1705	case e1000_i210:
1706	case e1000_i211:
1707	default:
1708		pba = E1000_PBA_34K;
1709		break;
1710	}
1711
1712	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1713	    (mac->type < e1000_82576)) {
1714		/* adjust PBA for jumbo frames */
1715		wr32(E1000_PBA, pba);
1716
1717		/* To maintain wire speed transmits, the Tx FIFO should be
1718		 * large enough to accommodate two full transmit packets,
1719		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1720		 * the Rx FIFO should be large enough to accommodate at least
1721		 * one full receive packet and is similarly rounded up and
1722		 * expressed in KB. */
1723		pba = rd32(E1000_PBA);
1724		/* upper 16 bits has Tx packet buffer allocation size in KB */
1725		tx_space = pba >> 16;
1726		/* lower 16 bits has Rx packet buffer allocation size in KB */
1727		pba &= 0xffff;
1728		/* the tx fifo also stores 16 bytes of information about the tx
1729		 * but don't include ethernet FCS because hardware appends it */
1730		min_tx_space = (adapter->max_frame_size +
1731				sizeof(union e1000_adv_tx_desc) -
1732				ETH_FCS_LEN) * 2;
1733		min_tx_space = ALIGN(min_tx_space, 1024);
1734		min_tx_space >>= 10;
1735		/* software strips receive CRC, so leave room for it */
1736		min_rx_space = adapter->max_frame_size;
1737		min_rx_space = ALIGN(min_rx_space, 1024);
1738		min_rx_space >>= 10;
1739
1740		/* If current Tx allocation is less than the min Tx FIFO size,
1741		 * and the min Tx FIFO size is less than the current Rx FIFO
1742		 * allocation, take space away from current Rx allocation */
1743		if (tx_space < min_tx_space &&
1744		    ((min_tx_space - tx_space) < pba)) {
1745			pba = pba - (min_tx_space - tx_space);
1746
1747			/* if short on rx space, rx wins and must trump tx
1748			 * adjustment */
1749			if (pba < min_rx_space)
1750				pba = min_rx_space;
1751		}
1752		wr32(E1000_PBA, pba);
1753	}
1754
1755	/* flow control settings */
1756	/* The high water mark must be low enough to fit one full frame
1757	 * (or the size used for early receive) above it in the Rx FIFO.
1758	 * Set it to the lower of:
1759	 * - 90% of the Rx FIFO size, or
1760	 * - the full Rx FIFO size minus one full frame */
1761	hwm = min(((pba << 10) * 9 / 10),
1762			((pba << 10) - 2 * adapter->max_frame_size));
1763
1764	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1765	fc->low_water = fc->high_water - 16;
1766	fc->pause_time = 0xFFFF;
1767	fc->send_xon = 1;
1768	fc->current_mode = fc->requested_mode;
1769
1770	/* disable receive for all VFs and wait one second */
1771	if (adapter->vfs_allocated_count) {
1772		int i;
1773		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1774			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1775
1776		/* ping all the active vfs to let them know we are going down */
1777		igb_ping_all_vfs(adapter);
1778
1779		/* disable transmits and receives */
1780		wr32(E1000_VFRE, 0);
1781		wr32(E1000_VFTE, 0);
1782	}
1783
1784	/* Allow time for pending master requests to run */
1785	hw->mac.ops.reset_hw(hw);
1786	wr32(E1000_WUC, 0);
1787
1788	if (hw->mac.ops.init_hw(hw))
1789		dev_err(&pdev->dev, "Hardware Error\n");
1790
1791	/*
1792	 * Flow control settings reset on hardware reset, so guarantee flow
1793	 * control is off when forcing speed.
1794	 */
1795	if (!hw->mac.autoneg)
1796		igb_force_mac_fc(hw);
1797
1798	igb_init_dmac(adapter, pba);
1799#ifdef CONFIG_IGB_HWMON
1800	/* Re-initialize the thermal sensor on i350 devices. */
1801	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1802		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1803			/* If present, re-initialize the external thermal sensor
1804			 * interface.
1805			 */
1806			if (adapter->ets)
1807				mac->ops.init_thermal_sensor_thresh(hw);
1808		}
1809	}
1810#endif
1811	if (!netif_running(adapter->netdev))
1812		igb_power_down_link(adapter);
1813
1814	igb_update_mng_vlan(adapter);
1815
1816	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1817	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1818
1819	/* Re-enable PTP, where applicable. */
1820	igb_ptp_reset(adapter);
1821
1822	igb_get_phy_info(hw);
1823}
1824
1825static netdev_features_t igb_fix_features(struct net_device *netdev,
1826	netdev_features_t features)
1827{
1828	/*
1829	 * Since there is no support for separate rx/tx vlan accel
1830	 * enable/disable make sure tx flag is always in same state as rx.
1831	 */
1832	if (features & NETIF_F_HW_VLAN_RX)
1833		features |= NETIF_F_HW_VLAN_TX;
1834	else
1835		features &= ~NETIF_F_HW_VLAN_TX;
1836
1837	return features;
1838}
1839
1840static int igb_set_features(struct net_device *netdev,
1841	netdev_features_t features)
1842{
1843	netdev_features_t changed = netdev->features ^ features;
1844	struct igb_adapter *adapter = netdev_priv(netdev);
1845
1846	if (changed & NETIF_F_HW_VLAN_RX)
1847		igb_vlan_mode(netdev, features);
1848
1849	if (!(changed & NETIF_F_RXALL))
1850		return 0;
1851
1852	netdev->features = features;
1853
1854	if (netif_running(netdev))
1855		igb_reinit_locked(adapter);
1856	else
1857		igb_reset(adapter);
1858
1859	return 0;
1860}
1861
1862static const struct net_device_ops igb_netdev_ops = {
1863	.ndo_open		= igb_open,
1864	.ndo_stop		= igb_close,
1865	.ndo_start_xmit		= igb_xmit_frame,
1866	.ndo_get_stats64	= igb_get_stats64,
1867	.ndo_set_rx_mode	= igb_set_rx_mode,
1868	.ndo_set_mac_address	= igb_set_mac,
1869	.ndo_change_mtu		= igb_change_mtu,
1870	.ndo_do_ioctl		= igb_ioctl,
1871	.ndo_tx_timeout		= igb_tx_timeout,
1872	.ndo_validate_addr	= eth_validate_addr,
1873	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
1874	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1875	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
1876	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
1877	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
1878	.ndo_get_vf_config	= igb_ndo_get_vf_config,
1879#ifdef CONFIG_NET_POLL_CONTROLLER
1880	.ndo_poll_controller	= igb_netpoll,
1881#endif
1882	.ndo_fix_features	= igb_fix_features,
1883	.ndo_set_features	= igb_set_features,
1884};
1885
1886/**
1887 * igb_set_fw_version - Configure version string for ethtool
1888 * @adapter: adapter struct
1889 *
1890 **/
1891void igb_set_fw_version(struct igb_adapter *adapter)
1892{
1893	struct e1000_hw *hw = &adapter->hw;
1894	struct e1000_fw_version fw;
1895
1896	igb_get_fw_version(hw, &fw);
1897
1898	switch (hw->mac.type) {
1899	case e1000_i211:
1900		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1901			 "%2d.%2d-%d",
1902			 fw.invm_major, fw.invm_minor, fw.invm_img_type);
1903		break;
1904
1905	default:
1906		/* if option is rom valid, display its version too */
1907		if (fw.or_valid) {
1908			snprintf(adapter->fw_version,
1909				 sizeof(adapter->fw_version),
1910				 "%d.%d, 0x%08x, %d.%d.%d",
1911				 fw.eep_major, fw.eep_minor, fw.etrack_id,
1912				 fw.or_major, fw.or_build, fw.or_patch);
1913		/* no option rom */
1914		} else {
1915			snprintf(adapter->fw_version,
1916				 sizeof(adapter->fw_version),
1917				 "%d.%d, 0x%08x",
1918				 fw.eep_major, fw.eep_minor, fw.etrack_id);
1919		}
1920		break;
1921	}
1922	return;
1923}
1924
1925static const struct i2c_board_info i350_sensor_info = {
1926	I2C_BOARD_INFO("i350bb", 0Xf8),
1927};
1928
1929/*  igb_init_i2c - Init I2C interface
1930 *  @adapter: pointer to adapter structure
1931 *
1932 */
1933static s32 igb_init_i2c(struct igb_adapter *adapter)
1934{
1935	s32 status = E1000_SUCCESS;
1936
1937	/* I2C interface supported on i350 devices */
1938	if (adapter->hw.mac.type != e1000_i350)
1939		return E1000_SUCCESS;
1940
1941	/* Initialize the i2c bus which is controlled by the registers.
1942	 * This bus will use the i2c_algo_bit structue that implements
1943	 * the protocol through toggling of the 4 bits in the register.
1944	 */
1945	adapter->i2c_adap.owner = THIS_MODULE;
1946	adapter->i2c_algo = igb_i2c_algo;
1947	adapter->i2c_algo.data = adapter;
1948	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1949	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1950	strlcpy(adapter->i2c_adap.name, "igb BB",
1951		sizeof(adapter->i2c_adap.name));
1952	status = i2c_bit_add_bus(&adapter->i2c_adap);
1953	return status;
1954}
1955
1956/**
1957 * igb_probe - Device Initialization Routine
1958 * @pdev: PCI device information struct
1959 * @ent: entry in igb_pci_tbl
1960 *
1961 * Returns 0 on success, negative on failure
1962 *
1963 * igb_probe initializes an adapter identified by a pci_dev structure.
1964 * The OS initialization, configuring of the adapter private structure,
1965 * and a hardware reset occur.
1966 **/
1967static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1968{
1969	struct net_device *netdev;
1970	struct igb_adapter *adapter;
1971	struct e1000_hw *hw;
1972	u16 eeprom_data = 0;
1973	s32 ret_val;
1974	static int global_quad_port_a; /* global quad port a indication */
1975	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1976	unsigned long mmio_start, mmio_len;
1977	int err, pci_using_dac;
1978	u8 part_str[E1000_PBANUM_LENGTH];
1979
1980	/* Catch broken hardware that put the wrong VF device ID in
1981	 * the PCIe SR-IOV capability.
1982	 */
1983	if (pdev->is_virtfn) {
1984		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1985			pci_name(pdev), pdev->vendor, pdev->device);
1986		return -EINVAL;
1987	}
1988
1989	err = pci_enable_device_mem(pdev);
1990	if (err)
1991		return err;
1992
1993	pci_using_dac = 0;
1994	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1995	if (!err) {
1996		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1997		if (!err)
1998			pci_using_dac = 1;
1999	} else {
2000		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2001		if (err) {
2002			err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
2003			if (err) {
2004				dev_err(&pdev->dev, "No usable DMA "
2005					"configuration, aborting\n");
2006				goto err_dma;
2007			}
2008		}
2009	}
2010
2011	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2012	                                   IORESOURCE_MEM),
2013	                                   igb_driver_name);
2014	if (err)
2015		goto err_pci_reg;
2016
2017	pci_enable_pcie_error_reporting(pdev);
2018
2019	pci_set_master(pdev);
2020	pci_save_state(pdev);
2021
2022	err = -ENOMEM;
2023	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2024				   IGB_MAX_TX_QUEUES);
2025	if (!netdev)
2026		goto err_alloc_etherdev;
2027
2028	SET_NETDEV_DEV(netdev, &pdev->dev);
2029
2030	pci_set_drvdata(pdev, netdev);
2031	adapter = netdev_priv(netdev);
2032	adapter->netdev = netdev;
2033	adapter->pdev = pdev;
2034	hw = &adapter->hw;
2035	hw->back = adapter;
2036	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2037
2038	mmio_start = pci_resource_start(pdev, 0);
2039	mmio_len = pci_resource_len(pdev, 0);
2040
2041	err = -EIO;
2042	hw->hw_addr = ioremap(mmio_start, mmio_len);
2043	if (!hw->hw_addr)
2044		goto err_ioremap;
2045
2046	netdev->netdev_ops = &igb_netdev_ops;
2047	igb_set_ethtool_ops(netdev);
2048	netdev->watchdog_timeo = 5 * HZ;
2049
2050	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2051
2052	netdev->mem_start = mmio_start;
2053	netdev->mem_end = mmio_start + mmio_len;
2054
2055	/* PCI config space info */
2056	hw->vendor_id = pdev->vendor;
2057	hw->device_id = pdev->device;
2058	hw->revision_id = pdev->revision;
2059	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2060	hw->subsystem_device_id = pdev->subsystem_device;
2061
2062	/* Copy the default MAC, PHY and NVM function pointers */
2063	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2064	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2065	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2066	/* Initialize skew-specific constants */
2067	err = ei->get_invariants(hw);
2068	if (err)
2069		goto err_sw_init;
2070
2071	/* setup the private structure */
2072	err = igb_sw_init(adapter);
2073	if (err)
2074		goto err_sw_init;
2075
2076	igb_get_bus_info_pcie(hw);
2077
2078	hw->phy.autoneg_wait_to_complete = false;
2079
2080	/* Copper options */
2081	if (hw->phy.media_type == e1000_media_type_copper) {
2082		hw->phy.mdix = AUTO_ALL_MODES;
2083		hw->phy.disable_polarity_correction = false;
2084		hw->phy.ms_type = e1000_ms_hw_default;
2085	}
2086
2087	if (igb_check_reset_block(hw))
2088		dev_info(&pdev->dev,
2089			"PHY reset is blocked due to SOL/IDER session.\n");
2090
2091	/*
2092	 * features is initialized to 0 in allocation, it might have bits
2093	 * set by igb_sw_init so we should use an or instead of an
2094	 * assignment.
2095	 */
2096	netdev->features |= NETIF_F_SG |
2097			    NETIF_F_IP_CSUM |
2098			    NETIF_F_IPV6_CSUM |
2099			    NETIF_F_TSO |
2100			    NETIF_F_TSO6 |
2101			    NETIF_F_RXHASH |
2102			    NETIF_F_RXCSUM |
2103			    NETIF_F_HW_VLAN_RX |
2104			    NETIF_F_HW_VLAN_TX;
2105
2106	/* copy netdev features into list of user selectable features */
2107	netdev->hw_features |= netdev->features;
2108	netdev->hw_features |= NETIF_F_RXALL;
2109
2110	/* set this bit last since it cannot be part of hw_features */
2111	netdev->features |= NETIF_F_HW_VLAN_FILTER;
2112
2113	netdev->vlan_features |= NETIF_F_TSO |
2114				 NETIF_F_TSO6 |
2115				 NETIF_F_IP_CSUM |
2116				 NETIF_F_IPV6_CSUM |
2117				 NETIF_F_SG;
2118
2119	netdev->priv_flags |= IFF_SUPP_NOFCS;
2120
2121	if (pci_using_dac) {
2122		netdev->features |= NETIF_F_HIGHDMA;
2123		netdev->vlan_features |= NETIF_F_HIGHDMA;
2124	}
2125
2126	if (hw->mac.type >= e1000_82576) {
2127		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2128		netdev->features |= NETIF_F_SCTP_CSUM;
2129	}
2130
2131	netdev->priv_flags |= IFF_UNICAST_FLT;
2132
2133	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2134
2135	/* before reading the NVM, reset the controller to put the device in a
2136	 * known good starting state */
2137	hw->mac.ops.reset_hw(hw);
2138
2139	/*
2140	 * make sure the NVM is good , i211 parts have special NVM that
2141	 * doesn't contain a checksum
2142	 */
2143	if (hw->mac.type != e1000_i211) {
2144		if (hw->nvm.ops.validate(hw) < 0) {
2145			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2146			err = -EIO;
2147			goto err_eeprom;
2148		}
2149	}
2150
2151	/* copy the MAC address out of the NVM */
2152	if (hw->mac.ops.read_mac_addr(hw))
2153		dev_err(&pdev->dev, "NVM Read Error\n");
2154
2155	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2156
2157	if (!is_valid_ether_addr(netdev->dev_addr)) {
2158		dev_err(&pdev->dev, "Invalid MAC Address\n");
2159		err = -EIO;
2160		goto err_eeprom;
2161	}
2162
2163	/* get firmware version for ethtool -i */
2164	igb_set_fw_version(adapter);
2165
2166	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2167	            (unsigned long) adapter);
2168	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2169	            (unsigned long) adapter);
2170
2171	INIT_WORK(&adapter->reset_task, igb_reset_task);
2172	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2173
2174	/* Initialize link properties that are user-changeable */
2175	adapter->fc_autoneg = true;
2176	hw->mac.autoneg = true;
2177	hw->phy.autoneg_advertised = 0x2f;
2178
2179	hw->fc.requested_mode = e1000_fc_default;
2180	hw->fc.current_mode = e1000_fc_default;
2181
2182	igb_validate_mdi_setting(hw);
2183
2184	/* By default, support wake on port A */
2185	if (hw->bus.func == 0)
2186		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2187
2188	/* Check the NVM for wake support on non-port A ports */
2189	if (hw->mac.type >= e1000_82580)
2190		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2191		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2192		                 &eeprom_data);
2193	else if (hw->bus.func == 1)
2194		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2195
2196	if (eeprom_data & IGB_EEPROM_APME)
2197		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2198
2199	/* now that we have the eeprom settings, apply the special cases where
2200	 * the eeprom may be wrong or the board simply won't support wake on
2201	 * lan on a particular port */
2202	switch (pdev->device) {
2203	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2204		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2205		break;
2206	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2207	case E1000_DEV_ID_82576_FIBER:
2208	case E1000_DEV_ID_82576_SERDES:
2209		/* Wake events only supported on port A for dual fiber
2210		 * regardless of eeprom setting */
2211		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2212			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2213		break;
2214	case E1000_DEV_ID_82576_QUAD_COPPER:
2215	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2216		/* if quad port adapter, disable WoL on all but port A */
2217		if (global_quad_port_a != 0)
2218			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2219		else
2220			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2221		/* Reset for multiple quad port adapters */
2222		if (++global_quad_port_a == 4)
2223			global_quad_port_a = 0;
2224		break;
2225	default:
2226		/* If the device can't wake, don't set software support */
2227		if (!device_can_wakeup(&adapter->pdev->dev))
2228			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2229	}
2230
2231	/* initialize the wol settings based on the eeprom settings */
2232	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2233		adapter->wol |= E1000_WUFC_MAG;
2234
2235	/* Some vendors want WoL disabled by default, but still supported */
2236	if ((hw->mac.type == e1000_i350) &&
2237	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2238		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2239		adapter->wol = 0;
2240	}
2241
2242	device_set_wakeup_enable(&adapter->pdev->dev,
2243				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2244
2245	/* reset the hardware with the new settings */
2246	igb_reset(adapter);
2247
2248	/* Init the I2C interface */
2249	err = igb_init_i2c(adapter);
2250	if (err) {
2251		dev_err(&pdev->dev, "failed to init i2c interface\n");
2252		goto err_eeprom;
2253	}
2254
2255	/* let the f/w know that the h/w is now under the control of the
2256	 * driver. */
2257	igb_get_hw_control(adapter);
2258
2259	strcpy(netdev->name, "eth%d");
2260	err = register_netdev(netdev);
2261	if (err)
2262		goto err_register;
2263
2264	/* carrier off reporting is important to ethtool even BEFORE open */
2265	netif_carrier_off(netdev);
2266
2267#ifdef CONFIG_IGB_DCA
2268	if (dca_add_requester(&pdev->dev) == 0) {
2269		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2270		dev_info(&pdev->dev, "DCA enabled\n");
2271		igb_setup_dca(adapter);
2272	}
2273
2274#endif
2275#ifdef CONFIG_IGB_HWMON
2276	/* Initialize the thermal sensor on i350 devices. */
2277	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2278		u16 ets_word;
2279
2280		/*
2281		 * Read the NVM to determine if this i350 device supports an
2282		 * external thermal sensor.
2283		 */
2284		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2285		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2286			adapter->ets = true;
2287		else
2288			adapter->ets = false;
2289		if (igb_sysfs_init(adapter))
2290			dev_err(&pdev->dev,
2291				"failed to allocate sysfs resources\n");
2292	} else {
2293		adapter->ets = false;
2294	}
2295#endif
2296	/* do hw tstamp init after resetting */
2297	igb_ptp_init(adapter);
2298
2299	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2300	/* print bus type/speed/width info */
2301	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2302		 netdev->name,
2303		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2304		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2305		                                            "unknown"),
2306		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2307		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2308		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2309		   "unknown"),
2310		 netdev->dev_addr);
2311
2312	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2313	if (ret_val)
2314		strcpy(part_str, "Unknown");
2315	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2316	dev_info(&pdev->dev,
2317		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2318		adapter->msix_entries ? "MSI-X" :
2319		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2320		adapter->num_rx_queues, adapter->num_tx_queues);
2321	switch (hw->mac.type) {
2322	case e1000_i350:
2323	case e1000_i210:
2324	case e1000_i211:
2325		igb_set_eee_i350(hw);
2326		break;
2327	default:
2328		break;
2329	}
2330
2331	pm_runtime_put_noidle(&pdev->dev);
2332	return 0;
2333
2334err_register:
2335	igb_release_hw_control(adapter);
2336	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2337err_eeprom:
2338	if (!igb_check_reset_block(hw))
2339		igb_reset_phy(hw);
2340
2341	if (hw->flash_address)
2342		iounmap(hw->flash_address);
2343err_sw_init:
2344	igb_clear_interrupt_scheme(adapter);
2345	iounmap(hw->hw_addr);
2346err_ioremap:
2347	free_netdev(netdev);
2348err_alloc_etherdev:
2349	pci_release_selected_regions(pdev,
2350	                             pci_select_bars(pdev, IORESOURCE_MEM));
2351err_pci_reg:
2352err_dma:
2353	pci_disable_device(pdev);
2354	return err;
2355}
2356
2357#ifdef CONFIG_PCI_IOV
2358static int  igb_disable_sriov(struct pci_dev *pdev)
2359{
2360	struct net_device *netdev = pci_get_drvdata(pdev);
2361	struct igb_adapter *adapter = netdev_priv(netdev);
2362	struct e1000_hw *hw = &adapter->hw;
2363
2364	/* reclaim resources allocated to VFs */
2365	if (adapter->vf_data) {
2366		/* disable iov and allow time for transactions to clear */
2367		if (igb_vfs_are_assigned(adapter)) {
2368			dev_warn(&pdev->dev,
2369				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2370			return -EPERM;
2371		} else {
2372			pci_disable_sriov(pdev);
2373			msleep(500);
2374		}
2375
2376		kfree(adapter->vf_data);
2377		adapter->vf_data = NULL;
2378		adapter->vfs_allocated_count = 0;
2379		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2380		wrfl();
2381		msleep(100);
2382		dev_info(&pdev->dev, "IOV Disabled\n");
2383
2384		/* Re-enable DMA Coalescing flag since IOV is turned off */
2385		adapter->flags |= IGB_FLAG_DMAC;
2386	}
2387
2388	return 0;
2389}
2390
2391static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2392{
2393	struct net_device *netdev = pci_get_drvdata(pdev);
2394	struct igb_adapter *adapter = netdev_priv(netdev);
2395	int old_vfs = pci_num_vf(pdev);
2396	int err = 0;
2397	int i;
2398
2399	if (!num_vfs)
2400		goto out;
2401	else if (old_vfs && old_vfs == num_vfs)
2402		goto out;
2403	else if (old_vfs && old_vfs != num_vfs)
2404		err = igb_disable_sriov(pdev);
2405
2406	if (err)
2407		goto out;
2408
2409	if (num_vfs > 7) {
2410		err = -EPERM;
2411		goto out;
2412	}
2413
2414	adapter->vfs_allocated_count = num_vfs;
2415
2416	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2417				sizeof(struct vf_data_storage), GFP_KERNEL);
2418
2419	/* if allocation failed then we do not support SR-IOV */
2420	if (!adapter->vf_data) {
2421		adapter->vfs_allocated_count = 0;
2422		dev_err(&pdev->dev,
2423			"Unable to allocate memory for VF Data Storage\n");
2424		err = -ENOMEM;
2425		goto out;
2426	}
2427
2428	err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2429	if (err)
2430		goto err_out;
2431
2432	dev_info(&pdev->dev, "%d VFs allocated\n",
2433		 adapter->vfs_allocated_count);
2434	for (i = 0; i < adapter->vfs_allocated_count; i++)
2435		igb_vf_configure(adapter, i);
2436
2437	/* DMA Coalescing is not supported in IOV mode. */
2438	adapter->flags &= ~IGB_FLAG_DMAC;
2439	goto out;
2440
2441err_out:
2442	kfree(adapter->vf_data);
2443	adapter->vf_data = NULL;
2444	adapter->vfs_allocated_count = 0;
2445out:
2446	return err;
2447}
2448
2449#endif
2450/*
2451 *  igb_remove_i2c - Cleanup  I2C interface
2452 *  @adapter: pointer to adapter structure
2453 *
2454 */
2455static void igb_remove_i2c(struct igb_adapter *adapter)
2456{
2457
2458	/* free the adapter bus structure */
2459	i2c_del_adapter(&adapter->i2c_adap);
2460}
2461
2462/**
2463 * igb_remove - Device Removal Routine
2464 * @pdev: PCI device information struct
2465 *
2466 * igb_remove is called by the PCI subsystem to alert the driver
2467 * that it should release a PCI device.  The could be caused by a
2468 * Hot-Plug event, or because the driver is going to be removed from
2469 * memory.
2470 **/
2471static void igb_remove(struct pci_dev *pdev)
2472{
2473	struct net_device *netdev = pci_get_drvdata(pdev);
2474	struct igb_adapter *adapter = netdev_priv(netdev);
2475	struct e1000_hw *hw = &adapter->hw;
2476
2477	pm_runtime_get_noresume(&pdev->dev);
2478#ifdef CONFIG_IGB_HWMON
2479	igb_sysfs_exit(adapter);
2480#endif
2481	igb_remove_i2c(adapter);
2482	igb_ptp_stop(adapter);
2483	/*
2484	 * The watchdog timer may be rescheduled, so explicitly
2485	 * disable watchdog from being rescheduled.
2486	 */
2487	set_bit(__IGB_DOWN, &adapter->state);
2488	del_timer_sync(&adapter->watchdog_timer);
2489	del_timer_sync(&adapter->phy_info_timer);
2490
2491	cancel_work_sync(&adapter->reset_task);
2492	cancel_work_sync(&adapter->watchdog_task);
2493
2494#ifdef CONFIG_IGB_DCA
2495	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2496		dev_info(&pdev->dev, "DCA disabled\n");
2497		dca_remove_requester(&pdev->dev);
2498		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2499		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2500	}
2501#endif
2502
2503	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2504	 * would have already happened in close and is redundant. */
2505	igb_release_hw_control(adapter);
2506
2507	unregister_netdev(netdev);
2508
2509	igb_clear_interrupt_scheme(adapter);
2510
2511#ifdef CONFIG_PCI_IOV
2512	igb_disable_sriov(pdev);
2513#endif
2514
2515	iounmap(hw->hw_addr);
2516	if (hw->flash_address)
2517		iounmap(hw->flash_address);
2518	pci_release_selected_regions(pdev,
2519	                             pci_select_bars(pdev, IORESOURCE_MEM));
2520
2521	kfree(adapter->shadow_vfta);
2522	free_netdev(netdev);
2523
2524	pci_disable_pcie_error_reporting(pdev);
2525
2526	pci_disable_device(pdev);
2527}
2528
2529/**
2530 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2531 * @adapter: board private structure to initialize
2532 *
2533 * This function initializes the vf specific data storage and then attempts to
2534 * allocate the VFs.  The reason for ordering it this way is because it is much
2535 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2536 * the memory for the VFs.
2537 **/
2538static void igb_probe_vfs(struct igb_adapter *adapter)
2539{
2540#ifdef CONFIG_PCI_IOV
2541	struct pci_dev *pdev = adapter->pdev;
2542	struct e1000_hw *hw = &adapter->hw;
2543
2544	/* Virtualization features not supported on i210 family. */
2545	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2546		return;
2547
2548	igb_enable_sriov(pdev, max_vfs);
2549	pci_sriov_set_totalvfs(pdev, 7);
2550
2551#endif /* CONFIG_PCI_IOV */
2552}
2553
2554static void igb_init_queue_configuration(struct igb_adapter *adapter)
2555{
2556	struct e1000_hw *hw = &adapter->hw;
2557	u32 max_rss_queues;
2558
2559	/* Determine the maximum number of RSS queues supported. */
2560	switch (hw->mac.type) {
2561	case e1000_i211:
2562		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2563		break;
2564	case e1000_82575:
2565	case e1000_i210:
2566		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2567		break;
2568	case e1000_i350:
2569		/* I350 cannot do RSS and SR-IOV at the same time */
2570		if (!!adapter->vfs_allocated_count) {
2571			max_rss_queues = 1;
2572			break;
2573		}
2574		/* fall through */
2575	case e1000_82576:
2576		if (!!adapter->vfs_allocated_count) {
2577			max_rss_queues = 2;
2578			break;
2579		}
2580		/* fall through */
2581	case e1000_82580:
2582	default:
2583		max_rss_queues = IGB_MAX_RX_QUEUES;
2584		break;
2585	}
2586
2587	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2588
2589	/* Determine if we need to pair queues. */
2590	switch (hw->mac.type) {
2591	case e1000_82575:
2592	case e1000_i211:
2593		/* Device supports enough interrupts without queue pairing. */
2594		break;
2595	case e1000_82576:
2596		/*
2597		 * If VFs are going to be allocated with RSS queues then we
2598		 * should pair the queues in order to conserve interrupts due
2599		 * to limited supply.
2600		 */
2601		if ((adapter->rss_queues > 1) &&
2602		    (adapter->vfs_allocated_count > 6))
2603			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2604		/* fall through */
2605	case e1000_82580:
2606	case e1000_i350:
2607	case e1000_i210:
2608	default:
2609		/*
2610		 * If rss_queues > half of max_rss_queues, pair the queues in
2611		 * order to conserve interrupts due to limited supply.
2612		 */
2613		if (adapter->rss_queues > (max_rss_queues / 2))
2614			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2615		break;
2616	}
2617}
2618
2619/**
2620 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2621 * @adapter: board private structure to initialize
2622 *
2623 * igb_sw_init initializes the Adapter private data structure.
2624 * Fields are initialized based on PCI device information and
2625 * OS network device settings (MTU size).
2626 **/
2627static int igb_sw_init(struct igb_adapter *adapter)
2628{
2629	struct e1000_hw *hw = &adapter->hw;
2630	struct net_device *netdev = adapter->netdev;
2631	struct pci_dev *pdev = adapter->pdev;
2632
2633	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2634
2635	/* set default ring sizes */
2636	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2637	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2638
2639	/* set default ITR values */
2640	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2641	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2642
2643	/* set default work limits */
2644	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2645
2646	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2647				  VLAN_HLEN;
2648	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2649
2650	spin_lock_init(&adapter->stats64_lock);
2651#ifdef CONFIG_PCI_IOV
2652	switch (hw->mac.type) {
2653	case e1000_82576:
2654	case e1000_i350:
2655		if (max_vfs > 7) {
2656			dev_warn(&pdev->dev,
2657				 "Maximum of 7 VFs per PF, using max\n");
2658			adapter->vfs_allocated_count = 7;
2659		} else
2660			adapter->vfs_allocated_count = max_vfs;
2661		if (adapter->vfs_allocated_count)
2662			dev_warn(&pdev->dev,
2663				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2664		break;
2665	default:
2666		break;
2667	}
2668#endif /* CONFIG_PCI_IOV */
2669
2670	igb_init_queue_configuration(adapter);
2671
2672	/* Setup and initialize a copy of the hw vlan table array */
2673	adapter->shadow_vfta = kzalloc(sizeof(u32) *
2674				E1000_VLAN_FILTER_TBL_SIZE,
2675				GFP_ATOMIC);
2676
2677	/* This call may decrease the number of queues */
2678	if (igb_init_interrupt_scheme(adapter, true)) {
2679		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2680		return -ENOMEM;
2681	}
2682
2683	igb_probe_vfs(adapter);
2684
2685	/* Explicitly disable IRQ since the NIC can be in any state. */
2686	igb_irq_disable(adapter);
2687
2688	if (hw->mac.type >= e1000_i350)
2689		adapter->flags &= ~IGB_FLAG_DMAC;
2690
2691	set_bit(__IGB_DOWN, &adapter->state);
2692	return 0;
2693}
2694
2695/**
2696 * igb_open - Called when a network interface is made active
2697 * @netdev: network interface device structure
2698 *
2699 * Returns 0 on success, negative value on failure
2700 *
2701 * The open entry point is called when a network interface is made
2702 * active by the system (IFF_UP).  At this point all resources needed
2703 * for transmit and receive operations are allocated, the interrupt
2704 * handler is registered with the OS, the watchdog timer is started,
2705 * and the stack is notified that the interface is ready.
2706 **/
2707static int __igb_open(struct net_device *netdev, bool resuming)
2708{
2709	struct igb_adapter *adapter = netdev_priv(netdev);
2710	struct e1000_hw *hw = &adapter->hw;
2711	struct pci_dev *pdev = adapter->pdev;
2712	int err;
2713	int i;
2714
2715	/* disallow open during test */
2716	if (test_bit(__IGB_TESTING, &adapter->state)) {
2717		WARN_ON(resuming);
2718		return -EBUSY;
2719	}
2720
2721	if (!resuming)
2722		pm_runtime_get_sync(&pdev->dev);
2723
2724	netif_carrier_off(netdev);
2725
2726	/* allocate transmit descriptors */
2727	err = igb_setup_all_tx_resources(adapter);
2728	if (err)
2729		goto err_setup_tx;
2730
2731	/* allocate receive descriptors */
2732	err = igb_setup_all_rx_resources(adapter);
2733	if (err)
2734		goto err_setup_rx;
2735
2736	igb_power_up_link(adapter);
2737
2738	/* before we allocate an interrupt, we must be ready to handle it.
2739	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2740	 * as soon as we call pci_request_irq, so we have to setup our
2741	 * clean_rx handler before we do so.  */
2742	igb_configure(adapter);
2743
2744	err = igb_request_irq(adapter);
2745	if (err)
2746		goto err_req_irq;
2747
2748	/* Notify the stack of the actual queue counts. */
2749	err = netif_set_real_num_tx_queues(adapter->netdev,
2750					   adapter->num_tx_queues);
2751	if (err)
2752		goto err_set_queues;
2753
2754	err = netif_set_real_num_rx_queues(adapter->netdev,
2755					   adapter->num_rx_queues);
2756	if (err)
2757		goto err_set_queues;
2758
2759	/* From here on the code is the same as igb_up() */
2760	clear_bit(__IGB_DOWN, &adapter->state);
2761
2762	for (i = 0; i < adapter->num_q_vectors; i++)
2763		napi_enable(&(adapter->q_vector[i]->napi));
2764
2765	/* Clear any pending interrupts. */
2766	rd32(E1000_ICR);
2767
2768	igb_irq_enable(adapter);
2769
2770	/* notify VFs that reset has been completed */
2771	if (adapter->vfs_allocated_count) {
2772		u32 reg_data = rd32(E1000_CTRL_EXT);
2773		reg_data |= E1000_CTRL_EXT_PFRSTD;
2774		wr32(E1000_CTRL_EXT, reg_data);
2775	}
2776
2777	netif_tx_start_all_queues(netdev);
2778
2779	if (!resuming)
2780		pm_runtime_put(&pdev->dev);
2781
2782	/* start the watchdog. */
2783	hw->mac.get_link_status = 1;
2784	schedule_work(&adapter->watchdog_task);
2785
2786	return 0;
2787
2788err_set_queues:
2789	igb_free_irq(adapter);
2790err_req_irq:
2791	igb_release_hw_control(adapter);
2792	igb_power_down_link(adapter);
2793	igb_free_all_rx_resources(adapter);
2794err_setup_rx:
2795	igb_free_all_tx_resources(adapter);
2796err_setup_tx:
2797	igb_reset(adapter);
2798	if (!resuming)
2799		pm_runtime_put(&pdev->dev);
2800
2801	return err;
2802}
2803
2804static int igb_open(struct net_device *netdev)
2805{
2806	return __igb_open(netdev, false);
2807}
2808
2809/**
2810 * igb_close - Disables a network interface
2811 * @netdev: network interface device structure
2812 *
2813 * Returns 0, this is not allowed to fail
2814 *
2815 * The close entry point is called when an interface is de-activated
2816 * by the OS.  The hardware is still under the driver's control, but
2817 * needs to be disabled.  A global MAC reset is issued to stop the
2818 * hardware, and all transmit and receive resources are freed.
2819 **/
2820static int __igb_close(struct net_device *netdev, bool suspending)
2821{
2822	struct igb_adapter *adapter = netdev_priv(netdev);
2823	struct pci_dev *pdev = adapter->pdev;
2824
2825	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2826
2827	if (!suspending)
2828		pm_runtime_get_sync(&pdev->dev);
2829
2830	igb_down(adapter);
2831	igb_free_irq(adapter);
2832
2833	igb_free_all_tx_resources(adapter);
2834	igb_free_all_rx_resources(adapter);
2835
2836	if (!suspending)
2837		pm_runtime_put_sync(&pdev->dev);
2838	return 0;
2839}
2840
2841static int igb_close(struct net_device *netdev)
2842{
2843	return __igb_close(netdev, false);
2844}
2845
2846/**
2847 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2848 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2849 *
2850 * Return 0 on success, negative on failure
2851 **/
2852int igb_setup_tx_resources(struct igb_ring *tx_ring)
2853{
2854	struct device *dev = tx_ring->dev;
2855	int size;
2856
2857	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2858
2859	tx_ring->tx_buffer_info = vzalloc(size);
2860	if (!tx_ring->tx_buffer_info)
2861		goto err;
2862
2863	/* round up to nearest 4K */
2864	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2865	tx_ring->size = ALIGN(tx_ring->size, 4096);
2866
2867	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2868					   &tx_ring->dma, GFP_KERNEL);
2869	if (!tx_ring->desc)
2870		goto err;
2871
2872	tx_ring->next_to_use = 0;
2873	tx_ring->next_to_clean = 0;
2874
2875	return 0;
2876
2877err:
2878	vfree(tx_ring->tx_buffer_info);
2879	tx_ring->tx_buffer_info = NULL;
2880	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2881	return -ENOMEM;
2882}
2883
2884/**
2885 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2886 *				  (Descriptors) for all queues
2887 * @adapter: board private structure
2888 *
2889 * Return 0 on success, negative on failure
2890 **/
2891static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2892{
2893	struct pci_dev *pdev = adapter->pdev;
2894	int i, err = 0;
2895
2896	for (i = 0; i < adapter->num_tx_queues; i++) {
2897		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2898		if (err) {
2899			dev_err(&pdev->dev,
2900				"Allocation for Tx Queue %u failed\n", i);
2901			for (i--; i >= 0; i--)
2902				igb_free_tx_resources(adapter->tx_ring[i]);
2903			break;
2904		}
2905	}
2906
2907	return err;
2908}
2909
2910/**
2911 * igb_setup_tctl - configure the transmit control registers
2912 * @adapter: Board private structure
2913 **/
2914void igb_setup_tctl(struct igb_adapter *adapter)
2915{
2916	struct e1000_hw *hw = &adapter->hw;
2917	u32 tctl;
2918
2919	/* disable queue 0 which is enabled by default on 82575 and 82576 */
2920	wr32(E1000_TXDCTL(0), 0);
2921
2922	/* Program the Transmit Control Register */
2923	tctl = rd32(E1000_TCTL);
2924	tctl &= ~E1000_TCTL_CT;
2925	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2926		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2927
2928	igb_config_collision_dist(hw);
2929
2930	/* Enable transmits */
2931	tctl |= E1000_TCTL_EN;
2932
2933	wr32(E1000_TCTL, tctl);
2934}
2935
2936/**
2937 * igb_configure_tx_ring - Configure transmit ring after Reset
2938 * @adapter: board private structure
2939 * @ring: tx ring to configure
2940 *
2941 * Configure a transmit ring after a reset.
2942 **/
2943void igb_configure_tx_ring(struct igb_adapter *adapter,
2944                           struct igb_ring *ring)
2945{
2946	struct e1000_hw *hw = &adapter->hw;
2947	u32 txdctl = 0;
2948	u64 tdba = ring->dma;
2949	int reg_idx = ring->reg_idx;
2950
2951	/* disable the queue */
2952	wr32(E1000_TXDCTL(reg_idx), 0);
2953	wrfl();
2954	mdelay(10);
2955
2956	wr32(E1000_TDLEN(reg_idx),
2957	                ring->count * sizeof(union e1000_adv_tx_desc));
2958	wr32(E1000_TDBAL(reg_idx),
2959	                tdba & 0x00000000ffffffffULL);
2960	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2961
2962	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2963	wr32(E1000_TDH(reg_idx), 0);
2964	writel(0, ring->tail);
2965
2966	txdctl |= IGB_TX_PTHRESH;
2967	txdctl |= IGB_TX_HTHRESH << 8;
2968	txdctl |= IGB_TX_WTHRESH << 16;
2969
2970	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2971	wr32(E1000_TXDCTL(reg_idx), txdctl);
2972}
2973
2974/**
2975 * igb_configure_tx - Configure transmit Unit after Reset
2976 * @adapter: board private structure
2977 *
2978 * Configure the Tx unit of the MAC after a reset.
2979 **/
2980static void igb_configure_tx(struct igb_adapter *adapter)
2981{
2982	int i;
2983
2984	for (i = 0; i < adapter->num_tx_queues; i++)
2985		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2986}
2987
2988/**
2989 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2990 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2991 *
2992 * Returns 0 on success, negative on failure
2993 **/
2994int igb_setup_rx_resources(struct igb_ring *rx_ring)
2995{
2996	struct device *dev = rx_ring->dev;
2997	int size;
2998
2999	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3000
3001	rx_ring->rx_buffer_info = vzalloc(size);
3002	if (!rx_ring->rx_buffer_info)
3003		goto err;
3004
3005	/* Round up to nearest 4K */
3006	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3007	rx_ring->size = ALIGN(rx_ring->size, 4096);
3008
3009	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3010					   &rx_ring->dma, GFP_KERNEL);
3011	if (!rx_ring->desc)
3012		goto err;
3013
3014	rx_ring->next_to_alloc = 0;
3015	rx_ring->next_to_clean = 0;
3016	rx_ring->next_to_use = 0;
3017
3018	return 0;
3019
3020err:
3021	vfree(rx_ring->rx_buffer_info);
3022	rx_ring->rx_buffer_info = NULL;
3023	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3024	return -ENOMEM;
3025}
3026
3027/**
3028 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3029 *				  (Descriptors) for all queues
3030 * @adapter: board private structure
3031 *
3032 * Return 0 on success, negative on failure
3033 **/
3034static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3035{
3036	struct pci_dev *pdev = adapter->pdev;
3037	int i, err = 0;
3038
3039	for (i = 0; i < adapter->num_rx_queues; i++) {
3040		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3041		if (err) {
3042			dev_err(&pdev->dev,
3043				"Allocation for Rx Queue %u failed\n", i);
3044			for (i--; i >= 0; i--)
3045				igb_free_rx_resources(adapter->rx_ring[i]);
3046			break;
3047		}
3048	}
3049
3050	return err;
3051}
3052
3053/**
3054 * igb_setup_mrqc - configure the multiple receive queue control registers
3055 * @adapter: Board private structure
3056 **/
3057static void igb_setup_mrqc(struct igb_adapter *adapter)
3058{
3059	struct e1000_hw *hw = &adapter->hw;
3060	u32 mrqc, rxcsum;
3061	u32 j, num_rx_queues, shift = 0;
3062	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3063					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3064					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3065					0xFA01ACBE };
3066
3067	/* Fill out hash function seeds */
3068	for (j = 0; j < 10; j++)
3069		wr32(E1000_RSSRK(j), rsskey[j]);
3070
3071	num_rx_queues = adapter->rss_queues;
3072
3073	switch (hw->mac.type) {
3074	case e1000_82575:
3075		shift = 6;
3076		break;
3077	case e1000_82576:
3078		/* 82576 supports 2 RSS queues for SR-IOV */
3079		if (adapter->vfs_allocated_count) {
3080			shift = 3;
3081			num_rx_queues = 2;
3082		}
3083		break;
3084	default:
3085		break;
3086	}
3087
3088	/*
3089	 * Populate the indirection table 4 entries at a time.  To do this
3090	 * we are generating the results for n and n+2 and then interleaving
3091	 * those with the results with n+1 and n+3.
3092	 */
3093	for (j = 0; j < 32; j++) {
3094		/* first pass generates n and n+2 */
3095		u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
3096		u32 reta = (base & 0x07800780) >> (7 - shift);
3097
3098		/* second pass generates n+1 and n+3 */
3099		base += 0x00010001 * num_rx_queues;
3100		reta |= (base & 0x07800780) << (1 + shift);
3101
3102		wr32(E1000_RETA(j), reta);
3103	}
3104
3105	/*
3106	 * Disable raw packet checksumming so that RSS hash is placed in
3107	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3108	 * offloads as they are enabled by default
3109	 */
3110	rxcsum = rd32(E1000_RXCSUM);
3111	rxcsum |= E1000_RXCSUM_PCSD;
3112
3113	if (adapter->hw.mac.type >= e1000_82576)
3114		/* Enable Receive Checksum Offload for SCTP */
3115		rxcsum |= E1000_RXCSUM_CRCOFL;
3116
3117	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3118	wr32(E1000_RXCSUM, rxcsum);
3119
3120	/* Generate RSS hash based on packet types, TCP/UDP
3121	 * port numbers and/or IPv4/v6 src and dst addresses
3122	 */
3123	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3124	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3125	       E1000_MRQC_RSS_FIELD_IPV6 |
3126	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3127	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3128
3129	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3130		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3131	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3132		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3133
3134	/* If VMDq is enabled then we set the appropriate mode for that, else
3135	 * we default to RSS so that an RSS hash is calculated per packet even
3136	 * if we are only using one queue */
3137	if (adapter->vfs_allocated_count) {
3138		if (hw->mac.type > e1000_82575) {
3139			/* Set the default pool for the PF's first queue */
3140			u32 vtctl = rd32(E1000_VT_CTL);
3141			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3142				   E1000_VT_CTL_DISABLE_DEF_POOL);
3143			vtctl |= adapter->vfs_allocated_count <<
3144				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3145			wr32(E1000_VT_CTL, vtctl);
3146		}
3147		if (adapter->rss_queues > 1)
3148			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3149		else
3150			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3151	} else {
3152		if (hw->mac.type != e1000_i211)
3153			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3154	}
3155	igb_vmm_control(adapter);
3156
3157	wr32(E1000_MRQC, mrqc);
3158}
3159
3160/**
3161 * igb_setup_rctl - configure the receive control registers
3162 * @adapter: Board private structure
3163 **/
3164void igb_setup_rctl(struct igb_adapter *adapter)
3165{
3166	struct e1000_hw *hw = &adapter->hw;
3167	u32 rctl;
3168
3169	rctl = rd32(E1000_RCTL);
3170
3171	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3172	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3173
3174	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3175		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3176
3177	/*
3178	 * enable stripping of CRC. It's unlikely this will break BMC
3179	 * redirection as it did with e1000. Newer features require
3180	 * that the HW strips the CRC.
3181	 */
3182	rctl |= E1000_RCTL_SECRC;
3183
3184	/* disable store bad packets and clear size bits. */
3185	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3186
3187	/* enable LPE to prevent packets larger than max_frame_size */
3188	rctl |= E1000_RCTL_LPE;
3189
3190	/* disable queue 0 to prevent tail write w/o re-config */
3191	wr32(E1000_RXDCTL(0), 0);
3192
3193	/* Attention!!!  For SR-IOV PF driver operations you must enable
3194	 * queue drop for all VF and PF queues to prevent head of line blocking
3195	 * if an un-trusted VF does not provide descriptors to hardware.
3196	 */
3197	if (adapter->vfs_allocated_count) {
3198		/* set all queue drop enable bits */
3199		wr32(E1000_QDE, ALL_QUEUES);
3200	}
3201
3202	/* This is useful for sniffing bad packets. */
3203	if (adapter->netdev->features & NETIF_F_RXALL) {
3204		/* UPE and MPE will be handled by normal PROMISC logic
3205		 * in e1000e_set_rx_mode */
3206		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3207			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3208			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3209
3210		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3211			  E1000_RCTL_DPF | /* Allow filtered pause */
3212			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3213		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3214		 * and that breaks VLANs.
3215		 */
3216	}
3217
3218	wr32(E1000_RCTL, rctl);
3219}
3220
3221static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3222                                   int vfn)
3223{
3224	struct e1000_hw *hw = &adapter->hw;
3225	u32 vmolr;
3226
3227	/* if it isn't the PF check to see if VFs are enabled and
3228	 * increase the size to support vlan tags */
3229	if (vfn < adapter->vfs_allocated_count &&
3230	    adapter->vf_data[vfn].vlans_enabled)
3231		size += VLAN_TAG_SIZE;
3232
3233	vmolr = rd32(E1000_VMOLR(vfn));
3234	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3235	vmolr |= size | E1000_VMOLR_LPE;
3236	wr32(E1000_VMOLR(vfn), vmolr);
3237
3238	return 0;
3239}
3240
3241/**
3242 * igb_rlpml_set - set maximum receive packet size
3243 * @adapter: board private structure
3244 *
3245 * Configure maximum receivable packet size.
3246 **/
3247static void igb_rlpml_set(struct igb_adapter *adapter)
3248{
3249	u32 max_frame_size = adapter->max_frame_size;
3250	struct e1000_hw *hw = &adapter->hw;
3251	u16 pf_id = adapter->vfs_allocated_count;
3252
3253	if (pf_id) {
3254		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3255		/*
3256		 * If we're in VMDQ or SR-IOV mode, then set global RLPML
3257		 * to our max jumbo frame size, in case we need to enable
3258		 * jumbo frames on one of the rings later.
3259		 * This will not pass over-length frames into the default
3260		 * queue because it's gated by the VMOLR.RLPML.
3261		 */
3262		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3263	}
3264
3265	wr32(E1000_RLPML, max_frame_size);
3266}
3267
3268static inline void igb_set_vmolr(struct igb_adapter *adapter,
3269				 int vfn, bool aupe)
3270{
3271	struct e1000_hw *hw = &adapter->hw;
3272	u32 vmolr;
3273
3274	/*
3275	 * This register exists only on 82576 and newer so if we are older then
3276	 * we should exit and do nothing
3277	 */
3278	if (hw->mac.type < e1000_82576)
3279		return;
3280
3281	vmolr = rd32(E1000_VMOLR(vfn));
3282	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
3283	if (aupe)
3284		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
3285	else
3286		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3287
3288	/* clear all bits that might not be set */
3289	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3290
3291	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3292		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3293	/*
3294	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3295	 * multicast packets
3296	 */
3297	if (vfn <= adapter->vfs_allocated_count)
3298		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */
3299
3300	wr32(E1000_VMOLR(vfn), vmolr);
3301}
3302
3303/**
3304 * igb_configure_rx_ring - Configure a receive ring after Reset
3305 * @adapter: board private structure
3306 * @ring: receive ring to be configured
3307 *
3308 * Configure the Rx unit of the MAC after a reset.
3309 **/
3310void igb_configure_rx_ring(struct igb_adapter *adapter,
3311                           struct igb_ring *ring)
3312{
3313	struct e1000_hw *hw = &adapter->hw;
3314	u64 rdba = ring->dma;
3315	int reg_idx = ring->reg_idx;
3316	u32 srrctl = 0, rxdctl = 0;
3317
3318	/* disable the queue */
3319	wr32(E1000_RXDCTL(reg_idx), 0);
3320
3321	/* Set DMA base address registers */
3322	wr32(E1000_RDBAL(reg_idx),
3323	     rdba & 0x00000000ffffffffULL);
3324	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3325	wr32(E1000_RDLEN(reg_idx),
3326	               ring->count * sizeof(union e1000_adv_rx_desc));
3327
3328	/* initialize head and tail */
3329	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3330	wr32(E1000_RDH(reg_idx), 0);
3331	writel(0, ring->tail);
3332
3333	/* set descriptor configuration */
3334	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3335	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3336	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3337	if (hw->mac.type >= e1000_82580)
3338		srrctl |= E1000_SRRCTL_TIMESTAMP;
3339	/* Only set Drop Enable if we are supporting multiple queues */
3340	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3341		srrctl |= E1000_SRRCTL_DROP_EN;
3342
3343	wr32(E1000_SRRCTL(reg_idx), srrctl);
3344
3345	/* set filtering for VMDQ pools */
3346	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3347
3348	rxdctl |= IGB_RX_PTHRESH;
3349	rxdctl |= IGB_RX_HTHRESH << 8;
3350	rxdctl |= IGB_RX_WTHRESH << 16;
3351
3352	/* enable receive descriptor fetching */
3353	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3354	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3355}
3356
3357/**
3358 * igb_configure_rx - Configure receive Unit after Reset
3359 * @adapter: board private structure
3360 *
3361 * Configure the Rx unit of the MAC after a reset.
3362 **/
3363static void igb_configure_rx(struct igb_adapter *adapter)
3364{
3365	int i;
3366
3367	/* set UTA to appropriate mode */
3368	igb_set_uta(adapter);
3369
3370	/* set the correct pool for the PF default MAC address in entry 0 */
3371	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3372	                 adapter->vfs_allocated_count);
3373
3374	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3375	 * the Base and Length of the Rx Descriptor Ring */
3376	for (i = 0; i < adapter->num_rx_queues; i++)
3377		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3378}
3379
3380/**
3381 * igb_free_tx_resources - Free Tx Resources per Queue
3382 * @tx_ring: Tx descriptor ring for a specific queue
3383 *
3384 * Free all transmit software resources
3385 **/
3386void igb_free_tx_resources(struct igb_ring *tx_ring)
3387{
3388	igb_clean_tx_ring(tx_ring);
3389
3390	vfree(tx_ring->tx_buffer_info);
3391	tx_ring->tx_buffer_info = NULL;
3392
3393	/* if not set, then don't free */
3394	if (!tx_ring->desc)
3395		return;
3396
3397	dma_free_coherent(tx_ring->dev, tx_ring->size,
3398			  tx_ring->desc, tx_ring->dma);
3399
3400	tx_ring->desc = NULL;
3401}
3402
3403/**
3404 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3405 * @adapter: board private structure
3406 *
3407 * Free all transmit software resources
3408 **/
3409static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3410{
3411	int i;
3412
3413	for (i = 0; i < adapter->num_tx_queues; i++)
3414		igb_free_tx_resources(adapter->tx_ring[i]);
3415}
3416
3417void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3418				    struct igb_tx_buffer *tx_buffer)
3419{
3420	if (tx_buffer->skb) {
3421		dev_kfree_skb_any(tx_buffer->skb);
3422		if (dma_unmap_len(tx_buffer, len))
3423			dma_unmap_single(ring->dev,
3424					 dma_unmap_addr(tx_buffer, dma),
3425					 dma_unmap_len(tx_buffer, len),
3426					 DMA_TO_DEVICE);
3427	} else if (dma_unmap_len(tx_buffer, len)) {
3428		dma_unmap_page(ring->dev,
3429			       dma_unmap_addr(tx_buffer, dma),
3430			       dma_unmap_len(tx_buffer, len),
3431			       DMA_TO_DEVICE);
3432	}
3433	tx_buffer->next_to_watch = NULL;
3434	tx_buffer->skb = NULL;
3435	dma_unmap_len_set(tx_buffer, len, 0);
3436	/* buffer_info must be completely set up in the transmit path */
3437}
3438
3439/**
3440 * igb_clean_tx_ring - Free Tx Buffers
3441 * @tx_ring: ring to be cleaned
3442 **/
3443static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3444{
3445	struct igb_tx_buffer *buffer_info;
3446	unsigned long size;
3447	u16 i;
3448
3449	if (!tx_ring->tx_buffer_info)
3450		return;
3451	/* Free all the Tx ring sk_buffs */
3452
3453	for (i = 0; i < tx_ring->count; i++) {
3454		buffer_info = &tx_ring->tx_buffer_info[i];
3455		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3456	}
3457
3458	netdev_tx_reset_queue(txring_txq(tx_ring));
3459
3460	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3461	memset(tx_ring->tx_buffer_info, 0, size);
3462
3463	/* Zero out the descriptor ring */
3464	memset(tx_ring->desc, 0, tx_ring->size);
3465
3466	tx_ring->next_to_use = 0;
3467	tx_ring->next_to_clean = 0;
3468}
3469
3470/**
3471 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3472 * @adapter: board private structure
3473 **/
3474static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3475{
3476	int i;
3477
3478	for (i = 0; i < adapter->num_tx_queues; i++)
3479		igb_clean_tx_ring(adapter->tx_ring[i]);
3480}
3481
3482/**
3483 * igb_free_rx_resources - Free Rx Resources
3484 * @rx_ring: ring to clean the resources from
3485 *
3486 * Free all receive software resources
3487 **/
3488void igb_free_rx_resources(struct igb_ring *rx_ring)
3489{
3490	igb_clean_rx_ring(rx_ring);
3491
3492	vfree(rx_ring->rx_buffer_info);
3493	rx_ring->rx_buffer_info = NULL;
3494
3495	/* if not set, then don't free */
3496	if (!rx_ring->desc)
3497		return;
3498
3499	dma_free_coherent(rx_ring->dev, rx_ring->size,
3500			  rx_ring->desc, rx_ring->dma);
3501
3502	rx_ring->desc = NULL;
3503}
3504
3505/**
3506 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3507 * @adapter: board private structure
3508 *
3509 * Free all receive software resources
3510 **/
3511static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3512{
3513	int i;
3514
3515	for (i = 0; i < adapter->num_rx_queues; i++)
3516		igb_free_rx_resources(adapter->rx_ring[i]);
3517}
3518
3519/**
3520 * igb_clean_rx_ring - Free Rx Buffers per Queue
3521 * @rx_ring: ring to free buffers from
3522 **/
3523static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3524{
3525	unsigned long size;
3526	u16 i;
3527
3528	if (rx_ring->skb)
3529		dev_kfree_skb(rx_ring->skb);
3530	rx_ring->skb = NULL;
3531
3532	if (!rx_ring->rx_buffer_info)
3533		return;
3534
3535	/* Free all the Rx ring sk_buffs */
3536	for (i = 0; i < rx_ring->count; i++) {
3537		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3538
3539		if (!buffer_info->page)
3540			continue;
3541
3542		dma_unmap_page(rx_ring->dev,
3543			       buffer_info->dma,
3544			       PAGE_SIZE,
3545			       DMA_FROM_DEVICE);
3546		__free_page(buffer_info->page);
3547
3548		buffer_info->page = NULL;
3549	}
3550
3551	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3552	memset(rx_ring->rx_buffer_info, 0, size);
3553
3554	/* Zero out the descriptor ring */
3555	memset(rx_ring->desc, 0, rx_ring->size);
3556
3557	rx_ring->next_to_alloc = 0;
3558	rx_ring->next_to_clean = 0;
3559	rx_ring->next_to_use = 0;
3560}
3561
3562/**
3563 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3564 * @adapter: board private structure
3565 **/
3566static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3567{
3568	int i;
3569
3570	for (i = 0; i < adapter->num_rx_queues; i++)
3571		igb_clean_rx_ring(adapter->rx_ring[i]);
3572}
3573
3574/**
3575 * igb_set_mac - Change the Ethernet Address of the NIC
3576 * @netdev: network interface device structure
3577 * @p: pointer to an address structure
3578 *
3579 * Returns 0 on success, negative on failure
3580 **/
3581static int igb_set_mac(struct net_device *netdev, void *p)
3582{
3583	struct igb_adapter *adapter = netdev_priv(netdev);
3584	struct e1000_hw *hw = &adapter->hw;
3585	struct sockaddr *addr = p;
3586
3587	if (!is_valid_ether_addr(addr->sa_data))
3588		return -EADDRNOTAVAIL;
3589
3590	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3591	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3592
3593	/* set the correct pool for the new PF MAC address in entry 0 */
3594	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3595	                 adapter->vfs_allocated_count);
3596
3597	return 0;
3598}
3599
3600/**
3601 * igb_write_mc_addr_list - write multicast addresses to MTA
3602 * @netdev: network interface device structure
3603 *
3604 * Writes multicast address list to the MTA hash table.
3605 * Returns: -ENOMEM on failure
3606 *                0 on no addresses written
3607 *                X on writing X addresses to MTA
3608 **/
3609static int igb_write_mc_addr_list(struct net_device *netdev)
3610{
3611	struct igb_adapter *adapter = netdev_priv(netdev);
3612	struct e1000_hw *hw = &adapter->hw;
3613	struct netdev_hw_addr *ha;
3614	u8  *mta_list;
3615	int i;
3616
3617	if (netdev_mc_empty(netdev)) {
3618		/* nothing to program, so clear mc list */
3619		igb_update_mc_addr_list(hw, NULL, 0);
3620		igb_restore_vf_multicasts(adapter);
3621		return 0;
3622	}
3623
3624	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3625	if (!mta_list)
3626		return -ENOMEM;
3627
3628	/* The shared function expects a packed array of only addresses. */
3629	i = 0;
3630	netdev_for_each_mc_addr(ha, netdev)
3631		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3632
3633	igb_update_mc_addr_list(hw, mta_list, i);
3634	kfree(mta_list);
3635
3636	return netdev_mc_count(netdev);
3637}
3638
3639/**
3640 * igb_write_uc_addr_list - write unicast addresses to RAR table
3641 * @netdev: network interface device structure
3642 *
3643 * Writes unicast address list to the RAR table.
3644 * Returns: -ENOMEM on failure/insufficient address space
3645 *                0 on no addresses written
3646 *                X on writing X addresses to the RAR table
3647 **/
3648static int igb_write_uc_addr_list(struct net_device *netdev)
3649{
3650	struct igb_adapter *adapter = netdev_priv(netdev);
3651	struct e1000_hw *hw = &adapter->hw;
3652	unsigned int vfn = adapter->vfs_allocated_count;
3653	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3654	int count = 0;
3655
3656	/* return ENOMEM indicating insufficient memory for addresses */
3657	if (netdev_uc_count(netdev) > rar_entries)
3658		return -ENOMEM;
3659
3660	if (!netdev_uc_empty(netdev) && rar_entries) {
3661		struct netdev_hw_addr *ha;
3662
3663		netdev_for_each_uc_addr(ha, netdev) {
3664			if (!rar_entries)
3665				break;
3666			igb_rar_set_qsel(adapter, ha->addr,
3667			                 rar_entries--,
3668			                 vfn);
3669			count++;
3670		}
3671	}
3672	/* write the addresses in reverse order to avoid write combining */
3673	for (; rar_entries > 0 ; rar_entries--) {
3674		wr32(E1000_RAH(rar_entries), 0);
3675		wr32(E1000_RAL(rar_entries), 0);
3676	}
3677	wrfl();
3678
3679	return count;
3680}
3681
3682/**
3683 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3684 * @netdev: network interface device structure
3685 *
3686 * The set_rx_mode entry point is called whenever the unicast or multicast
3687 * address lists or the network interface flags are updated.  This routine is
3688 * responsible for configuring the hardware for proper unicast, multicast,
3689 * promiscuous mode, and all-multi behavior.
3690 **/
3691static void igb_set_rx_mode(struct net_device *netdev)
3692{
3693	struct igb_adapter *adapter = netdev_priv(netdev);
3694	struct e1000_hw *hw = &adapter->hw;
3695	unsigned int vfn = adapter->vfs_allocated_count;
3696	u32 rctl, vmolr = 0;
3697	int count;
3698
3699	/* Check for Promiscuous and All Multicast modes */
3700	rctl = rd32(E1000_RCTL);
3701
3702	/* clear the effected bits */
3703	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3704
3705	if (netdev->flags & IFF_PROMISC) {
3706		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3707		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3708	} else {
3709		if (netdev->flags & IFF_ALLMULTI) {
3710			rctl |= E1000_RCTL_MPE;
3711			vmolr |= E1000_VMOLR_MPME;
3712		} else {
3713			/*
3714			 * Write addresses to the MTA, if the attempt fails
3715			 * then we should just turn on promiscuous mode so
3716			 * that we can at least receive multicast traffic
3717			 */
3718			count = igb_write_mc_addr_list(netdev);
3719			if (count < 0) {
3720				rctl |= E1000_RCTL_MPE;
3721				vmolr |= E1000_VMOLR_MPME;
3722			} else if (count) {
3723				vmolr |= E1000_VMOLR_ROMPE;
3724			}
3725		}
3726		/*
3727		 * Write addresses to available RAR registers, if there is not
3728		 * sufficient space to store all the addresses then enable
3729		 * unicast promiscuous mode
3730		 */
3731		count = igb_write_uc_addr_list(netdev);
3732		if (count < 0) {
3733			rctl |= E1000_RCTL_UPE;
3734			vmolr |= E1000_VMOLR_ROPE;
3735		}
3736		rctl |= E1000_RCTL_VFE;
3737	}
3738	wr32(E1000_RCTL, rctl);
3739
3740	/*
3741	 * In order to support SR-IOV and eventually VMDq it is necessary to set
3742	 * the VMOLR to enable the appropriate modes.  Without this workaround
3743	 * we will have issues with VLAN tag stripping not being done for frames
3744	 * that are only arriving because we are the default pool
3745	 */
3746	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3747		return;
3748
3749	vmolr |= rd32(E1000_VMOLR(vfn)) &
3750	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3751	wr32(E1000_VMOLR(vfn), vmolr);
3752	igb_restore_vf_multicasts(adapter);
3753}
3754
3755static void igb_check_wvbr(struct igb_adapter *adapter)
3756{
3757	struct e1000_hw *hw = &adapter->hw;
3758	u32 wvbr = 0;
3759
3760	switch (hw->mac.type) {
3761	case e1000_82576:
3762	case e1000_i350:
3763		if (!(wvbr = rd32(E1000_WVBR)))
3764			return;
3765		break;
3766	default:
3767		break;
3768	}
3769
3770	adapter->wvbr |= wvbr;
3771}
3772
3773#define IGB_STAGGERED_QUEUE_OFFSET 8
3774
3775static void igb_spoof_check(struct igb_adapter *adapter)
3776{
3777	int j;
3778
3779	if (!adapter->wvbr)
3780		return;
3781
3782	for(j = 0; j < adapter->vfs_allocated_count; j++) {
3783		if (adapter->wvbr & (1 << j) ||
3784		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3785			dev_warn(&adapter->pdev->dev,
3786				"Spoof event(s) detected on VF %d\n", j);
3787			adapter->wvbr &=
3788				~((1 << j) |
3789				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3790		}
3791	}
3792}
3793
3794/* Need to wait a few seconds after link up to get diagnostic information from
3795 * the phy */
3796static void igb_update_phy_info(unsigned long data)
3797{
3798	struct igb_adapter *adapter = (struct igb_adapter *) data;
3799	igb_get_phy_info(&adapter->hw);
3800}
3801
3802/**
3803 * igb_has_link - check shared code for link and determine up/down
3804 * @adapter: pointer to driver private info
3805 **/
3806bool igb_has_link(struct igb_adapter *adapter)
3807{
3808	struct e1000_hw *hw = &adapter->hw;
3809	bool link_active = false;
3810	s32 ret_val = 0;
3811
3812	/* get_link_status is set on LSC (link status) interrupt or
3813	 * rx sequence error interrupt.  get_link_status will stay
3814	 * false until the e1000_check_for_link establishes link
3815	 * for copper adapters ONLY
3816	 */
3817	switch (hw->phy.media_type) {
3818	case e1000_media_type_copper:
3819		if (hw->mac.get_link_status) {
3820			ret_val = hw->mac.ops.check_for_link(hw);
3821			link_active = !hw->mac.get_link_status;
3822		} else {
3823			link_active = true;
3824		}
3825		break;
3826	case e1000_media_type_internal_serdes:
3827		ret_val = hw->mac.ops.check_for_link(hw);
3828		link_active = hw->mac.serdes_has_link;
3829		break;
3830	default:
3831	case e1000_media_type_unknown:
3832		break;
3833	}
3834
3835	return link_active;
3836}
3837
3838static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3839{
3840	bool ret = false;
3841	u32 ctrl_ext, thstat;
3842
3843	/* check for thermal sensor event on i350 copper only */
3844	if (hw->mac.type == e1000_i350) {
3845		thstat = rd32(E1000_THSTAT);
3846		ctrl_ext = rd32(E1000_CTRL_EXT);
3847
3848		if ((hw->phy.media_type == e1000_media_type_copper) &&
3849		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3850			ret = !!(thstat & event);
3851		}
3852	}
3853
3854	return ret;
3855}
3856
3857/**
3858 * igb_watchdog - Timer Call-back
3859 * @data: pointer to adapter cast into an unsigned long
3860 **/
3861static void igb_watchdog(unsigned long data)
3862{
3863	struct igb_adapter *adapter = (struct igb_adapter *)data;
3864	/* Do the rest outside of interrupt context */
3865	schedule_work(&adapter->watchdog_task);
3866}
3867
3868static void igb_watchdog_task(struct work_struct *work)
3869{
3870	struct igb_adapter *adapter = container_of(work,
3871	                                           struct igb_adapter,
3872                                                   watchdog_task);
3873	struct e1000_hw *hw = &adapter->hw;
3874	struct net_device *netdev = adapter->netdev;
3875	u32 link;
3876	int i;
3877
3878	link = igb_has_link(adapter);
3879	if (link) {
3880		/* Cancel scheduled suspend requests. */
3881		pm_runtime_resume(netdev->dev.parent);
3882
3883		if (!netif_carrier_ok(netdev)) {
3884			u32 ctrl;
3885			hw->mac.ops.get_speed_and_duplex(hw,
3886			                                 &adapter->link_speed,
3887			                                 &adapter->link_duplex);
3888
3889			ctrl = rd32(E1000_CTRL);
3890			/* Links status message must follow this format */
3891			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3892			       "Duplex, Flow Control: %s\n",
3893			       netdev->name,
3894			       adapter->link_speed,
3895			       adapter->link_duplex == FULL_DUPLEX ?
3896			       "Full" : "Half",
3897			       (ctrl & E1000_CTRL_TFCE) &&
3898			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3899			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
3900			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3901
3902			/* check for thermal sensor event */
3903			if (igb_thermal_sensor_event(hw,
3904			    E1000_THSTAT_LINK_THROTTLE)) {
3905				netdev_info(netdev, "The network adapter link "
3906					    "speed was downshifted because it "
3907					    "overheated\n");
3908			}
3909
3910			/* adjust timeout factor according to speed/duplex */
3911			adapter->tx_timeout_factor = 1;
3912			switch (adapter->link_speed) {
3913			case SPEED_10:
3914				adapter->tx_timeout_factor = 14;
3915				break;
3916			case SPEED_100:
3917				/* maybe add some timeout factor ? */
3918				break;
3919			}
3920
3921			netif_carrier_on(netdev);
3922
3923			igb_ping_all_vfs(adapter);
3924			igb_check_vf_rate_limit(adapter);
3925
3926			/* link state has changed, schedule phy info update */
3927			if (!test_bit(__IGB_DOWN, &adapter->state))
3928				mod_timer(&adapter->phy_info_timer,
3929					  round_jiffies(jiffies + 2 * HZ));
3930		}
3931	} else {
3932		if (netif_carrier_ok(netdev)) {
3933			adapter->link_speed = 0;
3934			adapter->link_duplex = 0;
3935
3936			/* check for thermal sensor event */
3937			if (igb_thermal_sensor_event(hw,
3938			    E1000_THSTAT_PWR_DOWN)) {
3939				netdev_err(netdev, "The network adapter was "
3940					   "stopped because it overheated\n");
3941			}
3942
3943			/* Links status message must follow this format */
3944			printk(KERN_INFO "igb: %s NIC Link is Down\n",
3945			       netdev->name);
3946			netif_carrier_off(netdev);
3947
3948			igb_ping_all_vfs(adapter);
3949
3950			/* link state has changed, schedule phy info update */
3951			if (!test_bit(__IGB_DOWN, &adapter->state))
3952				mod_timer(&adapter->phy_info_timer,
3953					  round_jiffies(jiffies + 2 * HZ));
3954
3955			pm_schedule_suspend(netdev->dev.parent,
3956					    MSEC_PER_SEC * 5);
3957		}
3958	}
3959
3960	spin_lock(&adapter->stats64_lock);
3961	igb_update_stats(adapter, &adapter->stats64);
3962	spin_unlock(&adapter->stats64_lock);
3963
3964	for (i = 0; i < adapter->num_tx_queues; i++) {
3965		struct igb_ring *tx_ring = adapter->tx_ring[i];
3966		if (!netif_carrier_ok(netdev)) {
3967			/* We've lost link, so the controller stops DMA,
3968			 * but we've got queued Tx work that's never going
3969			 * to get done, so reset controller to flush Tx.
3970			 * (Do the reset outside of interrupt context). */
3971			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3972				adapter->tx_timeout_count++;
3973				schedule_work(&adapter->reset_task);
3974				/* return immediately since reset is imminent */
3975				return;
3976			}
3977		}
3978
3979		/* Force detection of hung controller every watchdog period */
3980		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3981	}
3982
3983	/* Cause software interrupt to ensure rx ring is cleaned */
3984	if (adapter->msix_entries) {
3985		u32 eics = 0;
3986		for (i = 0; i < adapter->num_q_vectors; i++)
3987			eics |= adapter->q_vector[i]->eims_value;
3988		wr32(E1000_EICS, eics);
3989	} else {
3990		wr32(E1000_ICS, E1000_ICS_RXDMT0);
3991	}
3992
3993	igb_spoof_check(adapter);
3994
3995	/* Reset the timer */
3996	if (!test_bit(__IGB_DOWN, &adapter->state))
3997		mod_timer(&adapter->watchdog_timer,
3998			  round_jiffies(jiffies + 2 * HZ));
3999}
4000
4001enum latency_range {
4002	lowest_latency = 0,
4003	low_latency = 1,
4004	bulk_latency = 2,
4005	latency_invalid = 255
4006};
4007
4008/**
4009 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4010 *
4011 *      Stores a new ITR value based on strictly on packet size.  This
4012 *      algorithm is less sophisticated than that used in igb_update_itr,
4013 *      due to the difficulty of synchronizing statistics across multiple
4014 *      receive rings.  The divisors and thresholds used by this function
4015 *      were determined based on theoretical maximum wire speed and testing
4016 *      data, in order to minimize response time while increasing bulk
4017 *      throughput.
4018 *      This functionality is controlled by the InterruptThrottleRate module
4019 *      parameter (see igb_param.c)
4020 *      NOTE:  This function is called only when operating in a multiqueue
4021 *             receive environment.
4022 * @q_vector: pointer to q_vector
4023 **/
4024static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4025{
4026	int new_val = q_vector->itr_val;
4027	int avg_wire_size = 0;
4028	struct igb_adapter *adapter = q_vector->adapter;
4029	unsigned int packets;
4030
4031	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4032	 * ints/sec - ITR timer value of 120 ticks.
4033	 */
4034	if (adapter->link_speed != SPEED_1000) {
4035		new_val = IGB_4K_ITR;
4036		goto set_itr_val;
4037	}
4038
4039	packets = q_vector->rx.total_packets;
4040	if (packets)
4041		avg_wire_size = q_vector->rx.total_bytes / packets;
4042
4043	packets = q_vector->tx.total_packets;
4044	if (packets)
4045		avg_wire_size = max_t(u32, avg_wire_size,
4046				      q_vector->tx.total_bytes / packets);
4047
4048	/* if avg_wire_size isn't set no work was done */
4049	if (!avg_wire_size)
4050		goto clear_counts;
4051
4052	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4053	avg_wire_size += 24;
4054
4055	/* Don't starve jumbo frames */
4056	avg_wire_size = min(avg_wire_size, 3000);
4057
4058	/* Give a little boost to mid-size frames */
4059	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4060		new_val = avg_wire_size / 3;
4061	else
4062		new_val = avg_wire_size / 2;
4063
4064	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4065	if (new_val < IGB_20K_ITR &&
4066	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4067	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4068		new_val = IGB_20K_ITR;
4069
4070set_itr_val:
4071	if (new_val != q_vector->itr_val) {
4072		q_vector->itr_val = new_val;
4073		q_vector->set_itr = 1;
4074	}
4075clear_counts:
4076	q_vector->rx.total_bytes = 0;
4077	q_vector->rx.total_packets = 0;
4078	q_vector->tx.total_bytes = 0;
4079	q_vector->tx.total_packets = 0;
4080}
4081
4082/**
4083 * igb_update_itr - update the dynamic ITR value based on statistics
4084 *      Stores a new ITR value based on packets and byte
4085 *      counts during the last interrupt.  The advantage of per interrupt
4086 *      computation is faster updates and more accurate ITR for the current
4087 *      traffic pattern.  Constants in this function were computed
4088 *      based on theoretical maximum wire speed and thresholds were set based
4089 *      on testing data as well as attempting to minimize response time
4090 *      while increasing bulk throughput.
4091 *      this functionality is controlled by the InterruptThrottleRate module
4092 *      parameter (see igb_param.c)
4093 *      NOTE:  These calculations are only valid when operating in a single-
4094 *             queue environment.
4095 * @q_vector: pointer to q_vector
4096 * @ring_container: ring info to update the itr for
4097 **/
4098static void igb_update_itr(struct igb_q_vector *q_vector,
4099			   struct igb_ring_container *ring_container)
4100{
4101	unsigned int packets = ring_container->total_packets;
4102	unsigned int bytes = ring_container->total_bytes;
4103	u8 itrval = ring_container->itr;
4104
4105	/* no packets, exit with status unchanged */
4106	if (packets == 0)
4107		return;
4108
4109	switch (itrval) {
4110	case lowest_latency:
4111		/* handle TSO and jumbo frames */
4112		if (bytes/packets > 8000)
4113			itrval = bulk_latency;
4114		else if ((packets < 5) && (bytes > 512))
4115			itrval = low_latency;
4116		break;
4117	case low_latency:  /* 50 usec aka 20000 ints/s */
4118		if (bytes > 10000) {
4119			/* this if handles the TSO accounting */
4120			if (bytes/packets > 8000) {
4121				itrval = bulk_latency;
4122			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4123				itrval = bulk_latency;
4124			} else if ((packets > 35)) {
4125				itrval = lowest_latency;
4126			}
4127		} else if (bytes/packets > 2000) {
4128			itrval = bulk_latency;
4129		} else if (packets <= 2 && bytes < 512) {
4130			itrval = lowest_latency;
4131		}
4132		break;
4133	case bulk_latency: /* 250 usec aka 4000 ints/s */
4134		if (bytes > 25000) {
4135			if (packets > 35)
4136				itrval = low_latency;
4137		} else if (bytes < 1500) {
4138			itrval = low_latency;
4139		}
4140		break;
4141	}
4142
4143	/* clear work counters since we have the values we need */
4144	ring_container->total_bytes = 0;
4145	ring_container->total_packets = 0;
4146
4147	/* write updated itr to ring container */
4148	ring_container->itr = itrval;
4149}
4150
4151static void igb_set_itr(struct igb_q_vector *q_vector)
4152{
4153	struct igb_adapter *adapter = q_vector->adapter;
4154	u32 new_itr = q_vector->itr_val;
4155	u8 current_itr = 0;
4156
4157	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4158	if (adapter->link_speed != SPEED_1000) {
4159		current_itr = 0;
4160		new_itr = IGB_4K_ITR;
4161		goto set_itr_now;
4162	}
4163
4164	igb_update_itr(q_vector, &q_vector->tx);
4165	igb_update_itr(q_vector, &q_vector->rx);
4166
4167	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4168
4169	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4170	if (current_itr == lowest_latency &&
4171	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4172	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4173		current_itr = low_latency;
4174
4175	switch (current_itr) {
4176	/* counts and packets in update_itr are dependent on these numbers */
4177	case lowest_latency:
4178		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4179		break;
4180	case low_latency:
4181		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4182		break;
4183	case bulk_latency:
4184		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4185		break;
4186	default:
4187		break;
4188	}
4189
4190set_itr_now:
4191	if (new_itr != q_vector->itr_val) {
4192		/* this attempts to bias the interrupt rate towards Bulk
4193		 * by adding intermediate steps when interrupt rate is
4194		 * increasing */
4195		new_itr = new_itr > q_vector->itr_val ?
4196		             max((new_itr * q_vector->itr_val) /
4197		                 (new_itr + (q_vector->itr_val >> 2)),
4198				 new_itr) :
4199			     new_itr;
4200		/* Don't write the value here; it resets the adapter's
4201		 * internal timer, and causes us to delay far longer than
4202		 * we should between interrupts.  Instead, we write the ITR
4203		 * value at the beginning of the next interrupt so the timing
4204		 * ends up being correct.
4205		 */
4206		q_vector->itr_val = new_itr;
4207		q_vector->set_itr = 1;
4208	}
4209}
4210
4211static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4212			    u32 type_tucmd, u32 mss_l4len_idx)
4213{
4214	struct e1000_adv_tx_context_desc *context_desc;
4215	u16 i = tx_ring->next_to_use;
4216
4217	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4218
4219	i++;
4220	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4221
4222	/* set bits to identify this as an advanced context descriptor */
4223	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4224
4225	/* For 82575, context index must be unique per ring. */
4226	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4227		mss_l4len_idx |= tx_ring->reg_idx << 4;
4228
4229	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4230	context_desc->seqnum_seed	= 0;
4231	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4232	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4233}
4234
4235static int igb_tso(struct igb_ring *tx_ring,
4236		   struct igb_tx_buffer *first,
4237		   u8 *hdr_len)
4238{
4239	struct sk_buff *skb = first->skb;
4240	u32 vlan_macip_lens, type_tucmd;
4241	u32 mss_l4len_idx, l4len;
4242
4243	if (skb->ip_summed != CHECKSUM_PARTIAL)
4244		return 0;
4245
4246	if (!skb_is_gso(skb))
4247		return 0;
4248
4249	if (skb_header_cloned(skb)) {
4250		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4251		if (err)
4252			return err;
4253	}
4254
4255	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4256	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4257
4258	if (first->protocol == __constant_htons(ETH_P_IP)) {
4259		struct iphdr *iph = ip_hdr(skb);
4260		iph->tot_len = 0;
4261		iph->check = 0;
4262		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4263							 iph->daddr, 0,
4264							 IPPROTO_TCP,
4265							 0);
4266		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4267		first->tx_flags |= IGB_TX_FLAGS_TSO |
4268				   IGB_TX_FLAGS_CSUM |
4269				   IGB_TX_FLAGS_IPV4;
4270	} else if (skb_is_gso_v6(skb)) {
4271		ipv6_hdr(skb)->payload_len = 0;
4272		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4273						       &ipv6_hdr(skb)->daddr,
4274						       0, IPPROTO_TCP, 0);
4275		first->tx_flags |= IGB_TX_FLAGS_TSO |
4276				   IGB_TX_FLAGS_CSUM;
4277	}
4278
4279	/* compute header lengths */
4280	l4len = tcp_hdrlen(skb);
4281	*hdr_len = skb_transport_offset(skb) + l4len;
4282
4283	/* update gso size and bytecount with header size */
4284	first->gso_segs = skb_shinfo(skb)->gso_segs;
4285	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4286
4287	/* MSS L4LEN IDX */
4288	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4289	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4290
4291	/* VLAN MACLEN IPLEN */
4292	vlan_macip_lens = skb_network_header_len(skb);
4293	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4294	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4295
4296	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4297
4298	return 1;
4299}
4300
4301static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4302{
4303	struct sk_buff *skb = first->skb;
4304	u32 vlan_macip_lens = 0;
4305	u32 mss_l4len_idx = 0;
4306	u32 type_tucmd = 0;
4307
4308	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4309		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4310			return;
4311	} else {
4312		u8 l4_hdr = 0;
4313		switch (first->protocol) {
4314		case __constant_htons(ETH_P_IP):
4315			vlan_macip_lens |= skb_network_header_len(skb);
4316			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4317			l4_hdr = ip_hdr(skb)->protocol;
4318			break;
4319		case __constant_htons(ETH_P_IPV6):
4320			vlan_macip_lens |= skb_network_header_len(skb);
4321			l4_hdr = ipv6_hdr(skb)->nexthdr;
4322			break;
4323		default:
4324			if (unlikely(net_ratelimit())) {
4325				dev_warn(tx_ring->dev,
4326				 "partial checksum but proto=%x!\n",
4327				 first->protocol);
4328			}
4329			break;
4330		}
4331
4332		switch (l4_hdr) {
4333		case IPPROTO_TCP:
4334			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4335			mss_l4len_idx = tcp_hdrlen(skb) <<
4336					E1000_ADVTXD_L4LEN_SHIFT;
4337			break;
4338		case IPPROTO_SCTP:
4339			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4340			mss_l4len_idx = sizeof(struct sctphdr) <<
4341					E1000_ADVTXD_L4LEN_SHIFT;
4342			break;
4343		case IPPROTO_UDP:
4344			mss_l4len_idx = sizeof(struct udphdr) <<
4345					E1000_ADVTXD_L4LEN_SHIFT;
4346			break;
4347		default:
4348			if (unlikely(net_ratelimit())) {
4349				dev_warn(tx_ring->dev,
4350				 "partial checksum but l4 proto=%x!\n",
4351				 l4_hdr);
4352			}
4353			break;
4354		}
4355
4356		/* update TX checksum flag */
4357		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4358	}
4359
4360	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4361	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4362
4363	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4364}
4365
4366#define IGB_SET_FLAG(_input, _flag, _result) \
4367	((_flag <= _result) ? \
4368	 ((u32)(_input & _flag) * (_result / _flag)) : \
4369	 ((u32)(_input & _flag) / (_flag / _result)))
4370
4371static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4372{
4373	/* set type for advanced descriptor with frame checksum insertion */
4374	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4375		       E1000_ADVTXD_DCMD_DEXT |
4376		       E1000_ADVTXD_DCMD_IFCS;
4377
4378	/* set HW vlan bit if vlan is present */
4379	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4380				 (E1000_ADVTXD_DCMD_VLE));
4381
4382	/* set segmentation bits for TSO */
4383	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4384				 (E1000_ADVTXD_DCMD_TSE));
4385
4386	/* set timestamp bit if present */
4387	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4388				 (E1000_ADVTXD_MAC_TSTAMP));
4389
4390	/* insert frame checksum */
4391	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4392
4393	return cmd_type;
4394}
4395
4396static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4397				 union e1000_adv_tx_desc *tx_desc,
4398				 u32 tx_flags, unsigned int paylen)
4399{
4400	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4401
4402	/* 82575 requires a unique index per ring */
4403	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4404		olinfo_status |= tx_ring->reg_idx << 4;
4405
4406	/* insert L4 checksum */
4407	olinfo_status |= IGB_SET_FLAG(tx_flags,
4408				      IGB_TX_FLAGS_CSUM,
4409				      (E1000_TXD_POPTS_TXSM << 8));
4410
4411	/* insert IPv4 checksum */
4412	olinfo_status |= IGB_SET_FLAG(tx_flags,
4413				      IGB_TX_FLAGS_IPV4,
4414				      (E1000_TXD_POPTS_IXSM << 8));
4415
4416	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4417}
4418
4419/*
4420 * The largest size we can write to the descriptor is 65535.  In order to
4421 * maintain a power of two alignment we have to limit ourselves to 32K.
4422 */
4423#define IGB_MAX_TXD_PWR	15
4424#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)
4425
4426static void igb_tx_map(struct igb_ring *tx_ring,
4427		       struct igb_tx_buffer *first,
4428		       const u8 hdr_len)
4429{
4430	struct sk_buff *skb = first->skb;
4431	struct igb_tx_buffer *tx_buffer;
4432	union e1000_adv_tx_desc *tx_desc;
4433	struct skb_frag_struct *frag;
4434	dma_addr_t dma;
4435	unsigned int data_len, size;
4436	u32 tx_flags = first->tx_flags;
4437	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4438	u16 i = tx_ring->next_to_use;
4439
4440	tx_desc = IGB_TX_DESC(tx_ring, i);
4441
4442	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4443
4444	size = skb_headlen(skb);
4445	data_len = skb->data_len;
4446
4447	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4448
4449	tx_buffer = first;
4450
4451	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4452		if (dma_mapping_error(tx_ring->dev, dma))
4453			goto dma_error;
4454
4455		/* record length, and DMA address */
4456		dma_unmap_len_set(tx_buffer, len, size);
4457		dma_unmap_addr_set(tx_buffer, dma, dma);
4458
4459		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4460
4461		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4462			tx_desc->read.cmd_type_len =
4463				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4464
4465			i++;
4466			tx_desc++;
4467			if (i == tx_ring->count) {
4468				tx_desc = IGB_TX_DESC(tx_ring, 0);
4469				i = 0;
4470			}
4471			tx_desc->read.olinfo_status = 0;
4472
4473			dma += IGB_MAX_DATA_PER_TXD;
4474			size -= IGB_MAX_DATA_PER_TXD;
4475
4476			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4477		}
4478
4479		if (likely(!data_len))
4480			break;
4481
4482		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4483
4484		i++;
4485		tx_desc++;
4486		if (i == tx_ring->count) {
4487			tx_desc = IGB_TX_DESC(tx_ring, 0);
4488			i = 0;
4489		}
4490		tx_desc->read.olinfo_status = 0;
4491
4492		size = skb_frag_size(frag);
4493		data_len -= size;
4494
4495		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4496				       size, DMA_TO_DEVICE);
4497
4498		tx_buffer = &tx_ring->tx_buffer_info[i];
4499	}
4500
4501	/* write last descriptor with RS and EOP bits */
4502	cmd_type |= size | IGB_TXD_DCMD;
4503	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4504
4505	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4506
4507	/* set the timestamp */
4508	first->time_stamp = jiffies;
4509
4510	/*
4511	 * Force memory writes to complete before letting h/w know there
4512	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4513	 * memory model archs, such as IA-64).
4514	 *
4515	 * We also need this memory barrier to make certain all of the
4516	 * status bits have been updated before next_to_watch is written.
4517	 */
4518	wmb();
4519
4520	/* set next_to_watch value indicating a packet is present */
4521	first->next_to_watch = tx_desc;
4522
4523	i++;
4524	if (i == tx_ring->count)
4525		i = 0;
4526
4527	tx_ring->next_to_use = i;
4528
4529	writel(i, tx_ring->tail);
4530
4531	/* we need this if more than one processor can write to our tail
4532	 * at a time, it syncronizes IO on IA64/Altix systems */
4533	mmiowb();
4534
4535	return;
4536
4537dma_error:
4538	dev_err(tx_ring->dev, "TX DMA map failed\n");
4539
4540	/* clear dma mappings for failed tx_buffer_info map */
4541	for (;;) {
4542		tx_buffer = &tx_ring->tx_buffer_info[i];
4543		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4544		if (tx_buffer == first)
4545			break;
4546		if (i == 0)
4547			i = tx_ring->count;
4548		i--;
4549	}
4550
4551	tx_ring->next_to_use = i;
4552}
4553
4554static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4555{
4556	struct net_device *netdev = tx_ring->netdev;
4557
4558	netif_stop_subqueue(netdev, tx_ring->queue_index);
4559
4560	/* Herbert's original patch had:
4561	 *  smp_mb__after_netif_stop_queue();
4562	 * but since that doesn't exist yet, just open code it. */
4563	smp_mb();
4564
4565	/* We need to check again in a case another CPU has just
4566	 * made room available. */
4567	if (igb_desc_unused(tx_ring) < size)
4568		return -EBUSY;
4569
4570	/* A reprieve! */
4571	netif_wake_subqueue(netdev, tx_ring->queue_index);
4572
4573	u64_stats_update_begin(&tx_ring->tx_syncp2);
4574	tx_ring->tx_stats.restart_queue2++;
4575	u64_stats_update_end(&tx_ring->tx_syncp2);
4576
4577	return 0;
4578}
4579
4580static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4581{
4582	if (igb_desc_unused(tx_ring) >= size)
4583		return 0;
4584	return __igb_maybe_stop_tx(tx_ring, size);
4585}
4586
4587netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4588				struct igb_ring *tx_ring)
4589{
4590	struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4591	struct igb_tx_buffer *first;
4592	int tso;
4593	u32 tx_flags = 0;
4594	__be16 protocol = vlan_get_protocol(skb);
4595	u8 hdr_len = 0;
4596
4597	/* need: 1 descriptor per page,
4598	 *       + 2 desc gap to keep tail from touching head,
4599	 *       + 1 desc for skb->data,
4600	 *       + 1 desc for context descriptor,
4601	 * otherwise try next time */
4602	if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4603		/* this is a hard error */
4604		return NETDEV_TX_BUSY;
4605	}
4606
4607	/* record the location of the first descriptor for this packet */
4608	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4609	first->skb = skb;
4610	first->bytecount = skb->len;
4611	first->gso_segs = 1;
4612
4613	skb_tx_timestamp(skb);
4614
4615	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4616		     !(adapter->ptp_tx_skb))) {
4617		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4618		tx_flags |= IGB_TX_FLAGS_TSTAMP;
4619
4620		adapter->ptp_tx_skb = skb_get(skb);
4621		if (adapter->hw.mac.type == e1000_82576)
4622			schedule_work(&adapter->ptp_tx_work);
4623	}
4624
4625	if (vlan_tx_tag_present(skb)) {
4626		tx_flags |= IGB_TX_FLAGS_VLAN;
4627		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4628	}
4629
4630	/* record initial flags and protocol */
4631	first->tx_flags = tx_flags;
4632	first->protocol = protocol;
4633
4634	tso = igb_tso(tx_ring, first, &hdr_len);
4635	if (tso < 0)
4636		goto out_drop;
4637	else if (!tso)
4638		igb_tx_csum(tx_ring, first);
4639
4640	igb_tx_map(tx_ring, first, hdr_len);
4641
4642	/* Make sure there is space in the ring for the next send. */
4643	igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4644
4645	return NETDEV_TX_OK;
4646
4647out_drop:
4648	igb_unmap_and_free_tx_resource(tx_ring, first);
4649
4650	return NETDEV_TX_OK;
4651}
4652
4653static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4654						    struct sk_buff *skb)
4655{
4656	unsigned int r_idx = skb->queue_mapping;
4657
4658	if (r_idx >= adapter->num_tx_queues)
4659		r_idx = r_idx % adapter->num_tx_queues;
4660
4661	return adapter->tx_ring[r_idx];
4662}
4663
4664static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4665				  struct net_device *netdev)
4666{
4667	struct igb_adapter *adapter = netdev_priv(netdev);
4668
4669	if (test_bit(__IGB_DOWN, &adapter->state)) {
4670		dev_kfree_skb_any(skb);
4671		return NETDEV_TX_OK;
4672	}
4673
4674	if (skb->len <= 0) {
4675		dev_kfree_skb_any(skb);
4676		return NETDEV_TX_OK;
4677	}
4678
4679	/*
4680	 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4681	 * in order to meet this minimum size requirement.
4682	 */
4683	if (unlikely(skb->len < 17)) {
4684		if (skb_pad(skb, 17 - skb->len))
4685			return NETDEV_TX_OK;
4686		skb->len = 17;
4687		skb_set_tail_pointer(skb, 17);
4688	}
4689
4690	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4691}
4692
4693/**
4694 * igb_tx_timeout - Respond to a Tx Hang
4695 * @netdev: network interface device structure
4696 **/
4697static void igb_tx_timeout(struct net_device *netdev)
4698{
4699	struct igb_adapter *adapter = netdev_priv(netdev);
4700	struct e1000_hw *hw = &adapter->hw;
4701
4702	/* Do the reset outside of interrupt context */
4703	adapter->tx_timeout_count++;
4704
4705	if (hw->mac.type >= e1000_82580)
4706		hw->dev_spec._82575.global_device_reset = true;
4707
4708	schedule_work(&adapter->reset_task);
4709	wr32(E1000_EICS,
4710	     (adapter->eims_enable_mask & ~adapter->eims_other));
4711}
4712
4713static void igb_reset_task(struct work_struct *work)
4714{
4715	struct igb_adapter *adapter;
4716	adapter = container_of(work, struct igb_adapter, reset_task);
4717
4718	igb_dump(adapter);
4719	netdev_err(adapter->netdev, "Reset adapter\n");
4720	igb_reinit_locked(adapter);
4721}
4722
4723/**
4724 * igb_get_stats64 - Get System Network Statistics
4725 * @netdev: network interface device structure
4726 * @stats: rtnl_link_stats64 pointer
4727 *
4728 **/
4729static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4730						 struct rtnl_link_stats64 *stats)
4731{
4732	struct igb_adapter *adapter = netdev_priv(netdev);
4733
4734	spin_lock(&adapter->stats64_lock);
4735	igb_update_stats(adapter, &adapter->stats64);
4736	memcpy(stats, &adapter->stats64, sizeof(*stats));
4737	spin_unlock(&adapter->stats64_lock);
4738
4739	return stats;
4740}
4741
4742/**
4743 * igb_change_mtu - Change the Maximum Transfer Unit
4744 * @netdev: network interface device structure
4745 * @new_mtu: new value for maximum frame size
4746 *
4747 * Returns 0 on success, negative on failure
4748 **/
4749static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4750{
4751	struct igb_adapter *adapter = netdev_priv(netdev);
4752	struct pci_dev *pdev = adapter->pdev;
4753	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4754
4755	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4756		dev_err(&pdev->dev, "Invalid MTU setting\n");
4757		return -EINVAL;
4758	}
4759
4760#define MAX_STD_JUMBO_FRAME_SIZE 9238
4761	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4762		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4763		return -EINVAL;
4764	}
4765
4766	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4767		msleep(1);
4768
4769	/* igb_down has a dependency on max_frame_size */
4770	adapter->max_frame_size = max_frame;
4771
4772	if (netif_running(netdev))
4773		igb_down(adapter);
4774
4775	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4776		 netdev->mtu, new_mtu);
4777	netdev->mtu = new_mtu;
4778
4779	if (netif_running(netdev))
4780		igb_up(adapter);
4781	else
4782		igb_reset(adapter);
4783
4784	clear_bit(__IGB_RESETTING, &adapter->state);
4785
4786	return 0;
4787}
4788
4789/**
4790 * igb_update_stats - Update the board statistics counters
4791 * @adapter: board private structure
4792 **/
4793
4794void igb_update_stats(struct igb_adapter *adapter,
4795		      struct rtnl_link_stats64 *net_stats)
4796{
4797	struct e1000_hw *hw = &adapter->hw;
4798	struct pci_dev *pdev = adapter->pdev;
4799	u32 reg, mpc;
4800	u16 phy_tmp;
4801	int i;
4802	u64 bytes, packets;
4803	unsigned int start;
4804	u64 _bytes, _packets;
4805
4806#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4807
4808	/*
4809	 * Prevent stats update while adapter is being reset, or if the pci
4810	 * connection is down.
4811	 */
4812	if (adapter->link_speed == 0)
4813		return;
4814	if (pci_channel_offline(pdev))
4815		return;
4816
4817	bytes = 0;
4818	packets = 0;
4819	for (i = 0; i < adapter->num_rx_queues; i++) {
4820		u32 rqdpc = rd32(E1000_RQDPC(i));
4821		struct igb_ring *ring = adapter->rx_ring[i];
4822
4823		if (rqdpc) {
4824			ring->rx_stats.drops += rqdpc;
4825			net_stats->rx_fifo_errors += rqdpc;
4826		}
4827
4828		do {
4829			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4830			_bytes = ring->rx_stats.bytes;
4831			_packets = ring->rx_stats.packets;
4832		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4833		bytes += _bytes;
4834		packets += _packets;
4835	}
4836
4837	net_stats->rx_bytes = bytes;
4838	net_stats->rx_packets = packets;
4839
4840	bytes = 0;
4841	packets = 0;
4842	for (i = 0; i < adapter->num_tx_queues; i++) {
4843		struct igb_ring *ring = adapter->tx_ring[i];
4844		do {
4845			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4846			_bytes = ring->tx_stats.bytes;
4847			_packets = ring->tx_stats.packets;
4848		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4849		bytes += _bytes;
4850		packets += _packets;
4851	}
4852	net_stats->tx_bytes = bytes;
4853	net_stats->tx_packets = packets;
4854
4855	/* read stats registers */
4856	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4857	adapter->stats.gprc += rd32(E1000_GPRC);
4858	adapter->stats.gorc += rd32(E1000_GORCL);
4859	rd32(E1000_GORCH); /* clear GORCL */
4860	adapter->stats.bprc += rd32(E1000_BPRC);
4861	adapter->stats.mprc += rd32(E1000_MPRC);
4862	adapter->stats.roc += rd32(E1000_ROC);
4863
4864	adapter->stats.prc64 += rd32(E1000_PRC64);
4865	adapter->stats.prc127 += rd32(E1000_PRC127);
4866	adapter->stats.prc255 += rd32(E1000_PRC255);
4867	adapter->stats.prc511 += rd32(E1000_PRC511);
4868	adapter->stats.prc1023 += rd32(E1000_PRC1023);
4869	adapter->stats.prc1522 += rd32(E1000_PRC1522);
4870	adapter->stats.symerrs += rd32(E1000_SYMERRS);
4871	adapter->stats.sec += rd32(E1000_SEC);
4872
4873	mpc = rd32(E1000_MPC);
4874	adapter->stats.mpc += mpc;
4875	net_stats->rx_fifo_errors += mpc;
4876	adapter->stats.scc += rd32(E1000_SCC);
4877	adapter->stats.ecol += rd32(E1000_ECOL);
4878	adapter->stats.mcc += rd32(E1000_MCC);
4879	adapter->stats.latecol += rd32(E1000_LATECOL);
4880	adapter->stats.dc += rd32(E1000_DC);
4881	adapter->stats.rlec += rd32(E1000_RLEC);
4882	adapter->stats.xonrxc += rd32(E1000_XONRXC);
4883	adapter->stats.xontxc += rd32(E1000_XONTXC);
4884	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4885	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4886	adapter->stats.fcruc += rd32(E1000_FCRUC);
4887	adapter->stats.gptc += rd32(E1000_GPTC);
4888	adapter->stats.gotc += rd32(E1000_GOTCL);
4889	rd32(E1000_GOTCH); /* clear GOTCL */
4890	adapter->stats.rnbc += rd32(E1000_RNBC);
4891	adapter->stats.ruc += rd32(E1000_RUC);
4892	adapter->stats.rfc += rd32(E1000_RFC);
4893	adapter->stats.rjc += rd32(E1000_RJC);
4894	adapter->stats.tor += rd32(E1000_TORH);
4895	adapter->stats.tot += rd32(E1000_TOTH);
4896	adapter->stats.tpr += rd32(E1000_TPR);
4897
4898	adapter->stats.ptc64 += rd32(E1000_PTC64);
4899	adapter->stats.ptc127 += rd32(E1000_PTC127);
4900	adapter->stats.ptc255 += rd32(E1000_PTC255);
4901	adapter->stats.ptc511 += rd32(E1000_PTC511);
4902	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4903	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4904
4905	adapter->stats.mptc += rd32(E1000_MPTC);
4906	adapter->stats.bptc += rd32(E1000_BPTC);
4907
4908	adapter->stats.tpt += rd32(E1000_TPT);
4909	adapter->stats.colc += rd32(E1000_COLC);
4910
4911	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4912	/* read internal phy specific stats */
4913	reg = rd32(E1000_CTRL_EXT);
4914	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4915		adapter->stats.rxerrc += rd32(E1000_RXERRC);
4916
4917		/* this stat has invalid values on i210/i211 */
4918		if ((hw->mac.type != e1000_i210) &&
4919		    (hw->mac.type != e1000_i211))
4920			adapter->stats.tncrs += rd32(E1000_TNCRS);
4921	}
4922
4923	adapter->stats.tsctc += rd32(E1000_TSCTC);
4924	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4925
4926	adapter->stats.iac += rd32(E1000_IAC);
4927	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4928	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4929	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4930	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4931	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4932	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4933	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4934	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4935
4936	/* Fill out the OS statistics structure */
4937	net_stats->multicast = adapter->stats.mprc;
4938	net_stats->collisions = adapter->stats.colc;
4939
4940	/* Rx Errors */
4941
4942	/* RLEC on some newer hardware can be incorrect so build
4943	 * our own version based on RUC and ROC */
4944	net_stats->rx_errors = adapter->stats.rxerrc +
4945		adapter->stats.crcerrs + adapter->stats.algnerrc +
4946		adapter->stats.ruc + adapter->stats.roc +
4947		adapter->stats.cexterr;
4948	net_stats->rx_length_errors = adapter->stats.ruc +
4949				      adapter->stats.roc;
4950	net_stats->rx_crc_errors = adapter->stats.crcerrs;
4951	net_stats->rx_frame_errors = adapter->stats.algnerrc;
4952	net_stats->rx_missed_errors = adapter->stats.mpc;
4953
4954	/* Tx Errors */
4955	net_stats->tx_errors = adapter->stats.ecol +
4956			       adapter->stats.latecol;
4957	net_stats->tx_aborted_errors = adapter->stats.ecol;
4958	net_stats->tx_window_errors = adapter->stats.latecol;
4959	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4960
4961	/* Tx Dropped needs to be maintained elsewhere */
4962
4963	/* Phy Stats */
4964	if (hw->phy.media_type == e1000_media_type_copper) {
4965		if ((adapter->link_speed == SPEED_1000) &&
4966		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4967			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4968			adapter->phy_stats.idle_errors += phy_tmp;
4969		}
4970	}
4971
4972	/* Management Stats */
4973	adapter->stats.mgptc += rd32(E1000_MGTPTC);
4974	adapter->stats.mgprc += rd32(E1000_MGTPRC);
4975	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4976
4977	/* OS2BMC Stats */
4978	reg = rd32(E1000_MANC);
4979	if (reg & E1000_MANC_EN_BMC2OS) {
4980		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4981		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4982		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4983		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4984	}
4985}
4986
4987static irqreturn_t igb_msix_other(int irq, void *data)
4988{
4989	struct igb_adapter *adapter = data;
4990	struct e1000_hw *hw = &adapter->hw;
4991	u32 icr = rd32(E1000_ICR);
4992	/* reading ICR causes bit 31 of EICR to be cleared */
4993
4994	if (icr & E1000_ICR_DRSTA)
4995		schedule_work(&adapter->reset_task);
4996
4997	if (icr & E1000_ICR_DOUTSYNC) {
4998		/* HW is reporting DMA is out of sync */
4999		adapter->stats.doosync++;
5000		/* The DMA Out of Sync is also indication of a spoof event
5001		 * in IOV mode. Check the Wrong VM Behavior register to
5002		 * see if it is really a spoof event. */
5003		igb_check_wvbr(adapter);
5004	}
5005
5006	/* Check for a mailbox event */
5007	if (icr & E1000_ICR_VMMB)
5008		igb_msg_task(adapter);
5009
5010	if (icr & E1000_ICR_LSC) {
5011		hw->mac.get_link_status = 1;
5012		/* guard against interrupt when we're going down */
5013		if (!test_bit(__IGB_DOWN, &adapter->state))
5014			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5015	}
5016
5017	if (icr & E1000_ICR_TS) {
5018		u32 tsicr = rd32(E1000_TSICR);
5019
5020		if (tsicr & E1000_TSICR_TXTS) {
5021			/* acknowledge the interrupt */
5022			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5023			/* retrieve hardware timestamp */
5024			schedule_work(&adapter->ptp_tx_work);
5025		}
5026	}
5027
5028	wr32(E1000_EIMS, adapter->eims_other);
5029
5030	return IRQ_HANDLED;
5031}
5032
5033static void igb_write_itr(struct igb_q_vector *q_vector)
5034{
5035	struct igb_adapter *adapter = q_vector->adapter;
5036	u32 itr_val = q_vector->itr_val & 0x7FFC;
5037
5038	if (!q_vector->set_itr)
5039		return;
5040
5041	if (!itr_val)
5042		itr_val = 0x4;
5043
5044	if (adapter->hw.mac.type == e1000_82575)
5045		itr_val |= itr_val << 16;
5046	else
5047		itr_val |= E1000_EITR_CNT_IGNR;
5048
5049	writel(itr_val, q_vector->itr_register);
5050	q_vector->set_itr = 0;
5051}
5052
5053static irqreturn_t igb_msix_ring(int irq, void *data)
5054{
5055	struct igb_q_vector *q_vector = data;
5056
5057	/* Write the ITR value calculated from the previous interrupt. */
5058	igb_write_itr(q_vector);
5059
5060	napi_schedule(&q_vector->napi);
5061
5062	return IRQ_HANDLED;
5063}
5064
5065#ifdef CONFIG_IGB_DCA
5066static void igb_update_tx_dca(struct igb_adapter *adapter,
5067			      struct igb_ring *tx_ring,
5068			      int cpu)
5069{
5070	struct e1000_hw *hw = &adapter->hw;
5071	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5072
5073	if (hw->mac.type != e1000_82575)
5074		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5075
5076	/*
5077	 * We can enable relaxed ordering for reads, but not writes when
5078	 * DCA is enabled.  This is due to a known issue in some chipsets
5079	 * which will cause the DCA tag to be cleared.
5080	 */
5081	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5082		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5083		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5084
5085	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5086}
5087
5088static void igb_update_rx_dca(struct igb_adapter *adapter,
5089			      struct igb_ring *rx_ring,
5090			      int cpu)
5091{
5092	struct e1000_hw *hw = &adapter->hw;
5093	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5094
5095	if (hw->mac.type != e1000_82575)
5096		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5097
5098	/*
5099	 * We can enable relaxed ordering for reads, but not writes when
5100	 * DCA is enabled.  This is due to a known issue in some chipsets
5101	 * which will cause the DCA tag to be cleared.
5102	 */
5103	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5104		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5105
5106	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5107}
5108
5109static void igb_update_dca(struct igb_q_vector *q_vector)
5110{
5111	struct igb_adapter *adapter = q_vector->adapter;
5112	int cpu = get_cpu();
5113
5114	if (q_vector->cpu == cpu)
5115		goto out_no_update;
5116
5117	if (q_vector->tx.ring)
5118		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5119
5120	if (q_vector->rx.ring)
5121		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5122
5123	q_vector->cpu = cpu;
5124out_no_update:
5125	put_cpu();
5126}
5127
5128static void igb_setup_dca(struct igb_adapter *adapter)
5129{
5130	struct e1000_hw *hw = &adapter->hw;
5131	int i;
5132
5133	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5134		return;
5135
5136	/* Always use CB2 mode, difference is masked in the CB driver. */
5137	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5138
5139	for (i = 0; i < adapter->num_q_vectors; i++) {
5140		adapter->q_vector[i]->cpu = -1;
5141		igb_update_dca(adapter->q_vector[i]);
5142	}
5143}
5144
5145static int __igb_notify_dca(struct device *dev, void *data)
5146{
5147	struct net_device *netdev = dev_get_drvdata(dev);
5148	struct igb_adapter *adapter = netdev_priv(netdev);
5149	struct pci_dev *pdev = adapter->pdev;
5150	struct e1000_hw *hw = &adapter->hw;
5151	unsigned long event = *(unsigned long *)data;
5152
5153	switch (event) {
5154	case DCA_PROVIDER_ADD:
5155		/* if already enabled, don't do it again */
5156		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5157			break;
5158		if (dca_add_requester(dev) == 0) {
5159			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5160			dev_info(&pdev->dev, "DCA enabled\n");
5161			igb_setup_dca(adapter);
5162			break;
5163		}
5164		/* Fall Through since DCA is disabled. */
5165	case DCA_PROVIDER_REMOVE:
5166		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5167			/* without this a class_device is left
5168			 * hanging around in the sysfs model */
5169			dca_remove_requester(dev);
5170			dev_info(&pdev->dev, "DCA disabled\n");
5171			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5172			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5173		}
5174		break;
5175	}
5176
5177	return 0;
5178}
5179
5180static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5181                          void *p)
5182{
5183	int ret_val;
5184
5185	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5186	                                 __igb_notify_dca);
5187
5188	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5189}
5190#endif /* CONFIG_IGB_DCA */
5191
5192#ifdef CONFIG_PCI_IOV
5193static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5194{
5195	unsigned char mac_addr[ETH_ALEN];
5196
5197	eth_random_addr(mac_addr);
5198	igb_set_vf_mac(adapter, vf, mac_addr);
5199
5200	return 0;
5201}
5202
5203static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
5204{
5205	struct pci_dev *pdev = adapter->pdev;
5206	struct pci_dev *vfdev;
5207	int dev_id;
5208
5209	switch (adapter->hw.mac.type) {
5210	case e1000_82576:
5211		dev_id = IGB_82576_VF_DEV_ID;
5212		break;
5213	case e1000_i350:
5214		dev_id = IGB_I350_VF_DEV_ID;
5215		break;
5216	default:
5217		return false;
5218	}
5219
5220	/* loop through all the VFs to see if we own any that are assigned */
5221	vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
5222	while (vfdev) {
5223		/* if we don't own it we don't care */
5224		if (vfdev->is_virtfn && vfdev->physfn == pdev) {
5225			/* if it is assigned we cannot release it */
5226			if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
5227				return true;
5228		}
5229
5230		vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
5231	}
5232
5233	return false;
5234}
5235
5236#endif
5237static void igb_ping_all_vfs(struct igb_adapter *adapter)
5238{
5239	struct e1000_hw *hw = &adapter->hw;
5240	u32 ping;
5241	int i;
5242
5243	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5244		ping = E1000_PF_CONTROL_MSG;
5245		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5246			ping |= E1000_VT_MSGTYPE_CTS;
5247		igb_write_mbx(hw, &ping, 1, i);
5248	}
5249}
5250
5251static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5252{
5253	struct e1000_hw *hw = &adapter->hw;
5254	u32 vmolr = rd32(E1000_VMOLR(vf));
5255	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5256
5257	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5258	                    IGB_VF_FLAG_MULTI_PROMISC);
5259	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5260
5261	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5262		vmolr |= E1000_VMOLR_MPME;
5263		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5264		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5265	} else {
5266		/*
5267		 * if we have hashes and we are clearing a multicast promisc
5268		 * flag we need to write the hashes to the MTA as this step
5269		 * was previously skipped
5270		 */
5271		if (vf_data->num_vf_mc_hashes > 30) {
5272			vmolr |= E1000_VMOLR_MPME;
5273		} else if (vf_data->num_vf_mc_hashes) {
5274			int j;
5275			vmolr |= E1000_VMOLR_ROMPE;
5276			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5277				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5278		}
5279	}
5280
5281	wr32(E1000_VMOLR(vf), vmolr);
5282
5283	/* there are flags left unprocessed, likely not supported */
5284	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5285		return -EINVAL;
5286
5287	return 0;
5288
5289}
5290
5291static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5292				  u32 *msgbuf, u32 vf)
5293{
5294	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5295	u16 *hash_list = (u16 *)&msgbuf[1];
5296	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5297	int i;
5298
5299	/* salt away the number of multicast addresses assigned
5300	 * to this VF for later use to restore when the PF multi cast
5301	 * list changes
5302	 */
5303	vf_data->num_vf_mc_hashes = n;
5304
5305	/* only up to 30 hash values supported */
5306	if (n > 30)
5307		n = 30;
5308
5309	/* store the hashes for later use */
5310	for (i = 0; i < n; i++)
5311		vf_data->vf_mc_hashes[i] = hash_list[i];
5312
5313	/* Flush and reset the mta with the new values */
5314	igb_set_rx_mode(adapter->netdev);
5315
5316	return 0;
5317}
5318
5319static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5320{
5321	struct e1000_hw *hw = &adapter->hw;
5322	struct vf_data_storage *vf_data;
5323	int i, j;
5324
5325	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5326		u32 vmolr = rd32(E1000_VMOLR(i));
5327		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5328
5329		vf_data = &adapter->vf_data[i];
5330
5331		if ((vf_data->num_vf_mc_hashes > 30) ||
5332		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5333			vmolr |= E1000_VMOLR_MPME;
5334		} else if (vf_data->num_vf_mc_hashes) {
5335			vmolr |= E1000_VMOLR_ROMPE;
5336			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5337				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5338		}
5339		wr32(E1000_VMOLR(i), vmolr);
5340	}
5341}
5342
5343static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5344{
5345	struct e1000_hw *hw = &adapter->hw;
5346	u32 pool_mask, reg, vid;
5347	int i;
5348
5349	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5350
5351	/* Find the vlan filter for this id */
5352	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5353		reg = rd32(E1000_VLVF(i));
5354
5355		/* remove the vf from the pool */
5356		reg &= ~pool_mask;
5357
5358		/* if pool is empty then remove entry from vfta */
5359		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5360		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5361			reg = 0;
5362			vid = reg & E1000_VLVF_VLANID_MASK;
5363			igb_vfta_set(hw, vid, false);
5364		}
5365
5366		wr32(E1000_VLVF(i), reg);
5367	}
5368
5369	adapter->vf_data[vf].vlans_enabled = 0;
5370}
5371
5372static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5373{
5374	struct e1000_hw *hw = &adapter->hw;
5375	u32 reg, i;
5376
5377	/* The vlvf table only exists on 82576 hardware and newer */
5378	if (hw->mac.type < e1000_82576)
5379		return -1;
5380
5381	/* we only need to do this if VMDq is enabled */
5382	if (!adapter->vfs_allocated_count)
5383		return -1;
5384
5385	/* Find the vlan filter for this id */
5386	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5387		reg = rd32(E1000_VLVF(i));
5388		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5389		    vid == (reg & E1000_VLVF_VLANID_MASK))
5390			break;
5391	}
5392
5393	if (add) {
5394		if (i == E1000_VLVF_ARRAY_SIZE) {
5395			/* Did not find a matching VLAN ID entry that was
5396			 * enabled.  Search for a free filter entry, i.e.
5397			 * one without the enable bit set
5398			 */
5399			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5400				reg = rd32(E1000_VLVF(i));
5401				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5402					break;
5403			}
5404		}
5405		if (i < E1000_VLVF_ARRAY_SIZE) {
5406			/* Found an enabled/available entry */
5407			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5408
5409			/* if !enabled we need to set this up in vfta */
5410			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5411				/* add VID to filter table */
5412				igb_vfta_set(hw, vid, true);
5413				reg |= E1000_VLVF_VLANID_ENABLE;
5414			}
5415			reg &= ~E1000_VLVF_VLANID_MASK;
5416			reg |= vid;
5417			wr32(E1000_VLVF(i), reg);
5418
5419			/* do not modify RLPML for PF devices */
5420			if (vf >= adapter->vfs_allocated_count)
5421				return 0;
5422
5423			if (!adapter->vf_data[vf].vlans_enabled) {
5424				u32 size;
5425				reg = rd32(E1000_VMOLR(vf));
5426				size = reg & E1000_VMOLR_RLPML_MASK;
5427				size += 4;
5428				reg &= ~E1000_VMOLR_RLPML_MASK;
5429				reg |= size;
5430				wr32(E1000_VMOLR(vf), reg);
5431			}
5432
5433			adapter->vf_data[vf].vlans_enabled++;
5434		}
5435	} else {
5436		if (i < E1000_VLVF_ARRAY_SIZE) {
5437			/* remove vf from the pool */
5438			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5439			/* if pool is empty then remove entry from vfta */
5440			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5441				reg = 0;
5442				igb_vfta_set(hw, vid, false);
5443			}
5444			wr32(E1000_VLVF(i), reg);
5445
5446			/* do not modify RLPML for PF devices */
5447			if (vf >= adapter->vfs_allocated_count)
5448				return 0;
5449
5450			adapter->vf_data[vf].vlans_enabled--;
5451			if (!adapter->vf_data[vf].vlans_enabled) {
5452				u32 size;
5453				reg = rd32(E1000_VMOLR(vf));
5454				size = reg & E1000_VMOLR_RLPML_MASK;
5455				size -= 4;
5456				reg &= ~E1000_VMOLR_RLPML_MASK;
5457				reg |= size;
5458				wr32(E1000_VMOLR(vf), reg);
5459			}
5460		}
5461	}
5462	return 0;
5463}
5464
5465static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5466{
5467	struct e1000_hw *hw = &adapter->hw;
5468
5469	if (vid)
5470		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5471	else
5472		wr32(E1000_VMVIR(vf), 0);
5473}
5474
5475static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5476			       int vf, u16 vlan, u8 qos)
5477{
5478	int err = 0;
5479	struct igb_adapter *adapter = netdev_priv(netdev);
5480
5481	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5482		return -EINVAL;
5483	if (vlan || qos) {
5484		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5485		if (err)
5486			goto out;
5487		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5488		igb_set_vmolr(adapter, vf, !vlan);
5489		adapter->vf_data[vf].pf_vlan = vlan;
5490		adapter->vf_data[vf].pf_qos = qos;
5491		dev_info(&adapter->pdev->dev,
5492			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5493		if (test_bit(__IGB_DOWN, &adapter->state)) {
5494			dev_warn(&adapter->pdev->dev,
5495				 "The VF VLAN has been set,"
5496				 " but the PF device is not up.\n");
5497			dev_warn(&adapter->pdev->dev,
5498				 "Bring the PF device up before"
5499				 " attempting to use the VF device.\n");
5500		}
5501	} else {
5502		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5503				   false, vf);
5504		igb_set_vmvir(adapter, vlan, vf);
5505		igb_set_vmolr(adapter, vf, true);
5506		adapter->vf_data[vf].pf_vlan = 0;
5507		adapter->vf_data[vf].pf_qos = 0;
5508       }
5509out:
5510       return err;
5511}
5512
5513static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5514{
5515	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5516	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5517
5518	return igb_vlvf_set(adapter, vid, add, vf);
5519}
5520
5521static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5522{
5523	/* clear flags - except flag that indicates PF has set the MAC */
5524	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5525	adapter->vf_data[vf].last_nack = jiffies;
5526
5527	/* reset offloads to defaults */
5528	igb_set_vmolr(adapter, vf, true);
5529
5530	/* reset vlans for device */
5531	igb_clear_vf_vfta(adapter, vf);
5532	if (adapter->vf_data[vf].pf_vlan)
5533		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5534				    adapter->vf_data[vf].pf_vlan,
5535				    adapter->vf_data[vf].pf_qos);
5536	else
5537		igb_clear_vf_vfta(adapter, vf);
5538
5539	/* reset multicast table array for vf */
5540	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5541
5542	/* Flush and reset the mta with the new values */
5543	igb_set_rx_mode(adapter->netdev);
5544}
5545
5546static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5547{
5548	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5549
5550	/* generate a new mac address as we were hotplug removed/added */
5551	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5552		eth_random_addr(vf_mac);
5553
5554	/* process remaining reset events */
5555	igb_vf_reset(adapter, vf);
5556}
5557
5558static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5559{
5560	struct e1000_hw *hw = &adapter->hw;
5561	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5562	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5563	u32 reg, msgbuf[3];
5564	u8 *addr = (u8 *)(&msgbuf[1]);
5565
5566	/* process all the same items cleared in a function level reset */
5567	igb_vf_reset(adapter, vf);
5568
5569	/* set vf mac address */
5570	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5571
5572	/* enable transmit and receive for vf */
5573	reg = rd32(E1000_VFTE);
5574	wr32(E1000_VFTE, reg | (1 << vf));
5575	reg = rd32(E1000_VFRE);
5576	wr32(E1000_VFRE, reg | (1 << vf));
5577
5578	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5579
5580	/* reply to reset with ack and vf mac address */
5581	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5582	memcpy(addr, vf_mac, 6);
5583	igb_write_mbx(hw, msgbuf, 3, vf);
5584}
5585
5586static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5587{
5588	/*
5589	 * The VF MAC Address is stored in a packed array of bytes
5590	 * starting at the second 32 bit word of the msg array
5591	 */
5592	unsigned char *addr = (char *)&msg[1];
5593	int err = -1;
5594
5595	if (is_valid_ether_addr(addr))
5596		err = igb_set_vf_mac(adapter, vf, addr);
5597
5598	return err;
5599}
5600
5601static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5602{
5603	struct e1000_hw *hw = &adapter->hw;
5604	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5605	u32 msg = E1000_VT_MSGTYPE_NACK;
5606
5607	/* if device isn't clear to send it shouldn't be reading either */
5608	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5609	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5610		igb_write_mbx(hw, &msg, 1, vf);
5611		vf_data->last_nack = jiffies;
5612	}
5613}
5614
5615static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5616{
5617	struct pci_dev *pdev = adapter->pdev;
5618	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5619	struct e1000_hw *hw = &adapter->hw;
5620	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5621	s32 retval;
5622
5623	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5624
5625	if (retval) {
5626		/* if receive failed revoke VF CTS stats and restart init */
5627		dev_err(&pdev->dev, "Error receiving message from VF\n");
5628		vf_data->flags &= ~IGB_VF_FLAG_CTS;
5629		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5630			return;
5631		goto out;
5632	}
5633
5634	/* this is a message we already processed, do nothing */
5635	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5636		return;
5637
5638	/*
5639	 * until the vf completes a reset it should not be
5640	 * allowed to start any configuration.
5641	 */
5642
5643	if (msgbuf[0] == E1000_VF_RESET) {
5644		igb_vf_reset_msg(adapter, vf);
5645		return;
5646	}
5647
5648	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5649		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5650			return;
5651		retval = -1;
5652		goto out;
5653	}
5654
5655	switch ((msgbuf[0] & 0xFFFF)) {
5656	case E1000_VF_SET_MAC_ADDR:
5657		retval = -EINVAL;
5658		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5659			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5660		else
5661			dev_warn(&pdev->dev,
5662				 "VF %d attempted to override administratively "
5663				 "set MAC address\nReload the VF driver to "
5664				 "resume operations\n", vf);
5665		break;
5666	case E1000_VF_SET_PROMISC:
5667		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5668		break;
5669	case E1000_VF_SET_MULTICAST:
5670		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5671		break;
5672	case E1000_VF_SET_LPE:
5673		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5674		break;
5675	case E1000_VF_SET_VLAN:
5676		retval = -1;
5677		if (vf_data->pf_vlan)
5678			dev_warn(&pdev->dev,
5679				 "VF %d attempted to override administratively "
5680				 "set VLAN tag\nReload the VF driver to "
5681				 "resume operations\n", vf);
5682		else
5683			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5684		break;
5685	default:
5686		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5687		retval = -1;
5688		break;
5689	}
5690
5691	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5692out:
5693	/* notify the VF of the results of what it sent us */
5694	if (retval)
5695		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5696	else
5697		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5698
5699	igb_write_mbx(hw, msgbuf, 1, vf);
5700}
5701
5702static void igb_msg_task(struct igb_adapter *adapter)
5703{
5704	struct e1000_hw *hw = &adapter->hw;
5705	u32 vf;
5706
5707	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5708		/* process any reset requests */
5709		if (!igb_check_for_rst(hw, vf))
5710			igb_vf_reset_event(adapter, vf);
5711
5712		/* process any messages pending */
5713		if (!igb_check_for_msg(hw, vf))
5714			igb_rcv_msg_from_vf(adapter, vf);
5715
5716		/* process any acks */
5717		if (!igb_check_for_ack(hw, vf))
5718			igb_rcv_ack_from_vf(adapter, vf);
5719	}
5720}
5721
5722/**
5723 *  igb_set_uta - Set unicast filter table address
5724 *  @adapter: board private structure
5725 *
5726 *  The unicast table address is a register array of 32-bit registers.
5727 *  The table is meant to be used in a way similar to how the MTA is used
5728 *  however due to certain limitations in the hardware it is necessary to
5729 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5730 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5731 **/
5732static void igb_set_uta(struct igb_adapter *adapter)
5733{
5734	struct e1000_hw *hw = &adapter->hw;
5735	int i;
5736
5737	/* The UTA table only exists on 82576 hardware and newer */
5738	if (hw->mac.type < e1000_82576)
5739		return;
5740
5741	/* we only need to do this if VMDq is enabled */
5742	if (!adapter->vfs_allocated_count)
5743		return;
5744
5745	for (i = 0; i < hw->mac.uta_reg_count; i++)
5746		array_wr32(E1000_UTA, i, ~0);
5747}
5748
5749/**
5750 * igb_intr_msi - Interrupt Handler
5751 * @irq: interrupt number
5752 * @data: pointer to a network interface device structure
5753 **/
5754static irqreturn_t igb_intr_msi(int irq, void *data)
5755{
5756	struct igb_adapter *adapter = data;
5757	struct igb_q_vector *q_vector = adapter->q_vector[0];
5758	struct e1000_hw *hw = &adapter->hw;
5759	/* read ICR disables interrupts using IAM */
5760	u32 icr = rd32(E1000_ICR);
5761
5762	igb_write_itr(q_vector);
5763
5764	if (icr & E1000_ICR_DRSTA)
5765		schedule_work(&adapter->reset_task);
5766
5767	if (icr & E1000_ICR_DOUTSYNC) {
5768		/* HW is reporting DMA is out of sync */
5769		adapter->stats.doosync++;
5770	}
5771
5772	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5773		hw->mac.get_link_status = 1;
5774		if (!test_bit(__IGB_DOWN, &adapter->state))
5775			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5776	}
5777
5778	if (icr & E1000_ICR_TS) {
5779		u32 tsicr = rd32(E1000_TSICR);
5780
5781		if (tsicr & E1000_TSICR_TXTS) {
5782			/* acknowledge the interrupt */
5783			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5784			/* retrieve hardware timestamp */
5785			schedule_work(&adapter->ptp_tx_work);
5786		}
5787	}
5788
5789	napi_schedule(&q_vector->napi);
5790
5791	return IRQ_HANDLED;
5792}
5793
5794/**
5795 * igb_intr - Legacy Interrupt Handler
5796 * @irq: interrupt number
5797 * @data: pointer to a network interface device structure
5798 **/
5799static irqreturn_t igb_intr(int irq, void *data)
5800{
5801	struct igb_adapter *adapter = data;
5802	struct igb_q_vector *q_vector = adapter->q_vector[0];
5803	struct e1000_hw *hw = &adapter->hw;
5804	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5805	 * need for the IMC write */
5806	u32 icr = rd32(E1000_ICR);
5807
5808	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5809	 * not set, then the adapter didn't send an interrupt */
5810	if (!(icr & E1000_ICR_INT_ASSERTED))
5811		return IRQ_NONE;
5812
5813	igb_write_itr(q_vector);
5814
5815	if (icr & E1000_ICR_DRSTA)
5816		schedule_work(&adapter->reset_task);
5817
5818	if (icr & E1000_ICR_DOUTSYNC) {
5819		/* HW is reporting DMA is out of sync */
5820		adapter->stats.doosync++;
5821	}
5822
5823	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5824		hw->mac.get_link_status = 1;
5825		/* guard against interrupt when we're going down */
5826		if (!test_bit(__IGB_DOWN, &adapter->state))
5827			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5828	}
5829
5830	if (icr & E1000_ICR_TS) {
5831		u32 tsicr = rd32(E1000_TSICR);
5832
5833		if (tsicr & E1000_TSICR_TXTS) {
5834			/* acknowledge the interrupt */
5835			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5836			/* retrieve hardware timestamp */
5837			schedule_work(&adapter->ptp_tx_work);
5838		}
5839	}
5840
5841	napi_schedule(&q_vector->napi);
5842
5843	return IRQ_HANDLED;
5844}
5845
5846static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5847{
5848	struct igb_adapter *adapter = q_vector->adapter;
5849	struct e1000_hw *hw = &adapter->hw;
5850
5851	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5852	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5853		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5854			igb_set_itr(q_vector);
5855		else
5856			igb_update_ring_itr(q_vector);
5857	}
5858
5859	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5860		if (adapter->msix_entries)
5861			wr32(E1000_EIMS, q_vector->eims_value);
5862		else
5863			igb_irq_enable(adapter);
5864	}
5865}
5866
5867/**
5868 * igb_poll - NAPI Rx polling callback
5869 * @napi: napi polling structure
5870 * @budget: count of how many packets we should handle
5871 **/
5872static int igb_poll(struct napi_struct *napi, int budget)
5873{
5874	struct igb_q_vector *q_vector = container_of(napi,
5875	                                             struct igb_q_vector,
5876	                                             napi);
5877	bool clean_complete = true;
5878
5879#ifdef CONFIG_IGB_DCA
5880	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5881		igb_update_dca(q_vector);
5882#endif
5883	if (q_vector->tx.ring)
5884		clean_complete = igb_clean_tx_irq(q_vector);
5885
5886	if (q_vector->rx.ring)
5887		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5888
5889	/* If all work not completed, return budget and keep polling */
5890	if (!clean_complete)
5891		return budget;
5892
5893	/* If not enough Rx work done, exit the polling mode */
5894	napi_complete(napi);
5895	igb_ring_irq_enable(q_vector);
5896
5897	return 0;
5898}
5899
5900/**
5901 * igb_clean_tx_irq - Reclaim resources after transmit completes
5902 * @q_vector: pointer to q_vector containing needed info
5903 *
5904 * returns true if ring is completely cleaned
5905 **/
5906static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5907{
5908	struct igb_adapter *adapter = q_vector->adapter;
5909	struct igb_ring *tx_ring = q_vector->tx.ring;
5910	struct igb_tx_buffer *tx_buffer;
5911	union e1000_adv_tx_desc *tx_desc;
5912	unsigned int total_bytes = 0, total_packets = 0;
5913	unsigned int budget = q_vector->tx.work_limit;
5914	unsigned int i = tx_ring->next_to_clean;
5915
5916	if (test_bit(__IGB_DOWN, &adapter->state))
5917		return true;
5918
5919	tx_buffer = &tx_ring->tx_buffer_info[i];
5920	tx_desc = IGB_TX_DESC(tx_ring, i);
5921	i -= tx_ring->count;
5922
5923	do {
5924		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5925
5926		/* if next_to_watch is not set then there is no work pending */
5927		if (!eop_desc)
5928			break;
5929
5930		/* prevent any other reads prior to eop_desc */
5931		rmb();
5932
5933		/* if DD is not set pending work has not been completed */
5934		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5935			break;
5936
5937		/* clear next_to_watch to prevent false hangs */
5938		tx_buffer->next_to_watch = NULL;
5939
5940		/* update the statistics for this packet */
5941		total_bytes += tx_buffer->bytecount;
5942		total_packets += tx_buffer->gso_segs;
5943
5944		/* free the skb */
5945		dev_kfree_skb_any(tx_buffer->skb);
5946
5947		/* unmap skb header data */
5948		dma_unmap_single(tx_ring->dev,
5949				 dma_unmap_addr(tx_buffer, dma),
5950				 dma_unmap_len(tx_buffer, len),
5951				 DMA_TO_DEVICE);
5952
5953		/* clear tx_buffer data */
5954		tx_buffer->skb = NULL;
5955		dma_unmap_len_set(tx_buffer, len, 0);
5956
5957		/* clear last DMA location and unmap remaining buffers */
5958		while (tx_desc != eop_desc) {
5959			tx_buffer++;
5960			tx_desc++;
5961			i++;
5962			if (unlikely(!i)) {
5963				i -= tx_ring->count;
5964				tx_buffer = tx_ring->tx_buffer_info;
5965				tx_desc = IGB_TX_DESC(tx_ring, 0);
5966			}
5967
5968			/* unmap any remaining paged data */
5969			if (dma_unmap_len(tx_buffer, len)) {
5970				dma_unmap_page(tx_ring->dev,
5971					       dma_unmap_addr(tx_buffer, dma),
5972					       dma_unmap_len(tx_buffer, len),
5973					       DMA_TO_DEVICE);
5974				dma_unmap_len_set(tx_buffer, len, 0);
5975			}
5976		}
5977
5978		/* move us one more past the eop_desc for start of next pkt */
5979		tx_buffer++;
5980		tx_desc++;
5981		i++;
5982		if (unlikely(!i)) {
5983			i -= tx_ring->count;
5984			tx_buffer = tx_ring->tx_buffer_info;
5985			tx_desc = IGB_TX_DESC(tx_ring, 0);
5986		}
5987
5988		/* issue prefetch for next Tx descriptor */
5989		prefetch(tx_desc);
5990
5991		/* update budget accounting */
5992		budget--;
5993	} while (likely(budget));
5994
5995	netdev_tx_completed_queue(txring_txq(tx_ring),
5996				  total_packets, total_bytes);
5997	i += tx_ring->count;
5998	tx_ring->next_to_clean = i;
5999	u64_stats_update_begin(&tx_ring->tx_syncp);
6000	tx_ring->tx_stats.bytes += total_bytes;
6001	tx_ring->tx_stats.packets += total_packets;
6002	u64_stats_update_end(&tx_ring->tx_syncp);
6003	q_vector->tx.total_bytes += total_bytes;
6004	q_vector->tx.total_packets += total_packets;
6005
6006	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6007		struct e1000_hw *hw = &adapter->hw;
6008
6009		/* Detect a transmit hang in hardware, this serializes the
6010		 * check with the clearing of time_stamp and movement of i */
6011		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6012		if (tx_buffer->next_to_watch &&
6013		    time_after(jiffies, tx_buffer->time_stamp +
6014			       (adapter->tx_timeout_factor * HZ)) &&
6015		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6016
6017			/* detected Tx unit hang */
6018			dev_err(tx_ring->dev,
6019				"Detected Tx Unit Hang\n"
6020				"  Tx Queue             <%d>\n"
6021				"  TDH                  <%x>\n"
6022				"  TDT                  <%x>\n"
6023				"  next_to_use          <%x>\n"
6024				"  next_to_clean        <%x>\n"
6025				"buffer_info[next_to_clean]\n"
6026				"  time_stamp           <%lx>\n"
6027				"  next_to_watch        <%p>\n"
6028				"  jiffies              <%lx>\n"
6029				"  desc.status          <%x>\n",
6030				tx_ring->queue_index,
6031				rd32(E1000_TDH(tx_ring->reg_idx)),
6032				readl(tx_ring->tail),
6033				tx_ring->next_to_use,
6034				tx_ring->next_to_clean,
6035				tx_buffer->time_stamp,
6036				tx_buffer->next_to_watch,
6037				jiffies,
6038				tx_buffer->next_to_watch->wb.status);
6039			netif_stop_subqueue(tx_ring->netdev,
6040					    tx_ring->queue_index);
6041
6042			/* we are about to reset, no point in enabling stuff */
6043			return true;
6044		}
6045	}
6046
6047	if (unlikely(total_packets &&
6048		     netif_carrier_ok(tx_ring->netdev) &&
6049		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
6050		/* Make sure that anybody stopping the queue after this
6051		 * sees the new next_to_clean.
6052		 */
6053		smp_mb();
6054		if (__netif_subqueue_stopped(tx_ring->netdev,
6055					     tx_ring->queue_index) &&
6056		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6057			netif_wake_subqueue(tx_ring->netdev,
6058					    tx_ring->queue_index);
6059
6060			u64_stats_update_begin(&tx_ring->tx_syncp);
6061			tx_ring->tx_stats.restart_queue++;
6062			u64_stats_update_end(&tx_ring->tx_syncp);
6063		}
6064	}
6065
6066	return !!budget;
6067}
6068
6069/**
6070 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6071 * @rx_ring: rx descriptor ring to store buffers on
6072 * @old_buff: donor buffer to have page reused
6073 *
6074 * Synchronizes page for reuse by the adapter
6075 **/
6076static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6077			      struct igb_rx_buffer *old_buff)
6078{
6079	struct igb_rx_buffer *new_buff;
6080	u16 nta = rx_ring->next_to_alloc;
6081
6082	new_buff = &rx_ring->rx_buffer_info[nta];
6083
6084	/* update, and store next to alloc */
6085	nta++;
6086	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6087
6088	/* transfer page from old buffer to new buffer */
6089	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6090
6091	/* sync the buffer for use by the device */
6092	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6093					 old_buff->page_offset,
6094					 IGB_RX_BUFSZ,
6095					 DMA_FROM_DEVICE);
6096}
6097
6098/**
6099 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6100 * @rx_ring: rx descriptor ring to transact packets on
6101 * @rx_buffer: buffer containing page to add
6102 * @rx_desc: descriptor containing length of buffer written by hardware
6103 * @skb: sk_buff to place the data into
6104 *
6105 * This function will add the data contained in rx_buffer->page to the skb.
6106 * This is done either through a direct copy if the data in the buffer is
6107 * less than the skb header size, otherwise it will just attach the page as
6108 * a frag to the skb.
6109 *
6110 * The function will then update the page offset if necessary and return
6111 * true if the buffer can be reused by the adapter.
6112 **/
6113static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6114			    struct igb_rx_buffer *rx_buffer,
6115			    union e1000_adv_rx_desc *rx_desc,
6116			    struct sk_buff *skb)
6117{
6118	struct page *page = rx_buffer->page;
6119	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6120
6121	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6122		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6123
6124		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6125			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6126			va += IGB_TS_HDR_LEN;
6127			size -= IGB_TS_HDR_LEN;
6128		}
6129
6130		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6131
6132		/* we can reuse buffer as-is, just make sure it is local */
6133		if (likely(page_to_nid(page) == numa_node_id()))
6134			return true;
6135
6136		/* this page cannot be reused so discard it */
6137		put_page(page);
6138		return false;
6139	}
6140
6141	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6142			rx_buffer->page_offset, size, IGB_RX_BUFSZ);
6143
6144	/* avoid re-using remote pages */
6145	if (unlikely(page_to_nid(page) != numa_node_id()))
6146		return false;
6147
6148#if (PAGE_SIZE < 8192)
6149	/* if we are only owner of page we can reuse it */
6150	if (unlikely(page_count(page) != 1))
6151		return false;
6152
6153	/* flip page offset to other buffer */
6154	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6155
6156	/*
6157	 * since we are the only owner of the page and we need to
6158	 * increment it, just set the value to 2 in order to avoid
6159	 * an unnecessary locked operation
6160	 */
6161	atomic_set(&page->_count, 2);
6162#else
6163	/* move offset up to the next cache line */
6164	rx_buffer->page_offset += SKB_DATA_ALIGN(size);
6165
6166	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6167		return false;
6168
6169	/* bump ref count on page before it is given to the stack */
6170	get_page(page);
6171#endif
6172
6173	return true;
6174}
6175
6176static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6177					   union e1000_adv_rx_desc *rx_desc,
6178					   struct sk_buff *skb)
6179{
6180	struct igb_rx_buffer *rx_buffer;
6181	struct page *page;
6182
6183	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6184
6185	/*
6186	 * This memory barrier is needed to keep us from reading
6187	 * any other fields out of the rx_desc until we know the
6188	 * RXD_STAT_DD bit is set
6189	 */
6190	rmb();
6191
6192	page = rx_buffer->page;
6193	prefetchw(page);
6194
6195	if (likely(!skb)) {
6196		void *page_addr = page_address(page) +
6197				  rx_buffer->page_offset;
6198
6199		/* prefetch first cache line of first page */
6200		prefetch(page_addr);
6201#if L1_CACHE_BYTES < 128
6202		prefetch(page_addr + L1_CACHE_BYTES);
6203#endif
6204
6205		/* allocate a skb to store the frags */
6206		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6207						IGB_RX_HDR_LEN);
6208		if (unlikely(!skb)) {
6209			rx_ring->rx_stats.alloc_failed++;
6210			return NULL;
6211		}
6212
6213		/*
6214		 * we will be copying header into skb->data in
6215		 * pskb_may_pull so it is in our interest to prefetch
6216		 * it now to avoid a possible cache miss
6217		 */
6218		prefetchw(skb->data);
6219	}
6220
6221	/* we are reusing so sync this buffer for CPU use */
6222	dma_sync_single_range_for_cpu(rx_ring->dev,
6223				      rx_buffer->dma,
6224				      rx_buffer->page_offset,
6225				      IGB_RX_BUFSZ,
6226				      DMA_FROM_DEVICE);
6227
6228	/* pull page into skb */
6229	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6230		/* hand second half of page back to the ring */
6231		igb_reuse_rx_page(rx_ring, rx_buffer);
6232	} else {
6233		/* we are not reusing the buffer so unmap it */
6234		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6235			       PAGE_SIZE, DMA_FROM_DEVICE);
6236	}
6237
6238	/* clear contents of rx_buffer */
6239	rx_buffer->page = NULL;
6240
6241	return skb;
6242}
6243
6244static inline void igb_rx_checksum(struct igb_ring *ring,
6245				   union e1000_adv_rx_desc *rx_desc,
6246				   struct sk_buff *skb)
6247{
6248	skb_checksum_none_assert(skb);
6249
6250	/* Ignore Checksum bit is set */
6251	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6252		return;
6253
6254	/* Rx checksum disabled via ethtool */
6255	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6256		return;
6257
6258	/* TCP/UDP checksum error bit is set */
6259	if (igb_test_staterr(rx_desc,
6260			     E1000_RXDEXT_STATERR_TCPE |
6261			     E1000_RXDEXT_STATERR_IPE)) {
6262		/*
6263		 * work around errata with sctp packets where the TCPE aka
6264		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6265		 * packets, (aka let the stack check the crc32c)
6266		 */
6267		if (!((skb->len == 60) &&
6268		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6269			u64_stats_update_begin(&ring->rx_syncp);
6270			ring->rx_stats.csum_err++;
6271			u64_stats_update_end(&ring->rx_syncp);
6272		}
6273		/* let the stack verify checksum errors */
6274		return;
6275	}
6276	/* It must be a TCP or UDP packet with a valid checksum */
6277	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6278				      E1000_RXD_STAT_UDPCS))
6279		skb->ip_summed = CHECKSUM_UNNECESSARY;
6280
6281	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6282		le32_to_cpu(rx_desc->wb.upper.status_error));
6283}
6284
6285static inline void igb_rx_hash(struct igb_ring *ring,
6286			       union e1000_adv_rx_desc *rx_desc,
6287			       struct sk_buff *skb)
6288{
6289	if (ring->netdev->features & NETIF_F_RXHASH)
6290		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6291}
6292
6293/**
6294 * igb_is_non_eop - process handling of non-EOP buffers
6295 * @rx_ring: Rx ring being processed
6296 * @rx_desc: Rx descriptor for current buffer
6297 * @skb: current socket buffer containing buffer in progress
6298 *
6299 * This function updates next to clean.  If the buffer is an EOP buffer
6300 * this function exits returning false, otherwise it will place the
6301 * sk_buff in the next buffer to be chained and return true indicating
6302 * that this is in fact a non-EOP buffer.
6303 **/
6304static bool igb_is_non_eop(struct igb_ring *rx_ring,
6305			   union e1000_adv_rx_desc *rx_desc)
6306{
6307	u32 ntc = rx_ring->next_to_clean + 1;
6308
6309	/* fetch, update, and store next to clean */
6310	ntc = (ntc < rx_ring->count) ? ntc : 0;
6311	rx_ring->next_to_clean = ntc;
6312
6313	prefetch(IGB_RX_DESC(rx_ring, ntc));
6314
6315	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6316		return false;
6317
6318	return true;
6319}
6320
6321/**
6322 * igb_get_headlen - determine size of header for LRO/GRO
6323 * @data: pointer to the start of the headers
6324 * @max_len: total length of section to find headers in
6325 *
6326 * This function is meant to determine the length of headers that will
6327 * be recognized by hardware for LRO, and GRO offloads.  The main
6328 * motivation of doing this is to only perform one pull for IPv4 TCP
6329 * packets so that we can do basic things like calculating the gso_size
6330 * based on the average data per packet.
6331 **/
6332static unsigned int igb_get_headlen(unsigned char *data,
6333				    unsigned int max_len)
6334{
6335	union {
6336		unsigned char *network;
6337		/* l2 headers */
6338		struct ethhdr *eth;
6339		struct vlan_hdr *vlan;
6340		/* l3 headers */
6341		struct iphdr *ipv4;
6342		struct ipv6hdr *ipv6;
6343	} hdr;
6344	__be16 protocol;
6345	u8 nexthdr = 0;	/* default to not TCP */
6346	u8 hlen;
6347
6348	/* this should never happen, but better safe than sorry */
6349	if (max_len < ETH_HLEN)
6350		return max_len;
6351
6352	/* initialize network frame pointer */
6353	hdr.network = data;
6354
6355	/* set first protocol and move network header forward */
6356	protocol = hdr.eth->h_proto;
6357	hdr.network += ETH_HLEN;
6358
6359	/* handle any vlan tag if present */
6360	if (protocol == __constant_htons(ETH_P_8021Q)) {
6361		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6362			return max_len;
6363
6364		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6365		hdr.network += VLAN_HLEN;
6366	}
6367
6368	/* handle L3 protocols */
6369	if (protocol == __constant_htons(ETH_P_IP)) {
6370		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6371			return max_len;
6372
6373		/* access ihl as a u8 to avoid unaligned access on ia64 */
6374		hlen = (hdr.network[0] & 0x0F) << 2;
6375
6376		/* verify hlen meets minimum size requirements */
6377		if (hlen < sizeof(struct iphdr))
6378			return hdr.network - data;
6379
6380		/* record next protocol if header is present */
6381		if (!hdr.ipv4->frag_off)
6382			nexthdr = hdr.ipv4->protocol;
6383	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
6384		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6385			return max_len;
6386
6387		/* record next protocol */
6388		nexthdr = hdr.ipv6->nexthdr;
6389		hlen = sizeof(struct ipv6hdr);
6390	} else {
6391		return hdr.network - data;
6392	}
6393
6394	/* relocate pointer to start of L4 header */
6395	hdr.network += hlen;
6396
6397	/* finally sort out TCP */
6398	if (nexthdr == IPPROTO_TCP) {
6399		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6400			return max_len;
6401
6402		/* access doff as a u8 to avoid unaligned access on ia64 */
6403		hlen = (hdr.network[12] & 0xF0) >> 2;
6404
6405		/* verify hlen meets minimum size requirements */
6406		if (hlen < sizeof(struct tcphdr))
6407			return hdr.network - data;
6408
6409		hdr.network += hlen;
6410	} else if (nexthdr == IPPROTO_UDP) {
6411		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6412			return max_len;
6413
6414		hdr.network += sizeof(struct udphdr);
6415	}
6416
6417	/*
6418	 * If everything has gone correctly hdr.network should be the
6419	 * data section of the packet and will be the end of the header.
6420	 * If not then it probably represents the end of the last recognized
6421	 * header.
6422	 */
6423	if ((hdr.network - data) < max_len)
6424		return hdr.network - data;
6425	else
6426		return max_len;
6427}
6428
6429/**
6430 * igb_pull_tail - igb specific version of skb_pull_tail
6431 * @rx_ring: rx descriptor ring packet is being transacted on
6432 * @rx_desc: pointer to the EOP Rx descriptor
6433 * @skb: pointer to current skb being adjusted
6434 *
6435 * This function is an igb specific version of __pskb_pull_tail.  The
6436 * main difference between this version and the original function is that
6437 * this function can make several assumptions about the state of things
6438 * that allow for significant optimizations versus the standard function.
6439 * As a result we can do things like drop a frag and maintain an accurate
6440 * truesize for the skb.
6441 */
6442static void igb_pull_tail(struct igb_ring *rx_ring,
6443			  union e1000_adv_rx_desc *rx_desc,
6444			  struct sk_buff *skb)
6445{
6446	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6447	unsigned char *va;
6448	unsigned int pull_len;
6449
6450	/*
6451	 * it is valid to use page_address instead of kmap since we are
6452	 * working with pages allocated out of the lomem pool per
6453	 * alloc_page(GFP_ATOMIC)
6454	 */
6455	va = skb_frag_address(frag);
6456
6457	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6458		/* retrieve timestamp from buffer */
6459		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6460
6461		/* update pointers to remove timestamp header */
6462		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6463		frag->page_offset += IGB_TS_HDR_LEN;
6464		skb->data_len -= IGB_TS_HDR_LEN;
6465		skb->len -= IGB_TS_HDR_LEN;
6466
6467		/* move va to start of packet data */
6468		va += IGB_TS_HDR_LEN;
6469	}
6470
6471	/*
6472	 * we need the header to contain the greater of either ETH_HLEN or
6473	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6474	 */
6475	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6476
6477	/* align pull length to size of long to optimize memcpy performance */
6478	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6479
6480	/* update all of the pointers */
6481	skb_frag_size_sub(frag, pull_len);
6482	frag->page_offset += pull_len;
6483	skb->data_len -= pull_len;
6484	skb->tail += pull_len;
6485}
6486
6487/**
6488 * igb_cleanup_headers - Correct corrupted or empty headers
6489 * @rx_ring: rx descriptor ring packet is being transacted on
6490 * @rx_desc: pointer to the EOP Rx descriptor
6491 * @skb: pointer to current skb being fixed
6492 *
6493 * Address the case where we are pulling data in on pages only
6494 * and as such no data is present in the skb header.
6495 *
6496 * In addition if skb is not at least 60 bytes we need to pad it so that
6497 * it is large enough to qualify as a valid Ethernet frame.
6498 *
6499 * Returns true if an error was encountered and skb was freed.
6500 **/
6501static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6502				union e1000_adv_rx_desc *rx_desc,
6503				struct sk_buff *skb)
6504{
6505
6506	if (unlikely((igb_test_staterr(rx_desc,
6507				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6508		struct net_device *netdev = rx_ring->netdev;
6509		if (!(netdev->features & NETIF_F_RXALL)) {
6510			dev_kfree_skb_any(skb);
6511			return true;
6512		}
6513	}
6514
6515	/* place header in linear portion of buffer */
6516	if (skb_is_nonlinear(skb))
6517		igb_pull_tail(rx_ring, rx_desc, skb);
6518
6519	/* if skb_pad returns an error the skb was freed */
6520	if (unlikely(skb->len < 60)) {
6521		int pad_len = 60 - skb->len;
6522
6523		if (skb_pad(skb, pad_len))
6524			return true;
6525		__skb_put(skb, pad_len);
6526	}
6527
6528	return false;
6529}
6530
6531/**
6532 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6533 * @rx_ring: rx descriptor ring packet is being transacted on
6534 * @rx_desc: pointer to the EOP Rx descriptor
6535 * @skb: pointer to current skb being populated
6536 *
6537 * This function checks the ring, descriptor, and packet information in
6538 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6539 * other fields within the skb.
6540 **/
6541static void igb_process_skb_fields(struct igb_ring *rx_ring,
6542				   union e1000_adv_rx_desc *rx_desc,
6543				   struct sk_buff *skb)
6544{
6545	struct net_device *dev = rx_ring->netdev;
6546
6547	igb_rx_hash(rx_ring, rx_desc, skb);
6548
6549	igb_rx_checksum(rx_ring, rx_desc, skb);
6550
6551	igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);
6552
6553	if ((dev->features & NETIF_F_HW_VLAN_RX) &&
6554	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6555		u16 vid;
6556		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6557		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6558			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6559		else
6560			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6561
6562		__vlan_hwaccel_put_tag(skb, vid);
6563	}
6564
6565	skb_record_rx_queue(skb, rx_ring->queue_index);
6566
6567	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6568}
6569
6570static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6571{
6572	struct igb_ring *rx_ring = q_vector->rx.ring;
6573	struct sk_buff *skb = rx_ring->skb;
6574	unsigned int total_bytes = 0, total_packets = 0;
6575	u16 cleaned_count = igb_desc_unused(rx_ring);
6576
6577	do {
6578		union e1000_adv_rx_desc *rx_desc;
6579
6580		/* return some buffers to hardware, one at a time is too slow */
6581		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6582			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6583			cleaned_count = 0;
6584		}
6585
6586		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6587
6588		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6589			break;
6590
6591		/* retrieve a buffer from the ring */
6592		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6593
6594		/* exit if we failed to retrieve a buffer */
6595		if (!skb)
6596			break;
6597
6598		cleaned_count++;
6599
6600		/* fetch next buffer in frame if non-eop */
6601		if (igb_is_non_eop(rx_ring, rx_desc))
6602			continue;
6603
6604		/* verify the packet layout is correct */
6605		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6606			skb = NULL;
6607			continue;
6608		}
6609
6610		/* probably a little skewed due to removing CRC */
6611		total_bytes += skb->len;
6612
6613		/* populate checksum, timestamp, VLAN, and protocol */
6614		igb_process_skb_fields(rx_ring, rx_desc, skb);
6615
6616		napi_gro_receive(&q_vector->napi, skb);
6617
6618		/* reset skb pointer */
6619		skb = NULL;
6620
6621		/* update budget accounting */
6622		total_packets++;
6623	} while (likely(total_packets < budget));
6624
6625	/* place incomplete frames back on ring for completion */
6626	rx_ring->skb = skb;
6627
6628	u64_stats_update_begin(&rx_ring->rx_syncp);
6629	rx_ring->rx_stats.packets += total_packets;
6630	rx_ring->rx_stats.bytes += total_bytes;
6631	u64_stats_update_end(&rx_ring->rx_syncp);
6632	q_vector->rx.total_packets += total_packets;
6633	q_vector->rx.total_bytes += total_bytes;
6634
6635	if (cleaned_count)
6636		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6637
6638	return (total_packets < budget);
6639}
6640
6641static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6642				  struct igb_rx_buffer *bi)
6643{
6644	struct page *page = bi->page;
6645	dma_addr_t dma;
6646
6647	/* since we are recycling buffers we should seldom need to alloc */
6648	if (likely(page))
6649		return true;
6650
6651	/* alloc new page for storage */
6652	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6653	if (unlikely(!page)) {
6654		rx_ring->rx_stats.alloc_failed++;
6655		return false;
6656	}
6657
6658	/* map page for use */
6659	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6660
6661	/*
6662	 * if mapping failed free memory back to system since
6663	 * there isn't much point in holding memory we can't use
6664	 */
6665	if (dma_mapping_error(rx_ring->dev, dma)) {
6666		__free_page(page);
6667
6668		rx_ring->rx_stats.alloc_failed++;
6669		return false;
6670	}
6671
6672	bi->dma = dma;
6673	bi->page = page;
6674	bi->page_offset = 0;
6675
6676	return true;
6677}
6678
6679/**
6680 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6681 * @adapter: address of board private structure
6682 **/
6683void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6684{
6685	union e1000_adv_rx_desc *rx_desc;
6686	struct igb_rx_buffer *bi;
6687	u16 i = rx_ring->next_to_use;
6688
6689	/* nothing to do */
6690	if (!cleaned_count)
6691		return;
6692
6693	rx_desc = IGB_RX_DESC(rx_ring, i);
6694	bi = &rx_ring->rx_buffer_info[i];
6695	i -= rx_ring->count;
6696
6697	do {
6698		if (!igb_alloc_mapped_page(rx_ring, bi))
6699			break;
6700
6701		/*
6702		 * Refresh the desc even if buffer_addrs didn't change
6703		 * because each write-back erases this info.
6704		 */
6705		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6706
6707		rx_desc++;
6708		bi++;
6709		i++;
6710		if (unlikely(!i)) {
6711			rx_desc = IGB_RX_DESC(rx_ring, 0);
6712			bi = rx_ring->rx_buffer_info;
6713			i -= rx_ring->count;
6714		}
6715
6716		/* clear the hdr_addr for the next_to_use descriptor */
6717		rx_desc->read.hdr_addr = 0;
6718
6719		cleaned_count--;
6720	} while (cleaned_count);
6721
6722	i += rx_ring->count;
6723
6724	if (rx_ring->next_to_use != i) {
6725		/* record the next descriptor to use */
6726		rx_ring->next_to_use = i;
6727
6728		/* update next to alloc since we have filled the ring */
6729		rx_ring->next_to_alloc = i;
6730
6731		/*
6732		 * Force memory writes to complete before letting h/w
6733		 * know there are new descriptors to fetch.  (Only
6734		 * applicable for weak-ordered memory model archs,
6735		 * such as IA-64).
6736		 */
6737		wmb();
6738		writel(i, rx_ring->tail);
6739	}
6740}
6741
6742/**
6743 * igb_mii_ioctl -
6744 * @netdev:
6745 * @ifreq:
6746 * @cmd:
6747 **/
6748static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6749{
6750	struct igb_adapter *adapter = netdev_priv(netdev);
6751	struct mii_ioctl_data *data = if_mii(ifr);
6752
6753	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6754		return -EOPNOTSUPP;
6755
6756	switch (cmd) {
6757	case SIOCGMIIPHY:
6758		data->phy_id = adapter->hw.phy.addr;
6759		break;
6760	case SIOCGMIIREG:
6761		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6762		                     &data->val_out))
6763			return -EIO;
6764		break;
6765	case SIOCSMIIREG:
6766	default:
6767		return -EOPNOTSUPP;
6768	}
6769	return 0;
6770}
6771
6772/**
6773 * igb_ioctl -
6774 * @netdev:
6775 * @ifreq:
6776 * @cmd:
6777 **/
6778static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6779{
6780	switch (cmd) {
6781	case SIOCGMIIPHY:
6782	case SIOCGMIIREG:
6783	case SIOCSMIIREG:
6784		return igb_mii_ioctl(netdev, ifr, cmd);
6785	case SIOCSHWTSTAMP:
6786		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6787	default:
6788		return -EOPNOTSUPP;
6789	}
6790}
6791
6792s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6793{
6794	struct igb_adapter *adapter = hw->back;
6795
6796	if (pcie_capability_read_word(adapter->pdev, reg, value))
6797		return -E1000_ERR_CONFIG;
6798
6799	return 0;
6800}
6801
6802s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6803{
6804	struct igb_adapter *adapter = hw->back;
6805
6806	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6807		return -E1000_ERR_CONFIG;
6808
6809	return 0;
6810}
6811
6812static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6813{
6814	struct igb_adapter *adapter = netdev_priv(netdev);
6815	struct e1000_hw *hw = &adapter->hw;
6816	u32 ctrl, rctl;
6817	bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6818
6819	if (enable) {
6820		/* enable VLAN tag insert/strip */
6821		ctrl = rd32(E1000_CTRL);
6822		ctrl |= E1000_CTRL_VME;
6823		wr32(E1000_CTRL, ctrl);
6824
6825		/* Disable CFI check */
6826		rctl = rd32(E1000_RCTL);
6827		rctl &= ~E1000_RCTL_CFIEN;
6828		wr32(E1000_RCTL, rctl);
6829	} else {
6830		/* disable VLAN tag insert/strip */
6831		ctrl = rd32(E1000_CTRL);
6832		ctrl &= ~E1000_CTRL_VME;
6833		wr32(E1000_CTRL, ctrl);
6834	}
6835
6836	igb_rlpml_set(adapter);
6837}
6838
6839static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6840{
6841	struct igb_adapter *adapter = netdev_priv(netdev);
6842	struct e1000_hw *hw = &adapter->hw;
6843	int pf_id = adapter->vfs_allocated_count;
6844
6845	/* attempt to add filter to vlvf array */
6846	igb_vlvf_set(adapter, vid, true, pf_id);
6847
6848	/* add the filter since PF can receive vlans w/o entry in vlvf */
6849	igb_vfta_set(hw, vid, true);
6850
6851	set_bit(vid, adapter->active_vlans);
6852
6853	return 0;
6854}
6855
6856static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6857{
6858	struct igb_adapter *adapter = netdev_priv(netdev);
6859	struct e1000_hw *hw = &adapter->hw;
6860	int pf_id = adapter->vfs_allocated_count;
6861	s32 err;
6862
6863	/* remove vlan from VLVF table array */
6864	err = igb_vlvf_set(adapter, vid, false, pf_id);
6865
6866	/* if vid was not present in VLVF just remove it from table */
6867	if (err)
6868		igb_vfta_set(hw, vid, false);
6869
6870	clear_bit(vid, adapter->active_vlans);
6871
6872	return 0;
6873}
6874
6875static void igb_restore_vlan(struct igb_adapter *adapter)
6876{
6877	u16 vid;
6878
6879	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6880
6881	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6882		igb_vlan_rx_add_vid(adapter->netdev, vid);
6883}
6884
6885int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6886{
6887	struct pci_dev *pdev = adapter->pdev;
6888	struct e1000_mac_info *mac = &adapter->hw.mac;
6889
6890	mac->autoneg = 0;
6891
6892	/* Make sure dplx is at most 1 bit and lsb of speed is not set
6893	 * for the switch() below to work */
6894	if ((spd & 1) || (dplx & ~1))
6895		goto err_inval;
6896
6897	/* Fiber NIC's only allow 1000 Gbps Full duplex */
6898	if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6899	    spd != SPEED_1000 &&
6900	    dplx != DUPLEX_FULL)
6901		goto err_inval;
6902
6903	switch (spd + dplx) {
6904	case SPEED_10 + DUPLEX_HALF:
6905		mac->forced_speed_duplex = ADVERTISE_10_HALF;
6906		break;
6907	case SPEED_10 + DUPLEX_FULL:
6908		mac->forced_speed_duplex = ADVERTISE_10_FULL;
6909		break;
6910	case SPEED_100 + DUPLEX_HALF:
6911		mac->forced_speed_duplex = ADVERTISE_100_HALF;
6912		break;
6913	case SPEED_100 + DUPLEX_FULL:
6914		mac->forced_speed_duplex = ADVERTISE_100_FULL;
6915		break;
6916	case SPEED_1000 + DUPLEX_FULL:
6917		mac->autoneg = 1;
6918		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6919		break;
6920	case SPEED_1000 + DUPLEX_HALF: /* not supported */
6921	default:
6922		goto err_inval;
6923	}
6924
6925	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
6926	adapter->hw.phy.mdix = AUTO_ALL_MODES;
6927
6928	return 0;
6929
6930err_inval:
6931	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6932	return -EINVAL;
6933}
6934
6935static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
6936			  bool runtime)
6937{
6938	struct net_device *netdev = pci_get_drvdata(pdev);
6939	struct igb_adapter *adapter = netdev_priv(netdev);
6940	struct e1000_hw *hw = &adapter->hw;
6941	u32 ctrl, rctl, status;
6942	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6943#ifdef CONFIG_PM
6944	int retval = 0;
6945#endif
6946
6947	netif_device_detach(netdev);
6948
6949	if (netif_running(netdev))
6950		__igb_close(netdev, true);
6951
6952	igb_clear_interrupt_scheme(adapter);
6953
6954#ifdef CONFIG_PM
6955	retval = pci_save_state(pdev);
6956	if (retval)
6957		return retval;
6958#endif
6959
6960	status = rd32(E1000_STATUS);
6961	if (status & E1000_STATUS_LU)
6962		wufc &= ~E1000_WUFC_LNKC;
6963
6964	if (wufc) {
6965		igb_setup_rctl(adapter);
6966		igb_set_rx_mode(netdev);
6967
6968		/* turn on all-multi mode if wake on multicast is enabled */
6969		if (wufc & E1000_WUFC_MC) {
6970			rctl = rd32(E1000_RCTL);
6971			rctl |= E1000_RCTL_MPE;
6972			wr32(E1000_RCTL, rctl);
6973		}
6974
6975		ctrl = rd32(E1000_CTRL);
6976		/* advertise wake from D3Cold */
6977		#define E1000_CTRL_ADVD3WUC 0x00100000
6978		/* phy power management enable */
6979		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6980		ctrl |= E1000_CTRL_ADVD3WUC;
6981		wr32(E1000_CTRL, ctrl);
6982
6983		/* Allow time for pending master requests to run */
6984		igb_disable_pcie_master(hw);
6985
6986		wr32(E1000_WUC, E1000_WUC_PME_EN);
6987		wr32(E1000_WUFC, wufc);
6988	} else {
6989		wr32(E1000_WUC, 0);
6990		wr32(E1000_WUFC, 0);
6991	}
6992
6993	*enable_wake = wufc || adapter->en_mng_pt;
6994	if (!*enable_wake)
6995		igb_power_down_link(adapter);
6996	else
6997		igb_power_up_link(adapter);
6998
6999	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7000	 * would have already happened in close and is redundant. */
7001	igb_release_hw_control(adapter);
7002
7003	pci_disable_device(pdev);
7004
7005	return 0;
7006}
7007
7008#ifdef CONFIG_PM
7009#ifdef CONFIG_PM_SLEEP
7010static int igb_suspend(struct device *dev)
7011{
7012	int retval;
7013	bool wake;
7014	struct pci_dev *pdev = to_pci_dev(dev);
7015
7016	retval = __igb_shutdown(pdev, &wake, 0);
7017	if (retval)
7018		return retval;
7019
7020	if (wake) {
7021		pci_prepare_to_sleep(pdev);
7022	} else {
7023		pci_wake_from_d3(pdev, false);
7024		pci_set_power_state(pdev, PCI_D3hot);
7025	}
7026
7027	return 0;
7028}
7029#endif /* CONFIG_PM_SLEEP */
7030
7031static int igb_resume(struct device *dev)
7032{
7033	struct pci_dev *pdev = to_pci_dev(dev);
7034	struct net_device *netdev = pci_get_drvdata(pdev);
7035	struct igb_adapter *adapter = netdev_priv(netdev);
7036	struct e1000_hw *hw = &adapter->hw;
7037	u32 err;
7038
7039	pci_set_power_state(pdev, PCI_D0);
7040	pci_restore_state(pdev);
7041	pci_save_state(pdev);
7042
7043	err = pci_enable_device_mem(pdev);
7044	if (err) {
7045		dev_err(&pdev->dev,
7046			"igb: Cannot enable PCI device from suspend\n");
7047		return err;
7048	}
7049	pci_set_master(pdev);
7050
7051	pci_enable_wake(pdev, PCI_D3hot, 0);
7052	pci_enable_wake(pdev, PCI_D3cold, 0);
7053
7054	if (igb_init_interrupt_scheme(adapter, true)) {
7055		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7056		return -ENOMEM;
7057	}
7058
7059	igb_reset(adapter);
7060
7061	/* let the f/w know that the h/w is now under the control of the
7062	 * driver. */
7063	igb_get_hw_control(adapter);
7064
7065	wr32(E1000_WUS, ~0);
7066
7067	if (netdev->flags & IFF_UP) {
7068		rtnl_lock();
7069		err = __igb_open(netdev, true);
7070		rtnl_unlock();
7071		if (err)
7072			return err;
7073	}
7074
7075	netif_device_attach(netdev);
7076	return 0;
7077}
7078
7079#ifdef CONFIG_PM_RUNTIME
7080static int igb_runtime_idle(struct device *dev)
7081{
7082	struct pci_dev *pdev = to_pci_dev(dev);
7083	struct net_device *netdev = pci_get_drvdata(pdev);
7084	struct igb_adapter *adapter = netdev_priv(netdev);
7085
7086	if (!igb_has_link(adapter))
7087		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7088
7089	return -EBUSY;
7090}
7091
7092static int igb_runtime_suspend(struct device *dev)
7093{
7094	struct pci_dev *pdev = to_pci_dev(dev);
7095	int retval;
7096	bool wake;
7097
7098	retval = __igb_shutdown(pdev, &wake, 1);
7099	if (retval)
7100		return retval;
7101
7102	if (wake) {
7103		pci_prepare_to_sleep(pdev);
7104	} else {
7105		pci_wake_from_d3(pdev, false);
7106		pci_set_power_state(pdev, PCI_D3hot);
7107	}
7108
7109	return 0;
7110}
7111
7112static int igb_runtime_resume(struct device *dev)
7113{
7114	return igb_resume(dev);
7115}
7116#endif /* CONFIG_PM_RUNTIME */
7117#endif
7118
7119static void igb_shutdown(struct pci_dev *pdev)
7120{
7121	bool wake;
7122
7123	__igb_shutdown(pdev, &wake, 0);
7124
7125	if (system_state == SYSTEM_POWER_OFF) {
7126		pci_wake_from_d3(pdev, wake);
7127		pci_set_power_state(pdev, PCI_D3hot);
7128	}
7129}
7130
7131#ifdef CONFIG_PCI_IOV
7132static int igb_sriov_reinit(struct pci_dev *dev)
7133{
7134	struct net_device *netdev = pci_get_drvdata(dev);
7135	struct igb_adapter *adapter = netdev_priv(netdev);
7136	struct pci_dev *pdev = adapter->pdev;
7137
7138	rtnl_lock();
7139
7140	if (netif_running(netdev))
7141		igb_close(netdev);
7142
7143	igb_clear_interrupt_scheme(adapter);
7144
7145	igb_init_queue_configuration(adapter);
7146
7147	if (igb_init_interrupt_scheme(adapter, true)) {
7148		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7149		return -ENOMEM;
7150	}
7151
7152	if (netif_running(netdev))
7153		igb_open(netdev);
7154
7155	rtnl_unlock();
7156
7157	return 0;
7158}
7159
7160static int igb_pci_disable_sriov(struct pci_dev *dev)
7161{
7162	int err = igb_disable_sriov(dev);
7163
7164	if (!err)
7165		err = igb_sriov_reinit(dev);
7166
7167	return err;
7168}
7169
7170static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7171{
7172	int err = igb_enable_sriov(dev, num_vfs);
7173
7174	if (err)
7175		goto out;
7176
7177	err = igb_sriov_reinit(dev);
7178	if (!err)
7179		return num_vfs;
7180
7181out:
7182	return err;
7183}
7184
7185#endif
7186static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7187{
7188#ifdef CONFIG_PCI_IOV
7189	if (num_vfs == 0)
7190		return igb_pci_disable_sriov(dev);
7191	else
7192		return igb_pci_enable_sriov(dev, num_vfs);
7193#endif
7194	return 0;
7195}
7196
7197#ifdef CONFIG_NET_POLL_CONTROLLER
7198/*
7199 * Polling 'interrupt' - used by things like netconsole to send skbs
7200 * without having to re-enable interrupts. It's not called while
7201 * the interrupt routine is executing.
7202 */
7203static void igb_netpoll(struct net_device *netdev)
7204{
7205	struct igb_adapter *adapter = netdev_priv(netdev);
7206	struct e1000_hw *hw = &adapter->hw;
7207	struct igb_q_vector *q_vector;
7208	int i;
7209
7210	for (i = 0; i < adapter->num_q_vectors; i++) {
7211		q_vector = adapter->q_vector[i];
7212		if (adapter->msix_entries)
7213			wr32(E1000_EIMC, q_vector->eims_value);
7214		else
7215			igb_irq_disable(adapter);
7216		napi_schedule(&q_vector->napi);
7217	}
7218}
7219#endif /* CONFIG_NET_POLL_CONTROLLER */
7220
7221/**
7222 * igb_io_error_detected - called when PCI error is detected
7223 * @pdev: Pointer to PCI device
7224 * @state: The current pci connection state
7225 *
7226 * This function is called after a PCI bus error affecting
7227 * this device has been detected.
7228 */
7229static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7230					      pci_channel_state_t state)
7231{
7232	struct net_device *netdev = pci_get_drvdata(pdev);
7233	struct igb_adapter *adapter = netdev_priv(netdev);
7234
7235	netif_device_detach(netdev);
7236
7237	if (state == pci_channel_io_perm_failure)
7238		return PCI_ERS_RESULT_DISCONNECT;
7239
7240	if (netif_running(netdev))
7241		igb_down(adapter);
7242	pci_disable_device(pdev);
7243
7244	/* Request a slot slot reset. */
7245	return PCI_ERS_RESULT_NEED_RESET;
7246}
7247
7248/**
7249 * igb_io_slot_reset - called after the pci bus has been reset.
7250 * @pdev: Pointer to PCI device
7251 *
7252 * Restart the card from scratch, as if from a cold-boot. Implementation
7253 * resembles the first-half of the igb_resume routine.
7254 */
7255static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7256{
7257	struct net_device *netdev = pci_get_drvdata(pdev);
7258	struct igb_adapter *adapter = netdev_priv(netdev);
7259	struct e1000_hw *hw = &adapter->hw;
7260	pci_ers_result_t result;
7261	int err;
7262
7263	if (pci_enable_device_mem(pdev)) {
7264		dev_err(&pdev->dev,
7265			"Cannot re-enable PCI device after reset.\n");
7266		result = PCI_ERS_RESULT_DISCONNECT;
7267	} else {
7268		pci_set_master(pdev);
7269		pci_restore_state(pdev);
7270		pci_save_state(pdev);
7271
7272		pci_enable_wake(pdev, PCI_D3hot, 0);
7273		pci_enable_wake(pdev, PCI_D3cold, 0);
7274
7275		igb_reset(adapter);
7276		wr32(E1000_WUS, ~0);
7277		result = PCI_ERS_RESULT_RECOVERED;
7278	}
7279
7280	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7281	if (err) {
7282		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
7283		        "failed 0x%0x\n", err);
7284		/* non-fatal, continue */
7285	}
7286
7287	return result;
7288}
7289
7290/**
7291 * igb_io_resume - called when traffic can start flowing again.
7292 * @pdev: Pointer to PCI device
7293 *
7294 * This callback is called when the error recovery driver tells us that
7295 * its OK to resume normal operation. Implementation resembles the
7296 * second-half of the igb_resume routine.
7297 */
7298static void igb_io_resume(struct pci_dev *pdev)
7299{
7300	struct net_device *netdev = pci_get_drvdata(pdev);
7301	struct igb_adapter *adapter = netdev_priv(netdev);
7302
7303	if (netif_running(netdev)) {
7304		if (igb_up(adapter)) {
7305			dev_err(&pdev->dev, "igb_up failed after reset\n");
7306			return;
7307		}
7308	}
7309
7310	netif_device_attach(netdev);
7311
7312	/* let the f/w know that the h/w is now under the control of the
7313	 * driver. */
7314	igb_get_hw_control(adapter);
7315}
7316
7317static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7318                             u8 qsel)
7319{
7320	u32 rar_low, rar_high;
7321	struct e1000_hw *hw = &adapter->hw;
7322
7323	/* HW expects these in little endian so we reverse the byte order
7324	 * from network order (big endian) to little endian
7325	 */
7326	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7327	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7328	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7329
7330	/* Indicate to hardware the Address is Valid. */
7331	rar_high |= E1000_RAH_AV;
7332
7333	if (hw->mac.type == e1000_82575)
7334		rar_high |= E1000_RAH_POOL_1 * qsel;
7335	else
7336		rar_high |= E1000_RAH_POOL_1 << qsel;
7337
7338	wr32(E1000_RAL(index), rar_low);
7339	wrfl();
7340	wr32(E1000_RAH(index), rar_high);
7341	wrfl();
7342}
7343
7344static int igb_set_vf_mac(struct igb_adapter *adapter,
7345                          int vf, unsigned char *mac_addr)
7346{
7347	struct e1000_hw *hw = &adapter->hw;
7348	/* VF MAC addresses start at end of receive addresses and moves
7349	 * torwards the first, as a result a collision should not be possible */
7350	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7351
7352	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7353
7354	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7355
7356	return 0;
7357}
7358
7359static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7360{
7361	struct igb_adapter *adapter = netdev_priv(netdev);
7362	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7363		return -EINVAL;
7364	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7365	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7366	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
7367				      " change effective.");
7368	if (test_bit(__IGB_DOWN, &adapter->state)) {
7369		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
7370			 " but the PF device is not up.\n");
7371		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
7372			 " attempting to use the VF device.\n");
7373	}
7374	return igb_set_vf_mac(adapter, vf, mac);
7375}
7376
7377static int igb_link_mbps(int internal_link_speed)
7378{
7379	switch (internal_link_speed) {
7380	case SPEED_100:
7381		return 100;
7382	case SPEED_1000:
7383		return 1000;
7384	default:
7385		return 0;
7386	}
7387}
7388
7389static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7390				  int link_speed)
7391{
7392	int rf_dec, rf_int;
7393	u32 bcnrc_val;
7394
7395	if (tx_rate != 0) {
7396		/* Calculate the rate factor values to set */
7397		rf_int = link_speed / tx_rate;
7398		rf_dec = (link_speed - (rf_int * tx_rate));
7399		rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
7400
7401		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7402		bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
7403		               E1000_RTTBCNRC_RF_INT_MASK);
7404		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7405	} else {
7406		bcnrc_val = 0;
7407	}
7408
7409	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7410	/*
7411	 * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7412	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7413	 */
7414	wr32(E1000_RTTBCNRM, 0x14);
7415	wr32(E1000_RTTBCNRC, bcnrc_val);
7416}
7417
7418static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7419{
7420	int actual_link_speed, i;
7421	bool reset_rate = false;
7422
7423	/* VF TX rate limit was not set or not supported */
7424	if ((adapter->vf_rate_link_speed == 0) ||
7425	    (adapter->hw.mac.type != e1000_82576))
7426		return;
7427
7428	actual_link_speed = igb_link_mbps(adapter->link_speed);
7429	if (actual_link_speed != adapter->vf_rate_link_speed) {
7430		reset_rate = true;
7431		adapter->vf_rate_link_speed = 0;
7432		dev_info(&adapter->pdev->dev,
7433		         "Link speed has been changed. VF Transmit "
7434		         "rate is disabled\n");
7435	}
7436
7437	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7438		if (reset_rate)
7439			adapter->vf_data[i].tx_rate = 0;
7440
7441		igb_set_vf_rate_limit(&adapter->hw, i,
7442		                      adapter->vf_data[i].tx_rate,
7443		                      actual_link_speed);
7444	}
7445}
7446
7447static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7448{
7449	struct igb_adapter *adapter = netdev_priv(netdev);
7450	struct e1000_hw *hw = &adapter->hw;
7451	int actual_link_speed;
7452
7453	if (hw->mac.type != e1000_82576)
7454		return -EOPNOTSUPP;
7455
7456	actual_link_speed = igb_link_mbps(adapter->link_speed);
7457	if ((vf >= adapter->vfs_allocated_count) ||
7458	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7459	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7460		return -EINVAL;
7461
7462	adapter->vf_rate_link_speed = actual_link_speed;
7463	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7464	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7465
7466	return 0;
7467}
7468
7469static int igb_ndo_get_vf_config(struct net_device *netdev,
7470				 int vf, struct ifla_vf_info *ivi)
7471{
7472	struct igb_adapter *adapter = netdev_priv(netdev);
7473	if (vf >= adapter->vfs_allocated_count)
7474		return -EINVAL;
7475	ivi->vf = vf;
7476	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7477	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7478	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7479	ivi->qos = adapter->vf_data[vf].pf_qos;
7480	return 0;
7481}
7482
7483static void igb_vmm_control(struct igb_adapter *adapter)
7484{
7485	struct e1000_hw *hw = &adapter->hw;
7486	u32 reg;
7487
7488	switch (hw->mac.type) {
7489	case e1000_82575:
7490	case e1000_i210:
7491	case e1000_i211:
7492	default:
7493		/* replication is not supported for 82575 */
7494		return;
7495	case e1000_82576:
7496		/* notify HW that the MAC is adding vlan tags */
7497		reg = rd32(E1000_DTXCTL);
7498		reg |= E1000_DTXCTL_VLAN_ADDED;
7499		wr32(E1000_DTXCTL, reg);
7500	case e1000_82580:
7501		/* enable replication vlan tag stripping */
7502		reg = rd32(E1000_RPLOLR);
7503		reg |= E1000_RPLOLR_STRVLAN;
7504		wr32(E1000_RPLOLR, reg);
7505	case e1000_i350:
7506		/* none of the above registers are supported by i350 */
7507		break;
7508	}
7509
7510	if (adapter->vfs_allocated_count) {
7511		igb_vmdq_set_loopback_pf(hw, true);
7512		igb_vmdq_set_replication_pf(hw, true);
7513		igb_vmdq_set_anti_spoofing_pf(hw, true,
7514						adapter->vfs_allocated_count);
7515	} else {
7516		igb_vmdq_set_loopback_pf(hw, false);
7517		igb_vmdq_set_replication_pf(hw, false);
7518	}
7519}
7520
7521static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7522{
7523	struct e1000_hw *hw = &adapter->hw;
7524	u32 dmac_thr;
7525	u16 hwm;
7526
7527	if (hw->mac.type > e1000_82580) {
7528		if (adapter->flags & IGB_FLAG_DMAC) {
7529			u32 reg;
7530
7531			/* force threshold to 0. */
7532			wr32(E1000_DMCTXTH, 0);
7533
7534			/*
7535			 * DMA Coalescing high water mark needs to be greater
7536			 * than the Rx threshold. Set hwm to PBA - max frame
7537			 * size in 16B units, capping it at PBA - 6KB.
7538			 */
7539			hwm = 64 * pba - adapter->max_frame_size / 16;
7540			if (hwm < 64 * (pba - 6))
7541				hwm = 64 * (pba - 6);
7542			reg = rd32(E1000_FCRTC);
7543			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7544			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7545				& E1000_FCRTC_RTH_COAL_MASK);
7546			wr32(E1000_FCRTC, reg);
7547
7548			/*
7549			 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
7550			 * frame size, capping it at PBA - 10KB.
7551			 */
7552			dmac_thr = pba - adapter->max_frame_size / 512;
7553			if (dmac_thr < pba - 10)
7554				dmac_thr = pba - 10;
7555			reg = rd32(E1000_DMACR);
7556			reg &= ~E1000_DMACR_DMACTHR_MASK;
7557			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7558				& E1000_DMACR_DMACTHR_MASK);
7559
7560			/* transition to L0x or L1 if available..*/
7561			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7562
7563			/* watchdog timer= +-1000 usec in 32usec intervals */
7564			reg |= (1000 >> 5);
7565
7566			/* Disable BMC-to-OS Watchdog Enable */
7567			reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7568			wr32(E1000_DMACR, reg);
7569
7570			/*
7571			 * no lower threshold to disable
7572			 * coalescing(smart fifb)-UTRESH=0
7573			 */
7574			wr32(E1000_DMCRTRH, 0);
7575
7576			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7577
7578			wr32(E1000_DMCTLX, reg);
7579
7580			/*
7581			 * free space in tx packet buffer to wake from
7582			 * DMA coal
7583			 */
7584			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7585			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7586
7587			/*
7588			 * make low power state decision controlled
7589			 * by DMA coal
7590			 */
7591			reg = rd32(E1000_PCIEMISC);
7592			reg &= ~E1000_PCIEMISC_LX_DECISION;
7593			wr32(E1000_PCIEMISC, reg);
7594		} /* endif adapter->dmac is not disabled */
7595	} else if (hw->mac.type == e1000_82580) {
7596		u32 reg = rd32(E1000_PCIEMISC);
7597		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7598		wr32(E1000_DMACR, 0);
7599	}
7600}
7601
7602static DEFINE_SPINLOCK(i2c_clients_lock);
7603
7604/*  igb_get_i2c_client - returns matching client
7605 *  in adapters's client list.
7606 *  @adapter: adapter struct
7607 *  @dev_addr: device address of i2c needed.
7608 */
7609struct i2c_client *
7610igb_get_i2c_client(struct igb_adapter *adapter, u8 dev_addr)
7611{
7612	ulong flags;
7613	struct igb_i2c_client_list *client_list;
7614	struct i2c_client *client = NULL;
7615	struct i2c_board_info client_info = {
7616		I2C_BOARD_INFO("igb", 0x00),
7617	};
7618
7619	spin_lock_irqsave(&i2c_clients_lock, flags);
7620	client_list = adapter->i2c_clients;
7621
7622	/* See if we already have an i2c_client */
7623	while (client_list) {
7624		if (client_list->client->addr == (dev_addr >> 1)) {
7625			client = client_list->client;
7626			goto exit;
7627		} else {
7628			client_list = client_list->next;
7629		}
7630	}
7631
7632	/* no client_list found, create a new one as long as
7633	 * irqs are not disabled
7634	 */
7635	if (unlikely(irqs_disabled()))
7636		goto exit;
7637
7638	client_list = kzalloc(sizeof(*client_list), GFP_KERNEL);
7639	if (client_list == NULL)
7640		goto exit;
7641
7642	/* dev_addr passed to us is left-shifted by 1 bit
7643	 * i2c_new_device call expects it to be flush to the right.
7644	 */
7645	client_info.addr = dev_addr >> 1;
7646	client_info.platform_data = adapter;
7647	client_list->client = i2c_new_device(&adapter->i2c_adap, &client_info);
7648	if (client_list->client == NULL) {
7649		dev_info(&adapter->pdev->dev,
7650			"Failed to create new i2c device..\n");
7651		goto err_no_client;
7652	}
7653
7654	/* insert new client at head of list */
7655	client_list->next = adapter->i2c_clients;
7656	adapter->i2c_clients = client_list;
7657
7658	client = client_list->client;
7659	goto exit;
7660
7661err_no_client:
7662	kfree(client_list);
7663exit:
7664	spin_unlock_irqrestore(&i2c_clients_lock, flags);
7665	return client;
7666}
7667
7668/*  igb_read_i2c_byte - Reads 8 bit word over I2C
7669 *  @hw: pointer to hardware structure
7670 *  @byte_offset: byte offset to read
7671 *  @dev_addr: device address
7672 *  @data: value read
7673 *
7674 *  Performs byte read operation over I2C interface at
7675 *  a specified device address.
7676 */
7677s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7678				u8 dev_addr, u8 *data)
7679{
7680	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7681	struct i2c_client *this_client = igb_get_i2c_client(adapter, dev_addr);
7682	s32 status;
7683	u16 swfw_mask = 0;
7684
7685	if (!this_client)
7686		return E1000_ERR_I2C;
7687
7688	swfw_mask = E1000_SWFW_PHY0_SM;
7689
7690	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7691	    != E1000_SUCCESS)
7692		return E1000_ERR_SWFW_SYNC;
7693
7694	status = i2c_smbus_read_byte_data(this_client, byte_offset);
7695	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7696
7697	if (status < 0)
7698		return E1000_ERR_I2C;
7699	else {
7700		*data = status;
7701		return E1000_SUCCESS;
7702	}
7703}
7704
7705/*  igb_write_i2c_byte - Writes 8 bit word over I2C
7706 *  @hw: pointer to hardware structure
7707 *  @byte_offset: byte offset to write
7708 *  @dev_addr: device address
7709 *  @data: value to write
7710 *
7711 *  Performs byte write operation over I2C interface at
7712 *  a specified device address.
7713 */
7714s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7715				 u8 dev_addr, u8 data)
7716{
7717	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7718	struct i2c_client *this_client = igb_get_i2c_client(adapter, dev_addr);
7719	s32 status;
7720	u16 swfw_mask = E1000_SWFW_PHY0_SM;
7721
7722	if (!this_client)
7723		return E1000_ERR_I2C;
7724
7725	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7726		return E1000_ERR_SWFW_SYNC;
7727	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7728	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7729
7730	if (status)
7731		return E1000_ERR_I2C;
7732	else
7733		return E1000_SUCCESS;
7734
7735}
7736/* igb_main.c */
7737